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The oldest and strongest emotion of mankind is fear, and the oldest and strongest

kind of fear is fear of the unknown. - H. P. Lovecraft

And if he left off dreaming about you, where do you suppose you’d be? - Lewis Carroll,

Through the Looking-Glass



Abstract

The majority of the matter in the known universe is believed to be in the form of Dark

Matter, and its widely accepted description is done by Cold Dark Matter (CDM).

Nevertheless, its exact properties and composition are still unknown, and it is one of

the most active areas of research in Cosmology.

The use of Cold Dark Matter has been successful to describe the general behaviour

of Dark Matter at large scales. However, it has encountered problems explaining phe-

nomena at other regimes as on the scale of galaxy halos. Therefore, other models have

been proposed over time which are able to retain the reasonable success of CDM on

large scales and extent it to other regimes where CDM has problems to explain the

observed data. One of such models is Scalar field Dark Matter (SFDM). Its properties

allow it to produce similar results at large scales and solve the problems encountered at

galactic scales. Nevertheless, the difficulty to obtain direct observations of Dark Matter

makes it difficult to give a definitive comparison between the models. Therefore, it is

important to study dark matter through different methods of analysis that would allow

to increase the validity of its scope, and these methods are constantly being researched.

In this work, a particular density profile known as Wave Dark Matter is implemented

as a gravitational lens to study its behaviour in the cases where it produces strong

lensing of light and of gravitational waves. Analytical functions for the description of a

soliton core and a soliton core + NFW tail are applied to a sub-sample of 6 galaxies from

The Sloan Lens ACS Survey to constrain the lensing parameters and their relation with

the profile. Furthermore, by considering the soliton core to be the main contributor to

the mass profile, this is implemented as a lens for the case of the wave approximation
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and further to describe the major effects of the lens on gravitational waves.

It was found that the soliton core is too compact and dense in order to reproduce

the observed values of the data for the lensed galaxies. However, adding a NFW

tail alleviates the problem and reaches radii and masses within the range reported

in the literature, although the size of the NFW tail cannot be properly constrained.

Meanwhile for gravitational waves, it was found that the lensing parameters of the

soliton core, if they are expected to describe a galaxy, will be such that they are more

likely to be observed spaceborne gravitational wave detectors.

In summary, therefore, a wave dark matter soliton in combination with a NFW tail is

able to represent a galaxy, and the combination of ligh and gravitational waves should

give new insight on the validity of the profile as a description of Dark Matter galactic

haloes.
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Preface

This thesis deals with the use of gravitational lensing in the regime of strong lensing

by applying a Wave Dark Matter profile. This is done for the traditional description

of light by using geometric lensing, but also includes a description of several profiles in

the wave approximation for gravitational waves. A brief description and outline of the

chapters is found in the following paragraphs.

Chapter 1 introduces the reader to the background cosmology followed during the

thesis. It starts with a brief historical introduction of the Hot Big Bang model, and

the overall view of the universe described by it. This is followed by a more technical

description of the standard cosmological model establishing the basic idea for dark

matter, with its successes and challenges, and introducing the type of model that will

be used in the thesis.

Chapter 2 presents the standard formalism for gravitational lensing. In particular,

it shows several of the profiles used in lensing, especially considering the geometrical

optics approximations. Also, it presents some of the concepts of lensing used in later

chapters.

Chapter 3 presents a brief introduction of several concepts for Bayesian inference.

These are presented to the reader to easy the understanding the discussion and analysis

given in later chapters.

Chapter 4 presents formally the profile distribution which is going to be analysed

on the rest of the thesis. Also, it includes a brief discussion of other profiles with

similar properties. Additionally, the main part introduces the normalization used, and

it presents the equations necessary to describe the Wave Dark Matter profile as a



gravitational lens which were derived for the first time for the work carried out in this

thesis, and it also sets out the conditions for strong lensing.

Chapter 5 describes the analysis done with a selected sample of data using the derived

equations introduced on the previous chapter. The data analysis presented is done using

Bayesian inference. A discussion of the results found is at the end of this chapter.

Chapter 6 is a brief introduction to the lensing effect on the wave approximation.

It introduces the formalism used, presents results for several profiles already found in

literature, and shows how the Wave Dark Matter profile is used in this approximation

as a lens and briefly compares, and highlights, its differences with the other lenses.

Chapter 7 reviews importance of lensing for the detection of gravitational waves and

presents a qualitative analysis of several profiles, with major attention given for Wave

Dark Matter, and their consequences for future detections of lensed signal.

Finally, chapter 8 presents the conclusions of the thesis and description for future

work.
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Chapter 1

Introduction

For hundreds of years, Humanity has asked itself similar questions: what is the meaning

of life? what is right and wrong? who am I? what is time?... From all of these one

that has emerged from many different cultures is what is the Universe?. The answer

for this question has not been unique and has changed as knowledge has advanced.

During history there has been several different ideas and descriptions of the cosmos,

the Pythagorean, Atomist, Aristotelian and so on. It should be more correct to call

them models. Each one of them presented a different cosmic picture, and all of these

have been modified, refuted and become obsolete with each new discovery and change

of human society.

Therefore, this points out that the idea of the Universe has changed with time, and

the existence of universes or universe models is more appropriate. Hence, cosmology

is the study of the cosmos by science, philosophy, theology, and any other subject

that seeks understanding. For the purpose of science, cosmology is the study of large

and small structures of the universe models and how these evolve with time, and the

comparison and confrontation of these models with observations.

From the earlier days of mankind several different ideas appeared; one of the most

primitive ideas involved a world of magic where everything was surrounded by pro-

tecting spirits. Eventually, the cosmic view evolved to myths: it was a new world

dominated by gods, demi-gods, and heroes. These ideas faded and were replaced by
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the humans as their centre, giving birth to anthropocentricity, which led to the idea of

the earth as the centre of the universe. In particular, the Aristotelian model considered

several concentric spheres with the earth at the centre. This was the basis for so-called

“geocentric models”, and it was the dominant belief for centuries. With this in mind,

writers and religion built their world. One of the most known representations is in

Dante’s Divine Comedy where he guides the reader through out hell, purgatory and

paradise conformed of a scheme of concentric spheres, as shown in figure 1.1, similar to

the Aristotelian model. Although, the advent of new discoveries and the development

of science challenged the old views because all these universes have something in com-

mon, they are too complex and there were phenomena that they could not explain at

the time of their inception. These inconsistencies were challenged, and consequently,

opened the door for new paradigms to enter to the world.

The sixteenth century saw a new change to take place. Until then, the earth was

the central axis of the macrocosm, but this geocentric view had become extremely

complex in its description of motion for celestial bodies. For this reason, a new idea

that simplified and harmoniously explained the skies gained strength and challenged

the fundamental belief that had been established for centuries. In brief, the works of

Copernicus and Kepler placed the Sun as the protagonist of the picture; the heliocentric

model was being born. Not so long later, Galileo raised his telescope to the heavens

and saw the moons of Jupiter, suddenly, hammering the last nail in the coffin of the

old geocentric ideas. Henceforth, a period of fast changes came for astronomy by the

sudden addition of the telescope as an instrument; furthermore, Newton published his

laws of motion describing accurately, as never was done before, how gravity interacted.

His universal law of gravitation describes that the gravitational attraction between any

two bodies varies as the inverse square of their separation [99, 47]; it became one of

the cornerstone of the description of the cosmos for the next couple of centuries.

Later in the eighteen century, Thomas Wright described very closely the ring shaped

distribution of stars of the galaxy, and the Universe expanded once more; it was not

just the solar system any more, but an infinite and static universe. There was a new

galactocentric model describing the Milky Way, although, still considering the Sun as
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Figure 1.1: Dante’s Scheme of the Universe. From Studies in the History and Method

of Science, ed. by Charles Singer, 1917, Vol. I, Fig. 4.

its centre [47]. This idea was not long lived as the result of the marriage of astronomy

and physics.

The speed of light was once thought to be infinite, but Olaus Roemer in 1676 was the

first to successfully measure the speed of light. His method was based on observations

of the eclipses of the moons of Jupiter. Another famous astronomer who measured

light was Edmund Halley obtained a finite speed of 300 000 kilometres a second [47],

which initiated an era for more precise measurements of distances. The nineteenth
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century saw the birth of astrophysics, which introduced new advances in understanding

the composition and motions of stars by taking into consideration Doppler effect (the

change of frequency of light due to relative motion between the source and observer),

atomic theory, chemical composition, and so on. A new cosmic picture took the scene,

the Victorian universe, become the standard cosmological model. It described the

universe as a one stand-alone island, the Galaxy, which was surrounded by other small

ones. Nonetheless, it did not last much longer after Jan Oort confirmed that the Milky

Way stars orbit around a distant centre [47].

In the twentieth century, General Theory of Gravity by Albert Einstein was im-

plemented with success to solve old discrepancies that the Newtonian description of

gravity could not. As a result, the modern standard cosmological model was formu-

lated. The magic, old gods and myth had lost out to science for the description of the

cosmos.

In the rest of the chapter a brief review of modern cosmology will be presented,

and will set the basic background for the rest of this thesis. This is by no means an

extensive review, and the intention is to only include those topics adequate to help

ease the setting for the rest of the work.

1.1 Modern Cosmology

A more appropriate definition of cosmology would be the study of the primary cos-

mic constituents, such as the origin and history of chemical elements, and space and

time from the frame of an expanding universe [47]. With this in mind, the following

subsection will introduce some views of modern cosmology.

1.1.1 Relativity

The foundations of relativity were introduced at the beginning of the twentieth century

by Albert Einstein. Before its formulation, the ideas of space and time were separated

concepts, but with the introduction of the Special Theory of Relativity, they combined
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(a) Space-time diagram in special rela-

tivity.

(b) Geometric interpretation of gravity

in General Relativity.

Figure 1.2: a) Shows the simplest idea of space-time in special relativity and the

concept of preservation of space-time interval. b) Shows in a simple manner an object

with mass curving the space-time. The red arrows point to representation of “shortest

paths” which defines the notion of geodesic.

to become a single concept, the space-time [47, 99]. Later on, Einstein expanded its

validity by including the effects of gravity in his General Theory of Relativity.

Special Relativity

In Classical Mechanics, the ideas of time and space are considered independent vari-

ables, but special relativity combines them as a single space-time, and postulates [104]:

• The laws of physics are the same in every inertial frame.

• The speed of light in the vacuum is constant in every inertial frame,

c = 299792458 m/s.

It preserves the notion of inertial frame of reference where a test point mass thrown from

the same point in different directions follows rectilinear paths each time it is thrown [52].

The existing distance between two space and time events becomes an invariant, the

space-time interval. It extends the notion of a straight line from euclidean geometry.

Nevertheless, the effects of gravity are not considered.
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Equivalence principle

Special Relativity changed how space and time are described by combining them into a

single space-time variable, but it does not consider how gravity affects it. An important

property that defines an inertial frame of reference is that any particle at rest remains

in this state if no force acts upon it. Nevertheless, trying to define an inertial frame on

earth is not easily done because, in general, it is not possible to free particles from the

effects of gravity. However, a freely falling frame of reference will satisfy this property,

provided that the separation of the particles within it is not too large, and they will

remain at rest unless acted upon by some other non-gravitational force. Under those

circumstances, gravitational and inertial forces produce effects that are indistinguish-

able, this is the principle of equivalence [47]. This allowed Special Relativity to be

applied in free falling systems as well as inertial frames.

General Relativity

The principle of equivalence allowed to expand the validity of Special Relativity; in

combination with the realization that gravity and curved spaces have much in common,

this lead to the formulation of General Relativity. It is a theory of gravity with curved

space where the Newtonian gravitational potential is replaced by the curvature of the

geometry of the space-time. In short, it is a geometric interpretation of gravity [104].

Moreover, it generalizes the euclidean idea of “straight lines” to curved spaces; this

shortest path is the basic notion of geodesic [104]. In essence, Wheeler described in

a simple phrase the main concept of the theory: Spacetime tells matter how to move;

matter tells spacetime how to curve [136].

The postulates of General Relativity are:

• The laws of physics must be written in the same mathematical form in all coor-

dinated systems.

• Free falling particles follow geodesics of the space-time.
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• The equivalence principle or local Lorentz invariance: The laws of Special Rela-

tivity apply to all local inertial observers.

The space-time continuum is described by a 4-dimensional manifold with metric g

and space-time interval given by

ds2 = gµνdx
µdxν . (1.1)

But this is not complete without a relation with “matter” and energy; in this case,

the term matter refers to all the forms of energy that have mass [47, 99]. This

information is encapsulated in what is called the energy-momentum tensor, Tµν , and

it is very important; doing an analogy with Newtonian theory, it is the equivalent to

the mass density field ρ. For Einstein’s relativity the source of the gravitational field

is the Energy-momentum tensor. Furthermore, the description of the gravitational

interaction of matter in terms of the space-time curvature is given by the Einstein field

equations [104, 99, 47],

Gµν =
8πG

c4
Tµν . (1.2)

1.1.2 The early universe

With the introduction of General Relativity, a new paradigm of the universe had to

be developed. Its study led to the derivation that the cosmos had a beginning, and

in the present, it should be expanding. This new model is known as the Big Bang

model [47, 99, 60].

Before the introduction of the Big Bang model, the most dominant description was

a static Newtonian universe; it was not expanding nor contracting. But according to

General Relativity a static universe, finite or infinite, would only be achieved by a set

of strict rules [47, 58]. It was the works of Alexander Friedmann, George Lemaitre,

Arthur Eddington, Edwin Hubble, and other pioneers in the decade of 1920s that made

an expanding universe a familiar idea [47, 58, 99].
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The cosmic horizon

After the original publication, Einstein corrected his field equations to maintain the

description of the universe as static, which is known today as the cosmological constant;

however, this correction was proven to be wrong, by the evidence in the measurements

of the recession velocity of galaxies of Edwin Hubble [47, 66, 99]. He used the concept

of redshift, which is defined as the fractional increase in wavelength of a source:

z =
λ0 − λ
λ

. (1.3)

Here, λ0 is the observed wavelength and λ is the emitted wavelength. Hubble used

the relative velocities of galaxies with redshift given by the relation V = cz. Where

V is the relative velocity and c being the speed of light. He wound that the previous

relation increased and was proportional with the galaxy distance. Generally speaking,

it was the sign that the observable universe was expanding [47, 99, 66]. Then later a

redshift-distance relation was derived, called the Hubble’s Law,

V = HD . (1.4)

V is the velocity, D is the distance, and H is called the Hubble term or parameter. This

term changes in time, and will be discussed in later sections [47]. The measurement

of a cosmic expansion set to rest the static universe. But if the universe expands, this

meant that there was a beginning; therefore, the universe was finite in time and space.

When the speed of light, in the vacuum, was found to be a precise and fixed value, it

transformed telescopes into time machines [66]. Light from distant stars observed in the

night sky took a specific amount of time to reach observers on Earth; the introduction

of a finite expanding universe created a barrier or cosmic horizon.The travel time of

any light emitted in the distant past could not exceed the age of the universe, and due

to the expansion it creates a region which expands with time known as the observable

universe [60]. Anything that we are able to see today is inside this region. As time

passes, more light from distant objects will arrive eventually. Nevertheless, as it has

been found galaxies recede from each other due to the expansion, this affects the light
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emitted, which produces redshift, if this recession is enough to equal the speed of light,

any object satisfying this condition will remain hidden from us [47].

Before the first second

As mentioned earlier, the Big Bang model predicts a finite, expanding universe. This

means that some time in the past there was a beginning. There is not an agreement of

what happened during this time, but it was a time where the universe was extremely

hot and dense with an average temperature of approximately 1032 Kelvin; quantum

fluctuations plagued the whole universe [47, 58, 67]. At some point after about 10−36

second, it is believed that an abrupt and violent expansion of the universe happened,

this is called inflation [68]. This allowed the universe to cool down and start forming

the basic components needed for the formation of basic elementary particles, and the

small fluctuations were enhanced with this abrupt change on size creating tiny but,

with time, considerable irregularities. A slower expansion continued, and after the first

second the temperature of the universe was approximately 10 billion kelvin and the

density was 1 million gram per centimetre cubic dense [47].

First million years

The universe was a soup of particles for a while, and around 3 minutes of age, the

first atomic nuclei was formed; the process is called Big Bang Nucleosynthesis. It

was the time where the majority of the Hydrogen and Helium nuclei were formed.

This era of cosmic history is called the radiation era, and lasted for approximately

100 000 years. In other words, the dominant component of the universe was radiation.

Nevertheless, this would not last, as time passed the continuous expansion kept cooling

the content and changing the densities. Therefore, it reached a point where the density

of matter and radiation were equal [68]. As the expansion continued, matter started

to become dominant. Even more, by the time the temperature dropped below 4000

Kelvin marked the start of the recombination epoch. During this epoch, the energy of

the photons had dropped enough so that atomic nuclei and electrons could combine to



1.1: Modern Cosmology 10

form neutral atoms, this process is referred as recombination. Before this, photons had

enough energy to easily ionize any bound atom; this released a flood of electrons that

previously kept constantly scattering in all directions impeding light from travelling

long distances and maintaining the state of the universe as a plasma for approximately

300 000 years [66, 99]. Moreover, it started a process of decoupling with radiation.

Photons were no longer able to ionize the neutral atoms which in turn allowed them

to travel free through space; this was a slow process which lasted for more than 10

000 years and left an energetic imprint, this time of the early universe is known as the

epoch of last scattering. Light from this fingerprint of the early universe was able to

travel free from the young epochs, and we receive it in the present as what is known

as the Cosmic Microwave Background Radiation (CMBR) [58, 99, 66, 67]. Eventually,

freeing light to travel and the dominance of matter made the universe transparent;

furthermore, at this point there was no stars to cover the sky, therefore, it started an

cosmic period appropriately designated as dark ages [47, 66, 99].

Fourteen billion years later

After the epoch of decoupling and last scattering, the universe spent millions of years in

darkness, and little or nothing is known about this era [47]. It was a time dominated by

matter, but finally to end this epoch, at around 400 million years of age, the first stars

was born. It was a time full of gas, mainly hydrogen and helium, but the density was a

million times greater than what it is today, and this caused the stars formed at this point

to be considerably bigger and short-lived compared to their modern counterparts. Their

death, as the most accepted process [67], was the engine that started the formation of

galaxies. It triggered the birth and death of countless stars with new galaxies being

form. It was a very active period of the universe, and lasted for millions of years. At

some point during this active time, matter lost dominance, and a component designated

now as Dark Energy took the lead and started driving the expansion of the universe.

Its composition is still unknown and being study, but for the Big Bang model it is

represented by the cosmological constant. From galaxies, the continuous creation and
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Figure 1.3: Impression of the evolution of the universe according to the hot Big Bang

model by NASA/WMAP Science Team (Original version: NASA; modified by Ryan

Kaldari) [Public domain], via Wikimedia Commons.

destruction of stars led to the formation of heavier elements, and new bounded objects

like asteroids, planets, and so on. This process continues after almost fourteen billion

years, and it is now being observed by telescopes on Earth.

As an illustration, the process of the history of the universe is presented in a repre-

sentative manner in fig. 1.3.

1.2 Standard model of cosmology

1.2.1 Homogeneity and isotropy

The starting point in modern cosmology, and key component of the so-called Big Bang

model is the Cosmological Principle [58, 99, 47, 66, 88]. This says that on large scales

the universe is homogeneous and isotropic. This was presented originally as an intuitive

property to reduce the mathematical analysis. The homogeneity of the universe can

be observed on scales around 100 Mpc (1 Mpc ' 3.08× 1022m) [79, 58, 99]. Below this

scale the universe is observed to be lumpy due to the distribution of galaxies, clusters
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Figure 1.4: A simple sketch exemplifying the homogeneity at larger scales. Below

100 Mpc, the galactic distributions seems lumpy. Above this, the distribution becomes

regular the universe seems homogeneous up to the limit of the observable universe.

and super-clusters. Nevertheless, this homogeneity is just observed to the maximum

distance possible, the observable universe, around 3000 Mpc; this is sketched in fig. 1.4.

This does not mean that the whole universe is in the same way. The best evidence for

the cosmological principle comes from the Cosmic Microwave Background Radiation

(CMBR), where it can be seen that there is high uniformity in the temperature, hence

the density, of the early universe in all directions, as seen in Fig.1.5. If no homogeneity

or isotropy were present, there would be different temperatures and bigger anisotropies

at actual times. The uniformity of the CMBR suggests that at the epoch of last

scattering, around 300,000 years after the Big Bang, the universe was very smooth. This

raises the question about the local environment where it is possible to see significant

anisotropy - i.e. what portion of the universe is similar to ours?. Without speculation,

it is possible to use the evidence that the universe is homogeneous and isotropic at scales

beyond 100 Mpc with well developed structures below this range. The expansion of

the universe according to Hubble’s law and the CMBR show a possible way for how

the small fluctuations could grow. [66, 58, 88, 67, 99, 79]
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Figure 1.5: An all-sky map of temperatures from Planck mission of the CMBR [94].

Red and blue colours indicate warmer and cooler fluctuations with respect the mean

temperature of 2.72 kelvin. These are extremely dim variations as they are just one

part in 100,000. By ESA and the Planck Collaboration.

FRW Metric

General Relativity allows to describe matter moving at relativistic velocities or random

pressures, and we know that radiation dominated the universe for the first 100 000 years

after the Big Bang, but to understand other important epochs in the cosmic history,

it is necessary to work with a complete relativistic theory.

The metric for a space-time with homogeneous and isotropic spatial sections is the

maximally-symmetric Friedmann-Robertson-Walker (FRW), which can be written in

the form [58, 79],

ds2 = dt2 − a2(t)

{
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

}
, (1.5)

where (t, r, θ, φ) are the comoving coordinates, as perceived by an observer who is

moving along with the expansion of the universes with a cosmic scale factor a(t). As a

convention eq. (1.5) is written considering natural units, this means c = G = 1. With

appropriate choice of coordinates, k can be +1, −1 or 0. This describes the spatial

curvature with positive, negative and zero respectively. The coordinate r in (1.5) do

not have dimensions.
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It is convenient to express the FRW metric in terms of τ or η, and defined by

dτ = dt/a(t):

ds2 = a2(τ)

{
dτ 2 − dr2

1− kr2
− r2dθ2 − r2 sin2 θdφ2

}
. (1.6)

With this choice of coordinates, the metric can be written as a Minkowski line element

with a conformal factor, a(τ), the scale factor in terms of the conformal time.

1.2.2 Friedmann Equation

In cosmology the most important equation describes the expansion of the universe

according to its material content; this is the Friedmann equation. The standard way

to state the equation by considering a universe with zero cosmological constant is [58],

H(t)2 =
8πGρ(t)

3
− kc2

a(t)2
, (1.7)

a(t) is the scale factor of the universe, which describes the time dependence of the

cosmic expansion. H(t) = ȧ/a is the Hubble parameter and describes the rate of

change of the expansion. ρ(t) is the energy density of content of the universe, G is

Newton’s gravitational constant, c is the speed of light and k is the curvature of the

universe.

In a universe with a FRW metric, it is possible to define a critical parameter, the

value of which will determine the expansion or contraction in the future of the universe.

This is the critical density, and it is defined by setting a flat universe (k = 0) in the

Friedmann equation,

ρc(t) ≡
3c2

8πG
H(t)2 . (1.8)

Any value of the density greater that this will produce a positively curved universe, and

on the contrary values below it will produce a negatively curved universe. It is more

convenient to work in terms relative to this critical density by defining a dimensionless

density parameter

Ω(t) ≡ ρ(t)

ρc(t)
. (1.9)
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Ω0 is defined as the value of this parameter in the present time, and it can be constrained

from observations. The most conservative limits establish this parameter must lie in

the range 0.1 < Ω0 < 2 [99].

1.2.3 ΛCDM

The standard model in cosmology, which best fits the observational data while using as

few free parameters as possible, is called ΛCDM. It is common to represent the param-

eters in terms of the dimensionless density parameter instead of the energy density.

Therefore, the components of the ΛCDM are commonly presented in the Friedman

equation in the following form [99].

H(a) = H0

√
Ωma−3 + Ωra−4 + ΩΛ . (1.10)

Here H(a) is the Hubble parameter in terms of the scale factor and H0 is the Hubble

constant at the present time. Ωm, Ωr, ΩΛ are the dimensionless density parameters for

matter, radiation and Dark Energy respectively.

In the model radiation is composed of relativistic particles, and the biggest con-

stituents are photons and neutrinos, but they make less than 0.01% of the present-day

content of the universe. Matter consist of two major groups, ordinary and Dark Matter;

they constitute 4.86% and 25.89% content of the universe. In cosmology, it is common

to refer to ordinary matter as baryonic matter. The term is used loosely to refer to any

kind of matter made of atoms. This is due to the fact that the atomic nuclei, made of

protons and neutrons which are baryons, represents the major mass percentage of the

atom. Dark Matter is described as Cold Dark Matter.

The majority of the density of the universe is Dark Energy which represents 69.11% [93]

and is described by the cosmological constant Λ. An illustrative pie chart of these pro-

portions is in fig. 1.6.

The Hubble constant at the present time, H0, has been obtained by different tech-

niques like gravitational lensing [19], Type Ia supernovae [31] and more recently

gravitational waves [2]; nevertheless the most accepted value comes from the CMBR
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Figure 1.6: The relative amounts of the different constituents of the Universe. Image

credit: ESA/Planck.

observations and has been measured to be 67.74 ± 0.46 km−1s−1Mpc−1 [94]. Further-

more, this value can be used to obtain a rough estimate to the scale for the age of the

universe as,

tage = 1/H0 ≈ 13.799± 0.021× 109years . (1.11)

A proper calculation needs to take into account the different epochs of the universe. For

the purpose of this work, this value would be enough, and the important component

will be the Dark Matter.

1.2.4 Dark Matter

It is accepted now in the standard model of cosmology that the universe is not com-

prised entirely by Baryonic Matter, but in contrast the main component of the material

content of the universe is in the form of an elusive type of matter which only manifests

itself by its gravitational interaction, which means it has weak interaction with the elec-

tromagnetic radiation, and hence light. In this fashion, it is appropriately named Dark

Matter (DM). Indirect evidence can be traced back to the 1930s with the observation

of the large velocity from the members of the Coma cluster [140, 113].
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Figure 1.7: Representation of the observed comparison between the predicted rotation

derived from Kepler’s Law and the observed velocity curves of galaxies.

It was observed that there was a great discrepancy between average mass of the

galaxies obtained from the cluster observations and that derived from their rotation.

This discrepancy was confirmed at the time by three independent detections [95, 140,

113, 15]. It took several years to accept the fact that the luminous mass was not the

cause of these effects, and now the rotation curves of galaxies offer the most common

observational evidence about the inferred existence of Dark Matter. If Individual stars

were orbiting around galaxies following Kepler’s law, then beyond the visible part of the

galaxy the rotational velocity should drop off as the square root of the star’s distance

from its centre. However, the rotation velocity has been observed to remain approxi-

mately constant at large distance from the centre of galaxies. Figure 1.7 sketches this

feature of observations. This observation implies that there is more mass that cannot

be seen enveloping galaxies. This is what is called the galactic halo. It could be com-

posed by matter which is too faint to be observed, like planets or black holes, or the

evasive component of Dark Matter. The latter would then comprise a Dark Matter

halo. For the purpose of the rest of this thesis when referring to the halo, it would be

implied to be the Dark Matter halo [66, 58, 17, 56, 99, 3]. The ΛCDM model describes

the dark matter as a particle weakly interacting with the electromagnetic force and

massive enough, so it is slow compared to the speed of light, hence the cold part of the

name. Nevertheless, as successful as the model has been it has had several problems
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at the galactic level. The most common are [56, 16, 62, 63, 10, 29, 16, 89, 3] :

• Numerical simulations give much more satellite galaxies than observed, this is

known as the missing satellite problem.

• The model predicts a cuspy central density in the halos while observations show

that halos have approximately constant central densities. This is known as the

cusp/core problem.

• Simulations predict Milky way subhalos, subset of halos within the larger galaxy

halo, are massive enough so that they should not be able to host any of the bright

satellites, but observations show that these have less dark matter than expected.

This is the too big to fail problem.

It is now accepted that Dark Matter is a component of the universe, but still there is no

agreement of the composition of such type of matter because it has not been directly

detected yet. There are several proposals for the composition of Dark Matter and the

most popular is Dark Matter being composed of Weakly Interactive Massive Particles

(WIMPS) which might be a super-symmetric extension for the Standard Model of

particles [45]. Primordial Black Holes is other possible candidate [24], but in particular

the main focus of the thesis will be in a model described as Scalar Field Dark Matter

(SFDM), which will be briefly introduced in the following section.

1.3 Scalar Field Dark Matter

The standard particle interaction for the conventional Cold Dark Matter interpretation

still lacks laboratory support or observational evidence from e.g. dwarf galaxies. With

this and other problems in mind [69, 56, 16], the use of bosonic fields, and especially

scalar fields, is justified considering that these have the ability to mimic the behaviour

of matter [129]. The SFDM model assumes that the dark matter is a scalar field of

nature [72, 76, 77, 74]. The idea came around the 1980s with the proposal of the

axion as candidate for the dark matter particle [129]. It was shown how an oscillating
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homogeneous scalar field could mimic the behaviour of matter. During the following

decade it was proposed the composition of the dark matter as a scalar field, similar to

the introduction of the inflaton scalar field in the inflationary cosmological model [23].

During the following decade there were only a few groups working on this idea, but the

lack of communication among them caused the model to receive several names, such as

Bose-Einstein Condensate Dark Matter (BEC DM), scalar field Dark Matter (SFDM),

fuzzy Dark Matter (FDM), ultra-light axion (ULA), Wave Dark Matter (WaveDM),

ψDM among others [62, 63]. For the rest of the work it will referred in general as

SFDM, unless specified otherwise.

The attractiveness of the SFDM models is that they have only one free parameter

important for the theory, the mass of the scalar field. It has been calculated by compar-

ing the de Broglie wavelength of DM to the typical galaxy size that this mass needs to

be ultralight (m ∼ 10−22eV) [118, 63]. With only this feature constrained, the SFDM

model is able to produce:

1. The evolution of the cosmological densities in a similar manner to the standard

ΛCDM model [75, 73].

2. The acoustic peaks of the CMBR [75].

3. The existence of a natural cut-off, which helps to agree with the scale of sub-

structure seen by the observations of large scale structure [73].

Therefore, it can be seen why it is important to obtain techniques that allow to

constraint the mass of the scalr field. This remarks the use of observations and different

viable tools to give an insight about this vital property in the formulation of the model.

To point out, the tool selected for the purpose of exploring the constraints on the

mass of the scalar field, regarded in the work as the axion mass, ma, during the course

of this work will be gravitational lensing, which will be introduced in the next chapter.

To address and emphasize the viability of the SFDM model as an alternative to the

standard cosmological model, it should be able to adequately reproduce the successful

results of CDM. For this reason, studying the behaviour of SFDM through gravitational
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lensing gives insight on the requirements that it should fulfil, and likewise, study its

own properties.



Chapter 2

Gravitational lensing

2.1 The bending of light

General Relativity describe how particles travel on geodesics, and this applies also to

photons. Because of this effect, a ray of light passing close to a massive object is

deflected from its original trajectory. To attain a notion of this, it is easier to describe

the effect starting in the sense of Special Relativity.

In Special Relativity, the line element, ds, of a point particle moving along the x axis

is given by [104]

ds2 = c2dt2 − dx2 . (2.1)

If this particle is a photon, one of the postulates Relativity is the constancy of the

speed of light, c. For this to be satisfied, the only line element a photon can take is

ds = 0, reducing to

cdt = dx . (2.2)

Therefore, light travels in a straight line. In this example, the space in consideration

is flat which corresponds to a Euclidean geometry. The idea can be generalized to

a curved space and be represented in General Relativity. Specifically, the light path

defines the null geodesic. The expression in (2.2) for a curved space is obtained from

eq. (1.1) as

gµνdx
µdxν = 0 . (2.3)
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Solution of this equation requires knowledge of the metric, gµν . In summary, light

travels along the curvature of the space-time caused by matter, albeit, it does it without

modifying the path. In the event a region is sufficiently flat, the results from Special

Relativity are recovered.

For a spherically symmetric object describing a compact lens in an isolated region

of space-time containing no other matter, the line element is the Schwarzschild metric.

Furthermore, any ray of incident light towards and passing by the lens will be contained

in the same plane defined by the mass location due to the spherical symmetry; therefore,

it is useful to work in convenient coordinates, which in this case is done by choosing

the plane defined by θ = π/2. The line element is given by [78]

ds2 =

(
1− 2MG

rc2

)
c2dt2 −

(
1− 2MG

rc2

)−1

dr2 − r2dφ2 . (2.4)

This could be separated in radial and angular parts. The presence of the mass will

curve the space surrounding it. For any light ray travelling close by, it will follow the

curvature. Specifically, there will be a distance where the path will bend and allow the

light continue travelling without colliding with the massive object; in other words, the

ray will only be deflected. Considering the Schwarzschild metric, the deflection angle

produced is given by [78]

α̂ =
4GM

ξc2
, (2.5)

where ξ is the radial distance from the closest point of the light path to the massive

object; it is also known as the impact parameter [102].

2.2 Lens equation

Consider a massive object with a total mass, M , close to the line of sight to a source

S. The angle β describes the unobservable angle between the line of sight to the actual

object and the optical axis. The observed angle θ, which is the apparent angle to the

source image I from the optical axis, is shown in figure 2.1. Due to the gravitational

effect the ray of light is bent by the angle α̂. Considering that we observe the image I,
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the magnitude of the difference with the source position as shown in fig. 2.1 and the

relation with the deflection angle is given by

I − η = DOS tan θ −DOS tan β = D
sin α̂

cos β
, (2.6)

where D is radial distance from the source to the deflection position given by ξ. The

geometry expressed as this becomes complicated enough, but considering the distances

involved in the effect, we can assume small deflections and the thin lens approximation

can be used for the deflector; this makes possible to apply the small angle approximation

to (2.6), which at the same time allows to approximate D ≈ DLS. The equation is

rewritten in a simpler form as

θDOS = βDOS + α̂DLS. (2.7)

Introducing the reduced deflection angle

α ≡ α̂
DLS

DOS

, (2.8)

it is possible to define the so-called lens equation

β = θ − α. (2.9)

This equation relates the observed and the actual position of the source. This equation

holds true as long the distances, DA, are sufficiently large compared with the individual

sizes of source, lens and observer.

2.2.1 Point like lens

The simplest solution for the lens equation is the case when we have a ray of light being

deflected by a point like mass, M . Using the derived deflection angle for a point mass

from Eq. 2.5 and considering the radial distance ξ = θDOL, the reduced deflection

angle is given by

α =
DLS

DOSDOL

4GM

θc2
. (2.10)

For this case, the equation can be solved analytically. Another key point is the angle

subtended when the source and the lens are aligned, β = 0, which is a special case
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Figure 2.1: Diagram showing the light path from the source to the observer, deflected

by a mass in the lens plane. The diagram shows a point-like lens, but a similar diagram

can be used to represent light deflection by a symmetric extended distribution.

where the image forms a ring with an angular radius called the Einstein angle and

commonly labelled as θE [78, 103]. In the case of the point like mass it is defined as

θE =

√
DLS

DOSDOL

4GM

c2
. (2.11)

The solution for a generic non-aligned source position, defined by angle β, generates

two images with angular positions [78, 102]

θ± =
β

2
± θE

√
1 +

β2

4θ2
E

. (2.12)

2.3 Time Delay

The time delay due to gravitational lensing arises from the difference in arrival time

at the observer of light from the images, compared with the light travel time from

the source in the absence of a lens. First the light deflection causes the light to travel

along a different path, introducing geometrical time delay. For example, in eq. (2.12) by

assuming θE and β positive, the θ+ solution produces a bigger angle than θ−, therefore,
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the resulting distance to the observer is different; in general, the positive solution has

the shortest travelling path. Moreover, because the light traverses the gravitational

field of the lens, we can expect there to be another factor contributing to the time

delay. This is known as the Shapiro delay [102].

Given the weak field metric, in the time coordinate and considering a Euclidean

length dl,

cdt ≈ (1− 2Φ)dl , (2.13)

where Φ denotes the Newtonian gravitational potential of the lens. Thus, not only is

there a time delay due to the path difference but there is also a time delay due to the

gravitational potential.

2.3.1 Lensing Potential and Fermat potential

We can describe the bending of light in terms of a lensing potential, which is related

to the Newtonian potential with proper rescaling by [102]

ψ̂(ξ) =
DLS

DOLDOS

2

c2

∫
Φ(ξ, z) dz , (2.14)

and it follows that the lensing potential is related to the bending angle by the equation

∇xψ̂ = α. (2.15)

2.3.2 Caustics and critical curves

The light deflection produced by the gravitational field is the reason for the gravita-

tional lensing effect, and it is not connected to a process of absorption or emission

of light. This means that the intensity of radiation produced by the source must be

conserved as the light travels to the observer. Furthermore, considering the deflector is

relatively static in the system, the surface brightness produced by the source remains

constant.

The flux from an infinitesimal source is the product of the solid angle, ∆ω, and

the surface brightness which varies along the light path. Therefore, by comparing the
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lensed and unlensed fluxes, we can write a simple relation between both cases; given

the conservation of surface brightness, the relation only depends on the solid angle.

This comparison defines the magnification factor which is given by [102]

µ ≡ ∆ω

(∆ω)0

, (2.16)

where (∆ω)0 corresponds to the solid angle for the unlensed case. In terms of the

mapping between θ and β in eq. (2.9), the magnification factor for light is

µ =

∥∥∥∥det
∂β

∂θ

∥∥∥∥−1

. (2.17)

This equation is the ratio of the flux of an image in the lensed versus the unlensed

case [103]. Additionally, it is important to consider the particular case when the

determinant vanishes. This condition sets a line known as a critical curve [78]. Along

this curve the amplification diverges, but this is not a real feature from a finite source,

but more a result from the approximation used to describe the lens, the geometrical

optics, which is generally adequate for the treatment of light [102]. At the same time,

the corresponding positions of the source which produce this critical curve are called

the caustics [78, 102]. They are of interest because they define the divergence of the

amplification factor, and can be traced through the mapping of the lens equation.

2.4 Extended mass distribution

The previous considerations are for a point-like mass distribution, but real objects are

extended mass distributions with a density ρ(x). In view of the distances considered

which are much larger than the size of the deflector, it is adequate to use the so-called

thin lens approximation, where the thickness of the lens is ignored by assuming that it

has a much smaller physical length compared with the observer-to-lens and source-to-

lens distances.

The surface mass density, Σ(ξ), corresponds to the projection of the mass distri-

bution on a plane passing through its centre of mass and orthogonal to the light ray
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direction [78]. This is defined as

Σ(ξ) =

∫
ρ(ξ, z)dz . (2.18)

The particular case which simplifies the calculations is when the mass distribution

is spherically symmetric. In this case the surface mass density only depends on the

modulus of the impact parameter ξ = |ξ|. For this purpose, the deflection angle is

α̂ =
4GM(ξ)

c2ξ
, (2.19)

with M(ξ) as the mass enclosed inside a circle of radius ξ in the projected plane,

M(ξ) ≡ 2π

∫ ξ

0

dξ′ξ′Σ(ξ′) . (2.20)

This is also called the reduced mass. Furthermore, by taking into consideration an

extended distribution, the lens equation can rewritten as

β = θ − M(θ)

πD2
OLθΣcr

. (2.21)

where Σcr = c2DOS/4πGDOLDLS, and it is called the critical surface density. In

addition, disregarding the form of the mass distribution, the total mass enclosed inside

the Einstein angle can always be obtained as

M(θE) = πD2
OLθ

2
EΣcr . (2.22)

2.5 Most common lensing profiles

2.5.1 SIS profile

Among the different symmetric mass distribution models for galaxies acting as a lens,

the simplest and most widely used to reproduce the flat rotation curves is the Singular

Isothermal Sphere (SIS) [17, 102, 78]. Here the profile is given by

ρ(r) =
σ2

2πGr2
. (2.23)
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The value of σ is the one dimensional velocity dispersion of stars orbiting around a

gravitational bounded object such as a galaxy or a cluster. Equation (2.23) can be used

as the profile in (2.18) and integrated analytically to obtain the surface mass density,

Σ(ξ) =
σ2

2Gξ
. (2.24)

From it, the reduced mass as expressed by eq. (2.20) is easily found by integration

which gives

M(ξ) =
πσ2

G
ξ . (2.25)

The SIS is the simplest example for an extended mass distribution. Unfortunately, the

density grows following the inverse square law, and it has a singularity at the centre of

the distribution.

2.5.2 NFW profile

The standard paradigm of Dark Matter describes it as collisionless and cold, so this

predicts a general structure from which there can be expected to exist a universal

profile for the evolution of galaxies [83]. The most general profile to describe the mass

distribution of galaxies dominated by Dark Matter is the Navarro, Frenk and White

(NFW) profile [138, 90, 83]. The mathematical form of the profile is given by

ρNFW (r) =
ρs

r/rs(1 + r/rs)2
, (2.26)

where ρs is the central density, and rs is the characteristic scale radius of the profile.

The NFW profile suffers from a singularity at the centre. From (2.18), the surface

mass density of an NFW lens is written as

ΣNFW(x) =


2rsρs
x2−1

[
1− 2√

1−x2 arctanh
√

1−x
1+x

]
, x < 1,

2rsρs
3

, x = 1,

2rsρs
x2−1

[
1− 2√

x2−1
arctan

√
x−1
1+x

]
, x > 1,

(2.27)

considering the profile spherically symmetric, x = ξ/rs [7, 138]. The reduced mass of
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Figure 2.2: Comparison of the three example profiles by a central density, ρ0 and

normalization length, r0. For the case of the SIS, it was defined ρ0 = σ2/Gr2
0. For

NFW and Burkert profiles r0 = rs. It is clear that the SIS and NFW profiles diverge

at the centre, meanwhile the Burkert and NFW are similar at large radii.

the lens is given by

MNFW(x) = 4πrsρs



[
2√

1−x2 arctanh
√

1−x
1+x

+ ln(x
2
)
]
, x < 1 ,[

1 + ln
(

1
2

)]
, x = 1 ,[

2√
x2−1

arctan
√

x−1
1+x

+ ln(x
2
)
]
, x < 1 ,

(2.28)

where x was previously described [138]. A comparison of the profiles using similar

central densities and normalization radius is seen in fig. 2.2.

2.5.3 Burkert profile

The previously considered profiles, while popular and precise for large radii, suffer from

singularities closer to the centre of the mass distribution. There are several profiles

which try to address this by having a density core. One of these is the Burkert profile,

given by

ρ(r) =
ρs

(1 + r/rs)(1 + (r/rs)2)
, (2.29)
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Figure 2.3: Example of strong lensing. A luminous red galaxy distorting a more

distant blue galaxy. By ESA/Hubble & NASA derivative work: Bulwersator via Wiki-

media Commons.

where ρs and rs are the free parameters that represent the central Dark Matter density

and the characteristic scale radius respectively. At large radii, it agrees with the NFW

profile [90, 17] as seen in figure 2.2.

2.6 Types of lensing

The underlying principle for lensing comes from the bending of light, but depending

of the situation of the system, it can be classified as one of the three main types which

are strong lensing, weak lensing, and microlensing.

2.6.1 Strong lensing

All the derivation presented up until know can directly represent strong lensing. The

effect is most commonly produced by extended lenses describing objects like galaxies

or galaxy clusters. Furthermore, it can be formed by dark matter and baryons, and

generally multiple images are observed [103]. The biggest feature found in strong

lensing is the existence of huge arcs in the sky with a radius which corresponds to



2.6: Types of lensing 31

Figure 2.4: Representation of the process of weak lensing. The image of several

background sources is slightly distorted by a lens. The aberration is so weak that

the effect is found by identifying discernible patterns in the statistical distribution of

sources.

the size of Einstein angle; this feature is called an Einstein ring. Furthermore, it is

frequently observed the presence of multiple images. In fact, any mass distribution

with a surface density bigger than the critical surface density of the lensing system,

Σcrit, will produce a discernible lensing effect.

An example of strong lensing can be observed in figure. 2.3. This is a galaxy-galaxy

lens system where a far galaxy, with a blue colour, is lensed by another which is in

the foreground, with a red hue, producing a big arc or Einstein ring. It is possible to

observe that this “horse shoe” is formed by two images of the same galaxy which lie

almost in perfect alignment following the Einstein ring. It is important to realize the

aberration produced in the lensing is the result of the change of solid angle. The work

presented in this thesis will be considering the effect of strong lensing.

2.6.2 Weak lensing

The presence of arcs and multiple images is in the domain of the strong lensing, but

there is also the case when the magnification factor is very close to unity. In this

case there are small distortions and relatively small amplifications, and the effect or

distortion of sources cannot be identified individually, but they have to be treated

statistically analysing large number of sources. This is done using source populations
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observed e.g. in galaxy or clusters surveys taking into account a large solid angle

on the sky [103]. The occurrence of weak lensing can be understood in terms of the

surface mass density. When the mass contained inside a specific radius in a mass

distribution possesses a surface mass density that is significantly smaller compared

with the critical surface density of the lensing system, but contains enough mass to

deflect the light of the source, it will produce a slight distortion, but this will not

be enough to generate multiple images or discernible arcs compared with the strong

case [103]. Weak lensing is generally detected by statistically analysing background

sources, to identify the signature of small distortions caused by a foreground lens.

Figure 2.4 presents the basic idea behind this.

2.6.3 Microlensing

There is another case where arcs and multiples images are produced, but the separa-

tions between them cannot be resolved and only the apparent brightness changes are

observed; this is known as microlensing. Usually, it is produced by compact objects

which are sufficiently distant in relation to the lens and source and which have low

masses with a range of M/M� ≤ 106; they produce angular separations of the order of

mili-arcseconds. Frequently, this is the case of objects lensed by stars or stellar mass

black holes. [78, 103].



Chapter 3

Bayesian inference for data analysis

Some concepts of data analysis will be described in following chapters. For this reason,

a short introduction to some of the techniques employed will be presented before hand.

Instead of explaining each of the independent type analyses, a general approach will

be described, with particular emphasis at the end of the chapter on nested sampling

which will be used later.

Usually when the words probabilities and statistics are encountered, the first thought

is related to a large representative number of events which will serve to represent or

describe a phenomenon. This idea is related to the so-called “frequentist” approach

to statistics. For this case, it is crucial to consider the collection of data from many

repetitions of an experiment, from which statistics are constructed [110]. Sometimes,

however, it is not possible to have the luxury to repeat the experiment, due for ex-

ample to cost or time constraints, and it may be the case that only one experiment

can be performed - as happens often in particular with astronomical events. This

presents a challenge when trying to construct statistics and draw inferences about the

phenomenon being studied. Such cases are well suited to an alternative, Bayesian

approach [44].

Despite the foundations for Bayesian inference existing since the Eighteenth century,

the extensive use of it as a tool for science did not happen until the 1990s, which

was influenced by the development of computational power [30, 9]. Furthermore, the
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last decade has seen an increase of its applications, especially in data analysis for

astronomy [35, 108].

3.1 Bayesian inference

Before introducing how Bayesian inference works, it is worthwhile to explain the type

of reasoning which is behind it. When dealing with the exact sciences, we can expect

there to be an established set of rules which will lead to a definite conclusion. There

is no other place where this is true as in pure mathematics, where it is possible to

follow a set of well-defined axioms and reach a logical consequence [44]. By analogy,

this also happens in everyday life when an event is experienced several times, and it is

possible to work from the cause to its consequences. This is the idea of deductive logic

or reasoning. Unfortunately, however, in several areas of science the above situations

are not true. For these cases, it is necessary to work from the observed results and use

the best of knowledge to try to describe the possible causes. This can done by starting

with simple models which could explain a selected number of cases; for example, to

obtain the speed of a moving car, the problem can be simplified by considering the

totality of the car as a single object and taking the average speed as a ratio of the

distance over time. This serves as a good method to help to estimate how fast a driver

travelled to a destination. However, nature is more complex, which makes necessary

to adjust the underlying models accordingly. The complexity of the reasoning pushes

us to assign the idea of a probability of an event, experiment or result to be obtained.

From here, two distinct approaches to defining what we mean by probability can arise.

The first will be in the sense of repetition. To explain more simply, if an experiment is

designed and run several times, changing some of the variables, it is possible to assess

some of the outcomes and study the relative frequency of produced results. This is the

frequentist definition of probability [110].

In recent years, a second way to approach the problem has become popular [9]. This

is by taking into account the ”plausibility” given a set of parameters or model. This

gives a more logical approach instead of dealing only with the repetition of a random
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set of variables. This is the Bayesian probability theory [110, 44].

3.1.1 Bayes’ theorem

Richard Cox constructed a set of quantitative rules which help to express the truth of

our beliefs or how plausible they are [44]. First, we establish the amount of knowledge

we know as ”true” which will help to define what it is false. This can be stated by the

sum rule of probability

p(A|B) + (Ā|B) = 1, (3.1)

where the symbol A stands for the proposition which is accepted as true while Ā

denotes it as false. At the end, the sum of both gives the complete probability, which

is normalized as 1. On the other hand, the symbol B asserts a proposition as true.

Thus the meaning of p(A|B) reads as the probability of A being true given the truth

of the information encoded in proposition B [44].

The second statement to establish is the amount of trust, or belief, that both, A and

B, are true. This is done by the product rule, and it can be given by [110]

p(A,B|C) = p(A|C)× p(B|A,C) (3.2)

= p(B|C)× p(A|B,C) .

where the coma reads as “and”, indicating that both propositions A and B are true

given the proposition C, and it is commonly referred as the joint probability. Following

from here, it is easy to derive Bayes’ Theorem; from the product rule, by arranging of

the different parts of the formula, it can be read as follows [110, 44],

p(A|B,C) =
p(A|C)× p(B|A,C)

p(B|C)
. (3.3)

The use of the theorem becomes more apparent if we declare more concretely the

meanings involved by rewriting it as

p(Hi|D, I) =
p(Hi|I)× p(D|Hi, I)

p(D|I)
, (3.4)

where we establish a better meaning by defining Hi ≡ proposition of the hypothesis

of interest, I ≡ representing the prior information and D ≡ the data. With this the
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meaning of the several parts of eq. (3.4) reads as follows: p(D|Hi, I) is the probability of

obtaining data if the hypothesis and the prior information are true, which is also called

the likelihood function L(Hi). p(Hi|I) is the prior probability that hypothesis is true

(i.e. prior to obtaining the data) often referred only as the prior. p(Hi|D, I) represent

the posterior probability of Hi referred only as the posterior. The last term which is the

probability of the data to be true given the prior information acts as a normalization

factor defined as p(D|I) ≡
∑

i p(Hi|I)× p(D|Hi, I) which ensures
∑

i p(Hi|D, I) = 1.

3.1.2 Hypothesis space

It is important to notice that during the Bayesian analysis it is desired to establish

some certainty about the hypothesis, Hi. Therefore, the complete set of possible values

to assess regarding our hypothesis is considered the hypothesis space [44]. The problem

could be as simple as having some very well defined values for which the total number

could be counted. In this sense, it would be an example of a discrete hypothesis space,

where we obtain the totality of the posterior space, normalized, by adding each one of

the probabilities as [44]
N∑
i=1

p(Hi|D, I) = 1 . (3.5)

Here N is the total number of considered discrete hypotheses.

Possessing a discrete space is not the only possibility. There could instead be the

case where the hypothesis space is continuous. This is more common given that the

number of propositions are generally considered to be arbitrarily large, and it would

produce a space where the number of outcomes cannot be discretely counted. As a

general example, it is possible to consider a parameter Ha, which is related with some

data D. If the estimation of this arbitrary parameter is in the continuous case then

we must consider the probability that the parameter lies in an interval h to h + dh.

This translates to our posterior by being a “probability density function” (pdf) for

which [44]

p(Ha|D, I) ≡ lim
δh→0

p(h ≤ Ha < h+ δh|D, I)

δh
. (3.6)
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It is clear that the continuous pdf is simply the infinitesimal component of the posterior

probability. Taking this into account, it is meaningful to define the probability that

the parameter lies in a specific range, h1 to h2, by taking the integral [44]

p(h1 < H < h2|D, I) =

∫ h2

h1

p(Ha|D, I)dH . (3.7)

Following the same normalization as for the discrete case, the condition now reads as∫
∆H

p(H|D, I)dH = 1 , (3.8)

where ∆H is a range of integration appropriate to the problem being considered and

which will be designated as the corresponding hypothesis space of interest.

3.1.3 Marginalization

Depending on the model, there are cases where there are one or more parameters which

are not of interest for the analysis we desired to realize; these are commonly referred

as nuisance parameters [44]. In Bayesian inference, there is a clever way to deal with

these parameters. First, it is necessary to introduce two logic statements which will be

very useful.

Following from the product rule and the sum rule, it is possible to state a general

sum rule; nevertheless, for clarity, an example of only two parameters is as follows.

Considering the total probability

p(A+B|C) + p(A+B|C) = 1, (3.9)

by use of the sum rule and the product rule, it is straightforward to derive [44, 110]

p(A+B|C) = p(A|C) + p(B|C)− p(A,B|C) , (3.10)

where the logical property A+B = Ā, B̄ was used. As stated before the comma is

the logical AND. It must be remarked that p(A,B|C) is the probability of both A

and B given C. Now, for illustrative purposes of the usefulness of marginalization we

are going to consider a simple case with only 3 parameters, θ, A1 and A2. For this
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example, A1 and A2 represent the complete discrete space of A, and they will act as

our nuisance parameters. Following from (3.10),

p(A1 + A2|I) = p(A1|I) + p(A2|I) = 1. (3.11)

Here I represents our prior information which establishes that only one of the two

states A1 and A2 is true - i.e. they are mutually exclusive. This agrees with the

definition of the hypothesis space from (3.5). We now want to obtain the posterior on

our desired parameter, θ, which do not contain the nuisance parameters; first, we derive

an expression for it in terms of the joint distribution of θ and nuisance parameters, i.e.

p(θ, [A1 + A2]|D, I) [44]. Using the product rule

p(θ, [A1 + A2]|D, I) = p([A1 + A2]|D, I)× p(θ|[A1 + A2], D, I)

= p(θ|D, I) . (3.12)

To go from the firts to the second line on the right hand side, the general sum rule and

(3.11) establish the relation with the prior information, I. The first term is equated

to 1, as shown in eq. (3.11). The second term contains the sum of the combination

[A1 + A2], which as said earlier, they are the complete space of A; therefore, as this

sum must be true, they do no need to be written. The left hand side of eq. (3.12) can

be expanded by considering the distributive property of Boolean algebra as

p(θ, [A1 + A2]|D, I) = p({θ, A1}+ {θ, A2}|D, I)

= p(θ, A1|D, I) + p(θ, A2|D, I) . (3.13)

The second line of the right hand side is obtained from the mutual exclusivity between

A1 and A2. Finally, combining the results from (3.12) and (3.13) gives

p(θ|D, I) =
2∑
i=1

p(θ, Ai|D, I) . (3.14)

Hence we obtain at the end a posterior probability which does not utilize the nuisance

parameters. For this reason, the procedure of adding up and getting rid of the nuisance

parameters is called marginalization. For the discrete case, it is possible to extend to
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N elements and not just the considered in the example. In the continuous case the

sum is replaced by an integral as [44]

p(θ|D,M) =

∫
dφ p(θ, φ|D,M) (3.15)

where φ represent the nuisance parameters and M is the model under study. In this

case, p(θ|D,M) is also called the marginal posterior pdf for θ. In fact, it is easy to

observe that the global likelihood is a special case of marginalization which considers

all of the parameters, and they are marginalized out from the joint prior distribution.

As well, it is important to emphasize this advantage of Bayesian inference over the

frequentist approach because in the latter there is no general procedure to deal with

this nuisance of parameters [44].

The following sections will describe the two main problems found in statistical anal-

ysis: the parameters estimation and the model comparison.

3.2 Parameter estimation

Frequently a particular model may have more than one parameter which describes

its behaviour or properties. This would be uninteresting if specific values of these

parameters were known before hand, and there would be no need to determine them at

all, but of course in general this is not true, and the best we can do in the majority of

cases is to have some knowledge of the range that these parameters can obtain [44, 110];

this is encapsulated in the prior information of the model, M , which can be assigned

a probability p(θi|M) for the parameters θi. This prior probability could be discrete,

but it is more common to have a continuous space where the parameters can lie in an

interval [θi, θi + dθi] therefore the probability is given by the prior density p(θi|M)dθi.

As mentioned in the previous section, this describes a probability density function or

pdf. As an example, if we have only one parameter, the global likelihood is [44]

p(D|M) =

∫
dθp(θ|M)p(D|θ,M) = L(M) . (3.16)

In the previous section it was mentioned that this is a special case of marginalization.

Here can be seen that the posterior is simply the product of the prior and the likelihood
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pdf. From here, it becomes clear how Bayes’ theorem can give information about the

values of the parameters. Rather than explicitly giving a specific solution, it gives a

probability in the parameter space as a solution. This is the posterior pdf p(θ|D,M).

The idea is to use the prior probability, which corresponds to any knowledge or con-

straint we know, and multiply this by the likelihood probability, which describes in this

case how likely the parameters fit the data to the model. The likelihood is also called

the sampling probability [44, 110]. Using Bayes’ theorem to obtain information about

the parameters from the data is called parameter estimation [44, 110].

3.3 Model comparison

Before a solid experimental description is achieved, a phenomenon is explained through

a model, but it is not always so easy to relate the output of these two directly, and

several models can help to explain the same phenomenon. In such cases it is desired

to use Bayes’ theorem to compare the models and obtain the probability of each one.

This procedure is usually called model comparison, and it is the second most common

application of Bayesian inference [44].

One excellent analogy of how this is achieved is the Occam’s razor [44, 110]. This

is usually stated as ”The simplest explanation it is always the correct one” [44]. In

the same sense, Bayesian analysis incorporates this idea naturally in its formulation.

To explain this, it is ideal to consider two or more specific alternative models, Mi,

which try to explain the same phenomena. The prior information assumes that one

of these models is true; this is stated as I = M1 + M2 + M3 + · · · + MN , where the

“+” is the logical disjunction “or” [44]. For the different models there is a posterior

p(Mi|D, I). In an analogous way to parameter estimation, the posterior probability

gives us information regarding each model. To compare this, instead of using the

probabilities directly, it is more useful to consider the ratio

Oij = p(Mi|D, I)/p(Mj|D, I) , (3.17)

which is called the odds ratio in favour of model Mi over Mj. By applying equa-
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tion (3.4),

Oij =
p(Mi|I)

p(Mj|I)

p(D|Mi, I)

p(D|Mj, I)

=
p(Mi|I)

p(Mj|I)
Bij , (3.18)

where the first ratio at the right is the odds ratio in favour, and Bij is called the Bayes

factor. It can be seen how this simplifies the computation, and helps by dropping the

normalization factor. Likewise, the odds ratio considers the prior information ratio

regarding each of the models to analyse, but usually it is possible to simplify it by

assuming the same prior information for both models which is a good consideration

because this prevents some bias when there is not much previous information [44, 110].

For the following example this will be the case.

Consider two models, M1 with a single free parameter, θ, and M0 with a fixed value

θ0 and no free parameters. Assuming that the prior information is the same for both,

this reduces the odds ratio to only calculate the Bayes factor, B. The objective is to

calculate p(D|M1, I) = L(M1). The first assumption is that for both models the prior

is a flat prior which will have a width ∆θ, and no dependence on the parameters, so

the normalization for the prior reads,∫
∆θ

dθp(θ|M1, I) = p(θ|M1, I)∆θ = 1 , (3.19)

and therefore

p(θ|M1, I) =
1

∆θ
. (3.20)

Assuming that the data is confident enough, this will lead to expect the likelihood

function for the parameter θ to be more concentrated in a region around the best-fit

value, θ̂ [44]. Taking a simplification, the region around this value, can be represented

by a characteristic width defined by∫
∆θ

dθp(D|θ,M1, I) ≈ L(θ̂)× δθ , (3.21)
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and the global likelihood can be approximated as

p(D|M1, I) =

∫
dθp(θ|M1, I)p(D|θ,M1, I) = L(M1)

≈ L(θ̂)
δθ

∆θ
. (3.22)

Because the second model has no free parameters, the global likelihood corresponds

exactly to the equivalent of the probability for the likelihood of the model M1 on the

value θ0,

p(D|M0, I) = p(D|θ0,M1, I) = L(θ0) . (3.23)

The Bayes factor is obtained as

B ≈ L(θ̂)

L(θ0)

δθ

∆θ
. (3.24)

It is now clearer to understand how Occam’s razor works in Bayesian inference. The

Bayes factor is comprised by two ratios: a ratio of likelihood and a ratio of widths [44].

From the first the simpler model would never be favoured due to being a special case,

but from the posterior width δθ is narrower than the prior width ∆θ, so the second

factor acts as a penalty for the complicated model. If the likelihood ratio is able to

overcome the penalization by justifying the amount of parameter space for the extra

parameter, then the more complicated will be preferred [44, 110]. From the previous

example, it can be seen that the global likelihood can be written as the maximum value

of the likelihood of a parameter times some factor,

p(D|M, I) ≡ LmaxΩθ . (3.25)

The second factor is called the Occam factor, and it contains information for the

quantitative function behind the notion of Occam’s razor.

3.4 Markov Chain Monte Carlo (MCMC)

For Bayesian analysis, the desired quantity to obtain is the posterior probability

p(M |D, I), and this is done by calculating the likelihood function and multiplying
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by the prior [44]. But in general, this cannot be obtained from an analytical func-

tion, instead, it could be obtained by the generation of a grid in the parameter space;

nevertheless, this is not the most efficient way to approach the problem, due to the

increase in dimensionality. For example, by placing 10 points for each dimension, the

total number of grid points will increase up to 10N , where N is the total number of

dimensions, so it is clear how this strategy becomes quickly inefficient. A more clever

approach to the problem would be by the implementation of a stochastic sampler [43].

The most widely used method is Markov Chain Monte Carlo (MCMC) [43, 44]. The

idea behind it, comes by the combination of two techniques: a Monte Carlo sampler

and a Markov Chain [132]. In practice, instead of obtaining the likelihood from the

analytical function, the properties would be analysed by taking random samples; this

idea comes close in analogy to the Monte Carlo integration schemes. Using the ran-

dom samples obtained from the Monte Carlo sampling, as X1, . . . , Xn, these samples

describe the present state, and they can be used to determine the future, or posterior,

distribution. The relation between them can be stated as [132]

p(Xn+1 = x|X1 = x1, X2 = x2, . . . , Xn = xn) = p(Xn+1 = x|Xn = xn) . (3.26)

This means that the posterior distribution only depends on the present state or col-

lection of samples. Depending on the situation this could be a discrete or continuous

space, but in this case it becomes a transition probability which is usually defined

as K(x, y) = p(Xn+1 = y|Xn = xn). Following from this, there is a corresponding

proposal density

π(y) =

∫
dx π(x)K(x, y) , (3.27)

where π(x) and π(y) correspond to the prior and posterior distributions respectively.

In fact, given that after the application of the transition probability K(x, y) to the

prior probability in state x, and it is desired to remain with the same probability at

the posterior in state y; the distribution is, in this case, invariant. For this reason, the

previous requirement in eq. (3.27) defines a stationary distribution [132, 108].

In principle, the objective is to randomly sample towards this distribution until
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convergence is achieved. For this goal, the sampler must satisfy the following proper-

ties [132]:

• Irreducible - The sampler should be able to obtain a positive probability, in a

finite number of steps. This means the stationary distribution is unique.

• Aperiodic - There should be no oscillations in between finite states.

• Positive recurrent - it means that there should exists a stationary distribution.

A stationary distribution could have another property where you could go forward

or backwards in the distribution, p(Xn, Xn+1) = p(Xn+1, Xn), then it is said to be

reversible [43]. For the transition kernel it reads,

π(Xn)K(Xn, Xn+1) = π(Xn+1)K(Xn+1, Xn), (3.28)

which is known as the condition of detailed balance. This is not necessary, but it

guarantees the convergence of a stationary distribution [43, 108]. To apply the MCMC,

several algorithms exist, but the most famous is The Metropolis-Hastings [132]. In the

next section, a different approach to that of MCMC is presented, which is the one used

later for analysis in this work.

3.5 Nested sampling

The strategy used for MCMC is not the only one. There are others, and one of those

is nested sampling [111]. As mentioned earlier, the main goal of the Bayesian analysis

is to obtain the posterior probability by the use of the prior and the likelihood. One

probability which usually is disregarded because it only acts as a normalization factor

is p(D|I). For nested sampling, this factor is going to become an evidence, and it is

usually defined as

Z = evidence =

∫
LdX , (3.29)

where L = L(θ) is the likelihood function, dX = π(θ)dθ is the element of prior mass

and θ represents the unknown parameter(s) [111]. The prior mass can be understood
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Figure 3.1: Sketch representing the mapping from the prior mass curve X(L), at the

right to the parameter space, at the left, which describes the boundaries of equivalent

likelihood L.

as the prior integrated over an hyper-volume of the parameter space bounded by a

maximum likelihood [64]. From the Bayes’ theorem, and to be able to relate with the

previous nomenclature, it is rewritten as

p(D|θ, I)p(θ, I) = p(D|I)p(θ|D, I)

L(θ)× π(θ)dθ = Z × p(θ)dθ . (3.30)

From here, the idea can become clearer. In the standard MCMC strategy, the desired

product is the posterior, and it is obtained by sampling through the likelihood and prior.

In nested sampling the desired quantity is the evidence Z, and therefore, the posterior

is a by-product of the process. Before explaining how the posterior is obtained, first

consider how the evidence is determined [111]. As mentioned before this is not an

easy task, especially when it is done for a higher number of parameters, the number

of dimensions increases. For this purpose the first objective is avoid this problem, and

it is done by taking into account that it is possible to do a transformation so that,

instead of integrating over the space of all parameters, the problem is reduced to a

one-dimensional case by performing the integral using the prior mass X, which in turn

is a decreasing function from 1 to 0 [111]. Therefore, the evidence is defined as

Z =

∫ 1

0

L(X)dX . (3.31)
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This transformation accomplishes a simplification of the problem of dimensionality,

and the strategy becomes from reducing the prior mass into smaller elements and

sorting them by likelihood. Then, the only thing left is to perform the integral which

considering the smoothness of the transformation can be done by assuming a weighted

sum

Z ←
m∑
i=1

ωiLi, (3.32)

where Li = L(Xi), and this represents the integral by an approximated sum of columns

of width ω. The nested sampling idea comes in place, by taking random steps i of a

point Xi where Xi < Xi−1 starting at X0 = 1. From this point, the next step could be

to obtain the corresponding value of θ. But this can be simplified by taking directly

the value of θi, and sampling considering the similar constraint L(θ) < Li−1 , with the

initial value L0 [111]. This takes a random sample in the same way, but it has the

advantage to bypass the need to sort the values of X. In other words, the selection

of prior mass is mapped into a region of similar likelihood in the parameter space

which is compared and delimits a likelihood boundary, as exemplified in fig. 3.1. The

random sampling will search and compare the different likelihoods to reduce the area

until the highest likelihood is found. For the case of model selection, the evidence is

more important to obtain, but for the case of parameter estimation, it is desired to

obtain a posterior which is the prior weighted by the likelihood [37]. During the nested

sampling process, which is done under the area of the one dimensional curve L(X),

the posterior is obtained as a by-product. The evidence is already decomposed by the

integral in
∑
Liωi, which is exactly desired values to calculate the posterior, if it is

properly normalized by Z,

pi = Liωi/Z. (3.33)

The evaluation of the different sampling points is done by Monte Carlo methods. As

well as with other techniques, there are different codes available to perform the process.

The code used for the analysis in later chapters is described in the following subsection.
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3.5.1 Multinest

There is a common problem which is shared by several stochastic samplers. Wherever

there is a region of high likelihood, the samplers tend to find it, but there are several

problems where there is the case of more than one of these regions. However, in

principle, there will exist a highest region and what is needed is an intelligent strategy

to find the correct region, and avoid the sampler to get trapped in the smaller regions.

Multinest is a code which treats this problem by using an ellipsoidal approximation

to the sampling process, and afterwards it reduces the region of analysis [36]. The

advantage is that it proposes an algorithm which can efficiently sample new points

within the active region. Using this approach the method becomes efficient in scenarios

when multiple such regions appear. For this reason, this is the code used to obtain the

results from the analysis described in a later chapter.



Chapter 4

Lensing of scalar field dark matter

This chapter introduces the use of a scalar field dark matter profile as a lens model.

It includes a description of the mathematical expression of the lens equation to be

appropriate to work with the model. It also has a brief review of previous work done

with other scalar field models. Starting from section 4.4, it is presented for the first time

the derivation of the analytical lensing functions necessary to work with the particular

WaveDM model as a lens which were carried out as part of the work of this thesis.

4.1 The reduced lens equation

In chapter 2, the basic concepts for gravitational lensing were introduced, specially

eq. (2.9) which describes the relation between the source and the apparent images.

From the lens equation, the important distances are between observer and lens, DOL,

lens and the source, DLS, and from observer to source, DOS. Recalling eq. (2.21), the

lens equation for an extended distribution as [102],

β = θ − M(θ)

πD2
OLθΣcr

. (4.1)

The value Σcr = c2DOS/4πGDOLDLS is the critical surface density. Although this

form is the most popular form of the expression, it is not so convenient to use because

it contains several constants dependent of the geometry of the system, and the explicit

parameters which is not convenient for handling the equations. Therefore, normalizing
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the equation into a more comfortable form is possible by using the density and radius

of the profile. The normalization for the surface mass density is then

Σ∗(ξ∗) =
Σ(ξ∗)

ρcrc
= 2

∫ ∞
0

ρ(ξ, z∗)

ρc
dz∗ , (4.2)

This define the dimensionless variables, r/rc =
√
ξ2
∗ + z2

∗ , z∗ = z/rc and ξ∗ = ξ/rc.

ρc is the central density for the profile and rc is the characteristic radius or another

normalization radius. Similarly, the reduced mass is normalized accordingly,

m∗(θ∗) =
M(ξ∗)

ρcr3
c

= 2π

∫ ξ∗

0

dξ′∗ξ
′
∗Σ∗(ξ

′
∗) . (4.3)

As a result, it is possible to rewrite it as a dimensionless lens equation,

β∗(θ∗) = θ∗ − λ
m∗(θ∗)

θ∗
. (4.4)

In this manner, the different distances are normalized in terms of rc: β∗ = DOLβ/rc,

θ∗ = DOLθ/rc, and this relates ξ∗ = ξ/rc = θ∗. With this definition ξ∗ and θ∗ are

interchangeable. As seen in eq. (4.4), we referred to a parameter λ which is defined as

λ ≡ ρcrc
πΣcr

= 0.57× 103

(
1

h

)(
ρcrc

M� pc−2

)
dOLdLS
dOS

, (4.5)

which is done to contains the distances and characteristic parameters and from it obtain

the lensing information of the system and the model. The reduced angular distances

are introduced as dA ≡ DAH0/c where the sub-index A can refer to sub-indexes OL,

LS or OS in the equation. The Hubble constant H0 ≡ 100h(km/s)/Mpc is properly

worked with the units, so only the dimensionless h appears explicitly in the parameter

λ, and it only has two values with proper units, which are ρc and rc. The parameter

λ defined in (4.5) differs from the one used in [90] by a factor of 1/4π.

When we have the case of a perfect alignment between the source and the lens system,

this corresponds to β∗(θ∗E) = 0; this defines the Einstein angle θ∗E = RE/rc. Here

RE is more properly referred as the Einstein radius expressed in distance units. This

is usually obtained from the Einstein angle as RE = DOLθE [78]. Using eq. (4.4) is

possible to write eq. (4.5) as a function of θ∗E,

λ =
θ2
∗E

m∗(θ∗E)
. (4.6)
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Comparing with eq. (4.5), it is possible to observe how the information of the system

can obtained from or parametrised only by the density profile and a particular Einstein

radius. Moreover, this indicates an independence of any a priori knowledge of the

geometry of the system or of the scaling parameters, namely ρc and rc, and it is only

necessary a perfect alignment. A more detailed look of (4.6) and (4.4) indicate the

existence of a minimum value λcr = λ(0) different from zero. Nevertheless, this value

has a divergence, which can be avoided by the use of L’Hôpital rule,

λcr =
d(θ2
∗E)

dθ∗E

(
d(m(θ∗E))

dθ∗E

)−1
∣∣∣∣∣
θ∗E=0

. (4.7)

This defines the minimum value as

λ−1
cr ≡ πΣ∗(0) , (4.8)

where

Σ∗(0) = 2

∫ ∞
0

ρ(z∗)

ρc
dz∗ . (4.9)

This gives the minimum parameter λ that a particular profile will require to produce

strong lensing. Σ∗(0) represents the central value of the surface mass density, and it

depends of the profile chosen. A comparison of the effect with the different density

profiles is shown in table 4.1. The dimensionless lens equation and λ will be chosen

option for the derivation of the equations and analysis described in the rest of the

chapter.

4.2 Ultra light Dark Matter profiles

The same underlying principle applies among the different SFDM models [63], but

it is possible to find several different formulations for the density profile of galaxies

depending in the approximation considered. Here are introduced two of those models.

The first is the most generic profile involving the Dark Matter as a Bose-Einstein

Condensate (BEC) as presented in [10], and the second is a recently published profile

obtained by solving the Shrödinger-Poisson system in [100, 101].
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4.2.1 BEC or general SFDM profile

One of the most generic considerations when describing a SFDM model is to consider

the galaxy Dark Matter halo as a Bose-Einstein Condensate (BEC) and to use this

to describe the density profile of galaxies. The basic idea is to consider an static

BEC where the dark matter particles are in a very large ground state [97]. This case,

in particular, considers a complex, massive, self-interacting scalar field satisfying the

Klein-Gordon equation [73]. A simple example of a solution admits the expression [10,

42],

ρ(r) =

ρc
sin(πr/rmax)
πr/rmax

for r < rmax,

0 for r > rmax.

(4.10)

Here rmax ≡
√
π2Λ/2(~/mc) is a constant which gives the Compton wavelength of the

scalar particle, ~/mc, scaled by a factor of Λ1/2, and ρc is the density at the centre

of the configuration. The value of rmax, apart of representing the size where the BEC

can be described more classically, indicates the point, where the density and the strong

repulsive interactions between the photons drop to zero [46].

4.2.2 ψDM soliton profile

The description and evolution of small perturbations from the early universe is not an

easy task to do. Large Scale Simulations are the default way to deal with this problem,

and the N-body simulations for the CDM have been really successful to represent the

cosmological scales [83, 79]. For scalar field Dark Matter, this has been approached by

many others in several occasions in the last decade [117, 130, 131].

In contrast with CDM, simulations of SFDM with high enough resolution to compa-

rable with latter were not possible until recent years with the results from [100, 101].

The wave mechanical properties of the fields can be solved using the Schrdinger equa-

tion and can be coupled to gravity by means of Poisson’s equation. This idea and the

use of a graphic processing unit accelerated adaptive-mesh-refinement code permitted

to realize an evolution of the ψDM with enough resolution to compare with usual sim-

ulations of CDM [101]. With this, it was possible to fit and approximate an analytical
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profile for the core of a galaxy, given as [100],

ρc(r) =
ρsol

[1 + α(r/rsol)2]8
, α = 9.1× 10−2. (4.11)

where ρsol represents the central density, and rsol is the characteristic radius of the

profile. This solution provides a more precise description of the behaviour of the galaxy

core and a better agreement with the size and formation for the dwarf galaxies [96, 116].

4.3 Gravitational lensing with a SFDM profile

The profile presented in eq. (4.10) can be used to represent the extended distribution

of a lens. Therefore, to obtain the surface mass density, from eq. (4.2),

Σ∗SFDM(ξ∗) =
2

π

∫ zmax

0

sin(π
√
ξ2
∗ + z2

∗)√
ξ2
∗ + z2

∗
dz∗ , (4.12)

with 0 ≤ ξ∗ ≤ 1, zmax ≡
√

1− ξ∗, rc = rmax, and the normalized projected mass is

given by eq. (4.3). Unfortunately, this profile does not have a analytical form, but can

be worked numerically [42]. Furthermore, it is possible to estimate the minimum value

of parametrization to produce strong lensing which is given by λcr = 0.27.

Plotting eq. (4.4) gives a clearer view of the effect for changing the parameter λ can

bring to the solution. In figure 4.1, it can be seen different λ for the lens equation in

the case of this profile. Because it is normalized, from eq. (4.12) it can be seen there is

no dependence in the density or characteristic radius whose information is concealed

in λ. The remarkable feature is the different shapes it produces.

The multiple images for strong lensing are produced at the zero crossing of β∗(θ∗) = 0

which defines the Einstein radius, θ∗ = θ∗E. For a value which is below the critical, the

only image would be if the apparent image and the source were aligned, which in this

case corresponds to an alignment with the lens which blocks this possibility. Values

above this critical value are able to produce a visible strong lensing. Taking a step

forward, it is possible to establish a minimum combination of the parameters ρc and

rmax which will produce strong lensing. Combining λcr and eq. (4.5), the condition for
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Figure 4.1: The plot of the reduced lens equation for SFDM profile gives the basic

idea of the effect that different values of λ produce for the generation of strong lensing.

Multiple images, and at the same time the effect of lensing, are created when there is

a zero crossing which corresponds to the value of the Einstein radius, θ∗E.

strong lensing

ρcrmax[M�pc−2] & 473.68fdist, (4.13)

with fdist ≡ dOS/dOLdLS. This establishes a condition for the production of strong

lensing and hence multiple images. The geometry of the system will set a lower value

that will need to be satisfied by the combination of density and characteristic radius.

In general these values are not known a priori, but with this, if by other means it is

possible to establish any of the two, there will be a minimum combination allowed.

This can be used with any data available to constrain the actual values, and one of the

most effective is to use the Einstein radius. This idea will be carried over to the next

sections and taken advantage for the analysis and conditions to determine the existing

relation of this unknown parameters in the different models.
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4.4 Gravitational lensing with a WaveDM profile

The profile (4.11) describes a single galactic object which comprises a soliton core, and

its advantages are described in section 1.3. The profile was first introduced in [100],

but for convenience, it will be much simpler to follow the nomenclature adopted in [70]

which satisfy the same Schrödinger-Poisson system [46, 98].

The profile to describe a halo core as a gravitational lens will be

ρsol(r) =
ρs

[1 + (r/rs)2]8
. (4.14)

As stated before, ρs is the central density and rs is the characteristic radius which

differs from eq. (4.11) by rs = rsol/α
2
sol. The plot of the profile can be seen in fig. 4.2.

From the equation and plot, it is possible to observe the steep decrease, and when r

reaches the characteristic radius, rs, the density has dropped to ∼ 0.004 of the central

density. For higher radii this means the contribution of the density, in practice, is

negligible or zero. The properties of the profile (4.14) mean it obeys a scaling property

as described in [46]. If we have a constant parameter µ, the central density, and radius

are described by [96, 41]

ρs = µ4m2
αm

2
Pl , rs = (µαsolmα)−1 . (4.15)

As stated in [70], they found a best fit of αsol = 0.23 which adjusts the simulations,

and agrees with the results given by [100]. This property helps to write the central

density in terms of the axion mass and the characteristic radius as

ρs
M�pc−3

= 2.4× 1012

(
rs
pc

)−4 ( ma

10−22eV

)−2

. (4.16)

This helps to reduce the free parameters of the profile to only two: the characteristic

radius and the boson mass. Even more, it establishes an important correlation; by fixing

the value of the axion mass, relates the central density and the soliton size. By setting

the latter, it will help to constrain the mass of the boson. This relation will become

important in the following chapter when attempting to constrain the parameters.
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Figure 4.2: Plot of the WaveDM profile (4.14), which shows the steep decrease with

radius. The profile is normalized by the central density, ρs, and the radius by the

characteristic radius, rs.

To use the profile for lensing, the first step is to obtain the surface mass density; this

could be done numerically, but for this case, it can be done analytically by performing

eq. (4.2) which is normalized by ρs and rs. In the literature when considering a soliton,

it is usually defined with a maximum radius [26, 106, 109], but for the purpose of the

lens, it will be treated as an extended object; furthermore, as shown in fig. 4.2, the

density drops steeply after it reaches the radius rs, so further contribution is minimal

and is only for mathematical convenience. Using eq.(4.2), the solution to find is,

Σ∗(ξ∗) = 2

zmax∫
0

dz

[1 + r2
∗]

8 (4.17)

where zmax → ∞, and we have introduced another normalized parameter, r∗ = r/rs.

The general solution is given by

zmax∫
0

dz

[1 + r2
∗]

8 =
1

(1 + ξ2
∗)

15/2

x∫
0

cos14 u du , tanx =

(
z2
max

1 + ξ2
∗

)1/2

, (4.18)
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Name Density profile f(r) λcr

NFW [(r/rs)(1 + r/rs)
2]
−1

0

Burkert [(1 + r/rs)(1 +2 r/r2
s)]
−1

2/π2 ' 0.203

SFDM sin(πr/rs)/(πr/rs) 0.27

WaveDM (1 + r2/r2
s)
−8 2048

429π2 ' 0.484

Table 4.1: A comparison of λcr for several profiles [90, 138, 42]. They are obtained

by eq. (4.7).

where z =
√
r2
ε∗ − ξ2

∗ , and∫ x

0

cos14(u)du =
sinx

14

{
cos13 x+

6∑
k=1

(13)(11) . . . (14− 2k + 1))

2k(6)(5) . . . (7− k)
cos14−2k−1 x

}

+
(13)!!

277!
x . (4.19)

Applying zmax →∞, the solution reduces to

Σ∗(ξ∗) =
429π

2048
(1 + ξ2

∗)
−15/2 . (4.20)

The normalized projected mass is easily found by eq. (4.3),

m∗(θ∗) =
2

13λcrit

(1 + θ2
∗)

13/2 − 1

(1 + θ2
∗)

13/2
. (4.21)

The value of λcrit is the critical value obtained for the profile by the use of the definition

in eq. (4.7) which corresponds to

λcrit ≡ (πΣ∗(0))−1 =
2048

429π2
≈ 0.484 . (4.22)

This value which represents the condition for λ is the combination of physical parame-

ters of the lensing system to produce strong lensing. Table 4.1 compares it with other

profiles.
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The first observation is that a NFW profile can produce lensing with any combination

of parameters, because the minimum is 0. The case of WaveDM is the worst for all

presented when only considering the soliton alone, but this will be addressed later by

completing the profile with a tail.
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Figure 4.3: Einstein radius as a function of λ. This shows the relation between the

different profiles and the values of λ necessary to produce an specific Einstein radius.

The minimum value of λ is the corresponding λcr.

It is possible to establish a relation between the Einstein radius and the necessary

parameters of the lensing system through λ. This is shown in fig. 4.3. The value of λ

which corresponds with the minimum Einstein radius is λcr. Here is possible to see the

relation between different profiles, as mentioned before, the NFW profile is the most

capable to produce strong lensing for any configuration. Meanwhile, the WaveDM

profile under-performs in comparison because it needs a minimum configuration to

produce strong lensing. This does not mean that this profile is inappropriate, just that

the necessary conditions for the lensing are stricter. The next section will address this

issue by adding an NFW tail to the inner soliton core.
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4.5 A more complete density profile

As mentioned earlier, large scale simulations have been always a useful way to observe

the evolution of structure in the universe. One of the results observed was that the

majority of dark matter in halos is composed of two parts, and inner and external

region [38, 83, 47]. With this intention and considering the approach of SFDM, the

first is going to be described by a halo density profile for ultra light scalar dark matter,

ψDM, as described in [100]. The second part is a NFW-like profile which describes

the outer part[138]. Both profiles are matched following the procedure shown in [70]

because the transitions observed on the simulations are sharp; for this reason, they

preferred to use a simple function to connect both. The complete profile is constructed

by a simple step function as [70]

ρ(r) = Θ(rε − r)ρsol(r) + Θ(r − rε)ρNFW(r) , (4.23)

where the rε is the matching radius, which is where the transition between the profiles

happen. Although the combination is done with a simple function, it does not guarantee

that the profile will be continuous because there is no theoretical technique to predict

where the transition will happen. Therefore, to achieve continuity of the function it

is necessary to establish a condition between the two different models. To accomplish

this, the only requirement is that ρ(rε) = ρsol(rε) = ρNFW(rε). This condition is satisfied

by choosing the natural transition at a radius between the two different profiles which

satisfies the relation

ρsol(rε) = ερs = ρNFW(rε) . (4.24)

This defines the value of the transition radius rε. Unfortunately, ε and rε are taken as

free parameters of the theory. The NFW profile give by

ρNFW(r) =
ρNFW

(r/rNFW)(1 + (r/rNFW))2
, (4.25)

where rNFW and ρNFW are the characteristic radius and the central density.

With the idea of reducing the number of free parameters, it can be defined a relation

between the soliton and NFW radius by rNFW ≡ rsα
−1
NFW. This can be contrasted
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Figure 4.4: Comparison between the complete profile and the individual densities with

rε∗ = 0.300845 and αNFW = 1. The initial value for the complete profile is normalized

to the soliton density and the radii to rs, so the transition happens at ε = 0.5. This

was chosen arbitrarily. It can be seen how the individual profiles intersect, and the

transition happens. The effect of the soliton section helps to eliminate the divergence

present in the NFW profile.

with [70] and in [100] by noticing how the values of this radius are defined. Using this

parametrisation allows to redefine the NFW profile in terms of the soliton profile as,

ρNFW(r) =
ρsρNFW∗

(αNFWr/rs)(1 + (αNFWr/rs))2
, (4.26)

where ρNFW = ρs ρNFW∗. This increases the number of parameters, so it is necessary

to reduce them somehow. First, it is important to notice the condition established by

eq. (4.24), which can be combined with the profile in eq. (4.14) and used to describe a

direct relation between ε and rε,

rε∗ =
(
ε−1/8 − 1

)1/2
. (4.27a)

This helps to define the dimensionless matching radius as rε∗ ≡ rε/rs, and establishes

the interchangeability with the parameter ε.
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Second, it is possible to apply the same condition to the NFW profile to produce a

relation

(rε∗αNFW)(1 + rε∗αNFW)2 = ε−1ρNFW∗ . (4.27b)

We can use eq. (4.27a) to get rid of the dependence in ε, and rewrite as

ρNFW∗ =
αNFW rε∗ (1 + αNFW rε∗)

2

(1 + r2
ε∗)

8 . (4.27c)

The important remark about eq. (4.27c) is that it describes the normalized density

needed to match the soliton profile at the transition radius once the parameters αNFW

and rε∗ are given. In fig. 4.4 is shown a comparison between the complete profile and

the individual parts for an arbitrary value of ε.

In total for the complete profile there are 7 free parameters: ma, rs, rε, rNFW, ρs, ρNFW

and ε. But with the parametrisation chosen, they are replaced by 5 parameters: (mα,

rε∗, αNFW, ε, ρNFW∗). Nevertheless, by means of eq. (4.27), it is possible to describe 2

of those free parameters in terms of the rest, so the total number is reduced to only 3: (

ma, rε∗, αNFW). Because the actual mass of the axion, ma, it is an important quantity

of the SFDM models and is desired to confirm its range of value in conjunction to other

analysis as done in [21], it is better to fix it to particular set of chosen representative

values for the testing purposes of this work. The meaning of this is that only 2 free

parameters are considered to be of interest for lensing purposes.

4.5.1 Surface mass density

One of the important steps in being able to analyse the effects of gravitational lensing

comes from the lens equation. For this reason, profiles are generally assumed symmetric

unless they have clear dependence of the direction of light [102]. Therefore, considering

the symmetric distribution, the lens equation in polar coordinates can be obtained just

with the radial vector. In this case, the deflection angle defined for an extended mass

distribution is obtained from the surface mass density as in eq. (2.19). Therefore, it

is necessary to derive the equation for m(ξ∗). Using the definition of the profile from

(4.23), the next step is to obtain the surface mass density as defined in eq. (2.18).
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The integral is done along the line of sight on the variable z, and it encloses a circle of

radius ξ∗, so it is necessary to integrate over this, cylindrical coordinates, and perform

the change of variable r =
√
ξ2 + z2. Because the distribution is an even function,

it reduces to twice the integral from zero to infinity. Including the profile (4.23), the

surface mass density to derive will be

Σ(ξ) = 2

∫ ∞
0

[Θ(rε − r)ρsol(r) + Θ(r − rε)ρNFW(r)] dz. (4.28)

It should be noticed that only the amplitude |ξ| = ξ is necessary due to the symmetry.

To apply correctly the separation of the integral, the radius is considered as r =√
ξ2 + z2. This implies there is a separation in terms of z when evaluating at r = rε.

The first case to consider is ξ < rε; both of these values are constant in the integral,

but set the limits at a fixed value of z and gives an intuitive separation of the integral

as

Σ(ξ) = 2

∫ √r2ε−ξ

0

ρsol(r) + 2

∫ ∞
√
r2ε−ξ

ρNFW(r)dz . (4.29)

The second case corresponds to ξ ≥ rε, and from the relation of r and z, this case will

only give real numbers when r ≥ rε. This means that only ρNFW will contribute to the

integral, and the minimum value at which to consider rε = ξ corresponds to z = 0. For

this case, the integral is

Σ(ξ) = 2

∫ ∞
0

ρNFW(r)dz , (4.30)

which curiously reduces to the surface mass density of a NFW profile. This separation

can be understood by considering that the integral is done a long the line of sight for

different values of the impact parameter, ξ, and there is a region where only the NFW

tail contributes to the density. Therefore, this defines the normalized surface mass
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Figure 4.5: Plot of the surface mass density as a function of arbitrarily selected values

of rε∗ = 2.5 and αNFW = 1. The vertical line shows the transition between the branches

for the density. There is a minimum value which is obtained at ξ∗ = 0.

density as

Σ∗(ξ∗, rε∗, αNFW) =

2



√
r2ε∗−ξ2∗∫
0

dz

(1 + r2
∗)

8 +
rε∗ (1 + αNFW rε∗)

2

(1 + r2
ε∗)

8

∞∫
√
r2ε∗−ξ2∗

dz∗

r∗ (1 + αNFW r∗)
2 ,

ξ∗ < rε∗ ,

rε∗ (1 + αNFW rε∗)
2

(1 + r2
ε∗)

8

∫ ∞
0

dz∗

r∗ (1 + αNFW r∗)
2 ξ∗ ≥ rε∗ ,

(4.31)

where z∗ =
√
r2
∗ − ξ2

∗ . A plot of the surface mass density for the arbitrarily selected

values of rε∗ = 2.5 and αNFW = 1 is shown in fig. 4.5. The vertical line shows where

the transition happens, and it is clear from the figure the existence of a minimum value

given by ξ∗ = 0. Fortunately, both integrals can be solved analytically to ease the

calculations.

For the first branch of eq. (4.31), the soliton profile part of the integral is solved by
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following eq. (4.19) with zmax =
√
r2
∗ − ξ2

∗

√
r2ε∗−ξ2∗∫
0

dz

(1 + r2
∗)

8 =
1

(1 + ξ2
∗)

15/2

x∫
0

cos14 u du , (4.32)

where

tanx =

(
r2
ε∗ − ξ2

∗
1 + ξ2

∗

)1/2

.

The solution of the integral is

x∫
0

cos14 u du =
429

2048
x+

1001

16384

[
3 sin(2x) + sin(4x) +

1

3
sin(6x) +

1

11
sin(8x)

+
1

55
sin(10x) +

1

429
sin(12x) +

1

7007
sin(14x)

]
. (4.33)

Taking the case of rε∗ → ∞ recovers the soliton solution. The NFW part could

be solved as it is, but a short-cut can be taken by rearranging the integral by the

considering z∗ = r∗ cos θ and ξ∗ = r∗ sin θ as∫ arcsinx/y

0

sin θ(sin θ + x)−2 dθ , (4.34)

where x = αNFW ξ∗ and y = αNFW rε∗. The solution is

∞∫
√
r2ε∗−ξ2∗

dz

r∗ (1 + αNFW r∗)
2 =



1

x2 − 1

(
1−

√
y2 − x2

1 + y
− 2 arctanh√

1− x2

[ √
1− x2

1 + y +
√
y2 − x2

])
x < 1 ,

1

3

(
1− y + 2

y + 1

√
y − 1

y + 1

)
x = 1 ,

1

x2 − 1

(
1−

√
y2 − x2

1 + y
− 2 arctan√

x2 − 1

[ √
x2 − 1

1 + y +
√
y2 − x2

])
x > 1 .

(4.35)

By setting x = y, the NFW solution is recovered.
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The second branch of eq. (4.31) is the case of (4.35) with rε∗ = ξ∗. with solution

∞∫
0

dz

r∗ (1 + αNFW r∗)
2 =



1

x2 − 1

(
1− 2 arctanh√

1− x2

√
1− x
x+ 1

)
x < 1 ,

1

3
x = 1 ,

1

x2 − 1

(
1− 2 arctan√

x2 − 1

√
x− 1

x+ 1

)
x > 1 .

(4.36)

Which is the solution given by [7, 122].

The special case of ξ∗ = 0 can be obtained from the solutions or directly from the

integral by just considering 2 arctanhx = ln(1 + x)− ln(1− x) which gives

∞∫
rε∗

dz

z (1 + αNFW z)2 = ln
(1 + αNFW rε∗)

αNFWrε∗
− 1

(1 + αNFW rε∗)
. (4.37)

This value is important because it allows us to find λcr for any rε, which helps to

establish the minimum condition for strong lensing.

4.5.2 Gravitational Lensing Mass

The mass enclosed inside a cylinder along the line of sight with a radius of the size

of the Einstein radius, which is projected to the lens plane, is called the projected

mass. This is the mass used for the deflection angle, and except for special cases, it is

obtained by numerical integration, but in the case of Wave Dark Matter can be done

analytically.

The integral is along the line of sight on the variable z, so it is necessary to integrate

over and perform the change of variable r∗ =
√
ξ2
∗ + z2

∗ . Using the definition of the

normalized projected mass which is given by (4.3) and the definition of the surface

mass density (4.31), the normalized projected mass is calculated in two different ways.

The first case is when ξ∗ < rε∗,

m(ξ∗) = 4π

[∫ ξ∗

0

ξ′∗

(∫ √r2ε−ξ2∗

0

dz∗
(1 + r2

∗)
8

+

∫ ∞
√
r2ε−ξ2∗

ρNFW∗ dz∗
αNFWr∗(1 + αNFWr∗)2

)
dξ′

]
.

(4.38)
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This gives the following solution,

m(ξ∗) = 4π

{
1

14

[
B(arctan rε∗)−

B (arctan q1)

(1 + ξ2
∗)

13/2
+

√
r2
ε∗ − ξ2

∗ − rε
(1 + r2

ε )
7

]

+
ρNFW∗

α3
NFW

[
ln

(
y +

√
y2 − x2

2(y + 1)

)
+
y −

√
y2 − x2

y + 1
+ f(x, y)

]}
ξ∗ < rε∗,

(4.39)

were q1 =
√

(r2
ε∗ − ξ2

∗)/(1 + ξ2
∗), x = αNFWξ∗ and y = αNFWrε∗. whereas that B(u) is

the solution of the following integral

B(u) ≡
u∫

0

cos12 u′ du′ =
1

122880
[27720u+ 23760 sin (2u) + 7425 sin (4u) + 2200 sin (6u)

+495 sin (8u) + 72 sin (10u) + 5 sin (12u)] , (4.40)

and

f(x, y) =



2√
1− x2

arctanh

√
1− x2

1 + y +
√
y2 − x2

x < 1 ,

1−
√
y − 1

y + 1
x = 1,

2√
x2 − 1

arctan

√
x2 − 1

1 + y +
√
y2 − x2

x > 1 .

(4.41)

The second case ξ∗ > rε∗ has a more complicated arrangement, but the solution is

simpler. Considering the condition of ξ∗, the integral is separated as

m(ξ∗) = 4π

[∫ rε∗

0

ξ′∗

(∫ √r2ε−ξ2∗

0

dz∗
(1 + r2

∗)
8

+

∫ ∞
√
r2ε−ξ2∗

ρNFW∗ dz∗
αNFWr∗(1 + αNFWr∗)2

)
dξ′

]

+ 4π

[∫ ξ∗

rε∗

ξ′∗

(∫ ∞
0

ρNFW∗ dz∗
αNFWr∗(1 + αNFWr∗)2

)
dξ′
]
. (4.42)

Changing the order of integration appropriately and performing only the inner integral,

it can be rearranged to be

m(ξ∗) = 4π

{∫ rε∗

0

[
1

(1 + z2
∗)

7
− 1

(1 + r2
ε∗)

7

]
dz∗

}
+ 4π

{∫ π/2

0

[
ln

sin θ + x

sin θ(1 + y)
+

y

1 + y
− x

sin θ + x

]
sin θ dθ

}
. (4.43)
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were x = αNFWξ∗, y = αNFWrε∗ and αNFWz∗ = x cot θ. The mass for this case is

m(ξ∗) = 4π

{
1

14

[
B(arctan rε∗)−

rε
(1 + rε)7

]
+
ρNFW∗

α3
NFW

[
ln

(
1

(y + 1)

)
+

y

y + 1
+mNFW(x)

]}
ξ∗ > rε∗, (4.44)

where the definition of B(u) is given in (4.40), and

mNFW(x) =



2√
1− x2

arctanh

√
1− x
1 + x

+ ln
(x

2

)
x < 1 ,

1 + ln

(
1

2

)
x = 1,

2√
x2 − 1

arctan

√
x− 1

1 + x
+ ln

(x
2

)
x > 1 ,

(4.45)

which is the normalized solution of the NFW profile as can be compared with (2.28).

Figures showing hypothetical sources being lensed using the previous lens masses are

left for appendix B. As mentioned at the beginning of the chapter the lensing functions

for Wave Dark Matter are derived for the first time for this work, as known at the time

of writing, and their analysis as an introduction for their use to describing the model

as a lens is in the next chapter.



Chapter 5

Galaxy analysis

The chapter describes some properties of the WaveDM model as a lensing system, and

it helps to set some characteristic through analysis of a selected number of galaxies

which are presented in the SLACS surveys [40, 4, 12, 128, 59, 39, 40, 40, 13, 5], to

compare how the model can represent or describe observed properties of strong lenses.

The parameters to fit in the analysis will be different considering the parts of the

model. In the case of the soliton, the parameter will be rs through its relation with

θ∗E. The full profile will fit the parameters rε∗ and αNFW. For the rest of the chapter

the dependence of the parameters will be made more explicit by properly representing

Σ∗(ξ∗)→ Σ∗(ξ∗, rε∗, αNFW) and m(ξ∗)→ m(ξ∗, rε∗, αNFW).

5.1 Matching properties

In the previous chapter was presented the WaveDM model for lensing were it was

made clear that it is composed of two components: the soliton core and a NFW tail.

Now several properties of this model will be presented that will help us to use it for

characterization of WaveDM.

It is first important to notice from eq. (4.27) that it is a quadratic function, so the

profile intersection could happen in two values of the matching radius, rε∗. The second

point is that there is a possibility for a certain combination of parameters where neither
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profile touch. This can be appreciated in fig. 5.1. The figure shows several values of

ρNFW∗ for the fixed value of αNFW = 1. This means that the matching radius is

different in each case. It is clear from the figure that there are some combinations

of parameters which make the transition discontinuous, so to avoid this problem it is

necessary ensure the continuity. Figure 5.2 shows ρNFW∗ as a function of rε∗ considering
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Figure 5.1: The normalized density profile of the soliton together with different

examples of the normalized NFW profile. It is shown here that there are at most two

values of the matching radius rε∗, which depend on the given values of the normalized

density ρNFW∗ and αNFW (here αNFW = 1 is taken).

continuity through eq. (4.27c); it is clear the existence of a peak value which can be

used to break the hidden degeneracy of eq. (4.27); this will be called rε∗,max. To find

this maximum, makes it necessary to evaluate the derivative of eq. (4.27c) and find the

value which makes it zero,
∂ρNFW∗

∂rε∗

∣∣∣∣
rε∗,max

= 0. (5.1)
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This straight forward calculation shows that rε∗,max is a root of the cubic equation

13αNFWr
3
ε∗,max + 15r2

ε∗,max − 3αNFWrε∗,max = 1 . (5.2)

The exact solution depends of the value of αNFW, which makes necessary to calculate it

every time it changes. Nevertheless, it is possible to find a range by setting the limiting

values of 0 ≤ αNFW ≤ ∞. The solutions of these limits are

lim
αNFW→0

rε∗,max = (1/
√

15) , (5.3a)

lim
αNFW→∞

rε∗,max = (
√

3/13) . (5.3b)

In fig. 5.2, ρNFW∗ is shown as a function of rε∗ for several values of αNFW. The limiting

range 0.25 < rε∗max < 0.48 can be seen by the two vertical lines.

Because the purpose of using the WaveDM model is to compose the majority of the

content of the dark matter, it is reasonable to choose the soliton component to form

the majority of the inner part of the profile. This makes a clear choice to the place for

matching the profiles. As stated before, there are two possible values for the matching.

By the previous reasoning, it is preferable to choose the farthest radius possible; this

is done by setting the constraint rε∗ ≥ rε∗max.

There is a second consideration for the combination of αNFW and rε∗ and their relation

with λcr. Following its definition in eq. (4.8), the value we need to search is

Σ∗(0, rε∗, αNFW) = 2

 rε∗∫
0

dz

(1 + z2)8 +
rε∗ (1 + αNFW rε∗)

2

(1 + r2
ε∗)

8

∞∫
rε∗

dz

z (1 + αNFW z)2

 , (5.4)

where the solutions for both integrals can be found in eqs. (4.33) and (4.37). A compar-

ison between the soliton and the combination of several αNFW can be seen in fig. 5.3. It

is clear from the figure how λcr decreases by changing the value of αNFW, nevertheless,

this only happens for lower values of rε∗ and as the transition point increases there is

a moment where it returns to the case of the soliton limit rε∗ → ∞, λcr ' 0.48. This

can be understood very clearly by realizing how increasing the transition radius affects

the contribution of the NFW tail by reducing it, and the behaviour of the complete

profile is dominated by the soliton, so its properties will match this case. Having this



5.1: Matching properties 70

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

ρ
N

F
W

*

rε ∗

αNFW =0.05

 =0.10

 =0.30

 =0.50

 =0.80

 =1.00

Figure 5.2: The normalized density ρNFW as a function of the matching radius rε∗,

for different values of αNFW, as indicated by eq. (4.27c). Notice that there are two

possible values of rε∗ for any given value of ρNFW∗, except for the maximum value of

the latter. The vertical lines represent the minimum and maximum possible values for

the peak of ρNFW∗ for the range 0 ≤ αNFW ≤ ∞.

in mind will help to realize that once the transition happens at large radii the soliton

will be enough to describe adequately the lens. This explains why λcr agrees with the

value of the soliton at a high rε∗. The constraint rε∗ ≥ rε∗max is taken into account

when plotting the different valued lines, and the value rε∗ = 1 is emphasized because

it represents a decrease in the profile where the overall contribution of the NFW tail

becomes minimal and possibly overlook. This will be discussed in the following section.

The last point to emphasize is that the total mass enclosed inside a sphere of radius r

is given by

M(r) = c(ma, rs)×

 rε∗∫
0

dx x2

(1 + x2)8
+
rε∗ (1 + αNFW rε∗)

2

(1 + r2
ε∗)

8

r∗∫
rε∗

dx x

(1 + αNFW x)2

 , (5.5)
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Figure 5.3: The critical value λcr as a function of rε∗. for different values of αNFW.

The soliton alone value of λcr ' 0.48 is compared with several different αNFW. The

constraint rε∗ ≥ rε∗max is considered.

where

c(ma, rs) = 3× 1013M�

( ma

10−22 eV

)−2
(
rs
pc

)−1

(5.6)

is a constant which depends of the particle mass, ma, and the characteristic radius of

the soliton, rs. In general, the mass should increase as r →∞, but if we consider the

soliton case where rε∗ →∞, the total mass contribution Ms is [46, 70, 22]

Ms

1011M�
= 7.7

( ma

10−22 eV

)−2
(
rs
pc

)−1

. (5.7)

It should be understood that the total mass M(r) which is the combined profile and Ms

do not need to agree and in principle they should satisfy M(r) ≥Ms. Nevertheless, the

contribution of the soliton to the complete profile should be expected to be M(rε∗) '

Ms in the majority of the cases.

From here onwards it will be important to differentiate between two meanings. In

referring to the total mass of the soliton, or soliton mass, this will be related to the value
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obtained in eq.(5.7). Referring to the particle mass or boson mass will mean ma. This

statement is to avoid differences during the description and clear possible confusions.

The different definitions stated in this section will an important consideration at the

moment of choosing limits for the analysis of some lenses.

5.2 Data analysis

The following section will describe the parameter estimation done using the selected

sub-sample of galaxies for particular conditions in order to assess how well the soliton

profile and properly WaveDM characterize the Dark Matter component within a the

selected galaxies. This is done in order to obtain some insight about the properties of

the model, and its usefulness for lensing.

5.2.1 Galaxy sample

For simplicity, a selection of galaxies is taken from the Sloan Lens ACS Survey(SLACS)

compilation of papers [12, 128, 59, 40, 11, 39, 13, 4, 5, 84]. To take a simple approach

the criteria for selection were to consider only galaxies which had less than 50% frac-

tional luminous matter. This is to just take into consideration galaxies in which the

content of Dark Matter is more prominent. The selected galaxies and their important

characteristics were taken from [40, 11, 4] and the data used are presented in table 5.1.

It is important to notice that, while there are several values in the table, the only pa-

rameter that we take in consideration into the model is the Einstein radius RE because

the only interest is to study strong lensing cases. Nevertheless, the actual observable

is Einstein angle θE, which is obtained by matching caustic lines to the observed im-

age, this process has been proven to be model independent [57]. Afterwards, the

physical distance is obtained by RE = DOLθE, where DOL is the angular diameter

distance from the observer to the lens, and it is dependent of the cosmology [48]. The

values in table 5.1 are obtained using the same cosmology as the for the SLACS pa-

pers which is a Friedmann-Robertson-Walker (FRW) cosmology with matter-density
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Name fSalp∗,Ein zlens zsource dOS/(dOLdLS) RE

J0008-0004 0.50± 0.16 0.44 1.192 6.609565 6.59

J0935-0003 0.35± 0.05 0.347 0.467 18.04391 4.26

J0946+1006 0.46± 0.13 0.222 0.609 9.700301 4.95

J1143-0144 0.46± 0.10 0.106 0.402 14.9161 3.27

J1306+0600 0.47± 0.08 0.173 0.472 11.66306 3.87

J1318-0313 0.42± 0.08 0.24 1.3 7.215974 6.01

Table 5.1: List of selected galaxies from SLACS. These were selected because they

have a fraction of luminous matter of 0.5 or less; see the values in the second column.

Column (1) gives the label of the galaxies within the SDSS catalog, column (2) indicates

the fraction of luminous matter and dark matter. Column (6) lists the measured

Einstein radius in units of kpc.

parameter ΩM = 0.3, vacuum energy-density parameter ΩΛ = 0.7, and Hubble pa-

rameter H0 = 70 km s−1 Mpc−1 [11]. An error of 5% on the measured value of θE is

adopted for all the galaxies [40].

5.2.2 Soliton core

Before analysing the complete WaveDM profile, it is recommendable to take as a first

approach the soliton core alone because this will give some insight on the behaviour of

the core which is much simpler in its description. This approach could be considered
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the special case of the limit rε∗ → ∞. The opposite limit rε∗ → 0 does not need

to be considered because this represents the case of an NFW profile which has been

studied extensively previously [138, 7, 122]. The majority of the equations to be used

are already obtained in section 4.4.

Following (4.21), it is possible to notice there are the special cases m∗(0) = 0 and the

other is the limit m∗(∞) = 2/(13λcrit). This is a clear indication that for a sufficiently

large angle the surface mass could be considered almost a constant. Before doing

any analysis, it is useful to rewrite some equations in a clearer form. If we combine

eqs. (4.4), (4.5), (4.16) and taking into account that the value to search is going to be

the Einstein angle, which is defined by θ∗E ≡ RE/rs, the lens equation can be recast

as

m−2
a22 θ∗Em∗(θ∗E, αNFW, rε∗) =

1

2.4× 0.57

dOS
dOLdLS

h

(
RE

kpc

)3

, (5.8)

where ma22 ≡ ma/10−22eV is set for convenience.

This representation of the lens equation has several advantages. First, it makes a

clear distinction between the parameters of the model, on the left-hand side, and the

information from the observables, on the right-hand side. The second advantage is the

dependence of the parameters ρs and rs is clearly hidden in the normalization. Another,

which might not be so clear, is that it takes into account the minimum value of λ by

setting directly the information of the geometry of the system. This helps to avoid

searching first for λ values which satisfy the system because it is already integrated

into the equation. In the case of the soliton, there is no dependence of αNFW nor rε∗.

Now, it is important to have a mention for the axion or boson mass ma. While in

principle it is possible to determine the range of values which satisfy the data while

considering ma as a free parameter, it must be recalled that the boson mass is a fun-

damental physical parameter of the model and should be common among the different

galaxies. Therefore, it should not be allowed to vary freely, and during the parameter

estimation, it will be fixed beforehand considering an expected range from previous

estimations of other studies [96, 105, 130].

Before presenting the analysis for the galaxies of the selected sample, it will be
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convenient to have a basic understanding of how the solutions are going to be obtained.

By means of eq. (5.8), the right-hand side is going to be compared for the parameters

of each galaxy with the solution given for different values of θ∗E. An example of the

procedure can be see in fig. 5.4. The dashed lines represent the inferred values from

the observations which correspond to the right-hand side of the equation, and do not

vary with the angle. The crossing points will give the allowed range of values as the

example for ma22 ≈ 0.02, this has an angular Einstein radius range of 5 < θ∗E < 10.

It can be later translated into an allowed range for the soliton radius, rs, by applying

the definition of θ∗E.

It must be noted that it is always possible to find a solution that matches, of course,

this comes by selecting larger values of θ∗E. Nevertheless, careful consideration needs

to be taken for this statement. For the selected sample of values, there will be a

value of boson mass for which the Einstein angle will be significantly too large and

another too small. These two cases will in theory satisfy the equation, but for practical

considerations should be inadequate. This is gives another reason to not allow the

value of ma to vary freely.

Summarizing, given the only observable constraint, the boson mass is fixed, and the

parameter θ∗E is searched to give a consistent value for the best-fit for rs, and from it,

ρs can be obtained.

The information on the parameters is obtained by introducing the equations and

required information into the Multinest code [36] to carry out the parameter search for

each individual galaxy of the sample. For the case of the soliton only one parameter is

used on the search, and an example for the translated rs output for galaxy J0008-0004

is shown in fig. 5.5. The final choice of values for the boson mass were ma22 = 0.1, 1, 10

by considering the constraints found in other works with ma < 1 × 10−21eV [70, 51].

The figures show the constraint only over one parameter, θ∗E, which is the only free

parameter in eq. (5.8) where the mass is given by eq. (4.21); it is translated to the

corresponding value of rs by θ∗E ≡ RE/rs. The comparison of the results obtained

from the selected sample of galaxies are summarized in table 5.2.

From the results it is important to notice the consistency in the soliton mass which
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Figure 5.4: Illustration of the use of eq. 5.8 to constrain the parameters for the

soliton. The curves are shown for selected values of ma22 and how the left-hand side

varies as a function of the Einstein angle. The vertical lines represent the range of

values which satisfy the different samples.

is conserved along the different values. This is not a surprise given that the mass con-

tained inside of the Einstein radius is fixed by the observable, RE, and does not change

for a galaxy. This only means that for a specific Einstein radius, every combination

of possible parameters will share the same soliton mass. Keeping J0008-0004 as an

example, its average soliton mass which is defined by eq. (5.7) is Ms ' 3.44× 1011. As

mentioned before, the value is conserved regardless of the different parameters. This

is not the true in the case of the density, given by eq. (4.16). The conservation of the

soliton mass implies a change of density according to the different characteristic radii,

which is observed in table 5.2. There is clearly an inverse relation between rs and ρs.

Considering the results obtained, and comparing the radius and the total mass, it is

possible to notice that the soliton is a very compact object, even though it is possible

to satisfy the conditions for lensing and is consistent with the observables. This is not

necessarily a problem by itself, but taking into account the expected size of the galaxy
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Figure 5.5: Parameter constraint for the soliton case of galaxy J0008-0004. Only one

parameter is represented, for the three selected values of boson mass.

it is a feature that is not desirable. The problem arises from the combination of the

high density and the small radius. The rotation curves of spiral galaxies can give some

insight about distribution of Dark Matter which is dominant as the radius increases,
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ma22 = 10 ma22 = 1 ma22 = 0.1

Galaxy log10(rs/pc)

J0008-0004 −1.65+0.07
−0.06 0.35+0.07

−0.06 2.35+0.07
−0.06

J0935-0003 −1.71+0.07
−0.06 0.29+0.07

−0.06 2.29+0.07
−0.06

J0946+1006 −1.57+0.07
−0.06 0.43+0.07

−0.06 2.43+0.07
−0.06

J1143-0144 −1.40+0.07
−0.06 0.60+0.07

−0.06 2.60+0.07
−0.06

J1306+0600 −1.44+0.07
−0.06 0.56+0.07

−0.06 2.56+0.07
−0.06

J1318-0313 −1.61+0.07
−0.06 0.39+0.07

−0.06 2.39+0.07
−0.06

Table 5.2: The values of the soliton radius in the logarithmic scale log10(rs/pc)

obtained from the fits to the indicated galaxies, for three different values of the boson

mass ma.

but in our case we have elliptical galaxies. Even that they are not directly comparable,

it would be expected to have a similar or close distribution of Dark Matter, but in

the our case the majority of the values presented in table 5.2 there is a big contrast

with the biggest amount of mass in the galaxy enclosed inside a small radius. This

would be an unexpected concentration of mass, if several of the values for the soliton

are considered. To give a point of reference, for the case of galaxy J0008-0004 the

mass inside the Einstein radius is MEins ≈ 3.1 × 1011M�, and according to table 5.1

the ratio between luminous and dark matter is 0.5, so they share the same amount

of mass, but if we compare both radii, the effective radius for the luminous part is

re ≈ 9.6kpc [11, 5], and the soliton would have, in the case of ma22 = 1, a radius of

rs ≈ 2.4pc. This implies a extremely dense centre, and this is not usually observed in

galaxies.

Anyway, because the only measurement to satisfy is the Einstein radius, it is possible

to find a solution for the lens. But considering that the lens equation can be solved by

a point particle, it is not surprising to find the soliton to be this compact. This gives
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ma22 = 10 ma22 = 1 ma22 = 0.1

Galaxy log10(ρs/M�pc−3)

J0008-0004 16.98+0.28
−0.24 10.98+0.28

−0.24 4.98+0.28
−0.24

J0935-0003 17.22+0.28
−0.24 11.22+0.28

−0.24 5.22+0.28
−0.24

J0946+1006 16.66+0.28
−0.24 10.66+0.28

−0.24 4.66+0.28
−0.24

J1143-0144 15.98+0.28
−0.24 9.98+0.28

−0.24 3.98+0.28
−0.24

J1306+0600 16.14+0.28
−0.24 0.14+0.28

−0.24 4.14+0.28
−0.24

J1318-0313 16.82+0.28
−0.24 10.82+0.28

−0.24 4.82+0.28
−0.24

Table 5.3: The values of the soliton density in the logarithmic scale log10(ρs/M�pc−3)

obtained from the results of the radius from the different galaxy fits. The inverse

relationship between the radius and density is clear, as for the largest radii, they

posses smallest density, which preserves the soliton mass constant for the galaxy.

a valuable lesson. The soliton can fulfil the lensing requirements, formally speaking,

even though it is not completely adequate when taking into account other observed

properties that the galaxies may have. In the next section, this will be addressed by

considering the complete profile which includes a NFW outskirt, which will relax the

distribution of dark matter.

5.2.3 Complete profile

The consideration of the soliton core being the complete contribution for the dark mat-

ter content of the galaxy is a reasonable one, but it comes with several inconsistencies

between the density and the size of the possible object. This means that it needs a way

to alleviate the problem. This is done by considering a complete profile which includes

a soliton core + NFW outskirt as presented in eq. (4.23).

Taking into account the normalization used in section 4.5, there are three free pa-

rameters: (ma,rε∗,αNFW). Unfortunately, the parametrization used helps to simplify
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the derivations, but hides the dependence in rs. For the soliton case, there was a

simple relation with the Einstein angle θE, but now this is not so simple because it is

desired to avoid the soliton completely filling the dark matter of the halo, which will

produce a case similar to just having a soliton. To avoid this, the approach will be by
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Figure 5.6: Total mass M normalized by terms of the soliton mass Ms. It is important

to notice that M can be up to three orders of magnitude compared with the the soliton

mass. This is obtained just by integration of eq. (5.5) with an upper limit of r∗ = 20.

The black line represents rε∗ = 1, and the blue and purple lines are set as the range

0.25 < rε∗,max < 0.48.

controlling the soliton mass contribution given by Ms in the analysis. As well as with

the soliton only case, the axion mass is set for three particular values of ma22 = 0.1,

1, 10, and using the relation established by eq. (5.7), it is possible to set the values of

rs by controlling the total amount of mass the soliton will contribute. Then it will be

set log(Ms/M�) = 11.5, 10.5, 9.5, 8.5, 7.5, and from this set all the values of rs will be

obtained. This should avoid the overcompensation of the soliton. This only leaves to

set the priors for the values of rε∗ and αNFW.
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An uniform prior for the parameter is chosen between the following ranges: αNFW =

[0 : 10] where the lower limit is simply the lowest value possible by the way it was

defined. The upper limit is suggested by figures 5.1, 5.2, and 5.3. and rε∗ = [rε∗,max :

10]. The value of rε∗,max is found by solving the cubic equation (5.2) and the upper limit

is suggested by the same figures as αNFW. An important difference is the sampled value

for θ∗E, which in the soliton case was used directly due to only existing dependence

of rs; nevertheless, for the complete profile, there are more parameters involved, due

to this and to avoid the possibility of using the information twice, its values will be

obtained by sampling from a Gaussian distribution defined by

θ∗E(p) = θ∗Em + σ
√

2erf−1(2p− 1) , p ∈ (0, 1), (5.9)

where θ∗Em ≡ RE/rs corresponds to the mean of the distribution by the use of the

observed value for the Einstein radius, and the previously determined value of rs. The

error is defined as σ = 0.05 ∗ θ∗Em. The value of p is a random number generated

from a an uniform distribution inside the interval [0, 1] which is used as a seed for the

Gaussian. The implementation of the inverse error function is described in [137] as

erf−1 ≈

[
− 2

πa
− ln(1− x2)

2
+

√(
2

πa
+

ln(1− x2)

2

)
− 1

a
ln(1− x2)

]
, (5.10)

where a = 0.14. Through this Gaussian sampling will be the only way θ∗E will be used

for the actual fitting during the analysis.

The contribution of the soliton mass is fixed inside the Einstein radius, but this could

produce a saturation of the NFW outskirt due to the need to provide almost 3 orders

of magnitude compared with the soliton. This feature can be observed in fig. 5.6. This

is the total mass enclosed inside the radius, r∗ = 20, which is obtained by directly

integrating eq. (5.5), but with the normalization of Ms. The blue and purple vertical

lines represent the range of solutions for rε∗,max. Every minimum value for rε∗ will lie

in between these lines. The black line corresponds to rε∗ = 1. It is possible to observe

the range 0 ≤ αNFW < 2. The lower limit corresponds to the maximum ratio the total

halo will have compared with the soliton core, meanwhile the upper limit, it is a set
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value establishing the condition that the mass of the halo should not be smaller than

the soliton core mass.

This excess in order of magnitude, it is a feature completely desired, so to alleviate

this problem, it would be reasonable to include a first order approximation of the

luminous or baryonic matter as a constant quantity. This can be done by modelling

it as a point mass included in the projected mass. This is done in eq. (4.1) by adding

the extra mass as

m′(θ) = M(θ) +M ′, (5.11)

where M(θ) corresponds to the dark matter component represented by complete profile

soliton core + NFW given by eq. (4.23), and the constant value M ′ = f∗,EinMEin is

simply the baryonic contribution inside the Einstein radius.f∗,Ein is the fraction of

luminous matter inside the Einstein radius, and MEin is the mass enclosed inside the

Einstein radius. These two values are obtained from the data in table 5.1.

The new projected mass needs to be properly normalized to be used to obtain the

best fit. This gives the new dimensionless projected mass as

m′∗(θ∗, αNFW, rε∗) = m∗(θ∗, αNFW, rε∗) +M ′
∗ , (5.12)

where

M ′
∗ = 0.3208f∗,Ein

(
MEin

Ms

)
. (5.13)

Introducing the mass in eq. (5.8) and using Ms instead by means of eq. (5.7), the form

to be used for the analysis will be

Ms

M�
m′∗(θ∗E, αNFW, rε∗) =

7.7× 108

2.4× 0.57

dOS
dOLdLS

h

(
RE

kpc

)2

. (5.14)

This will be the main equation to solve. The interesting feature from the arrangement

comes from the separation from observables and theoretical values. The left hand side

of the equation only considers all the theoretical values from the model while the right

hand side are the observables, which includes the distances from the lens system, the

Hubble parameter and the measured Einstein radius.

The parameter estimation for several galaxies will be carried out using the Multinest

code, which as mentioned in section 3.5, is a nested sampling algorithm. The original
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reason to choose this code was due to the model having in total 5 parameters, but due

to the normalization it was reduced to only search for 2, and the implementation was

already done, so it was simpler to use it.

The implementation for the complete profile is done with the following procedure:

1. Priors are set as αNFW = [0 : 10], and the value of rε∗,max is calculated from

equation (5.2) which sets the lower limit of rε∗ = [rε∗,max : 10]; as mentioned

previously, the range would be 0.25 < rε∗,max < 0.48.

2. The right hand side of eq. (5.14) is calculated with the data from the galaxies

found in table 5.1 an assigned to a variable xdata.

3. The left hand side of eq. (5.14) is obtained by using the prior values; the soliton

mass can be assigned directly or obtained from eq. (5.7). This is assigned to

xmodel

4. The previous values are used for the likelihood function:

L =
1√
2πσ

exp

[
−1

2

(xdata − xmodel)2

σ2

]
(5.15)

which is used by Multinest for the estimation.

5. The process is repeated until the parameters αNFW and rε∗ are best-fitted.

The main results can be summarized by observing the posteriors obtained from two

of the galaxies, J0008-0004 and J0935-0003. Although the results for the other galaxies

will also be shown, these two were selected in particular due to them containing the

smallest and largest fraction of dark matter respectively.

To begin with the description of the results, it is adequate to start with a selected

value, log(Ms/M�) = 11.5. This particular choice is a free one for the soliton. In other

words, this value has the peculiarity that by observing the point 2 on the procedure

list, it is close related to allow free of choice to variables of eq. (5.7). Furthermore, this

means that almost the totality of the Dark Matter contribution is proportioned by the
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Figure 5.7: Posteriors for galaxies J0008-0004 and J0935-0003. On the graph there

is a clear delimitation of the area which the parameters can obtain to satisfy the lens

mass given for the galaxies. The clear line shows where the soliton dominates and the

rest gray area are the values for the NFW tail whose contribution is negligible.

soliton mass as Ms ≈M(r). For lower values of soliton mass this is totally selected as

mentioned previously.

In principle, it is allowed to cover almost the entirety of the mass in the profile, but

it is not restricted to it, nevertheless the result from the parameter estimation tells

that not only it is allowed, but it is preferred.

In figure 5.7, it can be seen the posteriors for galaxies J0008-0004 and J0935-0003 for

a selected axion mass of ma22 = 10 where it is easy to appreciate that there is a clear

limit of the allowed values to be taken. The shaded region shows the area allowed to

take values that will represent the mass of the lens, this region nevertheless does not

give a definite constraint on the values, but it gives an understanding of the reason for

this.

Looking carefully, the minimum region allowed starts from rε∗ > 1, taking from

figures 5.1 and 5.2, this shows values where the dominant part of the profile is the
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Figure 5.8: Posteriors for a configuration of ma22 = 1 and log(Ms/M�) = 11.5. The

larger radii show a flat prior, which turns out to be a reasonable explanation considering

that at these values the contribution of the tail in negligible.

soliton having a minimal contribution from the NFW tail. Particularly, looking for

values where αNFW < 1 reduces the value of ρNFW∗ to be taken into account. This

translates into the need of a bigger radius rε∗ to allow any tail to be accounted for.

Furthermore, after this region is crossed, the contribution of the tail is minimal that it

does not matter how much of it is taken, the majority of the lens mass is given by the

soliton alone. In other words, for an allowed soliton mass of log(Ms/M�) = 11.5, the

soliton part is preferred and allowed to represent the complete contribution of the lens,

and the NFW tail does not give any important addition which is why there is no clear

constraint of the values. This corresponds to the soliton-only case which was analysed

in the previous section.

The posterior plots for the rest of the galaxies are shown in figure A.1. They present

the same behaviour of the soliton dominating the contribution of the lens mass. The

conclusion obtained for ma22 = 10 can be extended for the other two selected axion

masses. For comparison, figures 5.8 and 5.9 show the same selection of soliton masses,
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Figure 5.9: Posteriors for a configuration of ma22 = 0.1 and log(Ms/M�) = 11.5. The

output is almost flat, and it only describes a minimum accepted value of radii.

with the only difference being that the results are shown for axion masses ma22 = 1, 0.1.

The previous conclusion does hold as seen in the figures. The same definite limit is

present, but for these masses there is a clear difference which consolidates the result.

Previously it was stated that at higher radii the NFW tail does not have an important

value, and for ma22 = 1, 0.1, this is even more true. It can be seen in figure 5.8 that after

above a definite value of rε∗ the posterior becomes flat and uniform, which means that

there is no preference for any of the values. This is even more obvious by considering

figure 5.9 where the posterior is almost uniform.

The conclusion is seen consistently for several axion masses: when the soliton is

allowed to contribute the majority of mass for the lens, this will be represented by the

soliton-only configuration having a negligible and almost null contribution from the

NFW tail. A word of caution regarding the comparison, however. While the qualitative

behaviour is the same, the physical values are not. The values are normalized by rs

which in turn depends of the value of the Soliton and Axion masses. For example, for

J0008-0004 for log(Ms/M�) = 11.5 the corresponding radii for ma22 = 1 and ma22 = 10
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are rs = 2.435 pc and rs = 0.02435 pc respectively. Using the previously mentioned

characteristic radii and choosing the same value of normalized transition radius, for

example rε∗ = 0.8, the physical values are 15.364 pc and 0.15364 pc for the axions

masses, ma22, 1 and 10 respectively. Similar to the soliton-only case, this means the

actual size of soliton core is different, so it maintains the same properties and problems

as the soliton-case, which means this configuration also not favoured. In turn, the

soliton should be restricted to a lower contribution to the total lens mass.

The next part is to compare the cases where the restriction of the soliton mass is

bigger, so the situation of the density exposed for the soliton case could be alleviated.

As before the same two galaxies are selected as examples, and the rest of the galaxy

posteriors can be found in appendix A. Now the case of importance, it is when there

is an actual constraint of parameters that could say something related to the profile.

Therefore, the next set of posteriors do not include the mass log(Ms/M�) = 11.5.

Similar to the previous case, the two main galaxies are J0008-0004 and J0935-0003,

which have their posteriors shown in figures 5.10 and 5.11. The first point, it is possible

to notice the constraint of several values. Second, there is a clear tendency for the

constrained region to shift to closer radii as the soliton mass is reduced. Of course,

this has a mixed effect. As mentioned before, reducing the soliton mass, shifts the

constraint region which is pushed even further by also by reducing the axion mass. It

is straight forward to realize by means of eq. (5.7), that this effect is due to the relation

between the soliton and axion masses. Nevertheless, while it is possible to constrain

the parameters, there is long flat allowed region for αNFW, and a double peak that can

be clearly observed in both a) and b) sub-figures for 5.10 and 5.11. A clear reason for

the second peak is not easy to find, but by the general behaviour the most feasible

explanation comes from the previous problem, the soliton gives enough contribution

to completely of fill the required lens mass, which needs to not be confused with the

total spherical mass, and this means that the soliton is almost dominating the total

contribution, but in this case, due to the restrictions applied, it needs a minimum from

the NFW tail.

By looking at figure 5.2, it is possible to complete the picture. The first ”bump” it
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Figure 5.10: Posterior for galaxy J0008-0004. Description is found in text.

is the minimum contribution to complete the lens mass, but this corresponds to the

marginalized posterior of αNFW for a corresponding peak. This is due to the value of

lambda being high enough so the density of the tail contributes substantially , but

as the radius increases the contribution drops, until it reaches the maximum possible
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Figure 5.11: Posterior for galaxy J0935-0003. Description is found in text.

mass for the soliton and tail enough to complete the minimum required lens mass.

The second issue, is the flat region. This region, by observing the definition of αNFW,

it is possible to appreciate how the characteristic radius of the NFW tail extends. As

an example, log(Ms/M�) = 10.5 has a transition radius of rs = 0.02435 pc which by
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choosing a value of rε∗ ≈ 0.7 translates to a range of 24 pc . rNFW < ∞. In other

words, it is possible to constraint the value of the transition radius, but this only sets a

minimum value for the NFW characteristic radius. The result can be observed in any

other configuration, and it is strongly enforced on lower masses where the is a fixed

minimum value of αNFW. This effectively sets a true constraint or limits that can be

taken. For Galaxy J0935-0003 with a selected ma22 = 1, in red, there is the constraint

which has means that only values αNFW < 1 are able to contribute to the lens mass. In

this case, the soliton at lower transition radii is not able to give enough contribution,

but it is satisfied as the radius increases.

It should be noted that as the possible soliton mass is reduced, the response is to

transition as soon as possible, and the NFW tail extends as long as much as it can,

almost to infinity. This can be seen on the values for both galaxies for the selected

masses of log(Ms/M�) = 8.5 and ma22 = 1. In both plots is represented in the b) by

the blue line. The concentrated area constrains the value to be close to the border

of the allowed rε∗,max and the value of αNFW → 0. The lower masses are then not

allowed, and as it can be seen for the cases of ma22 = 0.1, the lower masses are not

really constrained. Posteriors in for the other galaxies can be found in appendix A.

They possess the same features mentioned before, so the different results are shared

among the sample of galaxies.

5.2.4 Summary of results

It is possible to described through a brief summary of the main characteristics found

are:

• Allowing the soliton mass to be almost unrestricted, gives the majority of the

contribution to the lens mass, and it produces results similar to having only a

soliton profile, which means that the transition and characteristic radii are of a

similar order as the previous case.

• Restricting the mass contribution of the soliton allows to have an actual restric-

tion on the transition radius; nevertheless, for the case of the value of αNFW only
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a lower limit can be established. This restriction becomes even more obvious

when mass constribution is reduced even further.

• In turn, as the soliton mass is reduced, the established inverse relation with the

characteristic radius indicates an increase in the latter, which in turns helps to

alleviate the problem of having a very dense soliton core.

From the three main results previously stated, the last one is the solution that

was expected by adding the NFW tail. This shows that it is possible to represent

a gravitational lens described by a wave dark matter profile and have a reasonable size

for the soliton core without compromising it by having a high density core. As shown,

the preference is to have lower axion masses for which the parameters of the model

have a better defined constrained regions. Even so, it is not possible to precisely fix

a value for the free parameters just by the lensing radius alone due to only the main

contribution being the Einstein radius, RE. More data is necessary if it is desired to

have an extra constraint on the soliton or axion mass. On the positive side, it can

be seen that the preferences keep the lower bound of the axion mass as ma > 10−24

eV which agrees with other works [134, 72, 130, 131, 62, 63, 33]. But the objective of

showing that it is possible to use a soliton core + NFW tail to represent a a gravitational

lens is met. However, further studies including other information about the nature of

the galaxies will be required to obtain solid constraints of the different parameters.

The subsequent chapters will change the approach from the traditional case of lensing

of light to focus in the case of lensing of gravitational waves, to consider whether future

observations of the latter phenomenon might provide useful additional insight into the

nature of WaveDM.



Chapter 6

Wave optics for gravitational

lensing

The lensing of light is a powerful tool in cosmology, and it is common to be treated

from the point of view of the geometrical optics limit, but there is another treatment

by using the wave approximation; this allows to not only consider the lensing for

light but other wave phenomena [102]. Even more importantly in an astrophysical

context, this creates the possibility to not only work with the lensing effect affecting

light sources in the visible part of the spectrum, but also, other wavelengths with lower

frequencies; furthermore, it allows to apply the phenomena not only to electromagnetic

sources, but it can treat other type of emissions which can be affected by gravity:

gravitational waves. In the past, A couple of examples for the wave approximation

have been worked out for scalar, electromagnetic and gravitational waves by a point

mass [91]. From this motivation, interesting results were obtained for the case of

gravitational waves [126, 123, 119, 81] for several basic types of lens that could be

expected to occur in real astrophysical systems; this work could be used in the future

as a possible probe to discriminate between different halo models - e.g. between SFDM

and standard CDM halos - and their potential effect on gravitational wave signals.

Throughout this chapter it will be assumed G = c = 1.
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6.1 Diffraction integral

6.1.1 The lensing system

Gravitational lensing can be described, as with classical lenses, in a wave approxima-

tion. In principle, the treatment can done considering a general wave, and it should

not necessarily consider only the visible window of the electromagnetic spectrum, nor

to be required that we are able to ”see” an actual image [86, 91], which is done by

solving the wave equation [81, 82] where the lens will act in a similar manner to the

double slit and create a diffraction effect.

To help to determine where these effects become important, it is easy to consider

the Schwarzschild radius of the lens as rE ∼ ML, which defines the Einstein radius as

ξ ∼ (rED)1/2 ∼ (MLD)1/2, and the source signal has a wavelength λ.

In fig. 6.1, it is possible to observe a basic description of the system, by representing

the wavelengths as being of a size similar to the lens Einstein radius, and the dis-

tances analogous to the standard geometric approximation. The central peak of the

interference pattern will be located at xp ∼ (DL/ξ)λ [126].

The maximum magnification of the incoming wave due to the diffraction will be

of order ∼ ξ/xp ∼ ML/λ [14, 80, 126]. From this it can be deduced that for a set

Einstein radius, smaller wavelengths have a bigger amplification. This relation acts

as a discriminator for wave or geometric optics approximation. In fig. 6.1, the dashed

region represents the volume where the wave equation is solved. In this region the wave

is diffracted and there is an amplification of the original (unlensed) signal produced

by the source. A complete description for the different approaches to solve the wave

equation in this case can be found in [102, 80, 91, 14, 135, 81, 80, 119]. Because

an amplification on the phase is not considered, it is only present in the amplitude,

even though the diffraction creates an oscillatory pattern on the phase; the comparison

with an unlensed wave defines an amplification factor [126, 81, 123]. The following

subsections will describe briefly the amplification factor for the wave and geometric

approximations.
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Figure 6.1: The lensing system considering a wave emitted by a source which passes

close to a gravitational lens. A wavelength comparable with the Schwarzschild radius

of the lens will produce a diffraction effect.

6.1.2 The amplification factor

In chapter 2, it was introduced the concept of magnification, which was produced by

the difference in brightness between the lensed image and the unlensed source. In the

case of waves, this concept is expanded, and the wave amplitudes are used instead.

This defines a more general amplification factor as,

F (w,η) =
φLobs(w,η)

φobs(w,η)
, (6.1)

where φLobs(w,η) and φobs(w,η) are the lensed and unlensed wave amplitudes at the

observer position, respectively. The unlensed case is characterized by the lack of the

gravitational field of the lens. The amplification factor F is normalized such that

|F | = 1 in the no lens limit.

The simplest lensing models are the axially-symmetric lens, and the amplification

factor for them is given by [126, 81]

F (w, y) = −iweiwy2/2
∫ ∞

0

dxxJ0(wxy)× exp

[
iw

(
1

2
x2 − ψ(x) + φm(y)

)]
, (6.2)
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were we define the dimensionless frequency w as,

w =
DS

DLSDL

ξ2
0(1 + zL)ω . (6.3)

The lensing produces a time delay of the signal which is defined as [102]

td(ξ,η) =
DLDS

2DLS

(
ξ

DL

− η

DS

)2

− ψ̂(ξ) + φ̂m(η) . (6.4)

The variables relating the impact parameter ξ ≡ |ξ| and the source position η ≡ |η|

are [102]

x = |x| = ξ

ξ0

; y = |y| = DL

ξ0DS

η, (6.5)

with usually corresponds to the dimensionless time delay given by,

T (x,y) =
DLDLS

DS

ξ−2
0 td(ξ, η)

=
1

2
|x− y|2 − ψ(x) + φm(y) . (6.6)

Here DS,DLS and DL are the distance from the observer to the source, between the lens

and the source and from the observer to the lens respectively, and ξ0 is a normalization

constant of the length. ψ(x) = ψ(|x|) is the potential produced by the source, and

φm(y) = φm(|y|) is a phase constant which is used to obtain a minimum time delay of

zero in eq. (6.6), which usually corresponds to time delay of the ”image” which travels

the shortest geometric path to the observer [80]. It should be mentioned that when

the lensing parameters allow multiple images of the source, it results in an interference

pattern between the images in addition to the diffraction produced by the lens [78]. For

the case of w >> 1, the geometrical approximation would be sufficient [86, 80, 126, 122].

6.1.3 Geometrical optics approximation

From eq. (6.2), it is possible to recover the geometrical optics amplification factor by

considering the case w >> 1 [86, 80, 126, 122]. For this case, the integrand of eq. (6.2)

is a rapidly oscillating function and only the stationary points, xj give a contribution

to the integral which implies ∇xT (x,y) = 0. This is simply the Fermat’s principle of

least time. Starting from the lens equation

y = x−∇xψ(x). (6.7)
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The positions xj are directly obtained from the lens equation. We expand the time

delay around the jth image as

T (x,y) = T (xj,y) +
∑
a

∂T (xj,y)x̃a +
1

2

∑
a,b

∂a∂bT (xj,y)x̃ax̃b +O(x̃3). (6.8)

where x̃ = x − xj, and the indices for a,b,... run from 1 to 2. The first order term

vanishes because xj is an stationary point. Taking into account the approximation and

all the contributions of the stationary points in eq. (6.2) leads to

F (w,y) =
∑
j

w

2πi

∫
d2x̃ exp[iwT (xj,y) +

1

2

∑
a,b

∂a∂bT (xj,y)x̃ax̃b] . (6.9)

Considering now the system in Cartesian coordinates with only diagonal components,

which means having x̃1 and x̃2 vectors having no cross derivatives, it is possible to

express the integral as

F (w,y) =
∑
j

weiwT (xj ,y)

2πi

∫
d2x̃ exp[

iw

2
(∂2

1T (xj,y)x̃2
1 + ∂2

2T (xj,y)x̃2
2)] . (6.10)

The remaining terms can be solved using the Gaussian integral 1. This leads to the

amplification factor in the geometrical optics approximation [81],

Fgeo(w,y) = Σj|µ1/2
j | exp[iwTj − iπnj], (6.11)

where the magnification of jth image is µj = 1/det(∂y/∂xj), Tj = T (xj,y) and nj =

0, 1/2, 1 when xj is a minimum, saddle or maximum point of T (x,y) respectively. Here

the value of |µj| coincides with the definition of the magnification factor in section 2.

6.2 Lens models

6.2.1 The point mass lens

The easiest solution of (6.2) to work with is the point mass lens. From all the other

possible lenses, this is the only one with an analytical solution [91]. For the nor-

malization constant in this case it is usually agreed to use ξ0 = (4MLDLDLS/DS)1/2

1
∫∞
−∞ dxeiax

2

=
√

π
|a|e

iπ/4×sign(a)
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which correspond to the Einstein radius of the point mass lens in the geometric optics

limit [102, 78]. The amplification factor is then defined as

F (w, y) = exp
[πw

4
+ i

w

2

{
ln
(w

2

)
− 2φm(y)

}]
Γ

(
1− i

2
w

)
1F1

(
i

2
w; 1;

i

2
wy2

)
,

(6.12)

where w = 4MLzω; φm(y) = (xm − y)2/2 − lnxm with xm = (y +
√
y2 + 4)/2; MLz

is the red-shifted lens mass and 1F1 is the confluent hyper-geometric function [126].

Figure 6.2 shows an example of the amplification factor; here the interference pattern

between multiple images mentioned earlier is clearer above w > 10. In the same way,

this equation has a solution for the geometrical optics limit with w >> 1 which is given

by

Fgeo = |µ+|1/2 − i|µ−|1/2eω∆T . (6.13)

The magnification for each image is µ± = 1/2 ± (y2 + 2)/(2y
√
y2 + 4), and the time

delay is given, as presented in [126, 81, 120], by

∆T = y

√
y2 + 4

2
+ ln

(√
y2 + 4 + y√
y2 + 4− y

)
. (6.14)

The next subsections present examples for other types of lens, but these are solved

numerically.

6.2.2 Singular Isothermal Sphere(SIS) - lens

Several properties of the SIS have already been presented in chapter 2. In the case

of wave treatment the SIS can no longer be solved analytically, and needs to be done

numerically. The normalizing Einstein radius is ξ0 = 4πv2DLDLS/DS. The ampli-

fication factor eq. (6.2) is integrated numerically where the potential is ψ(x) = |x|.

As in the previous lens, the potential constant is obtained by the shortest time delay

which is taken as the positive solution of x of the lens equation. This corresponds to

ϕ(y) = y + 1/2, and it is possible to define a mass similar to the case of the Point

Mass lens as MLz = 4π2v4(1 + zL)DLDLS/DS. This defines the frequency w = 4MLzω.
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Figure 6.2: Amplification factor for the point mass lens. a) The amplitude of the

lens for y = 0.3 and y = 1.0. The values with high oscillation correspond to w > 1;

as the frequency w increases it approaches to the geometrical limit. b) The phase of

the point mass lens amplification factor. The selection of the phase constant allows

the phase to be contained within a range of values of θ, and it can be seen how the

increase in w produces the oscillatory effect on the phase, similar to the amplitude.

The amplification factor F only depends on two parameters, w and y. The geometrical

optics limit is given by [126],

Fgeo = |µ+|1/2 − i|µ−|1/2eiw∆T for y < 1,

= |µ+|1/2 for y ≥ 1, (6.15)

where µ± = ±1 + 1/y and ∆T = 2y. The value of y separates the condition for the

number of images. For y < 1 double images are formed, while for y ≥ 1 only a single

image is formed.

6.2.3 NFW lens

The Navarro, Frenk and White (NFW) profile as mentioned earlier in chapter 2 is

the most general profile used for the description of the mass distribution in galaxies.

As well as for the point mass lens and the SIS lens, the NFW profile can be used to



6.2: Lens models 99

1

2

5

 0.01  0.1  1  10  100

|F
|

w

y = 0.3

y = 1.0

(a) Amplitude

-1

0

1

 0.01  0.1  1  10  100

θ

w

y = 0.3

y = 1.0

(b) Phase

Figure 6.3: Amplification factor for Singular Isothermal Sphere (SIS). a) The ampli-

tude of the SIS, as well as the point mass presents the same oscillatory pattern when

w > 1, but for the same value of y the amplification of the amplitude is bigger for the

SIS. As y increases, the oscillation in the amplitude is decreases but this in principle

settles, which corresponds to the value in the geometric optics. b) The phase oscillates

for higher values, but it is still bounded inside a region; the phase at the same time

presents the same decreasing behaviour for increasing y.

describe a lens, as has been shown in previous chapters. The amplification factor F

cannot be solved analytically, and it needs to be obtained numerically. Unfortunately,

another difference exists with the previous two cases, since for the NFW profile the

phase constant also needs to be obtained numerically because the lens equation cannot

be solved analytically. In a similar manner to the other cases, the lens is described

through its lensing potential which is given by [7, 54]

ψ(x) =
ks
2

(ln
x

2

)2

− 4

(
arctanh

√
1− x
1 + x

)2
 forx ≤ 1 ,

=
ks
2

(ln
x

2

)2

+ 4

(
arctan

√
x− 1

1 + x

)2
 forx ≥ 1 . (6.16)

There is now a third parameter ks = 16πρs(DLDLS/DS)rs. In this case the normal-

ization parameter is ξ0 = rs. This differs to the previous cases by not choosing the
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Figure 6.4: The NFW profile requires a different approach and has the extra param-

eter ks. Both of the images correspond to the case ks = 1. a) The amplitude of the

amplification factor is plotted for two examples of y which is normalized by ycrit which

corresponds to the radial caustic. b) The phase in this case decays faster than in the

previous profiles, and for the case where there is not decay, there is an abrupt change.

Einstein radius, but the characteristic radius to provide the normalisation. The am-

plification factor and the phase constant for the zero time delay cannot be obtained

analytically and needs to be solved numerically; the same situation arises for the geo-

metrical limit for the derivation of the image positions xj, magnifications µj and time

delays Tj which are obtained from the numerical solution of the lens equation, mean-

ing that Fgeo is obtained numerically. The radial and tangential caustics are solutions

of the lens equation where the magnification in the geometric approximation reaches

a maximum, in the standard treatment of light they are theoretically infinite [102].

Furthermore, the tangential caustic corresponds to y = 0, and the radial defines a

critical value y ≡ ycrit; |y| < ycrit is a region where three images are formed, and when

|y| > ycrit only one image is formed. In this manner, ycrit helps to normalize the values

of y for the NFW profile as seen in fig. 6.4. The amplification factor now depends on

three parameters: w, y and ks.
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6.2.4 ψDM - soliton lens

The WaveDM profile was introduced in chapter 4; There were two cases solved for the

reduced mass: the soliton core alone and the soliton+NFW tail. For the amplification

factor F , the lens is described by the lensing potential ψ(x); unfortunately, the complete

case is too complex to be solved analytically, and the numerical solution is not as

straight forward to implement as the other cases we have considered and would require

a more extended analysis. Nevertheless, in order to gain some useful insight, the soliton

core lensing potential can be obtained and used to calculate the amplification factor.

As shown in chapter 5, the soliton core is expected to make a major contribution to

the mass and, depending on the core size, it can have a high density. So the use

of the soliton-only case as a first approximation is justified in what follows, since we

expect that the potential will be enhanced compared with the NFW case and that

the main interaction will be with the inner core compared with the NFW tail - taking

into account the fact that the tail extends over a larger region in its contribution to

the mass of the halo. For this reason, and since it provides a simpler solution, the

soliton-only case will be presented here and in the next chapter when the lensing of a

gravitational wave is considered and the results the results of gravitational wave lensing

are compared for different lens models with similar parameters.

The simpler way to obtain the lensing potential is by the integral [102]

ψ(x) = 2

∫ x

0

x′dx′κ(x′) ln
( x
x′

)
. (6.17)

The function κ(x) ≡ Σ(x)/Σcrit, and from equation (4.20),

Σ(x) = ρsrs
429π

2048
(1 + x2)−15/2 , (6.18)

where x = ξ/rs. By applying eq. (6.18) to eq. (6.17), performing the integral, for the

evaluation at zero an expansion is considered; therefore the potential is

ψ(x) = 2 ∗ ks ∗
429π

2048

[
1

13

(
ln(
√
x2 + 1 + 1)−

5∑
n=0

1

(2n+ 1) ∗ (1 + x2)n+1/2

)

+
6508− 3465 ln(2)

45045

]
, (6.19)
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where is ks = ρsrs/Σcrit. The potential is used in the expression for the amplification

factor. which is evaluated numerically similar to the treatment for the NFW profile.

The image positions xj and time delays Tj are solved numerically too, but the values

of uj ≡ µ(xj) can be obtained from

µ(xj) =

[(
1− m(x)

x2

)(
1 +

m(x)

x2
− 2κ(x)

)]−1

. (6.20)

The normalized surface density κ(x) has the parameter ks defined earlier, and the

normalized projected mass is obtained from eq. (4.21) by an adjustment of the normal-

ization,

m(x) =
ks
π

2

13λcrit

(1 + x2)13/2 − 1

(1 + x2)13/2
. (6.21)

In chapter 4 was shown that λcrit = 2048/(429π2), and in the same chapter the param-

eter λ was introduced which encapsulated the information of the lens and the geometry

of the system. It was mentioned that the condition λ > λcrit must be satisfied if the

lensing system was expected to produce strong lensing. In this case due to the normal-

ization it is more convenient to define the condition in terms of the extra parameter in

the potential and assigning λ = ks/π, this translates for the condition of strong lensing

to be

ks >
2048

429π
≈ 1.52 . (6.22)

The amplification factor similarly to the NFW profile also depends on three parameters

w, y and ks. In a similar manner, it is convenient to define a value ycrit to separate

regions where there are several images; the next section will show how this approach

is used in the solution, and compare the amplification factor with other type of lenses

discussed.

6.3 Comparison of lens properties

The previous section introduced the basic lenses which had already been described in

detail in [122, 81, 82, 126], and the introduction of the soliton-core as a lens in the wave

approximation. The following section presents a brief comparison on the behaviour of

the three lenses.
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Figure 6.5: The soliton profile amplification factor for the fixed value of ks = 2. a)

The amplitude of y is normalized by ycrit. It has three values, y/ycrit = 0.3,y/ycrit = 1,

y/ycrit = 2.0. b) The phase has an oscillatory pattern due to the diffraction and image

interference, but above ycrit the oscillations decrease and disappear at sufficiently high

frequency as there is only one image produced.

The point mass lens is the simplest of all the lenses, and it is the best to show

the pattern of the amplification factor. There are three regions for all the lenses;

the first region is w << 1, here there is no possible amplification, which is expected

considering a wavelength long enough that the effect of the lens can be neglected [86].

The second region is w & 1 which corresponds to the regime where the size of the

lens and the wave are comparable and the lensing effect can be studied in the wave

approximation [80]. The last is when w >> 1 which modifies this corresponding to

being close the geometrical approximation, and in fact if the value w is big enough

both should agree [126]. The three regimes can be clearly found in 6.2 and 6.3 which

correspond to the point mass and SIS; nevertheless, for the NFW and soliton there is

a third parameter which modifies this. The amplification factor is a complex value, so

it is separated into its amplitude and phase to better understand its behaviour. For

the point mass lens in figure 6.2, panel (a) is the amplitude and panel (b) shows the

phase. The case of the point mass is a great example to show the expected behaviour
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of the lens since it may be completely solved analytically, so it is the simplest of all the

solutions and the diffraction effect is clearer on it. The oscillations are clear and well

defined, and this case has been widely used to show the basic behaviours of lensing in

waves [120, 124, 92, 8, 32, 85, 65, 112, 34].

Scaling up in complexity, the following step is to take into account extended lenses,

and the simplest of them is the Singular Isothermal Sphere(SIS). This is an axially

symmetric lens, and the effect of the amplification is stronger compared with the point

mass; this can be seen in fig. 6.3. Because it depends in the same parameters as the

point mass, and the three regions previously mentioned of w are clearly visible, but

as the value of y increases the oscillations decrease for both, the amplitude and phase,

which should converge in the geometrical optics limit. Similar features can be observed

to the point mass for the oscillatory pattern. This is especially analogous for y < 1

where there is interference of multiple images. For y & 1, this is not the case, and only

the diffraction from the lens is present, therefore decreasing at higher frequencies in

contrast with the point mass as seen in fig. 6.2.

6.3.1 NFW and Soliton

For the other two lenses, NFW and soliton, similarities are shared on the lower fre-

quencies and close to unity, w . 1; but because there is a third parameter, ks, and

the normalizing constant length is different, they are slightly different. The parameter

ks for both lenses represents the same idea, it compares the critical density, with the

product of the density of the model and its characteristic radius. Larger the parameter

more extended or denser is the lens, and this relates to a simple way to discriminate

the possibility of strong lensing. This is related with a topic mentioned in Chapter 4,

it was introduced as λ, and for the NFW lens it is always possible to produce lensing,

but the soliton needs a minimum value which has been said in the previous section to

be ks > 1.52. Another difference is the oscillations; they are not smooth and stable as

with the simpler profiles with the lower values of y, for both the amplitude and phase.

This feature is shared for both of the lenses in figures 6.4 and 6.5. It should be noticed
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that instead of y as the parameter, it is replaced by y/ycrit, which as mentioned earlier,

is used to separate the region in which multiple images are produced from the region

in which a simple image is produced. In fig. 6.5, the value for ycrit is plotted along

the others, and it can be seen that for y/ycrit > 1 there is no interference between of

multiple images as w increases; with only one image the amplification converges to a

stable value which corresponds to the geometrical optics limit.

6.3.2 Summary

This chapters present a short review of the amplification factor for waves and the simple

lenses studied, and it introduces the soliton-core as a lens in the wave approximation.

It compared the selected values for the main parameters y and w, as well as a brief

description of the general behaviour of the different models including the introduction

of the basic features of the soliton-core as a lens. The next chapter will analyse more

carefully the soliton, and will use it as a possible example of a lens for a gravitational

wave.



Chapter 7

Gravitational lensing of

gravitational waves

Gravitational lensing is a very useful tool for the detection of electromagnetic signals as

mentioned earlier, and in the previous chapter it was introduced the basic description

for the application of this effect in the wave optics regime. In particular, chapter 6

presented a description of the amplification factor which would be useful to describe

another wave phenomenon that could be affected by lensing, which is gravitational

waves. The following chapter gives a review of the recent discussions on parameter

estimation for Gravitational Waves (GW), and describes in more detail the ψDM profile

and applies it to a simulated gravitational wave, and compares it with the SIS profile.

At the end, a brief discussion is presented regarding the future work that could be done

by using the effects on GW to discriminate the nature of galactic objects and haloes.

7.1 Gravitational lensing effects

As previously mentioned in chapter 6, the effects of lensing can be considered in the

wave or geometrical optics approximation. The difference concerns the relation of

sizes between the wavelength of the signal and the gravitational size of the lens, its

Schwarzschild radius, which will determine the most adequate approximation [86, 80].
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Although the wave treatment is still valid at shorter wavelengths, it becomes compu-

tationally expensive to calculate due to the oscillatory behaviour of the amplification

integral as seen in eq. (6.2). The following sections will present brief review of the

works done regarding the effect of lensing on the detection of gravitational waves.

7.1.1 Effects on the lensed wave

The previous chapter introduced the formalism of lensing for the wave optics approx-

imation. This was done considering the effect of a wave interacting with the gravita-

tional field of the lens. Here onwards the incoming wave is assumed to be a gravitational

wave. For now, how the radiated wave is produced is not going to be of concern, but

only the effects of the lens on the wave. In general, the lens is considered to interact in

the exterior region of its the field, so it does not form a true focal point [87]. If a focused

wave passed through the centre region of the gravitational field of the massive object,

assuming this is not a black hole, a true focus could be formed, but by passing close to

the object only caustics are formed [86, 87]; the latter being the case of consideration.

The gravitational wave could be treated in the wave or geometric optics regime.

The discriminating factor as mentioned before is the relation existing between the

Schwarzschild’s radius of the lens and the wavelength of the wave being ∼ML/λ. For

geometric optics, the amplification is appreciable for small displacements of the axis;

meanwhile for wave optics it is the determined by the relation of ML/λ [86, 87]. This

relations not only affects the regime in which the lensing should be analysed, but it

also constrains the detectors that would be able to detect a lensed signal.

Considering the Advanced Laser Interferometer Gravitational-Wave Observatory (Ad-

vanced LIGO) detector which possesses a sensitive frequency range between 10−103Hz,

this translates to a range λ ∼ 3× 104 − 102km [71]. A quick calculation with the ade-

quate units leads

mr =
4πG

c2

ML

λ
= 2× 104

(
1m

λ

)(
ML

M�

)
. (7.1)

Here mr will be defined as the lens mass relation with wavelength, and any value that

is mr << 1 will have minimum to no lensing. For mr >> 1 the geometric optics
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FIG. 3. Frequency distribution of the signal-to-noise ratio for
some values of the source position y in units of the Einstein
radius and the redshifted lens mass M̂, with h � 0.7, Q � 1.6,
M � 1.2MØ, and z � 0.1. Shown in thick curve is the
unlensed “universal” distribution.

Although our results are negative in that the event rate
would not significantly increase even with the lensing
magnification, in closing let us predict a possible observ-
able effect from diffraction. For unlensed waveforms in
the Newtonian formula [Eq. (7)], plots of the maximum
SN rm versus the sweeping-up frequency fm have uni-
versal shape irrespective of individual binaries. In fact,
this fm-rm relation is observable if we filter the observed
signal with the function w�t� � 2fmj0�2pfmt�, though
the error bar is likely to be very large. On the other hand,
lensed waveforms should yield deviation from the univer-
sal curve because the magnification factor [Eq. (3)] de-
pends on the frequency. We plot in Fig. 3 the frequency
distribution of SN, �dr2

m�hL��d ln fm�1�2, versus fm for
some values of the source position y and the lens mass
M̂. Detection of large deviations from the unlensed uni-
versal curve, in particular, the oscillatory behavior like
those in Fig. 3, is suspected as a signature of gravitational
lensing. Though the frequency of the detection of such
events is too low to discuss any statistical properties of
lensing objects, a single discovery of one such phenome-

non—diffraction of gravitational waves—itself is physi-
cally very interesting.
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Figure 7.1: Frequency distribution of the signal-to-noise ratio against for several

configurations of point mass lenses, and positions y. It presents several deviations from

the unlensed case as wel as the oscillatory patter which could represent a signature of

gravitational lensing. Figure taken from [80].

approximation is valid, and mr & 1 will be the closest region where diffraction effects

are present and the wave approximation is more adequate [133].

Selecting the minimum wavelength for LIGO’s range, from eq. (7.1) the mass that

satisfies an mr ∼ 1 is ∼ 15M� were the diffraction effects become significant. Even

more, in [80] it is recommended that the wave flux cannot be magnified significantly by

any mass lighter than ∼ 102M�. Analysis done in [135], considers geometrical optics,

but this is not adequate due to the need to consider the diffraction effects are present,

as mentioned in [6, 133, 80].

Going even further, it is possible to set a cut-off frequency to determine the validity

of geometrical optics or to take the effects of diffraction into account.
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The cut-off frequency is given by [133, 14],

ωc =

(
π

10

GML

c3

)−1

. (7.2)

G and c are Newton’s gravitational constant and speed of light, respectively. ML is the

mass of the lens. As an example, ML bigger than 106M� has a cut-off frequency lower

than 1Hz. Which would indicate that sources which could be lensed by this object

should be treated by the geometric optics approximation for the case of Earth-based

detectors, but it is in the regime of a detector such as LISA (Laser Interferometer Space

Antenna) which has a frequency range that extents up to 10−4Hz [133, 49].

Rates of lensed events for Binary Black Holes for LIGO of 0.2+1.0
−0.1yr−1 that rises to

14.2+80.5
−10.7yr−1 at design sensitivity limit have been estimated in [85].

Going even further by consider the new generation detector called the Einstein Tele-

scope (ET thereafter), its improved sensitivity would be excellent for the detection

rate of lensed Double Compact Objects (DCO) like Black Hole-Black Hole (BH-BH),

Black Hole-Neutron Star (BH-NS) and Neutron Star-Neutron Star (NS-NS) bina-

ries [127, 8, 32]. In principle, it should be able to detect galaxy size lenses and not just

by point mass lens [92].

Table 7.1 present an example of some of the expected numbers of lensed events

calculated in [8] for DCO’s for the initial and advanced “xylophone” configurations.

These results consider the time of the survey Tsurve and the sources to be around

between a redshift zs = 5 to zs = 1. From this table, the conclusion to be taken is

that it is likely that lensed events will be observed by the ET, and it is expected that

strongly lensed events will be dominated by BH-BH binaries [8].

The study in the wave optics regime can lead to interesting differences. One of

these is considering the particular case of a gravitational wave signal being emitted

simultaneously with its electromagnetic counterpart and being lensed by the same type

of lens. In this case a comparison in the time delay of the signals would be necessary.

The electromagnetic counterpart would be treated by geometric optics, but for the

gravitational wave, if the path difference between the multiple signals is smaller than

the wavelength of the wave, given by the condition w(Ti − Tj) & 1 where w and T are
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the dimensionless frequency and time delay as defined in section 6.1.3, respectively;

the geometric optics approach is not valid any more as stated in [125]. Analysis shows

that in this particular situation the gravitational wave would arrive earlier than the

Electromagnetic counterpart; even more, it presents some estimates for the different

type of detectors about the maximum time difference considering a point mass lens,

being typically ∼ 1ms(f/100Hz)−1 for ground-based detectors, ∼ 2min(f/mHz)−1 for

space-based detectors, and ∼ 4months(f/10−8Hz)−1 for pulsar timing arrays [125].

Up to here the majority of the effects described have been related with the signal

or how its modification changes the detection, including examples of rates. In the

following subsection it will be briefly reviewed how the parameter estimation of the

signals could be affected by the lensing effect.

7.1.2 Effects on parameter estimation

The previous section described briefly the effects of the lensing over a signal and how

this is modified compared to the unlensed case; mentioning some of the rates or cases

for the different detectors and separating the wave and geometric optics limits. In the

previous section, what was the source was not of main importance, although several

possible cases were mentioned. However, when detecting gravitational waves, although

important in itself, the goal is to obtain information about the sources, including their

mass or redshift, that would give information about astrophysical processes or even

cosmological parameters [1, 71, 53, 18]. This section describes some other works about

how the lensing of a signal could create challenges in the parameter estimation of the

sources. Therefore, some sources could have a different consideration than others. The

majority of work has been done considering a point mass lens; for the case of a grav-

itational wave signal which travels through a uniformly distributed point-like masses

region, if it is lensed on the regime where λ >> ML, it will produce a magnification

that is small but not negligible due to the total effect being the accumulation of the

several magnifications. On the other hand, for λ << ML, the geometric optics approx-

imation is valid, and the total magnification comes from the focusing and interference
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ET configuration standard optimistic

Tsurv (1yr; 5yrs;continuous) (1yr; 5yrs;continuous)

NS-NS

initial design (0.06; 0.07; 0.07) (0.2; 0.2; 0.2)

xylophone (0.2; 0.2; 0.2) (0.7; 0.8; 0.8)

BH-NS

initial design (0.4; 0.5; 0.5) (1.1; 1.3; 1.3

xylophone (0.9; 1.1; 1.1) (2.1; 2.4; 2.5)

BH-BH

initial design (30.3; 36.1; 37.6) (99.1; 116.0; 120.2)

xylophone (45.8; 54.9; 57.2) (136.7; 160.8; 166.8)

TOTAL

initial design (30.8; 36.7; 38.2) (100.4; 117.4; 121.7)

xylophone (46.9; 56.2; 58.5) (139.5; 164.2; 170.1)

Table 7.1: Expected numbers of lensed GW events from inspiralling DCOs of different

classes under different evolutionary scenarios. Predictions for the Einstein Telescope

in the initial and “xylophone” configuration. Table taken from [8].

of the ray bundles [139].

Considering the wave optics approximation, due to the dependence of the lensing

magnification on the mass of the lens, effects caused by lens objects with small masses

more often can be considered negligible, but the most concerning effects on the signal

appear as the mass approaches ∼ 1000M� [20]. This introduces errors that would

need to be taken into account when doing parameter estimation of the waveforms; the

standard tools, like Markov Chain Monte-Carlo(MCMC) are mentioned in chapter 3.

So adjustment for the process to include the lensing parameters is necessary.

For the case of a point mass, the parameters which describe the lens are Mlz and y,

which are the red shifted lens mass and the source position respectively. If these two
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parameters were known before hand, and it is only desired to determine the wave signal

parameters; the error would not be much more different than just trying to determine

the unlensed case, with an increase of difficulty due to the lens modification [20]. If the

opposite is true and the wave signal parameters are known then determining the lens

parameters would lead to an error around 20− 100% [20]. Which makes the obtaining

any information of the lens unlikely, but a strong correlation is present on the lens

set of parameters, and if other information is available about the mass or the source

position, it will be possible to find the other one. But of course these are not the usual

cases; in the majority of situations, little information about is know apriori.

Fortunately, the strong correlation between the lens set of parameters, and a lack

of correlation with the signal source parameters allows to treat them individually, and

the the properties of the separated cases can be used. Of course this brings, the same

problems if trying to obtain information of the lens; here is were the importance of

an optical counterpart would be important, for the source or the lens. For example,

optical information leading to an estimate of the lens mass could allow to confirm its

distance [20].

But this is not the only effect existent. Another which is present in the estimation

and which could result in a different challenge is the existence of a degeneracy in the

mass of the binaries, M , and the redshift, z. The problem is important for stellar mass

BH-BH mergers more than for NS-NS; the latter could produce an electromagnetic

counterpart that would help to break the degeneracy. But without other ways to break

the degeneracy, BH mergers produce a physically identical response in a gravitational

wave detector to an unlensed merger with a lower intrinsic redshift and larger intrinsic

mass scale while the other dimensional parameters remain unchanged. By considering

only geometric optics, the strain amplitude of the gravitational wave is modified by
√
µ [81, 121]. Trying to fit parameters to a waveform ignoring if this is lensing could

lead to an intrinsic mass M̃ 6= M and an intrinsic redshift z̃ 6= z. Due to lensing

not affecting the frequency, the mass-redshift degeneracy is M̃(1 + z̃) = M(1 + z) [28].

This could affect the calculated luminosity distance by re-scaling as dL(z̃) = dL(z)/
√
µ.

This does not affect the wave frequency, but it leads to an incorrect estimation of the
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cosmology used on the parameter fitting. It would cause that apparently high-mass

~Mð1þ ~zÞ ¼ Mð1þ zÞ: ð1Þ

The observed quantity is the characteristic strain hcðfoÞ at
every observed frequency fo. It is given by [27]

hcðfoÞ ¼
ffiffiffi
μ

p
ffiffiffiffiffiffi
2G
c3

r
1þ z
πdLðzÞ

�
dE
dfs

�
1=2

fs¼foð1þzÞ;M
; ð2Þ

where ðdE=dfsÞfs;M is the radiation energy spectrum for a
source with an intrinsic mass scaleM, expressed in terms of
the intrinsic frequency fs ¼ foð1þ zÞ. We then have the
relation

1þ ~z
dLð~zÞ

�
dE
dfs

�
1=2

foð1þ~zÞ; ~M
¼ ffiffiffi

μ
p 1þ z

dLðzÞ

�
dE
dfs

�
1=2

foð1þzÞ;M
: ð3Þ

Since general relativity is a geometrical theory, the
vacuum Einstein equations are invariant under a rescaling
of all masses, along with an accompanying rescaling of the
spatial and temporal scales. This invariance guarantees that

1þ ~z
~M

�
dE
dfs

�

foð1þ~zÞ; ~M
¼ 1þ z

M

�
dE
dfs

�

foð1þzÞ;M
: ð4Þ

By substituting Eqs. (1) and (4) into Eq. (3), we observe
that a magnification μ is equivalent to a rescaling of the
luminosity distance, i.e.,

dLð~zÞ ¼ dLðzÞ=
ffiffiffi
μ

p
: ð5Þ

Equations (1) and (5) together characterize the observa-
tional degeneracy between lensed and unlensed mergers.
Note that even though lensing does not physically alter the
wave frequency, it affects our estimation of both the mass
and redshift. This happens because we use the background
cosmology for parameter estimation, while the presence of
a lensing potential along the line of sight effectively alters
the cosmology in that direction.
This degeneracy is irresolvable for BH mergers without

any independent redshift estimates. We can break this
degeneracy for compact stellar mergers, such as those
involving neutron stars, by applying theoretical priors
on the masses or extracting redshifts from their EM
counterparts.
Figure 1 shows the waveforms from an equal-mass BH

binary merger with component massesM1 ¼ M2 ¼ 60 M⊙
at redshift z ¼ 0.5, and another merger with masses

FIG. 1. Illustration of the lensing-induced degeneracy. Top: The
solid and dashed thick black curves show the rms characteristic
strains for high- and low-mass mergers, respectively. These are
perfectly degenerate if the latter is magnified by a factor μ ¼ 10.
Also shown are the noise amplitudes for three stages of the LIGO
detectors [current (red), design (blue), and ultimate (green)] and
for the proposed Einstein Telescope (orange). Bottom: Wave-
forms corresponding to the two chosen mergers. If the lower-
mass merger (dashed) were magnified by a factor of μ ¼ 10, the
two waveforms would overlap.

FIG. 2. Top: Mapping between the intrinsic redshift z and
inferred redshift ~z for our fiducial cosmology. We show contours
of constant magnification μ (red solid lines) and constant ratio of
inferred and intrinsic masses ~M=M (blue dashed lines). Bottom:
The same plot with scales chosen to emphasize low redshifts.

EFFECT OF LENSING MAGNIFICATION ON THE … PHYSICAL REVIEW D 95, 044011 (2017)

044011-3

Figure 7.2: The top panel shows the mapping of the intrinsic redshift z and the

inferred redshift z̃ for contours of constant magnification µ,red lines, and fixed ratios

of inferred and intrisic mass M̃/M. The bottom panel shows the same plot but for

lower redshifts. Taken from [28].

mergers from low redshifts as an artefact of lensing magnification [28].

Figure 7.2 shows the mapping of the intrinsic redshift and the inferred redshift for

several values of the magnification µ and mass relations. The red lines mark contours

for constant magnification which can clearly show that for a selected ratio of masses of

inferred and intrinsic masses could lead to a lower redshift value, the blue dashed lines.

This is dependent on the cosmology which is assumed to be a flat ΛCDM for Ωm = 0.27

and h = 0.7 [28]. The unlensed case is the µ = 1 line which agrees with M̃/M =

1 giving the correct value of redshift. Thus, in cases like this an electromagnetic
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counterpart would be needed or multiplicity of the images. The importance of the

latter becomes apparent because even for estimations which do not consider the strong

lensing, because they will best-fit the sky location and dimensional parameters for the

multiple images [27]. These effects should be taken into consideration when carrying

out parameter estimation.

For the recent gravitational wave detections the exercise was carried out to determine

the likelihood of any of the signals being lensed [1], and it was found to be unlikely

with odds of ∼ 105 : 1. If another lensed signal existed, it should arrive 3 years after

detection [112]. The majority of these studies have been done considering a point mass

lens, and it has been interesting to consider the important characteristics of the lens.

Carrying out the analysis using different type of lens could by an important way to

use lensing to investigate other problems, such as the nature of Dark Matter [53, 18].

The following section will present some other lensing results for the case of a lens that

consist of the soliton core.

7.1.3 The soliton lens revisited

In the previous chapter the basic formalism for wave optics approximation was intro-

duced including several lens models, and a description for a soliton lens model was

introduced. This section will focus solely in its features. The soliton unlike the point

mass and the Singular Isothermal Sphere (SIS) has three lensing parameters, w, y and

ks which are the adimensional frequency, the adimensional source position and the

surface density ratio. The first two parameters appear in other profiles, but this time

they are normalized by the characteristic radius rs of the soliton, which contrasts with

the Einstein radius for the point mass and SIS. Nevertheless, the soliton does not have

a definition of mass of the lens, as with the point mass lens or the SIS, and in this case

ks becomes a factor which helps to set a mass definition. In a similar fashion as with

the point mass and SIS, for the soliton we select w = 4Msolzω where a definition for

effective redshifted lens mass is

Msolz = Msol(1 + zl), (7.3)
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and

Msol ≡
πρsr

3
s

ks
. (7.4)

zl is the redshift of the lens, ρs, rs are the central density and characteristic radius of

the soliton. The definition by itself might seem redundant due to ks containing the last

two quantities already, but in fact, it becomes a mathematical artefact. ks tells how

many times the soliton exceeds the critical superficial density. In turn, the product

ρsr
3
s can be thought of an intrinsic mass Mi of the soliton. Therefore, by choosing to

represent the effective mass this way, it hides the direct dependence on the geometry of

the system and only expresses it as an overall factor without losing information. Here

onwards when referring to the soliton lens mass the quantity in question will be that

defined in eq. (7.4).

It must be emphasized that ks is not a physical property of the lensing system. It

is a mathematical definition which appears due to the normalization. If the Einstein

radius could be obtained analytically and used as normalization for the equations, the

real physical parameters such as the frequency and source position would be the only

ones involved.

Another clear difference with the point mass and with the SIS, shared with the

NFW, is that the dimensionless frequency is proportional to their characteristic radius;

therefore, a change in ξ0 increases w ∼ ξ2
0 . It is obvious that the extra parameter for

the soliton lens acts as a stretching factor of the dimensionless frequency due to ks ∼ rs.

Examples of the graphical solution for the lens equation are presented in fig. 7.3.

The first figure presents the case of ks = 1. The condition for strong lensing presented

in the previous chapter was that it is necessary to satisfy ks > 1.52. Below this value

no Einstein radius can be formed, as seen in fig. 7.3a. Fig. 7.3b represents ks = 2,

and the crossing of the axis corresponds to the value of the Einstein radius, and x = 1

corresponds to rs. In this example, rs is ∼ 3.34 times bigger than the Einstein radius,

and therefore this means that dimensionless frequency will be 11 times bigger compared

to using the Einstein radius as the normalization length. As well, it can be seen the

graphical mark of the transition between multiple images and a single image, which is
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Figure 7.3: The relation of ks on the lens equation which affects the adimensional

frequency. (a) is the case for no strong lensing which is a value below ks ≈ 1.52. In

(b), ks = 2, there is strong lensing, but rs is bigger than the Einstein radius which

means that w bigger as well. The dashed lines show the transition from multiple to

a single image and defines ycrit. (c) presents the case for ks = 10 where the Einstein

radius ∼ rs, and ycrit is closer to the unity in this case.

the definition of ycrit, and it is obtained numerically. Fig. 7.3c is the case where rs is

of the same size of the Einstein Angle, and here the value of ycrit ∼ 1.

To add more information, in the previous chapter it was presented the amplification

factor for several fixed values of y, and it would be helpful to have a general idea how

this parameter affects the amplification.

Figures 7.4, 7.5 and 7.6 are a series of density plots for three selected values of ks.
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ks = 2.0

Figure 7.4: Density plot of the amplification factor for ks = 2.0. Left side plot is the

amplitude and the right is the phase. Oscillatory regions can be observed due to the

multiple image interaction.

They present y as a function of w while the colour represents the amplification factor

magnitude, |F |, to the left and the phase, θF to the right. Figure 7.4 correspond to

the value of ks = 2 which has an Einstein radius smaller than the characteristic length

of the soliton. Several of the features mentioned earlier can be seen, and the most

obvious of them is the size of w is bigger as well. It can be seen that it can extend

up to ∼ 104 to appreciate a noticeable decrease of oscillations around the y/ycrit = 1

which corresponds to the transition from multiple to a single image. This interaction

is between three images. The ripples are the oscillatory patterns produced from the

diffraction and the image interference.

Another feature is the amplitude of the amplification factor, which could be up to

100 times in certain frequencies and values of y. The phase in comparison has a similar

structure of ripples, but this oscillates around a more reasonable value between −3 and

3.

It was mentioned before that for values above y/ycrit = 1 only one image is present,

so there should be no interference. However, as shown in [126, 121] for the other lens

models, there is a diffracted image formed at the lens centre by the diffraction effect,

which in turn interacts with the main image, as the value of y and w increases the

effect decreases until it can be seen clearly a region to the right of both the amplitude
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ks = 5.0

Figure 7.5: Density plots for ks = 5.0. Left image is the amplitude of the amplifica-

tion factor F , and the right image is the phase. The amplitude has a clear decrease in

magnification after y/ycrit = 1 which is the transition between multiple image interac-

tion and a single image.

and the phase which is where the amplification is in the optics regime.

Figure 7.5 considers the case of ks = 5. The Einstein angle is still smaller than

the characteristic radius but clear differences can be observed compared to ks = 2.

It can be seen that the interference region is much more well defined around ycrit.

By comparing using the same colour scale, it is clear that the amplification region is

smaller compared with other cases. The interference from the diffracted image of the

centre is small too, as can be seen in the zoomed-in region in the amplification map.

This is due to the interaction with the inner region being lower by having the Einstein

radius at a greater distance from the centre than in the previous case. Another clear

difference is that the dimensionless frequency is much more smaller, as was expected.

The phase does not have a bigger difference in the maximum range, but it still follows

a similar pattern as the amplitude.

The third selected case is ks = 10, and it can be seen in fig. 7.6. Here the Einstein

radius is approximately around the characteristic radius, and greater differences can

be observed. The first, it is that in this case, the transition from multiple images to

a single image is clearly shown; even in the zoomed-in region the value of y/ycrit = 1

shows minimal interaction above it. The diffracted image at the centre contributes in
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ks = 10.0

Figure 7.6: Density plots for ks = 10.0. The left and right images are the amplitude

and phase of F , respectively. Different from the previous density plots, in this case the

Einstein radius is almost the characteristic length of the profile, and low amplification

can be observed in general.

a minimal value. The actual amplification in fact it is too small to be appreciated, and

only the region of small y gives an appreciable amplification. The phase as well follows

a similar pattern as before. By now a general idea can be obtained from the density

plots, but it is better to select more specific values, and observe the amplification factor

for individual values.

In chapter 6, a similar version of figure 7.7 was presented. In this case, it can bee

seen clearly that the amplification ranges from 1 up to 30 in the amplitude, and in

the case of y/ycrit = 2 it quickly reaches a consistent value; all of this range has an

amplification larger than 2. The source position is normalized by ycrit ≈ 0.32.

For comparison, figure 7.8 presents the same selected values of y. Immediately, it is

possible to observe that the maximum amplification has decreased by almost an order

of magnitude, but still is considerable for y/ycrit < 1. In contrast, however, y/ycrit > 1

has minimal amplification. Nevertheless, the frequency has been reduced. For this case

ycrit ≈ 0.424.

The last of the selected values is ks = 10, which corresponds to the Einstein angle

being almost the characteristic radius, and has a y/ycrit = 1.18. On the density plot

it was not clear as shown now, but values y/ycrit < 1 still produce some amplification,



7.1: Gravitational lensing effects 120

ks = 2.0

10-2 10-1 100 101 102 103 104

w

1

10

30

50
|F
|

y/ycrit = 0.1
y/ycrit = 1.2
y/ycrit = 2.0

10-2 10-1 100 101 102 103 104

w

4

3

2

1

0

1

2

3

4

θ F

y/ycrit = 0.1
y/ycrit = 1.2
y/ycrit = 2.0

Figure 7.7: Amplification factors for y/ycrit = 0.1, 1.2 and 2.0 for ks = 2. Left plots

are the amplitude, |F | and Right are the phase, θF . The overall magnification can be

seen to be up to 30 times for the lowest value of y, and it can be seen to be considerable

even for bigger values.
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Figure 7.8: Amplification factors for y/ycrit = 0.1, 1.2 and 2.0 for ks = 5. Left plots

are the amplitude, |F | and Right are the phase, θF . Compared to the ks = 2 the

magnification is an order of magnitude lower, but still significant ofr the lower value;

nevertheless, y/ycrit > 1 presents magnifications lower than 2. The phase oscillations

decrease as well as the magnitude.
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Figure 7.9: Amplification factors for y/ycrit = 0.1, 1.2 and 2.0 for ks = 10. Left plots

are the amplitude, |F | and Right are the phase, θF . The overall magnification is slightly

greater than 2 for the lowest y, meanwhile any of the values above y/ycrit > 1 presents

no magnification whatsoever, and just small rippling due to the image diffracted by

the central region. The phase follows a similar behaviour as the magnitude.

which is barely comparable with the other cases. Unfortunately y/ycrit > 1 do no have

any amplification. This now makes clearer what was seen in the density plot 7.6. From

this something important can be deduced, that for the case of ks = 10, only values

where multiple images are present should be considered and no amplification can be

observed for a single image.

This description of the lens now prepares us to observe how a gravitational wave

signal is lensed by this type of lens. This will be explored in the next section.

7.2 Lensing of a gravitational wave

The previous section showed some of the features of the soliton lens. The following

section would show how the lens modifies a gravitational wave signal.

The case into consideration is a noise free case, and it does not take into account the

antenna patter of the detector. This approach is chosen because the purpose is to show

the effect on the wave itself and not how affects its detection. Those considerations,
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for other lens models, are subject for other works [28, 27, 61] and their extension to

the soliton case will be the subject of future work.

7.2.1 Applying the amplification factor

The amplification factor is applied directly to the wave by multiplying it in the fre-

quency domain. This has been done and is show to be [126, 80, 121]

hL(f) = h(f)× F (f) , (7.5)

where hL(f) is the lensed strain of the gravitational wave. This simple expression

is due to the parameters of the gravitational wave and the amplification factor are

not correlated [20], and the only parameter shared is the frequency. Taking this into

account, the wave source will be fixed, and only the lens will be changed. Earlier in the

chapter it was mentioned that there could be several different sources; this creates an

ample selection of choices, but for simplicity we select a Black Hole-Black Hole (BH-

BH) binary generated from the PhenomD model [50, 55]. With the aim of keeping the

interaction simple, the frequency, f , is normalized by the source total mass, Mtot, using

instead the normalized frequency Mf . This choice makes more obvious the definition

of a mass as in eq. 7.4, and allows to write a simple relation between the masses of the

source and lens to simplify the units. The relation between Mf and w is given by

w = 8πMf(Mzlens/Msource) . (7.6)

The frequency is modified only by the ratio between the mass of the source and the

redshifted mass of the lens.

The generated input waveforms h(f) and h(t) are shown in figures 7.10 and 7.11,

respectively. This are used in the rest of the section as the sources to be lensed; its

properties are discussed in the next subsection.

7.2.2 Lensed signals

The BH-BH binary will have a simple mass ratio q = m1/m2 = 1, and total mass

M = m1 + m2, and the spin χ1 = χ2 = 0. Because of the frequency, the real mass
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Figure 7.10: Form of the function h(f) which was used as source signal. At the left,

it is the magnitude, and at the right the phase. This is the generated source from the

PhenomD model.
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Figure 7.11: Unlensed Source signal, h(t), which is the time domain version of h(f).

This is used as the source signal for the lensing.

of the source is not of great importance for now, and only the ratio with the lens

mass will have an influence. Because only the relative parameters of the lens are to be

compared, it should not be of concern that even for similar lens parameters w and y

the physical values could be completely different. In fact, it would be helpful to discern

the underlying properties on the lens.

Fig. 7.12 shows the simpler case in the frequency domain by having the ratio of

redshifted lens and source mass, Mzlens/Msource = 1, presented in comparison with

several different lens models, including the point mass lens the SIS and the soliton

with three selected values of ks = 2, 5 and 10 for a y = 1. The frequency range was
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Figure 7.12: Comparison of different lens type waves against unlensed by considering

lensed mass equal to the source mass and y = 0.1. The left plot is the amplitude, and

the right is the phase of the wave. Only the amplitude shows and magnification.

selected to be between 10−3 < Mf < 0.16 to contain the merger-ringdown region. For a

ratio of masses of 1 this translates into a dimensionless frequency of 0.025 . w . 4.02.

It is clear that the only three models that have a significant amplification over this

region are the point mass, SIS and the soliton ks = 10. Although it is not for the same

value of y, the expected order of magnitude for the amplitude can be appreciated to

start at similar values as seen in figures 6.2, 6.3 and 7.9. The phase of the wave does

not suffer any significant modification, and all the examples share a similar phase. The

case of the soliton ks = 10, again shows some interesting behaviour, because it is clear

that it shares a similar behaviour as a point mass, which means that during parameter

estimation this could lead to a difficulty to discern between the two lenses without an

assumption about the possible object before hand or at least over the general properties

of the type lens [61].

To compare how it changes for higher masses, fig. 7.13 shows the amplitude for

the same mass ratio, but for y = 1.2 and y = 2.0. The first case shows a very

low magnification but differences are clearly seen. The region of merger is where the

majority of this is appreciated, but at a bigger y any amplification would be difficult

to observe and, effectively, the amplified waves are only slightly different than the
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Figure 7.13: Comparison of the magnification amplitude for source positions y = 1.2

and y = 2 for a ratio Mzlens/Msource = 1.

unlensed wave.

In comparison, other than a slight change in the merger region, the actual amplified

wave shows no discernible difference from the unlensed waves. This is as it should be

expected in view of the size of the mass lens.

The situation is expected to change if a lens of bigger mass is present. Considering

a ratio of Mzlens/Msource = 100 satisfies the condition of mr & 1 without problems.

The effect of a bigger mass can be immediately seen in fig. 7.14, which considers for

comparison the value of y = 0.1, and the same conditions as before for the lenses. The

range of dimensionless frequencies to cover is 2.5 . w . 402, which changes the shape

of the lensed waves significantly. The amplitude of the wave is clearly different for every

profile, they have an oscillatory pattern in the frequency which has already been seen

present in the amplification factor. The Point mass and SIS have similar behaviour as

well as closely related the soliton with ks = 10. In this case the major amplification is

the case of soliton ks = 2 which as expected has the greatest of all, but this is only the

case for higher frequencies. No oscillatory pattern is distinct, but the inspiral wave is

clearly amplified compared with the unlensed case. The phase shows a slight ripple,
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Figure 7.14: Comparison of different lens type waves against unlensed by considering

a lens a 100 times the mass of the source, and a position of y = 0.1. The left plot is

the amplitude, which clearly shows a big magnification and oscillatory patter from the

magnification factor. The right is the phase of the wave. Compared with the amplitude,

the phase presents oscillations, but they do not show any significant modification for

the unlensed case.

which in practical terms could be still considered the same as the unlensed phase and

there is no appreciable change. The importance of the mass is now clear. Which means

that bigger masses act as better lenses.

To compare how the effect of the source position changes this, fig. 7.15 shows y = 1.2

and y = 2 . The latter case only has the ripples which do not change effectively the

amplitude of the wave, and only the soliton ks = 2 produces an appreciable change. y =

1.2 show clearly a lower amplification and in this case, as mentioned before, minimum

amplification can be observed, and only the soliton ks = 2 produces a significant

contribution.

Despite the majority of the work being carried out in the frequency domain, it is

insightful to observe what changes happen in the time domain. Figure 7.16 exemplifies

this. It shows the unlensed wave compared to the wave lensed by the soliton lens for

Mzlens/Msource = 100. Figure 7.16a shows the amplitude of the strain h for y = 0.1

which was previously the example which clearly modified the original unlensed wave,
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Figure 7.15: Comparison of the magnification amplitude for source positions y = 1.2

and y = 2 for a ratio Mzlens/Msource = 100.

and in the time domain this is the same case where if compared with fig. 7.16c, it looks

like a completely different wave. Figure 7.16b, which is the case of y = 2, does not

show any appreciable change, but of course the majority of the information would be

obtained from the frequency domain.

The several changes that the lens can produce in the time or frequency domain shown

in this work are only for demonstration purposes of the soliton mass profile. A more

complete exploration of the effects of lensing on parameter estimation and other more

in detail analysis are left for future work.

Cosmography of the lenses

It is important to obtain a general idea of how the lenses affect the wave form, but

this is not the only purpose. The problem of lensing of gravitational waves has several

stages; for example, it needs to be examined if the wave is lensed or not. Considering

a gravitational wave signal that has indeed been affected by lensing, the lensing pa-

rameters need to be determined. Even where different lens models share two or more

parameters, the best-fit values of the parameters will change depending on the model



7.2: Lensing of a gravitational wave 128

4000 3500 3000 2500 2000 1500 1000 500 0

t/M
-2e+06

-2e+06

-1e+06

-5e+05

0e+00

5e+05

1e+06

2e+06

2e+06

2e+06

|h
|

(a) Mzlens/Msource = 100, y = 0.1

4000 3500 3000 2500 2000 1500 1000 500 0

t/M
1500

1000

500

0

500

1000

1500

|h
|

(b) Mzlens/Msource = 100, y = 2

4000 3500 3000 2500 2000 1500 1000 500 0

t/M
1500

1000

500

0

500

1000

1500

|h
|

(c) Unlensed wave, q = m1/m2 = 1, χ1 = χ2 = 0

Figure 7.16: Gravitational wave in the time domain. The axes are the normalized

time with the source mass, and the amplitude of the strain h. a) Shows the time domain

version of the amplitude of fig. 7.14. It is clear that there is an major modification

on the wave. b) Corresponds to the time domain version of the amplitude of fig. 7.15

for y = 2 where there is no change if compared c), which is the unlensed wave with

parameters q = m1/m2 = 1, χ1 = χ2 = 0.

selected, which by itself reveal important information about the nature of the lens.

Once that the model as appropriate, information on the model parameters needs to be

extracted from the data.

The purpose for the rest of this chapter is not to address these stages, which should

be left to future work, but to compare and give a first insight about how the different

models might be suitable for consideration for either ground-based detectors such as
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LIGO or for space-based detectors such as LISA. The reason of this is because the

majority of works done, as mentioned earlier have been considering a point mass lens,

which of course as we have shown is not the only case possible, and only very recently

other works started to address how the lensing signatures are affected by comparing

different models [61].

As a simple example, consider a lensing system where the lens is midway between the

observer and the source, which gives the angular diameter distances as DL = DLS and

DS = 2DL, which in turn fixes the relative position of the lens by considering where the

source is located. This is one of the simpler cases, and there are several works which

address the distribution of gravitational-wave sources [85, 25, 65]. We make use of the

results of those analyses, even though they were carried out for different lens models,

since the purpose of the section is not to address the impact of a full estimation but

only to give some insight about the future expectations.

The rest of this chapter will, therefore, treat 2 cases in which compares the previous

shown models. The NFW model is not considered because it would require a more

in-depth analysis, and it is desired to show details for the soliton profile rather than

the standard universal model.

The first situation to address would be to use similar given physical values for the

lens parameters and investigate which models would be more likely to give an adequate

description of the observations. In this case, apart from the fixed system position, the

shared values would be the lensing parameters w and y as well as the normalization

length ξ0, and from them we can obtain the information and compare between the

models. The mass ratios and values of y will be the same as used in the previous

section unless stated otherwise. Reasonable distances for the normalization radius

would be ξ0 ≈ 10kpc which represents an Einstein radius or a characteristic radius as

from chapter 5 This value is of the order of magnitude of small galaxies, if it is desired

to use for the soliton profile case.

From [85, 61], a source position of z ≈ 0.2 is expected to have a change due to lensing

effects, so this will be the selected redshift for the source. Now, it is possible to give

physical values to the dimensionless quantities, so the proper units for the Newton’s
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constant, G, and speed of light, c, will be restored for this purpose. The assumed cos-

mology will be the standard ΛCDM with H0 = 67.74 km−1s−1Mpc−1, ΩBM = 0.0486,

ΩDM = 0.2589 and ΩΛ = 0.6911 [94].

For a redshift of z = 0.2, the angular diameter distance is DS = 702.5 Mpc which

gives DL = DLS = 351.25 Mpc, which in turns correspond to a redshift of the lens of

zL ≈ 0.088. These are all the required values.

From the different lensed waves, the strongest effect is appreciable for y = 0.1, so this

will be the chosen example. The obtained values the lenses and their parameters are

compiled in table 7.2. This information gives an idea of the type of objects described

by the lens. For the different lenses, it is possible to do an educated guess about what

is the object which is described.

Considering the point mass is clearly a super massive black hole, meanwhile the

SIS has a dispersion velocity, σ, that is comparable only with globular clusters, which

for the source distance is quite unlikely [115]. The case of the soliton is comparable

with dwarf galaxies [21], which for the distances of the system are a better option.

Nevertheless, if the object indeed acted as a lens, considering the masses of the lenses

they have Mlz ∼ 1012 M�, which for the ratio Mzlens/Msource = 100, would produce the

smallest source mass around Msource ∼ 1010M�. For this masses, the possible sources

would be of the order of Super Massive Black Holes (SMBH), which could only be seen

by Space Telescopes like LISA [107]. The last row on table 7.2 compares the mass of

the different lenses by integrating the density profile around an sphere with the radius

of the corresponding Einstein radius,

Msph(r) = 4π

∫ r

0

ρ(s)s2 ds . (7.7)

For the soliton, this is given by [41],

Msol(x) =
ρsr

3
s

215040 (x2 + 1)7

[
3465

(
x2 + 1

)7
tan−1(x) + x

(
3465x12

+23100x10 + 65373x8 + 101376x6 + 92323x4 + 48580x2 − 3465
)]
. (7.8)

The previous example was easy to address because the normalization length was pro-

vided beforehand. The second case considers the selected source mass and to have iden-
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pm SIS Sol,ks = 2 Sol,ks = 5 Sol,ks = 10

ξ0 10 kpc

η/kpc 2 kpc

RE/kpc 10 10 2.81 6.81 10

Parameters σ 638 km/s rs 10 kpc

ρs/(M�pc−3) 1.89 4.73 9.46

Mzlens 3.23× 1012 M�

Msph(RE)/M� 2.97× 1012 1.89× 1012 1.23× 1011 1.26× 1012 2.93× 1012

Table 7.2: Mass and physical parameters for the different lenses by considering similar

source position of y = 0.1 and a normalization length ξ0 = 10kpc.

tified the lens as a soliton lens; from which, it is desired to retrieve physical information

from the compared lens parameters. As in the previous example y = 0.1, ks = 2, 5 and

10. Again due to the lens effects being stronger for high ratios, Mzlens/Msource = 100,

this will be the ratio selected. The previous example was better suited for a Space-

based telescope, therefore, a reasonable source of Ms = 100 M� will be used to compare

with a Ground-based telescope. The geometry of the system and redshifts will be the

same as before. The different physical parameters are presented in table 7.3.

It is clear from the characteristic radius size and density that this is not the appro-

priate description for the lens [114]. The mass inside the Einstein radius is shown too.

From this example, it is clear that the soliton needs to have a several orders of mag-

nitude bigger ratio with the source to be effective as a description of a lens. From the

previous two exercises, there are two points that can be extracted. The first is that for

sources detectable by space-based detectors, the soliton have a reasonable parameters

to not be discarded on the study for appreciable lensing effects. The second is that for

small sources, unless observed by other technique, it is not clear that the soliton profile

would be adequate for this type of sources, therefore, affect the waveforms observed by

ground-based detectors.
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Sol,ks = 2 Sol,ks = 5 Sol,ks = 10

Ms 100M�

Mzlens 104M�

rs 0.556 pc

ρs/(M�pc−3) 3.4× 104 8.5× 104 1.7× 105

RE/pc 0.16 0.379 0.556

Msph(RE)/M� 724.6 4.26× 103 9.2× 103

Table 7.3: Mass and physical parameters for a soliton lens with a BH-BH source with

total mass of 100 M�

7.2.3 Summary

The beginning of this chapter presented a brief review of the effects of gravitational

wave lensing. Using it as a motivation, it introduced an analysis of a soliton core as

a gravitational lens for a gravitational wave signal. Furthermore, it compared it with

other lenses and finally showed some examples of information that is possible to extract

from them.

The main results from the comparison of the gravitational wave signal are that a

lens can modify it significantly to the point it looks completely different from the

unlensed signal. This situation arises due to the relative sizes of the source and the

lens. Furthermore, except for special cases, lens models in general can be distinguished

from each other. The introduction of a lens indeed can change the signal, especially

for when the lens has a mass a hundred or more times bigger than the source.

The last section presented examples of possible information obtainable from the

soliton core, point mass or SIS lens models. The first example compared the adequacy

of each model where a lens signal is assumed and the second considers only the soliton

case. The former being in the range of spaceborn while the latter for ground-based

detectors. Furthermore, it was found that the soliton lens model represents more

adequately a galaxy in the spaceborn case. Nevertheless, the work done in this thesis
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is presented only as an introduction of the soliton core model as an extended mass

distribution. Therefore, a complete Bayesian analysis is left for future work.

Overall, the chapter emphasizes the importance of the study of gravitational wave

lensing to help in the detection of signals. In particular, it focuses on the soliton core

lens properties. The studies of point mass and extended mass distributions acting as

a lens are expected to gain importance in the future once a lensed signal is detected.



Chapter 8

Concluding remarks and future

work

The global idea behind this thesis was to explore the viability of Scalar Field Dark

Matter, in particular ψDM, as an alternative model for the description of Dark Matter

- for which the standard paradigm is Cold Dark Matter. For this purpose, strong

gravitational lensing was selected as a tool. Then three question were implicitly posed:

• what are the basic properties of a wave dark matter lens?

• how well do observations constrain the parameters of the wave dark matter model?

• What can we say about the use the wave dark matter lens as a lens of gravitational

waves?.

The first question was addressed in chapter 4. Here a derivation of the necessary

analytical functions, i.e. lensing mass or surface mass density, was presented with their

related lensing properties. In the same manner, two configurations were detailed: a

soliton profile and a soliton core + NFW tail. The former configuration was a particular

case of the latter when the core extends to larger radii.

The second question was analysed and discussed in chapter 5. In essence, by using

a small sub-sample of galaxies from the galaxy lensing catalogue SLACS, a parameter

estimation was carried out in order to constrain the values required to reproduce the
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observational data. The sub-sample was selected taking into consideration galaxies

with half or more of the content as Dark Matter; this was done to reduce any biases of

the baryonic matter. In principle, the idea behind the data sub-sample was a proof of

concept for the study and effect of the lensing parameters for the Wave Dark Matter

profile.

From this analysis it was found that, for the sizes of the galaxies considered, the

soliton core must represent a compact and dense object if it is to adequately describe

the observed properties of the lensed galaxies. Meanwhile, the soliton + NFW tail

configuration is able to represent more successfully a galaxy; nevertheless, it is not

possible to constrain the characteristic length of the NFW tail and only a minimum

threshold can be established.

The third question was briefly introduced in chapter 6 and was the main objective

of 7. To clarify, only the soliton core was considered in those chapters because it

represents the major contribution to the mass compared with the NFW tail and it has

a simpler formulation.

Overall, from the examples presented, it was shown it is more likely to observe a

lensed signal with space-based detectors, from a lens that is a galactic-sized objects.

In such a case it should be possible to use the information about the lens parameters

derived from the gravitational wave data to determine the suitability of a Wave Dark

Matter object.

This work has contributed to the literatures by deriving a mathematical functions

that form the bases of the soliton+NFW tail profile for the Wave Dark Matter lens;

these functions can be used to predict and study the lensing signatures for this model.

Furthermore, the proof of concept results obtained in this by comparing the Wave Dark

Matter lens model with observational data for several lensed galaxies agree with the

range of axion masses reported in the literature, at least for the case of a soliton+NFW

tail. This work has also introduced another dark matter profile to the growing field

of research on the lensing of gravitational wave - were the modelling of extended mass

distributions in this regime is still in development. Additionally, our results for the

lensing of gravitational waves by Wave Dark Matter lenses are in good agreement with
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the expected range of lensing galaxy masses that have been presented in the few works

that discuss it in the literature that have considered extended mass distributions.

The results presented in this thesis can be considered as a first approach to the use

of the Wave Dark Matter model as lens. Future researchers who work with this model

can therefore add another tool to include in their description of galaxies, adding to

the perspective of electromagnetic observations of lensing. Likewise, because this work

considers the case of gravitational wave lensing, not only has presented an opportunity

to study the possibility of detection of this phenomenon, but also to compare with an

electromagnetic counterpart - should that also be observed.

On the other hand, our work is limited in some respects - e.g. by the small sample of

lensed galaxies that we have considered, and by the simple and somewhat qualitative

description of the gravitational waves parameters that we have presented. Additionally

the scope of the study was only in to consider the strong lensing regime. The work

presented here, therefore, opens the door for several other possible future analyses

and comparisons. For example, a combination of galaxy dynamics and lensing could

be possible, and could increase the opportunity to constrain the profile parameters.

Moreover, it would be beneficial to explore, in addition to the lensing amplification,

the deformation of an extended source caused by the lens - and to expand the analysis

into the regime of weak lensing.

For the case of gravitational waves lensing there are also multiple future opportunities

- including a Bayesian model comparison between different lens models, analysis of

the population of lenses and a full simultaneous estimation of both lens and source

parameters. As the study of gravitational wave lensing develops, and a lensed signal is

detected, these further analyses will be both appropriate and necessary.

In any case, it will be interesting to consider if Scalar Field Dark Matter models gain

further momentum as observations that combine light and gravitational waves become

available. Is is hoped that these future studies might give deeper insight into the elusive

component of the universe known as Dark Matter, so that a better understanding of

the universe can be reached at the end.
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Appendix A

Galaxy posteriors

This appendix contains the posteriors for the extra galaxies studied on chapter 5. They

are for the soliton+NFW tail case.

The detailed description from the results obtained are described in chapter 5. In

short, section A.1 groups the figures containing the posteriors for a soliton mass Ms =

1011.5. This is considering that this the limit case where the soliton dominates the

contribution. section A.2 contains the figures for any soliton mass Ms < 1011.5. This

are the posteriors with the actual constraints.
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A.1 Posteriors for Ms = 1011.5
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Figure A.1: Posteriors for a configuration soliton+NFW tail considering ma22 = 10

and a soliton mass Ms = 1011.5. The Galaxy labels is specified in each subfigure, and

description in chapter 5.
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Figure A.2: Posteriors for a configuration soliton+NFW tail considering ma22 = 1

and a soliton mass Ms = 1011.5. A transition value where the soliton has dominance is

clearly delimited. The Galaxy labels is specified in each subfigure, and description in

chapter 5.
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Figure A.3: Posteriors for a configuration soliton+NFW tail considering ma22 = 0.1

and a soliton mass Ms = 1011.5. This is the particular case where the soliton dominates

the configuration. This has the particular feature that the configuration of the tail is

irrelevant. The Galaxy labels is specified in each subfigure, and description in chapter 5.
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A.2 Posteriors for Ms < 1011.5
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Figure A.4: Posteriors for a configuration soliton+NFW tail considering different

axion masses and soliton mass Ms < 1011.5. The Galaxy labels is specified in each

subfigure, and description in chapter 5.
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Figure A.5: Posteriors for a configuration soliton+NFW tail considering different

axion masses and soliton mass Ms < 1011.5. The Galaxy labels is specified in each

subfigure, and description in chapter 5.
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Figure A.6: Posteriors for a configuration soliton+NFW tail considering different

axion masses and soliton mass Ms < 1011.5. The Galaxy labels is specified in each

subfigure, and description in chapter 5.
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Figure A.7: Posteriors for a configuration soliton+NFW tail considering different

axion masses and soliton mass Ms < 1011.5. The Galaxy labels is specified in each

subfigure, and description in chapter 5.



Appendix B

Lensing figures

This appendix contains a gallery of lensing impressions obtained using the functions

derived in chapter 4. The figures represent selected lens positions acting over a small

source centred at the origin. Nevertheless, they are presented only for illustrative

purposes as lensing is an effect observed mainly on images, and it was appropriate

to translate the abstract concepts into visual examples. To emphasize, no analysis or

conclusions are extracted from them, and any remarks done are results obtained from

the analysis of the properties for the lensing equations detailed in chapters 4 and 5 and

are stated for clarity to the reader.

The images are presented in the following order:

• A shared source centred at (0, 0) with respect to the lens position.

• Images of a point mass lens.

• Images of the solito-core profile.

• Images of the waveDM profile.

To maintain the gallery simple, only two positions of the lens were considered; one

with the lens centred a the origin and presenting an Einstein ring, and a lens situated

at the position (0.2, 0.2) of the relative axes which are normalized according to each

lens for the situation of an off-axis lens.
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Figure B.1: Source considered for all lenses. Its position is at the origin of the axes,

and their sizes are relative to each lens normalization.
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Figure B.2: An example of a point mass as a reference. The small green region in

both images is a loose representation used to identify the position of the lens. The axes

are normalize by the Einstein angle,so this provides a normalized lens mass of 1.
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Figure B.3: The images represent a soliton core where its characteristic length, rs,

corresponds to its Einstein radius. This fixes that λ ≈ 3.18 in the dimensionless lens

equation. Additionally, the green region represents the hypothetical size core, and it

is clear from resulting images that the lensing of the source is similar to a point mass

lens.
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Figure B.4: A case of a soliton core with a parameter λ below λcrit in the dimensionless

lens equation. The green region represents the hypothetical size of the core. It is clear

that the source experiences a minimum aberration as the lens is not able to produce

strong lensing. This is an effect in the weak lensing regime.
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Figure B.5: Images presenting a soliton core with λ = 5 in the dimensionless lens

equation. The green region represents the hypothetical size of the core. It is clear on

both images that the relative Einstein ring and the image separations have a larger

radius than the core.
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Figure B.6: The images introduce the Wave Dark Matter profile with a parameter

λ ≈ 2.96 in the dimensionless lens equation; rε∗ = 1, and αNFW = 0.5 for the lensing

parameters. The green region represents the hypothetical size of the core. By observ-

ing the size, it is clear that this case is similar to the soliton core-only specially by

considering the values of λ and rε∗ which are conclusions described in the results of

chapter 5.
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Figure B.7: The images present a Wave Dark Matter profile with λ ≈ 1.005 in the

dimensionless lens equation; rε∗ = 0.5, and αNFW = 0.5 for the lensing parameters.

Even that rs ≈ RE, the contribution of the NFW tail produces a noticeable difference

in thickness compared with the soliton core and the point mass. The green region

represents the hypothetical size of the core.
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Figure B.8: The images present a Wave Dark Matter profile with λ = 5 in the

dimensionless lens equation; rε∗ = 0.5 and αNFW = 0.5 for the lensing parameters. It

is clear that the Einstein radius is bigger than the core. The green region represents

the hypothetical size of the core.
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