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Abstract 

Chronic myeloid leukaemia (CML) is a myeloproliferative disorder that originates 

at the haematopoietic stem cell (HSC) level. CML is driven by BCR-ABL, a fusion 

oncoprotein with a constitutive tyrosine kinase activity. The discovery of imatinib, 

a c-Abl specific tyrosine kinase inhibitor (TKI), revolutionised the treatment of 

CML by inducing cytogenetic and molecular responses in the majority of CML 

patients in chronic phase. However, imatinib and second/third generation TKIs do 

not eradicate leukaemic stem cells (LSCs), leading to disease persistence with 

associated risk of toxicity, drug resistance and relapse. This suggests that 

effective eradication of CML LSCs requires identification of novel target(s) that 

can be exploited therapeutically in combination with TKI treatment. 

In recent years, a plethora of studies have demonstrated that cancer cells rewire 

their metabolism to fuel their high energy demands and targeting these metabolic 

alterations can be of therapeutic benefit. Thus far, investigation of CML LSCs 

metabolism has been restricted by technical limitations. In this study, we aimed 

to identify and target the metabolic dependencies in CML LSCs using stem cell 

enriched (CD34+) primary cells isolated from CML patients and healthy donors.  

We initially investigated the metabolism of differentiated CD34- and primitive 

CD34+ cells and demonstrated that glucose and fatty acid oxidation was elevated 

in CD34+ CML cells. We as well demonstrated that CML CD34+ cells displayed an 

increase in their mitochondrial oxygen consumption rate (OCR). Next, we 

compared the metabolism of CD34+ and CD34+CD38- CML cells to their respective 

normal counterparts, which revealed that stem cell-enriched CML cells possess 

increased mitochondrial functions in comparison to normal cells.  

Of clinical significance, we show that the antibiotic tigecycline, an inhibitor of 

mitochondrial translation, reduced this aberrant oxidative metabolism. The 

combination of imatinib and tigecycline targeted primitive CML cells at a clinically 

achievable concentration while having minimal effect on colony formation 

potential of CD34+ cells derived from healthy donors. To validate these findings in 

vivo, human CML CD34+ cells were injected into irradiated immune-deficient mice. 

Remarkably, four-week combination treatment with tigecycline and imatinib in 

vivo eliminated the majority of CML LSCs, targeting 95% of the cells. Moreover, 
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mice maintained low levels of CML LSCs upon discontinuation of the combination 

treatment whereas imatinib-treated mice showed signs of relapse. 

These results indicate that oxidative phosphorylation is crucial for the survival of 

CML LSCs and inhibition of mitochondrial metabolism with tigecycline, in 

combination with imatinib treatment, might be a suitable therapeutic strategy to 

selectively target these cells and improve cure rates.  
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Chapter 1 Introduction 

1.1 Haematopoiesis and haematopoietic stem cells 
(HSCs) 

1.1.1 Ontogeny of haematopoiesis 

Haematopoiesis, or haemopoeisis, is a tightly regulated process that produces all 

the components of the blood system throughout the entire life of an individual. 

During human embryonic development, haematopoiesis takes place at first in the 

yolk sac and generates principally nucleated erythrocytes (reticulocytes) that are 

essential to support the high oxygen demand of the nascent embryo (1). The 

second wave of foetal haematopoiesis occurs within the embryo, in the aorta-

gonad-mesonephros at first, and sequentially moves to the placenta, foetal liver 

and the spleen (2). Before birth, haematopoiesis finally establishes in the bone 

marrow (BM) where it will remain throughout the entire life. 

1.1.2 Hematopoietic cells hierarchy 

The existence of a cell able to regenerate all the cellular components of the 

haematopoietic system or “stem cell” was first demonstrated in 1963 by Till, 

McCulloch and colleagues. During their work on the reconstitution of the blood 

system, they observed the formation of splenic colonies following ten days post-

transplantation of murine haematopoietic cells into recipient mice. They further 

demonstrated that these myelo-erythroid colonies in the spleen had for origin a 

single haematopoietic cell that had the capacity to self-renew and differentiate, 

a pioneer finding that laid out the fundamental properties of haematopoietic stem 

cells (HSCs) (3-5). 

Accounting for less than 0.05% of BM cells, rare HSCs sit at the top of the 

haematopoietic hierarchy and have the ability of generating all the cellular 

components of the blood (6). More precisely, HSCs differentiate into multipotent 

progenitors cells (MPPs) that have no longer self-renewal activity. MPPs can then 

generate common lymphoid or myeloid progenitors (CLP, CMP) that can further 

differentiate into mature blood cells such as red blood cells, megakaryocytes, 

myeloid cells and lymphocytes (Fig. 1.1). These terminally differentiated cells are 
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short-lived and, therefore, need to be constantly replenished at an intensive rate 

of 1.5 million cells per second in adult humans (7). Concurrently to the production 

of mature cells, HSCs ensure their persistence throughout the entire lifetime by 

self-renewal. In order to maintain a constant number of HSCs at homeostasis while 

generating differentiated cells, HSCs can engage in two modes of divisions. They 

can either divide by symmetric division, that produces two daughter cells with the 

similar fate or engage in an asymmetric division, generating one HSC and one 

differentiated MPP cell (8). The choice between the type of cellular division is 

regulated by many factors and any alteration in this process can have dramatic 

consequences; a decrease in self-renewal potential or increase in the 

differentiation process can result in the exhaustion of HSCs (9, 10).  

 

1.1.3 Regulation of HSCs 

The BM niche plays a crucial role in regulating HSCs function and maintaining them 

in a quiescent state at homeostasis. HSCs have been shown to principally reside 

within the endosteal (osteoblastic) and the vascular niche of the BM. The specific 

localisation of HSCs within the BM can regulate their fate, such as differentiation, 

quiescence and self-renewal (11). For instance, studies have demonstrated that 

HSCs are maintained in a quiescent state in the endosteal region by interacting 

with osteoblasts while proliferating HSCs associate with the vascular niche (12). 

However, several reports have discussed that the osteoblastic and the vascular 

niche are not clearly dissociable anatomically and might very well overlap in their 

function and localization (13).  



19 

 

  

Figure 1. 1 Human haematopoiesis. 

LT-HSC, long-term haematopoietic stem cell; ST-HSC, short-term haematopoietic stem cell; MPP,  
multipotent progenitor; CLP, common lymphoid progenitor; CMP, common myeloid progenitor; 

MEP, megakaryocyte/erythroid progenitor; GMP, granulocyte-macrophage progenitor. 
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1.1.4 Identification and isolation of HSCs 

Many studies have focused their efforts in findings cell surface markers to isolate 

and purify rare HSCs. However, it is only the development of monoclonal 

antibodies and multi-colour flow cytometry sorting that allowed the purification 

of murine HSCs for the first time almost thirty years ago. These crucial technical 

advances allowed Sprangrude and colleagues to isolate a rare population of cells 

(1 in 2000) enriched for murine HSCs. This HSCs-enriched population, 

phenotypically characterised as Thy-1lowLineage (Lin) negative (-) Sca positive (+), 

was able to regenerate the haematopoietic system in the long term, while Sca− 

and Lin+ cells were not (14). Subsequent studies have allowed a more extensive 

characterisation of murine HSCs to the point of enabling single-cell 

transplantation. In 1996, one study on mouse haematopoietic cells demonstrated 

that one out of three cells harbouring the phenotypical markers CD34-Lin-Sca+ckit+ 

was able to regenerate the entire murine haematopoietic system (15).  

Similar to mouse HSCs, studies based on the expression of cell surface markers 

were performed to purify human HSCs. However, although phenotypic markers are 

needed to enrich for HSCs, their expression can be modified in stressful conditions. 

Hence, studies conducted on HSCs always need to be coupled with functional 

assays. The colony forming potential of progenitors and HSCs can be assessed in 

vitro by colony-forming cell (CFC) and long-term culture-initiating cell (LTC-IC) 

assays respectively. The principal method for testing the stem cell potential of 

human cells remains the transplantation in immuno-deficient (SCID and NOD/SCID) 

mice and demonstration of their ability to reconstitute long-term haematopoiesis. 

Initially, the selection of cells enriched for stem cell activity was based on the 

high expression of the CD34 at the cell surface. In vivo, transplantation of CD34-

expressing cells led to long-term reconstitution of haematopoiesis (16). However, 

the CD34+ cell population was shown to be a heterogeneous population and mainly 

constituted of progenitor cells. Baum, Weissman et al. later showed that the 

CD34+CD90+(Thy-1)-Lin- cell population differentiated into myeloid and lymphoid 

cells when transplanted in SCID mice, while CD34+CD90-Lin- were not able to 

generate both progenies, suggesting that the CD34+CD90+Lin- subset contains 

pluripotent cells and is more enriched in HSCs (17). Subsequent studies 

demonstrated that a small subset of cells (1-10%) within the CD34-expressing 
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population that do not express CD38 (refer to as CD34+CD38-) can generate all 

haematopoietic lineages (18). Moreover, the CD34+CD38- subset was shown to be 

highly enriched for cells with long-term culture-initiating potential and able to 

differentiate into multilineage progenies in either SCID or NOD/SCID mice (19). 

Since then, the most enriched HSC population has been identified as harbouring 

Lin−CD34+CD38−CD90+CD45RA− phenotypic markers (20). 

 

1.2 The cancer stem cell (CSC) model  

1.2.1 Introduction 

Similar to normal stem cells, cancer stem cells (CSCs) possess self-renewal and 

repopulating capacity that enable them to regenerate themselves and all cells 

from a given cancer. Representing a small subset of the tumour, CSCs constitute 

a reservoir for tumour maintenance. Many studies have shown that CSCs are 

quiescent which promotes their resistance to current therapies that mainly target 

highly proliferating cells. It is therefore believed that targeting CSCs will lead to 

enhanced cure rates and fewer relapses.  

1.2.2 Historical overview 

The CSC concept initially emerged from research in blood malignancies. In 1994, 

a study on acute myeloid leukaemia (AML) cell subsets demonstrated that 

leukaemic cells harbouring the CD34+CD38- cell-surface phenotype were able to 

initiate leukaemia in SCID mice, while CD34+ or CD34+CD38+-expressing cells were 

not. Moreover, limiting dilution assays revealed that leukaemic-initiating cells (L-

ICs) constituted a small fraction of the bulk of the malignancy, representing 1 in 

250,000 leukaemic cells approximately (21). A few years later, Bonnet and Dick, 

by performing transplantation experiments of additional AML patients in severely 

immuno-deficient NOD-SCID mice, reached a similar conclusion (22). Given that 

L-ICs and normal HSCs display similar cell-surface markers (CD34+CD38-), these 

studies suggested that primitive stem cells are the target of transformation in 

AML.  

Plethora of investigations have since then aimed to identify CSCs in other 

malignancies, including in solid tumours. Al-Hajj et al. performed the initial 
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characterisation of CSCs in breast cancer in 2003. They demonstrated that the 

serial transplantation of CD44+CD24− breast cancer cells leads to tumour formation 

in immuno-compromised mice that resembles the parental malignancy (23).  

Put together, these studies demonstrated for the first time the existence of a rare 

population of cancer cells that has a remarkable ability to self-renew and 

regenerate the tumour entirely.  

 

1.2.3 Others characteristics of CSCs 

CSCs share the proliferation traits of normal stem cells, alternating between 

quiescence, slow-cycles, and active growth. For instance, quiescent CSCs can be 

identified in human colon adenocarcinoma cell line as well as in ovarian cancer 

patient samples (24, 25). Moreover, in a mouse model of AML, leukemic stem cells 

(LSCs) have been shown to reside within the endosteal region of the BM in a 

quiescent state (26, 27). Interestingly, these LSCs displayed enhanced resistance 

to the chemotherapeutic agent cytarabine. This is line with other studies that 

have shown that CSCs are markedly resistant to standard therapies. Of note, part 

of this resistance is conferred by their slow-cycling/quiescent status as 

conventional chemotherapy principally target fast-dividing cells (28). Accordingly, 

many studies have demonstrated that LSCs in chronic myeloid leukaemia (CML) 

patients are inherently resistant to the first line therapy imatinib whereas the 

drug effectively eliminates the bulk of the leukaemic population (29). Of note, 

these studies will be discussed in more details in a subsequent paragraph (1.3.8). 

 

1.2.4 Cell of origin 

It is important to note that the cell of origin in cancer, defined as the cell that 

acquires the first oncogenic transformation, has to be differentiated from the CSC 

that propagates the tumour. In other words, the cell of origin does not necessarily 

have CSC traits at first but rather can acquire stemness properties following 

additional mutational hits (30). While there is compelling evidence that CSCs 

derive from normal stem cells in some malignancies, CSCs have been shown to 

originate as well from progenitor cells that have gained self-renewal ability by 

second hits (9). Interestingly, several studies demonstrated that the generation of 
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induced pluripotent stem cells (iPSCs) from adult human dermal fibroblasts only 

requires the combination of four transcription factors, indicating that the 

acquisition of stem cell traits by more differentiated cells is a possibility (31, 32). 

Having said this, the cell of origin can be as well distinct from the CSC. For 

instance, the cell of origin could be derived from a normal stem cell that has 

acquired oncogenic mutations, while the propagating CSCs is a more 

differentiated progenitor cell. This scenario has been shown to occur in the final 

blast crisis (BC) stage of CML and in some AML subtypes. In CML, the initial 

oncogenic transformation occurs initially at the stem-cell level (in other words, 

the cell of origin is a HSC) and this cell is responsible for sustaining the disease in 

the early stage of the disease. However, during BC, the LSC pool that propagates 

leukaemia has been shown to share granulocyte/macrophage progenitor 

characteristics (33). Moreover, analysis of BM samples isolated from AML patients 

harbouring the AML-ETO fusion protein revealed that the disease originates in 

AML-ETO- expressing HSCs, however, the cells able to generate leukaemic blast in 

vitro were comprised within the Thy1− progenitor cell fraction (34). Altogether, 

these studies indicate that, in some particular cases, the leukaemic 

transformation can start at the HSC level but the propagation of the disease occurs 

at a progenitor stage. 

 

1.2.5 Controversies of the CSC model 

Much scientific debate has evolved around the existence and the frequency of 

CSCs. The first confusion is in the origin of the CSC that is not necessarily derived 

from a normal stem cell. As mentioned previously, a CSC is defined as a cell that 

shares the functional properties of a normal stem cell, which does not entail that 

one derives from another (35, 36). The second misconception lies in the 

identification of CSC and in the stability of the CSC compartment. While the 

number of normal stem cells is relatively constant at homeostasis, studies have 

demonstrated that the frequency of LSCs varies dramatically between patients. 

Indeed, Bonnet and Dick evaluated that the number of LSCs ranged from 0.2 to 

100 per million of mononuclear cells in seven AML patients tested (22). This could 

indicate that the pool of CSCs is not stable and might fluctuate as a function of 

the environment, treatment or disease progression. This alleged plasticity of CSCs 

would therefore prevent future therapy to effectively eradicate them. 
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Furthermore, the phenotypical markers of LSCs are highly variable among 

leukaemic patients, making their identification even more challenging (37). In 

addition, CSCs are often detected experimentally by their ability to reconstitute 

tumours in xenotransplantation mouse models. The fact that mice maintain some 

level of immunity and provide a different microenvironment than humans can 

result in the selection of a cell subset that is not necessarily able to generate 

tumours but has the ability to engraft in mice and in the underestimation of the 

frequency of tumorigenic cells (38). This has for instance been demonstrated in 

melanoma. Initially, melanoma was thought to be driven by CSCs, but when more 

immuno-compromised mice where used, researchers have realised that 

approximately 25% of the cells were able to generate tumours in vivo, suggesting 

that this cancer does not follow the CSC model (39, 40). 

Despite the outlined controversies, the scenario is different for CML. While this 

will be discussed further in the next section, compelling evidence has shown that 

CML originates from a HSC and is driven by CML LSCs, making CML a suitable model 

for cancer stem cell studies.  

 

1.3  CML 

1.3.1 Introduction 

As previously mentioned, CML is a myeloproliferative disorder that originates at 

the HSC level, making CML a highly suitable model for cancer stem cells studies. 

CML is driven by BCR-ABL, a fusion onco-protein with a constitutive tyrosine kinase 

activity. The discovery of imatinib, a c-Abl tyrosine kinase inhibitor (TKI), 

revolutionised the treatment of CML by inducing cytogenetic and molecular 

responses in the majority of CML patients in chronic phase. However imatinib and 

second/third generation TKIs only target dividing cells and do not eradicate CML 

stem cells (CML LSCs), leading to disease persistence with associated risk of 

toxicity, drug resistance and relapse. In the following sections, we will review in 

detail the pathophysiology and the treatments of CML, including the current 

strategies to target LSCs. 
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1.3.2 Epidemiology 

CML accounts for 10-15% of all cases of leukaemia in Western countries. Reports 

have described that CML incidence ranges between 0.6 to 2.0 cases per 100,000 

persons per year (41). In Scotland particularly, Harrison, Johnson and Holyoake 

reported a CML incidence of 0.64 per 100,000 persons between 1999 and 2000 

(42). Since the introduction of new treatments that dramatically improved the 

survival of patients, the prevalence rates of CML have been increasing every year 

and is estimated to go from 70,000 cases in 2010 to reach a plateau of 181,000 

cases in 2050 in the United States (43). At diagnosis, the median age of CML 

patients is 53 years and, with a male-to female ratio of 1.3-1.8, men are more 

frequently affected with CML than women (41). 

There is no clear evidence of risk factors that could cause CML and, despite being 

caused by a genetic abnormality, CML is not a hereditary disease. However, 

studies have shown that certain environmental factors can increase the risk of 

developing CML. First, atomic bomb survivors in Japan and Chernobyl liquidators 

that were exposed to high dose of radiation display increased incidence rate of 

leukaemia in general, including CML (44). Similarly, people exposed to benzene or 

pesticides have a higher risk of developing CML (45).  

 

1.3.3 Disease progression 

CML presents in three distinct phases, starting with chronic phase CML (CP-CML) 

that sequentially evolves, if untreated, to acute phase CML (AP-CML) and BC (46, 

47). The vast majority of patients (85%) are diagnosed at CP-CML and present 

subtle symptoms such as fatigue, weight loss, splenomegaly, discomfort, left 

upper quadrant pain and/or nights sweats. Because of this insidious onset, CP-CML 

is often diagnosed during a routine health check. Patients in CP-CML display 

elevated number of myeloid progenitor cells that retain their capability of 

differentiation, leading to a concomitant increase in the number of mature 

granulocytes as well as in basophils and eosinophils. Immature blast cells account 

for less than 2% of the WBCs (47). Additional mutations during CP-CML can drive 

evolution of the disease into AP-CML, characterised by an increased splenomegaly 

and in the number of leucocytes or white blood cells (WBCs). At this stage, the 

http://journals.sagepub.com/author/Harrison%2C+S+J
http://journals.sagepub.com/author/Johnson%2C+P+R+E
http://journals.sagepub.com/author/Holyoake%2C+T+L


26 

 

differentiation is arrested and immature blast cells are present in a higher 

amount, accounting for 10-19% of total WBCs (48). Following AP-CML or directly 

after CP-CML, the disease can progress to the final BC stage that is associated with 

worsened symptoms and resistance to therapy (although already present at the 

AP-CML stage). The blasts represent more than 20% of WBCs in the BM at this phase 

(49). 

 

1.3.4 Molecular pathophysiology of CML 

In 1960, Nowel and Hungerford identified the presence of an abnormal shortened 

chromosome 22 in cells isolated from CML patients (50, 51). This chromosome was 

later designated “Philadelphia (Ph) chromosome”, eponym of the city in which it 

was initially discovered (52). Subsequent studies demonstrated that the Ph 

chromosome is a result of a reciprocal translocation between the long arms of 

chromosome 9 and 22 (refer to as t(9;22)) and is found in more than 90% of CML 

patients. Precisely, the genes involved in this translocation are the breakpoint 

cluster region (BCR) on chromosome 22 and the Abelson murine leukaemia viral 

oncogene homolog (ABL) on chromosome 9 that encodes for a tyrosine kinase (53). 

Consequently, the t(9;22) translocation forms two chimeric genes: BCR-ABL and 

ABL-BCR genes on chromosome 22 and 9 respectively. Of note, the ABL-BCR gene 

does not seem to be involved in CML, and no protein has been isolated so far. In 

contrast, the BCR-ABL gene encodes for a fusion BCR-ABL protein with a 

constitutively activated tyrosine kinase (54, 55). The breakpoint on the BCR gene 

can occur at different sites and three different BCR-ABL genes can be generated 

accordingly. However, the 210 kDa cytoplasmic BCR-ABL protein, also referred to 

as p210BCR/ABL, is found in most patients (56). Importantly, the expression of the 

fusion protein was demonstrated to be necessary and sufficient to cause and 

maintain CML. Indeed, in transgenic mice models, expression of BCR-ABL in HSC 

was responsible for initiating and maintaining a leukaemic phenotype that 

resembles CP-CML in humans (57-59). In other words, one single hit that induces 

a chromosomal translocation and expression of the BCR-ABL protein (at the HSC 

level; see below) is sufficient for leukaemic transformation. 

Evidence of the stem cell origin of CML came initially from the work of Fialkow 

and colleagues. They demonstrated that erythrocytes and myeloid cells in female 
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CML patients with heterozygous X-linked glucose-6-phosphate dehydrogenase 

(G6PDH) had the same single enzyme type for G6PDH while other cells in the body 

were heterogeneous (60). This suggested that both erythrocytes and granulocytes 

originated from the same stem cell, indicating that CML is a clonal disease with a 

stem cell origin. They as well demonstrated in subsequent studies that the 

leukaemic clone could give rise to B lymphocytes in CML patients, further 

indicating the HSC origin of CML (61, 62). Additional proof came from one recent 

study that analysed BCR-ABL mRNA levels in CML patients with major molecular 

response (MMR) following imatinib treatment. This study revealed that residual 

BCR-ABL-expressing cells could still be isolated from CML patients in MMR, and 

importantly, these leukaemic cells were almost entirely comprised within the HSC 

subset (63). This observation, together with the fact that the persistent CML cells 

have the ability to repopulate the disease in half of the patients with MMR upon 

imatinib discontinuation (discussed below 1.3.8), was a conclusive evidence of 

the stem cell origin of CML.  

 

1.3.5 CML diagnosis and monitoring 

Given the presence of the Ph chromosome in more than 90% of CML patients, the 

diagnosis of the disease relies mainly on the detection of the abnormal 

chromosome by cytogenetic analysis of BM samples. Noteworthy, the Ph 

chromosome can be present in AML and acute lymphoblastic leukaemia (ALL). CML 

monitoring is commonly performed by blood counts tests, cytogenetic analysis of 

the BM and quantification of mRNA levels of BCR-ABL transcripts. Several terms 

are commonly used in the clinic to assess the response to treatments. Complete 

haematological response (CHR) is defined as the normalisation of the blood 

counts, the WBCs differential and the spleen at physical examination. A major 

cytogenetic response (MCyR) represents a decrease in the percentage of Ph+ cells 

in the BM, and a complete cytogenetic response (CCyR) by extension is achieved 

when no Ph+ cells can be detected. Finally, a major molecular response (MMR) is 

defined as a 3-log reduction in BCR-ABL transcripts compared to standardised 

baseline levels (64). 
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1.3.6 BCR-ABL signalling pathway 

Tyrosine kinases catalyse the transfer of the ATP phosphate group to a tyrosine on 

a protein, thereby activating a number of downstream signalling pathways. In 

physiological conditions, the ABL protein shuttles between the cytoplasmic and 

nuclear compartment (65). However, the nuclear-cytoplasmic transport is 

impaired in the fused protein and BCR-ABL localises almost exclusively in the 

cytoplasm where it signals to downstream partners. Moreover, while ABL kinase 

activity is auto-inhibited in physiological conditions, BCR-ABL has a constitutive 

tyrosine kinase activity, which promotes protein folding into an active 

conformation and induces auto-phosphorylation. This will favour binding sites to 

the SH2 domains of downstream proteins including phosphoinositide 3-kinase 

(PI3K), mitogen-activated protein (MAP) kinase, nuclear factor-κB (NFκB), RAS, 

and signal transducer of activation and transcription 5 (STAT5; Fig. 1.2) (66-68). 

Precisely, BCR-ABL forms a complex with the GRB2 protein and Son of Seventhless 

(GRB2/GAB2/SOS) that activates the RAS downstream pathway (69, 70). Active 

RAS will then activate MAP kinases, which promotes cellular proliferation. 

Moreover, the GRB2/GAB2/SOS complex activates the PI3K/AKT pathway that acts 

on the apoptotic machinery to promote cell survival (71). In addition, constitutive 

activation of STAT5 confers growth factors independence to CML cells (72). MYC 

has as well been shown to be directly upregulated by BCR-ABL and seems to be 

involved in the progression of the disease (73). 

In the end, all these pathways act concomitantly to promote cell survival, 

proliferation and leukaemogenesis. 

http://www.nature.com/articles/386779a0
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Figure 1. 2 BCR-ABL signalling pathway. 

SOS, Son of Seventhless; STAT5, signal transducer of activation and transcription 5; PI3K, 

phosphoinositide 3-kinase; MAP, mitogen-activated protein. 

 

1.3.7  CML Treatment 

1.3.7.1 Historical Overview 

In the end of the 19th century, treatment options for CML patients were very 

limited, with the only reported therapy being the use of arsenic. In the 20th 

century, CP-CML patients were treated with splenic radiotherapy at first and 

sequentially with two chemotherapeutic agents, busulfan and hydroxyurea. With 

fewer adverse events, hydroxyurea prolonged the duration of CP-CML and survival 

compared to busulfan (74, 75). However, neither busulfan nor hydroxyurea were 

able to control the disease and patients eventually progressed to BC within a few 

years, making CML a fatal and incurable disease at that time. 

Allogeneic stem cell transplantation (allo-SCT) became the treatment of choice 

for CML in the mid-1970s. A three-year follow up study on 450 CP-CML patients 

who underwent BM transplantation reported relapse rates and an overall survival 

of 11.5% and 56% respectively (76). Despite improving survival rates, allo-SCT is 
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associated with substantial risk of death and complications, including host-graft 

reactions, infections, and rejection of the graft. Moreover, the strict criteria of 

eligibility prevented the vast majority of CML patients (>80%) from receiving the 

transplantation. For instance, allo-SCT was restricted to patients under sixty years 

old without any other comorbidities. Nowadays, allo-SCT remains the only proven 

curative treatment of CML (77). 

Prior to being tested in CML, interferon-alpha (IFN-α) had demonstrable effect 

against other malignancies and was known to induce leukopenia in patients. This 

initial observation led Verma et al. to investigate the effect of IFN-α against CML 

cells (78). More than a decade later, a cooperative randomised clinical trial on 

over 1500 CML patients demonstrated that IFN-α significantly improved the five-

year survival rate to 55% in comparison to 37% for patients treated with busulfan 

or hydroxyurea (79). Increased survival in patients treated with IFN-α in 

comparison to chemotherapeutic drugs was confirmed by several multi-centered 

trials (80-83). Moreover, 15% of CML patients treated with IFN-α achieved a CCyR 

that was sustained for six years in 10% of the patients following treatment 

discontinuation, an observation that had never been seen outside the allo-SCT 

option (84). Combination of IFN-α with low dose cytarabine was as well found to 

increase cytogenetic response rates compared to the single agent (85, 86). 

Nonetheless, one fifth of the patients had to discontinue IFN-α treatment due to 

severe adverse effects. The mechanisms of action of IFN-α are not fully 

understood, but it has been suggested that IFN-α acts as a cytostatic agent, 

restore the adhesion of leukaemic progenitor cells, or even target the immune 

system to enhance immune responses (87-89). 

 

1.3.7.2 The imatinib era 

In 1990s, the development of the first TKI against BCR-ABL, imatinib (STI571, 

Gleevec®, Glivec®, formerly CGP 57148B), by biochemist Nicholas Lyndon brought 

a revolution in the management of CML. Imatinib is an inhibitor of the tyrosine 

kinase activity of ABL, BCR-ABL, c-KIT and PDGFRA. Imatinib binds to the ATP 

binding-pocket of the Abl kinase domain and locks it in an inhibited conformation, 

therefore impairing the tyrosine kinase activity and preventing phosphorylation to 

key downstream substrates that promote CML. The idea that BCR-ABL, with its 
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constitutive tyrosine kinase activity, drives CML pathogenesis combined with 

promising pre-clinical results led Brian Druker to test imatinib treatment in CML 

patients (90). Impressive results were initially obtained during phase I and II 

clinical trials on patients who failed IFN-α therapy, with 95% of patients achieving 

CHR, 41% a CCyR and 89% of patients maintained in CP-CML after 18 months (91). 

Moreover, the oral bioavailability of imatinib and its inferior toxicity in comparison 

to previous treatments reduced the frequency of treatment interruptions. In 2000, 

the International Randomized Study of Interferon and ST1571 (IRIS) trial 

investigated the efficacy of imatinib (400 mg daily) in comparison to IFN-α in 

combination with low-dose cytarabine in 1106 newly diagnosed CP-CML patients. 

All outcomes were better in the imatinib treated arm; imatinib demonstrated 

increased tolerability, CHR, CCyR, progression-free survival compared to IFN-α 

and cytarabine. Precisely, CHR and CCyR was achieved in 95% and 74% of patients 

treated with imatinib versus 56% and 9% in the combination treatment arm. 

Moreover, after a median of 9 months, 90% of patients treated with IFN-α had 

switched to imatinib (92). Soon after this phase III study (in December 2001), the 

FDA approved imatinib as a first-line therapy for the treatment of Ph+ CP-CML 

patients. The six-year follow-up of the IRIS trial revealed that the estimated 

overall survival was 95% for CML patients treated with imatinib, when only CML-

related death were taken into account (93).  

 

1.3.7.3 Response to imatinib 

The best outcomes with imatinib are seen for patients with CP-CML, and patients 

who presents with AP-CML or BC poorly respond to imatinib treatment. In 2013, 

the European LeukemiaNet (ELN) provided detailed recommendations for 

managing and monitoring the response to imatinib. Based on these suggestions, 

CHR is expected to be achieved in less than three months after treatment 

initiation, which is seen in 98% of the patients (94). Failure to obtain or maintain 

CHR is a sign of progression of CML and requires modification of the therapy. 

Ideally, CCyR and MMR should be achieved within six and twelve months of 

treatment.  
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1.3.7.4 Resistance to imatinib 

CML represents the first success story of targeted therapy. However, despite its 

superiority in comparison to previous standard treatments, it soon became 

apparent that a subset of CML patients were failing therapy and showed signs of 

drug resistance. Primary resistance is defined as the failure of achieving CHR and 

MCyR at three and six months of treatment respectively. One the other hand, the 

term acquired resistance is used upon the loss of previous imatinib response, such 

as an increase in BCR-ABL mRNA levels by five to ten-fold compared to previous 

tests.  

Several mechanisms of acquired resistance to imatinib have been identified, 

notably mutations in the ABL-kinase domain, amplification of BCR-ABL, 

overexpression of the multidrug-resistant P-glycoprotein (MDR-1), as well as the 

development of BCR-ABL-independent signalling pathways (95). 

BCR-ABL dependent mechanism of resistance 

Point mutations 

The predominant cause of acquired resistance are point mutations in the ABL 

tyrosine kinase site; precisely in the drug-binding site, the phosphate-binding 

domain, the catalytic site and the activation loop - all preventing efficient drug 

binding (96-98). More than a hundred mutations have been reported so far, one of 

the most frequent being the substitution of threonine to isoleucine at position 315 

(T315I) (99, 100) .  

BCR-ABL amplification 

Amplification of the BCR-ABL fusion protein has been reported in some patients in 

BC (99). Moreover, BCR-ABL amplification in CD34+ CML cells has been shown to 

confer resistance to imatinib and results in increased mutational rates (101). 

However, Hochhaus et al. reported in 2002 that this mechanism of resistance 

occurred in few CML patients and as such does not represent a major cause of 

drug resistance (102). 

 

 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Hochhaus%20A%5BAuthor%5D&cauthor=true&cauthor_uid=12399961
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BCR-ABL independent pathways mechanism of resistance 

Pharmacokinetics 

The plasma concentration of imatinib has been shown to vary markedly among 

CML patients, with a low concentration associated with a suboptimal response and 

failure to achieve CHR. Inter-individual differences in cytochrome P450 and in 

plasma acute phase protein, α1-acid glycoprotein that respectively metabolises 

and binds to imatinib have both been suggested to play a role in this primary 

resistance to imatinib (103, 104). Treatment compliance has as well been reported 

as being essential to achieve MMR. Indeed, patients with less than 90% treatment 

adherence have a significant decreased probability of achieving MMR (105). 

Drug efflux 

Proteins of the ATP-binding cassette (ABC) transporter family, such as the 

multidrug resistance gene product P-glycoprotein (P-gp; ABCB1) and the breast 

cancer resistance protein, have been implicated in the loss of drug response in 

many malignancies, including for imatinib and other TKIs in CML. ABC proteins 

family can actively export drugs from the intracellular compartment, leading to a 

decrease in the intracellular concentration of the drug. Noteworthy, the 

expression of P-gp has been reported to be particularly elevated in primitive 

haematopoietic cells and even more so in leukaemic cells from BC CML patients. 

Moreover, overexpression of P-gp has been associated with a lack of reaching a 

cytogenetic response with imatinib. In addition, low expression of organic cation 

transporter 1 (OCT1), responsible for imatinib uptake, can result in poor response 

to treatment (106).  

Clonal evolution 

Clonal evolution is known as the development of additional cytogenetic 

abnormalities, namely trisomy 8 and 19, aberration of chromosome 17q with loss 

of p53 or a second copy of the Ph chromosome. This mechanism of resistance is 

believed to be primordial, as 50% of patients that lost imatinib response harbour 

chromosomal abnormalities in CP-CML and AP-CML and up to 80% in BC (107). 

 

1.3.7.5 Strategies to overcome resistance 

Second and third generation of TKIs with increased affinity for BCR-ABL have been 

developed to overcome drug resistance. 
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Nilotinib -2nd generation 

Nilotinib is structurally similar to imatinib and is characterised by a 30-50 times 

increased affinity for the unmutated BCR-ABL ATP-binding site. Moreover, it has 

been shown to target leukaemic cells harbouring point mutations, apart from the 

T315I mutation. The ENESTnd clinical trial compared nilotinib and imatinib safety 

and efficacy in newly diagnosed CP-CML. This study demonstrated that patients 

treated with nilotinib had significantly increased MMR rates in comparison to 

imatinib at twelve months. Similarly, 85% of the patients treated with nilotinib 

achieved CCyR versus 77% in the imatinib treated group (108). Moreover, the five-

year follow-up revealed that 52% of the patients in the nilotinib arm achieved 

deep molecular response, defined as 4.5 log reduction in BCR-ABL transcripts on 

the international scale (MR(4.5)), while less than one-third (31%) of imatinib-

treated patients achieved MR(4.5) (109). Due to this improved efficacy, nilotinib 

has been approved as a first-line therapy for Ph+ CP-CML patients (110). 

Dasatinib-2nd generation 

The second-generation TKI dasatinib (Sprycel®; Bristol Myers Squibb) is 325 times 

more potent inhibitor than imatinib against BCR-ABL and can as well target kinases 

from the c-KIT, SRC and PDGF-R family. Importantly, dasatinib can inhibit mutated 

BCR-ABL, with the exception of the T315I mutation, and target leukaemic cells 

that are resistant to imatinib. Similar to nilotinib, newly-diagnosed CP-CML 

patients treated with dasatinib displayed faster and increased rates of achieving 

CCyR and deep molecular responses in comparison to imatinib, which led to the 

approval of dasatinib as a first-line treatment for CP-CML patients (111, 112). 

Bosutinib-2nd generation 

Bosutinib is an inhibitor of BCR-ABL and SRC kinase and, in contrast to dasatinib, 

has no significant effect against c-KIT and PDGF-R. Bosutinib has been shown to 

target unmutated BCR-ABL in the nanomolar range as well as mutated BCR-ABL, 

with the exception of the T315I mutation. The bosutinib versus imatinib in newly 

diagnosed CP-CML BELA trial revealed that the rate of CCyR was similar between 

bosutinib (70%) and imatinib (68%) at twelve months. However, the MMR rate was 

superior in the bosutinib-treated group (41%) compared to imatinib (27%) (113). 

Importantly, a phase I/II study demonstrated that bosutinib induced MCyR in 

approximately 60% of CP-CML patients resistant or intolerant to imatinib. This 
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response was seen for all types of point mutations, apart from T315I (114). In 

2012, bosutinib was approved as a second-line therapy for CP-CML patients with 

resistance or intolerance to previous TKI therapy (115).  

Ponatinib- 3rd generation 

The search for inhibitors that target the T315I mutation was finally successful with 

the development of the pan-BCR-ABL inhibitor ponatinib in 2012. In vitro studies 

demonstrated that ponatinib inhibited proliferation of leukaemic cells carrying 

native and mutated BCR-ABL with respective IC50 values of 0.5 nM and 36 nM (116). 

However, phase II clinical trials demonstrated that ponatinib, while being 

effective in CP-CML patients carrying the T315I mutation, led to increased 

cardiovascular risk (117, 118). As a result, the planned phase III trial that aimed 

to compared imatinib to ponatinib was stopped and ponatinib is now only 

indicated for the treatment of CML patients with the T315I mutations or for those 

who failed to respond to other available TKIs (118, 119). 

 

1.3.8 CML LSCs persistence 

Despite the emergence of TKI-resistance, some patients reach CMR and have 

undetectable levels of BCR-ABL transcripts. The Stop Imatinib (STIM) trial 

investigated the effect of imatinib discontinuation in CML patients that were in 

CMR for a minimum two years under imatinib treatment. Strikingly, more than 

half of the patients (58%) relapsed with CML within six months of imatinib 

discontinuation. Of note, all relapsed patients responded to reintroduction of TKI 

therapy, indicating that the relapsed CML is similar to the initial disease (120). 

Similarly, the Australian TWISTER study that used similar selection criteria of entry 

to the STIM study showed that less than half of the patients (47.1%) were free of 

relapse at 24 months (121). In addition, subsequent studies demonstrated that 

CML LSCs could still be detected in CML patients with deep molecular response 

under TKI treatment (122). 

While these studies showed that TKI therapy could be safely stopped in some 

cases, they as well demonstrated the persistence of CML LSCs that are at the origin 

of a molecular relapse in approximately half of the patients. This means that these 

patients will need to be treated with TKIs all their life to prevent CML relapse. 
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Importantly, these trials were performed in the best-TKI responders, indicating 

that the real percentage of CML patients requiring life-long therapy is far higher 

than the 50% observed in clinical studies.  

Accordingly, many in vitro studies have demonstrated that CML LSCs are not 

addicted to BCR-ABL activity and therefore not eliminated by TKI therapy (Fig. 

1.3) (123-127). Corbin et al. demonstrated initially that CML LSCs were able to 

survive TKI therapy despite equivalent inhibition of BCR-ABL activity in both 

differentiated and primitive cells (123). Moreover, quiescent primitive CML cells 

survive imatinib treatment at a concentration 10 times higher than the reported 

inhibitory concentration of differentiated cells (125). Additionally, Hamilton et 

al. showed that prolonged treatment with the potent ABL kinase inhibitor 

dasatinib, combined with absence of growth factors, is not sufficient to target 

primitive CML LSCS despite complete inhibition of BCR-ABL tyrosine kinase activity 

(126).  

Put together, these studies demonstrated that CML LSCs are inherently resistant 

to TKIs and thus, new therapeutic strategies targeting BCR-ABL independent 

signalling pathways may be needed to effectively eliminate them.  

Many studies have been investigating combinational approaches of TKIs with other 

agents targeting survival pathways of CML LSCs. For instance, Zhang B et al. 

demonstrated that imatinib in combination with histone deacetylases inhibitors 

can target quiescent CML cells in vitro and CML LSCs in a humanised mouse model 

(128). Another study showed that inhibition of ALOX5, an enzyme that catalysed 

the transformation of fatty acid into leukotrienes, was primordial for CML LSCs 

survival and prolonged survival of leukaemic mice (129). Perturbation of the 

Hedgehog pathway by loss of Smoothened (SMO) was as well demonstrated to 

eliminate CML LSCs (130). As a result, a phase I clinical trial was initiated to assess 

the safety and efficacy of imatinib with a SMO inhibitor in combination with 

dasatinib in CP-CML patients. However, the reported toxicity of the SMO inhibitor 

combined with its lack of clinical efficacy was not in support for further 

investigation and its use in CP-CML (131). Another study demonstrated that CML 

LSCs are sensitive to pioglitazone-mediated peroxisome proliferator-activated 

receptor alpha (PPAR-α) activation. Moreover, pioglitazone treatment in 

combination with imatinib led to sustained CMR in CML patients, albeit this was 
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performed in only three patients (132). Interestingly, in a cohort of twenty-four 

CP-CML patients treated with the combination of pioglitazone and imatinib, 56% 

achieved MR(4.5) while less than half (21%) were estimated to reach the same 

outcome with imatinib alone (133). More recently, Holyoake and colleagues 

showed that Tumour protein 53 (TP53) activation combined with MYC inhibition is 

able to eliminate CML LSCs (134). However, this combination of treatment does 

not include a TKI, the current standard care for CML management; therefore, this 

new approach might be disregarded in TKI-responders CP-CML patients. 

While many in vitro and preclinical studies have uncovered new strategies to 

target CML LSCs, so far they were not translated to the clinic and patients are still 

in need of an effective strategy to eradicate CML LSCs. 

 

 

Figure 1. 3 Persistence of CML LSCs following imatinib treatment. 

(Left) BCR-ABL promotes proliferation of CML cells. (Right) Upon imatinib treatment, normal 
haematopoiesis is restored but CML LSCs persist and are the origin of CML relapse upon treatment 
discontinuation.  
Adapted from (111). 
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1.4 Metabolism and HSC fate 
 

1.4.1 Metabolism at a glance 

Glycolysis is a series of ten metabolic steps that converts one molecule of glucose 

into two molecules of pyruvate, generating two molecules of ATP and NADH. 

Glucose enters the cells by specific transporters from the GLUT family and once 

intracellular, glucose is rapidly phosphorylated into glucose-6-phosphate (Glc-6P) 

by the hexokinases (HKs, Fig. 1.4). Glc-6P can either enter the pentose phosphate 

pathway (PPP) to generate reducing equivalents and precursors for nucleotides 

biosynthesis or be isomerised into fructose-6-phosphate (Fru-6P) by 

phosphoglucose isomerase (PGI). The last step of glycolysis is the formation of 

pyruvate by pyruvate kinase.  

Pyruvate can have two distinct fates: it is either reduced to lactate by lactate 

dehydrogenase (LDH) or enters the mitochondria where it will be oxidised to 

acetyl coenzyme A (coA) by pyruvate dehydrogenase (PDH) to fuel the 

tricarboxylic acid (TCA) cycle (Fig. 1.4). The TCA cycle is a hub for metabolism 

and integrates fatty acid, carbohydrate and amino acid metabolism. For instance, 

fatty acid oxidation (FAO) generates acetyl coA that can be oxidised in the TCA 

cycle. Moreover, the TCA cycle is central to energy production and a source of 

biosynthetic precursors; it is therefore crucial to control the concentrations of 

TCA cycle metabolites. This is achieved by anaplerotic reactions that maintain 

homeostasis and replenish TCA cycle metabolites. For instance, reactions 

catalysed by pyruvate carboxylase (PC) and glutamate dehydrogenase ensure the 

replenishment of oxaloacetate and α-ketoglutarate respectively. Importantly, the 

TCA cycle generates reduced NADH and FADH2 that will be used by the electron 

transport chain (ETC). The ETC consists of proteins localised in the inner 

membrane of the mitochondria that are organised as four large complexes (I, II, 

III and IV). Together with ATP synthase or complex V, they form the oxidative 

phosphorylation (OXPHOS) machinery. NADH and FADH2 produced during the TCA 

cycle are then oxidised and transfer their electrons to complex I and II 

respectively. The electrons are subsequently transferred from one complex to 

another by a series of oxidative-reduction reactions which releases energy that is 
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used to pump proton from the matrix to the intermembrane space. The resulting 

proton gradient is used by ATP synthase to generate ATP (135).  

 

 

 

 

Figure 1. 4 Overview of cellular metabolism. 

HK, hexokinase; PGI, phosphoglucose isomerase; PFK1/2, phosphofructokinase 1 and 2; TIGAR, 
TP53-inducible glycolysis and apoptosis regulator; PC, pyruvate carboxylase; FAO, fatty acid 
oxidation; GLS, glutaminase; GDH, glutamate dehydrogenase; OXPHOS, oxidative phosphorylation. 

  

https://en.wikipedia.org/wiki/TP53-inducible_glycolysis_and_apoptosis_regulator
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1.4.2 Use of stable isotopes as tracers 

Metabolomics is ‘the quantitative measurement of the dynamic multiparametric 

response of living systems to pathophysiological stimuli or genetic modification’ 

or in other words, the study that aims to identify and quantify metabolites within 

a given system (cells, fluids, tissue) (136). Metabolic profiling is performed by two 

major approaches: nuclear magnetic resonance (NMR) and mass spectrometry (MS) 

in combination with a chromatographic separation method. As such, the use of 

liquid chromatography (LC) enables the separation of metabolites based on their 

physical properties. 

Metabolomics often uses stable isotopes as tracers as it allows the exploration of 

the dynamic nature of metabolism in a robust manner. By definition, isotopes only 

differ in their number of neutrons and can therefore be distinguished by their 

atomic mass. Many isotopic tracers have been used in metabolic studies, including 

fully labelled glucose (13C6-glucose), fully labelled palmitate (13C16-palmitate) and 

fully labelled glutamine (13C5-glutamine) in which the natural occurring 12C carbon 

atoms haven been replaced with 13C atoms. This brings a mass shift of one Dalton 

per 13C carbon atom that is detectable by mass-spectrometry and allows tracing 

the fate of a given metabolite into various metabolic pathways and assessment of 

metabolic fluxes. 

 

1.4.3 Metabolic regulation of HSCs  

One long lasting model states that quiescent HSCs reside within hypoxic regions 

of the BM and rely principally on glycolysis for energy production (137-140). 

Moreover, the low oxygen tension found in the BM niche is believed be crucial for 

HSC quiescence (137, 138). Indeed, in vitro culture of cord blood HSCs under 

hypoxic condition has been shown to sustain their quiescence and stem-cell 

potential in comparison to normoxia (141). Moreover, several studies have shown 

that HSCs and progenitor cells (HSPCs) retained high level of the hypoxic probe 

pimonidazole in situ (142, 143). In contrast, recent advances in imaging 

techniques have suggested that HSPCs are principally found in heterogeneous 

perivascular regions (sinusoidal or periarterial) and that quiescent HSPCs face 
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higher oxygen levels than cycling counterparts, suggesting that hypoxia is not the 

only determinant for their proliferative status (144, 145). 

Despite these controversies, the current consensus is that HSCs display a hypoxic 

profile that dictates their glycolytic phenotype. Accordingly, murine HSCs exhibit 

elevated levels of glycolytic intermediates, notably fructose-1,6-bisphosphate and 

pyruvate, and increased pyruvate kinase activity compared to differentiated 

progenitor cells (139, 146). Moreover, several studies have indicated that low 

mitochondrial metabolism, by limiting oxidative stress, acts as a gatekeeper of 

HSCs quiescence (146, 147). For instance, Takubo et al. demonstrated that 

pharmacological inhibition of pyruvate oxidation, resulting in inhibition of 

mitochondrial metabolism, maintained the stem cell potential of HSCs even after 

four weeks of in vitro culture (146).  

Despite the glycolytic phenotype of HSCs at steady-state, several studies 

highlighted the importance of mitochondrial metabolism, particularly upon HSCs 

differentiation. Indeed, impairment of mitochondrial metabolism by deletion of 

the mitochondrial tyrosine phosphatase PTPMT1 in haematopoietic cells resulted 

in a block of differentiation, haematopoietic failure and accumulation of HSCs by 

40-fold. The decrease in mitochondrial metabolism was shown to be mediated by 

high substrates levels of phosphatidylinositol phosphates (PIPs) that directly 

activated mitochondrial uncoupling protein 2 (UCP2) and prevented pyruvate 

entry into the TCA cycle (148). Interestingly, a recent study investigating the fate 

of old and new mitochondria upon division of HSCs revealed that daughter cells 

that kept stem cell traits received more newly-formed and less old mitochondria 

compared to cells that lost their stem cell potential, suggesting the importance 

of maintaining healthy mitochondria in HSCs (149). 

The role of FAO in controlling HSC maintenance and fate has as well been put in 

the limelight in recent years. It was first shown that deletion of the tumour 

suppressor gene and promyelocytic leukaemia protein (PML) results in HSCs 

exhaustion by loss of quiescence. Moreover, PML was found to be essential for CML 

LSCs survival in humanised mouse models (150). A couple of years later, Ito et al. 

demonstrated that PML regulated HSC cell fate by acting on PPAR-δ and FAO. As 

such, deletion of PML or PPAR-δ, as well as pharmacological inhibition of FAO, 

resulted in the symmetric division of HSCs (giving rise to two committed daughter 

http://www.sciencedirect.com/science/article/pii/S1934590912007102#bib7
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cells) while activation of PPAR-δ promoted asymmetric division, generating one 

committed and one self-renewing HSC (151).  

It can be puzzling to reconcile the idea that HSCs need to sustain low levels of 

mitochondrial metabolism with their parallel requirements for FAO, as FAO feeds 

the TCA cycle with acetyl coA. It has been suggested that the FAO-derived acetyl 

coA and oxaloacetate are used to generate citrate. Once exported in the 

cytoplasm, citrate can be converted into malate in two enzymatic steps, which 

then produces NADPH, by malic enzyme. Some have speculated that the reducing 

agent NADPH, by preventing oxidative stress, could be essential for stem cell 

maintenance. However, FAO is not anaplerotic and as such, it does not support a 

net production of oxaloacetate or citrate. Moreover, the prediction is that it would 

be far more effective to utilise glucose at the PPP rather than letting FAO support 

malic enzyme activity to generate NADPH. It is therefore unlikely or unclear how 

FAO contributes to NAPH production through the proposed mechanisms. A more 

plausible idea is that elevated levels of acetyl coA produced from FAO can regulate 

HSC fate through epigenetic mechanism and modification of histone acetylation. 

Nonetheless, the aforementioned points remain speculative and further 

investigations are required to determine the precise mechanisms between FAO 

and HSC regulation. 

Altogether, these studies demonstrate that metabolic regulation of HSC is 

primordial for their maintenance and suggest that targeting selective metabolic 

pathways can reprogram HSC fate. 

 

1.5 Cancer Metabolism 

1.5.1 Metabolic reprogramming of cancer cells 

Quiescent cells such as HSCs require energy at homeostasis to maintain 

housekeeping functions such as securing cell membrane potentials and protein 

synthesis. However, the demand in energy and nutrients increases significantly 

upon cellular division. In order to proliferate, cells need to double their biomass 

and replicate their genome, processes that not only require energy but as well 

nucleotides, proteins and lipids. One example of metabolic remodelling that 

occurs during proliferation is the activation of T cells. While quiescent T cells 
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display low rate of energy metabolism, activated/proliferating T cells rewire their 

metabolism and engage in anaerobic glycolysis (152-154). Similarly, cancer cells 

need to adapt their metabolism, notably by increasing nutrients uptake and 

metabolism, to sustain their uncontrolled proliferation (155). In fact, the 

metabolism of cancer cells is not only an indirect consequence of proliferation as 

it can be as well directly reprogrammed by oncogenic signalling (156, 157). For 

instance, activation of the PI3K/AKT pathway, commonly observed in cancer, 

stimulates aerobic glycolysis by increasing the expression GLUT transporters and 

activating HK (158-160). Similarly, the frequently dysregulated oncogene MYC has 

been shown to regulate glutamine as well as glucose metabolism and induce 

mitochondrial biogenesis (161-163). However, the molecular and biochemical 

mechanisms leading to the altered metabolism of cancer cells are often complex 

and involve multiple pathways (164). 

 

1.5.2 The Warburg effect and glycolysis in cancer  

In the 1920s, Otto Warburg described that cancer cells preferentially metabolise 

glucose into lactate even in presence of oxygen, a process commonly refer to as 

‘aerobic glycolysis’ or the ‘Warburg effect’ (165). It was initially proposed that 

dysfunctional mitochondria in cancer cells were the reasons for this glycolytic 

phenotype and even the cause of cancer; however, mitochondria were since then 

shown to be active in the majority of tumour types (166, 167). The increased 

glycolytic phenotype has been utilised in the clinic with 18F-deoxyglucose positron 

emission tomography (FDG-PET), a tracer that enables in vivo imaging of solid 

tumours (168). 

In line with Warburg’s initial observation, dysregulation in the expression and/or 

activity of glycolytic enzymes have since then been reported in many experimental 

models of cancer. For instance, the transcription factor hypoxia-inducible factor 

1-alpha (HIF-1α), induced by hypoxia and found increased in solid tumours, 

transactivates genes encoding for glycolytic enzymes such as phosphofructokinase 

(PFK1) and HK (169-172). Moreover, it induces the expression of 6-phosphofructo-

2-kinase/fructose-2,6-biphosphate 3 (PFKFB3), that converts Fru-6P into the 

allosteric PFK1 activator fructose-2,6-biphosphate (Fru-2,6-BP, Fig. 1.4) (173). 

This regulation was suggested to play a significant role in the glycolytic phenotype 
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of cancer cells (174). TP53 has as well been shown to control glycolysis by lowering 

the intracellular levels of Fru-2,6-BP via TP53-induced glycolysis and apoptosis 

regulator (TIGAR) (175). Consequently, loss of TP53 function can indirectly 

promote glycolysis. Another example of the glycolytic upregulation in cancer cells 

is the increased expression of LDH-A observed in many types of solid tumours, 

which is essential to maintain elevated glycolytic flux as it replenishes the NAD+ 

pool (176-178). 

 

1.5.3 Mitochondrial metabolism in cancer 

As mentioned before, Warburg and others postulated that defects in mitochondrial 

functions were the cause of aerobic glycolysis. However, a plethora of studies 

have since then demonstrated that most cancer cells not only exhibit proper 

functioning mitochondria but as well require mitochondrial ATP production for 

their growth and survival (179-181).  

In addition to glucose, oxidation of fatty acids and amino acids sustain 

mitochondrial metabolism in cancer cells by providing precursors to the TCA cycle. 

Indeed, glutamine, the most abundant amino acid in the blood, is essential for 

TCA anaplerosis as well as nitrogen supply for nucleotide and amino acid 

biosynthesis. Interestingly, increased glutamine consumption has been reported 

in various cancer models. For instance, Wise et al. and Gao et al. showed that 

MYC expression induced a transcriptional program that promoted glutamine 

metabolism and uptake (163, 182). They further demonstrated that glutamine was 

vital for sustaining the pool of TCA cycle intermediates and MYC-expressing cells 

essentially became addicted to glutamine. Similarly, some oncogenes have been 

shown to drive mitochondrial biogenesis and metabolism. For instance, a study by 

Vazquez et al. demonstrated that the melanoma oncogene microphthalmia-

associated transcription factor (MITF) induced peroxisome proliferator-activated 

receptor gamma coactivator 1-alpha (PGC1-α) expression, promoting 

mitochondrial biogenesis and OXPHOS in a subset of melanoma cells (183).  

The importance of FAO for cancer cell function and survival has as well been 

demonstrated in recent studies. In the cytoplasm, fatty acids are conjugated to 

carnitine by the rate-limiting enzyme carnitine palmitoyltransferase 1 (CPT1), 
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which allows their transport across the mitochondrial membrane. Once in the 

mitochondria, the catabolism of fatty acids generates acetyl coA that can enter 

the TCA cycle to generate NADH and FADH2 for mitochondrial ATP production. 

Interestingly, CPT1 is overexpressed in numerous cancer and has been shown to 

confer protection to cancer cells against metabolic stress, such as glucose and 

oxygen restriction (184, 185). 

Importantly, the increase in OXPHOS observed in some cancer cells has been 

associated with a dependency to this pathway, rendering cancer cells particularly 

sensitive to mitochondrial inhibition. This has been shown in models of AML, 

pancreatic cancer, chemo-resistant prostate cancer as well as diffuse large B-cell 

lymphoma (DLBCL) (186-190). Indeed, N. Danial and colleagues demonstrated in a 

recent study that a subset of DLBCL, resistant to B-cell receptor inhibition, 

displayed a transcriptional signature of OXPHOS genes and targeting this pathway 

was selectively toxic for cancer cells (191, 192).  

In contrast to the aforementioned points, some hereditary forms of cancer are 

associated with a loss in mitochondrial function. Indeed, mutations and loss of 

function of the TCA cycle enzymes succinate dehydrogenase (SDH) and fumarate 

hydratase (FH) are associated respectively with paraganglioma and renal cell 

cancer (193-196). Loss of function of these enzymes leads to a truncated TCA 

cycle, mitochondrial dysfunction and a build-up of their respective enzymatic 

substrate: succinate for SDH loss and fumarate for FH loss. Consequently, prolyl 

hydroxylase domain (PHD) enzymes are inhibited and oncogenic HIF-1 is stabilised, 

leading to a pseudo-hypoxic and hypermethylated phenotype (197-199). 

Additionally, mutation in isocitrate dehydrogenase (IDH), observed in subsets of 

glioma and AML, results in gain of enzymatic function and generates 2-

hydroxyglutarate (2HG) from α-ketoglutarate whereas the unmutated IDH 

catalyses the conversion of isocitrate to α-ketoglutarate. The resulting 

accumulation of the oncometabolite 2HG has been suggested to contribute to 

tumourigenesis, albeit the mechanisms have not been fully uncovered yet (200). 

Interestingly, two clinical trials demonstrated that IDH inhibition with enasidenib 

(Idhifa) resulted in the complete remission, defined as less than 5% of blasts in 

the BM and no evidence of disease, in 19% of patients with relapsed/refractory 

AML and IDH mutation (201). In August 2017, the FDA approved Idhifa for the 
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treatment of patients with relapsed/refractory AML who harbour the IDH mutation 

(202). 

 

1.5.4 Targeting metabolic vulnerabilities of cancer cells 

Given that cancer cells harbour a dysregulated metabolism, targeting metabolic 

vulnerabilities became an appealing strategy for anticancer therapy. Several anti-

metabolic agents have actually been used for the past decades in cancer 

treatment. For instance, the class of anti-metabolites analogues of nucleosides, 

that includes 5-flurouracil, gemcitabine and fludarabine, impair DNA synthesis and 

have been proven effective in a variety of cancer.  

Because normal cells share similar metabolic pathways with cancer cells for ATP 

production, it has long been presumed that targeting the metabolism of cancer 

cells would have significant side effects. Indeed, the use of the chemotherapeutic 

agents described above often have significant adverse effects as they target the 

same metabolic pathways/enzymes in normal cells. Nonetheless, cancer cells 

have been shown to become addicted to certain metabolic pathways and their 

inhibition could offer a therapeutic window. Similarly, the identification of 

metabolic pathways that are redundant in normal cells and not in cancer cells 

could prevent unwanted toxicity. One successful example of this is the use of L-

asparaginase in the clinic to selectively target ALL cells. This selectivity stems 

from the fact that ALL cells are auxotroph for asparagine and thus particularly 

sensitive to L-asparaginase (which breaks down asparagine in the blood), whereas 

normal cells can synthesise asparagine de novo from aspartic acid and glutamine 

by asparagine synthetase (203, 204). Finally, finding complementary, and 

potentially synergistic drug combination, might be a strategy to reduce the dose 

of each single agent and prevent undesirable side effects. 

 

1.5.4.1 Targeting glycolysis and lactate metabolism 

The observations that cancer cells display high rates of glycolysis, particularly in 

a hypoxic environment, led to the hypothesis that cancer cells are dependent on 

this pathway for ATP production. As such, most glycolytic enzymes have been 

regarded as potential therapeutic targets for cancer treatment. 
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2-deoxy-glucose (2-DG) is a synthetic structural analogue of glucose that acts as a 

glucose competitor at the HK level. Intracellularly, 2-DG is phosphorylated into 2-

DG-P by HK. However, lack of the hydroxyl group prevents 2-DG-P to be further 

metabolised which results in its accumulation inside the cell and a decrease in 

glycolysis and consequently a drop in ATP levels. Many experimental models of 

cancer displayed sensitivity to 2-DG in vitro, particularly in hypoxic condition 

(205). In vivo, 2-DG did not seem to affect tumour growth as a single agent but 

sensitised pancreatic, osteosarcoma and non-small-cell lung-derived tumours to 

chemo- and radiotherapy (206).  

Given that LDH-A catalyses a reaction essential to maintain elevated glycolysis, 

many studies have investigating the anticancer potential of LDH-A inhibition. In 

vitro, the proliferation of human hepatocellular carcinoma cells and colony-

forming potential of MYC transformed cells is significantly impaired by targeting 

LDH-A (207). Similarly, pharmacological and/or genetic inhibition of LDH-A 

reduced tumourigenicity in many xenograft models, including human 

hepatocellular carcinoma, non-small-cell lung carcinoma (NSCLC), esophageal 

squamous cell carcinoma and breast cancer (208-211). However, no LDH-A 

inhibitors have been developed so far for human use.  

In addition to glycolytic inhibitors, preventing the export of the glycolytic-derived 

lactate has been considered as a therapeutic approach in cancer. Highly glycolytic 

cells produce large amounts of lactate that need to be excreted outside the cells 

by monocarboxylate transporters (MCTs). Four MTCs proton-linked isoforms 

(MCT1-4) transporting lactate across the plasma membrane have been identified. 

Interestingly, while most tissue express MCT-1 at low levels, several solid tumours 

display high expression of MCT-1, suggesting a potential therapeutic window for 

targeting this transporter. Moreover, MCT-1 inhibition impaired tumour growth in 

preclinical cancer models (212, 213). Currently, a phase I study is recruiting 

patients with advanced solid tumours and DLBCL to test the toxicity, and later the 

effect, of pharmacological inhibition of MCT-1 with AZD3965 (214). However, MCT-

1 has limited efficacy against some tumours, potentially because of the 

compensatory expression of MCT-4 in hypoxia or the ability of some cancer to 

engage in oxidative metabolism (212, 213). 
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1.5.4.2 Targeting mitochondrial metabolism 

The failure of glycolytic inhibitors to significantly impair tumour cell growth in 

vivo has been associated with the ability of cancer cells to switch from a glycolytic 

phenotype to OXPHOS for ATP production. Moreover, some cancers display high 

rates of mitochondrial metabolism at steady-state, suggesting that inhibition of 

oxidative metabolism could be a therapeutic strategy in these tumours. Similar to 

glycolysis, normal cells use OXPHOS to generate ATP, and it is important to 

consider that a complete inhibition of this pathway could be detrimental towards 

normal cells. However, the fact that metformin and the antibiotic tigecycline are 

currently used in the clinic together with their reported ability to inhibit 

mitochondrial ATP production in vitro and in preclinical models (see below) 

indicates that inhibition of mitochondrial metabolism can be achieved without 

causing major toxicity in normal cells.  

Epidemiological studies have shown that diabetic patients treated with metformin 

have a lower risk of developing cancer compared to patients treated with other 

antidiabetic agents (215). In vitro and in vivo studies have confirmed the 

anticancer activity of metformin and demonstrated that part of this effect is 

mediated by inhibition of mitochondrial complex I activity (216-218). Currently, 

there are numerous clinical studies investigating whether metformin can sensitise 

cancer cells to standard treatment across multiple tumour types (219). Similarly, 

a more potent analogue of metformin, phenformin, has proven effective in 

targeting cancer cells, notably KRAS-driven NSCLC with loss of LKB1 and in 

combination with BRAF inhibitors in melanoma harbouring the BRAFV600E mutation 

(220, 221). However, phenformin is more toxic than metformin and has therefore 

been withdrawn from the market. Future studies will need to assess whether the 

greater potential antitumoural activity of phenformin counterweights for its 

increased toxicity in comparison to metformin. 

Importantly, Škrtić et al. presented an innovative approach to target AML cells by 

inhibiting mitochondrial metabolism with an FDA-approved antibiotic. In this 

study, they initially performed a drug screening and found that the antibiotic 

tigecycline impaired the survival of AML cells lines and patient-derived cells in 

vitro and in a human xenograft mouse model. They further demonstrated that 

tigecycline acted by inhibiting the translation of mitochondrial encoded proteins, 
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which resulted in a decrease in mitochondrial function. Furthermore, they showed 

that AML cells were dependent on mitochondrial metabolism and consequently 

particularly sensitive to tigecycline treatment (187). This study was a robust 

example of how targeting mitochondrial metabolism can be a potential strategy 

exploited for cancer treatment. 

Another approach to target mitochondrial oxidative metabolism is to inhibit 

glutamine catabolism. As mentioned previously, glutamine is a major anaplerotic 

source to maintain the levels of TCA cycle metabolites and support their use for 

biosynthetic purposes. Inside the cell, glutamine is converted into glutamate by 

glutaminase (GLS), followed by the conversion of glutamate into the TCA cycle 

intermediate α-ketoglutarate by glutamate dehydrogenase or aminotransferases. 

Several in vitro studies have demonstrated that glutamine is vital for MYC and 

KRAS-driven cancer cells, and thus, inhibition of glutamine catabolism has been 

proposed as a new approach for cancer treatment (181, 182, 222, 223). 

Accordingly, the two small inhibitors of GLS, compound 968 and bis-2-(5-

phenylacetamido-1,2,4-thiadiazol-2-yl) ethyl sulphide (BPTES) have proven 

effective in reducing tumour growth in pre-clinical cancer models (224).  

Finally, recent studies have demonstrated that targeting FAO to reduce 

mitochondrial metabolism can be of therapeutic interest. Indeed, 

pharmacological inhibition of FAO with the CPT1 inhibitor etomoxir markedly 

impaired growth of MYC-expressing triple-negative breast tumours in mice (225). 

Etomoxir was as well found to sensitise primary AML cells to apoptosis induction 

with the anti-apoptotic inhibitor ABT-737 and potentiated the effect of cisplatin 

in an in vitro model of colon cancer (226, 227). Noteworthy, one clinical trial 

assessing the effect of FAO inhibition in patients with congestive heart failure 

revealed that etomoxir was hepatotoxic in some patients (228). It would therefore 

be interesting to test the efficacy of safer FAO inhibitors in the future, such as 

the CPT1 inhibitor perhexiline that is approved for human use in Australia. 
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1.6 Aims 

In this study, we first aimed to uncover metabolic alterations specific to CML LSCs 

by performing metabolomic analysis of patient-derived CML LSCs in comparison to 

normal counterparts and patient-matched differentiated leukaemic cells. 

The second aim of this project was to pharmacologically target dysregulated 

metabolic pathway(s) and assess drug efficacy and selectivity against CML LSCs. 
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Chapter 2 Material and Methods 

2.1 Material 

2.1.1 General reagents 

13C16-labelled palmitate Cambridge Isotope Laboratories 408-35-5 
13C5-labelled glutamine Cambridge Isotope Laboratories 56-85-9 
13C6-labelled glucose Cambridge Isotope Laboratories 50-99-7 

Ammonium acetate Sigma A1542 

Ammonium persulfate Sigma 248614 

Antimycin A  Sigma A8674 

Bis-acrylamide 30%  Severn Biotech Ltd 20-2100-10 

BIT 9500 Serum Substitute Stem Cell Technologies  9500 

Bovine Serum Albumine (BSA) 

Fatty Acid Free Sigma A8806 

CD34 MicroBead Kit, human Miltenyi Biotec 130-046-702 

Cell Tak Thermo Fisher Scientific 10317081 

CellTrace Violet  Life technologies  C34557 

Citrate Solution Sigma  S5770 

Collagen I, Coated Plate, 24 well Thermo Fisher Scientific A1142802 

DAPI Sigma  D9542 

Dimethyl Sulfoxide (DMSO) Fisher Scientific  D/4121/PB08 

DMEM  Life technologies  21969035 

DNase I Solution (1 mg/mL) Stem Cell Technologies  7900 

ECL full range 

Rainbow molecular weight marker GE Healthcare LS RPN800E 

ECL Western Blotting substrate  Fisher Scientific  10005943 

Empty Gel Cassette Combs  

1.5 mm, 10 well Life technologies  NC3510 

Empty Gel Cassettes, mini, 1.5 mm Life technologies NC2015 

Ethanol Chemical Stores  L/278/01 

Ethylenediaminetetraacetic acid  

(EDTA) Sigma EDS 

Fast SYBR® Green Master Mix  Applied Biosystems 4385612 

FCCP Sigma  C2920  

FCCP  Sigma  C2759 

Foetal bovine serum (FBS) GIBCO 10270 

Galactose Sigma  G5388 

Glycine Sigma G8898 

HBSS- W/O PHENOL RED  Life technologies  14025100 

HCL Sigma  258148 

Human Flt3-Ligand PeproTech 300-19 

Human GM-SCF PeproTech 300-03 

Human IL-3 PeproTech 200-03 

Human IL-6 PeproTech 200-06 

Human LIF PeproTech 300-05 
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Human MIP-1α PeproTech 300-08 

Human SCF PeproTech 300-07 

Human Serum Albumin National Blood Transfusion Service N/A 

Hydrocortisone Sigma H0888 

Hydroxychloroquine sulfate Abcam  ab120827 

Imatinib LC Laboratories I-5508 

Imatinib Mesylate LC Laboratories I-5508 

IMDM Life technologies 21980 

Isopropanol Chemical Stores  L/585 

L-Glutamine 100x (200 mM) Gibco 25030 

Magnesium Chloride Sigma 208337 

Magnesium Chloride powder Sigma  208337 

Metformin hydrochloride Sigma  M0605000 

Methanol Chemical Stores  L/425/IE 

Methanol (HPLC grade) Fisher Scientific  67-56-1 

MethoCult™ H4034  Stem Cell Technologies  4034 

MicroAmp® Fast Reaction Tubes  Thermo Fischer Scientific 4358297 

MitoTracker Green FM Life technologies M-7514 

Monoclonal anti-actin ANTIBODY  Sigma  A4700 

Mouse IL-3  Biolegend 575504 

Mouse IL-3  Biolegend 575504 

Mouse IL-6 Biolegend 575704 

Mouse IL-6 Biolegend 575704 

Mouse SCF Biolegend     579704 

Myelocult H5100 Stem Cell Technologies  5150 

Nitrocellulose membrane Sigma GERPN303D 

NuPAGE™ LDS Sample Buffer Thermo Fischer Scientific NP0007 

Oligomycin Sigma  O4876 

PBS Homemade N/A 

PE Homemade N/A 

Penicillin-Streptomycin GIBCO 15140 

Phenazine methosulfate (PMS) Sigma P9625 

Phenformin hydrochloride Sigma P7045 

PicoPure™ RNA Isolation Ki Thermo Fisher Scientific KIT0204 

Pierce™ BCA Protein Assay Kit  Thermo Fischer Scientific 23225 

Pierce™ Bovine Serum Albumin  

Standard Ampules, 2 mg/mL Thermo Fischer Scientific 23209 

Ponceau Sigma  P7170 

Potassium bicarbonate Sigma 60339 

Pre-Separation Filters (30 µm)  Miltenyi Biotec 130-041-407 

Protease inhibitors cocktail  Sigma P8340 

Protein assay kit, BCA  Fisher Scientific  13276818 

RNeasy Mini Kit  Qiagen 74106 

Rotenone Sigma  R8875 

RPMI 1640 Medium, no glutamine Life technologies 3187005 

SCF CARRIER FREE Biolegend 579704 

Seahorse Base Medium Agilent Technologies 102353 

Separation columns Miltenyi Biotec 130-042-401 

Sodium Azide Sigma  13412 

http://www.miltenyibiotec.com/en/products-and-services/macs-cell-separation/cell-separation-reagents/hematopoietic-stem-cells/cd34-microbead-kit-human.aspx
http://www.sigmaaldrich.com/catalog/product/sigma/p8340
http://www.miltenyibiotec.com/en/products-and-services/macs-cell-separation/cell-separation-reagents/hematopoietic-stem-cells/cd34-microbead-kit-human.aspx
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Sodium bicarbonate (NaHCO3) Sigma S5761 

Sodium cloride (NaCl) Sigma  S5886 

Sodium dodecyl sulfate (SDS) Sigma  L5750 

Sodium hydroxide (NaOH) Sigma S0899 

Sodium pyruvate Gibco 11360070 

Streptavidin, Pacific Blue  Life technologies S-11222 

SuperScript™ VILO™ Master Mix  Thermo Fisher Scientific 11755050 

Tetramethylenediamine (TEMED) Sigma  T9281 

Tigecycline LKT Laboratories T3324 

TMRM Life technologies T-668 

Tris  Sigma  T1378 

Triton X-100 Sigma  T9284 

Trypsin 2.5% 10X Gibco 15090 

Tween-20 Sigma P2287 

Western Strip Buffer Thermo Fischer Scientific 46430 

XF Calibrant Seahorse Bioscience  

XTT Sigma X4626 

β-mercaptoethanol Sigma M3148 

 

2.1.2 Flow cytometry reagents 

4',6-diamidino-2-phenylindole (DAPI)                D9542 Sigma 

7-AAD staining solution 559925 BD Biosciences 

Annexin V (APC) 550475 BD Biosciences 

Annexin V (FITC)  640906 BD Biosciences 

APC anti-mouse CD45 559864 BD Biosciences 

APC anti-human CD34        555824 BD Biosciences 

APC anti-mouse CD150  115910 Biolegend 

APC anti-mouse c-kit 135107 Biolegend 

APC anti-mouse Gr-1 108412 Biolegend 

Biotin Rat anti-mouse B220 553086 BD Biosciences 

Biotin Rat anti-mouse CD4 553649 BD Biosciences 

Biotin Rat anti-mouse CD5 553019 BD Biosciences 

Biotin Rat anti-mouse CD8a 553029 BD Biosciences 

Biotin Rat anti-mouse GR-1 553125 BD Biosciences 

Biotin Rat anti-mouse Mac-1 553309 BD Biosciences 

Biotin Rat anti-mouse TER119 553672 BD Biosciences 

Celltrace Violet C34557 Life Technologies 

FC block 553142 BD Pharmigen 

FITC anti-human CD45 555842 BD Biosciences 

FITC anti-mouse CD45.1 110706 Biolegend 

FITC anti-mouse TER-119 116206 Biolegend 

Mitotracker green (MTG)                                  M-7514 Life Technologies 

Pacific Blue™ anti-mouse CD45.2 109820 Biolegend 

PE anti-human CD133 372803 Biolegend 

PE anti-mouse CD48 103406 Biolegend 

PE/Cy7 anti-mouse Sca 122514 Biolegend 

PE/Cy7 anti-mouse/human CD11b (Mac-1) 101216 Biolegend 
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PerCP anti-human CD38                 303520 Biolegend 

PerCP/Cy5.5 anti-mouse CD45.2                 109827 Biolegend 

Propidium Iodide P4170 Sigma 

Streptavidin, Pacific Blue  S-11222 Life technologies 

Tetramethylrhodamine, methyl ester               T-668 Life Technologies 

 

2.1.3 Western blot antibodies 

OXPHOS cocktail     Abcam              ab110413 

MT-CO2      Thermo Fisher Scientific      A-6404 

Anti-mouse HRP-linked   Santa Cruz                sc-516102 

       

2.1.4 Primers 

MT-CO1_F    CTTTTCACCGTAGGTGGCCT 

MT-CO1_R    AGTGGAAGTGGGCTACAACG 

MT-CO2_F   CCGTCTGAACTATCCTGCCC 

MT-CO2_R    GAGGGATCGTTGACCTCGTC 

18S_F     GTAACCCGTTGAACCCCATT  

18S_R     CCATCCAATCGGTAGTAGCG 

 

2.1.5 Primary cells 

Patient sample: age/gender/disease and state/BCR-ABL status 

CML 1: 63/M/CML Chronic Phase (CP)/BCR-ABL positive  

CML 2: 55/M/CML-CP/BCR-ABL positive  

CML 3: 61/F/CML-CP/BCR-ABL positive  

CML 4: 56/M/CML-CP/BCR-ABL positive 

CML 5: 56/F/CML-CP/BCR-ABL positive 

CML 6: 48/F/CML-CP/BCR-ABL positive 

CML 7: 58/M/CML-CP/BCR-ABL positive 

CML 8: 46/M/CML-CP/BCR-ABL positive 

CML 9: 30/M/CML-CP/BCR-ABL positive 

CML 10: 33/M/CML-CP/BCR-ABL positive 

CML 11: 28/F/CML-CP/BCR-ABL positive 

CML 12: 62/M/CML-CP/BCR-ABL positive 

CML 13: 50/M/CML-CP/BCR-ABL positive 

CML 14: 43/M/CML-CP/BCR-ABL positive 

CML 15: 69/M/CML-CP/BCR-ABL positive 

Non-CML 020: 60/M/mantle cell lymphoma/BCR-ABL negative 

Non-CML 026: 69/M/mantle cell lymphoma/BCR-ABL negative 

Non-CML 029: 66/M/Diffuse Large B-Cell lymphoma/BCR-ABL negative 
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Non-CML 031: 60/M/Diffuse Large B-Cell lymphoma/BCR-ABL negative 

 

2.1.6 Cell lines  

K562 and KCL22 cell lines were available in ‘house’. The murine IL-3 dependent 

pro-B cell line Ba/F3 and Ba/F3 p210, stably expressing the native p210 isoform 

of BCR-ABL, were a kind gift from Professor Junia Melo. M2-10B4 and S1/S1 stromal 

cells lines were a kind gift from the Terry Fox Laboratory (Vancouver, BC, 

Canada). All cell lines were tested for mycoplasma contamination. 

 

2.1.7 Equipment 

7500 Fast Real-Time PCR System Applied Biosystems 

MastercyclerTM PCR machine   Eppendorf UK Ltd 

FACSAria™ Fusion sorter    BD Biosciences 

FACSVerse™      BD Biosciences 

FACSCalibur™ Z6003 BD Biosciences 

Seahorse flux analyser XF96  Agilent Seahorse Technologies 

Q Exactive Orbitrap Mass Spectrometer     Thermo Fisher Scientific 

NanoDrop™ 2000 Spectrophotometer  Thermo Fisher Scientific 

NanoDrop™ 2000 Spectrophotometer  Thermo Fisher Scientific 

CASY cell counter and analyser  Roche Applied Science 

SpectraMax Plus 384  

Absorbance Microplate Reader 

Molecular Devices 

UltiMate 3000 HPLC system   Thermo Fisher Scientific 

 

2.1.8 Composition of tissue culture media, solutions and buffers 

RPMI+ 

RPMI 1640 500ml 

FBS Heat inactived 10% 

 

RPMI-Galactose 

RPMI no glucose  500ml 

FBS Heat inactived 10% 

Galactose (1M) 11.1 mM 

 

DMEM+ 

DMEM 500ml 

FBS Heat inactived 10% 

L-Glutamine 2 mM 

 

DMEM*1 for M2-10B4 

DMEM 500ml 
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FBS Heat inactived 10% 

L-Glutamine (200mM) 2 mM 

Hygromycin 62.5 μg/mL 

Geneticin G418 400 μg/mL 

 

DMEM*2 for S1/S1 

DMEM 500ml 

FBS Heat inactived 10% 

L-Glutamine (200mM) 2 mM 

Hygromycin 125 μg/mL 

Geneticin G418 800 μg/mL 

 

DAMP 

DNase I (2500U/ml) 2 ml 

Magnesium chloride (400X, 1.0M) 1.25 ml 

Trisodium citrate (0.155M) 53 ml 

Human Serum Albumin  

(20%, Scottish National Blood Transfusion Service) 25 ml 

PBS 419ml 

 

Serum free medium (SFM) 

BIT  25 ml 

Penicillin/Streptomycin (both 10,000U/ml) 1.25 ml 

2-mercaptoethanol (50 mM) 250 µl 

IMDM  97.25 ml 

SFM supplemented with physiological growth factors (SFM+φGFs)  

SFM 10 ml 

LIF (0.1 µg/ml) 5 µl 

SCF (0.5 µg/ml) 4 µl 

G-CSF (2 µg/ml) 5 µl 

GM-CSF (0.1 µg/ml) 20 µl 

IL6 (5 µg/ml) 2 µl 

MIP-α (0.1 µg/ml) 20 µl 

XF Assay Media+ for primary cells 

XF Base Media  24.1 ml 

LIF (0.1 µg/ml) 12.5 µl 

SCF (0.5 µg/ml) 10 µl 

G-CSF (2 µg/ml) 12.5 µl 

GM-CSF (0.1 µg/ml) 50 µl 

IL6 (5 µg/ml) 5 µl 

MIP-α (0.1 µg/ml) 50 µl 

Glucose (1.66 M) 377 µl 

L-Glutamine (200 mM) 250 µl 

Pyruvate (100 mM) 250 µl 
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XF Assay Media++ for cell lines 

XF Base Media 24.3 ml 

Glucose (1.66 M) 167 µl 

L-Glutamine (200 mM) 250 µl 

Pyruvate (100 mM) 250 µl 

 

PBS (pH 7.4) 

NaCl 137 mM 

KCl 2.7 mM 

Na2HPO4 10 mM 

KH2PO4 2 mM 

 

Trypsin* 

PE (PBS, 0.01% EDTA) 90% 

10X Trypsin 10% 

 

RIPA (pH 8.0) 

Tris-HCl 50 mM 

NaCl 150 mM 

Triton x100 1% 

NP-40 1% 

SDS 0.1% 

Protease inhibitors cocktail 1%  

 

Running gel 

H2O  5.5 ml 

30% Bis-acrylamide 6 ml 

1 M Tris (pH8.8) 7.5 ml 

10% SDS 200 µl 

10% APS 100 µl 

TEMED 100 µl 

 

Stacking gel 

H2O  10.8 ml 

30% Bis-acrylamide 2 ml 

1 M Tris (pH 6.8) 1.9 ml 

10% SDS 150 µl 

10% APS 100 µl 

TEMED 100 µl 

Running Buffer (pH 8.3) 

Tris 25 mM 

Glycine 192 mM 

SDS 0.01% 

Blotting Buffer (pH 8.3) 

Tris 25 mM 

Glycine 192 mM 
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SDS 0.01% 

Methanol 20% 

 

Fc block* 

Fc block 1 µl 

PBS, 2% FBS (v/v) 49 µl 

 

Lin cocktail 

Biotin anti-mouse CD4  3.2 µl 

Biotin anti-mouse CD5 6.4 µl 

Biotin anti-mouse CD8a 6.4 µl 

Biotin anti-mouse Mac-1 24.8 µl 

Biotin anti-mouse B220 24.8 µl 

Biotin anti-mouse TER119 100 µl 

Biotin anti-mouse GR-1    50 µl  

PBS      284.4 µl 

 

Murine ST/LT HSC mix 

Pacific Blue Lin cocktail   22 µl 

Sca anti-mouse PeCy7 1 µl 

cKit anti-mouse APC/780 1 µl 

CD48 anti-mouse PE 3.2 µl 

CD150 anti-mouse APC 1 µl 

FITC anti-mouse CD45.1 1 µl 

PerCP/Cy5.5 anti-mouse CD45.2 3 µl 

PBS 17.8 µl 

 

Murine myeloid mix 

FITC anti-mouse CD45.1 0.5 µl 

PerCP/Cy5.5 anti-mouse CD45.2 1.5 µl 

APC anti-mouse GR-1 1 µl 

PeCy7 anti-mouse Mac-1 0.5 µl 

FITC anti-mouse TER119 1 µl 

 

Streptavidin* 

Streptavidin 1 µl 

PBS, 2% FBS (v/v) 100 µl 

 

Myelocult* 

MyelocultTM 100 ml 

Hydrocortisone hemisuccinate (1x10-4 M) 1 ml 

 

Human HSC/LSC staining 

APC anti-human CD34 3 µl 

PerCP anti-human CD38 3 µl 

FITC anti-human CD45 10 µl 

PBS 84 µl 

 



59 

 

Human CD45 staining 

APC anti-mouse CD45 3 µl 

FITC anti-human CD45 10 µl 

PBS 87 µl 

 

Red blood cell lysis 

Ammonium acetate  8.02 g 

KHCO3 potassium bicarbonate  1 g 

EDTA  0.02g 

H20  to 1 L 

  

2.2 Methods 

Most of the methods described above were taken or adapted from our Letter 

entitled ‘Targeting mitochondrial oxidative phosphorylation eradicates therapy-

resistant chronic myeloid leukemic stem cells’ (accepted for publication in Nature 

Medicine, August 2017). 

 

2.2.1 Primary samples 

2.2.1.1 Primary samples origin 

Ethical approval has been given to the research tissue bank (REC 15/WS/0077) and 

for using surplus human tissue in research (REC 10/S0704/60). CML samples were 

leukaepheresis products from patients in CP-CML at the time of diagnosis, with 

informed consent in accordance with the Declaration of Helsinki and approval of 

the National Health Service Greater Glasgow Institutional Review Board. Normal 

samples were; i) BM products from healthy donors, ii) surplus cells collected from 

femoral head BM, surgically removed from patients undergoing hip replacement 

(with written patient consent and approval from the NHS Greater Glasgow and 

Clyde Biorepository), or iii) leukapheresis products from patients with non-myeloid 

Ph-negative haematological disorders. The presence of Philadelphia chromosome 

in CML samples was confirmed by cytogenetic analysis. 

 

2.2.1.2 Selection of CD34+ and CD34+CD38- cells from primary samples 

CD34+ cells were isolated using CD34 Microbeads Kit or CliniMACS; the flow through 

consisting of CD34- cells. For positive selection of human CD34 cells with 
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Microbeads, 100x106 cells were centrifuged at 400 x g for 10 min and suspended 

in a mixture of 300 µl PBS, 100 µl FcR blocking reagent and 100 µl of CD34 

Microbeads for 30 min at 4°C. The cells were then washed in PBS, suspended in 

500 µl of PBS and added to the magnetic column for separation. After three 

washes, the magnetically labelled cells were collected by pushing the plunger into 

the column. For isolation of the CD34+CD38- population, CD34+ samples were co-

stained with anti-human CD34 (APC) and anti-human CD38 antibodies and FACS-

sorted. 

 

2.2.2 Tissue Culture 

2.2.2.1 Maintenance of primary cells and cell lines in culture 

K562 and KCL22 CML cell lines as well as Ba/F3 p210 cells were cultured in RPMI+ 

(2.1.8). Cells were passaged every 2-3 days and sub-cultured at a concentration 

of 2x105 cells/ml. The murine IL-3 dependent Ba/F3 pro-B cell line was grown in 

RPMI+ supplemented with IL-3 (10 ng/ml). M2-10B4 and S1/S1 murine fibroblast 

cell lines were cultured every alternative week in DMEM+ and in a puromycin and 

hygromycin supplemented media: DMEM*1 for M2-10B4 and DMEM*2 for S1/S1 

(2.1.8) to avoid proliferation of untransformed cells. Primary cells were cultured 

in SFM+φGFs (2.1.8) in non-adherent tissue culture flasks. Primary cells were 

seeded at concentration of 1.0x106 cells/ml for overnight recovery after thawing. 

For experimental procedures, primary cells were seeded at 2.5-5x105 cells/ml. 

Primary cells and cell lines were all maintained in an incubator at 37°C with 5% 

CO2. 

2.2.2.2 Cryopreservation of mammalian cells lines and primary cells 

Primary CML and normal samples were cryopreserved in a freezing solution 

consisting of 50% (v/v) IMDM, 10% dimethylsulfoxide (DMSO, v/v) and 40% (v/v) 

FBS. For cell lines, the freezing media consisted of 90% (v/v) FBS and 10% (v/v) 

DMSO. Cells were suspended in the corresponding freezing media at an 

approximate concentration of 5x106 cells/ml and 1 ml of this solution was 

aliquoted into individual cryovials. The cryovials were rapidly transferred into the 

CoolCell to allow a steady decrease in temperature, and placed into a -80°C 

freezer for 24 hours (h) before transfer into liquid nitrogen containers. 
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2.2.2.3 Thawing of human primary cells 

Frozen human primary cells were defrosted in a 37°C water bath until removal of 

the ice crystals. The cell suspension was then transferred to a 50 ml falcon tube. 

DAMP solution was added drop by drop (10 ml DAMP was added over 20 min) while 

gently shaking. The cells were then centrifuged for 10 min at 450 x g and washed 

with DAMP. This procedure was repeated twice. The cells were then suspended in 

SFM+φGFs at a concentration of 1.0x106 cells/ml and plated into a 25cm3 non-

adherent tissue culture flask to let them recover overnight. 

 

2.2.2.4 Thawing of cell lines 

Cryovials were placed into in a 37°C water bath for approximately one minute. 

The cell suspension was then transferred into a 15mL tube containing 10 ml of 

pre-warmed complete growth media. Cells were centrifuged and then suspended 

in complete growth media at a concentration of 2.5x105 cells/ml.  

 

2.2.2.5 Drug treatment and preparation 

Imatinib was dissolved in sterile distilled water at a concentration of 1 mM and 

this stock solution was stored at 4°C for a maximum of three months. Solutions of 

tigecycline were freshly prepared the day of the assay at a concentration of 5 mM 

in DMSO the day of the experiment. Stock solution of phenformin and metformin 

were prepared at the time of the assay in water. In vitro drug treatments were 

performed at a concentration of 2 µM for imatinib, 2.5 µM for tigecycline, 20 µM 

for phenformin, unless stated otherwise. 

 

2.2.3 Cell proliferation assay 

2.2.3.1 Cell count 

Cell counts were performed with the automated CASY® cell counter or manually 

with a haemocytometer. Suspension cell lines and primary cells were suspended 

in their media and 50-200 µl of the cell suspension subjected to the CASY® cell 

counter. When the cell number or the volume of the cell suspension was limiting, 

cells were counted manually with a haemocytometer. 
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2.2.3.2 XTT assay 

Background: XTT is a colorimetric assay that assesses cell proliferation and 

viability. Oxidoreductase enzymes reduce XTT into the coloured derivative 

formazan that absorbs between 450-500 nanometer. The absorbance intensity is 

function of the enzymes and the cell number. As XTT does not enter the cell, the 

addition of the electron acceptor phenazine methosulfate (PMS) greatly 

potentiates the reaction. 

Method: At day 0, 8-10 different drug concentrations were prepared by serial 1:2 

dilution of the stock solution (the concentration of the stock solution was pre-

optimised for each of the drug used in the assay). Each drug concentration was 

seeded into a minimum of four wells of a 96-well plate (technical replicates). A 

vehicle control was as well included for each drug. Cells were suspended in RPMI+ 

at a concentration of 2x105 cells/ml. 50 µl of the cell suspension (i.e. 10,000 cells) 

were seeded into each well the 96-well plate containing various concentration of 

the drugs. After 72 h, 3 mg of XTT salt was added in 3 ml of RPMI+ and placed in 

water bath at 37˚C for 20 minutes. After dissolution of the salt, 15 µl of phenazine 

methosulfate (PMS) stock solution (7 mg of PMS in 5 ml of PBS; aliquots kept at -

20˚C in the dark) were added to the XTT solution. 25 µl of the resulting solution 

was added to each well. Absorbance was read between 2 and 4 h depending on 

the cell line at 492 nm.  

 

2.2.4 Flow cytometry 

Flow cytometry enables the detection of physical and phenotypic parameters of 

single cells or particles. Briefly, a flow cytometer is composed of lasers that can 

excite antibodies conjugated with fluorescent dyes. The fluorescence emitted by 

the cells can be detected and measured by the flow cytometer detectors. 

Fluorochrome-labelled antibodies are commonly used in the field of haematology 

to resolve the expression of cellular markers. Flow cytometry can as well 

distinguish different cell types by their physical properties such as the size and 

the granularity of the cells reflected respectively by the forward-angle light 

scatters (FSC) and the side-angle light scatter (SSC). Fluorescence-activated cell 

sorting (FACS) is a particular type of flow cytometer that is used to collect the 
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cells of interest. Data collected by flow cytometry were analysed with the FlowJo 

software.  

 

2.2.4.1 CellTrace Violet staining 

Background: CellTrace Violet is a fluorescent dye that binds covalently 

intracellular amino acids residues. Due to this covalent link, the dye can be 

retained for long periods and is not transferred during cellular division. Therefore, 

every time a population of cells divide, there will be a loss of the dye, and hence 

fluorescence, that can be monitored by flow cytometry. 

Method: CD34+ CML cells were stained at day 0 with 1 μM of the CellTrace Violet 

dye for 30 min at 37°C. The reaction was quenched by adding cell culture media 

containing 10% FBS. Cells were then washed and suspended in SFM+φGFs. The 

fluorescence was analysed by flow cytometry at 3 and 6 days. 

 

2.2.4.2 Annexin V staining 

Background: During apoptosis, cells undergo morphological changes such as cell 

shrinkage, membrane blebbing, chromatin condensation (i.e. pyknosis) and 

nuclear fragmentation. Apoptosis is associated as well with the translocation of 

the membrane phospholipid phosphatidylserine (PS) from the inner plasma 

membrane to the cell surface. Annexin V can bind PS with high affinity in a calcium 

dependent manner. As such, detection of Annexin V positive cells by flow 

cytometry (with fluorochrome-labelled Annexin V) is linked to the presence of PS 

on the outer leaflet of the plasmatic membrane and allows the measurement of 

apoptotic and dead cells.  

Method: 0.5-2.5x105 cells were washed once with HBSS and incubated with 2.5 µl 

Annexin-V (APC) in 50 µl HBSS for 15 min in the dark at room temperature. For 

analysis of cell death in the CD34 and CD133 population, 0.5-2.5x105 cells were 

washed once with HBSS and incubated with 2.5 µl Annexin-V (FITC), 2.5 µl CD133 

(Pe) and 1 µl of CD34 (APC) in 50 µl HBSS for 15 min in the dark at room 

temperature. After the incubation period, 300 µl of HBSS was added to the cell 

suspension and flow cytometry analysis was performed within the hour.  
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2.2.4.3 Propidium Iodide (PI) exclusion 

Background: PI is a fluorescent dye that is impermeable to live cells but can 

penetrate membranes of dying or dead cells. When bound to DNA, PI fluorescence 

increases by 20 to 30 fold. The percentage of cells with high PI fluorescence is 

therefore a read-out for dead cells.  

Method: 1-5x105 cells were washed once with PBS and suspended in 300 µl of PI 

solution (1ug/ml) for 30 min in the dark at room temperature. After this, 300 µl 

of PBS was added and fluorescence intensity was measured by flow cytometry. 

 

2.2.4.4 Mitochondrial content  

Background: Mitotracker Green is a fluorescent dye that accumulates selectively 

in mitochondria. Its fluorescence can be measured by flow cytometry and directly 

correlates to the mitochondrial content of the cells. 

Method: To assess mitochondrial mass in stem cells, CD34+ CML and normal cells 

were co-stained with 100 nM Mitotracker Green with 1 µl anti-human CD34 (APC) 

and 2.5 µl anti-human CD38 (PerCP) antibodies for 30 min at room temperature in 

the dark. Cells were then washed twice to ensure removal of the fluorescent 

probes and suspended in 300 µl of PBS. The cell suspension was then immediately 

subjected to flow cytometry analysis. 

 

2.2.4.5 Mitochondrial membrane potential 

Background: The electron transport chain in the mitochondria creates a potential 

between the mitochondria inner membrane by pumping protons from the inner 

membrane to the intermembrane space. Tetramethylrhodamine, methyl ester 

(TMRM) is a cationic fluorescent dye that accumulates in the negatively charged 

mitochondrial matrix, leading to a shift in its absorption and fluorescence emission 

spectra. In live cells, TMRM fluorescence intensity is directly proportional to the 

mitochondrial membrane potential and can therefore be used as a readout for 

mitochondrial activity. 

Method: For mitochondrial membrane potential assessments, cells were stained 

with 100 nM TMRM, 1 µl anti-human CD34 (APC) and 2.5 µl anti-human CD38 

(PerCP) antibodies for 30 min at room temperature in the dark. Cells were then 
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washed twice and suspended in 300 µl of PBS for fluorescence analysis by flow 

cytometry. 

 

2.2.5 Quantitative PCR 

2.2.5.1 Primers design 

The cDNA sequence was first identified from Ensembl genome browser 87 and the 

primers designed and verified with NCBI/Primer-Blast. The sequence of each 

primer is listed in 2.1.4.  

 

2.2.5.2 RNA extraction 

The RNeasy Mini Kit and, when the number of cells was limited, the PicoPure® 

RNA Isolation Kit were used according to the manufacturer’s instructions. The 

quality and concentration of the RNA were measured with NanoDrop 2000 

Spectrophotometer and the RNA stored at -80ºC until further use.  

 

2.2.5.3 Reverse transcription 

The cDNA was synthetized from RNA with the cDNA Reverse Transcription Kit 

according to manufacturer’s instructions. Briefly, 0.25-1 µg of RNA and 4 µl of 

SuperScript™ VILO™ Master Mix were mixed and placed in MicroAmp® Fast 

Reaction tubes. The total volume was adjusted to 20 µl with H2O and the reverse 

transcription performed using a MastercyclerTM PCR machine. 

 

2.2.5.4 Quantitative PCR 

cDNAs and the Fast SYBR® Green Master Mix were mixed with each primer (0.25 

µM). The total volume was adjusted to 20 µl with water. The PCR was performed 

with the following steps: 20 s at 95°C - 40 cycles of 3s at 95°- 30 s at 60°C. The 

relative quantitation of mRNA was performed by the comparative ∆∆Ct method 

using 18S for normalization. 

 

http://www.ensembl.org/
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2.2.6 Western blotting 

2.2.6.1 Protein lysis with RIPA buffer  

The cells from different conditions were counted and collected in falcon tubes. 

The cells were then washed once with PBS and then transferred to a 1.5 ml 

Eppendorf tube for a second PBS wash. The resulting cell pellet was then 

thoroughly suspended in RIPA lysis buffer supplemented with a cocktail of protease 

inhibitors to get a concentration of lysed cells of 2.5-5 x 106 cells/ml. The 

Eppendorf tubes were kept on ice for a minimum of 15 min to ensure proper lysis 

of the cells, after which the cell lysates were centrifuged at 16,000 x g for 10 min 

and the supernatant collected and stored at -20°C until further use. 

 

2.2.6.2 Protein quantification  

Background: Bicinchoninic acid (BCA) assay was used for the detection and 

quantification of proteins. This protein assay binds to copper ions and peptides 

bounds to form a coloured end product that absorbs at 562 nm. More precisely, a 

complex between Cu2+ and the proteins will be formed at first, which, in an 

alkaline environment, is followed by the reduction of copper (II) ion, Cu2+, into 

the copper (I) ion Cu+. This reduction is associated with the presence of the amino 

acids cysteine, cystine, tryptophan and tyrosine and is therefore proportional to 

the quantity of protein present in each sample.  

Method: Multiple protein standards (i.e. samples for which the protein 

concentration is known and spread across the working range of the BCA assay) are 

assayed in parallel to the unknown samples. As a result, the protein concentration 

of unknown samples can be determined by interpolation of the graphed standard 

curve. Protein standards were prepared by serial 1:2 dilutions of a 2000 µg/µl BSA 

stock to obtain the following concentrations: 2000 – 1000 – 500 – 250 – 125 –62.5 – 

31.75 – 0 µg/µl. These standards were kept at -20ºC. The day of the assay, 10 µl 

of each standard and unknown samples were added in duplicate in a 96-well plate. 

For protein quantification, the Pierce™ BCA Protein Assay Kit was used according 

to manufacturer’s instructions. Briefly, 98% (v/v) Reagent A was mixed with 2% 

(v/v) Reagent B and 200 µl of this solution distributed in a 96-well plate. The plate 

was placed at 37°C for 30 min and the absorbance at 562 nm was measured with 

a spectrophotometer plate reader. The concentration of unknown samples was 
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determined by interpolating their absorbance values with the standard curve. 

Equal amounts of proteins (5-20 µg depending on the experiment) were loaded for 

western blot analysis. 

 

2.2.6.3 Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

Background: Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-

PAGE) is a method that separates proteins based on their molecular mass. The 

separation of proteins based on their size is possible by using SDS that forces 

proteins to unfold from a tertiary to a negatively charged linear structure. The 

negatively charged proteins will move towards the positive electrode upon 

application of an electric field. 

Method: Equal amounts of proteins were taken from each condition, 4X Laemmli 

buffer was added and the final volume was normalized by adjusting it with RIPA 

lysis buffer. The samples were then placed for 5 min at 100ºC for their reduction 

and denaturation. In the meantime, the running and stacking gels were made in 

50 ml falcon tubes as described before (2.1.8) and, importantly, APS and TEMED 

were added right before pouring the gel to not induce polymerisation in the tube. 

The solution was immediately transferred to a 5 mm cassette. After a short 

centrifugation, the denatured protein samples were loaded onto a gel. To 

estimate the molecular weight of the proteins detected, 4-6 µl of protein ladder 

were loaded in the first and last lane. Gels were run with 1X running buffer (2.1.8) 

at 120V for 1 h 30 min or until desired separation was achieved in a mini-cell 

electrophoresis system. 

 

2.2.6.4 Transfer to nitrocellulose membrane 

Following the SDS-PAGE, the proteins were transferred to a nitrocellulose 

membrane enclosed in a western blot « sandwich » made as follows: 2 sponges – 

3 paper Whatman – Nitrocellulose membrane – 3 paper Whatman – 2 sponges. All 

components were soaked in transfer buffer (2.1.8) before assembly of the 

« sandwich ». The proteins were then transferred for 1 h at 400 mA and the 

presence of proteins on the nitrocellulose verified by incubating the membrane 

for five minutes with Ponceau red.  
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2.2.7 Immunolabelling 

The membrane was incubated for 1 h with blocking buffer consisting of 5% (m/v) 

BSA in TBST (2.1.8) followed by an overnight incubation with primary antibodies 

diluted in blocking buffer and 0.01% sodium azide. The next day, the membrane 

was washed for 4x5 min with TBST and incubated for 1 h with the appropriate 

HRP-linked secondary antibody (1:3000 dilution). The membrane was washed 

again 4x5 min with TBST and revealed by chemiluminescence. Precisely, the 

membrane was incubated for 1 min with a working solution made of equal part of 

luminol-enhancer and peroxide solution (Pierce™ ECL Western Blotting Substrate). 

Of note, in presence of hydrogen peroxide and an enhancer, the reaction catalysed 

by HRP (i.e. the conversion of luminol to its product 3-aminophthalate) is 

accompanied with light emission light. 

 

2.2.8 Hematopoietic stem and progenitors cells functional assays 

2.2.8.1 CFC assay 

Background: Colony-forming cell (CFC) assay is a common method used in the field 

of haematology to test the ability of progenitor cells to differentiate into colonies 

in a semi-solid medium. The number of colonies at end-point reflects the number 

of viable progenitors. 

Method: Primary cells were plated SFM+φGFs in the presence of indicated drugs 

at a concentration of 2.5-5x105 cells/ml in duplicate. After 3 days, cells from each 

condition were counted and 3,000 cells transferred in 1.5 ml of methylcellulose-

based medium (Methocult H4034 Optimum) and vortexed for 5 sec. The 

methylcellulose mixture was transferred to a 35 mm dish and incubated for 12-14 

days at 37ºC, 5% CO2. Colonies were then scored manually. 

 

2.2.8.2 Long-term culture-initiating cell (LTC-IC) assay 

The genetically modified stromal cells lines M2-10B4 (expressing G-CSF and IL-3) 

and S1/S1 (expressing SCF and IL-3) were irradiated at 80 Gy to block cellular 

proliferation during the time course of the assay. Vials of 5x106 irradiated cells 

were frozen in 90% (v/v) FBS, 10% (v/v) DMSO for long-term storage. The day prior 

to the assay, M2-10B4 cells and S1/S1 were defrosted and mixed in a 1:1 ratio to 
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get a final concentration of 2x105 cells/ml in media for long-term culture of 

haematopoietic cells supplemented with hydrocortisone (Methocult*, 2.1.8). 1 ml 

of this suspension was distributed in 24-well collagen-coated plates and then 

transferred at 37°C, 5% CO2 to let the cells adhere overnight (Fig. 2.1). The next 

day, 500 µl of Methocult* was removed and 5x104 CD34+ CML cells suspended in 

500 µl of Methocult* were plated onto the irradiated stromal layers in the presence 

of indicated drugs. Cells were kept for a minimum of 5 weeks at 37°C, 5% CO2 with 

weekly half-media change. After 5-6 weeks, the cells were harvested and the 

number of viable progenitors was assessed by CFC assay. Precisely, the 

supernatant from each LTC-IC well was collected in a 15 ml falcon tube. The 

remaining adherent cells were dissociated with trypsin* (2.1.8) and collected in 

the corresponding falcon tube. The cells were centrifuged for 10 min at 400 x g. 

After removal of the supernatant, the cell pellet was suspended in 50 µl 

methylcellulose media and the entire cell suspension transferred in 3 ml of 

methylcellulose for CFC assay (2.2.8.1). Colonies were scored manually after 12-

14 days.  

 

Figure 2. 1 Procedure summary for haematopoietic LTC-IC assay. 
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2.2.9 Metabolomics  

2.2.9.1 Stable isotopes tracing 

Primary cells were plated in presence of 13C6-labelled glucose, 13C5-labelled 

glutamine, 13C16-labelled palmitate for 24 h at a concentration of 0.5x106 cells/ml 

in PlasMax, a custom-made media formulation containing nutrient concentrations 

comparable to human serum. 

 

2.2.9.2 Intracellular metabolites extraction 

After 24 h, cells were washed twice with ice-cold PBS and intracellular 

metabolites extracted with a cold solution of methanol, acetonitrile, and water 

(5:3:2). The cell extracts were centrifuged at 16,000 x g for 10 min at 4°C and 

the supernatants were subjected to LC-MS analysis.  

 

2.2.9.3 LC-MS analysis 

As described previously, a Q-Exactive Orbitrap mass spectrometer (Thermo 

Scientific) was used together with a Thermo Scientific Accela HPLC system (229, 

230). The HPLC setup consisted of a ZIC-pHILIC column (SeQuant, 150x2.1 mm, 5 

µm, Merck KGaA , with a ZIC-pHILIC guard column (SeQuant, 20x2.1 mm) and an 

initial mobile phase of 20% 20 mM ammonium carbonate, pH 9.4, and 80% 

acetonitrile. Cell extracts (5 µl) were injected and metabolites were separated 

over a 15 min mobile phase gradient, decreasing the acetonitrile content to 20%, 

at a flow rate of 200 μl/min and a column temperature of 45°C. The total analysis 

time was 22.2 min. All metabolites were detected across a mass range of 75-1000 

m/z using the Q-Exactive mass spectrometer at a resolution of 35,000 (at 200m/z), 

with electrospray ionization and polarity switching to enable both positive and 

negative ions to be determined in the same run. Lock masses were used and the 

mass accuracy obtained for all metabolites was below 5 ppm. Data were acquired 

with Thermo Xcalibur software. The peak areas of different metabolites were 

determined using Thermo LCquan software where metabolites were identified by 

the exact mass of the singly charged ion and by known retention time on the HPLC 

column. Commercial standards of all metabolites detected had been analysed 

previously on this LC-MS system with the pHILIC column. The 13C labelling patterns 
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were determined by measuring peak areas for the accurate mass of each 

isotopologue of metabolites. Intracellular metabolites were normalized to cell 

number and volume. 

 

2.2.10 Seahorse 

The Seahorse XF96 Analyser is a system that enables repeated measurements of 

molecular OCR in real time at steady-state. It can as well assess the functionality 

of the mitochondria by assessing mitochondrial respiration following 

pharmacological stimuli. 

  

2.2.10.1 Day 1 

Preparation of coated plates 

Background: For non-adherent cells, the coating agent Cell-tak was used to 

immobilize the cells onto Seahorse XF96 Cell Culture Microplates and allow 

accurate readings of OCR. Cell-tak is a polyphenolic protein solution isolated from 

mussels. To ensure optimal performance of Corning Cell-tak, the adsorption 

method was used as a coating method. Basically, Corning Cell-tak spontaneously 

adsorbs to the surface it is placed on at neutral pH. 

Method: 38 µl of Corning Cell-Tak was added to 2.5 ml sodium bicarbonate (0.1M, 

pH 8) and the pH adjusted to 6.5-8 with 1N NaOH. This coating solution was 

immediately dispensed into each well of a Seahorse 96 cell culture plate (30 

µl/well) and left to adsorb for 30 min at room temperature. The coating solution 

was then aspirated and the cell culture plate was washed twice with distilled 

water and placed at 4ºC for next day use. 

Hydration of the probes 

The XF96 Sensor cartridges were hydrated overnight by adding 200 µl Seahorse 

Bioscience XF96 Calibrant solution pH 7.6 to each well of a Seahorse-96 utility 

plate. The sensor cartridge was then placed on the top of the utility plate, sealed 

with paraffin film to prevent evaporation overnight, and stored in a CO2-free 

incubator overnight at 37ºC.  
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2.2.10.2 Day 2 

Media preparation 

XF Assay Media+ and XF Assay Media++ (2.1.8) were prepared the day of the assay 

and used for primary cells and cell lines respectively. The media was then warmed 

at 37ºC and the pH adjusted to 7.4±0.1.  

Drugs preparation for Mito Stress Test 

Background: Inhibitors/modulators that target specific components of the 

electron transport chain (ETC) are used in the Mito Stress Test to complement 

basal mitochondrial measurements and to give a more comprehensive view of the 

mitochondrial function. The changes in oxygen consumption following the 

sequential injections of oligomycin, carbonyl cyanide-4-(trifluoromethoxy) 

phenylhydrazone (FCCP), and a mix of antimycin A and rotenone, measure 

respectively the respiration coupled to ATP synthesis, maximal respiration, and 

non-mitochondrial respiration. More precisely, the injection of the ATP synthase 

inhibitor oligomycin induces a decrease in OCR. The difference in OCR between 

baseline and post-oligomycin treatment is known as the respiration coupled to ATP 

synthesis. FCCP uncouples mitochondrial respiration from ATP synthesis by 

disrupting the mitochondrial membrane potential. The flow of electron is 

therefore no longer limited by ATP production and oxygen consumption reaches 

its maximum level. The last injection consists of rotenone and antimycin A, an 

inhibitor of complex I and III respectively. As a result, mitochondrial respiration 

stops and OCR drops dramatically. The remaining OCR following the injection of 

antimycin A and rotenone reflects the non-mitochondrial respiration.  

Method: Stock solution of oligomycin (5 mM in ethanol), FCCP, antimycin A and 

rotenone (all in 10 mM in DMSO) were aliquoted and kept at -20ºC. Of note, the 

concentrations of oligomycin and FCCP were optimised for each cell type used in 

the Seahorse assay. The day of the assay, working solutions of oligomycin (1 µM), 

FCCP (1.5 µM), and the mix antimycin A and rotenone (both 1 µM) were prepared 

in XF Assay Media+ (2.1.8) for primary cells. For cells lines, these solutions were 

prepared in XF Assay Media++ (2.1.8) and the concentrations of both oligomycin 

and the mix antimycin A and rotenone were similar the ones used for primary 

cells. FCCP was however prepared at a concentration of 0.6 µM and 0.4 µM for 
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K562 and KCL22 cells lines respectively. All solutions were vortexed before loading 

in the XF sensor cartridge. 

Loading the XF sensor cartridge with drugs 

Using the loading guides provided, 25 µl of oligomycin, FCCP and the mix antimycin 

A and rotenone were loaded respectively in port A, B and C of the sensor cartridge. 

The cartridge was placed back a CO2-free incubator at 37ºC for 10 min, then 

inserted in the Seahorse XF96 Analyser for calibration. 

Seeding of the cells 

While the Seahorse was calibrating, the cells were counted and washed once in 

PBS. The cells were then suspended in the corresponding XF Assay Media at a 

concentration of 2.9x106 cells/ml for primary cells and 1.7x106 cells/ml for cell 

lines and 35 µl of the cell suspension was dispensed into each well of a Seahorse 

XF96 cell culture microplate. The cells were then centrifuged at 40 x g for 10 

seconds with a centrifuge set at zero braking. After the first spin, the microplate 

was turned by 180º and the cells were centrifuged again at 60 x g for 10 seconds. 

The microplate was then transferred in CO2-free incubator 37ºC for 30 min to 

ensure complete cell attachment. After visual confirmation of cell adhesion to the 

plate, 140 µl of XF Assay Media was gently added to each well. Special care to not 

disturb the cells was taken for primary cells as they loosely attach to the plate. 

The microplate was then transferred for 10 min a CO2-free incubator at 37ºC then 

inserted in the Seahorse XF96 Analyser. 

 

2.2.11 Double transgenic (DTG) mice experiments 

Outline of the in vivo experiment 

Femurs, tibiae and hips from CD45.2 SCLtTA/BCR-ABL (DTG) were crushed in 2x10 

ml of PBS to isolate BM cells. Cells were counted with the CASY® cell counter and 

suspended at a concentration of 5×106 cells/ml in PBS. 200 µl of the cell suspension 

was transplanted into the tail vein of CD45.1 wild type (WT) B6 (B6.SJL-Ptprca 

Pepcb/BoyJ) mice sub-lethally irradiated the previous day. Transplanted mice 

were kept for a period of 4 weeks on tetracycline to ensure proper recovery from 

the irradiation before induction of the disease. After this period, tetracycline was 

removed from the drinking water. 10 days post tetracycline removal, tail vein 

blood was taken to analyse the expression of CD45.1 and CD45.2 in haematopoietic 
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cells by flow cytometry and confirm the engraftment of donor CD45.2 cells in 

recipient mice. Precisely, 20 µl of blood from each mouse was transferred in a 

polypropylene tube and 1 ml of red blood cell lysis was added. The solution was 

vortexed for 5 sec and after 10 min incubation at room temperature, the reaction 

was quenched with 2 ml of PBS. The cells were then centrifuged for 10 min at 400 

x g and suspended with a mixture of 0.5 µl anti-mouse CD45.1 (FITC), 0.5 µl CD45.2 

(Pacific Blue), 0.5 µl GR-1 (APC) and 0.5 µl Mac-1 (Pe/Cy7) for 20 min at room 

temperature. The cells were then washed with 2 ml of PBS and suspended in 300 

µl of PBS for immediate flow cytometry analysis. 

After 18 days post-tetracycline removal, mice were treated with imatinib (100 

mg.kg-1, oral gavage, twice daily) and phenformin (100 mg.kg-1, oral gavage, once 

daily) for 4 weeks. Mice were then sacrificed and femurs, tibiae, hips, spleen and 

blood were collected for subsequent analysis.  

Isolation of cells of interest 

To isolate BM cells, cleaned bones were placed in a large mortar containing 10 ml 

PBS supplemented with 2% (v/v) FBS and crushed with a pestle. The collected BM 

was then filtered through a 40 μm cell strainer to remove debris. These steps were 

repeated once more (i.e. re-adding 10 ml of FBS-PBS and crushing the bones) to 

ensure complete isolation of BM cells. The splenic cells were harvested by pushing 

the spleen through a 40 μm cell strainer with the rubber end of a 5 ml syringe. 

The cell suspension was flushed twice with 10 ml PBS supplemented with 2% (v/v) 

FBS.  

Flow cytometry analysis of murine cells 

1 ml of the BM cell suspension from each mouse was transferred into a 

polypropylene tube and centrifuged at 400 x g for 10 min. Cell pellet was 

suspended in 50 µl of Fc block* (2.1.8) and kept on ice for 5 min. BM cells were 

then stained for 20 min with an ST/LT HSC antibody mix (2.1.8) to identify murine 

LT-HSCs by flow cytometry. Cells were then washed with 2 ml of PBS and stained 

with 100 µl of Streptavidin* (2.1.8) for 30 min. The cells were washed again with 

2 ml of PBS and suspended in 500 µl of PBS. In separate polypropylene tubes, 200 

µl of cell suspension from the BM and spleen were stained with the myeloid mix 

(2.1.8) for 15 min at room temperature. Cells were then washed with 2 ml of PBS 
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and suspended in 300 µl of PBS. Of note, appropriate controls (unstained, 

fluorescence minus one and single colour) were prepared in parallel. The samples 

were immediately analysed by flow cytometry. 

 

2.2.12 NSG mouse engraftment 

2.2.12.1 Survival of CML LSCs following in vivo drug treatment 

Outline of the in vivo experiment 

To study the in vivo engraftment of CD34+ CML cells, 1.5x106 CD34+ cells from CML 

samples were transplanted via tail vein into 8 week-old sub-lethally irradiated 

(2.5Gy) female NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ NSG mice (The Jackson 

Laboratory). 6 weeks post-transplant, human engraftment levels were analysed in 

each mouse. Briefly, 20 µl of tail vein blood was added in polypropylene tubes and 

red blood cells were lysed as described previously (2.2.11). The cells were then 

stained with 1.5 µl anti-mouse CD45 (APC) and 10 µl anti-human CD45 (FITC) for 

20 min at room temperature. The cells were then washed with 2 ml of PBS and 

suspended in 300 µl of PBS for immediate flow cytometry analysis. Mice were then 

split into 4 different arms according to their human engraftment levels and drug 

treatment was started with imatinib (100 mg.kg-1; oral gavage twice daily) and 

tigecycline for 4 weeks (week 1: 25 mg.kg-1, week 2: 50 mg.kg-1, weeks 3-4: 

100.mg kg-1; intraperitoneal once daily). At the end of the 4-week treatment, mice 

were euthanized and femurs, tibiae and spleens were harvested. 

Isolation of the cells of interest 

See 2.2.11  

Flow cytometry analysis of human cells 

1 ml of BM and 0.5 ml of spleen suspension cells were distributed into 

polypropylene tubes. The cells were centrifuged at 400 x g for 5 min and 5 µl of 

Fc block* solution was added to the cell suspension. After 5 min of incubation, 100 

µl of human HSC/LSC staining (2.1.8) and human CD45 staining (2.1.8) was added 

to BM and spleen cells respectively. The single colours and fluorescence minus one 

(FMO) mix antibodies were prepared in parallel for colour compensation in the 

flow cytometer. After 30 min incubation at room temperature in the dark, cells 

were washed and suspended in 500 µl of PBS for immediate flow cytometry 
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analysis. To quantify the frequency of Ph+ cells within the engrafted human CD45+ 

cells, dual-fusion D-FISH was performed by Dr. Pablo Baquero as previously 

described (231). 

 

2.2.12.2 Long-term recovery of CML stem cells in vivo - drug 
discontinuation  

Outline of the in vivo experiment 

As described before (2.2.12.1), CD34+ cells from CML samples were transplanted 

via tail vein into 8-10 week-old sub-lethally irradiated female NSG mice. Two 

independent experiments were performed and mice were split according to their 

engraftment levels (2.2.12.1). In experiment 1, the drug treatment was started 

7 weeks post-transplant with imatinib (100 mg.kg-1; oral gavage twice daily) and 

tigecycline for 3 weeks (week 1: 25 mg.kg-1, week 2: 50 mg.kg-1, weeks 3: 100 

mg.kg-1; intraperitoneal once daily). At the end of the 3-week treatment, mice 

were kept for an additional 3 weeks to analyse the long-term effect of the drug 

treatment on CML stem cells. In experiment 2, the drug treatment was started 8 

weeks post-transplant with imatinib (100 mg.kg-1; oral gavage twice daily) and 

tigecycline (week 1: 25 mg.kg-1, week 2: 50 mg.kg-1, weeks 3-4: 100.mg kg-1; 

intraperitoneal once daily) for 4 weeks. Drug treatment was then stopped and the 

mice were kept for an additional 2 weeks before analysis of LSCs survival. 

Isolation of cells of interest and flow cytometry analysis of human cells 

See section 2.2.11.1 

 

2.2.12.3 Survival of normal stem cells following in vivo drug treatment 

Outline of the in vivo experiment 

To study the in vivo engraftment of normal CD34+ cells, 0.7x105 CD34+ cells from 

one cord blood sample were transplanted via tail vein into 8 week-old sub-lethally 

irradiated (2.5 Gy) female NSG mice. Before starting drug treatment, mice were 

split according to their engraftment levels (2.2.12.1). 7 weeks post-transplant, 

drug treatment was initiated with imatinib (100 mg.kg-1; oral gavage twice daily) 

and tigecycline for 4 weeks (week 1: 25 mg.kg-1, week 2: 50 mg.kg-1, weeks 3-4: 

100.mg kg-1; intraperitoneal once daily). At the end of the 4-week treatment, mice 

were euthanized and femurs, tibiae and spleens were harvested. 
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Isolation of cells of interest and flow cytometry analysis of human cells 

See 2.2.11.1 

 

2.2.13 Statistical analyses 

We did not use any statistical method to predetermine sample size. For in vitro 

experiments, a minimum of three patient samples were chosen as a sample size 

to ensure adequate power, unless stated otherwise. Data obtained from each 

patient sample represents an independent experiment. We were not blinded to 

mice allocation during in vivo experiments and mice were allocated based on their 

pre-treatment engraftment levels. No method of randomization was used. All mice 

were cared for equally in an unbiased fashion by animal technicians and 

investigators. No animal was excluded from the analysis. 

P values were calculated by two-tailed paired or unpaired Student’s t-test using 

GraphPad Prism software (GraphPad Software 5.0) as indicated in the figures 

legends. Where indicated, variables were transformed using the natural 

logarithms before t-tests were performed to meet the assumption of equal 

variances. 
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Chapter 3 Investigation of metabolic 

vulnerabilities in CML LSCs 

3.1 Introduction 

Targeting metabolic vulnerabilities for cancer therapy has been the subject of 

numerous studies in solid tumours and in some blood malignancies such as AML; 

however, much less effort has been made to apply this concept to CML. Indeed, 

to our best knowledge, no study has yet investigated the metabolism of primitive 

CML LSCs in detail. Although it has been reported that targeting metabolic 

pathways in CML cells can be of therapeutic interest, these studies were 

performed in CML cells lines and failed to demonstrate its applicability in patient-

derived CML LSCs.  

Investigation of metabolism in rare cancer stem cells has so far been restricted by 

technical limitations in measuring metabolic changes using low numbers of cells. 

We therefore developed improved protocols for metabolic flux assays which 

allowed us to profile the metabolism of stem-cell enriched CML and normal cells 

as well as differentiated CML cells, aiming to unveil selective new targets against 

CML LSCs. In this chapter, we describe the use of labelled carbon tracer to detect 

different isotopologues of many intracellular metabolites over time, using a state-

of-the-art liquid chromatography-mass spectrometry (LC-MS) system. Moreover, 

we optimised techniques to measure mitochondrial respiration (by OCR), in rare 

primitive non-adherent haematopoietic cells. 

The data provided in this chapter delivers the first metabolic analysis of primitive 

haematopoietic cells isolated from CML patients compared with primitive Ph 

negative cells. Of note, the majority of the results described in this chapter were 

accepted for publication in Nature Medicine in August 2017 as a Letter entitled 

“Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant 

chronic myeloid leukemic stem cells.” 
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3.2 Results 

3.2.1 Imatinib does not target CML LSCs 

Many studies have demonstrated that imatinib and second-third generation TKIs 

fail to eradicate LSCs (123-127). To assess the effect of imatinib in our 

experimental conditions, patient-derived cells were enriched for stem cells by 

positive selection of the CD34 surface expression (CD34+ CML cells). CD34+ CML 

cells were treated with 2 µM imatinib, a concentration achievable in patients, and 

the expression on the CD34 cell surface marker assessed by flow cytometry. This 

revealed that upon in vitro culture, proliferating CD34+ CML cells differentiate 

and lose their CD34 expression over time (Fig. 3.1a). However, imatinib treatment 

led to an enrichment of more primitive CD34+ CML cells by inducing apoptosis in 

differentiated CD34- CML cells (Fig. 3.1a,b). Indeed, after six days of in vitro 

culture, the percentage of viable CD34- cells was higher in untreated condition 

compared to imatinib-treated cells (24% versus 13% respectively). On the contrary, 

imatinib induced an increase in the percentage of CD34- cells targeted for 

apoptosis in compared to untreated condition (36% versus 22% respectively, Fig. 

3.1b). Moreover, imatinib reduced the number of viable CML progenitors, as 

demonstrated by the reduction of colonies in a short-term CFC assay (Fig. 3.1c). 

However, imatinib failed to reduce the number of CML stem cells in long-term 

culture-initiating cell (LTC-IC) assays (Fig. 3.1d).  

In line with previously published data, these results demonstrated that imatinib is 

able to target differentiated cells, including progenitor cells, but fails to eliminate 

primitive CML LSCs, highlighting the need to identify novel therapeutic targets for 

their eradication. 



80 

 

 

Figure 3. 1 Imatinib fails to eliminate CML LSCs. 

(a) CD34 expression following in vitro culture of CD34+ CML cells with imatinib (2 µM). (b) CD34 
expression and cell death following in vitro culture of CD34+ CML cells with imatinib (2 µM). (c) 
Number of colonies measured by CFC assay following a 72 hours (h) drug treatment of CD34+ CML 
cells with imatinib (2 µM). Mean ± S.E.M. n=4 patient samples. (d) Number of colonies measured 
by LTC-IC assay following single drug treatment of CD34+ CML cells with imatinib (2 µM). Mean ± 
S.E.M. n=3 patient samples.   
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3.2.2 Increased oxidative metabolism in primitive CML cells 
compared to differentiated cells 

To investigate whether LSCs exhibit a different metabolic profile compared to 

differentiated CML cells, the metabolism of stem cell-enriched CD34+ and 

differentiated CD34- CML cells derived from four patients was analysed by 

recording the steady-state levels of 70 metabolites. This revealed that stem cell-

enriched cells displayed increased levels of carnitine, acylcarnitine derivatives 

and glycerol-3-phosphate, as well as a decrease in oleic and stearic free fatty 

acids, reflecting a potential increase in lipolysis and FAO (Fig. 3.2a, Table 1).  

In order to validate and further substantiate these findings, CD34+ and CD34- CML 

cells were cultured for 24 h in medium containing uniformly 13C16-labelled 

palmitate, and 13C isotopic enrichment of intracellular metabolites was analysed 

by LC-MS. In stem cell-enriched CD34+ CML cells, TCA cycle metabolites contained 

a significantly larger fraction of isotopologues with 2 or more 13C atoms compared 

to those in differentiated CD34- cells from the same patient (Fig. 3.2b). Moreover, 

TCA cycle metabolites and TCA cycle-derived amino acids steady-state levels were 

increased in CD34+ CML cells, while the steady-state levels of lactate were 

decreased. Of note, the steady-state level of the TCA cycle-derived amino acid 

aspartate has been identified as genuine indicator of mitochondrial oxidative 

metabolism (232-234). In line with this, CD34+ CML cells isolated from four patients 

displayed a 3.0-fold increase in mitochondrial OCR on average compared to CD34- 

CML cells (Fig. 3.3a,b). Nevertheless, the increased levels of acetyl coA derived 

from FAO cannot support a net production of TCA cycle metabolites, which 

requires anaplerotic oxidizable sources, such as glucose and/or glutamine. 

Therefore, the increase in the steady-state levels of TCA cycle metabolites could 

not be entirely explained by an elevated FAO. 

We next assessed anaplerosis and oxidative metabolism by tracing the fate of 

glucose-derived carbons in CD34+ CML and patient-matched CD34- cells cultured 

for 24 h in presence of uniformly 13C6-labelled glucose. The analysis of the 13C 

isotopic enrichment indicated a significant enhancement in glucose-derived 

carbons in the TCA cycle metabolites and derived amino acids in CD34+ CML cells 

in comparison to patient-matched differentiated CD34- cells (Fig. 3.4a). 

Moreover, glutamate and aspartate contained larger fractions of isotopologues 
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with 2 or more 13C atoms, in line with an elevated anaplerosis and oxidative 

metabolism in CD34+ CML cells. In contrast, glucose-derived lactate (13C3-lactate) 

was reduced in CD34+ CML cells, reflecting that pyruvate is preferentially diverted 

toward oxidation through the TCA cycle. 

PC catalyses the decarboxylation of pyruvate to oxaloacetate, an anaplerotic 

reaction that plays an important role in replenishing oxaloacetate into the TCA 

cycle (Fig. 3.4a). Moreover, acetyl coA is a positive allosteric activator of PC 

(235). Therefore, increased acetyl coA levels produced from fatty acid catabolism 

are expected to stimulate PC activity but decrease PDH activity. To link the 

activity of both enzymes with the FAO trait described previously, the relative 

activity of PC and PDH was evaluated by measuring the relative levels of the 

nearest detected labelled enzymatic product in 13C6-glucose-labelled CD34+ and 

CD34- CML cells. As such, the relative levels of 13C3-aspartate and 13C2-citrate were 

used to assess the relative activity of PC and PDH respectively (Fig. 3.4a). While 

there was no change in 13C2-citrate, the significant increase in the percentage of 

13C3-aspartate confirmed that CD34+ CML cells have increased levels of PC activity 

and anaplerosis in comparison to differentiated CD34- CML cells (Fig 3.4a,b). 



83 

 

 

 

Figure 3. 2 Primitive CML cells show an increase in oxidative metabolism compared to 

differentiated counterparts. 

(a) Comparative steady-state metabolomics analysis of patient-matched CD34- and CD34+ CML cells 
measured by LC-MS. Mean ± S.E.M. n=4 patient samples. (b) Relative isotopologue distribution of 
intracellular metabolites in CD34- and CD34+ CML cells measured by LC-MS following 24 h incubation 
with 13C16-labelled palmitate. n=1 patient sample. 
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Metabolites 

FC 
CD34+/ 
CD34- 

CML1 

FC 
CD34+/ 
CD34- 

CML2 

FC 
CD34+/ 
CD34- 
CML3 

FC 
CD34+/ 
CD34- 

CML4 
Average 
FC 

Paired 
T test 

Glycerol 3-phosphate 5.78 30.29 8.87 4.72 12.42 0.06 

Carnitine 1.37 5.59 2.79 1.35 2.77 0.08 

Malate 1.40 5.35 2.57 1.36 2.67 0.07 

Butyryl-carnitine 1.49 6.42 1.67 0.77 2.59 0.77 

Aspartate 1.56 2.21 4.39 1.59 2.44 0.07 

UDP 0.67 5.47 0.77 2.69 2.40 0.65 

Proline 1.22 3.36 2.62 1.38 2.14 0.07 

PEP 1.79 1.05 2.19 2.73 1.94 0.08 

ADP 1.53 2.54 1.34 1.94 1.84 0.05 

Acetyl-carnitine 1.55 2.00 1.59 1.99 1.78 0.00 

Propionyl-carnitine 0.98 4.13 1.21 0.49 1.70 0.42 

AMP 1.17 2.40 0.93 2.20 1.67 0.20 

Asparagine 1.49 2.18 1.54 1.48 1.67 0.05 

Citrulline 1.82 2.46 0.95 1.39 1.66 0.09 

Threonine 1.13 2.69 1.54 1.13 1.63 0.15 

Thiamine 1.31 2.15 1.48 1.52 1.62 0.01 

Tryptophan 1.58 2.61 1.14 0.97 1.58 0.12 

CTP 0.68 2.23 0.85 2.46 1.56 0.66 

Isoleucine 1.48 2.75 0.82 1.11 1.54 0.22 

UTP 0.62 2.78 0.81 1.52 1.43 0.99 

Phenylalanine 1.15 2.10 1.19 1.25 1.42 0.08 

Dihydroxyacetone 
phosphate 0.62 1.08 1.24 2.72 1.42 0.48 

α-Ketoglutaric acid 0.94 2.78 1.58 0.29 1.40 0.87 

Leucine 1.18 1.95 0.95 1.44 1.38 0.25 

Methionine 1.61 1.84 1.05 1.03 1.38 0.19 

Cis-Aconitic acid 0.79 2.52 1.62 0.55 1.37 0.39 

Glutamine 0.91 2.26 1.10 1.13 1.35 0.35 

Lysine 1.15 1.54 1.57 1.03 1.32 0.05 

ATP 0.98 1.81 1.14 1.32 1.31 0.16 

Alanine 0.83 2.28 1.05 0.97 1.28 0.53 

Valine 1.19 1.78 0.86 1.25 1.27 0.29 

Glutamate 0.74 1.16 1.55 1.57 1.26 0.55 

Glycine 1.03 1.28 1.12 1.45 1.22 0.08 

Succinyl-GSH 0.70 2.55 0.93 0.51 1.17 0.78 

Ornithine 1.36 1.06 1.37 0.81 1.15 0.58 

Eicosapentaenoic acid 1.27 0.73 1.12 1.47 1.15 0.44 

Cytidine 0.27 1.24 0.16 2.81 1.12 0.67 

Betaine 0.63 2.06 0.97 0.76 1.11 0.83 

Ethanolamine phosphate 1.19 0.57 0.84 1.78 1.09 0.93 

GSH 0.56 1.33 0.59 1.30 0.94 0.31 

Citric acid 0.74 1.06 1.15 0.77 0.93 0.70 

Arachidonic acid 1.46 0.70 0.39 0.95 0.88 0.22 

Pyruvate 0.66 0.58 0.76 1.49 0.87 0.69 
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Taurine 0.83 1.24 0.73 0.67 0.87 0.38 

GDP 0.75 0.52 0.64 1.55 0.86 0.57 

Creatine 0.90 1.15 0.42 0.80 0.82 0.35 

Arginine 0.69 0.80 0.64 1.09 0.81 0.17 

Urate 0.65 0.62 0.64 1.29 0.80 0.16 

Nicotinamide 0.61 0.70 0.64 1.08 0.76 0.19 

UDP-N-acetyl-D-
glucosamine 0.60 0.20 0.78 1.42 0.75 0.98 

Serine 0.68 0.65 0.64 1.03 0.75 0.09 

Guanine 0.50 1.35 0.55 0.53 0.73 0.19 

Adenine 0.46 0.75 0.85 0.79 0.71 0.16 

Palmitoleic Acid 0.95 0.23 0.30 1.37 0.71 0.25 

Octanoic Acid 0.54 0.53 0.48 1.27 0.71 0.21 

Hexanoic Acid 0.58 0.49 0.50 1.18 0.69 0.23 

Lactate 0.54 0.52 0.65 1.00 0.68 0.07 

Succinate 0.59 0.65 0.68 0.77 0.67 0.07 

Dodecanoic acid 0.67 0.43 0.34 1.24 0.67 0.20 

Myristic Acid 0.73 0.35 0.40 1.09 0.64 0.24 

GTP 0.42 0.62 0.38 0.89 0.58 0.11 

Stearic Acid 0.47 0.27 0.24 1.25 0.56 0.21 

Oleic Acid 0.54 0.23 0.31 1.04 0.53 0.18 

Cystine 0.95 0.05 0.15 0.90 0.51 0.24 

Linoleic Acid 0.47 0.24 0.27 1.01 0.50 0.19 

Linolenic Acid 0.47 0.10 0.13 0.92 0.40 0.13 

Adenosine 0.31 0.15 0.26 0.70 0.36 0.11 

Uridine diphosphate 
glucose 0.34 0.25 0.10 0.24 0.23 0.18 

NAD+ 0.17 0.26 0.09 0.10 0.16 0.14 

Hypoxanthine 0.11 0.07 0.02 0.26 0.11 0.03 

 

Table 1: Comparative steady-state metabolomics analysis of patient-matched CD34+ and 

CD34- CML cells measured by LC-MS. 

FC, fold change of metabolites levels at steady-state in CD34+ CML cells relative to CD34- CML 
cells. n=4 patient samples. Significant differences in metabolite levels between the two cell types 
are highlighted in red. 
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Figure 3. 3 Primitive CML cells show an increase in mitochondrial respiration compared to 

differentiated counterparts. 

(a) Representative respirometry output in CD34- and CD34+ CML cells. n=1 patient sample. Mean ± 
S.D. (b) Basal mitochondrial OCR of CD34- and CD34+ CML cells. n=9 patient samples and n=4 normal 
samples. Mean ± S.E.M. P values were calculated by paired Student’s t-test. 
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Figure 3. 4 Primitive CML cells have an increased glucose oxidation compared to 

differentiated counterparts. 

(a) Relative isotopologue distribution of intracellular metabolites in CD34+ and CD34- CML cells 
measured by LC-MS following 24 h incubation with 13C6-labelled glucose. Mean ± S.E.M. n=4 patient 
samples. FC, fold change of glucose-derived (13C ≥ 2) metabolite abundance relative to CD34- CML 
cells. (b-c) Relative abundance of (b) 13C3-aspartate and (c) 13C2-Citrate in CD34- and CD34+ CML 
cells measured by LC-MS following 24 h incubation with 13C6-labelled glucose. Mean ± S.E.M. n=4 
patient samples. P-values were calculated by paired Student’s t-test. 
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3.2.3 CML LSCs cells have elevated mitochondrial oxidative 
metabolism compared to normal counterparts 

To investigate whether the oxidative phenotype observed in CD34+ CML cells is 

unique to primitive CML cells and not a common feature shared by CD34+ normal 

and CML cells, we next profiled intracellular metabolites at steady-state in CD34+ 

cells from four CML patients and four normal haematopoietic CD34+ cells donors. 

This indicated that FAO was increased in CD34+ CML cells. Indeed, carnitine and 

acyl-carnitines derivatives were elevated in CD34+ CML cells, while free fatty 

acids, such as linolenic and oleic acid, were reduced (Fig. 3.5a, Table 2). We next 

assessed the fate of the fatty acid palmitate by culturing CD34+ CML and normal 

cells for 24 h in presence of 13C16-labelled palmitate and analysed the 13C 

isotopologues distribution by LC-MS (Fig. 3.5b). In line with an enhanced FAO, the 

absolute 13C enrichment of citrate, glutamate and aspartate from 13C16-labelled 

palmitate was significantly higher in CD34+ CML cells compared to normal 

haematopoietic counterparts. 

To gain a better understanding of anaplerosis and oxidative metabolism, CD34+ 

CML and normal cells were cultured for 24 h with 13C6-glucose and 

the enrichment of glucose-derived 13C isotopes analysed by LC-MS. In CD34+ CML 

cells, the TCA cycle metabolite citrate and the TCA cycle-derived amino acids 

glutamate and aspartate contained a significant increase in 13C isotopologues from 

13C6-glucose compared to CD34+ normal cells, demonstrating a selective increase 

in glucose oxidation and anaplerosis in the leukaemic cells (Fig. 3.6a-c). 

Accordingly, the relative activity of both the anaplerotic enzyme PC and the 

oxidative enzyme PDH were significantly increased in CD34+ CML compared to 

normal counterparts (Fig. 3.6d,e). Moreover, as represented in Figure 3.7a, both 

the ATP-linked and mitochondrial respiration was increased in CD34+ CML cells 

compared to normal counterparts. Indeed, the mitochondrial respiration of 

leukaemic CD34+ samples from nine CML patients was on average 3.7-fold higher 

than that of CD34+ normal cells from four donors (Fig. 3.7b). 

Altogether, these results demonstrated that anaplerosis and oxidative metabolism 

is significantly increased in CD34+ CML cells in comparison to CD34+ normal cells. 

Thus far, our experiments on primitive cells were performed in CD34+ cells that 

consist of a pool of progenitor and stem cells; therefore, we complemented our 
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studies in a subset of cells further enriched for stem cell activity. A rare quiescent 

population of cells enriched in CML LSCs and HSCs can be isolated within the CD34+ 

population. These cells represent about 5-10% of the bulk of CD34+ cells and are 

characterised by the lack of the human CD38 surface expression. CD34+CD38- cells 

are enriched for cells with LTC-IC capacity compared to CD34+CD38+ cells and are 

able to repopulate immuno-deficient mice (19, 236).  

To verify our findings in this stem cell-enriched population, CD34+ cells isolated 

from CML patients and healthy donors were stained with an anti-human CD38 

antibody together with mitochondrial fluorescent probes for flow cytometric 

assessment of mitochondrial functions, namely the mitochondrial mass and the 

membrane potential, within CD34+CD38- cells. As reflected by the representative 

histograms in Figure 3.8 a and b, the mitochondrial content and mitochondrial 

membrane potential of CD34+CD38- CML cells was significantly increased compared 

to normal counterparts. This increase in mitochondrial mass and mitochondrial 

membrane potential was respectively 1.5 and 2.7 fold higher in CD34+CD38- CML 

cells and indicated that CML LSCs possess increased mitochondrial oxidative 

functions compared to normal HSCs (Fig. 3.8a,b). 

Finally, we performed a challenging experiment to investigate the metabolism of 

primitive haematopoietic cells. Briefly, FACS-sorted CD34+CD38- cells from two 

CML patients and two normal cells donors were cultured in presence of 13C6-

glucose for 24 h and the 13C isotopic distribution of metabolites was analysed by 

LC-MS. This revealed that in CD34+CD38- CML cells, citrate, glutamate and 

aspartate had higher levels of 13C isotopologues with 2 or more 13C atoms in 

comparison to CD34+CD38- normal cells (Fig. 3.8c-e). 

To understand whether subsets within the CD34+ cell population were 

metabolically different, we next analysed the metabolic profile of CD34+CD38+ 

cells following 24 h incubation with 13C6-labelled Glucose in parallel to CD34+CD38- 

cells. Precisely, we assessed the ratio between the oxidative and glycolytic 

pathway within each cell type. The contribution of glucose-derived carbons into 

the TCA cycle-derived amino acid glutamate (13C≥2-Glutamate) and the glycolytic 

end-product lactate (13C3-Lactate) were used as readout for oxidative metabolism 

and glycolysis respectively. This revealed that the ratio of glucose-derived 

glutamate over glucose-derived lactate was equivalent (or even increased in one 
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of the two patients) in CD34+CD38- CML cells compared to CD34+CD38+ CML cells, 

suggesting that oxidative metabolism in similar between primitive and progenitor 

CML cells (Fig 3.9). In contrast, the ratio of oxidative to glycolytic metabolism 

was lower in CD34+CD38- normal cells compared to CD34+CD38+ normal cells, 

suggesting that primitive haematopoietic cells are less oxidative than progenitor 

cells. 

These results confirmed that primitive CD34+CD38- CML cells have an increased 

oxidative metabolism in comparison to normal counterparts. 
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Figure 3. 5 Enhanced fatty acid oxidation in primitive CML cells compared to normal 

undifferentiated haematopoietic cells.  

(a) Comparative steady-state metabolomics analysis of CD34+ CML and normal cells measured by 

LC-MS. Mean ± S.E.M. n=4 patient and normal samples. (b-d) Relative isotopologue distribution of 

(b) citrate, (c) glutamate and (d) aspartate in CD34+ CML and normal cells measured by LC-MS 

following 24 h incubation with 13C16-labelled palmitate. n=3 patient and normal sample. P values 

were calculated by unpaired Student’s t-test. Mean ± S.E.M 
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Metabolites 

FC 
CD34+ 

CML/ 
CD34+ 

Normal1 

FC 
CD34+ 
CML/ 
CD34+ 
Normal2  

FC 
CD34+ 

CML/ 
CD34+ 
Normal3  

FC 
CD34+ 
CML/ 
CD34+ 
Normal4  

Average 
FC 

Unpaired 
T test 

Malate 5.50 2.82 6.32 4.28 4.73 0.01 

Propionyl-carnitine 4.12 3.27 3.26 6.37 4.25 0.03 
Dihydroxyacetone 
phosphate 1.84 2.10 11.48 1.56 4.24 0.28 

Phosphoenolpyruvate  2.17 1.35 11.81 1.16 4.12 0.19 

Carnitine 1.93 1.26 1.69 5.89 2.69 0.13 

Proline 3.20 2.19 1.88 3.43 2.67 0.03 

GSH 1.83 6.12 1.69 1.02 2.66 0.14 

Cis-Aconitic acid 1.93 1.67 2.87 2.93 2.35 0.00 

ADP 1.67 2.37 2.97 1.73 2.19 0.24 

Butyryl-carnitine 2.01 3.29 1.33 1.53 2.04 0.02 

Thiamine 1.84 1.78 1.05 2.88 1.89 0.08 

α-Ketoglutaric acid 0.98 1.25 3.52 1.66 1.85 0.27 

Aspartate 1.61 1.90 1.91 1.28 1.68 0.01 

Glycerol 3-phosphate 2.08 1.45 1.94 1.10 1.64 0.38 

ATP 1.29 1.39 2.16 1.24 1.52 0.27 

Threonine 1.58 1.70 1.00 1.77 1.51 0.11 

Alanine 1.67 1.77 1.12 1.48 1.51 0.15 

Glutamine 1.58 2.36 1.04 0.94 1.48 0.35 

NAD+ 5.17 0.23 0.18 0.28 1.47 0.51 

Glutamate 1.18 1.14 2.04 1.10 1.36 0.13 

UTP 1.19 0.89 2.76 0.57 1.35 0.53 

Citric acid 1.28 1.01 1.49 1.47 1.31 0.11 

Asparagine 1.37 1.29 1.33 1.24 1.31 0.09 
UDP-N-acetyl-D-
glucosamine 3.57 1.08 0.19 0.15 1.25 0.34 

AMP 1.08 0.83 1.43 1.60 1.24 0.56 

Betaine 1.37 1.08 1.01 1.26 1.18 0.48 

CTP 1.04 0.92 2.17 0.48 1.15 0.66 

Tryptophan 1.37 1.21 0.62 1.41 1.15 0.80 

UDP 1.17 0.84 2.26 0.31 1.15 0.69 

Citrulline 1.42 1.09 0.67 1.36 1.13 0.73 

Taurine 0.70 0.70 1.90 1.10 1.10 0.79 

Glycine 1.24 0.80 1.07 0.86 0.99 0.87 

Adenosine 1.66 0.47 0.56 1.02 0.93 0.93 

Phenylalanine 1.07 0.96 0.40 1.05 0.87 0.53 

Cytidine 2.42 0.46 0.27 0.21 0.84 0.40 

Isoleucine 1.05 0.97 0.34 0.93 0.82 0.75 

Guanine 2.38 0.27 0.30 0.20 0.79 0.46 

Acetyl-carnitine 0.85 0.83 0.97 0.44 0.78 0.31 

Valine 0.75 0.70 0.33 1.31 0.77 0.17 

Leucine 0.98 0.99 0.38 0.75 0.77 0.80 

Adenine 0.76 0.73 0.84 0.76 0.77 0.24 

Lysine 0.80 0.72 0.35 1.14 0.75 0.29 

Ornithine 0.81 0.65 0.38 1.14 0.75 0.53 
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Nicotinamide 0.64 0.64 0.39 1.21 0.72 0.36 

Succinate 0.92 0.37 0.58 0.98 0.71 0.29 

Serine 0.70 0.81 0.65 0.58 0.68 0.02 

Arginine 0.96 0.68 0.27 0.68 0.65 0.04 

Lactate 0.74 0.52 0.60 0.71 0.65 0.00 

Arachidonic acid 1.63 0.58 0.19 0.08 0.62 0.31 

Methionine 0.78 0.74 0.32 0.57 0.60 0.39 

Cystine 0.56 0.83 0.07 0.94 0.60 0.19 

Stearic Acid 0.71 0.49 0.54 0.64 0.59 0.44 

Hexanoic Acid 0.71 0.42 0.60 0.54 0.57 0.34 

Octanoic Acid 0.59 0.41 0.56 0.53 0.52 0.12 

Urate 0.33 0.77 0.22 0.75 0.52 0.31 
Eicosapentaenoic 
acid 0.62 0.47 0.62 0.32 0.51 0.39 

Dodecanoic acid 0.58 0.42 0.63 0.38 0.50 0.05 

Myristic Acid 0.60 0.46 0.52 0.42 0.50 0.01 

GTP 0.52 0.27 0.82 0.32 0.48 0.10 

Creatine 0.60 0.28 0.58 0.46 0.48 0.06 

Pyruvate 0.46 0.49 0.44 0.51 0.48 0.01 

Palmitoleic Acid 0.68 0.53 0.33 0.30 0.46 0.21 

Linoleic Acid 0.66 0.51 0.38 0.24 0.45 0.22 

Oleic Acid 0.69 0.46 0.36 0.28 0.45 0.15 

GDP 0.65 0.16 0.68 0.18 0.42 0.20 

Hypoxanthine 1.32 0.16 0.05 0.04 0.39 0.03 
Ethanolamine 
phosphate 0.17 0.19 0.95 0.19 0.38 0.04 

Linolenic Acid 0.88 0.32 0.08 0.06 0.33 0.11 
Uridine diphosphate 
glucose 0.09 0.50 0.23 0.05 0.22 0.02 

 

Table 2: Comparative steady-state metabolomics analysis of CD34+ CML and CD34+ normal 

cells measured by LC-MS. 

FC, fold change of metabolites levels at steady-state in CD34+ CML cells relative to CD34+ normal 
cells. n=4 patient and normal samples. Significant differences in metabolite levels between the 
two cell types are highlighted in red. 
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Figure 3. 6 Enhanced glucose oxidation and anaplerosis in primitive CML cells compared to 
normal counterparts. 

(a-c) Relative isotopologue distribution of (a) citrate, (b) glutamate and (c) aspartate in CD34+ 
CML and normal cells measured by LC-MS following 24 h incubation with 13C6-labelled glucose. 
Mean ± S.E.M. n=5 patient and normal samples.(d-e) Relative abundance of (d) 13C3 aspartate and 
(e) 13C2 Citrate in CD34+ CML and normal cells measured by LC-MS following 24 h incubation with 
13C6-labelled glucose. Mean ± S.E.M. n=5 patient and normal samples. 
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Figure 3. 7 CD34+ CML cells display increased mitochondrial respiration compared to normal 

counterparts.  

 

(a) Representative respirometry output in CD34+ CML and CD34+ normal cells. Mean ± S.D. (b) Basal 

mitochondrial OCR in CD34+ CML and CD34+ normal cells. Mean ± S.E.M. n=9 patient samples and 

n=4 normal samples. P values were calculated by unpaired Student’s t-test.  
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Figure 3. 8  CML LSCs have increased mitochondrial functions compared to normal HSCs. 

 

(a) Representative histograms of Mitotracker Green-labelled CD34+CD38- CML cells (blue) and 
CD34+CD38- normal cells (red). The mitochondrial content was determined from the geometric 
mean of Mitotracker Green-labelled cells. Mean ± S.E.M. n=3 patient and 3 normal samples. FC, 
fold change relative to CD34+CD38- normal cells.  P values were determined by one sample t-test. 
(b) Representative histograms of TMRM-labelled CD34+CD38- CML (blue) and CD34+CD38- normal 
(red) cells. The mitochondrial membrane potential cells was determined from the geometric mean 

of TMRM-labelled cells. Mean ± S.E.M. n=3 patient and 3 normal samples. FC, fold change relative 
to CD34+CD38- normal cells. P values were determined by one sample t-test. (c-d) Isotopologues 
labelling profile of (c) citrate, (d) glutamate, (e) aspartate in CD34+CD38- CML and normal cells 
cultured for 24 h in presence of 13C6-labelled glucose. n=2 patient and normal samples. 
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Figure 3. 9 Oxidative metabolism is similar between CML LSCs and CML progenitor cells.  

(a-b) Ratio of glucose-derived glutamate (13C2-5 Glutamate) over glucose-derived lactate (13C3 
lactate) in CD34+CD38+ and CD34+CD38- CML and normal cells measured by LC-MS following 24 h 
incubation with 13C6-labelled glucose. Mean ± S.E.M. n=2 patients and normal samples.  
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3.3 Discussion 

In this chapter, we first showed that primitive CD34+ CML cells enhance FAO in 

comparison to CD34- cells. Interestingly, FAO has been shown to play a crucial role 

in HSCs maintenance by producing cytosolic NADPH that prevents high ROS levels 

(151). Similarly, LSCs in AML have been suggested to rely on FAO for their survival 

(226). The selective increase in PC but not in PDH activity observed in CD34+ CML 

cells supported their FAO profile, as elevated acetyl coA levels from FAO are 

expected to increase PC activity. Moreover, we demonstrated that mitochondrial 

respiration and the levels of 13C-labelled isotopologues of TCA cycle metabolites 

from 13C16-palmitate and 13C6-glucose were significantly increased in CD34+ CML 

cells in comparison to CD34- CML cells. 

Altogether, these results have demonstrated that CD34+ CML cells display a 

significant increase in oxidative metabolism in comparison to CD34- CML cells. 

Previous studies have shown that normal HSCs rely primarily on glycolysis for their 

energy production and possess low mitochondrial functions (140, 146). Therefore, 

it would have been interesting to compare the metabolism of CD34+ and CD34- 

normal cells to see whether a similar metabolic difference is observed in normal 

haematopoietic cells. These experiments were however not performed due to lack 

of primary material. Moreover, the cellular composition of differentiated cells 

varies between normal and leukaemic haematopoiesis - the latter being 

characterised by an expansion of the myeloid cell lineage, which prevents a direct 

comparison between normal and leukaemic differentiated cells. One possibility 

would have been to sort for different cell types and analyse their metabolism 

individually. However, this study did not aim to assess the metabolic differences 

between HSC and progenitors at homeostasis and future investigations are 

necessary to address this point.  

Our metabolic comparison of CD34+ cells from CML patients and normal cell donors 

revealed that FAO is elevated in CD34+ CML cells compared to CD34+ normal cells. 

Accordingly, CD34+ CML cells had a significant increase in palmitate-derived TCA 

cycle intermediates and derived amino acids, confirming that the aforementioned 

increase in FAO in primitive CML cells is selective to them. Moreover, we have 

demonstrated that mitochondrial respiration, glucose oxidation and anaplerosis 
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were significantly elevated in CD34+ leukaemic cells compared to normal 

counterparts. Noteworthy, a significant difference regarding the proliferation 

status of CD34+ CML and normal cells exists, with BCR-ABL driving the proliferation 

of CD34+ CML cells and CD34+ normal cells being mainly quiescent in our in vitro 

culture conditions. Therefore, proliferating CD34+ CML cells and quiescent CD34+ 

normal cells are expected to have distinct metabolic requirements and it could be 

argued that an increase in metabolic activity, such as the higher OXPHOS observed 

in CD34+ CML cells, was somewhat predicted. Conversely, studies have described 

that highly proliferative cancer cells tend to rely mainly on glycolysis for their 

energy production; albeit more recent studies have shown that mitochondrial 

oxidative metabolism is crucial for cancer progression and maintenance (1.5.3 

and 1.5.4). To circumvent the proliferation bias, we assessed the ratio between 

the oxidative and glycolytic pathway in CD34+ CML and normal cells by measuring 

respectively the contribution of glucose-derived carbons into glutamate and 

lactate (Fig. 3.10). The ratio of glucose-derived glutamate (13C≥2-Glutamate) over 

glucose-derived lactate (13C3-Lactate) was significantly higher in CD34+ CML cells 

in comparison to CD34+ normal cells, confirming that oxidative metabolism is 

significantly elevated in primitive leukaemic cells despite normalising for the 

intrinsic characteristics of the cells. 

These experiments were performed on CD34+ cells, consisting of a mixture of 

progenitors and stem cells. There are currently more rigorously-defined HSC and 

LSC populations and using these defined subsets of cells might have been more 

appropriate in this study. We therefore decided to recapitulate some of our key 

experiments in more stem cell-enriched subsets (CD34+CD38-). To our knowledge, 

this was the first time that targeted metabolomics in this rare and primitive 

haematopoietic cell population was performed from patient-derived material. Of 

note, these experiments were only done in two patients and two normal cell 

donors given the limitations of working with very small cell populations from 

primary material. Indeed, to isolate CD34+CD38- cells, CML and normal 

haematopoietic cells are first selected for expression of the CD34 cell surface 

marker, which represents about 1% of total leukocytes. Then, 20 millions of CD34+ 

cells are subjected to a FACS for selection CD34+CD38- cells, which yields about 

0.5-1 million cells. We therefore optimised all our techniques to measure 

intracellular metabolites in a few number of suspension cells, and despite these 
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technical difficulties, we managed to perform targeted metabolomic analysis in 

CD34+CD38- cells from two CML patients and two normal donors. The data obtained 

from the two independent experiments were very similar and in line with our 

previous results, confirming that primitive CML cells possess increase 

mitochondrial functions in comparison to normal counterparts. The comparison of 

the metabolic phenotype between CD34+CD38- and CD34+CD38+ cells indicated an 

interesting difference between normal and CML cells. While in leukaemic cells, 

the oxidative metabolism was similar in CD34+CD38- and CD34+CD38+ cell subsets, 

our results indicated that CD34+CD38- normal cells were more glycolytic than 

CD34+CD38+ normal cells, in line with previous studies demonstrating that normal 

HSCs display low mitochondrial metabolism in comparison to progenitor cells. Of 

note, more primitive markers are available to further enrich for stem cells, but 

this was not possible given the number of cells required in our assays. As such, 

primitive HSCs are characterised phenotypically by being lineage (Lin) negative 

CD34+CD38−CD90+CD45RA− (237). Future technological developments are required 

to investigate the metabolism of this rare population and address the metabolic 

difference between CD34+CD38−CD90+CD45RA− normal and CML cells. 

 

 

 

Figure 3. 10 CD34+ CML cells display increased glucose oxidation compared to normal 

counterparts. 

Ration of glucose-derived glutamate (13C2-5 Glutamate) over glucose-derived lactate (13C3 lactate) 

in CD34+ CML and normal cells measured by LC-MS following 24 h incubation with 13C6-labelled 

glucose. Mean ± S.E.M. n=5 patients and normal samples. P value was calculated by unpaired 

Student’s t-test. 
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3.4 In summary 

In this chapter, we analysed the metabolic profile of differentiated and stem cell-

enriched cells from CML patients and normal cell-donors. For the first time, we 

profiled the steady-state levels of primitive CD34+ CML cells and more 

differentiated CD34- cells and identified a FAO signature in stem-cell enriched 

CD34+ CML cells, that we later confirmed using 13C16-labelled palmitate as a 

tracer. Moreover, we demonstrated increased mitochondrial metabolism, glucose 

oxidation and anaplerosis in CD34+ CML cells in comparison to differentiated 

patient-matched cells. We next showed that this mitochondrial oxidative profile 

was selective to CD34+ CML cells, as normal counterparts had reduced fatty acid 

and glucose oxidation in comparison. We as well traced the fate of glucose-derived 

carbons using 13C16-labelled glucose in the rare population of CD34+CD38+ normal 

and CML cells and confirmed increased oxidative metabolism in primitive CML 

cells. 

Put together, our results revealed a striking metabolic difference between 

primitive and differentiated leukaemic cells, with CD34+ CML cells being more 

oxidative than differentiated CD34- CML cells. This was later proven to be 

selective to leukaemic cells, as CD34+ CML cells displayed a significant increase in 

mitochondrial oxidative metabolism in comparison to CD34+ normal cells. Finally, 

our results were strengthened by performing metabolic experiments on a rare 

population of primitive CD34+CD38- cells, which confirmed an oxidative metabolic 

signature of primitive CML cells in comparison to normal counterparts. 
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Chapter 4 Using phenformin to target CML LSCs 

4.1 Introduction 

Our findings revealed that stem cell-enriched CD34+ CML cells have elevated levels 

of oxidative metabolism in comparison to normal counterparts and differentiated 

CD34- CML cells. Importantly this metabolic trait was also confirmed by two 

different techniques in the more primitive CD34+CD38- cell subset. We 

hypothesised that mitochondrial oxidative metabolism is crucial for energy and 

anabolic precursors production in CML LSCs and questioned whether inhibiting this 

pathway with inhibitors of mitochondrial metabolism would target CML LSCs. 

Metformin, a biguanide derivative, is widely prescribed drug and the first line 

therapy to reduce hyperglycaemia in patients with type II diabetes. Metformin has 

been shown to reduce gluconeogenesis in the liver and potentiates the effect of 

insulin that favours cell glucose-uptake (238). While metformin does not usually 

induce hypoglycaemia and prevents weight gain, two common side effect of 

insulin and sulphonylureas treatment based regimens, it can induce lactic acidosis, 

a rare but potentially fatal condition (239). Interestingly, numerous epidemiologic 

have suggested that metformin possess anti-cancer properties. Reduction in the 

risk of cancer has for instance been observed in metformin-treated diabetic 

patients in comparison to patients treated with other anti-diabetic agents. Further 

studies assessing the potential therapeutic value of metformin use for cancer 

prevention and treatment in healthy/non diabetic patients are however 

necessary. Nonetheless, many in vitro studies have since then been performed 

and described metformin as a potential anti-cancer agent. On a cellular level, 

metformin affects the activity of mitochondrial complex I, leading to reduction in 

mitochondrial oxidative metabolism and consequently an increase in glycolysis and 

lactate production (240-242). The drop in ATP levels induces a metabolic stress 

which activates AMPK (Fig. 4.1) (243). 

Phenformin is an analogue to metformin that was previously used to treat type II 

diabetes and has greater capacity to inhibit mitochondrial complex I compared to 

metformin. As such, the risk of lactic acidosis is increased upon phenformin 
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treatment (0.4-0.6 cases per 1000 patients), which eventually led to its 

withdrawal from the markets in the 1970s (244). 

In this chapter, we compared the potency of metformin and phenformin to inhibit 

mitochondrial oxidative metabolism in CML lines and tested whether impairing 

this metabolic pathway can affect the survival of CML cell lines and patient-

derived primitive CML LSCs. 

 

 

Figure 4. 1 Mechanism of action of metformin on a cellular level. 

Adapted from (241). 
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4.2 Results 

4.2.1 Phenformin is a more potent inhibitor of mitochondrial 
respiration than metformin 

Given the unique increase of mitochondrial oxidative metabolism in CD34+ CML 

cells, restraining their mitochondrial function may have a therapeutic benefit. As 

previously mentioned, metformin is a widely used anti-diabetic drug that has been 

shown to inhibit complex I of the mitochondrial respiratory chain. To measure the 

anti-leukaemic effect of metformin and the relevant concentration of drug to use 

in our subsequent assays, the CML cell line of erythroblast crisis K562 was treated 

with a concentration range of metformin (from 39 µM to 10 mM) and the relative 

number of cells evaluated at 72 h by XTT assay. Metformin reduced cell growth by 

51% at a concentration of 10 mM with an EC50 value of 973 µM in K562 cells (Fig. 

4.2a).  

In healthy non-diabetic adults, the maximum plasma concentration of metformin 

has been evaluated to reach 12±3 µM (245). However, the concentration that 

showed some effect in K562 cells was around 1 mM; more than 80 times higher 

than what is achieved in humans. This led us to test the activity of phenformin, 

an analogue of metformin that has been shown previously to be a more potent 

complex I inhibitor. Similar cell growth experiments were performed in K562 cells 

with various concentration of phenformin ranging from 0.3 µM to 100 µM. 

Phenformin inhibited K562 cell proliferation by 45% at a concentration of 37.5 µM 

and the relative EC50 value was estimated to be 3.85 µM (Fig. 4.2b).  

To confirm a reduction in oxidative metabolism, K562 cells were treated for 24 h 

with either phenformin (10 µM) or metformin (1 mM) and mitochondrial respiration 

was assessed. As expected, both drugs reduced mitochondrial respiration. 

However, despite using a concentration of phenformin 100 times lower, both drugs 

inhibited mitochondrial OCR to a similar extent; making phenformin 

approximately 100 times more potent inhibitor of mitochondrial oxidative 

metabolism than metformin (Fig. 4.2c). 

Studies have shown that both metformin and phenformin increase glycolysis as a 

result of AMPK activation when oxidative phosphorylation is inhibited (246, 247). 
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Extracellular acidification rate (ECAR) consists of a measurement of pH changes 

over time and can be used to indirectly determine the rate of production of lactate 

from pyruvate, indicative of glycolysis. Other cellular processes such a CO2 release 

from the TCA cycle can influence the pH of the media and therefore the 

measurement, however ECAR can be determined in parallel to mitochondrial 

respiration and the increase in glycolysis upon phenformin/metformin treatment 

has been widely described (217, 248). Therefore, to assess whether phenformin 

and metformin increase glycolysis, ECAR was measured following 72 h of 

treatment with phenformin (10 µM) or metformin (1 mM). Phenformin and 

metformin induced an increase in ECAR, suggesting that K562 cells upregulated 

glycolysis following 72 h of drug treatment with these complex I inhibitors (Fig. 

4.2d). Noteworthy, the increase in ECAR was equivalent between the two 

inhibitors, mirroring the effect observed on mitochondrial respiration. 

Finally, the effect of a range of concentrations of phenformin on oxidative 

metabolism was tested in K562 and KCL22 cells, a second CML cell line of 

erythroblast crisis. Following 24 h in vitro treatment, phenformin induced a 

decrease in mitochondrial respiration in a dose-dependent manner in both cell 

lines, with a near-to-complete inhibition of mitochondrial respiration seen at a 

concentration of 20 µM (Fig 4.2e). 

Altogether, these results confirmed that phenformin has a greater potency than 

metformin to inhibit mitochondrial respiration. As we aimed to test the effect of 

inhibiting mitochondrial oxidative metabolism to target CML LSCs in vivo, the more 

potent inhibitor phenformin was selected for subsequent in vitro and animal work.  
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Figure 4. 2 Phenformin is a more potent inhibitor of oxidative metabolism than metformin. 

(a-b) Proliferation of K562 cells upon exposure to various concentrations of (a) metformin or (b) 
phenformin. n=3 independent experiments. (c) Basal mitochondrial OCR in K562 cells upon 72 h 
treatment with metformin (1 mM) or phenformin (10 µM). P values were calculated by unpaired 
Student’s t-test. n=3 independent experiments for phenformin treatment, n=2 independent 
experiments for metformin treatment (d) ECAR of K562 cells upon 72 h treatment with metformin 
(1 mM) or phenformin (10 µM). n=3 independent experiments for phenformin treatment, n=2 
independent experiments for metformin treatment. P values were calculated by one sample 
Student’s t-test. (e) Representative respirometer output of K562 (left) and KCL22 (right) cells 
following 24 h treatment with various concentrations of phenformin (5, 10 and 20 µM). Data are 
represented as Mean ± S.E.M. 
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4.2.2 Inhibition of mitochondrial metabolism with phenformin 
targets K562 cells 

 The majority of CML patients in chronic phase will undergo treatment with TKIs, 

the first-line therapy for CML-CP. It is therefore important to determine the 

nature of a drug combination between a TKI and a new agent aimed to be used 

against CML stem cells (in our case phenformin). To this end, the combination 

index (CI) between phenformin and imatinib in CML cell lines was determined 

based on the equation of Chou-Talalay. K562 cells were treated for 72 h with a 

single concentration of phenformin (10 µM) in combination with a concentration 

range of imatinib (from 0.078125 µM to 2.5 µM) and cell proliferation was assessed 

by XTT assay. The percentage of inhibition of proliferation was then computed for 

each drug concentration in the CompuSyn software. The percentage of inhibition 

of proliferation was then computed in the CompuSyn software for each drug 

concentration, as a single agent or in combination. This program predicts the 

effect that should be observed for the combination based on the single agent dose-

response curves and, by comparing it to the empirical values, evaluates the nature 

of the drug combination: synergism (CI<1), additive (CI=1) or antagonism (CI>1). 

This revealed that the CIs were inferior to 1 for all 3 doses of imatinib tested in 

combination with phenformin (10 µM) (Fig. 4.3a,b).  

Imatinib and other TKIs are potent anti-proliferative agents, particularly in CML 

cell lines. Indeed, K562 cells treated with a concentration of imatinib five times 

lower than the plasma concentration measured in patients induced a cell cycle 

arrest in the G1 phase (Fig. 4.3c). Given that imatinib and other TKIs are strong 

cytostatic agents, analysing the effect of the drug combination on the 

proliferation of CML cells might not be the optimal readout. For this reason, we 

next assessed cell viability in K562 cells following treatment with imatinib (500 

nM), phenformin (10 µM) or the combination for 72 h by 7-AAD exclusion. While 

phenformin treatment alone did not significantly affect the viability of leukaemic 

cells compared to untreated conditions, the combination of imatinib and 

phenformin significantly reduced the number of viable cells by more than 15% 

compared to imatinib alone (Fig. 4.3d,e).  

Contrary to glycolysis of glucose that produces two net ATP, the oxidation of 

galactose to pyruvate does not yield any net ATP. As a result, the cells adapt by 
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upregulating mitochondrial metabolism to compensate the lack of ATP produced 

from glycolysis. In line with this, replacing glucose in the culture media with 

galactose has been shown to induce mitochondrial metabolism and therefore 

render cells particularly sensitive to mitochondrial poisons.  

To demonstrate that the decrease in cell viability observed in K562 cells treated 

with the combination phenformin and imatinib is mediated by its effect on 

mitochondrial respiration, K562 cells were grown in media containing galactose as 

a sole sugar or in complete medium (11 mM glucose). Following 24 h incubation in 

galactose-medium, K562 displayed a two-fold increase in mitochondrial 

respiration compared to cells plated in complete medium (Fig. 4.4a). Cell viability 

was next assessed by Propidium Iodide (PI)-exclusion following 72 h treatment 

with phenformin (10 µM), imatinib (500 nM) and combination in either galactose 

or complete medium. The presence of galactose greatly potentiated the effect of 

phenformin, in combination with imatinib or as a single agent, compared to 

complete-medium (Fig. 4.4b). Indeed, while phenformin did not induce any 

significant cell death in complete medium, only 33% of K562 cells remained viable 

in the presence of galactose. Similarly, combining phenformin to imatinib reduced 

viability to 43% in complete medium, whereas less than 6% of cells were viable in 

galactose containing medium. 

These results showed that cells relying solely on mitochondrial metabolism are 

highly sensitive to phenformin, and demonstrated that the cell death observed 

upon phenformin treatment is mediated by inhibition of respiration. 
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Figure 4. 3 Phenformin synergises with imatinib to target K562 cells. 

(a) Proliferation of K562 following 72 h exposure to phenformin (10 µM) and various concentrations 
of imatinib (156, 313 and 625 nM). The determination of the combination index was carried out 
using Calcusyn software as described in Methods to determine synergy (defined as CI values < 1).  
n=3 independent experiments (b) Representative cell death measurement in K562 cells treated 
for 6 days with imatinib (500 nM), phenformin (10 µM) or combination. (c) Cell death in K562 cells 
treated for 6 days with imatinib (500 nM), phenformin (10 µM) or combination. n=3 independent 
experiments. Data are presented as Mean ± S.E.M. ***P<0.001, evaluated by one-way analysis of 
variance (ANOVA) with post hoc Bonferroni analysis. FC, Fold change relative to IM-treated cells. 
Unt, untreated; PH, Phenformin; IM, imatinib. 
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Figure 4. 4 Phenformin targets K562 cells by inhibiting mitochondrial respiration.  

(a) Respirometer output for K562 cells cultured for 24 h in complete media or no-glucose media 
supplemented with galactose (11mM). n =1 independent experiment. (b) Cell death in K562 cells 
and (c) KCL22 cells cultured in complete media or no-glucose media supplemented with galactose 
(11 mM) and treated for 6 days with imatinib (500 nM), phenformin (10 µM) or combination. n=2 
independent experiments. Data are presented as Mean ± S.E.M. Unt, untreated; PH, Phenformin; 
IM, imatinib. 
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4.2.3 Phenformin preferentially targets BCR-ABL expressing cells 

To determine whether the combination of phenformin and imatinib selectively 

targets CML cells, parental Ba/F3 cells; a BCR-ABL-negative pro-B murine cell line, 

and Ba/F3 cells stably expressing BCR-ABLp210 (refer to as Ba/F3 p210) were used. 

Using these two cell lines allows us to determine the selectivity of a drug 

treatment for BCR-ABL cells and its potential toxicity towards cells not expressing 

BCR-ABL (normal cells). 

Both parental Ba/F3 and Ba/F3 p210 cells were treated for six days with 

phenformin (10 µM), imatinib (500 nM), or combination, and cell viability assessed 

by PI-exclusion. This revealed that the combination treatment arm reduced the 

percentage of Ba/F3 p210 viable cells by nearly 20% in comparison to imatinib 

(Fig. 4.5a). These results were in line with previous experiments showing that the 

combination of phenformin and imatinib significantly impairs the survival of BCR-

ABL-expressing K562 cells in comparison to imatinib alone (Fig. 4.3d,e). On the 

contrary, the viability of parental Ba/F3 cells did not vary from untreated 

condition and was maintained at approximately 100% upon treatment with either 

phenformin, imatinib or the combination (Fig. 4.5b). Indeed, the percentage of 

viability was 95% and 98% respectively in the untreated and the combination arm.  

These results demonstrated that cells lacking BCR-ABL expression are less 

sensitive to the combination of imatinib and phenformin than BCR-ABL expressing 

cells, suggesting a potential therapeutic window for the use of phenformin in 

combination with imatinib to target CML cells. 
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Figure 4. 5 Phenformin in combination with imatinib targets selectively BCR-ABL expressing 

cells. 

(a) Cell death in Ba/F3 p210 and (b) parental Ba/F3 cells following 6-day in vitro treatment with 
imatinib (500 nM), phenformin (10 µM) or the combination. Data are presented as Mean ± S.E.M. 
n=2 independent experiments. FC, fold change relative to IM-treated cells. Unt, untreated; PH, 
phenformin; IM, imatinib. 
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4.2.4 Inhibition of aberrant oxidative metabolism with phenformin 
targets CML LSCs in vitro 

We next performed experiments on stem cell-enriched CD34+ cells isolated from 

CML patients. To test the effect of phenformin on mitochondrial respiration in 

patient-derived cells, CD34+ CML cells were treated for 24 h with phenformin (10 

µM) and OCR were assessed by respirometry analysis. As previously observed in 

K562 cells, phenformin decreased ATP-linked and mitochondrial respiration in 

CD34+ cells isolated from two CML patients compared to vehicle treatment (Fig. 

4.6a,b). 

To assess whether phenformin was targeting CD34+ CML cells, CFC assays were 

next performed following 72 h of in vitro treatment with phenformin (20 µM), 

imatinib (2 µM) or the combination of phenformin and imatinib (20 µM + 2 µM). 

Imatinib decreased the number of progenitor-derived colonies by 62%, while the 

combination treatment resulted in 78% reduction on average (Fig. 4.6c). Of note, 

the effect of the combination was pronounced in only one out of the two CML 

samples tested. 

As mentioned previously, CD34+ cells are a composed of both progenitor and stem 

cells and are not a pure population of LSCs. To validate that phenformin can target 

CML LSCs in presence of imatinib, the functional capacity of LSCs was assessed by 

Long-Term Culture Initiating-Cell (LTC-IC) assays. As described in the Methods 

section (2.2.8.2), CD34+ CML cells were treated once with phenformin, imatinib 

or in combination and cultured for five weeks on a stromal cell layer before 

assessment of the remaining progenitor cells by CFC assay. Since progenitor cells 

present at the beginning of the five-week assay would have lost their colony 

forming potential over time, the measurement of the remaining viable progenitor 

cells after this time course ensures selective measurement of the functional 

capacity of LSCs. In line with previous published data, imatinib did not reduce the 

stem-cell potential of CML cells (Fig. 4.6d). However, phenformin, as a single 

agent, decreased the number of stem-cell derived colonies in three out of four 

CML patients and the combination of both drugs significantly reduced the number 

of colonies in all patient-derived samples by 71% on average. 
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Figure 4. 6 Inhibition of aberrant oxidative metabolism with phenformin targets CML LSCs in 

vitro. 

(a) Respirometer output in CD34+ CML cells exposed for 24 h to phenformin (10 µM). n=1 patient 
sample. Data are presented as Mean ± S.D. (b) Basal mitochondrial OCR in CD34+ CML cells exposed 
for 24 h to phenformin (10 µM). Data are presented as Mean ± S.E.M. n=2 patient samples. (c) 
Colony numbers following 3 days drug treatment of CD34+ CML cells with phenformin (20 µM). Data 
are presented as Mean ± S.E.M. n=2 patient samples. (d) Number of colonies measured by LTC-IC 
assay in CD34+ CML cells following single drug treatment with phenformin (20 µM). Data are 
presented as Mean ± S.E.M. n=4 patient samples. P values were calculated by paired Student’s t-
test. FC, fold change relative to vehicle-treated cells. PH, phenformin; IM, imatinib. 
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4.2.5 Modelling CML disease in vivo using a transgenic BCR-ABL 
mouse model 

To determine whether phenformin could target LSCs in vivo, the DTG SCL-tTA-

BCR-ABL mouse model was used. As mentioned earlier (1.3.4), the sole expression 

of BCR-ABL in mice is sufficient to induce leukaemogenesis that resembles human 

CML. In this mouse model, BCR-ABL expression is under the control of a 

tetracycline-responsive element (TRE), so that its expression is induced in the 

mice upon removal of tetracycline from the drinking water (Tet-OFF system). In 

the absence of tetracycline, the tetracycline transactivator protein (tTa) binds to 

TRE, which prevents the transcription of BCR-ABL. Moreover, the tTa has been 

placed under the control of a 3’ region of the SCL gene that has been shown to 

have restricted expression in HSPCs and megakaryocytes. Expression of BCR-ABL 

is therefore induced primarily in the HSPC compartment upon tetracycline 

withdrawal. 

The CD45 common antigen is expressed by all leucocytes and has two functionally 

identical alleles: CD45.1 and CD45.2. This is commonly used in research to 

differentiate hematopoietic cells from a donor and a recipient mouse. In our 

model, the leucocytes in the DTG mice possess the CD45.2 isotype (CD45.2 SCL-

tTA-BCR-ABL mice) and the leucocytes of the wild type (WT) recipient mice 

express the CD45.1 allele (CD45.1 WT mice). Flow cytometric assessment of cell-

surface expression of CD45.1 and CD45.2 can therefore determine the origin of 

haematopoietic cells following transplantation of CD45.2 BM cells from DTG mice 

into irradiated CD45.1 WT recipient mice. 

BM cells were collected from two non-induced DTG mice, pooled, and 

transplanted into sub-lethally irradiated mice (n=20, 1 million cells per mouse). 

To ensure full recovery from irradiation toxicity and restoration of normal 

haematopoiesis before induction of leukaemia, the mice were kept on tetracycline 

for four weeks. Tetracycline was then removed from the drinking water to induce 

the expression of BCR-ABL and thus CML.  

As weight loss is a clinical sign often observed upon the development of leukaemia 

in mice and humans, the mouse body weight was monitored upon tetracycline 

removal and used as an indication of leukaemogenesis. Following 18 days of 
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induction, the mice displayed an average weight loss of 13% compared to baseline 

(pre-induction weight), indicating the development of CML disease (Fig. 4.7b). 

Moreover, flow cytometry analysis of the blood collected from the tail vein 

indicated that the engraftment levels of CD45.2 donor cells was close to 100% in 

all mice transplanted (Fig. 4.7c). Treatment was therefore started at this time 

with vehicle (PBS, twice daily), phenformin (100 mg/kg, oral gavage, once daily), 

imatinib (100 mg/kg, oral gavage, twice daily) and combination (phenformin and 

imatinib) for four weeks. Importantly, we did not observe any clinical signs of 

toxicity during the drug treatments and following post-mortem analysis.  

 

4.2.6 Phenformin and imatinib combination does not target LSCs 
in vivo 

Following four weeks of in vivo treatment, mice were sacrificed for flow 

cytometry analysis of BM and spleen cells. As previously mentioned (1.3.3), CML 

is characterised by a splenomegaly due to the extra medullary infiltration of 

leukaemic cells which has been described as a valuable readout for the prognosis 

and the stage of CML disease. Spleen size was therefore used as an indication of 

the leukaemic burden in the different treatment conditions. As shown by the 

representative spleen pictures and weight, imatinib-treated mice displayed a 

significant decrease in their spleen weight compared to the vehicle treatment 

(Fig. 4.8a,b). However, phenformin as a single agent did not reduce the spleen 

weight compared to vehicle-treated mice, and adding phenformin to imatinib did 

not potentiate the effect of the TKI alone. Indeed, animals treated with imatinib 

or the combination had an average spleen weight of 144 mg and 157 mg 

respectively. In line with this, the percentage of donor CD45.2 granulocytes in the 

spleen was not further reduced by the addition of phenformin to the TKI (Fig. 

4.8c). Similar results were obtained from the analysis of the percentage of BM 

CD45.2 granulocytes (Fig. 4.8d). The mean percentage of CD45.2 granulocytes 

was reduced significantly in the imatinib and the combination arm in comparison 

to vehicle-treated mice. However, with respective percentage of granulocytes in 

the BM of 36.9% and 36.8%, no significant difference were observed between 

imatinib-treated mice and the combination treatment. 
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Considering that a high leukaemic burden is frequently associated with anaemia, 

we next assessed the percentage of erythrocytes within the total BM cellular 

compartment. As expected, the percentage of erythrocytes was significantly 

increased in the BM of mice treated with imatinib compared to vehicle treatment 

(Fig. 4.8e). Although phenformin treatment resulted in a slight increase in the 

percentage of erythrocytes compared to vehicle-treated mice, the addition of 

phenformin to imatinib did not further increase the percentage of red blood cells 

in comparison to imatinib alone. 

With similar percentage of granulocytes in the spleen and the BM between 

imatinib and the combination treatment arm, these results indicated that 

phenformin does not potentiate the effect of imatinib against differentiated 

leukaemic cells in vivo. 

We next investigated whether the combination of phenformin and imatinib was 

able to target CML LSCs. To this end, we measured the percentage of CD45.2 LSCs 

present in the BM by flow cytometry. Multicolour flow cytometry analysis as 

described in Figure 4.9a allows distinguishing various haematopoietic cell subsets 

and assessment of their frequencies within a sample. To identify rare murine HSCs, 

differentiated cells are first gated out by labelling various differentiated cells 

using a cocktail of eight streptavidin-linked antibodies. Within the resulting 

lineage negative cells, primitive progenitor cells that contain most of the HSCs 

can be visualised. These cells are characterised by the Lin-Sca+ckit+ markers and 

are commonly referred to as LSK cells. Long-term HSC (LT-HSC) can finally be 

identified within these LSK cells and are defined as Lin-CD48+CD150-.  

Flow cytometry analysis of the percentage of LSK cells within the BM of treated 

mice revealed that neither imatinib nor the combination of imatinib and 

phenformin decreased the frequencies of LSK cells compared to vehicle-treated 

mice (Fig. 4.9b). Noteworthy, imatinib and phenformin, when used as single 

agents, resulted in a decrease in LT-HSC in comparison to vehicle-treated mice, 

although this was not statistically significant (Fig. 4.9c). However, the 

combination treatment arm failed to decrease the percentage of LT-HSCs in 

comparison to vehicle-treated mice. 
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To further complement these experiments, equal volumes of BM cell suspension 

from all treatment arms were plated for CFC assay to analyse the relative number 

of viable and functional progenitors. As shown by the representative picture in 

Figure 4.9d, the number of colonies derived from both the vehicle and 

phenformin conditions were visibly reduced compared to imatinib and 

combination treatment arms. However, no difference in the number of colonies 

was observed between imatinib and the combination of imatinib and phenformin; 

an additional evidence of the lack of efficacy of the combination treatment to 

target leukaemic cells. 

Altogether, these results demonstrated that imatinib significantly targets 

differentiated leukaemic cells, but, in accordance with previous studies, it failed 

to affect more primitive CML cells. Moreover, the combination of phenformin and 

imatinib did not potentiate the effect of imatinib in this in vivo setting. This was 

true for both stem and differentiated cells. 
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Figure 4. 7 Experimental outline using a DTG model to study in vivo drug/combination efficacy 

against CML cells. 

(a) Outline of the experiment to study the in vivo effect of phenformin on LSCs. Total bone 
marrow cells were collected from 2 SCL-tTA-BCR-ABL mice (i.e. mice expressing BCR-ABL under 
the control of a tetracycline response element) and transplanted into sub-lethally irradiated 
CD45.1 WT mice (106 cells per mouse, n=20 mice). The mice were kept on tetracycline for 4 
weeks, followed by 18 days of tetracycline removal to induce expression of BCR-ABL. The mice 
were then treated with vehicle (PBS), phenformin, imatinib, and combination for 4 weeks. (b) 
Percentage of weight change from baseline (average weight before removal of tetracycline) upon 
removal of tetracycline. (c) Donor CD45.2 cell engraftment measured in the blood of WT recipient 
mice 10 days post tetracycline removal. 
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Figure 4. 8 The addition of phenformin does not potentiate the effect of imatinib against 

differentiated leukaemic cells. 

(a) Representative spleen pictures and (b) spleen weight of WT mice transplanted with SCL-tTA-
BCR-ABL BM cells and treated in vivo as described in Figure 7. (c-d) Percentage of donor CD45.2 
granulocytes (Gr1+) in (c) the spleen and (d) BM. (e) Percentage of erythrocytes (TER 119+) in the 
BM. Data are presented as Mean ± S.E.M. *P<0.05, evaluated by one-way ANOVA with post hoc 
Bonferroni analysis. PH, phenformin; IM, imatinib. 
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Figure 4. 9 Phenformin and imatinib combination does not target LSCs in vivo. 

 
(a) Flow cytometry analysis and gating strategy for detection of murine HSCs. Debris and 
erythrocytes are first gated out from the FSC versus SSC plot. Lineage-negative cells are then 
selected, followed by the selection of Lin-cKit+Sca+ (LSK) cells. Murine HSCs are finally visualised 
from LSK cells as CD150+ cells. ST-HSC (Lin-cKit+Sca+CD150+CD48+) can be separated from LT-HSC 
(Lin-cKit+Sca+CD150+CD48-) based on the presence or absence of the CD48 marker. (b) Percentage 
of donor CD45.2 LSK and (c) LT-HSC in the BM of recipient mice. (d) Representative pictures of BM 
cell-derived colonies from recipient mice following CFC assay. In graphs, each dot represents one 
mouse. Data are presented as Mean ± S.E.M. PH, phenformin; IM, imatinib. 
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4.3 Discussion 

In this chapter, we first demonstrated that phenformin is a 100 times more potent 

than metformin in inhibiting mitochondrial respiration. However, as mentioned 

previously (4.1), phenformin is more toxic than metformin and has been 

withdrawn from the market due to an increased risk of lactic acidosis. 

Nevertheless, a drug-induced toxicity might be more acceptable for cancer 

treatment than for diabetes, as evidenced by the use of antineoplastic 

chemotherapy that have significant adverse-effects. This might however not be 

the case for CML, as patients have at their disposition a targeted TKI therapy that 

improves survival rates and has manageable side effects in most cases. 

Nonetheless, the course of treatment is relatively short in some types of cancer 

compared to diabetes, which might prevent significant side effects. In line with 

this, one clinical trial is currently recruiting patients to investigate the efficacy of 

phenformin for the treatment BRAF-mutated melanoma in combination with MEK 

and BRAF inhibitors (249). Despite concerns relating to its clinical applicability, 

the greater potency of phenformin to inhibit mitochondrial metabolism was a 

strong argument for its use as a tool compound in the rest of our experiments.  

We next demonstrated that phenformin synergises with imatinib to inhibit K562 

CML cells proliferation. Moreover, the percentage of viable cells was significantly 

reduced upon addition of phenformin to imatinib in comparison to imatinib alone. 

Additionally, the percentage of viable cells was further reduced when cells were 

forced to rely on oxidative metabolism in presence of galactose, indicating that 

the effect of phenformin is mediated by inhibition of mitochondrial metabolism. 

Accordingly, many studies have shown that phenformin can target cancer cells in 

vitro by inhibiting mitochondrial complex I.  

We next demonstrated that phenformin, as a single agent or in combination with 

imatinib, does not induce cell death of normal murine cells, while the survival of 

BCR-ABL-expressing cells is significantly impaired by the drug treatment. This 

suggests a potential therapeutic index for phenformin and imatinib use in the 

clinic. However, more stringent assays should be performed to validate the lack 

of toxicity of the drug combination. Accordingly, further investigations should 

assess the effect of the drug combination on normal primary cells in vitro and in 

vivo.  
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We next investigated the effect of phenformin in combination with imatinib to 

target CML progenitors and stem cells. This revealed that the combination reduced 

the number of progenitor-derived colonies in one out of two CML patient samples. 

With this limited number of patient samples, additional work is required to 

conclude whether the addition of phenformin sensitises CD34+ CML cells to 

imatinib. We next tested whether phenformin could target primitive stem cells by 

performing an LTC-IC assay, the most stringent in vitro stem cell assay available. 

This revealed that the combination of phenformin and imatinib was able to 

significantly reduce the number of CML LSCs in comparison to vehicle and imatinib 

treatment. 

Taken together, our results showed that the combination of imatinib and 

phenformin does not consistently decrease the number of progenitor-derived 

colonies, while the LTC-IC assay indicated that the drug combination could target 

CML LSCs. This could suggest that phenformin, when combined with imatinib, 

preferentially targets primitive cells and has only a minor effect on more 

differentiated progenitor cells. Another explanation for this discrepancy between 

the two assays could lie in the time course of the treatment performed. When 

performing CFC assays, cells are pre-treated for three days before being placed in 

methylcellulose, whereas in the LTC-IC assay, cells are treated once and further 

kept for five weeks in culture. The fact that cells are being treated for an 

extended period of time in the LTC-IC assay could partially explain the increased 

efficacy of phenformin and imatinib combination. 

Finally, we performed an in vivo experiment where BM cells from CD45.2 SCL-tTA-

BCR-ABL (DTG) mice were transplanted into CD45.1 WT mice and expression of 

BCR-ABL induced by tetracycline withdrawal. A more straightforward approach 

would have been to directly use DTG mice and induce them for CML disease by 

tetracycline removal. However, the poor breeding performance of these DTG mice 

prevented us to perform an in vivo experiment requiring a total of twenty mice. 

To circumvent this issue, and avoid the extensive cost involved in generating DTG 

mice, the transplantation model was selected for this in vivo experiment as it 

allows the transplantation of BM cells originating from few donors into many 

recipient mice. Indeed, only one million of BM cells are necessary for the 

transplantation into WT mice and the commonly used harvesting isolation methods 
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collect on average a hundred million of BM cells per mouse. Moreover, 

transplantation of a pool of cells originating from the same donors results in a 

more homogeneous disease in the recipient mice. 

Following appearance of CML disease, mice were treated with vehicle, 

phenformin, imatinib or combination following appearance of CML disease. This 

revealed that the combination of phenformin to imatinib had no beneficial effect 

on targeting either differentiated or stem cells compared to imatinib as a single 

agent. Several factors could have contributed the lack of efficacy of the 

combination treatment. First, it is very likely that the concentration of 

phenformin used in our in vitro studies is not achieved in vivo. Indeed, the 

concentration of phenformin measured in humans is 0.19 µM after a single 50 mg 

oral dose (250). Further studies are therefore required to test whether phenformin 

is able to hit its target in vivo and effectively inhibit complex I. As such, it would 

be interesting to treat mice with phenformin and assess the activity of complex I 

in snap frozen sections of the BM and the spleen. The lack of effect of phenformin 

in vivo could lie as well in the use of murine cells. Despite expressing BCR-ABL, 

these murine cells might be less sensitive than human CML cells to the drug 

treatment. Experiments assessing the sensitivity of murine myeloid cells from DTG 

donors to phenformin/imatinib treatment in vitro could clarify whether their 

response to drug treatment differs in comparison to human CML cells. 

Due to a restricted number of mice available, we did not include non-induced 

control mice (i.e. on tetracycline; TET-ON) in our experiment. These TET-ON mice 

would have undergone the same experimental procedures (i.e. transplantation of 

DTG BM cells and sub-lethal irradiation) but never induced for CML disease and 

kept on tetracycline. The comparison of the percentage of granulocytes between 

TET-ON and imatinib-treated mice could have helped determine whether imatinib 

reduced the percentage of granulocytes to the levels of non-induced mice. If 

imatinib induced such a profound reduction in the leukaemic burden, it would not 

have been possible to further see a decrease in leukaemic cells in the combination 

treatment. Despite this, imatinib and other TKIs cannot fully eradicate CML 

disease and fail to target LSCs. Therefore, even if we consider that imatinib 

eliminated all differentiated cells in these mice, LSCs should not have been 

affected (or only marginally) by TKI treatment and the effect of the combination 
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could be seen at the stem cell level. Unexpectedly, imatinib decreased the 

percentage of LSK cells, and this effect was even more pronounced in LT-HSCs 

cells. This is highly unexpected, as previous experiments performed in this model 

have shown that imatinib and other TKIs do not have a significant effect on LT-

HSCs. Interestingly, the colony-forming assay, performed on BM cells isolated from 

mice treated in vivo, revealed that the number of progenitors were increased in 

both the imatinib and the combination treatment arm in comparison to vehicle 

and phenformin conditions. This difference was not observed in flow cytometry 

analysis and highlights the importance of complementing flow cytometry analysis 

with functional assays. In any case, both flow cytometry and CFC experiment 

revealed that the combination treatment arm does not decrease the number of 

neither differentiated cells nor stem cells in comparison to imatinib.  

4.4 In summary 

In this chapter, we first investigated the potency of the two biguanides 

phenformin and metformin to inhibit mitochondrial respiration and selected the 

more potent inhibitor, phenformin, for further investigation in combination with 

imatinib. Interestingly, our results indicated the presence of a synergistic effect 

between phenformin and imatinib to inhibit the proliferation of CML cells. 

Moreover, this effect was not limited to reduction in cellular proliferation, as the 

combination of phenformin and imatinib significantly reduced the percentage of 

viable CML cells in comparison to imatinib alone. Using media containing solely 

galactose as a carbon source, which forces cells to rely on oxidative metabolism 

for energy production, we demonstrated that the effect of phenformin mediates 

its effect on cellular viability by inhibiting mitochondrial oxidative metabolism.  

We next tested the effect of phenformin on primary patient-derived CML CD34+ 

cells. The addition of phenformin to imatinib significantly reduced the potential 

of CML LSCs to form colonies, while imatinib as a single agent did not. Given these 

encouraging in vitro results, we next tested the capacity of phenformin in 

combination with imatinib to target CML LSCs in a mouse model of CML disease. 

Unfortunately, the combination of phenformin and imatinib had no demonstrable 

effect against differentiated leukaemic cells or LT-HSCs in comparison to imatinib 

treatment.  
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This study provides an initial characterisation of the importance of mitochondrial 

oxidative metabolism for CML LSCs survival in vitro. While we did not validate this 

finding in a mouse model of CML, future investigation should test whether the 

combination of phenformin and combination with imatinib can target primary CML 

LSCs in a humanised mouse model of CML.  
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Chapter 5 Using tigecycline to target CML LSCs 

5.1 Introduction 

Thus far, our results have demonstrated that CD34+ CML cells have an increased 

oxidative metabolism in comparison to differentiated patient-matched CD34- cells 

and to normal counterparts. Moreover, the complex I inhibitor phenformin in 

combination with imatinib significantly reduced CML LSCs potential in an in vitro 

setting, suggesting that inhibition of oxidative metabolism might be detrimental 

for CML LSCs survival. However, phenformin, as single agent or combined to 

imatinib, did not target BCR-ABL stem/progenitors expressing cells in the 

SCLtTA/BCR-ABL transgenic mouse model. The possible reasons behind the lack of 

efficacy of phenformin in vivo have been discussed in the previous chapter 

(4.3.3). Nonetheless, the poor outcome of phenformin treatment in vivo led us to 

test a second and more clinically relevant inhibitor of oxidative metabolism.  

It is widely accepted nowadays that mitochondria originated from bacteria 

following endosymbiosis (251). In support to this endosymbiotic theory, several 

classes of antibiotics have been shown to target both bacterial and mitochondrial 

ribosomes, due to their similarity in structure. The mitochondrial genome encodes 

for 13 proteins that are components of the OXPHOS machinery. As a result, the 

use of certain antibiotics such as drugs from the tetracycline and glycylcycline 

family can target the expression of subunits of OXPHOS complexes, and hence 

impair oxidative metabolism. For instance, tigecycline, an FDA approved 

glycylcycline antibiotic, has been shown to impair the expression of 

mitochondrial-encoded proteins in tandem to inhibiting bacterial protein 

synthesis. Moreover, Skrtić et al. in a 2011 study demonstrated that tigecycline 

targets AML cells in vitro and in vivo and this effect was mediated by inhibition of 

oxidative metabolism (187). We therefore aimed to test the efficacy of this 

clinically approved inhibitor of oxidative metabolism against CML LSCs. 

Similar to Chapter 3, the majority of data provided in this chapter were accepted 

for publication in August in Nature Medicine. 
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5.2 Results 

5.2.1 Tigecycline mediated inhibition of mitochondrial oxidative 
metabolism targets CML cell lines 

To confirm that tigecycline inhibits the expression of mitochondrial proteins in our 

model, K562 and KCL22 CML cell lines were treated with tigecycline at a 

concentration of 5 µM and the expression of subunits of complexes from the of 

OXPHOS machinery was analysed following three days of drug treatment. More 

precisely, the expression of proteins encoded by the mitochondrial genome, 

namely cytochrome c oxidase subunit 1 (MT-CO1) and subunit 2 (MT-CO2), was 

compared to the expression of ubiquinol-cytochrome c reductase core protein II 

(UQCRC2) and ATP synthase subunit alpha (ATP5A), both nuclear-encoded 

proteins. In the two CML cell lines, tigecycline treatment reduced selectively the 

expression of mitochondrial encoded proteins while not affecting nuclear-encoded 

ones (Fig 5.1a,b). 

To confirm that the decrease in mitochondrial protein expression translates to a 

reduction in oxidative metabolism, mitochondrial respiration was assessed in K562 

and KCL22 cell lines following 24 and 48 h treatment with tigecycline (5 µM). 

Subsequent injections of oligomycin, FCCP, antimycin A and rotenone were 

performed to further test the metabolic profile of the mitochondria. This revealed 

that tigecycline treatment decreased mitochondrial respiration in both K562 cells 

and KCL22 cells following 24 h of treatment (Fig 5.1c-e). This effect was more 

pronounced after 48 h of tigecycline treatment, as shown by a 32% and 31% 

average inhibition of mitochondrial respiration in K562 and KCL22 cells 

respectively (Fig 5.1f,g).  

Importantly, tigecycline impaired the proliferation of leukaemic cells at 

concentrations that can be achieved in vivo, with respective IC50 values of 3.44 

µM and 7.8 µM for K562 and KCl22 cell lines (Fig 5.2a,b). To test whether this was 

associated with a decrease in cell survival, K562 and KCL22 cells were plated for 

72 h in presence of three different concentrations of imatinib (250, 500 and 1000 

nM) in the presence or absence of tigecycline (5 µM). The addition of tigecycline 

to imatinib increased the percentage of cell death in comparison to imatinib as a 

single agent across all three doses of TKI tested in K562 cells (Fig 5.2c). Indeed, 
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at a concentration of 250 nM, imatinib induced cell death in 14% of the cells while 

40% of the cells were targeted by the combination treatment. Similarly, the 

addition of tigecycline to imatinib significantly increased the percentage of dead 

cells in comparison to imatinib alone in a second CML cell line (Fig 5.2d). 

Noteworthy, this was observed across all three concentrations of imatinib in both 

CML cells lines. 

Here, we demonstrated that tigecycline, by affecting the expression of 

mitochondrial encoded protein, reduces mitochondrial respiration in two CML cell 

lines. Moreover, inhibition of mitochondrial respiration with tigecycline in 

combination with imatinib significantly impairs the proliferation and survival of 

CML cells. 
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Figure 5. 1   Tigecycline inhibits mitochondrial respiration in CML cell lines. 

(a-b) Protein expression of MT-CO2, UQCRC2 and ATP5A in (a) K562 and (b) KCL22 cells following 
72 h in vitro treatment with tigecycline (5 µM). 1 out of 2 independent experiments. (c) 
Representative respirometer output in K562 and KCL22 cells in the presence or absence of 
tigecycline (5 μM) after 24 h of treatment. (d-e) Mitochondrial respiration following 24 h in vitro 
treatment with tigecycline or vehicle control in (d) K562 cells and (e) KCL22 cells. n=3 independent 
experiments. (f-g) Mitochondrial respiration following 48 h in vitro treatment with tigecycline or 
vehicle control in (f) K562 cells and (g) KCL22 cells. n=2 independent experiments. Data are 
presented as Mean ± S.E.M. FC, fold change relative to vehicle-treated cells. P values were 
calculated by unpaired Student’s t-test. 
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Figure 5. 2 Tigecycline in combination with imatinib targets CML cell lines in vitro. 

(a-b) Proliferation of (a) K562 cells and (b) KCL22 cells upon exposure to various concentrations of 
tigecycline. n=3 independent experiments. (c-d) Cell death upon 72 h tigecycline treatment (5 μM) 
in combination with various concentration of imatinib (250 nM, 500 nM, 1000 nM) in (c) K562 cells 
and (d) KCL22 cells. n=3 independent experiments. Data are presented as Mean ± S.E.M. *P<0.05; 
**P<0.01; ***P<0.001, evaluated by one-way ANOVA with post hoc Bonferroni analysis. TIG, 
tigecycline; IM, imatinib. 
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5.2.2 Tigecycline preferentially inhibits cell proliferation of BCR-
ABL expressing cells. 

To test whether the effect tigecycline was selective to CML cell lines, parental 

Ba/F3 cells and Ba/F3 p210 cells (4.2.3) were treated with increasing 

concentration of tigecycline. Following 72 h of treatment, the remaining number 

of cells were assessed by XTT assay. The half-maximal inhibitory concentration 

(IC50) of tigecycline was more than five times higher in parental Ba/F3 compared 

to Ba/F3 p210 cells (Fig. 5.3). Indeed, the IC50 of tigecycline in parental Ba/F3 

and in Ba/F3 p210 cells was determined to be 57.4 µM and 7.5 µM respectively 

across three independent experiments, suggesting that tigecycline preferentially 

inhibits cellular proliferation of BCR-ABL expressing cells, and thus, potentially of 

CML cells. Noteworthy, the doubling time of parental Ba/F3 cells is similar to 

Ba/F3 p210 cells, which indicated that the therapeutic window observed for 

tigecycline treatment in CML cells is not dependent on the proliferative capacity 

but rather on the expression of BCR-ABL. 

All together, these results indicated that tigecycline has a strong potential to 

target CML cells in a selective manner as the IC50 of tigecycline was lower in 

BA/F3 p210 cells than in parental cells.  

Figure 5. 3 Tigecycline preferentially targets BCR-ABL-expressing cells. 

Cell proliferation normalised to vehicle treatment following 72 h tigecycline in vitro treatment 
in Ba/F3 p210 and parental Ba/F3 cells. n=3 independent experiments. Data are presented as 
Mean ± S.E.M.  
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5.2.3 Tigecycline inhibits oxidative metabolism in primary CD34+ 

CML cells 

To confirm the effect of tigecycline on mitochondrial protein expression in 

primary cells, CD34+ cells from two CML patients were treated for three days in 

the presence of 2.5 µM of tigecycline, a concentration that was shown to be 

achievable in human plasma. In line with the results obtained in CML cell lines, 

tigecycline decreased the expression of MT-CO1 and MT-CO2, both encoded by the 

mitochondrial genome (Fig. 5.4a). Importantly, tigecycline treatment did not 

affect, or to a minor extent, the expression of the nuclear-encoded proteins 

UQCRC2 and ATP5A. This demonstrated that tigecycline treatment, at a 

concentration achievable in vivo, is able to decrease the expression of 

mitochondrial-encoded proteins. This decrease in protein expression was 

accompanied with an increase in mRNA levels encoding for MT-CO2 and MT-CO1 

(Fig. 5.4b). 

We next tested whether the inhibition of mitochondrial protein expression 

observed with tigecycline treatment in CD34+ CML cells was linked to a decrease 

in oxidative metabolism. CD34+ cells derived from four CML patient samples were 

treated with tigecycline (2.5 µM) for 48 h and the mitochondrial respiration 

assessed. This confirmed that tigecycline is able to significantly inhibit 

mitochondrial respiration of CD34+ CML cells by 37% on average (Fig. 5.4c).  

To gain a deeper understanding of the intracellular metabolic changes that occur 

upon tigecycline treatment, CD34+ CML cells were pre-treated for 24 h with 

tigecycline (2.5 µM) and, the following day, plated in presence of 13C6-labelled 

glucose, in the presence or absence of tigecycline (2.5 µM). Following 24 h 

incubation with 13C6-glucose, intracellular metabolites were extracted and 

subjected to LC-MS analysis. Analysis of the 13C isotopic enrichment revealed that 

the contribution of glucose derived carbons for citrate, glutamate and aspartate 

was significantly decreased in tigecycline-treated CML CD34+ cells (Fig. 5.4d-f). 

For instance, the isotopologues of citrate containing two or more 13C atoms were 

reduced by more than 70% in tigecycline-treated CML CD34+ cells in comparison to 

vehicle-treated cells. This decrease in glucose oxidation was linked to a reduction 

in the relative activity of PDH and PC (Fig. 5.4g,h). 
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Glutamine, the most abundant non-essential amino acid in the blood, is an 

anaplerotic precursor used by normal and cancer cells to replenish TCA cycle 

metabolites. Moreover, glutamine is a major mitochondrial substrate and plays an 

important role in maintaining mitochondrial potential and integrity. Given the 

effect of tigecycline on mitochondrial metabolism, we questioned whether 

glutamine metabolism was as well affected by the drug treatment. To this end, 

CD34+ CML cells were pre-treated for 24 h with tigecycline (2.5 µM) and plated 

the next day in media containing 13C5-labelled glutamine in presence or absence 

of tigecycline (2.5 µM). After 24 h incubation, intracellular extracts were 

subjected to LC-MS analysis. Tigecycline treatment in CD34+ CML cells resulted in 

a significant reduction in the contribution of glutamine-derived 13C atoms into the 

TCA cycle metabolite citrate as well as the derived amino acids glutamate and 

aspartate (Fig. 5.5a-c). 

We previously showed that FAO is significantly elevated in CD34+ CML cells in 

comparison to CD34+ normal cells. Similar to our experiment with labelled glucose 

and labelled glutamine, CD34+ CML cells were plated in presence of 13C16 labelled 

palmitate, in the presence or absence of tigecycline (2.5 µM) to understand the 

effect of tigecycline on fatty acid metabolism. A significant reduction in 

isotopologues containing 13C atoms for citrate, glutamate and aspartate was noted 

in tigecycline-treated CD34+ cells in comparison to vehicle condition, indicating 

that tigecycline mediates a decrease in palmitate oxidation (Fig. 5.5d-e). 

These results demonstrated that tigecycline treatment in CD34+ CML targets the 

expression of proteins encoded by the mitochondrial genome. This leads to an 

overall decrease of mitochondrial oxidative metabolism as indicated by the 

reduction in glucose, glutamine and fatty acid oxidation following tigecycline 

treatment.  
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Figure 5. 4 Tigecycline inhibits oxidative metabolism in CD34+ CML cells through inhibition of 
mitochondrial protein expression.  

(a) Protein expression in CD34+ CML cells following 72 h in vitro treatment with tigecycline (2.5 
µM). n=2 patient samples. (b) mRNA levels in CD34+ CML cells following 72 h in vitro treatment 
with tigecycline (2.5 µM). n=3 patient samples. (c) Basal mitochondrial OCR in CD34+ CML cells 
following tigecycline treatment (2.5 µM). n=4 patient samples. (d-f) Relative isotopologue 
distribution of (d) citrate, (e) glutamate and (f) aspartate in CD34+ CML cells measured by LC-MS 
following 24 h incubation with 13C6-labelled glucose in presence or absence of tigecycline (2.5 
µM). Mean ± S.E.M. n=3 patient samples. (g) Abundance of 13C3 aspartate and (h) 13C2 citrate in 
presence or absence of tigecycline (2.5 µM) measured by LC-MS following 24 h incubation with 
13C6-labelled glucose. Mean ± S.E.M. n=3 patient samples. P values were calculated by paired 
Student’s t-test. TIG, tigecycline. 
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Figure 5. 5 Tigecycline inhibits glutamine oxidation and FAO in CD34+ CML cells. 

(a-c) Relative isotopologue distribution of (a) citrate, (b) glutamate and (c) aspartate in CD34+ 
CML cells measured by LC-MS following 24 h incubation with 13C5-labelled glutamine in the presence 
or absence of tigecycline (2.5 µM). Mean ± S.E.M. n=3 patient samples. (d-f) Relative isotopologue 
distribution of (d) citrate, (e) glutamate and (f) aspartate in CD34+ CML measured by LC-MS 
following 24 h incubation with 13C16-labelled palmitate in the presence or absence of tigecycline 
(2.5 µM). Mean ± S.E.M. n=3 patient samples. P values were calculated by paired Student’s t-test. 
TIG, tigecycline. 
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5.2.4 Tigecycline in combination with imatinib targets CD34+ CML 
cells in vitro 

OXPHOS and anaplerosis are essential for growth and proliferation. To test the 

effect of tigecycline on the proliferation in CD34+ CML cells, we traced cellular 

division with a fluorescent dye (Cell Trace Violet). Following three days of 

incubation with indicated drugs, the number of cellular divisions that the cells 

have undergone were measured. This revealed that tigecycline alone or in 

combination with imatinib, strongly impaired proliferation of primary CD34+ CML 

cells, whereas imatinib alone had only a moderate effect, in line with its 

preferential effect on differentiated CD34- cells (Fig. 5.6a). The assessment of 

the percentage of cells that went through one or more division revealed that 

almost all vehicle-treated cells divided over the 72 h in vitro culture (Fig. 5.6b). 

However, the percentage of cells divided decreased by more than 50% upon 

exposure to tigecycline in comparison to vehicle treatment. The effect observed 

with tigecycline alone was similar to the one seen upon imatinib treatment, with 

respective percentage of cells divided of 43% and 38%. The combination of 

imatinib and tigecycline showed the strongest effect, inhibiting cellular division 

by more than 80% in comparison to vehicle. Moreover, the combination induced a 

significant 50% decrease in the percentage of cells divided in comparison to 

imatinib alone. These results showed that combining imatinib to tigecycline 

potentiates the anti-proliferative effect of imatinib against CD34+ CML cells. 

To understand the fate of CD34+ cells upon drug treatment beyond the effect on 

proliferation, we tested whether the combination of tigecycline and imatinib 

induced cell death. To this end, CD34+ CML cells were plated for 72 h in presence 

of vehicle, tigecycline, imatinib or their combination, and the percentage of 

Annexin V positive cells was assessed by flow cytometry. This revealed that 

combining tigecycline to imatinib significantly increased the percentage of 

Annexin V positive cells in comparison to imatinib alone. Moreover, tigecycline 

potentiated the effect of imatinib in all seven patients analysed, reflecting the 

robustness of this result (Fig 5.7a). The effect of the combination on the 

functional properties of CD34+ CML cells was next assessed by performing CFC 

assays. Treatment with either imatinib or tigecycline alone decreased the number 

of CFCs by 40% on average, which revealed that tigecycline is able to target CD34+ 
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CML cells to the same extent as imatinib. Importantly, their combined application 

effectively reduced colony formation, with less than 15% of colonies remaining on 

average compared to vehicle treatment (Fig. 5.7b,c). To verify the selectivity of 

tigecycline against CML cells, as suggested previously by experiments in parental 

Ba/F3 and p210 cells (Fig. 5.3), CFC assays were performed on normal, non-

leukaemic CD34+ cells. Importantly, neither drug, alone nor in combination, 

resulted in a significant decrease in the number of normal CFC, affirming a 

potential therapeutic window for tigecycline use in CML treatment (Fig. 5.7d).  

Taken together, these results revealed that tigecycline in combination with 

imatinib selectively targets CD34+ CML cells in vitro by inducing cell death and 

cell growth arrest. 
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Figure 5. 6 Tigecycline is a potent inhibitor of CD34+ CML cells proliferation. 

(a) Representative flow cytometry histograms obtained from cellular division tracking of CellTrace 
Violet-stained CD34+ CML cells following 72 h of treatment. n=1 patient sample. (b) Percentage of 
CML CD34+ cells divided following 72 h of drug treatment. n=5 patients samples. Data are presented 
as Mean ± S.E.M. *P<0.05; ***P<0.001, evaluated by one-way ANOVA with post hoc Bonferroni 
analysis. FC, Fold change relative to IM-treated cells. Tigecycline (TIG) and imatinib (IM) were 
used at a concentration of 2.5 µM and 2 µM respectively. 
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Figure 5. 7 Tigecycline combined to imatinib selectively targets CD34+ CML cells in vitro. 

(a) Representative flow cytometry histograms obtained from Annexin V staining in CD34+ CML cells 
following 72 h in vitro drug treatment.  (b) Percentage of Annexin V positive cells following 72 h 
of drug treatment in CD34+ CML cells.  n=7 patients samples  (c) Representative images of colonies 
and (d) relative colony numbers following 3 days drug treatment of CD34+ CML cells. n=4 patient 
samples. (e) Colony number following 72 h drug treatment of CD34+ normal cells. n=4 normal 
samples. All data are presented as Mean ± S.E.M. P values were calculated by paired Student’s t-
test. Tigecycline (TIG) and imatinib (IM) were used at a concentration of 2.5 µM and 2 µM 
respectively.  
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5.2.5 Tigecycline in combination with imatinib targets CML LSCs 
in vitro 

The combined effect of tigecycline and imatinib on CFCs suggested that the drugs 

affected two distinct populations; with imatinib targeting mature progenitors and 

tigecycline targeting the more oxidative, long-term LSCs. To test this hypothesis, 

experiments analysing the effect of tigecycline on LSCs were next performed.  

Cultured human haematopoietic cells that express the CD133 marker have been 

shown to be enriched for HSCs (252). To verify that expression of CD133 following 

in vitro culture was associated with characteristics of LSCs in our experimental 

conditions, Cell Trace Violet-stained CD34+ CML cells were cultured for 72 h to 

track cellular proliferation, and then stained with anti-human CD133 and anti-

human CD34 antibodies for phenotypic analysis by flow cytometry. As indicated in 

Fig. 5.8a, primary human CML cells expressing high levels of CD133 were also 

positive for the CD34 surface marker. Moreover, cells co-expressing high levels of 

CD133 and CD34 (CD133+/CD34+ cells) retained the highest levels of the CFSE dye 

(referred to as “CFSE Max”) despite 72 h of in vitro culture in the presence of 

physiological growth factors. In other words, CD133+/CD34+ cells were shown to 

reside within the quiescent population of CD34+ CML progenitor cells, known to be 

resistant to therapy. Of note, the low expression of CD133 seen in some cells was 

not due to cellular differentiation and a loss of the dye upon the 72 h in vitro 

culture as the percentage of CD133+ cells did not change significantly from day 0 

to day 3. 

We next analysed the percentage of viable CD133+/CD34+ cells remaining following 

72 h of drug treatment with tigecycline, imatinib and combination. This revealed 

that the percentage of CD133+/CD34+ cells was significantly reduced in the 

combination treatment arm in comparison to vehicle and imatinib alone (Fig 

5.8b). Noteworthy, imatinib did not significantly reduce the percentage of 

CD133+/CD34+ cells, in line with its lack of efficacy against primitive CML cells. 

We next tested whether the combination treatment was able to induce cell death 

in the quiescent fraction of CD34+ CML cells. To this end, CD34+ CML cells were 

stained at day 0 with the cell division tracker CFSE dye, and the percentage of 

Annexin V positive cells was analysed within the quiescent fraction (CFSE Max) 

following 72 h drug treatment. While imatinib did not significantly increase cell 
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death in the resistant quiescent fraction of CML CD34+ cells, the combination 

treatment resulted in a significant increase in the percentage of Annexin V 

positive CFSEMax cells (Fig. 5.8c).  

These results indicated that the combination of tigecycline and imatinib can 

significantly target CML LSCs in vitro. Given that these experiments were based 

on the phenotypical analysis of CML cells, we next performed functional assays to 

assess the stem cell potential following in vitro drug treatment.  

As mentioned before (3.2.4), cells identified as CD34+CD38- prior to in vitro 

culture are enriched for HSCs and represent about 5~10% of the total CD34+ cells. 

We therefore performed short-term CFC assays on FACS-sorted CD34+CD38- from 

one CML patient following 72 h in vitro drug treatment. While imatinib and 

tigecycline as single agents decreased the number of colonies by about 30%, their 

combined application further reduced the number of CD34+CD38--derived colonies 

(Fig. 5.8d). To complement this result, we next assessed the effect of vehicle, 

tigecycline, imatinib and the combination treatment in CML LSCs by LTC-IC assay. 

While imatinib did not significantly reduce LSCs potential, tigecycline, alone and 

when combined to imatinib, significantly reduced the number of LSCs (Fig. 5.8e).  

Taken together, our data demonstrated that the combination of tigecycline to 

imatinib significantly targets CML LSCs in vitro, while imatinib alone was unable 

to impair their survival.  
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Figure 5. 8 Tigecycline in combination with imatinib targets LSCs in vitro. 

(a) Representative expression levels of human CD34 and human CD133 following 72 h in vitro 
culture of CD34+ CML cells (left panel). Representative histograms reflecting the retention of the 
CFSE dye in cell subsets expressing different levels of CD133 (right panel). (b) Percentage of 
CD34+CD133+ remaining after 72 h in vitro treatment. n=4 patient samples. (c) Percentage of 
Annexin V positive cells in CFSEmax CD34+ CML cells following 72 h in vitro treatment. (d) Relative 
number of colonies measured by CFC assay following 72 h drug treatment of CD34+CD38- CML cells. 
n=1 patient sample. (e) Relative number of colonies measured by LTC-IC assay in CD34+ CML cells. 
n=5 patient samples. All data are presented as Mean ± S.E.M. P values were calculated by paired 
Student’s t-test. Tigecycline (TIG) and imatinib (IM) were used at a concentration of 2.5 µM and 
2 µM respectively. 
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5.2.6 Tigecycline-mediated inhibition of oxidative metabolism 
targets LSCs in vivo when used in combination with imatinib 

Our promising in vitro results suggested that combining tigecycline to imatinib 

could targets LSCs. We next aimed to validate these findings in vivo using 

transgenic mouse model of CML. As mentioned before, the DTG mouse model for 

CML disease consist of a TET-OFF system that prevents BCR-ABL expression in the 

presence of tetracycline. Tigecycline is a derivative of tetracycline and, as shown 

in Fig. 5.9a, both drugs share a similar structure. Therefore, we were concerned 

that tigecycline could bind to the tTa in the DTG mouse model, which would 

prevent the expression of BCR-ABL in HSCs. In that case, tigecycline treatment 

could revert CML disease by interfering with the expression of BCR-ABL, making it 

difficult to interpret the real effect of tigecycline against CML cells. To test 

whether tigecycline could interfere with the TET OFF expression system, we 

isolated haematopoietic progenitor cells (cKit+) from DTG mice and analysed BCR-

ABL mRNA levels following a 48 h in vitro culture in the absence or presence of 

tetracycline, doxycycline and tigecycline. This revealed that all three antibiotics 

reduced BCR-ABL mRNA levels by more than 90% in comparison to untreated 

condition. Noteworthy, this was not due to a toxic effect of tigecycline against 

BCR-ABL-expressing cells, as no significant difference in cell death and cell 

number were noted between all conditions. This suggested that tigecycline, at a 

concentration used in all our in vitro assays (2.5 µM), was as potent as tetracycline 

and doxycycline to reduce BCR-ABL mRNA levels in cells isolated from the DTG 

model, confirming its ability to interfere with the TET OFF expression system. 

Therefore, the DTG mouse model was not suitable for testing the effect of 

tigecycline against CML LSCs in vivo. 

To confirm that the combination of tigecycline with imatinib targets LSCs in an in 

vivo setting, we next used a robust humanised model of CML. CD34+ CML cells 

derived from one CML patient known to engraft 100 % of Ph-positive cells were 

transplanted into sub-lethally irradiated immuno-deficient NOD.Cg-

PrkdcscidIl2rgtm1Wjl/SzJ (NSG) female mice. Six weeks post-transplantation, human 

cell engraftment was confirmed by analysing the presence of human leucocyte 

common antigen (hCD45+) in the blood of the mice. After ensuring equivalent 

human cell engraftment levels, the mice were split into four groups (A, B, C, D) 
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and treated for four weeks with vehicle only, tigecycline (escalating doses of 25-

100 mg.kg-1: see Methods), imatinib (100 mg.kg-1) or both drugs combined (Fig. 

5.10a,b). 

Importantly, the mice did not show any clinical signs of toxicity during the drug 

treatments. Moreover, no significant changes in body and spleen weight, nor 

differences in BM cellularity were noted after the four-week treatment course, 

indicating that tigecycline or the combination is safe for use (Fig 5.10c-e). At end 

point, total BM cells from femurs and tibias were isolated and analysed for the 

expression of the following cell humans antigen by flow cytometry: CD45, present 

on leukocytes, CD34, present on progenitors and stem cells and CD38 to 

discriminate progenitors (CD34+CD38+) from LSCs (CD34+CD38-). Transplantation of 

CML patients samples into immunocompromised mice have been shown to result 

in low engraftment levels in the host. Similarly, in this experiment, the majority 

of BM cells isolated were non-leukaemic murine cells (human CD45-) and were not 

affected by any of the treatment regimen (Fig. 5.10e and 5.11a). However, the 

total number of CML-derived leukocytes (hCD45+) was decreased significantly in 

mice treated with imatinib and, importantly, the CML burden was further 

decreased in the combination arm (Fig. 5.11b). This effect was even more 

pronounced in more primitive CD45+CD34+ CML cells where the combination 

treatment decrease significantly the number of CD45+CD34+ CML cells in 

comparison to both vehicle and imatinib treated mice (Fig. 5.11a,c). The most 

striking effect though was seen within the more primitive human LSCs population. 

Whereas imatinib alone only marginally (and insignificantly) decreased the 

number of CD45+CD34+CD38- CML cells, the combination treatment eliminated 95% 

of these cells (Fig. 5.11d). 

Finally, to demonstrate that the effect of tigecycline is mediated by reduction in 

mitochondrial oxidative metabolism, a second in vivo experiment using the xeno-

transplantation model was performed with CD34+ cells derived from a second CML 

patient. Following six weeks of engraftment, mice were split into two groups and 

treated with either vehicle or tigecycline (escalating doses of 25-100 mg.kg-1) for 

four weeks (Fig. 5.12a). At end point, total BM cells were sorted for human 

CD45+CD34+ cells and the expression of mitochondrial-encoded protein assessed. 

The assay could only be performed in four out of six vehicle and tigecycline-
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treated mice due to an insufficient cell number isolated from the other animals. 

CD45+CD34+ CML cells isolated from tigecycline-treated mice displayed decreased 

level of MT-CO2 and MT-CO1 but not ATP5A in comparison to vehicle-treatment, 

which indicated that tigecycline reduces the expression of mitochondrial-encoded 

proteins in primary CD34+ cells in vivo ( Fig. 5.12b) 

Altogether, our results demonstrated that primitive stem/progenitor CML cells are 

sensitive to the inhibition of OXPHOS. Importantly, the combination of tigecycline 

with imatinib, the standard first-line therapy for CML, impaired the survival of 

both CD34+ and more primitive CML LSCs at clinically administrable doses in a 

selective manner.  
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Figure 5. 9 Tigecycline affects the TET-OFF gene expression system. 

(a) Structural formula of tetracycline and tigecycline. (b) BCR-ABL mRNA levels in cKit+ cells 
isolated from DTG mice following 48 h in vitro culture with indicated drugs. n=1 independent 
experiment. Tetracycline and doxycycline were both used at a concentration of 1 µg/ml. 
Tigecycline was used at a concentration of 2.5 µM. 
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Figure 5. 10 Tigecycline alone or when combined to imatinib is not toxic towards normal 

cells. 

(a) Mice were transplanted with CD34+ CML cells and analysis of human cell engraftment was 
performed following 4 weeks of in vivo drug treatment. (b) Percentage of human CD34+ cells in 
blood 6 weeks post-transplantation, before the start of treatment. (c) Mouse body weight during 
treatment course. (d) Spleen weight at endpoint. (e) BM cellularity measured in tibiae and femurs. 
All data are presented as Mean ± S.E.M. TIG, tigecycline; IM, imatinib. 
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Figure 5. 11 Tigecycline in combination with imatinib targets human LSCs in vivo. 

(a) Representative percentage of human CD45+ and human CD34+ cells from total BM cells. Number 
of (b) human CD45+ cells (c) human CD34+ cells and (d) human CD34+CD38- cells engrafted in the 
BM of immunocompromised mice. All data are presented as Mean ± S.E.M. P values were calculated 
by unpaired Student’s t-test on logarithmic transformed variables to meet the assumption of 
normality. TIG, tigecycline; IM, imatinib. 
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Figure 5. 12 Tigecycline inhibits the expression of mitochondrial-encoded proteins of CD34+ 

CML cells in vivo.  

(a) Mice were transplanted with CD34+ CML cells and treated with tigecycline or PBS in vivo for 4 
weeks. (b) Protein expression of MT-CO2, MT-CO1 and ATP5A in FACS-sorted CD34+ CML cells 
following 4 weeks in vivo treatment 
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5.2.7 The combination of tigecycline and imatinib marginally 
affects normal HSCs in vivo  

We next performed a comparative analysis on normal HSCs to assess the selectivity 

and the therapeutic advantage for tigecycline treatment. Precisely, CD34+ cord 

blood cells were transplanted in immunocompromised mice and, similar to the 

experiment described in Figure 5.10a with CD34+ CML cells, treatment was 

started with PBS, tigecycline (escalating doses from 25-100 mg.kg-1), imatinib (100 

mg.kg-1) and combination, after confirmation of equivalent engraftment levels in 

mice (Fig. 5.13 a,b). After four weeks of in vivo treatment, BM cells were isolated 

and expression of the human surface markers CD34 and CD38 were analysed by 

flow cytometry. The number of human CD34+ cells was decreased, although not 

significantly, in all treatment arms in comparison to vehicle treatment (Fig 

5.13c). Importantly, the combination treatment did only decrease the number of 

human CD34+ normal cells marginally and insignificantly, in contrast the 95% 

elimination of human CD34+ CML observed previously (Fig. 5.11c). Moreover, this 

effect was even less pronounced in the primitive human HSC population. Imatinib 

induced a slight (and insignificant) decrease in the number of normal HSCs in 

comparison to vehicle condition (Fig. 5.13d). Importantly, the addition of 

tigecycline to imatinib did not further decrease the number of human CD34+CD38- 

cells, as demonstrated by the equivalent number of normal HSCs measured in 

imatinib and the combination arm. 

The percentage of human CD34+CD38- cells within the total human CD34+ 

population can reflect the preferential toxicity of a drug against primitive HSCs or 

progenitor cells. As such, a decrease in the percentage CD34+CD38- cells within 

the total CD34+ cells suggests that the drug preferentially targets primitive cells. 

In this experiment, both tigecycline alone and the combination treatment 

increased the percentage of CD34+CD38- normal cells compared to vehicle, 

indicating that tigecycline, combined to imatinib or alone, might target normal 

cells to some extent; however, this effect is mainly directed against progenitor 

cells and not normal HSCs (Fig. 5.13e). 
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Altogether, these results demonstrated that tigecycline combined to imatinib does 

not significantly target normal HSCs, reinforcing the idea of a therapeutic index 

to target selectively CML LSCs. 

  

Figure 5. 13 The combination of imatinib and tigecycline marginally affects normal HSCs in 

vivo. 

(a) CD34+ cord blood cells were transplanted into immunocompromised mice and left for 6 weeks 
to allow engraftment. The mice were then treated for 4 weeks before analysis of human cell 
engraftment. (b) Pre-treatment levels of human CD45+ cells engraftment. (c-d) Number of (c) 
human CD34+ cells and (d) human CD34+CD38- cells engrafted in the bone marrow of 
immunocompromised mice. (e) Percentage of human CD34+CD38- cells within the human CD34+ cell 
subset. All data are presented as Mean ± S.E.M. TIG, tigecycline; IM, imatinib. 
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5.2.8 The combination of tigecycline and imatinib prevents CML 
relapse 

Finally, we assessed whether the combination of tigecycline and imatinib could 

prevent relapse following drug discontinuation in mice. CD34+ CML cells derived 

from a CML patient were transplanted into sub-lethally irradiated immuno-

deficient NSG female mice. Seven-eight weeks post-transplant, mice were treated 

with PBS, tigecycline (escalating doses from 25-100 mg.kg-1), imatinib (100 mg.kg-

1) and combination for four weeks. The treatment was then discontinued for two 

weeks before assessment of the remaining LSCs in the BM of mice (Experiment 1, 

Fig 5.14a). To substantiate these results, we performed a second in vivo 

experiment in which mice were first treated for three weeks and then left 

untreated for a period of three weeks (Experiment 2, Fig 5.14b). Following 

imatinib discontinuation, the total number of human CML-derived CD34+ and 

CD34+38- cells was not reduced in comparison to the vehicle treatment, indicating 

that imatinib-treated mice are unable to sustain low levels of CML LSCs (Fig 

5.14c,d). On the contrary, mice that were treated with the combination of 

imatinib and tigecycline maintained significant low numbers of CML-derived CD34+ 

and CD34+38- cells. Of note, only one mouse out of nine showed signs of relapse or 

failed to initially respond to the combination treatment.  

Taken together, we have demonstrated that CML LSCs are highly susceptible to 

inhibition of mitochondrial oxidative metabolism. Indeed, combining the 

mitochondrial oxidative inhibitor tigecycline with imatinib selectively reduced the 

number of CML LSCs. This effect was seen even after three weeks drug 

discontinuation, indicating that the combination prevents, or at least significantly 

delays, CML relapse. 
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Figure 5. 14 Tigecycline in combination with imatinib prevents CML relapse. 

(a-b) Mice were transplanted with CD34+ CML cells and left to engraft for 6-7 weeks. Mice were 
then treated in vivo for (a) 4 weeks and kept for an additional 2 weeks following drug 
discontinuation or (b) treated for 3 weeks and kept for an additional 3 weeks following drug 
discontinuation. (c-d) ) Number of (c) human CD34+ cells and (d) human CD34+CD38- cells engrafted 
in the BM of immuno-compromised mice. All data are presented as Mean ± S.E.M. P values were 
calculated by unpaired Student’s t-test on logarithmic transformed variables to meet the 
assumption of normality. TIG, tigecycline; IM, imatinib. 
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5.3 Discussion 

In this section, we first demonstrated that tigecycline inhibits mitochondrial 

oxidative metabolism in two CML cells lines through inhibition of mitochondrial 

protein expression. Moreover, combination of tigecycline with imatinib 

significantly enhanced the effect of imatinib to target leukaemic cells in the two 

CML cell lines across three different concentration of imatinib. CML cell lines 

represent an inexhaustible in vitro model useful for performing preliminary 

studies and optimising techniques, a necessary step before limited primary 

material is used. They can as well provide insights in the efficacy of a drug; our 

experiments suggested for instance that tigecycline can affect CML cells survival 

in combination with imatinib. However, these cell lines cannot be used as a 

genuine model for CML stem cells. As such, we tested the effect of tigecycline in 

primary stem-cell enriched CD34+ cells in the following sections. 

Our investigation of tigecycline selectivity towards leukaemic cells revealed that 

the IC50 value of tigecycline was about 7.7 fold higher in normal pro-B murine 

mouse cells compared to BCR-ABL expressing counterparts. This suggests a 

therapeutic window for tigecycline use to target leukaemic cells. Interestingly, 

while primary stem cell-enriched cells from normal donors (normal CD34+ cells) 

do not proliferate, parental Ba/F3 and Ba/F3 p210 cells, with a reported doubling 

time of 20 hours, have a similar proliferative capacity. This is a primordial aspect 

when testing the sensitivity of two different cell lines to a drug, as slow cycling 

cells might appear less sensitive. However, both parental Ba/F3 and Ba/F3 p210 

cells are cell lines of mouse origin and care should be taken extrapolating these 

results to human cells. Moreover, the XTT assay performed here primarily assesses 

the effect of tigecycline against the proliferation of the cells. We therefore aimed 

to test whether tigecycline could affect the viability of normal progenitor cells in 

subsequent sections.  

Similar to our findings in CML cell lines, tigecycline decreased mitochondrial 

oxidative metabolism by targeting the expression of mitochondrial-encoded 

proteins in CD34+ CML cells. Precisely, our comprehensive metabolomic analysis 

revealed that oxidation of glucose and glutamine as well as FAO were reduced 

upon tigecycline treatment in primary stem cell-enriched CML cells. Interestingly, 
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while the 13C fraction of TCA cycle metabolites was significantly reduced upon 

tigecycline treatment, a clear increase in their unlabelled fraction was observed 

in comparison to vehicle condition. This elevated unlabelled fraction of TCA cycle 

metabolites could indicate that tigecycline-treated cells shift from glucose to 

another carbon source. We did however observe a significant reduction in the 

oxidation of the three substrates glucose, glutamine and palmitate. Therefore, a 

more plausible explanation could lie in the potential decrease in the catabolism 

of these metabolites that is associated with the growth arrest phenotype and the 

general metabolic slowdown due to tigecycline treatment (Fig. 5.6). In other 

words, an increase in the unlabelled fraction of TCA cycle metabolites following 

tigecycline treatment is not necessarily linked to an increase in the production of 

these metabolites from alternative sources, but rather a decrease in their 

catabolic rate. Of note, tigecycline seemed to partially impair glycolysis, as 

reflected by decreased ECAR in CD34+ CML cells treated with tigecycline (Fig. 

5.15). The reasons for this decrease are not known but indicate that tigecycline 

has a broad effect on cellular metabolism. This decrease in glycolysis could be the 

consequence of a general inhibition of cellular proliferation. 

 

Figure 5. 15 Tigecycline impairs glycolysis in CD34+ CML cells in vitro. 

Basal ECAR in CD34+ CML cells following treatment with tigecycline (2.5 µM). n=4 patient samples. 
P value was calculated by paired Student’s t-test. Data are presented as Mean ± S.E.M. 
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Our investigation of tigecycline effect against primary CD34+ CML cells revealed 

that tigecycline treatment in combination with imatinib strikingly reduced the 

proliferation and the colony-forming potential of CD34+ CML cells compared to 

imatinib alone. Moreover, this effect was shown to be selective to CML cells, as 

CD34+ normal cells were only marginally affected by the combination treatment. 

This was in line with our previous experiment in Ba/F3 cells that indicated that 

tigecycline targets preferentially BCR-ABL expressing cells (Fig. 5.3). Moreover, 

imatinib significantly impaired the ability of progenitors to form colonies in 

comparison to vehicle treatment; in agreement with other studies demonstrating 

that CML CD34+ progenitor cells are sensitive to imatinib, while more primitive 

cell populations are not affected by BCR-ABL inhibition. Although it is of clinically 

interest to target progenitor cells, these in vitro studies do not inform on the 

sensitivity of CML LSCs to the drug combination. We therefore tested the effect 

of tigecycline and imatinib in more rigorously defined CML LSCs. 

By using various techniques, including the analysis of stem cell surface markers 

and the gold-standard in vitro LTC-IC assay, we next demonstrated that the 

addition of tigecycline to imatinib significantly impairs CML LSCs survival in 

comparison to imatinib as a single agent or vehicle treatment. Noteworthy, 

imatinib treatment had only a marginal (and not significant) effect in all 

experiments performed, confirming that these assays primarily focus on primitive 

TKI resistant CML cells. It would have been interesting to carry out similar 

experiments on normal counterparts in order to gain a deeper understanding of 

the selectivity of tigecycline and imatinib for leukaemic cells. However, we 

performed an in vivo experiment with cord blood cells in a subsequent study, 

which in our opinion was a sufficient and stronger argument of the therapeutic 

index for the proposed combination treatment. 

Using a xenotransplantation model in which CD34+ CML cells were transplanted 

into immuno-deficient mice, we demonstrated that the combined action of 

imatinib and tigecycline eliminates the vast majority (95%) of CML LSCs following 

four weeks of in vivo treatment. Interestingly, the effect of the drug combination 

was more profound in primitive CD34+CD38- cells than in the bulk of differentiated 

CD45+ cells, which could indicate that the treatment targets preferentially CML 

LSCs. Imatinib treatment induced a significant reduction in progenitor cells in 
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comparison to untreated condition, and this effect was lost when more primitive 

CD34+CD38- cells were analysed. This is in accordance with previous published 

studies and reinforces the idea that analysing the effect of a drug treatment on 

CD34+CD38- cells is a reliable method to see whether primitive stem cells, known 

to be insensitive to imatinib, are targeted. Contrary to our in vitro LTC-IC 

experiments in which tigecycline alone significantly reduced the number of CML 

LSCs, tigecycline had only a marginal (and non-significant) effect in vivo and only 

the combination treatment was able to significantly decrease primitive 

CD34+CD38- cell number. The discordant results between the in vitro and in vivo 

assays could be due to many factors, including the complexity of living organism 

including the effect of the BM microenvironment. 

We next transplanted normal CD34+ cord blood cells into mice and treated them 

with either vehicle, imatinib, tigecycline or the combination of both drugs. While 

the drug treatments (particularly imatinib) had some effect on the number of 

human CD34+CD38- normal cells in vivo, there was no additive or synergistic effect 

following the combined treatment. Importantly, the effects were less dramatic 

compared with the response observed with leukaemic stem cells (albeit the 

number of available cord blood cells limited the number of animals used in this 

experiment). In combination with the lack of observed toxicity to normal spleen 

and BM cells of the host mice (Fig. 5.10) we concluded that there is an obvious 

therapeutic index for tigecycline’ use in combination with imatinib. Moreover, we 

have previously demonstrated through metabolomic studies that CD34+CD38- 

normal cells have low levels of mitochondrial oxidative metabolism. In addition, 

the ratio of oxidative to glycolytic metabolism was higher in more differentiated 

progenitor CD34+CD38+ normal cells compared to more primitive counterparts, 

suggesting that primitive HSCs are more glycolytic than normal 

progenitors/differentiated cells (Fig 3.9). Considering this metabolic phenotype, 

it is not surprising to see that in vivo, tigecycline (alone or combined to imatinib) 

affected preferentially CD34+ normal cells and had only a marginal effect on 

CD34+CD38- normal cells.  

One of the gold-standard method to functionally assess the efficacy of a drug 

treatment to target LSCs is to perform secondary-transplant and measure the 

number of leukaemic cells in secondary recipients. However, the number of CD34+ 



159 

 

CML cells that can be collected from primary recipients are not sufficient to 

perform secondary transplantation. Therefore we performed experiments, using 

two separate mouse cohorts, in which mice were treated in vivo for three or four 

weeks and the remaining CML LSCs analysed following two-three weeks drug 

withdrawal. The two independent experiments demonstrated that the 

combination of imatinib and tigecycline induces sustainable low numbers of CML 

LSCs even upon three weeks treatment discontinuation. Interestingly, the mice 

treated with imatinib as a single agent relapsed following drug removal, as 

evidenced by similar number of CD34+ and CD34+CD38- CML cells in both the 

imatinib and vehicle conditions. However, one out of the nine mice treated with 

the drug combination did show significant increased levels of CD34+ and 

CD34+CD38- CML cells following two weeks of treatment discontinuation. BM 

aspiration at the end of the in vivo drug treatment would have helped to 

determine whether this mouse did not initially respond to the treatment or 

relapsed during drug withdrawal. Given the risk of losing mice when performing 

BM aspiration combined with the limiting number of mice in each treatment arms, 

we decided not to perform the procedure in our experiments. 

5.4 In summary 

In this chapter, we first validated the mechanism of action of tigecycline as an 

inhibitor of mitochondrial protein expression. Indeed, tigecycline treatment 

reduced the expression of mitochondrial proteins in two CML cell lines, which 

resulted in the inhibition of mitochondrial metabolism. Moreover, combining 

tigecycline to imatinib significantly increased the percentage of CML cell death in 

comparison to imatinib alone. We provided as well some evidence of the 

selectivity of tigecycline against CML cells, as non-expressing BCR-ABL murine 

cells were less affected by tigecycline treatment. 

We next performed similar assays in more clinically relevant patient-derived 

CD34+ cells. Similar to our results in CML cell lines, tigecycline treatment 

decreased mitochondrial respiration by affecting the expression of mitochondrial 

proteins in CML CD34+ cells. We complemented these results by performing an in 

depth analysis of the metabolic perturbations induced by tigecycline. Indeed, we 

demonstrated that tigecycline reduced oxidation of glucose, glutamine and fatty 
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acids and this was linked to reduction in PDH and PC relative activity in CML CD34+ 

cells. 

We next tested whether the inhibition of mitochondrial oxidative metabolism 

induced by tigecycline affects the survival of stem cell-enriched CML cells. 

Tigecycline impaired the proliferation of the CD34+ CML cells and targeted them 

for cell death. Moreover, the colony forming potential of CML progenitors was 

significantly reduced by the combination of imatinib and tigecycline in comparison 

to imatinib alone, while having minor effect on CD34+ normal cells. In addition, 

through functional and flow cytometric assays, we demonstrated that the 

combination of imatinib and tigecycline targets primitive leukaemic cells and 

reduces the stem cell potential of CML cells. 

Finally, we used a humanised model of CML to test the efficacy of the drug 

combination to target CML LSCs in vivo. The combination of tigecycline and 

imatinib resulted in a near-to-complete elimination of primitive CD34+CD38- CML 

cells, with 95% of CML LSCs targeted following four weeks of in vivo drug 

treatment, while normal counterparts were only marginally affected. We next 

performed two complementary in vivo experiments in which we evaluated the 

remaining CML LSCs following in vivo treatment discontinuation. Mice treated with 

the drug combination sustained low number CML LSCs, while imatinib-treated 

mice relapsed.  

Altogether, our results demonstrated that inhibition of mitochondrial metabolism 

with tigecycline targets CML LSCs. Importantly, this effect was sustained following 

drug withdrawal, suggesting that the drug combination could potentially prevent 

relapse and might be an effective therapeutic strategy to eradicate TKI-resistant 

CML LSCs. 
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Chapter 6 Conclusion and future directions 

In this thesis, we present the first in-depth investigation of the metabolism of CML 

LSCs and identification of mitochondrial oxidative metabolism as a metabolic 

vulnerability in CML LSCs. In the next paragraphs, we will discuss our findings in 

relation with the current literature in addition to discussing potential implications 

and future directions of this work. 

6.1 Oxidative metabolism in LSCs 

Thus far, most of the research has focused on the metabolic regulation of normal 

haematopoietic cells or stem cells derived from other leukaemias, such as AML. 

Indeed, to our knowledge, no study had investigated in depth the metabolism of 

primary stem cells from CML patients. We will therefore discuss how our findings 

associate with previous metabolic studies performed in AML cells and with recent 

transcriptomic data obtained from CML LSCs. 

Studies performed in patient-derived AML cells demonstrated that mitochondrial 

metabolism is primordial for the survival of primitive and differentiated AML cells. 

Indeed, one study suggested that AML LSCs are less glycolytic than normal 

progenitor cells and might rely more on oxidative metabolism for energy 

production (188). The authors further demonstrated that BCL-2 inhibition targets 

AML LSCs by impairing their mitochondrial functions. Noteworthy, this study did 

not analyse the metabolism of similar subsets of cells and instead compared 

normal progenitor cells to primitive ROS-low AML cells. In another robust study, 

Škrtić et al. demonstrated that inhibition of mitochondrial translation with 

tigecycline treatment significantly impaired the survival of primary AML cells in 

vitro and in vivo (1.5.4) (187). These studies provided a first evidence of the 

mitochondrial metabolic requirements of primitive AML cells and are in agreement 

with our findings for a different type of myeloid leukaemia. 

More recently, Giustacchini et al. performed single-cell transcriptomic analysis of 

LSCs and HSCs from CML patients and normal cells donors. This study revealed that 

BCR-ABL expressing CML stem cells displayed a significant enrichment for genes 

associated with OXPHOS and fatty acid metabolism in comparison to normal HSCs. 

https://www.nature.com/nm/journal/v23/n6/full/nm.4336.html#auth-1
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Moreover, several significant differences in the gene expression were noted 

between normal HSCs and BCR-ABL negative “bystander” cells from CML patients, 

indicating that non-expressing BCR-ABL stem cells from CML patients differ from 

normal HSCs. Interestingly, they found that OXPHOS-associated genes were 

significantly increased in normal HSCs in comparison to BCR-ABL negative cells 

isolated from CML patients. This could indicate that, within a CML patient, LSCs 

potentially modulate the metabolism of normal counterparts. While the 

mechanisms behind this possible regulation are unknown, CML LSCs might alter 

the metabolism of BCR-ABL negative cells through modification of the BM 

microenvironment, known to be disrupted in mouse models of CML. Our study did 

not touch on the role of the leukaemic BM microenvironment on the metabolism 

of CML cells, but it is likely that such regulations exist. In physiological conditions, 

normal HSCs are localised in two regions of the BM: the hypoxic endosteal region 

and a more vascularised compartment. The high levels of hypoxia-inducible factor 

1-alpha (HIF-1α) found in hypoxic regions of the BM activate pyruvate 

dehydrogenase kinase, isozyme 1 which in turns decreases PDH activity and 

reduces mitochondrial metabolism (253, 254). Accordingly, studies have shown 

that HSCs rely primarily on glycolysis for their energy requirements and have low 

levels of mitochondrial metabolism; a metabolic characteristic that is believed to 

be crucial for maintaining low oxidative stress and sustain their quiescence 

(1.4.3). Given these considerations, targeting mitochondrial metabolism in CML 

LSCs residing in hypoxic regions may prove ineffective. In contrast to the 

aforementioned points, a recent review argued that the high vascularity of the BM 

is not compatible with a severe hypoxic environment. Accordingly, Kiel & Morrison 

have reported that HSCs localise with haematopoietic progenitor cells in the BM 

and do not reside in anatomically distinct compartments (255). Moreover, recent 

advances in imaging techniques have shown that HSCs in the endosteum closely 

interact with microvessels of the BM (142). 

In CML, studies have shown that LSCs hijack the BM microenvironment and prevent 

normal HSCs to function properly. This produces a ‘microenvironment-induced 

oncogenesis’ and a ‘malignancy-induced microenvironment’ that promotes the 

survival and proliferation of leukaemic cells (256). While many BM factors have 

been implicated in promoting and sustaining leukaemia, further work still remains 

to determine the contribution of the leukaemic BM microenvironment to the 
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aberrant metabolism of LSCs. Interestingly, recent studies have indicated that the 

close interaction between BM stromal cells and leukaemic cells can be used to 

transfer mitochondria between the two cell types (257). Moschoi et al. described 

that upon co-culture of AML cells with BM-derived cells, leukaemic cells uptake 

the mitochondria by endocytosis from the stromal cells. This resulted in an 

increase in their mitochondrial mass and LTC-IC potential, which led to a higher 

resistance to chemotherapy (257). Whether this mitochondrial exchange occurs in 

CML patients remains an avenue for further investigations. Nonetheless, a better 

understanding of the leukaemic microenvironment and its relationship with CML 

LSCs will undoubtedly provide more insights into the metabolism of CML LSCs in 

situ. 

Most of the metabolic analyses performed in this thesis were done in CD34+ cells 

and, at the more primitive level, in CD34+CD38- cells. As mentioned previously 

(3.3), more-defined LSCs have been identified, such as cells harbouring the 

CD34+CD38−CD90+CD45RA− phenotypical markers. However, the number of 

CD34+CD38−CD90+CD45RA− cells that can be isolated from patients and donors 

would be too limited to perform reproducible metabolic experiments. Future 

advances in the field of metabolomics at a single-cell level might prove useful to 

face the limitation in primary material and dissect the metabolism of primitive 

LSCs or rare cells in general. Nonetheless, this technique is still at its infancy and 

further improvements, notably in the sensitivity of detection, are necessary to 

detect less prevalent metabolites and get a better understanding of CML LSCs 

metabolism. 

 

6.2 Metabolism of CML LSCs following TKI treatment 

The vast majority of CML patients are treated with TKI in the clinics. While this 

was not the focus of our study, it would have been clinically relevant to assess the 

metabolic changes that occur following TKI treatment in more detail. 

It is possible that part of the oxidative phenotype we observed in LSCs is driven 

by BCR-ABL, and hence its inhibition with imatinib would reduce partially the 

oxidative phenotype of LSCs. Accordingly, normal HSCs transduced with BCR-ABL 

display an increased oxidative metabolism in comparison to normal counterparts 
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(258). In contrast, one study has described that imatinib treatment induced a 

reduction in glycolysis and a compensatory increase in oxidative metabolism in 

CML cells (259). Of note, this study was performed in CML cell lines and further 

investigation is required to determine whether this switch occurs in primary stem 

cells following TKI treatment. Related to the above point, another study described 

that the increased expression of genes associated with OXPHOS in CML LSCs 

compared to normal counterparts is not reverted following imatinib treatment 

(260). However, this conclusion was only based on transcriptomics data and 

imatinib treatment of primary cells was performed in vitro. The direct comparison 

of untreated cells isolated from patients and cells cultured in vitro might 

therefore not be adequate. To address the metabolism of primary stem cells 

following imatinib treatment, further investigations could compare the metabolic 

difference between CML cells remaining after long-term TKI treatment and the 

bulk of CML cells present at baseline. A more robust approach would be to treat 

DTG mice in vivo with imatinib and assess the metabolic differences between stem 

cells isolated from TKI-treated and untreated mice. 

In addition to the aforementioned considerations, CML LSCs possess increased 

levels of BCR-ABL and reside within a niche that renders them resistant to therapy 

(261, 262). Moreover, CML LSCs express lower levels of the transporter that 

actively uptakes of imatinib (organic cation transporter) and in contrast increased 

levels of the multidrug efflux transporter MDR1 (263). While we are not arguing 

that inhibition of BCR-ABL is not sufficient to target primitive leukaemic cells, 

BCR-ABL signalling might not be completely inhibited in CML LSCs from patients 

treated with TKI. Thus, the residual BCR-ABL signalling could drive oxidative 

metabolism in these primitive cells. 

The metabolic consequences of imatinib treatment in CML LSCs remain an avenue 

of research for further investigation. Nonetheless, our results clearly showed that 

tigecycline-mediated inhibition of oxidative metabolism in combination with 

imatinib significantly impaired CML LSCs in mice, while either drug alone had only 

a marginal effect. In other words, this demonstrated that imatinib-treated CML 

LSCs require additional inhibition of mitochondrial metabolism for successful 

eradication. 
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6.3 Inhibiting oxidative metabolism targets CML cells in 
combination with TKI 

Our investigation revealed that combining imatinib with inhibition of 

mitochondrial oxidative metabolism reduces LTC-IC potential and targets CML 

LSCs in a humanised mouse model. While the use of tigecycline to target CML LSCs 

is a new finding, some studies have described that combining mitochondrial 

inhibitors to TKI treatment can be of therapeutic value.  

The pyruvate dehydrogenase (PDH) complex is essential for the conversion of 

pyruvate to acetyl CoA and its subsequent use into the TCA cycle. Interestingly, 

one enzyme of the PDH complex, dihydrolipoamide S-acetyltransferase (DLAT), 

was found to be crucial for the survival of imatinib-treated K562 CML cells (264). 

Indeed, short hairpin-RNA knockdown of DLAT remarkably sensitised CML cells to 

BCR-ABL inhibition. Accordingly, Alvarez-Calderon et al. demonstrated that the 

combination of dasatinib with the complex V inhibitor oligomycin significantly 

reduced the leukaemic burden in a mouse model of Ph+ B-Acute lymphoblastic 

leukaemia compared to TKI alone (264). 

While all these studies indicate that TKI-treated CML cells can be effectively 

eliminated with inhibitors of mitochondrial metabolism they do not inform on the 

efficacy of these treatments in primary CML cells, let alone in CML LSCs, further 

emphasising the importance of our findings from a clinical perspective. 

 

6.4 Tigecycline efficacy against TKI resistant cells 

Overcoming drug resistance continues to be a major clinical challenge in many 

medical fields, including in CML. Often, resistance to current molecular targeted 

therapy in CML occurs by mutational changes in the BCR-ABL kinase domain in 

patients, such as the T315I mutation. While some of these patients can be treated 

with ponatinib (which inhibits the T315I mutant), others are resistant to all 

currently available TKIs and have no alternative treatment option. Indeed, some 

patients do not harbour any BCR-ABL kinase mutation that could explain their TKIs 

resistance and are believed to have acquired BCR-ABL independent mechanism of 

resistance. As such, targeting pathways independent of BCR-ABL kinase activity 

should be explored to overcome TKI resistance. Interestingly, our findings 
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revealed that tigecycline markedly reduced cell growth in primary stem cell-

enriched CD34+ cells from CML patients. In addition, tigecycline reduced the 

ability of progenitors to form colonies to the same extent as imatinib. This 

suggests that the sole inhibition of mitochondrial function might have a significant 

effect against patient-derived CML cells. Therefore, we hypothesised that 

tigecycline, with a mechanism of action independent of BCR-ABL kinase activity, 

could be used as an alternative approach for targeting TKI-resistant CML cells. 

To assess the effect of tigecycline on TKI-resistant cells, we used a human derived 

cell line that acquired resistance to all licensed TKIs following in vitro culturing 

in increasing concentration of ponatinib (KCL22PonRes). The experiments presented 

in the next paragraph represents the “next step” and were performed by an 

undergraduate student, Lisa Malosse, under my laboratory supervision. 

We first analysed the effect of imatinib, ponatinib and tigecycline on the 

proliferative capacity of TKI-resistant KCL22PonRes and TKI-sensitive KCL22 cells. 

This revealed that EC50 values for imatinib and ponatinib were markedly increased 

in KCL22PonRes compared to KCL22 WT cells, validating the resistance of KCL22PonRes 

to currently available TKIs (Fig. 6.1a-d). On the contrary, tigecycline, with an 

IC50 value of 3.16 µM, was able to inhibit KCL22PonRes cell growth, indicating that 

tigecycline is able to impair proliferation of ponatinib-resistant cells at a 

concentration achievable in vivo. Interestingly, IC50 value for tigecycline was 

lower in KCL22PonRes compared to KCL22 WT cells (Fig. 6.1e,f). Moreover, ponatinib 

as a single agent induced 40% of cell death in KCL22PonRes cells, while it had only a 

modest effect in KCL22 WT cells (Fig 6.2a,b). The reasons behind the potential 

increased sensitivity of KCL22PonRes to tigecycline are not yet fully understood. 

Nonetheless, these preliminary data suggest that inhibition of oxidative 

metabolism with tigecycline might a promising therapeutic strategy to target TKI-

resistant cells. Further experiments should address this hypothesis in primary 

leukaemic cells isolated from CML patients not responding to TKI therapy and 

without detectable mutation in BCR-ABL kinase domain. 
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Figure 6. 1 Tigecycline impairs the proliferation of KCL22PonRes cells. 

(a-b) Proliferation of KCL22 cells upon exposure to various concentrations of (a) imatinib and (b) 
ponatinib for 72h. n=3 independent experiments. (c-d) Proliferation of KCL22PonRes cells upon 
exposure to various concentrations of (c) imatinib and (d) ponatinib for 72h. n=3 independent 
experiments. (e-f) Proliferation of (e) KCL22 and (f) KCL22PonRes cells upon exposure to various 
concentrations of tigecycline for 72 h. Data are presented as Mean ± S.E.M.  

  



168 

 

 

Figure 6. 2 Tigecycline targets KCL22PonRes cells in vitro. 

(a-b) Cell death in (a) KCL22 and (b) KCL22PonRes cells following exposure with ponatinib (200 nM) 
and tigecycline (5 and 10 µM) for 72h. n=3 independent experiments. . **P<0.01; ***P<0.001, 
evaluated by one-way ANOVA with post hoc Bonferroni analysis. 
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6.5 Clinical applicability for tigecycline use 

Tigecycline is already approved in the clinic for the treatment of complicated 

infections. Our study, demonstrating that tigecycline in combination with imatinib 

can target CML LSCs, might open new avenues for further investigation for the use 

of tigecycline in combination with imatinib in CML patients.  

As mentioned previously, Škrtić et al. identified tigecycline from a chemical 

screening as a novel anticancer drug against AML cells (187). Motivated by positive 

pre-clinical results, Reed et al. next conducted a phase 1 study to determine the 

dose and safety profile of tigecycline use in AML patients (265). Tigecycline was 

administered five days per week intravenously for two weeks in 27 AML patients 

with relapsed or refractory disease. However, no significant clinical response was 

observed in any of the patients at end-point. Interestingly, this study reported a 

maximal plasma concentration of 12 µM at the 300 mg/day tigecycline dose in AML 

patients. However, at this concentration, the protein binding of tigecycline can 

exceed 87%. Moreover, tigecycline steady‐state levels were approximately 1 µM 

at this dose, which did not show any efficacy against leukaemic cells in previous 

in vitro experiments (187). Accordingly, tigecycline treatment did not affect the 

expression of mitochondrial-encoded proteins in 24 out of 27 patients, indicating 

that the concentration achieved in AML patients was not sufficient to be effective 

and hit its target. Despite the negative outcome, future investigations should be 

conducted with the more stable tigecycline formulation, which could potentially 

result in a greater biological and clinical efficacy as an effective plasma 

concentration of tigecycline would be sustained for longer times. Moreover, the 

use of tigecycline as a single agent might not be adequate in the population of 

patients selected (i.e. heavily treated refractory and relapsed AML patients, with 

potential acquired drug resistance mechanism(s)). Combining tigecycline 

treatment with a second anticancer agent in a population of patients with stable 

disease might lead to a greater efficacy and clinical outcome, as the effective 

concentration of each single agent could be potentially lower when applied in 

combination. As such, more positive results might be obtained in studies testing 

the efficacy of the combination imatinib and tigecycline in CP-CML patients. 

Nevertheless, the intravenous mode of administration of tigecycline, together 

with its short half-life, might be too demanding for CP-CML patients responding to 
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TKI therapy (and could limit patient recruitment into a clinical trial) suggesting 

that combining tigecycline with TKI in patient who don’t respond optimally to TKI 

treatment would be a better option. Of note, tigecycline has already been 

included in the following clinical trial grant: ‘Defining leukaemic cell clonal 

architecture to inform and monitor drug responses in the Targeting Stem cell 

Resistance (TASTER) CML Phase II Clinical Trial’.  In this proposed study, the 

efficacy of novel agents, including tigecycline, in combination with TKI, will be 

evaluated in CML patients and against patient-derived CML stem cells using 

xenograft models. 

 

6.6 Others inhibitors of oxidative metabolism 

The direct clinical applicability of tigecycline and its reported effect as an 

inhibitor of mitochondrial metabolism in vivo made strong arguments for 

concentrating our research on this drug. Besides tigecycline and biguanides, other 

inhibitors of oxidative metabolism with antitumorigenic activity have been 

identified in recent studies. In this paragraph, we shall describe alternative 

inhibitors of oxidative metabolism that could potentially be tested against CML 

LSCs.  

VLX600 

To find novel agents against colon cancer, Zhang et al. performed a compound 

screen of 10,000 drugs and identified VLX600 with strong cytotoxic activity against 

quiescent colon cancer cells. The authors further demonstrated that VLX600 

markedly impairs mitochondrial function by inhibiting the activity of complexes in 

the electron transport chain (266). 

Gamitrinib 

The chaperones heat shock protein-90 (HSP90) and tumour necrosis factor 

receptor-associated protein-1 (TRAP-1) play an important role in chaperoning the 

correct folding of ETC proteins. Inhibition of the HSP90 and TRAP-1 activity with 

gamitrinib, a small-molecule that accumulates in the mitochondria, induced a 

decrease in mitochondrial ATP production and in cancer cell growth across 

multiple experimental models (267-269).  
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CPT1a inhibitor 

Finally, our metabolic profiling at steady-state in CD34- CML, CD34+ CML and CD34+ 

normal cells revealed that FAO was significantly and selectively upregulated in 

primitive CD34+ CML cells. Therefore, inhibitors of FAO might show some clinical 

efficacy against CML LSCs and assessing the consequences of FAO inhibition could 

be an interesting topic of future investigation. Accordingly, inhibition of carnitine 

palmitoyl transferase 1a (CPT1a), a protein that catalyses the rate-limiting step 

for transfer of fatty acids into the mitochondria, induced cytostatic and cytotoxic 

effect in leukaemia cell lines and primary cells from AML patients (226, 270).  

Accumulating evidence suggests that inhibiting mitochondrial metabolism can be 

a valuable therapeutic strategy in multiple experimental models of cancer. While 

further studies still need to assess the safety profile of these compounds in 

humans, their ability to inhibit oxidative metabolism may prove useful in targeting 

CML LSCs.  

Given that many agents, including the ones cited above, might be too toxic for 

human use, repurposing drugs, such as tigecycline, has been seen as an attractive 

approach for cancer therapy. Indeed, only 8% of drugs that enter clinical 

investigation in humans manage to pass phase I clinical trials (271). Potentially, 

this number can be increased by using repurposed drugs, as they have already 

been tested and accepted for human use. In addition, the time between bench 

work and translation to the clinic is significantly reduced when using repurposed 

drugs in comparison to new agents. Interestingly, tigecycline efficacy in leukaemia 

was initially discovered by an FDA-approved drug screening in AML cells (187). This 

study, together with the work done in this thesis, where we have used the best 

pre-clinical CML model available, illustrates the potential of drug repurposing for 

anticancer therapy. It is hoped that this might prompt future investigation to test 

the effect of licensed drugs in stem cell-driven cancers or different malignancies 

and diseases in general. 

 

6.7 Additional remarks 

This study would not have been feasible without the access to primary patient-

derived samples and as such without the collaboration with the NHS biorepository 
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department and access to the Paul O’ Gorman research centre bio-bank. However, 

collection and isolation of primary cells comes with major challenges, including 

administrative tasks (ethics, written consent), and is often time-consuming. 

Nonetheless, primary material provides an invaluable pre-clinical resource to get 

insight into the biology of a given disease, which often compensates for the 

numerous challenges encountered. Indeed, this thesis demonstrates the value of 

combining the use of bio-banked samples together with advanced in vitro 

methodology and robust pre-clinical models to address a clinical question in a 

hypothesis-driven research project. Interestingly, the UK National Biobank has 

now collected biological specimens from over 500,000 people, which will enable 

the study of multi-factorial disease, such as cancer, and facilitate the discovery 

of new therapeutic targets and agents in the future (272). 
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