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Abstract

A hundred years after Einstein predicted the existence of gravitational waves, the

first direct detection was made from gravitational waves emitted by a binary black

hole system. Other potential sources for an advanced gravitational-wave detector

network include core-collapse supernovae.

Due to complicated simulations of the physics involved in core-collapse super-

novae, the exact waveform of a core-collapse supernova signal is unknown. A detec-

tion of a core-collapse supernova signal is challenging, as noise of non-astrophysical

origin contaminates the science data taken by the advanced detectors. Noise tran-

sients in the detectors limit the false alarm rate of astrophysical detections, and

could potentially mimic a core-collapse supernova signal. They can reduce the duty

cycle of the detectors, which is particularly harmful for core-collapse supernovae

detections due to their low event rate. Prompt characterization of instrumental

and environmental noise transients will be critical for improving the sensitivity of

the advanced detectors during observing runs.

During the science runs of the initial gravitational-wave detectors, noise tran-

sients were manually classified by visually examining the time-frequency scan of

each event. Here, we present a Bayesian model selection algorithm designed for the

automatic classification of noise transients in advanced gravitational-wave detec-

tors. The algorithm is tested on simulated data sets and real non-Gaussian, non-

stationary Advanced LIGO noise, and we demonstrate the ability to automatically

classify transients by frequency, SNR and waveform morphology. A classification of

noise transients as data is taken can lead to an improvement in data quality during

an observing run and determine their origin.

In this thesis, we show how Bayesian model selection can be used to determine

if a core-collapse supernova candidate gravitational-wave signal is a noise transient,

a core-collapse supernova signal or other astrophysical transient. If the signal is

a core-collapse supernova detection, we show how the core-collapse supernova ex-

plosion mechanism can be determined using a combination of principal component

analysis and Bayesian model selection. We use the latest three-dimensional sim-
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ulations of gravitational-wave signals from core-collapse supernovae exploding via

neutrino-driven convection and rapidly-rotating core-collapse. We show that with

an advanced detector network, we can determine if the core-collapse supernova ex-

plosion mechanism is neutrino-driven convection for sources in our Galaxy, and

rapidly-rotating core collapse for sources out to the Large Magellanic Cloud.
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Chapter 1

Introduction

The existence of gravitational waves (GWs) was first predicted in 1915 by Einstein’s

theory of general relativity [4, 5]. A hundred years later, the Advanced Laser

Interferometer Gravitational-wave Observatory (aLIGO) [6] made the first direct

detection of GWs from a binary black hole system, referred to as GW150914 [7].

With the Advanced Virgo (AdVirgo) French-Italian GW detector [8, 9] joining

the detector network in 2017, current rate predictions for compact binary events

[10, 11, 12, 13, 14] indicate that the advanced detector network will lead to multiple

detections of GW signals over the network operating time. A new era of GW

astrophysics has begun, opening a new window on the Universe outside of the

electromagnetic spectrum.

In this chapter, we give an introduction to GWs, the detectors, and their source

properties. In Section 1.1, we give an overview of GWs and their properties. In Sec-

tion 1.2, a brief description of the potential sources for ground based GW detectors

is given. This thesis focuses in particular on GW bursts sources with waveforms that

are un-modelled due to unknown or difficult to simulate astrophysics. In Section

1.3, we describe the GWs detectors. In particular, we provide a detailed description

of the aLIGO detectors, and we include a brief description of the detectors potential

noise sources.

1



1.1. Gravitational Waves 2

Figure 1.1: The effect of the two GW polarizations, h+ (top), and h× (bottom), on a ring of test
masses as a GW signal moves into the page. The circle of test masses is stretched and squeezed
transverse to the direction of propagation. Figure reproduced from [15].

1.1 Gravitational Waves

GWs are ripples in space time that are produced by accelerating masses. They were

predicted by Einstein’s theory of general relativity [4, 5]. Einstein’s equations de-

scribe how gravity is the curvature of space time created by large masses. Assuming

the GWs are small, weak perturbations in linear space, solving Einstein’s equations

gives a solution that is a plane wave equation. GWs are transverse waves that

travel at the speed of light. GWs only interact weakly with matter, but they can

be detected by their effects on freely falling test masses. The amplitude of a GW is

measured in dimensionless units called strain, h, defined as the fractional change in

displacement between two masses due to GWs. GWs have two polarizations, called

h+ and h×, and are orthogonal with an angle between the polarizations of π/4. The

effect of the two polarizations on a ring of test masses is illustrated in Figure 1.1.

As a GW moves into the page, the circle of test masses is stretched in one direction

and squeezed in another direction.

The first indirect detection of GWs came from the Hulse Taylor binary pulsar

system PSR 1913+16 [16, 17]. A pulsar is a rapidly rotating neutron star, that

emits regular pulses of electromagnetic radiation. A neutron star is a very high

density star composed mainly of closely packed neutrons. The pulsar was detected

in 1974, and its orbital period showed that it was in a binary system with another

neutron star. General relativity predicts that as the binary system orbits it should

lose energy due to the emission of GWs. This results in a decrease in the orbital



1.2. Gravitational-Wave Sources 3

period as the stars start to inspiral towards each other and eventually merge. The

orbital period of PSR 1913+16 was measured for around 30 years, and agreed

perfectly with the decrease predicted by the emission of GWs. Hulse and Taylor

were awarded the Nobel prize for the discovery in 1993. The first direct detection

of GWs was made by the aLIGO detectors on the 14th of September 2015 [7], and a

second detection was made on the 26th of December 2015 [18]. In the next section,

we describe in more detail the current detected sources, and other possible sources

for ground based detectors.

1.2 Gravitational-Wave Sources

Potential sources of GWs can be roughly split into four groups. The first is compact

binary coalescence (CBC) signals that are produced by in-spiralling binary neutron

stars or black holes, which are regions of space time with a gravitational potential

well so large that nothing can escape. The second is continuous sources that may

be produced by an individual neutron star with a “mountain” on the surface. The

third is burst sources with an unknown waveform, and the fourth is a stochastic

GW background that may be due to a superposition of GW background sources

or remnant GWs from the big bang. In the remainder of this section, we give

more details about the potential sources, with a particular focus on short duration

transient sources as they are the sources considered in later chapters of this thesis.

1.2.1 Continuous Waves

Continuous GWs may be emitted by neutron stars, which typically have a mass of

1.4 M� and a radius of 10 km. Conservation of angular momentum and magnetic

flux can result in neutron stars with extremely rapid spins and strong magnetic

fields. To emit a continuous GW, a neutron star must have a deformation or a

“mountain” on the surface. The radiation amplitude, in units of G = c = 1, is

given by,

h ∼ 4

5
(2πRf)2

εM

r
, (1.1)

where ε is the fractional asymmetry that is proportional to the mass of the bump on

the surface, f is the frequency, R is the radius, M is the mass, and r is the distance
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[19]. A detection of continuous GWs could determine the neutron star equation

of state, and help understand neutron star glitches [20]. As neutron stars emit

electromagnetic radiation, it is possible to target searches of GWs for neutron stars

with positions, frequencies and spin-downs known from X-ray, radio and gamma-ray

observations [21]. Examples are the Crab and Vela pulsars. Continuous GWs have

not yet been detected, but current searches have produced upper limits for their

emission [21, 22].

1.2.2 Stochastic Background

A potential source of a stochastic GW background is a superposition of weak GWs,

which are expected to be a promising source for future spaced based GW detectors

[23]. The weak GWs are emitted by white dwarf or black hole binary systems.

A second potential source is a stochastic GW background from the early Universe

created by a flux of gravitons left over from when the Universe became optically thin

to gravitons, just before Big Bang Nucleosynthesis occurred. If a GW background

is detected from this source, it would allow us to test theories about the earliest

possible moments in our Universe [24].

1.2.3 Compact Binaries

CBC signals are the main source of GWs for ground based GW detectors, and the

only source directly detected during the first aLIGO observing run (O1) [7, 18]. The

components of the binary must consist of neutron stars or black holes. They are

an ideal source for ground based GW detectors, as their compactness allows their

orbital separation to become small enough before they merge for them to emit GWs

in the detectors sensitive frequency band. If one of the components of the binary is

a neutron star then there may be an electromagnetic counterpart to the GW signal

[25].

A typical waveform of a CBC signal is shown in Figure 1.2. The signal consists

of two 100 M� black holes at a distance of 817 Mpc. The signal has three main parts.

The first is the inspiral that increases in frequency and amplitude as the compact

objects move closer together, and energy and angular momentum is carried away in
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GWs. The second is the merger when the black holes or neutron stars collide, and

finally there is a ringdown phase.

As the waveforms of CBC GW signals are well known, is it possible to perform

a search using a technique known as matched filtering [26, 27]. Matched filtering is

a data analysis technique that matches signals of a known shape to the data. This

is achieved by correlating the output of the data with a large number of waveforms,

known as templates, calculated with different source parameters such as mass and

spin. Two different matched filter CBC searches exist that use the same set of

templates but differ in their implementation [28, 29, 30, 31]. Given a signal in the

data, the searches look for the template that produces the largest signal to noise

ratio (SNR). The matched filter SNR ρ is given by the equation,

ρ2 = 4

∫ ∞
0

d̃(f)h̃∗(f)

Sh(f)
df , (1.2)

where Sh(f) is the noise power spectral density (PSD), and h̃ is the GW amplitude.

The amplitude of a GW binary system in a circular orbit is given by,

h̃ =
2GM
c2DL

(
πGMf

c3

) 2
3

, (1.3)

where DL is the luminosity distance, f is the GW frequency, which is twice the

orbital frequency, and M is the chirp mass. The chirp mass is given by,

M =
(m1m2)

3
5

(m1 +m2)
1
5

=
c3

G

[
5

96
π−8/3f−11/3ḟ

]3/5
, (1.4)

where m1 and m2 are the masses of the two components of the binary, f is the

frequency and ḟ is the frequency derivative. The chirp mass can be determined

directly from a GW detection as it depends only on the frequency and frequency

derivative. To fully describe the binary system, other parameters can be measured,

such as, the spin parameters, the luminosity distance DL, right ascension, declina-

tion, eccentricity and source orientation.

The waveform of GW150914 was loud enough that it was possible to visibly

see it in the data. It was produced by two black holes with masses around 36 M�

and 29 M�. The dimensionless spin magnitude of the more massive black hole was
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Figure 1.2: An example of GWs from a non-spinning binary black hole merger, with two equal
100 M� black holes at a distance of 817 Mpc. As the two black holes inspiral towards each other
the GW amplitude and frequency increases until the black holes merge at t = 0. This produces
the characteristic chirp shape. After the merger the final black hole will ringdown. The measured
waveform will allow us to determine the mass and spin of the source.

measured to be < 0.7. The final black hole had an approximate mass of 62 M�

and spin 0.67 [32]. The second detection, referred to as GW151226, had smaller

masses of around 14.2 M� and 7.5 M�, and an approximate final black hole mass

of 20.8 M�. It was determined that at least one black hole has a spin bigger than

0.2 [18]. As well as short duration GW signals from compact binaries, it is possible

that GWs may be detected from other less understood sources.

1.2.4 Bursts

A burst is a GW signal with a partially modelled or unknown waveform. This may

be due to unknown or complicated physics, or the source may be something totally

unpredicted. As the waveform of a GW burst signal is unknown, it is not possible

to use matched filtering to search for this type of signal. Searches for GW bursts

typically search for excess power that occurs coherently between multiple detectors
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[33, 34, 35, 36]. The burst searches make minimal assumptions about the source,

and use a sine Gaussian or sine Gaussian wavelets to model the GW signal in the

data. Possible astrophysical sources of burst signals could be gamma-ray bursts

[37], black hole or neutron star mergers with high mass ratios or eccentricity [38],

cosmic strings [39], and core-collapse supernovae (CCSNe) [40]. In this thesis, we

focus on CCSN bursts in particular. Burst searches can be sensitive to CBC sources,

and were the first to detect GW150914 [41].

There are two independent searches for all-sky generic bursts, coherent Wave-

burst (cWB) [35, 36] and omicron-LALInference-Burst (oLIB) [34]. Another burst

tool BayesWave [33] is used as a follow-up analysis of candidate events identified by

cWB. The cWB algorithm has been searching for GW signals in LIGO data since

2004, and it can provide a first estimation of source parameters within minutes

of the signals arrival time. First, cWB whitens the data and converts to the time-

frequency domain using the Wilson-Daubechies-Meyer wavelet transform [42]. Data

from multiple detectors are then combined coherently to obtain a time-frequency

power map. A signal is identified as a cluster of time-frequency data samples with

power above some noise threshold. The signal waveforms in both detectors can then

be reconstructed using a constrained likelihood method [43].

Even with no knowledge of the source of a GW signal, it is still possible to

estimate some of the source parameters. Searches for GW bursts typically give

estimations of the duration, amplitude and frequency of the source. An estimation

of the sky position is given by measuring the difference in arrival time between

different detectors [44]. If the distance to the source is known, perhaps through an

electromagnetic counterpart, then it is possible to estimate the energy of the source.

Assuming the signal is narrowband and the emission is isotropic, the GW energy is

given by,

EGW =
π2c3d2f 2h2rss

G
, (1.5)

where d is the distance to the source, f is the frequency and hrss is the root sum

squared amplitude.

A detection of a CCSN signal is an example of a good multi-messenger burst

source. In 1934, Baade and Zwicky proposed that CCSNe are massive stars,

8 − 100 M�, that collapse into neutron stars when the star is no longer able to

gravitationally support itself [45]. Type Ia supernovae occur when mass is accreted
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onto a White Dwarf, and do not emit GWs in the frequency range of ground based

detectors. CCSNe collapse to a neutron star or black hole, and are some of the

brightest known electromagnetic and neutrino events, making CCSNe good poten-

tial multi-messenger GW sources.

The GWs are emitted from deep inside the core of the CCSN, which allows a GW

detection to measure parameters that cannot be determined with electromagnetic

radiation. GWs from non-rotating and rotating core-collapse are predicted to be

observable throughout the Milky Way and the Large Magellanic Cloud (LMC) [46].

As this is a small distance compared to the sensitivity range for CBC sources,

the rate for CCSN GW detections is low at around . 2 − 3 CCSNe per 100 yr

[47, 48, 49, 50]. No GW detections were made in the first targeted cWB search

for CCSNe [51]. The physics behind CCSNe is still not well understood, and the

exact GW waveform of these signals is not fully understood. The physical processes

occurring in CCSNe are incredibly difficult to model, and so even state of the art

simulations require a lot of computing time, do not include all of the required

physics, or are ended prematurely resulting in only partial GW waveforms. Some

of the latest waveform simulations are discussed later in this thesis, in Section 4.2.1

and Section 4.2.2.

1.3 Gravitational-Wave Detectors

GW experimental science was pioneered by Joseph Weber in the early 60’s [52].

Weber attempted to measure GWs with a detector known as a bar antenna. The

bar antenna was an aluminium cylinder, which was 2 meters long and one meter in

diameter, contained in a vacuum chamber. A passing GW will change the length of

the bar and can be detected if the frequency of the GW is close to the bars resonant

frequency. The bar will produce a current if the resonant modes are excited. Weber

claimed to have detected a GW signal from a CCSN [53], but his claims were not

accepted as other groups failed to reproduce his results. Later bar detectors were

at lower temperatures to help improve their sensitivity, however, they were only

sensitive to narrow frequency bands around their resonant frequencies.

Modern GW detectors use interferometry to detect GW signals. Laser light

is split by a central beam splitter and travels down two perpendicular arms. At
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Figure 1.3: The antenna pattern of a GW interferometer. The antenna pattern is a measure of how
sensitive a detector is in each direction. The black lines show the detector arms. The detectors
have some sensitivity in almost all directions, and are most sensitive in the directions above and
below the detector arms. Left is the antenna response for the plus polarization, middle is for the
cross polarization and the right is for both polarizations. Figure reproduced from [54].

the end of the arms, the light is reflected by mirrors and travels back down the

arms into the detector photodiode. A single test mass cannot be used to detect

GWs, because of the equivalence principal, which states that it is impossible to

distinguish a uniform gravitational field from uniform acceleration in empty space.

Since a freely falling reference frame for one mass can always be chosen so that

the mass remains at the origin, to detect GWs the relative position of at least two

freely falling test particles is needed. As a GW passes into the page, the arms will

undergo a tiny change in length. The change in length is then measured as GW

strain h in the detector output as,

h =
2∆L

L
, (1.6)

where L is the detector arm length. The detectors are most sensitive at the frequency

where the gravitational wavelength is roughly the distance probed by the time of

flight of the lasers f = c/2πL.

The sensitivity of the detector depends on the direction of the source. The GW

strain measured in the detector is given by,

h(t) = F+(θ, φ, ψ)h+ + F×(θ, φ, ψ)h× , (1.7)

where h+ and h× are the two GW polarizations, and F+ and F× are the antenna

patterns, shown in Figure 1.3, which describe the sensitivity of the detector in
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different directions. They can be described by the equations,

F+ =
1

2
(1 + cos2 θ) cos 2φ cos 2ψ − cos θ sin 2φ sin 2ψ , (1.8)

F× =
1

2
(1 + cos2 θ) cos 2φ sin 2ψ + cos θ sin 2φ cos 2ψ , (1.9)

where θ is the local polar angle, φ is the local azimuthal angle and ψ is the polariza-

tion angle of the source. The detectors have some sensitivity in almost all directions

and are most sensitive in the directions above and below the detector arms.

Current ground based GW interferometers include GEO, a German detector

with 600 m long arms [55], AdVirgo, a French-Italian detector with 3 km long arms

[8, 9], and aLIGO, which consists of two 4 km detectors in Livingston, Louisiana

and Hanford, Washington [6]. Future planned GW detectors include the Einstein

Telescope [56], an underground detector that is expected to be 10 times more sen-

sitive than current ground based detectors, and KAGRA [57], a detector currently

under construction in the Kamioka mine in Japan. KAGRA has 3 km long arms

with cryogenic mirrors to reduce the thermal noise, and reduced seismic noise due

to its underground location.

The Laser Interferometer Space Antenna (LISA) [23] is a space GW detector

that will be sensitive to higher mass sources than ground based detectors, such as,

super massive black holes. The LISA pathfinder mission [58] is designed to test

the technology that is needed for the LISA detector. LISA pathfinder has two test

masses, and was launched in December 2015. The LISA pathfinder results were

five times more sensitive than expected [59], and has demonstrated the technology

needed for the future LISA mission.

1.3.1 Initial Detectors

The construction of the Virgo detector started in 1996. The first Virgo Science

Run, VSR1, occurred in 2007, and the second Virgo Science Run, VSR2, occurred

in 2009. The LIGO detectors were built in 1995 with the first Initial LIGO science

run starting in 2002. In 2007, the LIGO detectors completed a two year long

science run, S5, during which one year of science quality data was collected at

design sensitivity. In Initial LIGO, the lower noise limit was created by motion of
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Figure 1.4: The inspiral horizon distance during the Initial LIGO and Virgo S6 and VSR2/3 runs.
The average inspiral horizon distance is shown for each week with error bars the correspond to the
standard deviation for that week. The Hanford detector was the most sensitive reaching distances
of up to 45 Mpc towards the end of the science run. Figure reproduced from [60].

the mirrors, and the higher noise limit was created by shot noise. After S5, the

LIGO detectors went offline to begin the upgrade to Enhanced LIGO. Enhanced

LIGO had more powerful lasers than Initial LIGO, with an increase from 10 W to

35 W. Enhanced LIGO was twice as sensitive as Initial LIGO. The first Enhanced

LIGO run, S6, began in 2009 at the same time as the Virgo VSR2 run.

The inspiral horizon distance during the LIGO S6 and Virgo VSR2/3 runs,

which is defined as the distance at which an optimally located and oriented binary

system would give an SNR equal to 8, is shown in Figure 1.4. The LIGO Hanford

detector was the most sensitive reaching distances of up to 45 Mpc towards the end

of the science run. The initial detectors did not find any GWs [61, 62], however,

upgrades to the detectors began in 2008, with the advanced detectors expected to

be a factor of 10 more sensitive than the initial detectors, with a 1000 times larger

source volume.
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Figure 1.5: A diagram of the aLIGO GW interferometers. The light from the laser first travels
to the input mode cleaner that improves the beam mode quality by filtering out higher order
spatial modes. The light is then split by the beam splitter and travels down the two perpendicular
detector arms. The Fabry-Perot cavities build up power in each arm to increase the effective
response of the detectors to a change in phase produced by a GW moving into the page. The GW
will create a phase shift that changes the interference pattern when the light recombines at the
photodiode. Figure reproduced from [6].

1.3.2 Advanced Detectors

The aLIGO upgrades finished in 2015, and O1 began in September 2015. A diagram

of the aLIGO detectors is shown in Figure 1.5. The light from the Nd:YAG 1064 nm

laser first travels to the input mode cleaner, which improves the beam mode quality

by filtering out higher order spatial modes. The light is then split by the beam

splitter and travels down the two perpendicular detector arms. The Fabry-Perot

cavities build up power in each arm that increases the effective response of the

detectors to a change in phase that would be produced by a GW. The GW will

create a phase shift that changes the interference pattern that is measured at the

photodiode. Some of the aLIGO detectors expanded detection volume comes from

better sensitivity at low frequencies, moving the lower noise cut-off from 40 Hz to

10 Hz.
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Figure 1.6: The contribution of different noise sources to the sensitivity of the aLIGO detectors.
The different colours show the different noise sources, with quantum noise being the limiting noise
source. Thermal noise due to Brownian motion in the optical coatings is the most dominant noise
source in the most sensitive frequency range of the instruments, at a few hundred Hertz. Figure
reproduced from [6].

1.3.3 Noise Sources

The sensitivity of aLIGO is limited by multiple sources of noise from the hardware

subsystems and the environment. An overview of the limiting noise sources is shown

in Figure 1.6. The low frequency sensitivity of the detectors (. 10 Hz) is limited

by the effects of seismic noise, due to motion in the ground, which propagates

through the suspensions. Thermal noise due to Brownian motion in the optical

coatings is the most dominant noise source in the most sensitive frequency range of

the instruments. At frequencies higher than ∼ 150 Hz, shot noise, due to random

fluctuations in the arrival time of the photons at the photo-detector, is expected

to be the dominant noise source. Shot noise can introduce random fluctuations

in the interference pattern that may mimic a GW signal. Shot noise decreases

with increased laser power. However, radiation pressure noise, due to the pressure

of photons hitting the end mirrors, will also increase with increased laser power.
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Gravity gradient noise due to fluctuations in the local gravitational field is another

source of noise for the aLIGO detectors.

Another limiting noise source for advanced GW detectors are instrumental and

environmental disturbances that produce non-astrophysical short duration tran-

sients in science data, called glitches. Glitches increase the false alarm rate of

searches, and decrease the detectors’ duty cycles. The success of the advanced de-

tectors requires a huge effort in commissioning and detector characterization [63, 64].

Over 200,000 auxiliary channels of data are used to monitor the detectors behaviour

and environment. These channels can be used to identify the cause of glitches if

there are coupling mechanisms between the auxiliary channels and the GW strain

data.

If it is not possible to remove the source of the glitch, then auxiliary channels

can be used to create data quality vetoes [65, 66, 67]. Vetoes remove data where

transients are coincident with auxiliary channels that are not sensitive to GWs.

Vetoes are not an ideal method to eliminate glitches as they reduce the duty cycle

of the instruments. Data quality flags can be applied to data when events occur

that have been known to create noise couplings with the GW strain in the past.

data quality flags were used in the initial detector science runs, and were highly

effective in increasing the sensitivity of searches [67]. The use of data quality flags

in the Virgo VSR2 run gave an ∼ 30% increase in the volume of which Virgo was

sensitive to CBC sources [64], and ∼ 5 Mpc increase in the detection range of an

SNR 8 binary neutron star system in the Initial LIGO detectors [67].

GW searches can have search specific procedures to limit the impact of glitches.

In searches for CBC signals, a technique known as gating is used to roll the GW data

smoothly to zero at times when significantly loud glitches occur [31]. In searches

for GW bursts, measuring how coherent a signal is between different detectors can

be used to reject signal candidates created by glitches. An extensive study of the

glitches, which occurred in the data containing the detections, was carried out for

the validation of the signals [68]. As the advanced detector network approaches its

design sensitivity, the number of detections is expected to increase. Adding more

detectors to the network increases the number of possible noise sources and the

time it will take to identify their origin. Adding more detectors will increase the

significance of detections, but glitches which occur in any one detector will limit

the joint analysis time for the network. Understanding the sources of glitches in the
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detectors will become increasingly more important with a latency of a few hours,

so that the data quality can be improved during the joint observing runs.

Different types of glitches have been identified through their common origin, or

by their time-frequency morphology. Some examples are shown in later chapters,

for example, in Figure 3.2 and Figure 3.4. If a glitch type is not correlated with

any auxiliary channel that is not sensitive to GWs, then it will not be removed

by data quality vetoes, and their origin is particularly difficult to identify. The

background for GW searches during O1 was estimated by time shifting the data

between the interferometers to measure the number of coincident background noise

triggers [69, 13]. Therefore, the significance of a GW detection during O1, and in

future observing runs, has been limited by the number of glitches.



Chapter 2

Glitch Characterization

2.1 Introduction

The aLIGO and AdVirgo detectors are designed to detect GWs of various astro-

physical origin [70]. The non-Gaussian, non-stationary nature of advanced detector

noise produces glitches, which affect the sensitivity of searches, and can be mis-

taken as GW detections, in particular for un-modelled sources. To determine if a

potential GW source is astrophysical, the signal is required to be coincident between

two or more GW detectors. The high rate of glitches means that it is possible for

accidental coincidence between the detectors to occur. Glitch classification and cat-

egorization can provide valuable clues for identifying the source of the glitches, and

lead to their elimination. In initial LIGO and Virgo science runs, this classification

was performed by visual inspection of the glitches’ time series and/or spectrograms.

Visual inspection of individual glitches proved to be a slow and inefficient method

in attempts to categorize glitches during the S6 LIGO science run. Faster and more

reliable techniques for the classification of glitches was needed. This can only be

achieved with automatic glitch classification algorithms running in low-latency as

data is collected [71].

In this chapter, we describe a method called PC-LIB, designed for the fast

classification of advanced detector glitches, and test the method on simulated data

sets. The chapter in structured as follows: In Section 2.2, we introduce the algorithm

used for glitch classification. In Section 2.3, we describe other methods used for

16
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glitch classification, which we use for a comparison study later in the chapter. In

Section 2.4, we created three different data sets, which are specifically designed to

test the efficiency of the algorithms in classifying glitches with different waveform

morphology or frequency content. In Section 2.5, we describe the PC-LIB results,

and compare them to results from other classification methods. A summary and

discussion is given in Section 2.6.

2.2 PC-LIB

The PC-LIB glitch classification algorithm is implemented in C, and is a part of the

LIGO data analysis software package, LSC Algorithm Library (LAL) [72]. More

specifically, we use the LALInference package [73, 44, 34], which is designed for

parameter estimation of GW signals, and can be used for model selection. It can

produce posterior distributions for the parameters of a signal, such as the sky lo-

cation [74, 44]. LALInference typically uses CBC waveforms or a sine Gaussian as

a signal model. For glitch classification, we have adapted LALInference to include

a signal model that is created from a linear combination of principal components

(PCs). An overview of the classification procedure implemented in PC-LIB is given

in Figure 2.1. When the signal models have been created, Bayesian model selection

can be applied to determine the correct glitch type.

2.2.1 Bayesian Inference

For a given set of data D and hypothesis H Bayes theorem is given by,

prob(H|D, I) =
prob(D|H, I)prob(H|I)

prob(D|I)
, (2.1)

where prob(H|D, I) is the posterior probability, which represents what we know

about the hypothesis from the given data, prob(D|H, I) is the likelihood function

that represents what we know from the data, and prob(H|I) is the prior, which

represents what we know about the hypothesis before any analysis of the data, and

I is any background information.
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Figure 2.1: An outline of the classification procedure implemented in the PC-LIB algorithm. First,
PCA is applied to the time series waveforms of different types of glitches. A linear combination
of the PCs can then be used as signal models for different glitch types. Bayesian model selection
is then applied to determine the correct type of glitch. Figure reproduced from [1].

The data from GW interferometers is a set of time series samples d, sampled

uniformly in time t. For the noise model, we assume Gaussian stationary noise with

a certain power spectral density (PSD), Sn(f), which is estimated from 100 seconds

of data adjacent to the time of interest. The likelihood function for the noise model,

for all likelihood calculations in this thesis, is the product of Gaussian distributions

in each frequency bin,

p(d|HN , Sn(f)) = exp
∑
i

[
− 2|d̃i|2
TSn(fi)

− 1

2
log(πTSn(fi)/2)

]
, (2.2)

where T is the duration of the analysis segment, and d̃i is the discrete Fourier
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transform of di,

d̃i =
T

N

∑
k

dk exp(−2πijk/N). (2.3)

When a signal is present in the data, the likelihood then becomes,

p(d|HN , Sn(f), θ) = exp
∑
i

[
−2|h̃i(θ)− d̃i|2

TSn(fi)
− 1

2
log(πTSn(fi)/2)

]
, (2.4)

where θ is the parameters of the signal h. In later chapters of this thesis we need

to analyse the data from a network of detectors coherently. If the noise in each

detector is uncorrelated then it is possible for a coherent network likelihood to be

the product of likelihoods from the individual detectors,

p(dHLV |HSSnHLV (f)) =
∏

iεH,L,V

p(di|HS, Sni(f)), (2.5)

where H,L and V are the three different GW interferometers [73].

Comparisons between two competing models Mi and Mj can then be made by

calculating the odds ratio,

Oi,j =
p(Mi)

p(Mj)

p(D|Mi)

p(D|Mj)
=
p(Mi)

p(Mj)
Bi,j , (2.6)

where the priors cancel out if each model has the same prior, and Bi,j is the Bayes

factor given by the ratio of the evidences,

Bi,j =
p(D|Mi)

p(D|Mj)
, (2.7)

where p(D|Mi) is the evidence for model Mi given data D, and p(D|Mj) is the

evidence for model Mj given data D [75]. The evidence for each model is calculated

by integrating the likelihood p(D|θ,M), multiplied by the prior p(θ|M), over all

parameter values θ,

p(D|M) =

∫
θ

p(θ|M)p(D|θ,M)dθ . (2.8)

Example parameters of a GW detection are the sources mass, spin, distance and sky

position. For a large number of model parameters the evidence integral becomes

difficult. This problem is solved using a technique called nested sampling [75, 76].
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Nested Sampling

Nested sampling is a numerical technique that can be used to estimate evidence

integrals [75, 76]. It can produce posterior distributions on the parameters of a

model. A diagram explaining how nested sampling works is shown in Figure 2.2.

The nested sampling algorithm calculates the likelihood of a selected sample of

points in the models parameter space. First, the likelihood is calculated for a set

of random points that are distributed over the entire prior. Then the worst point,

which has the smallest likelihood and largest prior mass is selected. The worst

points likelihood and prior mass values are then used as the new limiting values,

and the worst point is discarded. A new point is then generated inside the new

limiting values using Markov Chain Monte Carlo (MCMC) techniques [75]. This is

repeated so that it iterates inwards in prior mass and upwards in likelihood until the

region of the prior mass with the highest likelihood is found. The evidence integral

can then be expressed as,

Z =

∫
θ

p(θ|M)p(D|θ,M)dθ , (2.9)

Z ≈
∑
i=1

p(D|θi,M)ωi , (2.10)

Z ≈
∑
i=1

Liωi , (2.11)

where the weight ω is given by ωi = p(θi|M)dθ and represents the fraction of

the prior distribution represented by the ith sample, and Li = p(D|M, θi) is the

likelihood. If a signal is present, the evidence integral will be dominated by a small

region of the prior with the highest likelihood, concentrated in a fraction exp(I) of

the parameter space. I is called the information in the data, and is given by,

I =
∑

p(θ|D,M) log
p(θ|D,M)

dX
dθ . (2.12)

I represents the amount of information in the posterior relative to the prior.

Now that the evidence integrals can be solved, PC-LIB can calculate a signal

versus noise Bayes factor, BS,N , for each possible type of glitch. Taking the log of

the Bayes factor gives,

logBS,N = log[p(D|MS)]− log[p(D|MN)] , (2.13)
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Figure 2.2: Each sample in the set of live points can be thought of as lying on a contour line of
equal likelihood value, where L represents the likelihood and X represents the prior mass. First,
the likelihood is calculated for a set of random points that are distributed over the entire prior.
Then the worst point, which has the smallest likelihood and largest prior mass is selected. The
worst points likelihood and prior mass values are then used as the new limiting values, and the
worst point is discarded. A new point is then generated inside the new limiting values. Figure
reproduced from [77].

where MS and MN are the signal and noise models, respectively. To compare two

different glitch models, Mtype1 and Mtype2, the signal vs. noise Bayes factors can be

subtracted to obtain a new log Bayes factor that determines the glitch type as,

logBtype1,type2 = logBStype1,N − logBStype2,N . (2.14)

If the glitch belongs to type 1 then logBtype1,type2 will be positive, and if the glitch

belongs to type 2 then logBtype1,type2 will be negative. In the case of one detector it

may be possible to find an analytic solution to the evidence integrals without the

need for nested sampling.

To adapt LALInference for the classification of glitches, we adopt the Principal

Component Analyses (PCA) approach taken by Logue et. al. [78], in their analysis

of the explosion mechanism of CCSN signals. We take the time series of the first fifty

glitches of a known type, sampled at 4096 Hz, and apply a second order Butterworth

high pass filter at 30 Hz. PCA is then applied to the glitch waveforms.
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2.2.2 Basics of Principal Component Analysis

Time series waveforms are used to construct an m × n data matrix D, where n is

the number of waveforms, and the columns of the matrix are the time series of the

waveforms of length m. The ideal glitch waveforms for the PCA procedure are those

that have a large enough amplitude to be clearly distinguishable from the rest of

the background noise. However, as some glitches only occur with lower amplitudes

it is not possible to only use loud glitches for all glitch types. The m × n data

matrix D can be factored so that,

D = UΛVT , (2.15)

where U is an m ×m matrix with columns given by the eigenvectors of DTD, V

is an n × n matrix with the eigenvectors of DDT as columns, and Λ is an m × n
diagonal matrix. The rows of the matrix U are the PCs, which are ordered by

decreasing eigenvalue absolute value. The diagonal values of Λ are the eigenvalues

of the PCs. The data matrix D can be projected on the PC basis as,

S = D U . (2.16)

Them×nmatrix S is called the Coefficient Matrix. The coefficients of the expansion

of the original data set w.r.t. the new basis are called PC coefficients. Waveforms

with different features are expected to have different PC coefficients. Since the PC

eigenvectors are ordered by decreasing eigenvalues, the first few coefficients typically

identify the most important features of the waveforms. The waveforms can be

accurately reconstructed from a linear combination of the first k PCs, weighted by

their respective coefficients β,

hi = A
k∑
j=1

Ujβj , (2.17)

where A is an amplitude scale factor, and k is usually � n.

The amount variance of the data explained by each PC is defined as,

v(k) =
1

Λ

k∑
i=1

Λi , Λ =
n∑
i=1

Λi , (2.18)



2.2. PC-LIB 23

5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

Number of PCs

Ex
pl

ai
ne

d
va

ri
an

ce

Figure 2.3: An example of how much variance of a data set is represented by each PC. The ideal
number of PCs can be determined by setting a threshold on the variance, or by looking for changes
in the variance curve, as the variance should increase at a slower rate when the ideal number of
PCs is reached. Figure reproduced from [1].

where Λi are the eigenvalues of the matrix Λ. The explained variance 0 ≤ v ≤ 1

measures the variation (dispersion) of the data set as a function of its dimensionality.

An example of a variance curve is given in Figure 2.3. The number of PCs that

are needed to describe the sample up to a given accuracy can be determined by

setting a threshold on v, or plotting the variance and looking for changes in the

curve. Therefore, PCA allows dimensional reduction of the data set.

A linear combination of the PCs, multiplied by the PC coefficients, is then used

as the new signal model in PC-LIB for each different population of glitch. Bayesian

model selection can then be used to determine the type of each new glitch that is

detected in the data, using the different signal models for each glitch population. A

flat, uniform prior is used for the PC coefficients for each glitch type. To calculate

the minimum and maximum values for the PC coefficient priors, we use the method

described by Logue et. al. [78] of projecting the glitch waveforms on to the PCs.

For glitches in real detector noise, an event trigger generator (ETG) is used

before running PC-LIB. ETGs typically search for excess power in individual inter-

ferometers and output the time, SNR, frequency, duration and other parameters of

transients found in the data. PC-LIB uses Omicron, the main ETG used by the
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LIGO Scientific Collaboration’s (LSC) detector characterization group [79, 80].

During the 51.5 days of O1 PC-LIB classified 2346 glitches in L1 and 7304

glitches in H1. A summary page of the quality of the data is produced by the LIGO

detector characterization group once a day. The aim of PC-LIB is to add results to

those summary pages once a day. The average number of glitches classified in O1

each day was ∼ 50 in L1 and ∼ 150 in H1. To classify that number of glitches once

per day takes PC-LIB ∼ 5 minutes.

2.3 Other Classification Methods

Other methods for the classification of glitches have been developed. In this section,

we give a brief description of those methods, and in later sections we carry out a

study to compare their performance on real and simulated noise from advanced GW

detectors.

2.3.1 Principal Component Analysis for Transients

Principal Component Analysis for Transients (PCAT) is a python-based algorithm

based on the use of PCA [81] to identify and classify glitches in aLIGO data channels.

A summary of the classification procedure implemented in the PCAT algorithm is

given in Figure 2.4. PCAT uses the time-sampled values of the aLIGO h(t) strain

as PCA input variables. The PCs are used to analyse the time variability of the

data and reconstruct the properties of the glitches.

Pre-processing

The raw time series (sampled at 16384 Hz) is first split into 32 second-long seg-

ments with a 50% overlap, then down sampled to 8192 Hz, and high passed with

a Butterworth 4th order filter with a 30 Hz cut-off frequency. The data are then

whitened by multiplying the Fast Fourier Transform (FFT) of the time series by

the inverse of the square root of the detector’s noise PSD, which is computed using
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the median-mean average algorithm, as described in [26]. The whitened FFT is

inverted, yielding the whitened time series, of which the first and last 8 seconds

are discarded to avoid FFT artifacts at the edges. Glitches are identified when the

channel amplitude exceeds a chosen threshold in units of the standard deviation

of the analysed 16 second segment. A value between 4.5 and 5 has been shown to

maximize the efficiency in identifying glitches, while minimizing false positives. For

each set of points above the threshold (triggers), the time series is sampled with

a fixed-width interval around the trigger’s maximum amplitude (typically corre-

sponding to around 125 ms), and then rescaled to a maximum (absolute) amplitude

equal to one. This step is required to properly compare the time series and identify

the main features of different glitch families.

Classification

Machine learning classification procedures can be supervised or unsupervised [82].

A supervised machine learning algorithm trains on a sample of correctly labelled

data. An unsupervised classification procedure has no labelled training set of data.

PCAT uses an unsupervised classification procedure, as we have no previously la-

belled data set on which to train the algorithm. PCAT uses the scikit-learn Gaussian

Mixture Model (GMM) algorithm to cluster the PCA-reduced data [83]. The data

are fit to a linear combination of multivariate Gaussian distributions. The number

of these distributions (number of classes) is determined by minimizing the Bayesian

information criterion [84]. An important feature of the Bayesian information crite-

rion algorithm is the calculation of a penalty score for each of the free parameters

in the data set to avoid over-fitting.

Accurate classification of glitches requires a careful choice of the number of PCs.

A low number of PCs typically results in insufficient information to characterize the

data. A high number of PCs leads to the inclusion of Gaussian noise features in the

reduced dataset, which results in poor performance of the clustering algorithm [85].
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Figure 2.4: The classification procedure implemented in the PCAT algorithm. PCAT reads in the
time series data and finds glitches above a certain SNR threshold. PCA can then be applied to
the whitened time series of all the glitches found in the data. Different types of glitches live in
different areas of the PC coefficient parameter space. A machine learning classifier is then applied
to the the PC coefficients to determine the correct type of glitch. Figure reproduced from [1].

2.3.2 Wavelet Detection Filter and Machine Learning

WDF-ML consists of a event detection algorithm, Wavelet Detection Filter (WDF),

followed by a Machine Learning (ML) classification procedure. WDF-ML is part of

the Noise Analysis Package (NAP), a C++ library embedded in python, developed

by the Virgo Collaboration [86].
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Figure 2.5: The classification procedure implemented in the WDF-ML algorithm. WDF-ML
conditions the data and then applies a wavelet transform using multiple different types of wavelets.
The wavelet coefficients are then reduced using data reduction techniques, such as PCA. A machine
learning classifier is then applied to the reduced wavelet coefficients to determine the correct type
of glitch. Figure reproduced from [1].

Wavelet Detection Filter

Wavelet-based algorithms are well tuned for the identification of glitches because

they decompose the data into multiple time-frequency resolution maps. The effi-

ciency in detecting glitches is linked to the similarities between the analysing wavelet

and the waveforms of the glitches. As different wavelet types could better match dif-

ferent waveform morphologies, WDF-ML performs wavelet domain decomposition

using different types of wavelet basis, including the Daubechies and Haar wavelets

[87, 88].
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A wavelet transform is similar to a Fourier transform. The Fourier transform

sinusoidal waves are replaced by an orthonormal basis generated by translations

(shifting) and dilations (scaling) of the mother wavelet,

ψa,b(t) =
1√
b
ψ

(
t− a
b

)
, (2.19)

where b is the scale and a is the translation. The wavelet transform of a signal f(t)

is defined as the projection of f on the wavelet basis,

Wf(a, b) = 〈f, ψa,b〉 =

∫ +∞

−∞
f(t)

1√
b
ψ∗
(
t− a
b

)
dt , (2.20)

where ψ∗ is the complex conjugate of the mother wavelet. The wavelet transform

has a time frequency resolution that depends on the scale b. The time spread is

proportional to b, and the frequency spread is proportional to the inverse of b. The

discrete wavelet transform uses a discrete set of the wavelet scales and translations.

This transform decomposes the signal into a mutually orthogonal set of wavelets.

Figure 2.5 shows an outline of the classification procedure implemented in the

WDF-ML algorithm. The first five minutes of data are used to estimate the pa-

rameters for the whitening filter in the time-domain. As the data is non-stationary,

using the first five minutes of data may introduce errors later in the segment if the

segment of data analysed is long. The whitening procedure is based on a linear

predictor filter, whose parameters are estimated through a parametric auto regres-

sive model fit to the noise PSD, as described in [89]. One of the auto regressive

parameters is the standard deviation σ of the background noise, which is used in

the wavelet de-noising procedure.

A signal xi that is corrupted by additive Gaussian random noise ni ∼ N (0, σ2)

is given by,

xi = hi + ni, i = 0, 1, ...N − 1, (2.21)

where hi is the transient signal. The signal xi is used to find an approximation ĥi

to the original hi, which minimizes the mean squared error,

‖h− ĥ‖2 =
1

N

N−1∑
i=0

|hi − ĥi|2. (2.22)

If an orthogonal wavelet transform W is applied to the sequence of data xi, we
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obtain,

W (xi) = W (hi) +W (ni) . (2.23)

For a given wavelet thresholding function T the threshold based de-noising can be

written as,

ĥi = W−1(T [W (xi)]) . (2.24)

The thresholding function is applied to the wavelet transform of the noisy signal,

then the output is inverted and the wavelet transformed. The effectiveness of the

technique is dependent upon the choice of wavelet used, the decomposition level,

and the amplitude of the threshold value.

For a given threshold T and wavelet coefficient w, the wavelet coefficient is

retained if |w| > T , or is set to zero if |w| < T . This removes wavelet coefficients

that are due to background noise, and retains wavelet coefficients that are due to

glitches. WDF-ML uses the universal Donoho and Johnstone threshold method

[90], where,

T =
√

2 logNσ̂ . (2.25)

N is the number of data points, and σ̂ is an estimate of the noise level σ, estimated

during the auto regressive parametric fit to the data.

The wavelet coefficients contain the energy of the glitch at different scales. After

the wavelet thresholding procedure is applied, only the highest coefficients of the

wavelet transform remain. These coefficients are expected to contain only features

of the glitches. The energy of the glitch is given by the sum of the square of the

coefficients above the threshold value. The SNR is then given by the energy divided

by σ̂.

WDF-ML outputs a list of triggers, which include the maximum SNR and fre-

quency, a GPS starting time for the glitch, the duration, the name of the wavelet

family which triggered the event, and the full list of the wavelet coefficients after

the de-noising procedure. The peak frequency of the glitch is estimated as,

fmax =
fs

2.0× w
× b , (2.26)

where fs is the sampling frequency, w is the window used in the WDF-ML process,

and b is the scale of the wavelet transform corresponding to the coefficient with the

maximum value. The event duration is estimated after applying a clustering step
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for events that are closer than 0.01 s.

For WDF-ML to correctly identify glitches, the choice of window size and over-

lapping parameter between two consecutive sliding windows becomes important. A

window size of 1024 points is used. As there is no re-sampling filter in the data

pre-processing, the data is sampled at 16384 Hz, therefore, with 1024 points the

time window is 0.0625 seconds. This ensures that the waveforms of duration 2 ms

will be inside the window. An overlap value of 0.05 seconds is used in order to avoid

problems caused by a glitch being in two consecutive windows.

WDF-ML applies the same machine learning classification algorithm, GMM,

as described in section 2.3.1, but other clustering algorithms could be used, such

as Affinity Propagation [91] or Kmeans [92]. Dimensional reduction is required to

retain the most important features of the wavelet coefficients. This is achieved by

first applying PCA, and then projecting the remainder of the coefficients on a two-

dimensional space with Spectral Embedding [93, 94]. Spectral Embedding finds a

low-dimensional representation of the data using a spectral decomposition of the

graph Laplacian. The GMM machine learning algorithm is then applied to the

reduced coefficients for classification.

2.3.3 Gravity Spy

Gravity Spy is a project that uses citizen scientists and machine learning to classify

glitches [95]. Gravity Spy was launched in October 2016, before the start of the

second aLIGO observing run (O2). Although this method is slower than the ones

described previously, it is also more accurate, as every glitch is examined by multiple

citizen scientists before they are classified. Glitches classified by the citizen scientists

are used as training sets for a supervised machine learning classification on a larger

set of glitches.

To find the glitches, Gravity Spy uses all Omicron triggers above an SNR thresh-

old of 7.5. Only glitches that occur when the detectors are in observing mode are

used, and any data that has been flagged as poor quality is discarded. The glitches

are then made into spectrograms with four different time windows to accommo-

date short and longer duration glitches. Citizen scientists first train on a golden

set of glitches previously classified by experts. The users are then split into three
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Figure 2.6: Examples of simulated glitches produced for data sets designed to test the performance
of glitch classification algorithms. Top left is a typical sine Gaussian waveform. Top right is a
typical Gaussian waveform. Bottom is a typical ringdown waveform. All of the simulated glitches
have millisecond durations.

groups, which are beginner, intermediate, and advanced based on their performance.

When enough confidence in a classification is reached, it is added to the training

set. Gravity Spy uses a deep learning method that uses a Convolutional Neural

Network (CNN) with multiple processing layers [95].

2.4 Mock Data Challenge

To test the performance of the classifying algorithms, three different simulated data

sets were created. Gravity Spy is not included in this study, as it did not exist

at the time the study was carried out. The data sets are designed specifically to

test the efficiency of the algorithms in classifying glitches with different waveform

morphology or frequency content.

For the sake of this investigation, we assume all advanced detectors to be affected
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by the same populations of glitches. Thus, we use early aLIGO sensitivity curves,

for the Livingston detector only, to generate simulated Gaussian noise [74]. We do

not use real data for this study because we need to know all of the properties of

the glitches in the data set in order to accurately test the different methods. We

generate three different data sets containing different types of simulated glitches,

which are added to the Gaussian noise in five second intervals. The three data sets

are designed to test if the different algorithms can classify glitches by frequency,

SNR and waveform morphology. Some example simulated glitches are shown in

Figure 2.6. We consider three different waveform morphologies: sine Gaussian

(SG), Gaussian (G) and ringdown (RD).

Sine Gaussian

The Sine Gaussian waveforms are defined by,

h×(t) = h0 sin[2πf0(t− t0)]e−(t−t0)
2/2τ2 , (2.27)

h+(t) = h0 cos[2πf0(t− t0)]e−(t−t0)
2/2τ2 , (2.28)

where τ = Q/
√

2πf0, f0 is the central frequency, Q is the quality factor, t0 is the

GPS time at the centre of the sine Gaussian, and h0 = hrss/
√
τ , where hrss is

the root sum squared amplitude of the transient. The τ parameter determines the

width of the simulated waveform in the time-domain. An example of a real aLIGO

glitch with a time series morphology similar to a sine Gaussian is shown in the next

chapter, in Figure 3.4(b).

Gaussian

The Gaussian simulated waveforms are defined by,

h×(t) = h0e
−(t−t0)2/2τ2 , (2.29)

h+(t) = h0e
−(t−t0)2/2τ2 . (2.30)

The Gaussian waveforms have a maximum frequency determined by the duration.

An example of a real aLIGO glitch with a time series morphology similar to a
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Figure 2.7: The distribution of SNR values of the simulated glitches added to simulated Gaussian
early aLIGO noise. The left figure shows the SNR distribution for the glitches simulated in data set
1. The right figure shows the SNR distribution for the simulated glitches in data set 3. There are
more glitches at lower SNR values and a few extremely high SNR glitches, as would be expected
in real data. Figure reproduced from [1].

Gaussian is the blip glitch, shown in Figure 3.2(a). Blip glitches are the most

common type of glitch found in both of the aLIGO detectors.

Ringdown

The ringdown simulated waveforms are defined by,

h×(t) = h0 sin[2πf0(t− t0)]e−(t−t0)/2τ , (2.31)

h+(t) = h0 cos[2πf0(t− t0)]e−(t−t0)/2τ , (2.32)

where t > t0, and the other parameters have the same definition as the sine Gaus-

sian. The time-domain waveforms of some high SNR glitches have a ringdown

feature that appears after their initial spike.

2.4.1 Data Set 1

The first data set contains 1000 simulated Gaussian glitches, and 1000 simulated sine

Gaussian glitches of different duration, frequency and SNR. The glitch waveforms

were generated with Q, hrss, duration and frequency values distributed uniformly

between the limiting values shown in Table 2.1. The SNR distribution for all glitches
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in this data set is shown in Figure 2.7.

Waveform Min Value Max Value
Frequency (Hz) SG 380 420

hrss (Hz−1/2) SG 1× 10−21 5× 10−21

Q SG 5 10
SNR SG 1 400

hrss (Hz−1/2) G 1× 10−21 5× 10−21

Duration (s) G 0.001 0.01
SNR G 1 400

Table 2.1: The limits on the parameters used when creating the simulated glitches in data set
1. The sine Gaussian and Gaussian glitches are well separated in frequency and duration. Table
reproduced from [1].

2.4.2 Data Set 2

Data set 2 consists of 1000 simulated sine Gaussian glitches and 1000 ringdown

glitches with SNR uniformly distributed between 1 and 400. All glitches were

generated with identical frequency (400 Hz) and duration (2 ms). This data set

is designed to test that the different algorithms can classify glitches by waveform

morphology only.

2.4.3 Data Set 3

Data set 3 includes 1000 Gaussian, 1000 sine Gaussian, and 1000 ringdown glitches.

The waveform parameters in this data set have a large range of values, which makes

this data set more challenging to classify than the first two data sets. The parame-

ters of the simulated glitches in this data set allow us to test the limitations of the

three different classifying methods. The parameters for the simulated waveforms

are distributed uniformly between the limiting values in Table 2.2, with an SNR

distribution shown in Figure 2.7.
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Min Value Max Value
Frequency (Hz) 40 1500

hrss (Hz−1/2) 5× 10−22 4× 10−21

Q (SG, RD) 2 20
duration (G) 0.001 0.01

Table 2.2: The limits on the parameters used when creating the simulated glitches in data set 3.
The glitches in this data set have a larger range of parameters than the glitches in the other data
sets. Table reproduced from [1].

2.5 Results

In this section, we show the PC-LIB results for the three data sets. The results are

then compared to those obtained with the other classification algorithms WDF-ML

and PCAT.

2.5.1 PC-LIB

For this study, we do not run Omicron to find the glitches, as the GPS times for the

glitches are already known from the simulation process. This means that PC-LIB

attempted to classify some glitches with an SNR too low for them to be detected.

This does not happen when using Omicron triggers because an SNR threshold is

applied to Omicron triggers before they are analysed. The variance of the different

glitch types is used to determine the ideal number of PCs. When analysing real GW

data, PC-LIB can only classify glitches that belong to types that have been seen

in the data many times previously. Therefore, to simulate how PC-LIB works on

real detector data we assume that the first fifty glitches from each type in the data

sets have been classified previously by machines or humans. The fifty waveforms

are then used to make the PCs. An example of the PCs created from the different

types of simulated glitches is shown in Figure 2.8. After the data has been whitened

and high pass filtered there is still some noise around the waveforms that cannot

be eliminated. This results in some higher order PCs that look only like noise that

should not be included when reconstructing the waveform.
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Figure 2.8: The first four PCs linearly combined in PC-LIB to make signal models for the different
simulated glitches in data set 3. The left column shows PCs made from fifty sine Gaussian
simulated glitches. The PCs in the middle column are made from fifty ringdown glitches. The
right column shows PCs made from fifty Gaussian glitches.

Data Set 1

For the first data set, 7 PCs were used to classify the glitches in to two different

types. The variance curve is shown in Figure 2.9(a). The type 1 PCs represented

97% of the variance of the sine Gaussian glitches, and the type 2 PCs represented

70% of the variance of the Gaussian glitches. Although setting a threshold on the

variance suggests that seven is an ideal number of PCs, after the 5th PC, the rest

consisted of noise only, and did not contain any more information about the glitches.

In order to better interpret the results, it is important to understand how PC-

LIB performs on Gaussian noise that contains no signals or glitches. In Figure

2.9(d), the distribution of Bayes factors using the signal model for the sine Gaussian

glitches is shown for 100 instances of Gaussian noise only. The distribution shows
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Figure 2.9: The PC-LIB variance curves for the simulated data sets, and the distribution of log
Bayes factors. (a) The PC-LIB variance curves for data set 1. (b) The PC-LIB variance curves for
data set 2. (c) The PC-LIB variance curves for data set 3. (d) The distribution of log Bayes factors
obtained with the sine Gaussian signal model for Gaussian noise only. Similar values are obtained
using other glitch models. If there is only noise with no glitches present then logBS,N ∼ −5.5. To
be conservative, we consider a glitch to be detected if logBS,N > 5.

that the expected value for noise only is logBS,N ∼ −5.5. The largest logBS,N value

was ∼ 0.5. Therefore, to be conservative we only classify glitches with logBS,N > 5

and consider any others as too low in SNR for them to be detected, and a model for

a type of glitch is considered to be correct if logBtype1,type2 > 5 for a type 1 glitch,

or logBtype1,type2 < −5 for a type 2 glitch.

The log Bayes factors that were used to determine the glitch type for all of the

detected glitches in this data set are shown in Figure 2.10. If the type 1 wave-

forms have been correctly classified then logBType1−Type2 should be positive, and if
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Figure 2.10: The distribution of the log Bayes factors used to determine the glitch type for all of
the detected glitches in data set 1. Bayes factors are larger for glitches with a higher SNR. Type 1
corresponds to the sine Gaussian waveforms, and Type 2 corresponds to the Gaussian waveforms.
If the sine Gaussian glitches were correctly classified then their log Bayes factor should be positive,
and if the Gaussian glitches were correctly classified then they should have a negative log Bayes
factor.

the type 2 waveforms have been correctly classified then logBType1−Type2 should be

negative. When using the correct glitch waveform model, the increase in logBS,N is

proportional to the square of the SNR. When using the incorrect glitch waveform

model logBS,N remains low as the SNR values of the glitches increases.

In data set 1, 1452/2000 glitches have a large enough SNR for them to be

detected by PC-LIB. The undetected glitches have SNR values smaller than 10.

The results are shown in Table 2.3. PC-LIB classified all of the glitches with a very

high efficiency (≥ 95%). Type 1 is the main type for the sine Gaussian waveforms,

and type 2 is the Gaussian waveforms. The 5% of Gaussian waveforms that were

in the incorrect class had low SNR values (≤ 20).

Data Set 2

For data set 2, 7 PCs are used to produce signal models which represent each glitch

type. The variance curve is shown in Figure 2.9(b). The 7 PCs represented 80% of
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SG G
PCAT Type 1 8.5 0
PCAT Type 2 0 15.4
PCAT Type 3 0 19.5
PCAT Type 4 0.9 0.2
PCAT Type 5 0 35.9
PCAT Type 6 0 29.0
PCAT Type 7 90.5 0

(maxcluster 2) PCAT Type 1 99 0
(maxcluster 2) PCAT Type 2 1 100

LIB Type 1 99.9 5
LIB Type 2 0.1 95

WDF Type 0 99.5 2.4
WDF Type 1 0.3 46.1
WDF Type 2 0.2 51.5

Table 2.3: The PC-LIB, PCAT and WDF-ML classification results for data set 1. The values
show the percentage of the different morphologies classified in each type. The total number of
simulated waveforms was 1000 of each type. The total number of glitches analysed were 1309 for
PCAT, 1452 for PC-LIB and 1814 for WDF-ML. Table reproduced from [1].

the variance of the type 1 (sine Gaussian) glitches, and 80% of the variance of the

type 2 (ringdown) glitches. As we know that the glitches in each type are identical

in this data set, only 1 PC should be necessary to represent all of the variance of

the waveforms. The variance curve showed a larger number of PCs were needed to

accurately represent the data set. This is because the variance curve is affected by

the noise included in the glitch waveforms used to make the PCs. The PCs may

give a better representation of the features of the glitches if only high SNR glitches

are selected when creating the PCs. However, this may not always be possible if

the glitches do not occur at high SNR values.

In data set 2, 1925/2000 of the simulated glitches were classified by PC-LIB, as

shown in Table 2.4, and the others glitches have SNR values too small for them to

be detected. 97.8% of the glitches with a sine Gaussian morphology were classified

as type 1, and 95.2% of the glitches with a ringdown morphology were classified as

type 2. PC-LIB was clearly able to classify the glitches by waveform morphology

alone with a high efficiency. The simulated glitches that were incorrectly classified

by PC-LIB had SNR values below 20. The log Bayes factors for the two types of

glitches are shown in Figure 2.11. The similar size and shape in distribution of

Bayes factors is due to both of the glitch types having the same distribution of

SNR values. If the type 1 (sine Gaussian) glitches were correctly classified then
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Figure 2.11: The distribution of log Bayes factors used to determine the glitch type for the 1925
glitches detected by PC-LIB in data set 2. If the type 1 (sine Gaussian) glitches were correctly
classified then the log Bayes factor is positive, and if the type 2 (ringdown) glitches were correctly
classified then their log Bayes factor should be negative. It is not possible to determine the type
for glitches that have a Bayes factor between 5 and -5.

the log Bayes factor is positive, and if the type 2 (ringdown) glitches were correctly

classified then their log Bayes factor should be negative.

Data Set 3

Using 7 PCs for the signal models, 2162/3000 of the glitches have a large enough

SNR to be detected by PC-LIB. The variance curve is shown in Figure 2.9(c).

The 7 PCs represent 67% of the variance of the sine Gaussian waveforms, 93% of

the variance of the Gaussian waveforms, and 80% of the variance of the ringdown

waveforms. The results are shown in Table 2.5. The table shows that type 2 contains

the majority of the Gaussian glitches, 88.3%, and the other two types of glitches are

mixed in types 1 and 3. Type 1 contains the mid frequency range (300 − 700 Hz)

waveforms, and type 3 contains higher frequency waveforms (700 − 1500 Hz). A

small number of low frequency sine Gaussian and ringdown glitches, ∼ 20%, were

in the type 2 class with the Gaussian glitches. The 12% of Gaussian glitches that

were incorrectly classified had low, . 20, SNR values.
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SG RD
(5 PCs) PCAT Type 1 0.32 12.6
(5 PCs) PCAT Type 2 25.5 0.2
(5 PCs) PCAT Type 3 20.4 1.3
(5 PCs) PCAT Type 4 1.3 2.8
(5 PCs) PCAT Type 5 0 37.4
(5 PCs) PCAT Type 6 0 30.0
(5 PCs) PCAT Type 7 52.4 0
(5 PCs) PCAT Type 8 0 16.1

(5 PCs, maxcluster 2) PCAT Type 1 1.1 97.4
(5 PCs, maxcluster 2) PCAT Type 2 98.9 2.5

LIB Type 1 97.8 4.8
LIB Type 2 2.2 95.2

WDF-ML Type 0 8.7 100
WDF-ML Type 1 48.0 0
WDF-ML Type 2 43.3 0

Table 2.4: The classification results obtained by PC-LIB, PCAT and WDF-ML for data set 2,
which is designed to see if the methods can classify glitches by waveform morphology only. The
values show the percentage of the different morphologies classified in each type. Two sets of PCAT
results are included with different numbers of maximum clusters. The total number of glitches
analysed were 1265 for PCAT, 1925 for PC-LIB and 1914 for WDF-ML. Table reproduced from
[1].

The frequency distribution for the total number of simulated glitches in this data

set is uniform. However, as only a small number of the total glitches were used to

create the signal models, the frequency distributions for the glitches used to make

the PCs was not a good representation of the glitch parameter space. The type 1

(sine Gaussian) glitches used to make the PCs contained more mid frequency range

waveforms. The type 3 (ringdown) glitches used to make the PCs contained more

higher frequency waveforms. This shows that for real glitch types with a wider

range of parameters, we need to be careful in the selection of waveforms that are

used to make the signal model, so that a bias in the results will be not be introduced

in certain areas of the parameter space.

PC-LIB was unable to distinguish between the sine Gaussian and ringdown

glitches when the range of parameters for the waveforms was very large. This

is because a low frequency sine Gaussian waveform has a closer waveform shape

to a low frequency ringdown waveform than to a high frequency sine Gaussian

waveform. Real glitches with characteristic waveforms have narrow frequency or

duration distributions, see examples in Chapter 3, but this data set allows us to

test the limitations of the different glitch classifying algorithms. The wide range
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Figure 2.12: The distribution of log Bayes factors used to determine the glitch type for the detected
glitches in data set 3. The top left compares the sine Gaussian and Gaussian glitches. The top
right compares the sine Gaussian and ringdown glitches. The bottom compares the Gaussian
and ringdown glitches. The Gaussian glitches can be distinguished from the others, but it is not
possible to distinguish between the sine Gaussian and ringdown glitches.

of parameters of the simulated waveforms, especially duration, make it difficult to

capture the variability of the glitches in the first few PCs.

Since PC-LIB needs to make signal models in advance for each glitch type, it

is only possible for PC-LIB to classify known types of glitches in the data. A new

signal model will need to be created any time that a new family of glitches appears

in the data. On the other hand, PCAT and WDF-ML do not need any information

about a glitch type before they start the classification procedure, they can begin to

classify new glitch types as soon as they appear in the advanced detector data.
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SG G RD
PCAT (33PCs) Type 1 16.9 0 14.5
PCAT (33PCs) Type 2 4.8 100 9.6
PCAT (33PCs) Type 3 37.1 0 41.8
PCAT (33PCs) Type 4 10.7 0 4.5
PCAT (33PCs) Type 5 4.5 0 0.7
PCAT (33PCs) Type 6 21.2 0 19.7
PCAT (33PCs) Type 7 4.8 0 9.2

PCAT (20PCs) Type 1 15.5 0 13.6
PCAT (20PCs) Type 2 36.8 0 41.4
PCAT (20PCs) Type 3 14.2 0 13.0
PCAT (20PCs) Type 4 9.1 0 13.0
PCAT (20PCs) Type 5 0.8 0 0.3
PCAT (20PCs) Type 6 21.8 0 17.2
PCAT (20PCs) Type 7 1.8 100 1.5

LIB (5PCs) Type 1 39.5 4.9 23.8
LIB (5PCs) Type 2 17.3 88.3 23.2
LIB (5PCs) Type 3 43.3 6.8 53.0

WDF-ML Type 1 89.5 9.6 86.9
WDF-ML Type 2 5.9 49.7 7.0
WDF-ML Type 3 4.6 40.7 6.1

Table 2.5: The PCAT, PC-LIB and WDF-ML classification results for data set 3. The values show
the percentage of the different morphologies classified in to each type. Two sets of PCAT results
are included with different numbers of maximum PCs. The total number of glitches analysed were
1480 for PCAT, 2162 for PC-LIB and 2547 for WDF-ML. All methods were unable to distinguish
between the sine Gaussian and ringdown waveform morphologies in this data set. Table reproduced
from [1].

2.5.2 PCAT

PCAT finds the glitches for all data sets using its own internal ETG. PCAT differs

from PC-LIB as it applies PCA to all of the glitches found by the ETG in a segment

of data.

Data Set 1

The PCAT ETG identifies 1309/2000 glitches above the SNR threshold. The first

5 PCs account for 75% of the variance in the data, as shown in Figure 2.14. The

first 12 PCs describe all the major features of the glitches. Clustering with the first

5 PC coefficients leads to seven glitch types, as shown in Table 2.3. Types 2, 3, 5
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Figure 2.13: The GPS time, peak frequency, and classification of each glitch classified by PCAT
in data set 1. The different colours show the 7 different PCAT glitch classes. Types 2, 3, 5 and 6
contain Gaussian glitches. Types 1 and 7 contain sine Gaussian glitches. The Gaussian glitches
are clearly split into sub-types by frequency. Figure reproduced from [96]

and 6 contain Gaussian glitches. Types 1 and 7 contain sine Gaussian glitches.

The breakdown of Gaussian and sine Gaussians in to multiple types can be

understood as a separation in frequency and SNR, for the Gaussian and the sine

Gaussian waveforms, respectively. This is illustrated in Figure 2.13. Types 3 and

6 are the lower frequency Gaussian glitches, ∼ (40 − 90) Hz, and types 5 and 2

are the higher frequency Gaussian glitches, ∼ (100− 150) Hz. Type 7 contains, on

average, sine Gaussian glitches with SNRs larger by a factor of ∼ 5, and a standard

deviation larger by a factor of ∼ 10, than type 1 glitches.

By forcing PCAT to cluster the data on a maximum of two types, 99% of

sine Gaussian and 100% of Gaussian glitches are classified as type 1 and type 2,

respectively. The few misclassified glitches in this case correspond to glitches with

an identified GPS time not correctly aligned with the peak of glitch. This issue can

be resolved by further tuning of the PCAT trigger generator.

Data Set 2

Here we describe the PCAT results for the second data set, which is designed to

test if the classification methods can classify glitches by waveform morphology only.
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The classification results are shown in Table 2.4.

The PCAT ETG identifies 1265/2000 glitches above the PCAT SNR threshold.

For this data set, the number of PCs used was changed to 5, which corresponds to

the location of the “knee” of the variance curve (accounting for 51% of the variance),

shown in Figure 2.14, as this method yields better classification efficiency. Glitches

are first classified by waveform morphology and then broken down in to subclasses

with different SNRs. The sine Gaussian glitches are in types 2, 3 and 7. The

ringdown glitches are contained in types 1, 5, 6 and 8. Type 4 contains less than 30

glitches that are a mixture of the two types. The results show that PCAT is able to

classify glitches, by waveform morphology alone, with a very high efficiency when

noisy PCs are not included.

To demonstrate the effects of using too many noisy PCs, we run PCAT with

94 PCs, which account for 75% of the variance of the glitches in this data set.

Clustering using the first 94 PC coefficients results in seven different glitch types,

of which three types only contain one low SNR glitch. Morphology classification is

mixed: most types contain a roughly equal number of sine Gaussian and ringdown

glitches. Glitches are classified according to SNR, as after the 10th PC, the rest

only account for noise, and including too much noise degrades the efficiency of the

classification algorithm.

The results can be improved further by limiting the maximum number of clusters

to two, as shown in Table 2.4. Type 1 contains the ringdown glitches, and type 2

contains the sine Gaussian glitches. In this case, the few mis-classified glitches

either have low SNR (∼10) or have waveforms with peaks that are not aligned with

the GPS time for the glitch.

Data Set 3

The PCAT ETG identifies 1480/3000 of the glitches above the PCAT threshold.

They are classified into seven different types, as shown in Table 2.5. The first

33 PCs represent 75% of the variance of the data set, shown in Figure 2.14. The

classification results are mixed, with type 2 being the exception, containing 100% of

the simulated Gaussian glitches. From the distribution of peak frequencies for each

PCAT type, shown in Figure 2.15, the mixed-classification can be understood as a
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Figure 2.14: The amount of variance in the three different simulated data sets that is encompassed
by each PCAT PC. Changes in the variance curve can determine the ideal number of PCs. Top
left is the variance curve for data set 1. Top right is the variance curve for data set 2. The first 5
PCs are used for data sets 1 and 2, as this number correspond to the knee of the variance curve.
Bottom is the variance curve for data set 3. Data set 3 has the largest variance, and the ideal
number of PCs is less clear from the variance curve. The variance does not reach 1 due to the
background noise included in the waveforms.

frequency-based classification. Type 3 contains the highest frequency glitches. Type

7 and 5 contain the lower frequency glitches. There are a few ringdown and sine

Gaussian glitches that are classified as type 2 (Gaussian), which have frequency

distributions similar to the Gaussian glitches (70 − 150 Hz). The wide range of

parameters of the simulated glitches makes it hard to capture the full range of the

parameters in the first few PCs, therefore, the main parameter captured by the PCs

is frequency, on which the classification is then based.

Table 2.5 also shows the results using 20 PCs, which corresponds to the approxi-

mate location of the knee of the variance curve. Changing the method used to select

the number of PCs that represent this data set did not lead to an improvement in
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Figure 2.15: The GPS time, peak frequency, and classification of each glitch classified by PCAT
in data set 3. The different colours show the classification results. The three different glitch types
have been classified by frequency. Type 2 are the lowest frequency glitches. Type 3 are the highest
frequency glitches. Figure reproduced from [97].

the result.

2.5.3 WDF-ML

This sub-section describes the WDF-ML classification results. An SNR threshold

of 15 was applied to all three data sets before classification.

Data Set 1

The WDF-ML ETG detected 1814/2000 glitches. The dimensions of the wavelet

coefficients were reduced with 10 PCs that represented ∼ 95% of the variance of the

wavelet coefficients. The classification results are shown in Table 2.3. The efficiency

for correct classification was higher than 97% for both glitch types. Figure 2.16

shows the coefficient parameter space for the classification results of the three types

of glitches found in the data. The wavelet coefficients for different types of glitches

are well separated in the parameter space. Type 0 contains the sine Gaussian

glitches. The Gaussian glitches have been split in to two sub-types labelled type 1

and 2. Type 2 contains more lower SNR Gaussian glitches (between SNR 25 and
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Figure 2.16: The reduced WDF-ML wavelet coefficients for the simulated glitches in data set 1
and 2. The colours represent the different glitch types. Left is the WDF-ML classification results
for the transformed and reduced wavelet coefficients produced from the data set 1 glitches. Right
is the transformed and reduced wavelet coefficients produced from the data set 2 glitches. The
coefficients for the different types of glitches are well separated in the parameter space. Figure
reproduced from [1].

150) than type 1.

Data Set 2

In data set 2, WDF-ML detected 1914/2000 glitches. The results are shown in

Table 2.4. Ten PCs, that represented ∼ 98% of the variance, were used to reduce

the dimensions of the wavelet coefficients. WDF-ML was able to classify different

glitches by waveform morphology alone with a high (∼ 96%) efficiency. The classifi-

cation results are shown in Figure 2.16. There is a clear separation in the parameter

space for the three different types. All of the detected ringdown glitches are in type

0. The sine Gaussian glitches have been split in to two classes, which are type 1

and 2. The two types of sine Gaussian glitches were not split by frequency or SNR

in this case. The sine Gaussian and ringdown glitches can be incorrectly classified

with a wrong choice of overlap value and window size, because if the glitch is split

over two consecutive analysing windows then a sine Gaussian would be cut off in

the middle of the waveform, which would make it appear to be a ringdown glitch. In

real data, most glitches have a duration of a few milliseconds, therefore, a window

of a few 100 milliseconds will be used.



2.6. Summary and Discussion 49

Data Set 3

WDF-ML detected 2547/3000 of the glitches in data set 3. The sine Gaussian and

ringdown glitches are mixed together in type 1. The Gaussian glitches have been

split between types 2 and 3. The Gaussian glitches that were incorrectly classified

into type 1 were those with an SNR lower than 20. Choosing more components for

the spectral embedding stage will result in more sub-types for the sine Gaussian

and ringdown glitches, but no clear distinction between the two types. In this data

set, the glitches are spread in frequency and duration, therefore, results could be

improved by using a multi-window analysis. This is a feature that can be added to

future versions of the WDF-ML algorithm.

2.6 Summary and Discussion

This chapter introduces a new method for the fast classification of glitches in ad-

vanced GW detectors. Its purpose is to provide information that can lead to an

improvement in data quality during an observing run. The method is tested and

compared to other methods developed for glitch classification using data sets con-

taining simulated glitches in Gaussian noise. The simulated data is designed to

test how well the glitch classifiers can classify by frequency, SNR and waveform

morphology.

All three methods can classify glitches in GW detectors with a high level of

efficiency. In the first data set, which contains glitches well separated in frequency

and SNR, over 97% efficiency is obtained by all three methods. Reducing the

threshold of the trigger generators, therefore including glitches with an SNR less

than 20, can reduce the classification efficiency. In the second data set, we show

that all three methods can classify glitches by waveform morphology alone. PC-

LIB and PCAT require that the number of glitch types are specified in advance. If

the number of glitch types requested by PCAT is higher than the actual number

of glitch types in the data set, then the waveforms will be classified by waveform

morphology first, and then split in to further sub-types by frequency and SNR.

WDF-ML has also shown that if it identifies more types than those present in the

data, then the waveform morphologies will be split into further sub-types by SNR

or frequency. The third data set was more challenging to classify due to the large



2.6. Summary and Discussion 50

range of parameters of the simulated glitches.

The different algorithms identified different numbers of glitches in the data. To

identify glitches, the PCAT ETG measures the excess power in the time series of

a given channel. More sophisticated methods for transient identification have been

devised, and they are in use in the LIGO and Virgo data analysis and detector char-

acterization groups. However, the main goal of using the PCAT algorithm in this

study is to provide a proof of concept for glitch classification rather than to provide

a trigger generator for detector characterization analysis. Thus, a simple identifica-

tion method based on excess power in time bins is sufficient for our scope. Future

plans for the use of the PCA technique include improving the trigger generator or

to interface the PCAT code with the Omicron ETG.

For PCAT and PC-LIB, the number of PCs that are used can have a large effect

on the results of the classification. If too many PCs are used, then an incorrect

classification is given due to some of the PCs consisting of only noise. As we cannot

eliminate the background noise from the glitch waveforms that are used to make

the PCs, we have found the best method of choosing the number of PCs to be

the position of the “knee” of the variance curve. For WDF-ML, the selection of

the analysing window size for the wavelet transform is fundamental for a correct

classification. The window must be larger than the length of the glitches in the data,

and to avoid a false classification of a glitch, the glitch must not be overlapping

between two windows. As PC-LIB runs on one second of data at a time, when

analysing real glitches there may be multiple glitches of different types inside the

one second of data, which could affect the efficiency of the classification.

In this study, only the GW channel of the detector is used. As all transients

found by the ETGs will be classified into different types, it is possible that a real GW

signal could be included in the glitch classification results. This could be avoided

by removing signals that are coincident between two detectors before applying the

classification methods. In future work, we plan to include multiple auxiliary chan-

nels in the classification procedure. If a glitch occurs in the GW channel in time

coincidence with an auxiliary channel, it can help us to identify the cause of the

glitch type [98, 99]. The number of possible auxiliary channels is very large, which

makes machine learning an ideal tool for this type of classification due to the speed

at which machine learning methods can process a large volume of detector data.
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PCAT runs daily on data from the aLIGO detectors, providing a powerful di-

agnostic tool to the detector characterization team. WDF-ML has been used as a

glitch event trigger generator, and monitoring tool, during past Virgo science runs.

The machine learning classification procedure of WDF-ML is an innovative addition

to this algorithm that will be used to classify glitches during the advanced detector

science runs. The algorithms can be run on parallel computing clusters, and the

code can be optimised, to allow the algorithms to run efficiently in real time.



Chapter 3

Advanced LIGO Data Quality

3.1 Introduction

During O1, GWs were detected from two binary black hole systems, GW150914 and

GW151226, and another lower significance event LVT151012 [7, 18]. An extensive

study of the glitches, observed around the time of the detections, was carried out

as part of the validation process for the signals [68]. Detector characterisation

can have a large effect on lower significance detections such as LVT151012. For

example, the false alarm probability of LVT151012 was reduced from 14% to 2%

after applying data quality vetoes [68]. In the previous chapter, we introduced a new

method, called PC-LIB, designed for the fast classification of glitches in aLIGO and

AdVirgo data. A comparison study was carried out with PCAT and WDF-ML, and

it was shown that these methods can classify simulated glitches with an efficiency

up to 97%.

In this chapter, we evaluate the performance of the algorithms using glitches in

real data from aLIGO. This work provides an important test for understanding the

performance of these methods on real, non-stationary data in preparation for future

observing runs. In Section 3.2, we describe the data from aLIGO Engineering Run

7 (ER7) that was used to evaluate the performance of the algorithms on real aLIGO

data. In Section 3.3, we give a brief overview of the three different algorithms and

details of improvement since the study in Chapter 2. In Section 3.4, we present the

results for the three algorithms on glitches from Livingston (L1) and Hanford (H1)

52
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ER7 detector data. In Section 3.5, we describe the results for the classification of

glitches during O1, including the potential impact of the results on the searches and

parameter estimation of GW signals. This is followed by a discussion in Section 3.6

of the plans for future improvements and classification during future aLIGO and

AdVirgo observing runs.

3.2 Engineering Run Data

In this section, we use data from ER7, which began on the 3rd of June 2015 and

finished on the 14th of June 2015. During an engineering run, the detectors are

operated in the same way as during an observing run, and the data obtained is

used to carry out multiple goals. The engineering run is used to test the perfor-

mance of search pipelines running on data from multiple detectors, and to test a

range of software and computing tools required for the detector operation, data

acquisition and analysis. Detector characterization, calibration and commissioning

improvements are also made during an engineering run. This results in data that is

less stable than the data taken during an observing run, which is data taken with

the intention of making detections. The average binary neutron star inspiral range,

shown in Figure 3.1, for both H1 and L1 detectors in data analysis mode during

ER7 was 50− 60 Mpc [100].

Livingston

In the period analysed, data from L1 consists of 48 segments where the interferom-

eter was locked and in data analysis ready mode. The data segments vary in length

from 1 second to ∼ 7 hours. Any segments of data that are less than a minute in

duration are discarded, as a longer segment of data is required to measure the PSD.

The total discarded amount was 49 seconds of data. The total length of L1 data

analysed is ∼ 87 hours.

Glitches of different types are often recognised by their shape in a spectrogram.

The most common glitch types in the L1 ER7 data are shown in Figure 3.2. Figure

3.2(a) shows glitches characterized by a tear drop shape, known as blips. Blip

glitches create long tails in the CBC and burst search backgrounds, and they are
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Figure 3.1: The mean angle averaged binary neutron star inspiral range for the two aLIGO
detectors during ER7. The Hanford detector had a higher range and a higher glitch rate. The
average range was 50-60 Mpc. Figure reproduced from [2].

particularly difficult to veto as they do not occur in any auxiliary channels that are

not sensitive to GWs [68]. Figure 3.2(b) shows longer duration glitches, known as

whistles, which are caused by radio frequency beats [102]. Figure 3.2(d) shows a

glitch known as an n∗505 Hz glitch as it appears at multiples of 505 Hz. The time

series of the common L1 glitches is shown in Figure 3.3. Some other glitches in

the data that are not shown include those below 10 Hz. Glitches span the entire

frequency range considered in this study. Some glitches may have occurred due to

the increased ground motion created by tropical storm “Bill” in the Gulf of Mexico

[100].

A number of hardware injections were made during ER7. An example is shown

in Figure 3.2(c). Hardware injections are artificial signals simulated by inducing a

motion of the detector optics. Hardware injections can be used for two different

purposes. The first are injections made for the detector characterisation team, often

sine Gaussians, which are used to test which auxiliary channels are sensitive to GWs

[65, 66]. The second are hardware injections of astrophysical signals for the testing

of search algorithms.



3.2. Engineering Run Data 55

(a) (b)

(c) (d)

Figure 3.2: Spectrograms of typical glitch types found in Livingston ER7 data. They are generated
using the Omega scan tool LigoDV-Web [101], which matches the data to sine Gaussians. (a) A
glitch characterized by a time-frequency tear drop shape in the spectrogram known as a blip. (b)
A whistle glitch that often has a long duration and occurs at high frequencies. (c) A sine Gaussian
hardware injection used to determine which channels are sensitive to gravitational waves. (d) An
n∗505 Hz glitch characterized by high frequency lines that occur at multiples of 505 Hz. Figure
reproduced from [2].

Hanford

In the period analysed, data from the H1 detector consists of 50 segments where

the interferometer was locked and in data analysis ready mode. The data segments

vary in length from 1 second to almost 14 hours. As with L1, any segments of data

that are less than a minute in duration are discarded. The discarded data was a

total of 116 seconds. The total length of Hanford data analysed is ∼ 141 hours.

The H1 data is highly non-stationary and contains many more glitches than the

aLIGO L1 data. In particular, the H1 data contains many high SNR glitches that
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Figure 3.3: The typical high pass filtered and whitened time series waveforms for three of the most
common glitch types found in the Livingston detector during ER7. (Top) A spike which appears
as a tear drop in a spectrogram and is known as a blip glitch. (Middle) The time series waveform
of the n∗500 Hz glitch. (Bottom) The time series of a whistle glitch. Figure reproduced from [2].

caused a significant drop in the binary neutron star inspiral range. An example

extremely loud glitch is shown in Figure 3.4(b). It was suspected that these large

glitches were caused by cleaning of the beam tube [100]. As with the L1 data, H1

data also contains blip glitches and a number of hardware injections. In Figure

3.4(c) is another Hanford glitch type, which we refer to as a repeating glitch. The

time series of the most common H1 glitch types is shown in Figure 3.5.
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(a) (b)

(c) (d)

Figure 3.4: Examples of some of the most common glitch types found in Hanford ER7 data (a) A
tear drop glitch known as a blip. (b) An extremely loud glitch that has a large SNR and duration.
This glitch type created significant drops in the detectors range. (c) A high frequency glitch type
called a repeating glitch. (d) A longer duration line occurring at the beginning of a number of
data segments. Figure reproduced from [2].

3.3 Classification Algorithm Updates

To classify glitches in ER7 data, we use the same three glitch classification methods

described in Chapter 2. To find the ER7 glitches, PC-LIB uses Omicron, the main

ETG used by the LIGO Scientific Collaboration (LSC) detector characterization

group [79, 80]. WDF-ML and PCAT use their own internal ETGs.

In Chapter 2, PC-LIB created signal models using fifty glitch waveforms for

each glitch type. In this chapter, we only use ten waveforms to make signal models

for each of the ER7 glitch types. This configuration is better suited for a quick

classification of new glitch types as we plan to implement in future observing runs.
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Figure 3.5: The typical whitened and high pass filtered time series waveforms for three of the
most common glitches found in the Hanford detector during ER7. (Top) The typical time series
waveform of a blip glitch. (Middle) The time series of the repeating glitch. (Bottom) The time
series waveform of a short duration sine Gaussian hardware injection. Figure reproduced from [2].

PCAT runs in a similar way to the previous chapter. The data are down-sampled

to 8192 Hz, whitened and high-pass filtered at 10 Hz, with a 0.125 s window around

each GPS time, as glitches are typically of ms duration. This can lead to a loss

of sensitivity to longer duration glitches. However, this effect can often be safely

neglected as longer duration glitches do not occur very often during observing runs,

when the data is generally more stable than during engineering runs.

WDF-ML down-samples to 8192 Hz before the whitening process is applied.

The down-sampling is a new feature of WDF-ML that was not implemented in

the version of the algorithm used in Chapter 2. The data are then whitened using

parameters estimated at the beginning of each locked segment. After whitening, the

wavelet-transform is applied, using the bank of wavelets described in Chapter 2. A
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window of 2048 points was used, with an overlap of 1968 points, which corresponds

to a duration of 0.25 seconds.

3.4 ER7 Classification Results

In the following sections, we show the classification results obtained by PC-LIB,

PCAT and WDF-ML for glitches in ER7 H1 and L1 data. All algorithms are run

with the same configurations that we expect to use during observing runs to better

understand their future performance. To determine if the glitches are classified

correctly, spectrograms of all glitches are made and visually inspected to determine

the glitch type. In the future, this kind of testing or training set can be provided

by the citizen science project Gravity Spy (described in Section 2.3.3).

3.4.1 Livingston

To find glitches in L1 data we look for triggers that are coincident within half a

second in the outputs of all ETGs. The WDF-ML ETG was run with an SNR

threshold of 10 at a sampling rate of 8192 Hz. Omicron was run with a lower

SNR threshold of 5. We then look for glitches that are coincident between both

WDF-ML and Omicron, above SNR 20, and find a total of 426 coincident glitches.

The Omicron SNR, duration and frequency of all 426 glitches are shown in Figure

3.8(d). The constant lines are due to Omicron’s method for measuring frequency

[79]. As the PCAT ETG cannot find the lower frequency (below 10 Hz) triggers, and

some longer duration triggers, we still classify glitches that are coincident between

Omicron and WDF-ML, but missed by PCAT, as those triggers would still be

classified when running in low latency.

PC-LIB

To create the signal models, the first 5 PCs for each glitch type are used as deter-

mined by the knee of the variance curve, as shown in Figure 3.6. As different signal

models that correspond to real glitches are now implemented, and real aLIGO noise
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Figure 3.6: (left) The amount of variance explained by each PC for the three different types of
glitches considered by PC-LIB in ER7 L1 data. The ideal number of PCs was 5, as this corresponds
to the knee in the variance curve. (right) The distribution of Bayes factors for the PC-LIB blip
glitch signal model run on 1000 instances of ER7 background noise.

is now being used, the distribution of log Bayes factors are recalculated using the

blip glitch signal model when there are no signals or glitches in the data. The results

are shown in Figure 3.6. The expected value for noise only is ∼ −4. A glitch is only

considered as detected if the signal versus noise log Bayes factor is larger than 5.

PC-LIB classifies all glitches into four different types. Class 0 contains 33 glitches

that are not detected by PC-LIB, and are thus classified into a noise class. Most

of the noise class glitches occur at frequencies lower than the 10 Hz cut-off used by

PC-LIB. Class 1 contains 249 glitches. Almost all of the glitches are blips except for

two of the glitches in this type that are mis-classified. All of the hardware injections

in the data are also found in Class 1. Class 2 contains 131 glitches that are the

n∗505 Hz glitches. There are no incorrectly classified glitches in Class 2. Finally,

class 3 contains 13 glitches. Most of the glitches in this class are the whistle glitches.

Three of the glitches in this class are mis-classified and should be in Class 2. Overall

PC-LIB classifies 98% of the detected glitches correctly.

PCAT

PCAT applied a threshold on the SNR of the glitches of 4.5 and the maximum pos-

sible number of glitch types was set to 10. The ideal number of PCs was estimated

by finding the knee of the data set variance curve, as shown in Figure 3.7, which

gave a total number of 20 PCs.
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Figure 3.7: The PCAT variance curves for the glitches in Advanced LIGO ER7 data. Left is the
variance curve for L1. Right is the variance curve for the H1 data. For each detector, 20 PCs were
used as this corresponds to the knee in the variance curves.

All the glitches were classified into 10 different classes. 90 triggers that were

coincident between the Omicron and WDF-ML ETGs were missed by the PCAT

ETG. Included in these missed triggers are all of the whistles, as their duration is

longer than the PCAT analysis window, and 17 triggers where nothing was visible

in a spectrogram. 20 of the lower SNR hardware injections are also missed. As

PCAT does not detect any of the whistles, the remaining glitches are classified into

two main types, which are the blips and the n∗505 Hz glitches, further split into

different sub-types.

PCAT classes 1, 4 and 10 contain the blip glitches. Class 4 contains only 2

glitches, class 1 contains 123 glitches and class 10 contains 100 glitches. Classes 1

and 10 contain 11 and 20 hardware injections, respectively. The three sub classes

are characterized by different duration of the glitches. Triggers in class 1 have the

lowest (≤ 0.005 s) duration, class 10 have a larger (≤ 0.01 s) duration, and class 4

contains two longer (≥ 0.01 s) duration spikes. Two of the glitches in class 10 were

incorrectly classified.

Classes 3, 5, 6, 7 and 8 contain the n∗505 Hz glitches. Triggers in classes 5, 7

and 8 all have SNR values between 20 and 25 and durations of ∼ 0.01 s. Class 3

contains triggers of the same glitch type, but with larger durations (≤ 0.02 s), and

SNR values up to 50. Class 6 contains only one glitch, also of the same type, but

with an SNR value of 57 and a duration value of 0.005 s.

PCAT classes 2 and 9 contain 11 and 7 glitches, respectively. As these glitches
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are not visible in a spectrogram, it is not possible to determine what their type is

and if they are classified correctly. Overall 95% of the glitches are correctly classified

by PCAT.

WDF-ML

WDF-ML classifies all glitches into five different classes. The 5 classes consist of two

main types of glitches, as WDF-ML cannot accurately classify the longer duration

whistles, due to the short analysis time window. Sub-classes are determined by the

wavelet family of the glitches, rather than split by duration or SNR as for PCAT.

WDF-ML classes 0 and 3 contain the blip glitches. Class 0 contains 195 glitches,

and class 3 contains 86 glitches. The two sub-classes contain 29 hardware injections.

They also contain 8 of the whistle glitches, as WDF-ML cannot accurately classify

longer duration glitches. Four of the class 0, and one of the class 3 glitches, are

incorrectly classified.

The second main glitch type found by WDF-ML corresponds to the n∗505 Hz

glitches. The glitches were split into three sub-classes, namely class 1 that contains

46 glitches, class 2 that contains 70 glitches, and class 4 that contains 29 glitches.

Class 1 contains three incorrectly classified glitches, and class 3 contains two of

the whistles glitches. Class 4 contains 4 hardware injections that are mis-classified.

Overall WDF-ML classifies 95% of the L1 glitches correctly.

Comparison

Figure 3.8 shows a comparison of the classifications made by all three methods.

All methods are able to classify glitches with a high level of accuracy in real non-

stationary ER7 data. WDF-ML performs better at classifying very low frequency

glitches, as it does not need to use a lower frequency cut-off. Figure 3.8(a) shows

that PC-LIB Class 1, the blip glitches, is split into two sub-types by PCAT, and

PC-LIB Class 2 is split into four PCAT sub-types. Figure 3.8(c) shows that PC-

LIB Class 1 is split into two WDF-ML sub-types, and PC-LIB Class 2 is split into

three WDF-ML sub-types. Figure 3.8(b) shows that the method that WDF-ML
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Figure 3.8: Classification comparisons for the three different classification algorithms using the
data from LIGO Livingston during ER7. (a) Compares the classification results of PCAT and PC-
LIB. PCAT class 2,4,6 and 9 are not shown as they contain less than 15 glitches. (b) Compares
the classification results of PCAT and WDF-ML. (c) Compares the classification results of PC-
LIB and WDF-ML. (d) The SNR and frequency of all the glitches classified in the data. Figure
reproduced from [2].

and PCAT use to split glitch types into different sub-classes is different, as the blip

glitches contained in PCAT classes 1 and 10 are split between WDF-ML blip glitch

classes 0 and 3.

Only PC-LIB is able to separate the whistle glitches into a separate class, due

to the longer 1 s time window used by this method. The efficiency in classifying

these glitches for the other algorithms could be improved by using a longer time

window. However, this could lead to multiple shorter duration glitches occurring in

the same time window. As PC-LIB looks for specific known glitch types, it could
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be used to add labels to the classifications of the other methods. This could make it

easier to find out which glitch classes correspond to known glitch types, and which

classes are new types that have not occurred previously. As WDF-ML and PCAT

can classify new glitch types as soon as they appear in the data, they can be used

to provide waveforms for the PC-LIB signal models.

3.4.2 Hanford

As for the L1 data, glitches coincident within 0.5 s between all ETGs are classified.

A higher SNR threshold of 30 is used for H1, as the data contains many more

glitches than the L1 data, and is more non-stationary. A larger number of glitches

are not classified, as it would take too much time to inspect spectrograms of all of

the glitches to determine if the classification results are correct. A total of 1865

coincident glitches are classified in H1. The Omicron SNR, duration and frequency

of the glitches are shown in Figure 3.9(d). The data contains more longer duration

glitches than L1.

PC-LIB

As with the L1 data, 5 PCs are used to create signal models for the H1 glitches,

as this number corresponds to the knee of the variance curve. PC-LIB splits the

glitches into two different classes. A noise class contains the 6 glitches shown in

Figure 3.4(d), as they cannot be detected by PC-LIB, because they do not belong

to any of the known glitch types that were searched for by PC-LIB. Class 1 contains

1651 glitches that correspond to the blip glitches, 13 hardware injections, and 23

glitches that are mis-classified and should be in class 2.

Class 2 contains 207 glitches, which are the repeating glitches. This class also

includes 4 hardware injections that are more similar to a sine-Gaussian in shape than

those classified into class 1. This class includes 61 glitches that are mis-classified

and should be in class 1. Overall, PC-LIB classifies 95% of the detected H1 glitches

correctly.
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PCAT

With 20 PCs that correspond to the knee of the variance curve, shown in Figure

3.7, PCAT classified the H1 glitches into 7 different types. The PCAT ETG did not

detect 120 of the glitches coincident between the WDF-ML and Omicron ETGs.

They are glitches below 10 Hz, or triggers from the long duration lines, shown in

Figure 3.4(d), which are not really glitches. The detected glitches are split into 7

different classes.

The data contains two main types of glitches. The first type is the blip glitches,

which PCAT splits into 6 different sub-classes. They are class 1 with 267 glitches,

class 2 with 603 glitches, class 3 with 648 glitches, class 5 with 44 glitches, class 6

with 1 glitch, and class 7 with 64 glitches. Class 1 contains 9 mis-classified glitches.

Classes 2, 3 and 5 all have one mis-classified glitch. Classes 2, 3 and 6 contain lower

duration (∼ 0.005 s) glitches, with different frequency ranges. Classes 1, 5 and 7

contain relatively longer duration waveforms (∼ 0.01 s), which also have different

frequency ranges.

The second type of glitch is the repeating glitches. This glitch type is found in

PCAT class 4, which contains 117 glitches that are all classified correctly. Overall,

PCAT classifies 99% of the detected H1 glitches correctly.

WDF-ML

WDF-ML splits the H1 glitches into three different classes. Class 1, which is the

main type for the blip glitches, contains 1358 glitches. This class contains all the

hardware injections, and the very low frequency glitches that can not be detected by

PCAT and PC-LIB. There are 10 glitches in this class that are mis-classified. WDF-

ML class 2 contains 145 glitches that are characterized by spikes in the time series,

but have longer durations and lower SNR values than the glitches in WDF-ML class

1.

WDF-ML class 0 contains 326 glitches corresponding to the repeating glitches.

This class also contains 122 mis-classified glitches. As before, this is because all of

the mis-classified glitches in this class have a duration (∼ 1 s), which is much longer
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Figure 3.9: Classification comparisons for the three different classification methods for aLIGO
Hanford ER7 data. (a) PC-LIB splits the glitches into two classes. PCAT can split different types
into sub-classes. (b) PCAT and WDF-ML comparison. WDF-ML has difficulty with glitches
which have a larger duration than their analysis window. (c) Comparison of PC-LIB and WDF-
ML classifications. (d) The Omicron SNR, duration and frequency of all the glitches classified in
ER7 H1. The discreteness in frequency is a feature of the Omicron algorithm. Figure reproduced
from [2].

than the time window used in the WDF-ML analysis. Overall, WDF-ML classifies

∼ 92% of the H1 glitches correctly.

Comparison

The results obtained by all three methods for the H1 glitches are compared in

Figure 3.9. As WDF-ML uses a small time window of 0.25 s, the efficiency of the
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classification is reduced when the data are highly non-stationary and contain many

long (∼ 1 s) duration glitches. Even with 137 mis-classified glitches, the overall

accuracy of the WDF-ML H1 results is ∼ 92%. WDF-ML estimates the PSD at the

beginning of each locked segment. This may introduce errors towards the end of the

segment if the data is highly non-stationary. Machine learning methods perform

better when the data set analysed is large. Therefore, the larger number of glitches

in H1 may have improved the classification efficiency. Because of the different

strengths and weaknesses of the different methods, having multiple classifiers is a

winning strategy.

3.5 O1 Glitches

In this section, we show the PC-LIB results for glitch classification during O1. In

the 51.5 days of O1 data, approximately 106 significant glitches over a minimum

SNR threshold of 6 were identified by Omicron. As this number is too large for

PC-LIB to classify all of the glitches in a reasonable time frame, we classify all O1

glitches with an SNR larger than 12 and with a frequency larger than 30 Hz, and

less than 2000 Hz. This leads to a total of 2346 glitches in L1, and 7304 glitches in

H1 that were classified by PC-LIB during O1.

There were 9 main types of glitches searched for by PC-LIB during O1. This is

larger than the number of glitches found in the ER7 data because a lower Omicron

SNR threshold was used for the O1 glitches. The largest glitch type is the blips,

shown in Figure 3.4(a), and some sub-types of blips named after their shape in

a spectrogram. They are the tomte glitch, shown in Figure 3.10(d), and koi fish,

shown in Figure 3.11(b). The data contains CBC hardware injections with the

characteristic chirp shape, shown in Figure 3.10(a). The other glitch types are

helix, shown in Figure 3.10(b), extremely loud glitches that saturate a spectrogram,

glitches created by light scattering in the detector, shown in Figure 3.11(a), glitches

known as blue mountain glitches, shown in Figure 3.10(c), and whistle glitches as

seen previously in the ER7 data. A few glitch types are found in only one detector.

An example is the high frequency glitches, shown in Figure 3.11(d), and glitches

that occur repeatedly on short time scales, shown in Figure 3.11(c), which are only

found in H1. There are other types of glitches in O1 that are below the PC-LIB

SNR threshold that are classified by Gravity Spy as it uses a lower SNR threshold
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(a) (b)

(c) (d)

Figure 3.10: The time-frequency morphology of some common glitch types found in aLIGO Liv-
ingston data during the first observing run. (a) A CBC hardware injection that has a characteristic
chirp shape. (b) A glitch type known as helix. (c) This glitch type is named blue mountain. (d)
A sub-type of blip glitches known as tomte.

of 7.

As for the ER7 data, one second of data around the GPS times provided by

Omicron is used. The data are down-sampled to 4096 Hz, and a lower frequency

cut-off of 10 Hz is applied. To make signal models for the O1 glitches, 10 waveforms

for 9 different glitch types are used to make the PCs. The first four PCs, for the

blip and whistle glitches, are shown in Figure 3.12. Only a small number of PCs

are needed to represent each glitch type, as there is only a small variance in their

waveforms. To produce signal models for the O1 glitch types, 5 PCs are used as

determined by the knee of the variance curves.

The number of glitches classified into each type, in each detector, is shown in

Table 3.1. The blip glitch is the most common type of glitch found in both of
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(a) (b)

(c) (d)

Figure 3.11: The time-frequency morphology of some common glitch types found in aLIGO Han-
ford data during the first observing run. (a) Glitches created by scattering of light in the detector.
(b) This is a sub-type of blip glitches known as Koi fish due to the “fins” on each side of the
glitch. (c) Blip glitches that occur repeatedly on a short time scale. (d) Glitches that occur at
high frequencies.

the detectors, with 1598 in L1, and 3831 in H1. PC-LIB is unable to distinguish

between the different sub-types of blips. This is because the difference in the time

series between the different glitch types is too small for it to be captured efficiently

in the first few PCs. It is unknown if the blip sub-types have the same origin or are

multiple different types of glitches. Many of the triggers identified by Omicron were

classified as not being a glitch, as PC-LIB could not find anything in the data, as

the Bayes factors were consistent with noise. There are 286 glitches of this type in

L1, and 726 glitches of this type in H1. Some of the Omicron triggers in this class

were at the edge of very high SNR glitches where the triggers were not clustered well

by Omicron, or were glitches that did not fit into any of the known classes searched

for by PC-LIB. Therefore, they did not match the any of the signal models well

enough for them to be detected.
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Figure 3.12: The first four PCs for the blip glitches (left), and the whistle glitches (right). Blip
glitches are the most common glitch type in both of the aLIGO detectors and appear as a spike
in the time series. Whistles glitches are higher in frequency and longer in duration than the blip
glitches. Higher order PCs consist of mainly noise, and they can degrade classification results if
they are not discarded.

Hardware injections are found in both detectors, with 23 in L1, and 17 in H1,

and are classified into the chirp glitch category. Scattered light occurs in both

detectors, but not very often at an SNR larger than the threshold used by PC-

LIB for classification. Glitches with an SNR large enough for them to saturate a

spectrogram are in the extremely loud glitch type. Both detectors contain repeating

blips, as shown in Figure 3.11(c). The helix, blue mountain and whistle glitches are

only found in the Livingston detector.
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Glitch Class Total Livingston Hanford
blip 5429 1598 3831
chirp 40 23 17

scattering 58 21 37
extremely loud 1195 349 846

high freq 1454 0 1454
repeating 393 36 357
no glitch 1012 286 726

helix 12 12 0
blue mountain 10 10 0

whistles 11 11 0

Table 3.1: The PC-LIB glitch classification results for O1. The numbers show how many of each
glitch type is found in each detector. The blip glitch is the most common glitch in both aLIGO
detectors. The chirp class contains mainly hardware injections. Helix, blue mountain and whistles
were found only in the Livingston detector. The extremely loud glitches are removed from the
searches by data quality vetoes.

3.5.1 Potential Impacts of Glitch Types

In this sub-section, we study the impact of different glitch classes and glitch clas-

sification on the searches and parameter estimation for transient GWs. This is

achieved by simulating GW signals and examining the impact that glitches have

on the estimated parameters of those signals. During O1, three different types of

vetoes were applied to the detector data. The first, known as category 1 vetoes, are

applied before any of the data is analysed by the GW searches. Category 1 vetoes

remove the worst high SNR noise that is clearly coupled with environmental sen-

sors at the detector sites. Category 2 vetoes remove other less severe glitches with

a known coupling mechanism, and are applied after the data has been analysed.

This is because cutting out multiple short segments of data can have a negative

effect on the searches for transient signals, as the CBC searches require 2064 s of

continuous data, and the searches for GW bursts require 620 s of continuous data

[68]. Category 3 vetoes are for glitches that only occur in data that is sensitive

to GWs, and cannot be vetoed using auxiliary channels. This type of glitch is a

particular problem for searches for GW transients, as they create large tails in the

search backgrounds [68].

No glitches were found near the GWs detected in O1. However, as the rate of

glitches is high, and the number of detections is expected to increase, it is possible

that a signal will occur close to a glitch in the future. Using the lists of glitch

types classified in O1, the effect that different glitch classes have on the estimated
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Figure 3.13: The time difference between glitches and injected sine Gaussian signals, and the
glitches SNR values. All of the glitches are within half a second of the signal time. The whistles
are low SNR and long duration. The blips are high SNR and short duration.

parameters of a detected burst signal is investigated. As no clues to the origin

of some of the glitch types (e.g. the blip glitches) have been discovered so far, it

remains likely that most of the glitch types will still be present during O2 and O3,

and that the results will be a good approximation of what is expected in future

observing runs.

This type of study can help the detector characterisation team decide which

glitches should take priority in targeted efforts to eliminate them, and help in de-

ciding if a new type of veto is needed for a particularly troublesome glitch type.

The worst glitch types for the transient searches are already well known, but it is

possible that the worst glitch types for parameter estimation may be different. It

may also be possible to subtract the waveform of the glitch from the data near the

signal in an effort to further improve parameter estimation results.

Sine Gaussian signals, as defined in Equation 2.27, are simulated to mimic po-

tential burst GW signals, with the parameters Q = 5, frequency = 200 Hz and

hrss = 8.0 × 10−23. This puts the signals in the most sensitive frequency band

for aLIGO, and gives the signals a short duration of 5.6 ms, making them an ideal

source for short duration burst searches. The signals are added to the O1 data, in-

jected, within 0.5 s of a blip glitch, whistle glitch or scattered light. The signals are
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distributed uniformly on the sky, and then the sky position is altered afterwards to

give all of the signals an SNR of 17. The SNR values of the two 5σ detections made

during O1 were SNR 24 and SNR 13 for GW150914 and GW151226, respectively

[7, 18]. Therefore, SNR 17 is used as this is a reasonable value to expect for a 5σ

detection.

The SNR of the glitches, and the time difference between the glitches and the

injected signals are shown in Figure 3.13. All of the glitches are in L1 only, and the

GW signal is injected into both L1 and H1 data. As good data in H1 is needed at

the same time as the L1 glitches, suitable times are found for 73 whistle glitches,

74 blip glitches and 34 instances of scattering. An SNR of 17 makes the signals

larger than all of the whistles, larger than 27 of the scattered light glitches, and

smaller than 71 of the blip glitches. Included in those glitches are some found by

the citizen science project Gravity Spy [95], as described in Section 2.3.3, so that

glitches below the SNR 12 cut-off used by PC-LIB during O1 can be included.

The LALInference-burst parameter estimation algorithm [34, 44], which uses

a sine Gaussian signal model, is used to recover the values of Q, frequency and hrss

of the injected signals using a nested sampling method, as described previously in

Section 2.2.1. The signals are injected into Gaussian noise with the same sensitivity

as O1, to compare the results of the signals in glitchy data to signals in clean data.

Flat priors are used for frequency and Q, with limiting values of 30 Hz to 2000 Hz,

and 2 to 60, respectively. A uniform in volume prior is used for hrss, and a uniform

on the sky prior is used to estimate the sky position. We analyse 3 s of data around

the signal using 512 live points.

Blip glitches

Figure 3.14 shows the peak values of the posterior distributions for the Q, frequency

and loghrss parameters within half a second of a blip glitch. The grey histograms

are the posterior peaks obtained when no glitches are present. The blue histograms

show how the recovered values change when a glitch occurs within half a second of

the signal. The dashed lines show the true values of the signal parameters. Figure

3.14(a) shows the peak values of the Q posterior distributions for all of the injected

signals, Figure 3.14(b) shows the peak values of the frequency posterior distributions

for all injections, and Figure 3.14(c) shows the peak values of the loghrss posterior
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Figure 3.14: The recovered parameters of sine Gaussian signals with a blip glitch within half a
second of the signal. The top two figures, and the bottom left figure, show the peaks of the
posterior distributions for the recovered parameters for all of the injections. The dotted line is
the true value. The grey values are for signals injected in Gaussian noise, and the blue values are
for signals within half a second of a blip glitch. The bottom right shows an example posterior for
the Q value of one signal. Blip glitches close to the signal can change the recovered duration and
frequency, and increase the measured amplitude of the signal.

distributions for all signals.

There are 7 signals which have posterior peak values for the quality factor out-

side of the range expected from signals in clean data. They are signals where the

blip glitch is less than 0.15 s away from the signal. An example posterior for one

injection is shown in Figure 3.14(d). The blip glitch has shifted the whole posterior

distribution to lower values, but did not significantly alter the posterior widths for

any of the measured parameters. The change in the frequency posteriors created

by the blip glitch was not as large as for the other parameters. The largest change

in frequency was for the signals with glitches 0.02 s, 0.08 s and 0.13 s away from the

signal. The loghrss peak posterior values have four injections that are much louder
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Figure 3.15: The recovered parameters of sine Gaussian signals with scattered light within half
a second of the signal. The top two figures, and the bottom left figure, show the peaks of the
posterior distributions for the recovered parameters for all of the injections. The dotted line is
the true value. The grey values are for signals injected in Gaussian noise, and the blue values are
for signals within half a second of a blip glitch. The bottom right shows an example posterior for
the frequency value of one signal. The effect of the scattering was not as large as for other types
of glitches.

than the others when a blip glitch is near. The three largest loghrss values are for

signals with glitches at 0.02 s, 0.03 s and 0.08 s away from the signal. The fourth

largest has a glitch at a much larger distance away from the signal at 0.44 s, but

the glitch also has a much larger amplitude, with an SNR above 80.

Scattered light

In Figure 3.15, the peak values of the posterior distributions are shown for the Q,

frequency and loghrss parameters of sine Gaussian signals, which occur within half
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a second of scattered light. As for the blip glitches, the grey histograms are the

values obtained when no glitches are present, and the blue histograms show how the

peak posterior values change when a glitch occurs within half a second of the signal.

The dashed lines show the true values of the signal parameters. The change in the

distribution of the peaks of the posteriors is not as large as for the blip glitches.

The worst Q posterior peak values are for signals with scattered light within 0.07 s

and 0.13 s of the signal. The reduction in the effect produced by this type of glitch

on the estimated signal parameters may be due to the glitches SNR being much

lower than the SNR of the signal.

Whistles

The effects of whistle glitches on the measured parameters are shown in Figure

3.16. The whistle glitches have the worst effect on the measured parameters of the

signals, even though they have the lowest SNR of all the glitches examined in this

section. This may be due to the whistle glitches having a longer waveform and a

higher frequency than most other glitch types, as shown in Figure 3.12. This means

that the whistles can be further away from the signal and still have a negative effect

on the parameters. The two worst signals have Q posterior peaks of 59.9 and 2,

peak posterior frequencies of 30 Hz and 77 Hz, and peak posterior loghrss values of

-43.6 and -47, and were 0.30 s and 0.42 s away from the glitches with SNR values of

9.5 and 8.8, respectively. The other signals with peak posterior values for Q that

were lower than expected, as shown in Figure 3.16(a), were all 0.08 s away from the

glitches.

For all of the glitch types considered, the effect on the parameters is strongly

influenced by the proximity of the glitch to the signal, and the difference in glitch

SNR and signal SNR. This is illustrated in Figure 3.17. In the top figure, one SNR

15 blip glitch is selected and an SNR 17 sine Gaussian signal is injected near the

blip, at distances that increase in 0.02 s intervals. The figure shows how large the

peak posterior frequency value is compared to the injected value of 200 Hz, as the

signals distance in time from the glitch increases. The peak posterior values only

have a large error when the signal is within 0.04 s of the glitch.

The bottom panel in Figure 3.17, shows the effect of the SNR of the glitch on

the frequency peak posterior values. The red dot shows the SNR and frequency of
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Figure 3.16: The recovered parameters of sine Gaussian signals with a whistle glitch within half
a second of the signal. The top two figures, and the bottom left figure, show the peaks of the
posterior distributions for the recovered parameters for all of the injections. The dotted line is the
true value. The grey values are for signals injected in Gaussian noise, and the blue values are for
signals within half a second of a blip glitch. A few of the worst recovered values are not shown in
the figures as they are off the scale of the plot. They are one Q value at 60, two frequency values
at 30 Hz and 77 Hz, and a loghrss value of -43.6. The bottom right shows an example posterior
for the log of the hrss value of one signal.

the blip glitch. All of the signals are injected at a distance of 0.02 s from the glitch.

The SNR of the signal is then gradually increased by increasing the amplitude of

the signal. Below SNR 20, all of the frequency peak posterior values are closer

to the value of the glitch than the signal. As the SNR increases above 20, the

frequency peak posterior values change to the values that would be expected if no

glitch was present. The results show that if the SNR of the glitch is bigger than the

signal, then it will be beneficial to remove the glitch from the data before measuring

the parameters of the detected signal. Longer duration signals created the biggest

change in the parameter estimation results. However, as the blip glitches are often

higher in SNR, and occur more frequently than the other glitch types, they are
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Figure 3.17: The effects on measured signal parameters produced by blip glitches at different
distances and SNR values. The top figure shows how the difference in time between a glitch and
signal effects the measured frequency of the signal. The injected signal was SNR 17. The error is
only large when the glitch is less than 0.04 s away from the signal. The bottom figure shows how
the SNR of a signal relative to a glitch effects measured signal parameters. The red dot shows the
blip glitch SNR and frequency. The frequency of the signal was 200 Hz. The glitch is 0.02 s away
from the signal for all points. The peak of the frequency posterior only becomes close to the true
value when the signal is much larger than the glitch.

likely to create the largest error in estimated parameters of future detections.

3.6 Summary and Discussion

Non-Gaussian noise in the aLIGO and AdVirgo detectors can potentially mimic a

GW signal, reduce the duty cycle of the instruments, and decrease the sensitiv-

ity of the detectors. Classification of different glitch types can help identify their

origins and lead to a reduction in their number. We have developed a method
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for the automatic classification of glitches called PC-LIB. In the previous chapter,

we demonstrated the performance of PC-LIB on simulated glitches in simulated

Gaussian aLIGO noise. However, as real noise from the advanced detectors is non-

stationary and non-Gaussian, a better understanding of how the method would

perform during the aLIGO observing runs was required.

In the ER7 data used to test PC-LIB, 95% of the detected glitches were classified

correctly. A similarly high efficiency was obtained by other methods used in a glitch

classification comparison study. All of the methods used for glitch classification

in aLIGO and AdVirgo data have a high efficiency in real, non-stationary, non-

Gaussian detector noise. The efficiency of the WDF-ML algorithm is reduced for

the H1 glitches, because the duration of the glitches becomes much larger than the

analysis window, which reduces the efficiency of the overall classification. WDF-

ML can classify lower frequency glitches than the other two methods. PC-LIB is

better able to classify longer duration glitches, due to its longer analysis window.

PCAT can classify new types of glitches as soon as they appear in the data, and

can potentially provide glitch waveforms for PC-LIB’s signal models. Because of

the different strengths and weaknesses of the different methods, having multiple

classifiers is a winning strategy.

PC-LIB was used to classify glitches during O1. All glitches above SNR 12

were classified. As during ER7, the rate of glitches during O1 was much higher

in H1, which contained 3831 glitches, than in L1, which contained 1598 glitches.

The blip glitch was found to be the most common glitch in both of the detectors.

Since glitches, such as the blips, are rarely removed by data quality vetoes, their

accurate classification is crucial for the improvement of GW searches, as an accurate

categorization will allow us to search for couplings within the detector [41, 68]. We

aim to use the O1 glitch classification results to produce new vetoes, that are trained

on the output of the glitch classifiers, to improve the background in the searches

for CBC and burst signals. Future work will also include a data set with mock

astrophysical GW signals to make sure that vetoes produced by glitch classification

techniques do not veto real astrophysical GWs.

The O1 classification results were used to examine the effects of different glitch

types on the estimated parameters of a GW burst signal. It was found that with

width of the posterior distributions do not change when a glitch is present within

half a second of the signal, but that the posterior peaks can change to values that are
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smaller or larger than expected. The change in the posterior peaks of the parameters

is greatest when the signal occurs within 0.15 s of a glitch, and when the glitch SNR

is louder than the signal SNR. If the SNR of the glitch is bigger than the signal,

then it may be beneficial to remove the glitch from the data before measuring the

parameters of the detected signal. In the future we aim to subtract glitches from

the data using the waveform that was reconstructed by the glitch classifiers.



Chapter 4

Model Selection and Parameter

Estimation for Core-Collapse

Supernovae

4.1 Introduction

Core-collapse supernovae (CCSNe) have long been considered as a potential source

for advanced GW detectors [40]. Although no CCSNe were found in initial detector

science runs, previous studies have shown that an advanced detector network could

detect these sources out to the Large Magellanic Cloud (LMC) [51, 46]. A CCSN

would be an ideal multi-messenger source for aLIGO and AdVirgo, as neutrino and

electromagnetic counterparts to the signal would be expected. The GWs are emitted

from deep inside the core of the CCSN, which may allow astrophysical parameters

to be measured from the reconstruction of the GW signal. In this chapter, we

investigate Bayesian parameter estimation and model selection techniques for CCSN

signals detected with an aLIGO and AdVirgo detector network.

This chapter is structured as follows: In Section 4.2, we provide an overview

of CCSNe and their associated GW emission. This includes a description of the

GW CCSN waveforms used in this thesis. In Section 4.3, we describe the model

selection and parameter estimation code, the Supernova Model Evidence Extractor

(SMEE), which we use to carry out a model selection study. In Section 4.4, we

81
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provide details of the three detector network analysis. In Section 4.5, we carry out

a careful selection of the ideal number of PCs. In Section 4.6, we show the behaviour

of SMEE when no signal is present in the data, and determine the minimum SNR

needed for SMEE to detect a CCSN signal. In Section 4.7, we show the results

for signals injected at Galactic and extra Galactic distances. The robustness of the

method is tested in Section 4.8. A summary and discussion of the implications is

given in Section 4.9.

4.2 Gravitational-Wave Emission from Core Col-

lapse Supernovae

Zero age main sequence (ZAMS) stars, with masses 8 M� < M < 100 M�, form

electron-degenerate cores. The stars nuclear burning stops when the core of the

star is composed of iron nuclei, and then collapses when the stars core mass reaches

the Chandrasekhar mass (1.44 M�) [103, 104]. The collapse of the core will continue

until the core reaches nuclear densities. The equation of state (EOS) stiffens above

nuclear density, the inner core then rebounds, and a shock wave is launched outwards

from the outer edge of the inner core. The shock then loses energy by nuclear

dissociation and the emission of neutrinos from the optically thin regions. The

shock then stalls and becomes an accretion shock, which must be revived within

∼ 0.5 − 3 s, or the star will not explode, and will form a black hole as matter is

accreted back on to the proto-neutron star [105]. The mechanism needed to revive

the shock, in order to explode the star, is currently not well understood, and is

a problem that may be solved with GWs, if a detection of a CCSN is made with

advanced GW detectors.

In this section, we consider the magnetorotational and neutrino CCSN explosion

mechanisms. We describe the physical processes involved in the explosions, and

give a description of a selection of GW waveforms associated with each mechanism,

which are used for model selection later in this chapter. Numerical simulations of

CCSNe have advanced rapidly in recent years, and a number of different features

expected in the GW signal have been identified. They include rotating core-collapse

and bounce, rotational instabilities, neutrino-driven convection, prompt convection

in the region behind the shock, standing accretion shock instability (SASI), and
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asymmetric neutrino emission [40]. A combination of these processes could occur

in a CCSN.

4.2.1 The Magnetorotational Mechanism

Rapidly-rotating CCSNe are highly energetic, and may be associated with high

energy events, such as hypernovae and gamma ray bursts. Rapid-rotation is only

expected in a small number (≤ 10%) of progenitor stars [106, 107]. Theory and

simulations have shown that magnetorotational processes could extract rotational

energy and drive a jet-driven bipolar explosion [108, 109]. When core-collapse to a

proto-neutron star occurs, it may result in spin-up of the stellar core by a factor of

∼ 1000 [110]. The rapidly-rotating pre-collapse core results in a millisecond period

proto-neutron star, which if combined with a magnetar strength magnetic field

could power a strong CCSN explosion. For the magnetorotational mechanism to

work, simulations suggest that the pre-collapse core needs a spin period of . 4−5 s,

and a magnetic field of order 1015 G [109]. This value is larger than predicted by

stellar evolution models [106]. Therefore, some magnetic field amplification may be

necessary after core bounce, which could be created by rotational winding of the

magnetic field, or through magnetorotational instabilities [111, 112].

Some example rapidly-rotating CCSN GW signals, hereafter referred to as the

RotCC model, are shown in Figure 4.1. Rapidly-rotating CCSN signals are domi-

nated by the bounce and subsequent ring down of the proto-neutron star. Typically,

the peak GW strain from rotating core-collapse is ∼ 10−21 − 10−20, for a source at

10 kpc, and emitted energy in GWs (EGW) is ∼ 10−10 − 10−8 M�. The GW energy

spectrum is more narrowband than for non-rotating core-collapse, with most power

emitted between 500− 800 Hz, over timescales of a few tens of ms. For pre-collapse

cores with an initial spin period less than ∼ 0.5− 1 s, core bounce occurs slowly at

subnuclear densities, dynamics are dominated by centrifugal effects, and most en-

ergy in GWs is emitted around ∼ 200 Hz [40, 113]. In the remainder of this section,

we describe the rotating core-collapse waveforms used in this thesis chapter.

The Dimmelmeier et al. [113] waveform catalogue contains 128 two-dimensional

waveforms, with progenitor star ZAMS mass values of 12 M�, 15 M�, 20 M�, and

40 M�, varying angular momentum distributions, and two different nuclear matter

EOS. They are the Lattimer-Swesty EOS [116], and the Shen EOS [117, 118]. The
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Figure 4.1: Time series GW h+ strain for representative models of GWs from rotating core-
collapse, as seen by an equatorial observer at 10 kpc. The top left is a representative 2D waveform
from the Dimmelmeier et al. [113] waveform catalogue. The top right is a representative 3D
waveform from the Scheidegger et al. [114] waveform catalogue. The bottom sub-figure is a repre-
sentative 2D waveform from Abdikamalov et al. [115]. All examples have a 15 M� progenitor star.
The GW strain from rotating core-collapse is an order of magnitude larger than the typical GW
strain from neutrino-driven explosions. Figure reproduced from [3].

initial angular momentum distribution of the pre-collapse core is imposed through

an angular velocity profile, Ωi(ω̄), defined as,

Ωi(ω̄) =
Ωc,i

1 + (ω̄/A)2
, (4.1)

where ω̄ is the cylindrical radius, Ωc,i is the central angular velocity, and A is

the differential rotation length scale. Simulations are performed across the angu-

lar momentum distribution space, considering strongly differential rotation (A =

500 km) to almost uniform rotation (A = 50000 km); and slowly-rotating (Ωc,i =

0.45 rad s−1) to rapidly-rotating (Ωc,i = 13.31 rad s−1) pre-collapse cores. As the

simulations are axisymmetric, the waveforms are linearly polarized. A representa-

tive waveform from the Dimmelmeier et al. catalogue is shown in the top left panel

of Figure 4.1. As the main feature of the Dimmelmeier waveforms is the spike at

core bounce, they are still a good approximation of a three-dimensional CCSN sig-
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nal, as any rotating three-dimensional model stays sufficiently close to axisymmetry

around the bounce signal and non-axisymmetric features only start to appear a few

milliseconds after the bounce [114].

Abdikamalov et al. [115] performed two-dimensional, general-relativistic, hydro-

dynamic, rotating core-collapse simulations. They use a 15 M� progenitor star,

and the Lattimer-Swesty EOS [116]. A typical waveform from the Abdikamalov

catalogue is shown in the bottom panel of Figure 4.1. The Abdikamalov wave-

forms are very similar in duration, amplitude and time series morphology to the

Dimmelmeier waveforms. In this chapter, we use waveforms A1O14 (A = 300 km;

Ωc = 14 rad s−1), A3O09 (A = 634 km; Ωc = 9 rad s−1), and A4O01 (A = 1268 km;

Ωc = 1 rad s−1), referred to as abd1, abd2, and abd3, respectively.

Scheidegger et al. [114] performed three-dimensional magnetohydrodynamical

simulations of 25 GW signals, using a leakage scheme for neutrino transport. They

use a 15 M� progenitor star, and the Lattimer-Swesty EOS [116]. Due to the

three-dimensional nature of the simulations, the Scheidegger et al. waveforms have

two GW polarizations. The waveforms contain only h+ around the spike at core

bounce, and the h× polarisation starts a few ms later. In this chapter, we use wave-

form models R3E1ACL (moderate pre-collapse rotation, toroidal/poloidal magnetic

field strength of 106 G/109 G), shown in the top right panel of Figure 4.1, and

R4E1FCL (rapid pre-collapse rotation, toroidal/poloidal magnetic field strength of

1012 G/109 G). We hereafter refer to these waveforms as sch1 and sch2, respec-

tively. The Scheidegger waveforms are much longer than the Abdikamalov and

Dimmelmeier waveforms, but are similar in amplitude.

4.2.2 The Neutrino Mechanism

The neutrino-driven CCSN explosion mechanism is currently accepted as the most

likely explosion mechanism for CCSNe. The neutrino mechanism was first proposed

by Arnett [119], and Colgate and White [120], and a more modern form of the

mechanism was first put forward by Bethe and Wilson [121]. Current reviews of the

mechanism are given in [122, 123]. Neutrinos contain most of the energy, ∼ 99%,

released during the core-collapse [104]. The neutrino mechanism involves some of

the energy from the neutrinos being reabsorbed behind the shock to power the

explosion.
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Figure 4.2: Time series GW h+ strain for representative waveform models of neutrino-driven
convection, as seen by an equatorial observer at 10 kpc. The top left is a representative waveform
from the Murphy et al. [129] waveform catalogue. A representative waveform from the Ott et
al. [130] waveform catalogue is in the top right. A 15 M� progenitor from Yakunin et al. [131]
waveform catalogue is shown bottom left. The bottom right is a representative waveform from
the Müller et al. [132] waveform catalogue. The typical GW signal duration is roughly an order of
magnitude longer for neutrino-driven explosions than for rotating core collapse. Figure reproduced
from [3].

The GW signal from neutrino-driven CCSNe, hereafter referred to as the C&S

model, is dominated by contributions from turbulent convection and the SASI [124,

125, 126, 127, 128]. Some example neutrino mechanism GW waveforms are shown in

Figure 4.2. The GW signal is broadband in frequency, with most emission between

100− 1100 Hz. The signal typically lasts from ∼ 0.3− 2 s, with strain ∼ 10−22 for a

source at 10 kpc. The total EGW from neutrino-driven explosions are of order 10−11−
10−9 M�. The typical GW signal duration is roughly an order of magnitude longer

for neutrino-driven explosions than for rotating core-collapse, and the amplitude is

smaller than for rotating core-collapse waveforms. The remainder of this section

describes the neutrino mechanism waveforms used in this thesis chapter.

The Murphy et al. [129] catalogue contains 16 waveforms, extracted using the

quadrupole approximation [133], from axisymmetric Newtonian CCSN simulations.

Electron capture and neutrino leakage are treated using a parametrised scheme,
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and only the monopole term of the gravitational potential is included. The progen-

itor models considered are non-rotating, with ZAMS mass values of 12 M�, 15 M�,

20 M�, and 40 M�. A representative waveform from the Murphy et al. catalogue

is shown in the top left panel of Figure 4.2, as seen by an equatorial observer at

10 kpc. Due to the axisymmetric nature of the simulations, the waveforms extracted

are linearly polarized.

The Yakunin et al. [131] catalogue contains waveforms simulated by axisym-

metric Newtonian simulations, using an approximate general relativity monopole

term of the gravitational potential, and including radiation-hydrodynamics. Due

to axisymmetry, the extracted waveforms are linearly polarized. They are complete

waveforms that all explode successfully. They use three different ZAMS masses of

12 M�, 15 M� and 25 M�, and find a clear GW signal that is composed of four differ-

ent parts. They are a weak prompt signal, a quiescent stage, a strong signal where

most of the GWs are emitted, and a slowely increasing tail. An example Yakunin

waveform, the 15 M� progenitor, is shown in the bottom left panel of Figure 4.2,

showing all of the four stages. In this chapter, we use the waveform obtained from

the 15 M� progenitor star simulation, which we refer to as yak.

Müller et al. [132] performed three-dimensional simulations of neutrino-driven

CCSNe with gray neutrino transport and an inner boundary condition to prescribe

the contraction of the proto-neutron star core. They started the simulations after

core bounce and assumed a time-varying inner boundary, cutting out much of the

proto-neutron star. With the excised core, the signal from prompt convection cannot

be captured in these models. Proto-neutron star convection only contributes to

their waveforms at late times, and the contraction of the proto-neutron star lowers

the GW frequency. As the simulations are three-dimensional, the Müller et al.

waveforms have two polarizations. There are three waveform models, L15-3 and

W15-4 (both with a 15 M� progenitor), and model N20-2 (with a 20 M� progenitor).

In this chapter, we refer to these waveforms as müller1, müller2 and müller3

respectively. An example waveform, the L15-3 model, is shown in the bottom right

panel of Figure 4.2. The simulations were stopped 15 ms after bounce.

Ott et al. [130] performed three-dimensional simulations of neutrino-driven CC-

SNe using a 27 M� progenitor star, based on model s27 of Woosley et al [134].

The simulations are general-relativistic and incorporate a three-species neutrino

leakage scheme. They produce the first GWs from three-dimensional general-
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relativistic models. There are four GW signals, with two polarisations, produced

with four different scaling factors for the neutrino heating rate. They are models

s27fheat1.00, s27fheat1.05 shown in the top right panel of Figure 4.2, s27fheat1.10,

and s27fheat1.15. In this chapter, we use model s27fheat1.05, and hereafter refer to

this waveform as ott.

4.3 The Supernova Model Evidence Extractor

In this section, we introduce the Supernova Model Evidence Extractor (SMEE).

SMEE is designed as a parameter estimation follow-up analysis for possible super-

nova detection candidates identified by GW burst searches. Its primary goal is to

identify the CCSN explosion mechanism. It is not possible to gain information on

the CCSN explosion mechanism from electromagnetic observations, as electromag-

netic emission from CCSNe occurs in optically thin regions, far from the central

engine. GWs and neutrinos, however, are emitted from deep inside the core and,

as such, they are direct probes of the CCSN explosion mechanism. As supernova

simulations have not advanced far enough for robust estimates of the signal’s phase

evolution, matched filtering (the optimal linear search method for known signals in

Gaussian noise [135]) cannot be used. The first attempt to reconstruct a CCSN

GW signal without knowledge of the waveform was carried out by Summerscales

et al. [136]. A more recent study of CCSN waveform reconstructions, with minimal

signal assumptions, was carried out by McIver [137].

Associating proposed explosion mechanisms with a set of GW emission pro-

cesses, such that the broad characteristics of GW signals from each mechanism can

be determined, can allow the detection of GWs from CCSNe to be used to infer the

CCSN explosion mechanism. SMEE applies PCA via singular value decomposition,

as described in Section 2.2.2, to catalogues of CCSN waveforms. The PCs can then

be linearly combined to create signal models that represent each explosion mecha-

nism. Bayesian model selection via nested sampling, (see Section 2.2.1), can then

be applied to determine the most likely explosion mechanism of the GW signal.

The first attempt to decompose a CCSN waveform catalogue into its main features

was by Brady et al. [138], who used a Gram-Schmidt decomposition. Heng [139]

was the first to apply PCA to CCSN waveforms, using waveforms from the Dim-

melmeier et al. waveform catalogue, and Röver et al. [140] were the first to combine
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PCA with Bayesian data analysis techniques for CCSN waveform reconstruction.

Similar techniques have been used to extract physical parameters of GW signals

from binary systems [141, 142, 143, 144, 145], and in characterizing noise sources

in GW detectors (see Sections 2 and 3 and refs. [1, 2]).

The first application of SMEE to numerical GW waveforms for CCSNe, to in-

fer the CCSN explosion mechanism, was carried out in a proof-of-principal study

by Logue et al. [78], and considered signals from neutrino-driven convection [129],

rapidly-rotating core-collapse [113], and proto-neutron star pulsations (the acoustic

mechanism) [146, 147]. There were several major limitations to the first SMEE

analysis. Firstly, signals were injected into data for one detector, assuming optimal

orientation and sky location for maximal antenna sensitivity of the detector. Given

this, the time-varying antenna sensitivity for a given detector was not taken into

account, and hence the antenna sensitivity considered was artificially optimistic.

The single detector network resulted in limited sensitivity, and only GW signals ex-

tracted from axisymmetric CCSN simulations were considered, resulting in linearly

polarized signals.

Electromagnetic observations suggest that many, if not most, CCSN explosions

exhibit asymmetric features [148, 149, 150, 151, 152]. The three-dimensional mag-

netorotational simulations for rapidly-rotating progenitors show a dominant GW

polarization is expected for the bounce signal. However, three-dimensional neu-

trino mechanism simulations show that the stochastic nature of the asymmetric

flow structures arising from the SASI and convection will lead to unpolarized GWs

from CCSNe [130, 128, 153, 154, 155, 156, 157, 158, 159, 160]. The use of Gaussian

noise meant that the effect of glitches present in real GW detector noise could not be

studied. Despite these limitations, the SMEE algorithm demonstrated the ability to

distinguish magnetorotational explosions within the Milky Way (≤ 10 kpc), while

neutrino-driven and acoustic explosions could be distinguished for sources closer

than 2 kpc. This work was further expanded upon in the PhD thesis by Logue

[161], where SMEE was updated to allow a multi-detector network analysis.

The goal of this chapter is to address the shortcomings of the original SMEE

analysis, and to make more robust statements on the ability to infer the CCSN

explosion mechanism from GW observations of CCSNe in the advanced detector

era.
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4.4 Improvements to Analysis and Simulations

In the previous SMEE analysis, a MATLAB implementation of SMEE was used,

which has now been replaced with a faster and more robust C implementation,

which is part of the LIGO data analysis software package, the LSC Algorithm

Library (LAL) [72]. In particular, we use the LALInference package [73, 44, 34],

which is designed for parameter estimation of GW signals.

Several other improvements to the SMEE analysis are made, designed to address

several of the limitations described in the previous sections. In Logue et al. [78],

simulated Gaussian noise was considered in a single aLIGO detector, in the context

of a sky position where antenna sensitivity to linearly polarized GW signals was

maximised. Real data from GW detectors is non-stationary and non-Gaussian and,

as such, it is important to test the analysis in real non-stationary, non-Gaussian

noise. We use the observational data taken by H1 and L1 during the S5 science

run, and data taken by Virgo during the VSR1 science run, which is now publicly

available via the LIGO Open Science Center (LOSC) [162]. This data is recoloured

to the design sensitivity of aLIGO and AdVirgo, as outlined in [46], as this permits

a more realistic estimation of the sensitivity of the analysis in future advanced

detector observing runs.

The antenna response (see Section 1.3) of the detectors is periodic with an

associated time-scale of one sidereal day, due to the rotation of the Earth. As

a consequence of this, the sensitivity of any GW analysis using stretches of data

much shorter than this time-scale is strongly dependent on the antenna response

of the detectors to the source location at the relevant GPS time. To represent

time-averaged sensitivity of the detector network, we choose 10 GPS times spread

throughout a 24 hour period.

In the following sections, we continue to use linearly polarized GW waveform

catalogues to produce the PCs. This is because at the time this study began, large

waveform catalogues from three-dimensional CCSN simulations did not exist. This

also allows us to compare our results with previous studies. Signals from the acoustic

mechanism are no longer considered in this study, as this is no longer considered a

viable explosion mechanism for CCSNe [163].
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Uniform priors are applied to each PC coefficient, with prior ranges set by the

catalogue waveforms padded by ±10% to account for uncertainty due to the lack of

available waveforms. A uniform-in-volume prior is applied to the amplitude param-

eter, as the amplitude scales with distance. We use the multi-detector likelihood

function described previously in Equation 2.5. A galactic CCSN will have coincident

electromagnetic and neutrino signals, ensuring that the sky location of the target

source will be known. Online searches for GW bursts can also produce sky-maps of

the location of the GW signal [44]. For this reason, we fix the sky location of the

source as a known parameter.

4.5 Principal Components

Figure 4.3 shows the first four PCs for the RotCC and C&S models. The first few

PCs represent the main features of the waveform catalogues. It is clear that the

time series structure of the C&S model is far more complex than that for the RotCC

model. The main feature of the RotCC PCs is clearly the spike at core bounce.

In Logue et al. [78], the relative complexity of the RotCC and C&S models was

not taken into consideration when selecting the number of PCs, and an arbitrary

number of PCs was chosen. Some attempt at a careful selection of the number of

PCs was made in [161], however, as major changes have been made to SMEE since

this study, we carry out a new analysis of the ideal number of PCs.

In previous chapters, ideal numbers of PCs were determined by studying the

variance encompassed by each PC, and using the number of PCs that cumulatively

contain above some fraction of the total variance (see Chapter 2 and refs. [85, 1]).

The variance curves for the RotCC and C&S models are shown in Figure 4.4(c), and

Figure 4.4(d), respectively. The variance of the catalogue waveforms is much larger

for the C&S model. Due to this, fewer RotCC PCs are typically needed to faithfully

reconstruct GW signals from rotating core-collapse, than the number of C&S PCs

needed to reconstruct GW signals from neutrino-driven CCSNe. However, as this

method only uses the waveforms, it does not account for the limitations of the

analysis method implemented in SMEE. Bayesian model selection favours simpler

models, and this could increase errors when results are more uncertain, such as

when the SNR of the GW signal is low [75]. To account for this, we determine
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Figure 4.3: (Left) The first four PCs produced from the RotCC waveforms. (Right) As for the
left, but for the C&S waveforms. The first few PCs represent the most common features of the
waveforms used in the analysis. A larger number of PCs is needed to represent the broad set of
features in waveforms from the C&S model. The main feature of the RotCC model PCs is the spike
at core bounce. Each PC is multiplied during the analysis by an amplitude scale factor. Figure
reproduced from [3].

the optimal number of PCs from the behaviour of the signal versus noise log Bayes

factor, logBS,N , for both models across the waveform catalogues.

Figures 4.4(a) and 4.4(b) show the signal vs. noise log Bayes factors for five

representative waveforms from the RotCC and C&S models, respectively. The repre-

sentative waveforms are chosen so that they will span the parameter space of the

catalogues. All of the signals are injected with an SNR of 20, as log Bayes factors

are proportional to the square of the SNR of the signal. As the number of PCs

is increased, the model becomes a better match for the signal in the data, and

the Bayes factor is expected to increase sharply. After an ideal number of PCs is

reached, no further information about the signal is gained by adding more PCs, and
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Figure 4.4: The log Bayes factors and explained variance for an increasing number of PCs. (a)
The log Bayes factors for an increasing number of PCs, for five waveforms from the RotCC model.
An ideal number of PCs is reached when the Bayes factors stop increasing. This occurs at similar
values for all the RotCC waveforms. (b) The same result for five waveforms from the C&S model.
The results are very different for different waveforms. (c) The variance curve for the RotCC model.
(d) The variance curve for the C&S model. Both methods predict similar numbers for the ideal
number of PCs. Figure reproduced from [3].

the Bayes factor stops increasing. If more PCs are added after the ideal number,

then the Bayes factor will begin to decrease, due to an Occam factor that occurs as

the signal model becomes too complex.

The waveforms in the RotCC catalogue have a small variance, therefore, a small

number of PCs are needed to represent the entire catalogue. The C&S model has

greater variance in the catalogue waveforms, and a larger number of PCs are re-

quired to accurately represent all the features included in the waveforms. We select

6 PCs for the RotCC model, and 9 PCs for the C&S model, to maximise the number

of features represented in the PCs, whilst minimising the penalty that occurs when

one model is significantly more complex than the other.
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Figure 4.5: The log Bayes factors obtained for 1000 instances of simulated and recoloured aLIGO
and AdVirgo design sensitivity noise, for the RotCC model using 6 PCs (top), and for the C&S

model using 9 PCs (bottom). Transient noise artefacts and lines in real data can increase log
BS,N and the width of the noise response. Figure reproduced from [3].

4.6 Signal vs. Noise Models

The response of SMEE to instances of simulated Gaussian noise was investigated

in Logue et al. [78], to better understand the results in the presence of real signals.

As SMEE is now implemented in C, and the relative complexity of the waveforms

is now accounted for in the number of PCs, we recalculate the noise response using

1000 instances of simulated aLIGO and AdVirgo design sensitivity noise, as well as

the recoloured noise that is used for a more accurate analysis than previous studies.

In Figure 4.5, the signal vs. noise Bayes factors for 1000 instances of Gaussian

and real non-stationary, non-Gaussian noise is shown. The log Bayes factors are

obtained by running SMEE on 1000 GPS times containing no GW signals. The
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Figure 4.6: The minimum SNR needed for SMEE to detect waveforms from the Dimmelmeier and
Murphy catalogues. The top figure shows log BS,N as the SNR is increased for five representative
waveforms injected from the Murphy waveform catalogue. The bottom figure shows the same
results for five representative waveforms from the Dimmelmeier catalogue. For log BS,N ≥ 10, a
minimum of SNR 9 is needed for the RotCC model, and of SNR 10 for the C&S model.

mean values are −12 for the RotCC model in Gaussian noise, −23 for the C&S model

in Gaussian noise, −9 for the RotCC model in recoloured noise, and −19 for the C&S

model in the recoloured noise. This is larger than the results found by Logue et

al. who calculated values of −53.9 for the RotCC model and −52.3 for the C&S

model. This is likely due to differences in normalization between the MATLAB and

C implementations of SMEE. Short duration transient noise artefacts and lines in

the data increase SMEE’s response to noise and increase the standard deviation of

the noise response. In Logue et al. [78] a threshold value of 5 on log BS,N was set

using the width of the noise response. We increase the threshold on the value of

log BS,N to 10 to account for the increased variation in the noise response found in

the real, non-Gaussian data.
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The minimum signal strength needed for SMEE to be able to detect the signal

is investigated, as the explosion mechanism cannot be determined if the CCSN

signal cannot be distinguished from detector noise. To determine the minimum

SNR that SMEE requires to find a signal, five representative waveforms are chosen

from the RotCC and C&S models. The representative signals are then injected into

the recoloured detector noise at increasing SNR values. Logue et al. [78] found in

their proof-of-principal study that the minimum SNR needed was SNR≥ 4 − 5,

however, they add that in a real search for CCSN, in real non-Gaussian noise, that

an SNR≥ 8 would be needed for a detection statement.

Figure 4.6 shows how the log Bayes factors change as the SNR increases. For

SMEE to distinguish the representative waveforms from noise, a minimum of SNR

9 is needed for the RotCC model, and a minimum of SNR 10 is needed for the C&S

model. The values are consistent with the value needed for a detection statement.

4.7 Determining the Core-Collapse Supernova Ex-

plosion Mechanism

To test the ability of SMEE to determine the explosion mechanism, all 128 RotCC

and 16 C&S waveforms are injected at 10 GPS times. The sky position of the

Galactic center is used, at distances of 2 kpc, 10 kpc and 20 kpc, to show how well

the explosion mechanism can be determined for sources throughout the Galaxy.

This gives a total of 1440 injected signals at each distance.

Table. 4.1 contains the averaged over all runs signal vs. noise log Bayes factors for

five representative waveforms from the RotCC and C&S models injected in recoloured

noise. The table shows the mean log Bayes factor is much larger for waveforms

from the RotCC catalogue, as they have a larger SNR than the C&S waveforms. The

log Bayes factor should be larger when using the PCs from the correct explosion

mechanism. Waveforms from the RotCC model can be distinguished from noise at

all of the Galactic distances considered. All the waveforms from the C&S model can

be distinguished from noise at 2 kpc, and some C&S waveforms have enough SNR to

be detected at 10 kpc, if they occur when the antenna pattern is most sensitive.
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Waveform log BRottCC,N log BC&S,N

2 kpc 10 kpc 20 kpc 2 kpc 10 kpc 20 kpc

RotCC

s11a3o09 shen 24281 927 210 591 7 -8
s15a2o09 ls 27321 1050 241 785 15 -7
s20a3o05 ls 12151 447 92 1223 31 -3
s40a3o07 ls 54281 2121 508 1898 53 0

s40a3o13 shen 64323 2537 618 20510 815 192

C&S

15 3.2 52 -4 -5 328 -6 -12
15 4.0 59 -4 -6 2982 90 5
20 3.8 69 -5 -5 1629 352 -8
40 10.0 20 -5 -6 1687 42 -4
40 13.0 21 -6 -6 24 -11 -12

Table 4.1: The mean signal vs. noise log Bayes factors for five representative waveforms from
each mechanism. They are injected at 2 kpc, 10 kpc and 20 kpc at the sky position of the Galactic
center. Waveforms from the RottCC model can be distinguished from noise throughout the Galaxy.
The C&S catalogue waveforms are indistinguishable from noise at 20 kpc. Table reproduced from
[3].

Figure 4.7 shows log BRotCC−C&S for all injections at the 3 Galactic distances con-

sidered. If the RotCC waveforms are identified with the correct explosion mechanism

then log BRotCC−C&S will be positive, and if the C&S waveforms are identified with the

correct explosion mechanism then log BRotCC−C&S will be negative. If log BRotCC−C&S is

between −10 and 10, then it is not possible to distinguish between the explosion

mechanisms considered.

The number of detected waveforms from the C&S model is 157/160, 150/160

and 19/160, at distances of 2 kpc, 10 kpc and 20 kpc, respectively. The number of

detected waveforms from the RotCC model is 1279/1280, 1198/1280 and 1019/1280,

at distances of 2 kpc, 10 kpc and 20 kpc, respectively. The correct explosion mecha-

nism is determined for all detected waveforms from both models, at all the Galactic

distances considered.

All catalogue waveforms are then injected at the sky position of the LMC, at

a distance of 50 kpc, at 10 different GPS times. The values of logBRotCC−C&S are

shown in Figure 4.7(d). A total of 707/1280 waveforms from the RotCC model

can be distinguished from noise at this distance, and their explosion mechanism is

correctly determined as magnetorotational. None of the waveforms injected from

the C&S model can be distinguished from noise at a distance of 50 kpc.
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Figure 4.7: The distribution of Bayes factors used to determine the explosion mechanism for
Dimmelmeier and Murphy waveforms at different Galactic distances. (a) At 2 kpc the explosion
mechanism is correctly determined for all 1437/1440 detected waveforms. (b) At 10 kpc, 1198/1440
waveforms are detected and their explosion mechanism is correctly determined. (c) Almost all C&S
waveforms have an SNR too small for them to be detected at 20 kpc. (d) Distance of 50 kpc and
sky position of the Large Magellanic Cloud. Only rapidly rotating waveforms are detectable at
this distance. Figure reproduced from [3].

4.8 Testing Robustness

As the waveforms from the RotCC and C&S models, that were used to create the

PCs, may not be an exact match for a real CCSN GW signal, it is important to

test the robustness of the method applied in SMEE using waveforms that do not

come from the catalogues used to construct the PCs. To test robustness, we use five

extra waveforms from each mechanism. For the magnetorotational mechanism, the

extra waveforms are sch1, sch2, and the three abd waveforms, described in Section
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Waveform log BRotCC,N log BC&S,N

2 kpc 10 kpc 20 kpc 2 kpc 10 kpc 20 kpc

RotCC

sch1 15116 567 124 2181 64 3
sch2 47185 1843 441 7369 321 69
abd1 87453 3454 843 21528 933 235
abd2 50420 2000 488 18128 798 183
abd3 6426 247 55 5147 185 31

C&S

yak 23 -5 -6 141 -10 -11
müller1 -5 -5 -5 -9 -12 -11
müller2 -5 -6 -5 -8 -10 -12
müller3 -5 -5 -6 -9 -11 -11

ott 118 -2 -6 24 -12 -12

Table 4.2: The mean signal vs. noise log Bayes factor for five extra waveforms representing each
explosion mechanism injected at 2 kpc, 10 kpc and 20 kpc, at the sky position of the Galactic
center. The three müller waveforms are indistinguishable from noise at 20 kpc . The extra
magnetorotational mechanism waveforms can be distinguished from noise throughout our Galaxy.
Table reproduced from [3].

4.2.1. For the neutrino mechanism, the five extra waveforms are the yak, ott and

three müller waveforms, described in Section. 4.2.2.

As for the Dimmelmeier and Müller waveforms, the 10 extra waveforms are

injected at 10 GPS times, at the sky position of the Galactic center, at distances

of 2 kpc, 10 kpc and 20 kpc, leading to a total of 100 injections at each distance.

Table. 4.2 shows how well the extra waveforms can be distinguished from noise

at the three Galactic distances considered. As for the Dimmelmeier and Müller

catalogue waveforms, the table shows the averaged over all run values of the signal

vs. noise log Bayes factor. A larger log Bayes factor is expected when the correct

signal model is used, and the confidence in the result is larger for larger log Bayes

factors. All the extra magnetorotational mechanism waveforms can be distinguished

from noise at the 3 Galactic distances considered. The yak and ott waveforms

can be distinguished from noise at 2 kpc. The three müller waveforms cannot be

distinguished from noise at any of the Galactic distances considered. This is due to

the two-dimensional signal models being a bad representation of three-dimensional

waveforms.

Figure 4.8 shows the values of log BRotCC−C&S for all 100 extra waveform injec-

tions at distances throughout the Galaxy. As for the waveforms used to calculate
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Figure 4.8: The distribution of Bayes factors used to determine the explosion mechanism for ex-
tra waveforms representing each mechanism. (a) At 2 kpc, all extra magnetorotational mechanism
waveforms can be distinguished from noise, and their explosion mechanism is correctly determined.
For the extra neutrino mechanism waveforms, only the explosion mechanism of the yak waveform
is correctly determined. (b) At 10 kpc, all extra neutrino mechanism waveforms cannot be dis-
tinguished from noise. (c) At 20 kpc, 45/100 injected extra magnetorotational waveforms can be
distinguished from noise, and their explosion mechanism is correctly determined. (d) The cor-
rect explosion mechanism is determined for all extra magnetorotational waveforms distinguishable
from noise (27/100) at 50 kpc. Figure reproduced from [3].

the PCs, if the explosion mechanism of the magnetorotational waveforms is correctly

determined then log BRotCC−C&S will be positive, and if the explosion mechanism of

the neutrino mechanism waveforms is correctly determined then log BRotCC−C&S will

be negative. At all distances, the 30 injected müller waveforms cannot be distin-

guished from noise. At 2 kpc, the explosion mechanism of the 10 injected yak wave-

forms is correctly determined as neutrino-driven. The explosion mechanism of the

10 ott waveform injections are incorrectly determined as magnetorotational. The
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Ott waveforms, shown in the top right panel of Figure 4.2, contain a feature during

the first 20 ms that appears reminiscent of the rotational bounce signals. This is due

to a strong signal from the early post-bounce phase that arises because of artificially

strong prompt convection induced by the neutrino leakage scheme. This feature is

likely the cause of the incorrect result. All extra magnetorotational mechanism

injections at 2 kpc are distinguished from noise and their explosion mechanism is

correctly determined.

At 10 kpc, 1/10 yak injections and 49/50 magnetorotational injected waveforms

can be distinguished from noise. The explosion mechanism is correctly determined

for all detected waveforms. At 20 kpc, 45/50 magnetorotational waveforms, and

none of the extra neutrino mechanism waveforms can be distinguished from noise.

The explosion mechanism is correctly determined for all detected magnetorotational

waveforms at 20 kpc.

Figure 4.8(d) shows the values of log BRotCC−C&S for the 100 extra waveform injec-

tions at 50 kpc and the sky position of the LMC. There are 27/50 magnetorotational

waveforms that can be distinguished from noise, and their explosion mechanism is

correctly determined as magnetorotational. The minimum SNR needed to detect

the extra waveforms is shown in Figure 4.9. The three-dimensional waveforms need

a much larger SNR than the two-dimensional waveforms for them to be detected.

This shows that updating SMEE to use three-dimensional waveforms will be essen-

tial for SMEE to be able to detect lower SNR CCSN signals.

4.9 Summary and Discussion

The Supernova Model Evidence Extractor (SMEE) is designed to measure astro-

physical parameters of a CCSN GW detection. CCSNe have long been considered

as a potential source for an aLIGO and AdVirgo detector network, and a CCSN de-

tection may provide an ideal probe of the inner regions of the explosion that do not

emit electromagnetically. Determining the CCSN explosion mechanism is essential

for a full understanding of the physics and processes involved in CCSNe.

For the first time, we demonstrate the ability of SMEE to determine the CCSN

explosion mechanism, with a network of GW detectors, using real non-stationary,
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Figure 4.9: The minimum SNR needed for SMEE to detect the extra waveforms used to test
robustness. The top figure shows how the signal vs. noise log Bayes factor increases, as the SNR
is increased, for five extra representative rapidly-rotating waveforms. The bottom figure shows
the same result for five extra representative neutrino-driven convection waveforms. The minimum
SNR needed is much larger than for the catalogue waveforms, as two-dimensional signal models
are a poor representation of three-dimensional waveforms.

non-Gaussian noise. In this chapter, SMEE considers the magnetorotational and

neutrino explosion mechanisms, and shows how the correct explosion mechanism

can be determined for all detectable catalogue waveforms at distances throughout

our Galaxy. GW signals from neutrino-driven convection have a smaller amplitude

than those from rapidly-rotating core-collapse. Therefore, detections at distances

of 10 kpc or less are needed for a robust result. Furthermore, we can determine the

explosion mechanism of rapidly-rotating core-collapse waveforms at the distance

and sky position of the LMC.

We further enhance the model selection capabilities of SMEE with a careful

selection of the number of PCs, which considers the relative complexity of the dif-
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ferent explosion models. A large number of PCs is required to represent all the

common features of the neutrino-driven convection waveforms. The number of

available waveforms is much smaller than those available for rapidly-rotating core

collapse, and the differences between individual waveforms is much larger. This

leads to a reduction in the robustness of the result from SMEE, as the parameter

space of the neutrino waveforms is not sufficiently covered. Furthermore, three-

dimensional neutrino waveforms contain some features that are different from the

two-dimensional waveforms used to create the PCs. However, the two-dimensional

rapidly-rotating core-collapse waveforms are still a good approximation for three-

dimensional rapidly-rotating waveforms, as non-axisymmetric instabilities occur af-

ter the signal bounce.

During recent years, two-dimensional neutrino mechanism waveforms with more

detailed physics have become available. They include an updated version of the

yak waveforms used in this study, which are now complete (up to 1s) waveforms, as

the 2010 waveforms were truncated at ∼ 500 ms after bounce [164]. Furthermore,

a larger number of three-dimensional neutrino mechanism waveforms have become

available recently, including Kuroda et al. (2016) [128], who simulate a 15 M� star

with three different EOS, showing a strong low-frequency signal from the SASI, and

Andresen et al. (2016) [156], that include multi-group neutrino transport. Updating

SMEE to use the three-dimensional waveforms will be essential for future robust

parameter estimation with CCSN GWs, and is implemented in the next chapter.



Chapter 5

Distinguishing CCSN Signals from

other Transient Sources

During the advanced detector observing runs, SMEE is used as a parameter esti-

mation follow-up tool for any potential GW signal candidates that are identified

by the GW searches, or from alerts sent by electromagnetic and neutrino detectors.

Due to the low rates for CCSNe within the aLIGO and AdVirgo detection range,

it is important to be prepared for a CCSN signal that may occur when the data

quality is poor, or when only one detector is operational. To give an accurate result,

it is important that SMEE is updated to use the latest available CCSN waveforms.

Therefore, in this chapter, SMEE is updated to make signal models from wave-

forms that were not available when the study in the previous chapter was carried

out. A procedure implemented in SMEE to enhance detections is outlined and

tested with real CCSN triggers from the O1 targeted search and simulated CCSN

signals injected in O1 aLIGO noise.

This chapter is structured as follows: In Section 5.1, we provide an overview of

CCSN waveforms used in this chapter that were not available at the time the study

in the previous chapter was carried out. In Section 5.2, we show the new PCs made

from the latest available three-dimensional CCSN simulations. In Section 5.3, the

output of SMEE using the new signal models is shown when there are no signals

or glitches present in the data, and the minimum SNR needed for SMEE to detect

CCSN signals with new three-dimensional signal models is determined. In Section

5.4, the explosion mechanism is determined for CCSN signals from the neutrino

104
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and magnetorotational mechanisms using the new signal models. In Section 5.5, a

demonstration of how SMEE can be used to determine if a signal is a CCSN or a

glitch is given and tested on real CCSN search triggers from O1. In Section 5.6,

how well SMEE can reconstruct a CCSN signal is examined, and a demonstration

is given of how the reconstructions can be used to determine if the signal is one of

the CCSN models considered by SMEE, or a different kind of astrophysical signal.

A summary and discussion are given in Section 5.7.

5.1 CCSN Simulations

New three-dimensional neutrino mechanism CCSN waveforms have become avail-

able since the study in the previous chapter. Here, a brief description of those

waveforms is given, and some example time-series simulations are shown in Figure

5.1.

Andresen et al. [156] produce four CCSN GW signals for the first few hundred

milliseconds after bounce. They are three-dimensional simulations, with multi-

group neutrino transport, and ZAMS masses of 11.2 M�, 20 M� and 27 M�. There

are 3 failed explosions, one at each ZAMS mass, referred to as models s11, s20 and

s27, and a successful explosion with a 20 M� progenitor, referred to as model s20s.

The GWs for the 11.2 M� progenitor are convection-dominated, and the GWs for the

higher mass progenitors are SASI-dominated. They find that the SASI-dominated

models are clearly distinguishable from the lower mass convection-dominated model

by strong low-frequency emission between 100 − 200 Hz. They find that both the

convection- and SASI-dominated models show GW emission above 250 Hz, but their

GW amplitudes are much lower than previous two-dimensional simulations. Their

waveform morphologies are considerably different from the two-dimensional models

discussed in the previous chapter. The two 20 M� progenitor waveforms, scaled for

a distance of 10 kpc, are shown in Figure 5.1. The GW amplitude is larger for the

exploding model.

Kuroda et al. [128] carry out fully relativistic three-dimensional simulations of

a 15 M� progenitor star with three different EOS. The simulations stop at around

∼ 350 ms after bounce. Figure 5.1(a) shows the waveform simulated with the SFHX

EOS, scaled for a distance of 10 kpc, and Figure 5.1(b) shows the waveform simu-
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Figure 5.1: The h+ time series of three-dimensional neutrino mechanism waveforms simulated by
Kuroda et al. [128] and Andresen et al. [156]. (a) GWs from the simulation of a 15 M� progenitor
star with the SFHX EOS. (b) GWs from the simulation of a 15 M� progenitor star with the
TM1 EOS.(c) A 20 M� progenitor star that does not explode, with strong low-frequency emission
between 100− 200 Hz. (d) GWs from the simulation of a 20 M� progenitor star that successfully
explodes. The amplitude is larger for the successful explosion than for the failed explosion.

lated with the TM1 EOS. They find that the stiffness of the EOS creates significant

changes in the SASI, and that the GW frequency increases with time due to accre-

tion on to the proto-neutron star.

5.2 Signal Models

SMEE is updated to use the latest available CCSN waveforms during the analysis

of advanced GW detector CCSN detection candidates. For the magnetorotational

mechanism, three-dimensional waveforms from the Scheidegger et al. [114] waveform

catalogue are used, described previously in Section 4.2.1. As Scheidegger et al. use

a variety of rotations in their simulations, from non-rotating to extremely rapidly-
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Figure 5.2: The first four three-dimensional PCs used to represent each explosion mechanism.
For the magnetorotational signal model, 15 waveforms from Scheidegger et al. [114] are used. As
for the two-dimensional magnetorotational model, the main feature of the PCs is the spike at
core bounce. The neutrino mechanism signal model is made from a mixture of waveforms from
Andresen et al. [156], Kuroda et al. [128] and Müller et al. [132]. The PCs are longer in duration
than those produced with two-dimensional waveforms.

rotating, we discard the 10 simulations with the slowest rotation values leading

to 15 rapidly-rotating waveforms available for use in SMEE. The waveforms from

Scheidegger et al. are much longer in duration than the two-dimensional waveforms

used in the previous chapter, allowing SMEE to reconstruct a longer part of the

signal.

For the neutrino mechanism signal model, a combination of three-dimensional

waveforms are used from Müller et al. [132], Andresen et al. [156], and Kuroda et

al. [128]. There are three waveforms from Müller et al. [132], described in Section

4.2.2, with progenitor masses of 15 M� and 20 M�. There are four waveforms from

Andresen et al. [156], and two waveforms from Kuroda et al. [128], described in

the previous section. This gives a total of 9 three-dimensional waveforms used to

make the neutrino mechanism signal models.
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To make the PCs using the new three-dimensional waveforms, the same method

described in Section 2.2.2 is used. Singular value decomposition is applied to a

matrix containing the time-series waveforms to identify the most important features

of the different explosion mechanisms. As for the two-dimensional PCs, created from

the Dimmelmeier waveforms, the Scheidegger waveforms are aligned at the spike at

core bounce before PCA is applied. The three-dimensional neutrino mechanism

waveforms are aligned at the onset of emission. Both sets of waveforms are then

zero padded to make them the same length. The h+ of the first four PCs for each

mechanism are shown in Figure 5.2. As for the two-dimensional magnetorotational

PCs, the main feature of the three-dimensional magnetorotational PCs is the spike

at core bounce. The three-dimensional magnetorotational PCs are much longer

in duration than the two-dimensional magnetorotational PCs. Most of the GW

emission in the neutrino mechanism PCs is contained in the first 1 s.

To determine the ideal number of PCs, the same method described in Section

4.5 is applied to the new three-dimensional PCs. Figure 5.3(a) shows how the

log signal vs. noise Bayes factors increase as the number of PCs is increased for

the magnetorotational model. As for the Dimmelmeier PCs, five representative

waveforms are selected from the Scheidegger et al. waveform catalogue that span

the full parameter range of the catalogue. Each of the waveforms are injected with

a network SNR of 17. A signal is considered as being detected if the signal versus

noise log Bayes factor is larger than 10. All of the signals are detected, even when

only 1 PC is used. The signal vs. noise log Bayes factors increase slowly as more PCs

are used in the signal model. There is no clear knee in the curves, which makes it

difficult to determine from the figure what the ideal number of PCs is. The variance

curve for the Scheidegger et al. waveforms is shown in Figure 5.3(d). We use 5 PCs

for the magnetorotational explosion mechanism, as the variance encompassed in

each PC increases more slowly after this number.

Figure 5.3(b) shows how the signal vs. noise log Bayes factors increase as the

number of PCs is increased for the neutrino mechanism signal model. As for the

Scheidegger waveforms, five representative waveforms that span the parameter space

are injected with an SNR of 17. The injected waveforms are Müller et al. mod-

els W15-4 and N20-2, the 11.2 M� and 20 M� progenitor models from Andresen

et al., and the SFHX model from Kuroda et al.. The number of PCs needed to

represent each waveform has a lot of variety between the different waveforms. The

Müller W15-4 model requires two PCs, and the Andresen 11.2 M� progenitor model
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Figure 5.3: The increase in log Bayes factors and cumulative variance as the number of PCs is
increased. (a) The signal vs. noise log Bayes factors for an increasing number of PCs, for five
representative waveforms from the Scheidegger et al. [114] waveform catalogue. An ideal number
of PCs is reached when the log Bayes factors are no longer sharply increasing. (b) The same result
for five representative three-dimensional neutrino mechanism signals. All signals are injected with
an SNR of 17. The results are very different for different waveforms due to their large variance. (c)
The variance curve for the Scheidegger waveforms, and (d) is the variance curve for the neutrino
mechanism waveforms. Both methods predict similar numbers for the ideal number of PCs.

requires 8 PCs to achieve the optimal log Bayes factor. This means that the differ-

ent three-dimensional neutrino mechanism waveforms do not share many common

features in their time-series morphologies. The variance curve for the neutrino

mechanism PCs is shown in Figure 5.3(c). There is no clear change in the variance

curve that could indicate the ideal number of PCs. So that all waveforms will be

well represented by the neutrino mechanism signal model in SMEE, 8 PCs are used

for the three-dimensional neutrino mechanism signal model.
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Figure 5.4: The distributions of Bayes factors determined by SMEE for 1000 instances of simulated
aLIGO and AdVirgo design sensitivity noise, and 1000 instances of real O1 aLIGO noise. The top
figure is the result obtained using the magnetorotational signal model. The bottom figure is the
result for the neutrino mechanism model. In Gaussian noise, when no signal is present we expect
SMEE to produce a signal vs. noise log Bayes factor of ∼ −1 or ∼ −2 using the magnetorotational
and neutrino signal models, respectively. In O1 noise, when no signal is present we expect SMEE
to produce a signal vs. noise log Bayes factor of ∼ 0 or ∼ −1 using the magnetorotational and
neutrino signal models, respectively. The log Bayes factors are higher in real detector noise due
to the non-Gaussian, non-stationary noise features.

5.3 Signal vs. Noise Models

As the signal models are now created using three-dimensional CCSN waveforms,

the result expected when there is only noise has changed. Therefore, in this section

we recalculate the result expected from SMEE when no signals are present in the

data. To achieve this, we run SMEE using both signal models on 1000 instances

of Gaussian aLIGO design sensitivity noise, and 1000 instances of data taken by

aLIGO during O1, as we plan to use O1 data later in this chapter.
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Figure 5.5: The minimum network SNR needed to detect different CCSN signals with signal
models produced from three-dimensional CCSN waveforms. Five representative waveforms from
each explosion mechanism are injected at increasing network SNR values. The top figure shows the
signal vs. noise log Bayes factors obtained using the magnetorotational signal model. The bottom
figure shows the signal vs. noise log Bayes factors obtained using the neutrino mechanism signal
model. For both the magnetorotational and neutrino mechanism signals, a minimum network
SNR of around 8 is needed for SMEE to detect the CCSN waveforms.

The results are shown in Figure 5.4. In Gaussian noise, when no signal is present

we expect SMEE to produce a signal vs. noise log Bayes factors of ∼ −1 and ∼ −2

using the magnetorotational and neutrino signal models, respectively. In O1 noise,

when no signal is present we expect SMEE to produce a signal vs. noise log Bayes

factor of ∼ 0 or ∼ −1 using the magnetorotational and neutrino signal models,

respectively. The noise only log Bayes factors are smaller when a greater number

of PCs are used.

The minimum network SNR needed for SMEE to detect CCSN signals with the

new signal models is shown in Figure 5.5. Understanding the minimum network
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SNR needed by SMEE is important, as the explosion mechanism cannot be deter-

mined for a signal that is not detected. As in the previous chapter, we select 5 rep-

resentative waveforms from each explosion mechanism. For the magnetorotational

explosion mechanism, we select 3 waveforms from the Abdikamalov et al. waveform

catalogue, used in the previous chapter, and 2 waveforms from the Scheidegger et

al. waveform catalogue. For the neutrino explosion mechanism, we select the 3

waveforms from Müller et al., and the 20 M� progenitor waveforms from Andresen

et al.. All of the waveforms are injected into aLIGO and AdVirgo noise recoloured

to design sensitivity at the same GPS time and sky position. The distance of each

signal is then changed to increase the network SNR values.

A signal is considered as being detected by SMEE if the signal versus noise log

Bayes factor is larger than 10. The minimum network SNR needed for SMEE to de-

tect the magnetorotational representative signals with the magnetorotational signal

model is SNR 8. For the Abdikamalov waveforms, the minimum network SNR is

similar to that obtained using the two-dimensional signal models in the last chapter.

For the Scheidegger waveforms, the minimum network SNR needed to detect them

is much smaller using the three-dimensional signal model than the previous result

of SNR 12 obtained with the two-dimensional signal model in the last chapter. The

minimum network SNR needed for SMEE to detect the neutrino mechanism repre-

sentative signals with the neutrino mechanism signal model is SNR 8. This is much

smaller than the minimum SNR of 30 needed when using the two-dimensional sig-

nal models in the last chapter. Updating SMEE to three-dimensional signal models

has increased the sensitivity of SMEE for all types of currently available CCSN

waveforms.

To test the robustness of the result, three-dimensional waveforms that were

not included in the PCs are used. As there are currently no more available three-

dimensional waveforms that can be used for this test, the PCs are made again leaving

out one of the signals from each of the explosion mechanisms. The left out waveform

for the magnetorotational signal model is Scheidegger model R3E1ACL. The left

out waveform for the neutrino mechanism model is the Müller waveform L15-3.

7 PCs are then used for each signal model. The two left out signals are injected

in recoloured noise, and the distance of each signal is then changed to increase the

network SNR values. The results are shown in Figure 5.6. A network SNR of 15

is needed to detect the R3E1ACL waveform, and a network SNR of 20 is needed

to detect the L15-3 waveform. For the magnetorotational signal model, this a only
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Figure 5.6: Testing the robustness of the minimum network SNR needed to detect different CCSN
signals with signal models produced from three-dimensional CCSN waveforms. Two representative
waveforms from each explosion mechanism, which are not included in the waveforms used to make
the signal models, are injected at increasing network SNR values. A network SNR of 15 is needed to
detect the R3E1ACL waveform, and a network SNR of 20 is needed to detect the L15-3 waveform.
This is a big improvement from the testing robustness results using two-dimensional waveforms.

a small improvement of the result obtained using the signal model produced from

the two-dimensional waveforms. The L15-3 waveform shows a larger improvement,

as the minimum network SNR needed for the L15-3 waveform is now SNR 20 and

was SNR 37 in the previous chapter.

5.4 Determining the Core-Collapse Supernova Ex-

plosion Mechanism

In this section, how well SMEE can determine the explosion mechanism is examined

using the new signal models made from the three-dimensional CCSN waveforms.

To test the ability of SMEE to determine the explosion mechanism, all of the three-

dimensional CCSN waveforms that were used when making the PCs are injected

into recoloured noise. This is a total of 15 rapidly-rotating CCSN waveforms from

Scheidegger et al, and 9 neutrino mechanism waveforms from Müller et al., Kuroda

et al. and Andresen et al..

As in Section 4.7, all waveforms are injected at 10 GPS times to represent
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Figure 5.7: The distribution of Bayes factors used to determine the explosion mechanism using
three-dimensional signal models for waveforms injected from different explosion mechanisms in
recoloured aLIGO and AdVirgo design sensitivity noise. (a) At 0.2 kpc all signals are detected
and their explosion mechanism is correctly determined. (b) At 2 kpc some of the neutrino mech-
anism waveforms can no longer be detected. (c) At 10 kpc the explosion mechanism is correctly
determined for all detected waveforms. (d) At 20 kpc almost no neutrino mechanism waveforms
can be detected and the correct explosion mechanism is determined for all other waveforms.

different antenna pattern sensitivities over a 24 hour period. As some of the three-

dimensional neutrino mechanism waveforms have a smaller amplitude than the two-

dimensional waveforms used in Section 4.7, we inject the signals in the direction

of the Galactic center at three of the distances used previously (2 kpc, 10 kpc and

20 kpc), and an extra smaller distance of 0.2 kpc. We use the same recoloured

aLIGO and AdVirgo noise described in Section 4.7.

Figure 5.7 shows the values of logBRotCC−C&S for all injections, at the 4 Galactic

distances considered. If the magnetorotational waveforms are identified with the

correct explosion mechanism then logBRotCC−C&S will be positive, and if the neutrino

mechanism waveforms are identified with the correct explosion mechanism then

logBRotCC−C&S will be negative. If logBRotCC−C&S is between −10 and 10 then it is not
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possible to distinguish between the explosion mechanisms considered.

The number of detected Scheidegger waveforms was 150/150, 150/150, 150/150

and 140/150 at distances of 0.2 kpc, 2 kpc, 10 kpc and 20 kpc, respectively. The

number of detected three-dimensional neutrino mechanism waveforms was 90/90,

53/90, 16/90 and 7/90 at distances of 0.2 kpc, 2 kpc, 10 kpc and 20 kpc, respectively.

The explosion mechanism was correctly determined for all detected waveforms at all

Galactic distances considered. Updating the signal models to use three-dimensional

waveforms has resulted in a large improvement from the results in Section 4.8,

in which none of the three-dimensional Müller waveforms were detected with the

two-dimensional signal models at any of the distances considered.

5.5 Core-collapse Supernova Signal or Glitch?

In this section, the ability of SMEE to distinguish between CCSN signals, glitches

and other astrophysical transient sources is determined. Data taken during O1 is

used, as the detectors have undergone many changes since the initial detectors S5

science run, and the types of glitches found in the data have changed enough that

using glitches in recoloured S5 noise would not be an accurate representation of the

glitches that are expected in future advanced detector observing runs.

Four different types of transients are analysed by SMEE in this section. The first

is 1000 injections of the Scheidegger et al. waveform model R3E1ACL (see Section

4.2.1). The second is 1000 injections of the Müller et al. waveform model L15-3,

(see Section 4.2.2). The third is 250 sine Gaussian waveforms, with a frequency of

250 Hz and a duration of 20 ms. The fourth are glitches that are coincident in time

between the two aLIGO detectors. The 250 loudest background events found by

cWB in the O1 targeted CCSN search are used. The SNR values of the Scheidegger

and Müller injections are shown in Figure 5.8. The SNR varies due to the antenna

pattern and the quality of the data. We only use triggers that are found after

data quality vetoes have been applied. The Scheidegger waveforms are injected at

a distance of 2 kpc, and the Müller waveforms are injected at 0.2 kpc, as their GW

emission has a smaller amplitude, and the SNR needs to be large enough for the

injections to be detected by SMEE.



5.5. Core-collapse Supernova Signal or Glitch? 116

0 50 100 150 200 250 300
SNR

0

50

100

150

200

250

N
o.

of
si

gn
al

s

Scheidegger et al. 2010
Model R3E1ACL at 2kpc

0 20 40 60 80 100 120 140 160
SNR

0

50

100

150

200

250

N
o.

of
si

gn
al

s

Müller et al. 2012
Model L15-3 at 0.2kpc

Figure 5.8: The network signal to noise ratio of 1000 Scheidegger waveforms injected at 2 kpc
(top), and 1000 Müller waveforms injected at 0.2 kpc (bottom), in O1 aLIGO noise. The Müller
waveforms have an order of magnitude smaller amplitude than the Scheidegger waveforms. The
SNR depends on the antenna pattern at the time of the injection and the quality of the data.

A test that can be performed to determine if the signal is a real astrophysical

signal or a glitch is the Bayesian coherence test [76]. To perform the coherence test,

we calculate a coherent vs. incoherent signal or noise Bayes factor BC,IN . First, the

evidence must be calculated coherently, as for the previous evidences calculated by

SMEE. The coherent evidence ZC , with combined data d from all detectors, which

contains a coherent signal SC with parameters θ, is given by,

ZC =

∫
θ

p(θ|SC)p(d|θ, SC)dθ . (5.1)

For an incoherent signal, each of the N detectors contains a signal which can be

described by different parameters for each detector. The incoherent evidence ZI is
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then given by,

ZI =
N∏
j=1

∫
θ

p(θj|Sj)p(dj|θj, Sj)djθ . (5.2)

The coherent vs. incoherent Bayes factor BC,I can then be calculated as,

BC,I = ZC/ZI . (5.3)

It is possible to calculate a coherent vs. incoherent or noise Bayes factor BC,IN .

The incoherent or noise evidence ZIN is then given by,

ZIN = Z1
SZ

2
S + Z1

SZ
2
N + Z1

NZ
2
S + Z1

NZ
2
N , (5.4)

where Z1
S is the signal evidence for detector 1, Z1

N is the noise evidence for detector

1, Z2
S is the signal evidence for detector 2, and Z2

N is the noise evidence for detector

2. The coherent vs. incoherent or noise Bayes factor BC,IN is then given by,

BC,IN = ZC/ZIN . (5.5)

The log Bayes factors for the Müller and Scheidegger injections are shown in

Figure 5.9. Figure 5.9(a) shows the signal vs. noise log Bayes factors for the 1000

Müller injections using the neutrino mechanism signal model. If the signal model is a

correct match for the signal in the data, then log BS,N should be proportional to the

SNR squared. The same result for the Scheidegger injections and magnetorotational

signal model is shown in Figure 5.9(b). A small number of signals have a log BS,N

value larger than expected. This can occur if there is glitch near to the CCSN

signal in one or more detector. The log BRottCC−C&S values are shown in Figure 5.10.

SMEE correctly determines the explosion mechanism for all of the 2000 CCSN

signals injected in O1 data.

Figure 5.9(c) shows the coherent vs. incoherent or noise log Bayes factors for the

1000 Müller injections using the neutrino mechanism signal model. If the signal is

a CCSN, then it is expected that log BC,IN should be larger than zero. The values

of log BC,IN for the Scheidegger injections are shown in Figure 5.9(d). Using both

signal models, some of the injected CCSN signals have log BC,IN values between 0

and -10. This is because log BC,IN can be negative when the signal is a CCSN, if

the SNR is less than 8 in one or more of the detectors considered. To determine

that a CCSN signal candidate is a glitch, log BC,IN would need to be smaller than
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Figure 5.9: The log Bayes factors obtained for 1000 Müller and 1000 Scheidegger waveforms in-
jected in O1 noise. (a) The signal vs. noise log Bayes factors obtained for 1000 Müller injections
using the neutrino mechanism signal model. (b) The signal vs. noise log Bayes factors obtained
for 1000 Scheidegger injections using the magnetorotational signal model. (c) The coherent vs.
incoherent or noise log Bayes factors obtained for the Müller injections using the neutrino mech-
anism signal model. (d) The coherent vs. incoherent or noise log Bayes factors obtained for the
Scheidegger injections using the magnetorotational signal model.

-10.

To determine if a signal candidate is a CCSN or a glitch it is possible to calculate

both types of log Bayes factors, and compare the results to those expected from

Figure 5.9. To determine if SMEE can reject glitches, 250 background triggers from

the cWB O1 targeted CCSN search are used. To calculate the background, data

from one detector is slid in time by a duration longer than the light travel time

between detectors, so that all coincident triggers cannot possibly be real GWs. As

we are certain that all the background triggers are glitches, they can be used to

determine the output of SMEE when search triggers come from coincident glitches.
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Figure 5.10: The distribution of Bayes factors used to determine the explosion mechanism for 1000
Scheidegger and 1000 Müller waveforms injected in O1 aLIGO data. The Scheidegger waveforms
are injected at 2 kpc, and the Müller waveforms are injected at 0.2 kpc. If the explosion mechanism
of the rapidly-rotating Scheidegger waveforms has been correctly determined then log BRotCC−C&S

will be positive, and if the explosion mechanism of the neutrino mechanism Müller waveforms is
correctly determined then log BRotCC−C&S will be negative. All waveforms are identified with the
correct explosion mechanism.

The log Bayes factors obtained by SMEE for the 250 coincident glitches are

shown in Figure 5.11. The signal vs. noise log Bayes factors obtained using the

neutrino mechanism signal model are shown in Figure 5.11(a), and for the magne-

torotational signal model in Figure 5.11(b). For the neutrino and magnetorotational

mechanism signal models, there are 13 and 2 of the glitches, respectively, which have

a logBS,N value large enough for them to be considered as possible signal candi-

dates. The logBS,N values are clearly not proportional to the square of the SNR as

would be expected if they were CCSN signals. The coherent vs. incoherent or noise

log Bayes factors obtained using the neutrino mechanism signal model are shown in

Figure 5.11(c), and the coherent vs. incoherent or noise log Bayes factors obtained

using the magnetorotational signal model are shown in Figure 5.11(d). For both

signal models, all of the logBC,IN values for the glitches with a large logBS,N value

are smaller than expected if the candidate is a real CCSN signal. Therefore, SMEE

determines that all of the 250 cWB glitches are consistent with either noise or a

glitch, and are not consistent with a CCSN signal.

The log Bayes factors determined by SMEE for the 250 sine Gaussian signals

are shown in Figure 5.12. The signal vs. noise log Bayes factors obtained using the
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Figure 5.11: The log Bayes factors obtained for 250 cWB background triggers found during the
O1 targeted CCSN search. (a) The signal vs. noise log Bayes factors obtained using the neutrino
mechanism signal model. (b) The signal vs. noise log Bayes factors obtained using the magnetoro-
tational signal model. (c) The coherent vs. incoherent or noise log Bayes factors obtained using
the neutrino mechanism signal model. The red dots show the glitches with signal vs. noise log
Bayes factors larger than 5. (d) The coherent vs. incoherent or noise log Bayes factors obtained
using the magnetorotational signal model. The red dots show the glitches with signal vs. noise
log Bayes factors larger than 5. None of the glitches are considered as potential CCSN candidates.

neutrino mechanism signal model are shown in Figure 5.12(a), and for the magne-

torotational signal model in Figure 5.12(b). When using the neutrino mechanism

signal model, there are 42 sine Gaussian injections which have a large enough value

of logBS,N for them to be considered as possible signal candidates. These signals

mainly have an SNR larger than 30. The coherent vs. incoherent or noise log

Bayes factors obtained using the neutrino mechanism signal model are shown in

Figure 5.12(c). Most of the 42 signals have a logBC,IN large enough that they

cannot be ruled out as a glitch or noise. The coherent vs. incoherent or noise

log Bayes factors obtained using the magnetorotational signal model are shown in

Figure 5.12(d). None of the sine Gaussian injections had a value of logBS,N and

logBC,IN large enough for them to be considered as possible CCSN signal candi-
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Figure 5.12: The log Bayes factors obtained for 250 sine Gaussian injections in O1 aLIGO noise.
(a) The signal vs. noise log Bayes factors obtained using the neutrino mechanism signal model.
(b) The signal vs. noise log Bayes factors obtained using the magnetorotational signal model. (c)
The coherent vs. incoherent or noise log Bayes factors obtained using the neutrino mechanism
signal model. (d) The coherent vs. incoherent or noise log Bayes factors obtained using the mag-
netorotational signal model. The sine Gaussian signals considered as potential CCSN candidates
are above SNR 30.

dates. For signal candidates that have passed the coherence test, we can look at

their reconstructed signal to determine if the signal matches one of the CCSN mod-

els considered in SMEE, or if the waveform is something unexpected from current

CCSN simulations.

5.6 Reconstructions

In this section, we show how well SMEE can reconstruct a CCSN GW signal. To

reconstruct the waveforms, SMEE uses Equation 2.17, with PC coefficients that are



5.6. Reconstructions 122

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
t− tbounce [s]

−1.0

−0.5

0.0

0.5

1.0

h +
[1

0−
20

at
0.

2
kp

c]

Injected
Reconstructed

(a)

−0.05 0.00 0.05 0.10 0.15 0.20 0.25
t− tbounce [s]

−1.0

−0.5

0.0

0.5

1.0

h +
[1

0−
20

at
2

kp
c]

Injected
Reconstructed

(b)

0 20 40 60 80 100 120 140 160
Network SNR

0.70

0.75

0.80

0.85

0.90

0.95

1.00

M
at

ch

Model L15-3

(c)

0 50 100 150 200 250 300
Network SNR

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

M
at

ch

Model R3E1AC

(d)

Figure 5.13: A measure of how well SMEE can reconstruct waveforms from different CCSN explo-
sion mechanisms in data from O1. (a) The reconstruction of a Müller waveform using the neutrino
mechanism signal model. (b) The reconstruction of a Scheidegger waveform using the magnetoro-
tational signal model. (c) The match parameters for 1000 injected Müller waveforms. (d) The
match parameters for 1000 Scheidegger waveforms. The reconstructed waveform is expected to be
a good match for the signal in the data when the correct signal model is used.

found by the nested sampler. As SMEE produces posterior distributions for each

of the PC coefficients, the 90% confidence intervals of the posteriors can be used to

produce an error for each of the reconstructed waveforms. The reconstructions of

the Müller, Scheidegger and sine Gaussian signals injected in O1 aLIGO noise are

investigated. An example reconstruction of a Müller waveform is shown in Figure

5.13(a). As SMEE uses CCSN waveforms to create signal models, all waveforms

reconstructed by SMEE will look like a CCSN signal, even if the signal in the

data does not match the CCSN models considered by SMEE. Therefore, we can

determine if the signal in the data is a CCSN signal by measuring how well the

waveform was reconstructed. If the reconstruction is good, it is a CCSN signal,

and if the reconstruction is bad, then it is another type of GW signal that does not

match our current models.
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To measure how well a waveform is reconstructed, a match parameter, α is calcu-

lated. It is a measure of the overlap between the injected and recovered waveforms.

An injected waveform would not be available for a real detection, but it would be

possible to carry out the same study using the reconstructed waveform produced

by the unmodelled burst searches. The match is given by,

α =
〈hrec|hinj〉√

〈hrec|hrec〉〈hinj|hinj〉
, (5.6)

where hrec is the reconstructed signal, hinj is the injected signal, and the inner

product is given by,

〈ha|hb〉 =

∫
h∗a(f)hb(f)

S(f)
df , (5.7)

where S(f) is the power spectral density. If the reconstructed waveform is an exact

match for the signal in the data then α will be 1. If there is no match between the

reconstructed waveform and the signal then the match will be 0.

The match parameters calculated for the 1000 Müller injections using the neu-

trino mechanism signal model are shown in Figure 5.13(c). All of the reconstructed

waveforms were a good match for the injected signal. The match is higher than 95%

for all of the Müller waveforms above SNR 20. The match parameter calculated for

the 1000 Scheidegger injections using the magnetorotational signal model is shown

in Figure 5.13(d). The maximum match achieved for the Scheidegger waveforms is

∼ 0.97, and an example reconstructed waveform is shown in Figure 5.13(b).

5.6.1 Testing Robustness

To test the robustness of the result, three-dimensional waveforms that were not

included in the PCs are used. As there are currently no more available three-

dimensional waveforms that can be used for this test, the PCs are made again

leaving out one of the signals from each of the explosion mechanisms. The left out

waveform for the magnetorotational signal model is Scheidegger model R3E1ACL.

The left out waveform for the neutrino mechanism model is the Müller waveform

L15-3. 7 PCs are used for each signal model. SMEE is then run again on the 1000

Müller and 1000 Scheidegger injections, which are no longer included in the signal

model. The result is shown in Figure 5.14. The maximum match for the Scheidegger

waveforms is 0.82, and the maximum match for the Müller waveforms is 0.72. A
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Figure 5.14: The match parameters calculated for three-dimensional waveforms not included in the
signal model. The two waveforms are removed from the signal models and are then analysed again
by SMEE as a test of the robustness of the method. The maximum match for the Scheidegger
waveforms is now 0.82, and the maximum match for the Müller waveforms is 0.72. A better result
is obtained for the magnetorotational waveforms as a larger number of simulations are available
to model the signals.

better result is obtained for the magnetorotational waveforms as a larger number of

simulations are available to model the signals. To be conservative, SMEE will only

consider a signal candidate as being a CCSN if the match parameter is larger than

0.6.

5.6.2 Sine Gaussian Signals

Figure 5.15 shows how well the 250 sine Gaussian signals were reconstructed us-

ing the neutrino mechanism signal model and the magnetorotational signal model.
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Figure 5.15: The match values for sine Gaussian injections reconstructed with neutrino mechanism
(bottom) and magnetorotational mechanism signal models (top). The maximum match was 0.2
and 0.1 for the magnetorotational signal model and neutrino signal model, respectively. All of
the match values are too low for the signals to be considered as CCSN GW candidates. There is
no correlation between SNR and match parameters as expected when the correct signal model is
used.

When using the neutrino signal model, the maximum match parameter calculated

was below 0.1. When using the magnetorotational signal model, the maximum

match calculated was below 0.2. All of the matches for the sine Gaussian signals

are much smaller than the match values of greater than 0.6 expected for a CCSN sig-

nal. Therefore, we can conclude that none of the sine Gaussian signals that passed

the coherence test belong to one of the two CCSN explosion models considered in

SMEE.
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5.7 Summary and Discussion

During the advanced GW detector observing runs, SMEE is used as a parameter

estimation follow-up tool for potential CCSN signal candidates that are identified

by the GW searches, or from alerts sent by electromagnetic and neutrino detectors.

In this chapter, we update the signal models in SMEE to use three-dimensional

neutrino mechanism and magnetorotational mechanism waveforms. Improvements

to CCSN simulations have advanced rapidly in recent years, and using the latest

available waveforms will maximise the potential for a GW CCSN detection and

measurement of the signals astrophysical parameters.

For the new signal models, the ideal number of PCs is 5 for the magnetorotational

signal model and 8 for the neutrino mechanism model. There is a large variance

in the time series of the three-dimensional neutrino mechanism waveforms, as for

the two-dimensional neutrino mechanism waveforms used in the previous chapter.

A more robust result will be possible in the future when more CCSN simulations

become available. We repeat the study in the previous chapter, injecting waveforms

from both mechanisms at 10 GPS times in GW detector noise recoloured to aLIGO

and AdVirgo design sensitivity. SMEE was able to correctly determine the explosion

mechanism of all of the detected waveforms. The minimum SNR needed to detect

the three-dimensional neutrino mechanism waveforms was greatly improved by using

the signal models created from the three-dimensional waveforms.

A real CCSN GW signal candidate could potentially be a glitch, or a different

type of astrophysical signal. In this chapter, we test the ability of SMEE to deter-

mine if a GW signal candidate is a CCSN signal, other astrophysical transient or a

glitch. O1 data is used for this study, so that the glitches will be a good represen-

tation of what is expected during future observing runs. To test the method 1000

Müller waveforms, 1000 Scheidegger waveforms, 250 sine Gaussian signals, and the

250 loudest background triggers from the targeted O1 cWB search for CCSNe are

used. It is shown that glitches can be eliminated as CCSN candidates by using

Bayes factors to determine if the signal is coherent between all of the detectors

being considered.

SMEE can produce a reconstruction of a CCSN candidate signal. The recon-

structed signal will always look like a CCSN signal, as SMEE uses CCSN waveforms
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to create a signal model. Therefore, if the reconstructed waveform is very different

to the waveform in the data, this can be used to rule out a candidate signal as

being one of the two CCSN models considered by SMEE. We find that by calculat-

ing the match parameter between the injected and recovered waveforms, that the

sine Gaussian injections can be rejected as CCSN signal candidates. This method

could help to determine if a CCSN signal has been detected when only one GW

detector is operational. In the future we plan to create a mock data set so that

the SMEE reconstructions can be compared to the waveforms reconstructed by the

un-modelled searches.



Chapter 6

Summary and Discussion

The aLIGO GW detectors have made the first direct detections of GWs beginning a

new era in GW astronomy [7, 18]. As AdVirgo joins the detector network, the rate

of detections is expected to increase [8, 11, 12]. Although CBC signals are expected

to be the most common source, the advanced detector network may detect GWs

from other sources, such as individual neutron stars, core-collapse supernovae or an

unexpected un-modelled source.

The non-Gaussian, non-stationary nature of advanced GW detector noise pro-

duces glitches, which affect the sensitivity of searches and could mimic a GW detec-

tion, in particular for un-modelled sources. Glitches can reduce the duty cycle of the

instruments and decrease the sensitivity of the detectors. Multiple different types

of glitches have been identified by their time-frequency morphology. If a glitch type

is not correlated with any auxiliary channel that is not sensitive to GWs then it

will not be removed by data quality vetoes, and their origin is particularly difficult

to identify. Glitch classification and categorization may provide valuable clues for

identifying the source of glitches, and possibly lead to their elimination. In initial

LIGO and Virgo science runs, this classification was performed by visual inspec-

tion of the glitches’ time series and/or spectrograms. In this thesis, we developed

a method, called PC-LIB, designed for the fast classification of advanced detector

glitches.

The performance of PC-LIB was tested on simulated data sets, and the results

are compared to those obtained with other methods designed for glitch classification.
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The classifiers have an efficiency of over 97% for glitches with an SNR above 20. As

real noise from the advanced detectors is non-stationary and non-Gaussian, a better

understanding of how the method would perform during the aLIGO observing runs

was then required. In the ER7 data used to test PC-LIB, 95% of the detected

glitches were classified correctly. A similarly high efficiency was obtained by other

methods used in a second glitch classification comparison study in both H1 and

L1 ER7 data. We conclude that all of the methods used for glitch classification in

aLIGO and AdVirgo data have a high efficiency in real non-stationary, non-Gaussian

detector noise.

During O1, PC-LIB was used to classify all glitches above SNR 12. The blip

glitch was found to be the most common glitch in both of the detectors. Since blips

are rarely removed by data quality vetoes, their accurate classification is crucial

to improve GW searches, as an accurate categorization will allow us to search for

couplings within the detector [41, 68]. The results of the O1 classification was then

used to examine the effects of different glitch types on the estimated parameters of

a GW burst signal. The change in the posterior peaks of the parameters is greatest

when the signal occurs within 0.15 s of a glitch, and when the glitch SNR is louder

than the signal SNR.

During future observing runs we plan to produce a database that combines

the classification results for all available glitch classifiers. The database would be

connected to summary pages that are produced daily to describe the quality of the

detector data. It would allow people who are doing data quality studies to search

for particular glitch types on different days. Glitch classification results can also

be used to provide data quality vetoes for specific types of glitches. This could be

achieved by training the veto algorithms on the outputs of the glitch classifiers. We

plan to test this with mock data sets before the third aLIGO observing run (O3)

so that the new vetoes can be used by the transient GW searches during O3.

A CCSN has long been considered as a potential source for advanced GW detec-

tors [147]. Although no CCSNe were found in initial detector science runs, previous

studies have shown that an advanced detector network could detect these sources

out to the LMC [51, 46]. In Chapter 4, we investigate Bayesian model selection

techniques designed to determine the explosion mechanism of CCSN signals de-

tected with an aLIGO and AdVirgo detector network. The tool used to achieve this

is called the Supernova Model Evidence Extractor (SMEE).
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The ability of SMEE to determine the CCSN explosion mechanism is demon-

strated with a network of GW detectors, using real non-stationary, non-Gaussian

detector noise. The magnetorotational and neutrino explosion mechanisms are con-

sidered. The results show that SMEE can determine the correct explosion mecha-

nism for all detectable waveforms at distances throughout the Galaxy and out to

the LMC. The model selection capabilities of SMEE were further enhanced with

a careful selection of the number of PCs, which considered the relative complexity

of the different explosion models. The two-dimensional rapidly-rotating core col-

lapse waveforms, used in Chapter 4, are a good approximation for three-dimensional

rapidly-rotating waveforms, as non-axisymmetric instabilities only occur after the

signal bounce that is the main feature represented by the signal models implemented

in SMEE. However, three-dimensional neutrino waveforms contain features that are

different from the two-dimensional waveforms used to create the PCs. SMEE needed

to be updated to use three-dimensional waveforms for the CCSN signal models to

maximise the potential for a CCSN detection and astrophysical parameter estima-

tion.

In Chapter 5, SMEE is updated to create signal models using three-dimensional

CCSN waveforms. With the new signal models, SMEE is able to correctly determine

the explosion mechanism of all of the detectable waveforms throughout our Galaxy.

The minimum SNR needed to detect the three-dimensional neutrino mechanism

waveforms was greatly improved by using neutrino mechanism signal models created

from three-dimensional waveforms. The ability of SMEE to determine if a GW

signal candidate is a CCSN signal, other astrophysical transient or a glitch is tested.

Data from O1 is used for this study, so that the glitch types will be similar to what is

expected during future observing runs. To test the method 1000 Müller waveforms,

1000 Scheidegger waveforms, 250 sine Gaussian signals and use the 250 loudest

background triggers from the targeted O1 cWB search for CCSNe are used. The

results showed that glitches can be eliminated as CCSN candidates by using Bayes

factors to determine if the signal is coherent between all of the detectors being

considered. The match between the reconstructed waveform and the data can be

used to determine if the signal is a CCSN or other type of astrophysical signal.

In the future SMEE could be extended to measure other astrophysical param-

eters, such as the rate of rotation or the EOS. SMEE will be updated to include

more CCSN waveforms as they become available. In third generation GW detec-

tors the CCSN rate could increase to as high as 1 per year. Therefore, testing the
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performance of SMEE on data expected from future detectors is an important next

step for this work.
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