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Abstract 

 
Candida biofilms are a substantial clinical and human health burden which are still 

underappreciated. Benefits afforded by morphogenic switching from planktonic to 

biofilm communities include resistance to antimicrobials in the host’s immune system, 

and resilience to mechanical disruption, all of which complicate the treatment and 

management of infections. Biofilm formation in Candida spp. is influenced by 

numerous factors, including response to the host, pH, bacteria, and many other 

environmental factors. This is further complicated by inherent heterogeneity within 

candidal populations in respect to biofilm forming capabilities and its response to 

external stimuli. Biofilms are heterogeneous by their nature, formed of populations of 

yeast and hyphal cells in a consortium of morphological states. Many variables exist 

to influence biofilm heterogeneity in Candida spp. and can influence the clinical 

outcomes and observations. The overarching aim of this thesis was to explore factors 

that influences C. albicans biofilm formation using omics-based approaches. 

 

We performed analysis on the microbiome derived from three distinct oral niches in 

denture stomatitis patients. Alpha and beta diversity measures were extrapolated and 

compared to identify perturbations in the microbiome that were related to either the 

oral hygiene or the Candida burden of the individuals. Correlation analysis between 

phyla, oral hygiene and fungal load were performed to identify significant 

relationships.  

 

Secondly, we selected clinical isolates, from our Scottish candidaemia study cohort, 

which were deemed high and low biofilm isolates as determined by biomass assays.  

We assessed the biofilm forming capabilities in media supplemented with and without 

serum. These assays consisted of crystal violet biomass assay and measurements of 

hyphal length. We also utilised SEM to visualise the phenotypes of the high and low 

isolates with and without serum. HBF and LBF isolates were then grown at 90min, 4h 

and 24h in the presence and absence of serum before being submitted to RNA-

Sequencing by Illumina. Differential expression analysis was performed using DESeq2 

before over representation and gene set enrichment analysis. Cell wall proteomics on 
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high and low isolates was also performed to identify computational changes in the cell 

wall. 

 

Thirdly, we performed metabolomic analysis both targeted and untargeted on the 

supernatants of HBF and LBF grown in the presence or absence of serum for 4 and 

24h. Features were identified from the LC-MS peaks by PiMP and analysis of 

differentially abundant analytes between our isolates and growth conditions were 

performed. Functional analysis of the annotated analytes was then performed by 

pathway activity profiling.  

 

Finally, utilising our identified differentially expressed features from metabolomic and 

transcriptomic analysis we submitted both datasets to integrative analysis. Using a 

combination of conceptual, joint pathway analysis by MetaboAnalyst and multivariate 

analysis using the MixOmics data integration package.  

 

From our microbiome analysis we observed that the oral hygiene measures had no 

significant effect on the diversity or composition of the oral microbiome. Candida 

similarly had no impact on the alpha diversity of the oral microbiome. However, we 

did observe some relationship in the beta diversity which correlated with Candida 

load. Further investigation identified correlations of genus including Lactobacillus with 

the Candida load. From our high and low Candida candidaemia isolates we observed 

phenotypic switching of LBF in the presence of serum. We also found functional 

differences related to this phenotypic switching. The low biofilm response to serum 

included enrichment in fatty acid and aycl-coA metabolic pathways. Metabolomic 

analysis revealed changes in arachidonic acid metabolism in serum grown isolates and 

changes in the amino acid metabolism between LBF and HBF isolates. Integrating 

these data, we were able to observe overlaps in the metabolic reprogramming of C. 

albicans isolates in serum with joint pathway analysis confirming changes in the fatty 

acid metabolic response in both transcriptomic and metabolomic data. Multivariate 

analysis by sPLS-DA identified several highly covariate discriminatory features with 

and without the presence of serum. These included many genes of currently unknown 

function and a downregulation of specific genes in serum including zinc transport.  
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Through the application of transcriptomics and metabolomics we have demonstrated 

that these holistic methodologies are invaluable to biofilm research. We identified 

molecular processes and metabolomic reprogramming of C. albicans in response to 

the biofilm inducing stimulus of serum. We also highlight the current and potential 

benefits that integration of multiple omics data sets provides. Integration is not 

without its challenges, however, and we identify some key methodologies that could 

improve interpretability of omics datasets derived from microbial communities. As 

Candida spp. do not exist within a vacuum, and infectious disease aetiology is 

dependent on the interactions between fungal and bacterial species, understanding 

the mechanisms that govern these biofilm models will help us to identify important 

factors and potential therapeutic strategies. 
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1.1 Introduction 
 

Within this thesis introduction we will discuss our current knowledge of Candida 

biofilms. We discuss their clinical implications, factors that drive heterogeneity and 

differences in phenotype and how they interact with bacteria in the oral cavity. We 

also discuss the advances in omics and how they are applied to interrogating microbial 

communities and biofilms. We also discuss our current understanding of oral health, 

the oral microbiome, and its relationship with Candida.   

 

This chapter is also contributed to from work previously published: 

Kean R, Delaney C, Rajendran R, Sherry L, Metcalfe R, Thomas R, McLean W, 
Williams C, Ramage G. Gaining Insights from Candida Biofilm Heterogeneity: One 
Size Does Not Fit All. J Fungi (Basel). 2018 Jan 15;4(1):12. doi: 
10.3390/jof4010012. PMID: 29371505; PMCID: PMC5872315. 
 
Delaney C, Kean R, Short B, Tumelty M, McLean W, Nile CJ, et al. Fungi at the 
Scene of the Crime: Innocent Bystanders or Accomplices in Oral Infections? 
Current Clinical Microbiology Reports. 2018; 5:190-200,doi: 10.1007/s40588-
018-0100-3 

 

Despite their clinical significance and substantial human health burden, Candida 

infections remain relatively under-studied and under-appreciated. The widespread 

overuse of antibiotics and the increasing requirement for indwelling medical devices 

provides an opportunistic potential for the overgrowth and colonization of pathogenic 

Candida species on both biological and inert surfaces. In fact, it is now widely 

appreciated that these are a highly important part of their virulence repertoire. 

Candida albicans is regarded as the primary fungal biofilm forming species and is 

known for its role in interkingdom biofilm interactions with numerous different 

bacteria. C. albicans biofilms are heterogeneous structures by definition, existing as 

three-dimensional populations of yeast, pseudo-hyphae and hyphae, embedded 

within a self-produced extracellular matrix (ECM) (López-Ribot, 2005). Classical 

molecular approaches driven by extensive studies of laboratory strains and mutants 

have enhanced our knowledge and understanding of how these complex communities 

develop, thrive, and induce host mediated damage. Yet clinical observations tell an 

alternative story, with differential patient responses likely to be a result of inherent 
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biological heterogeneity from specific clinical isolates associated with their infections. 

Moreover, the complexity of these infections is increased due to its interaction with 

host and environmental factors in addition to co-existence with many other bacterial 

species as interkingdom biofilms.  

 

1.2 Candida biofilms 
 

Candida spp. are eukaryotic fungal species of the division Ascomycota that are 

ubiquitous and exist within the normal flora on mucosal membranes, skin and gut. 

Candida spp. are present in up to ~70% of healthy humans but an overgrowth of 

Candida leads to dysbiosis such as in the case of immunocompromised patients 

(Perlroth et al., 2007). Candida spp., as pathogens, primarily cause candidiasis at the 

mucosa of the mouth, gut and vagina (Moyes and Naglik, 2011). In 

immunocompromised patients Candida causes invasive candidiasis or candidemia of 

the bloodstream which is a leading cause of bloodstream infections (BSI) (Rajendran 

et al., 2016d). Candida spp. typically associated with disease include C. albicans, C. 

glabrata, C. tropicalis and C. krusei. C. albicans is typically considered the most 

prevalent fungal species and most dominant fungal species associated with disease in 

humans (Nobile and Johnson, 2015). Although many Candida species cause infections 

of the mucosa, C. albicans is the most commonly recovered in clinical cohorts and this 

is attributed to its increased pathogenic factors (Nobile and Johnson, 2015). Key to 

this is its ability to phenotypically switch from yeast to hyphal and pseudo-hyphal 

forms. Enhanced filamentation compared to other Candida species which are only 

capable of yeast or pseudo-hyphae is thought to explain the higher prevalence of C. 

albicans in mucosal and BSI infections (Rajendran et al., 2016d, Sherry et al., 2014). 

Hyphal formation provides increased tissue invasion, host evasion and biofilm 

formation. Throughout this introduction we will discuss the process and implications 

of hyphal and biofilm formation and how this influences disease and its interaction 

with the host and other microorganisms. 

 

Microbes rarely exist planktonically as a single entity, instead the majority of 

organisms are found as complex heterogeneous sessile communities on abiotic and 
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biotic surfaces defined as polymicrobial biofilms (Peters et al., 2012). It has been 

suggested that up to 80 percent of bacteria favour a co-operative existence (Ramage 

et al., 2014). It is estimated that two thirds of all infections are due to the presence of 

a microbial biofilm (Potera, 1999, Sintim and Gursoy, 2016). Biofilms are considered 

as surface attached or aggregates of microbial cells (bacteria, fungi, and protozoa) that 

are encased in some form of polymeric substrate. These tenacious and sticky 

structures are classically recalcitrant to antimicrobial therapies, difficult to remove, 

and drive pro-inflammatory chronic immune responses that can damage host tissues 

and materials. C. albicans is considered the paradigm for fungal biofilms and 

significant strides have been made in elucidating how it forms and the mechanistic 

control of this. C. albicans is a normal commensal of human mucosal surfaces and 

opportunistic pathogen in immunocompromised patients. This dimorphic yeast exists 

in budding-yeast and hyphal forms, and these morphologies lend themselves to 

creating a structurally complex biofilm. A simplified model of this begins with yeast 

cells attaching to a relevant surface via defined adhesins. A microcolony is formed and 

yeast cells undergo morphological switching to pseudo- and true hyphae, rapidly 

forming an intertwined meshwork of hyphae interspersed with budding yeast cells. A 

glucan rich polymeric matrix then encloses the biofilms as it matures, providing 

protection from host defences and antimicrobial agents. The hypoxic stressful 

environment within the mature biofilm leads to further filamentation, but also release 

of yeast daughter cells can then disperse from the site of biofilm formation under 

physical force, such as flow, and attach to a new substrate and biofilm development 

starts again. Figure 1.1 illustrates this development cycle and the morphological 

transitioning. Microscopic analysis has demonstrated that C. albicans biofilm 

formation could be separated into three distinct developmental phases: Early (0 to 11 

hours); Intermediate (12 to 30 hours); and Maturation (31 to 72 hours). Confocal laser 

scanning microscopy (CLSM) has shown mature C. albicans biofilms to be complex 3-

D structures that can range from anything between 50 to 350 µm thick, depending on 

the model utilised (Chandra et al., 2001).  
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Figure 1.1 Simplified developmental cycle of C. albicans biofilm (Ramage and Williams, 2012). 

 

1.2.1 Adhesion and virulence 
Adhesion of yeast cells is mediated by the agglutinin like sequence proteins ALS1/ALS3 

and the GPI anchored cell wall protein Eap1p (Zhao et al., 2006, Li et al., 2007). Once 

microcolonies are formed, morphological transitioning is governed under the 

regulatory control of Efg1p (Ramage et al., 2002a). This regulator leads to the 

colonisation of pseudo- and true hyphae mixed biofilms, additionally hyphal wall 

protein Hwp2 and putative glycosylphosphatidylinositol (GPI) lipid anchored protein 

Pga1, Ihd1 and Hyr1 have also been implicated in initial adhesion. Following adhesion 

the yeast wall protein Ypw1 S. cerevisiae homolog is believed to maintain adhesion 

during early biofilm development (McCall et al., 2019).  

 

Key to successful colonisation and host damage to a mucosal niche is the secretion of 

various hydrolytic enzymes. These secreted proteins are a primary attribute within the 

virulence armamentarium of the organism allowing it to invade host tissue, and 

include proteinases, haemolysin and phospholipase. Of these enzymes, the secreted 

aspartyl proteinases (Saps) are the most studied, comprising a family of ten genes 
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(SAP1-10). The secretion of these enzymes has been attributed with increased 

virulence, with high levels of expression observed from a variety of diseases including 

infections of the oral cavity, bloodstream, vagina and patients with diabetes mellitus 

(Naglik et al., 2008, Joo et al., 2013, Ramage et al., 2012a). Given the diversity of the 

Sap family, then differential expression of independent genes has been associated 

with varying anatomical location (Naglik et al., 2003, Joo et al., 2013). During biofilm 

formation, SAP5 is up-regulated, significantly correlating with biomass (Sherry et al., 

2014). Indeed, an integrated global substrate and proteomics approach identified 

SAP5 and SAP6 as the major biofilm related proteases utilised by C. albicans. 

Manipulation of both genes resulted in decreased adhesion and impaired biofilm 

development both in vitro and in vivo, highlighting their role as potential biofilm 

biomarkers (Winter et al., 2016). Recent studies have identified a novel fungal toxin 

termed Candidalysin, a hyphae-specific peptide critical for epithelial damage (Moyes 

et al., 2016) and expression of the gene coding this toxin (ECE1) was shown to be highly 

up-regulated in C. albicans isolates capable of forming biofilms (Rajendran et al., 

2016b). 

 

1.2.2 Biofilm matrix 
Through experimental advancement and use of more sophisticated technologies, 

Candida biofilm ECM has been extensively analysed (Zarnowski et al., 2014, Nett et 

al., 2010a, Nett et al., 2010b, Mitchell et al., 2016). Compositionally, the ECM is 

comprised of four main macromolecular constituents: proteins, carbohydrates, lipids 

and nucleic acid. However, through use of a multi-omics approach, Zarnowksi et al 

(2014) identified an abundance of novel components within these subclasses, 

generating a distinguished compendium of its constituents. This demonstrated its 

clinical relevance of providing biofilm stability, sequestration of drugs and protection 

from the surrounding environmental stressors as well as subsequently facilitating 

biofilm dispersal (Zarnowski et al., 2014). While the majority of ECM-mediated 

research has focused on the role of polysaccharides, another notable component is 

extracellular DNA (eDNA) (Martins et al., 2010). Despite only contributing to 5% of the 

ECM, eDNA plays a substantial role in maintaining structural homeostasis within the 

matrix. It is thought to act as molecular glue, facilitating cohesion between the other 
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matrix constituents. Exogenous addition and enzymatic depletion of eDNA have been 

shown to have both positively and negatively influence biofilm formation respectively 

(Martins et al., 2010). Furthermore, the addition of DNase to amphotericin B and 

caspofungin enhances their activity against sessile communities, however no positive 

interaction is observed with azoles (Martins et al., 2012). 

 

1.2.3 Molecular basis and transcriptional regulation 
Given the complexity of the biofilm formation process it is unsurprising that it is 

determined by a variety of transcriptional regulations. Central to this is the master 

regulatory transcriptional network as defined by Nobile and colleagues (2012) (Nobile 

et al., 2012). Originally, a hub of six regulatory genes (TEC1, NDT80, ROB1, BRG1, BCR1, 

EFG1) was identified that regulate both themselves and approximately 1000 genes 

involved in biofilm formation processes such as hyphal morphogenesis, ECM 

production and drug resistance (Nobile et al., 2012). Furthermore, this same group 

identified an additional three regulatory genes responding to temporal changes in 

biofilm formation. Using deletion strains, they identified FLO8 as a regulator 

throughout all stages of development from initial adherence to fully mature biofilms, 

whereas RFX2 and GAL4 are required only in the later stages of maturation (Fox et al., 

2015). While these approaches provide invaluable insights into the transcriptional 

mechanisms underpinning biofilm development, their limitations lie within only 

considering laboratory reference strains. Indeed, when the transcriptional profile of a 

group of C. albicans LBF and HBF were compared, no transcriptional differences of two 

of the master biofilm regulators (BCR1 and EFG1) was shown, despite the phenotypic 

and biological differences between the strain subsets (Sherry et al., 2014). Figure 1.2 

illustrates our current understanding of the molecular basis of C. albicans biofilm 

development.
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Figure 1.2 Molecular basis of C. albicans biofilm formation (Finkel and Mitchell, 2011, Nobile 
et al., 2012). 

 

1.2.4 Metabolism 
As well as a defined transcriptional network governing biofilm formation, various 

metabolic circuits control the transition from planktonic cells to biofilm maturity. 

Using a metabolomics approach, Zhu and colleagues (2013), performed a time-course 

analysis of the metabolome of C. albicans biofilm development (Zhu et al., 2013). They 

identified 31 metabolites that were differently expressed between planktonic and 

biofilm cells that were involved in various processes including the TCA cycle, amino 

acid biosynthesis and oxidative stress. Interestingly, they showed that trehalose was 

highly up regulated after 6 hours of maturation. Using a TPS1 knockout, they 

demonstrated an impaired biofilm phenotype, as well as increased sensitivity to 

amphotericin B and miconazole, thus highlighting the importance of the trehalose 

biosynthesis pathway for biofilm maturation (Zhu et al., 2013). Metabolomics has 

been used in numerous studies to investigate Candida biofilms under different 

environmental conditions. Such as those that illicit a modified biofilm response. 

Metabolic reprogramming is an important consideration in many biofilm studies, and 

we discuss this in further detail in section 1.6.6. 
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1.3 Biofilm heterogeneity 
 

As highlighted in the previous sections, classical molecular microbiological approaches 

have shown that deletion or over expression of particular genes enables us to 

definitively deduce their function in C. albicans biofilms. Reinforced by structural 

biology studies, these tactics have enabled us to deduce the structure/function of 

specific proteins within the context of biofilm development. Nevertheless, this 

assumes that molecular manipulations do not have any pleiotropic effects, nor does 

this take into account inherent biological heterogeneity that bears itself amongst a 

range of clinical isolates. This begs the question whether using laboratory strains is the 

optimal way to develop our understanding of microbial pathogenesis (Fux et al., 2005), 

or instead, whether taking a combinatory approach through evaluating both 

phenotypic and genotypic characteristics of clinical isolates would enhance our 

understanding. This section focuses on C. albicans biofilm heterogeneity and attempts 

to examine the literature with respect to what insights can be garnered from working 

with clinical isolates and observing the inherent heterogeneity that exists. Biofilm 

heterogeneity for any micro-organism is the difference observed in biofilm formation 

from a few patchy cells to thick multi layered masses (Wimpenny et al., 2000). Further 

to this, biofilm heterogeneity in Candida biofilms involves cells at different stages of 

morphology, fluctuating levels of ECM and differences in thickness.  

 

1.3.1 Is heterogeneity clinically important? 
Since the earliest descriptions of Candida biofilms great strides have been made to 

unequivocally demonstrate their clinical significance, despite perceived contention in 

the field. Throughout the human host, Candida biofilms colonize a wide variety of 

anatomical locations, as shown in Figure 1.3. The oral and vaginal epithelium provide 

a mucosal niche for biofilm formation, whilst indwelling medical devices such as 

prosthetic heart valves and central venous catheters provide an inert, abiotic 

substrate for subsequent biofilm adherence and proliferation (Kojic and Darouiche, 

2004, Ganguly and Mitchell, 2011). Irrespective of isolation site, biofilm heterogeneity 

has been reported within the oral cavity, bloodstream, and urinary tract (O'Donnell et 

al., 2017, Rajendran et al., 2016d, Sherry et al., 2017, Jain et al., 2007, Bitar et al., 2014, 
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Alnuaimi et al., 2013). Within a clinical setting, intravascular catheters provide an 

optimal environment for Candida spp., allowing for the development and maturation 

of biofilms to which cells can disperse and subsequently cause candidemia. Dispersed 

biofilm cells have been shown to be more pathogenic than their planktonic 

counterparts, exhibiting greater cytotoxicity and virulence in vivo (Uppuluri et al., 

2010). Therefore, the role of the biofilm phenotype has potentially profound 

implications within the clinical environment. An initial study from Tumbarello and 

colleagues (2007) aimed to identify the top risk factors associated with mortality rates 

in candidaemia patients. Using multivariate analysis, they were able to distinguish 

inadequate antifungal therapy (OR 2.36, p=0.03), APACHE III (OR 1.03, p<0.001) and 

overall biofilm-forming Candida species (OR 2.33, p<0.007) as significant variables 

associated with mortality (Tumbarello et al., 2007). When scrutinized at the Candida 

species level, only C. albicans (OR 3.97, p<0.001) and C. parapsilosis (OR 4.16, p=0.03) 

were shown to significantly correlate with biofilm-based mortality. A follow up study 

subsequently identified central venous and urinary catheters, use of total parenteral 

nutrition, and diabetes mellitus as independent factors that were associated with BSI 

caused by high biofilm forming isolates (Tumbarello et al., 2012). Furthermore, they 

demonstrated the potential economic burden of these isolates resulting from 

increased lengths of hospital stays and use of antifungals and ultimately resulted in an 

increased possibility of mortality (Tumbarello et al., 2012). A more recent, prospective 

analysis subsequently identified line removal (p=0.032) as a significant risk factor 

associated with mortality rates from a candidaemia patient cohort, with the removal 

of an indwelling line correlating with a more positive patient outcome (Rajendran et 

al., 2016d). Interestingly, when this was subsequently assessed at Candida species 

level, survival analysis demonstrated significantly higher survival rates for patients 

with C. albicans associated line removal compared to no removal, with no differences 

observed in non-Candida albicans species (NCAS) (Rajendran et al., 2016c). Published 

guidelines have suggested that catheter-related bloodstream infections should result 

in the direct removal of such devices, if possible (Cornely et al., 2012, Koehler et al., 

2014, Mermel et al., 2009). Furthermore, a meta-analysis of seven clinical trials 

revealed that the removal of central venous catheters significantly correlated with 

reduced mortality rates (OR 0.50, p<0.001) (Andes et al., 2012). 
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Figure 1.3 Mucosal and medical devices associated Candida biofilm infections (Peleg et al., 
2010). 

 

1.3.2 How does heterogeneity impact antifungal treatment? 
Antifungal tolerance is a complex, multifactorial process which can either be induced 

in response to a compound or manifest as an irreversible genetic alteration as a result 

of prolonged drug exposure. While resistant planktonic cells predominantly arise from 

inherited traits to maintain a tolerant phenotype, biofilm resistance rises through 

mechanisms such as over-expression of target molecules, efflux pump activity and 

through the protective barrier of the extracellular matrix (ECM) allowing limited 

diffusion. Undoubtedly the most defining characteristic of biofilms is this intrinsic and 

adaptive recalcitrance to many antimicrobial therapies. Compared to their free-

floating planktonic equivalents, up to 1000-fold higher concentrations of antifungal 

agents can be required to effectively kill Candida biofilms in vitro, with the same 

decreased sensitivities also observed in vivo (Ramage et al., 2001b, Kucharikova et al., 

2010). Figure 1.4 illustrates the factors associated with antifungal tolerance in 

biofilms.  
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Figure 1.4 Schematic representation of factors driving biofilm-associated antifungal 
tolerance (Ramage et al., 2012b). 

 

Several clinical observations have associated the ability to form biofilms with 

mortality, but also with azole and inadequate antifungal use. Many studies have sub-

categorised C. albicans isolates as low biofilm formers (LBF) and high biofilm formers 

(HBF) (Marcos-Zambrano et al., 2016, Muadcheingka and Tantivitayakul, 2015, 

Rajendran et al., 2016d). Phenotypically, biofilms formed by these isolates are distinct, 

with LBF existing predominantly as sparse populations of yeast cells and pseudo-

hyphae, whereas HBF have a dense, tenacious hyphal based morphology. In vivo there 

is also biological differences, with increased mortality rates observed in HBF compared 

to LBF (Hasan et al., 2009, Sherry et al., 2014). Additionally, it was shown in vitro that 

isolates categorised as LBF and HBF were differentially sensitive to azoles and 

echinocandins at both low and high dosage, with the later less susceptible to these 

concentrations (Rajendran et al., 2016d).  

 

1.3.3 What drives biofilm heterogeneity?  
Interestingly, eDNA is a factor that contributes to the biofilm forming heterogeneity 

observed between LBF and HBF. Significantly increased quantities of eDNA were 
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released from both early and mature biofilms of HBF strains compared to LBF strains 

(Rajendran et al., 2014). Given that HBF are more resistant to amphotericin B (AMB) 

than LBF (Sherry et al., 2014), the combination therapy with AMB and DNase, that 

sensitises HBF up to 8-fold compared to AMB alone, is very much a matrix-mediated 

resistance (Rajendran et al., 2014). The role of the other ECM components within 

biofilm heterogeneity observed in clinical isolates remains unknown, yet given the 

differences observed between azole and echinocandin susceptibility of these isolates 

(Rajendran et al., 2016d) it is highly likely that key components are involved and 

worthy of further scrutiny to determine if strain specific ECM motifs are present.  

 

To better our understanding of the molecular mechanisms facilitating biofilm 

heterogeneity between C. albicans clinical isolates, Rajendran and colleagues (2016) 

undertook a transcriptional profiling approach (Rajendran et al., 2016b). As expected, 

well-known biofilm related genes such as HWP1 and ALS3 were up regulated in HBF. 

A non-biased computational approach was further utilized, and in doing so the 

metabolic circuitry which defined biofilm phenotypes was established (Figure 1.5). 

 

Using KEGG pathway analysis, it was shown that the amino acid pathways arginine and 

proline metabolism, pyruvate metabolism, and also fatty acid metabolism, were highly 

upregulated in HBF. Within the subnetwork of these pathways, the gene encoding 

aspartate aminotransferase (AAT1) was shown to be a regulatory hub of these 

networks. Pharmacological inhibition of this enzyme was shown to perturb biofilm 

formation, highlighting its potential as a target for biofilm-based infections. 
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The adaptation of its metabolism is fundamental to the pathogenicity and survival of 

C. albicans within the host (Brown et al., 2014a). The immune response to Candida 

biofilms is diminished compared to planktonic cells (Nett, 2016), with further evidence 

suggesting the potential to stimulate biofilm production, resulting in an altered 

inflammatory output (Chandra et al., 2007). The presence of additional environmental 

stressors such as pH, thermal and oxidative stress, and also the availability of nutrients 

results in the metabolic adaptation of the biofilm to acclimatise to its surroundings. 

Figure 1.6 illustrates an emerging concept, central to this thesis, how different clinical 

isolates differentially respond to external stimuli. This, combined with inter-

relationships with other yeasts and bacteria, creates multiple permutations of strain 

specific biofilms, all exhibiting their distinct and unique fingerprints.  

 

 

Figure 1.5 Maximum scoring metabolic subnetwork in the LBF-HBF network. Differential 
transcriptional expression between LBF and HBF. Red gene names indicate upregulation in 
HBF, with blue indicating LBF (Rajendran et al., 2016a). 



Chapter 1: Candida biofilms, their clinical significance and role in interkingdom 
interactions 

15 
 

 
Figure 1.6 Factors influencing biofilm formation. There are multiple stimuli that can induce 
biofilm formation including the immune response, antifungal stress, and bacterial derived 
metabolites. Environmental stressors can also stimulate biofilm formation, and these include 
the availability of nutrients, temperature and pH (Kean et al., 2018a). 

 

1.4 Polymicrobiality in the oral cavity 
 

Polymicrobial oral biofilms consist of many bacterial and fungal species. 

Approximately 700 bacterial species or phylotypes (Aas et al., 2005) and more than 

100 fungal species have been identified in the oral cavity (Peters et al., 2017). It is 

estimated that overall species numbers may well exceed 1000, although many of 

these are uncultivatable (Jenkinson, 2011). There is significant diversity in the oral 

microbiome, varying greatly from individual to individual. For example, only 100-200 

species are thought to be found in the oral cavity of any given individual (Paster et al., 

2006). Despite this diversity, the concept of microbial “complexes” of microorganisms 

has emerged, that demonstrates a shift in biofilm colonisation from health to disease, 

such as in the development of periodontal disease (PD) (Socransky et al., 1998, 

Haffajee et al., 2008). Our understanding of how dental plaque composition relates to 

oral health and disease has also changed over time. For example, hypotheses such as 
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the “non-specific plaque hypothesis” (Theilade, 1986), “specific plaque hypothesis” 

(Loesche, 1976), “ecological plaque hypothesis” (Marsh, 1994) and “keystone 

pathogen hypothesis” (Hajishengallis et al., 2012) were all developed over the past 50 

years. Over time, these hypotheses have set the foundations of future oral 

microbiological research, ultimately contributing to our current understanding of the 

complex nature behind microbial disease onset and progression in the oral cavity. 

Recently, multi-omics approaches (e.g., genomics, transcriptomics, proteomics, and 

metabolomics) have enhanced our understanding of microbial interactions in the oral 

cavity. Theoretically, it is now possible to identify all microbial species that colonise 

our mouths (Jenkinson, 2011, Dewhirst et al., 2010). The omics platforms provide the 

power to investigate complex systems in unprecedented detail, and these have been 

used to examine biofilms in human diseases and in animal models of disease.  

 

1.4.1 Candida and the oral cavity 
The oral ecosystem is a critical element in oral health, with dysbiosis perceived as the 

primary driver of disease phenotypes (Marsh and Zaura, 2017). Recent studies have 

shown that ecological heterogeneity of the salivary ecosystem, its functionality, and 

its interaction with host-related biochemical salivary parameters are also important 

considerations in understanding disease processes in the oral cavity (Zaura et al., 

2017). However, a notable omission from many of these studies is the importance of 

pathogenic fungi expressed in terms of the mycobiome, and how these eukaryotes 

impact the progression of various oral diseases. Indeed, fungi are often neglected in 

oral microbiology due to their relatively low quantitative contribution within diseased 

sites of the oral cavity. Nevertheless, consideration of their size may lead to a rethink, 

as conservative estimates for a yeast cell bio-volume is approximately 70μm3 whereas 

a bacterium is 0.5μm3 (Janus et al., 2016). This almost 150-fold difference in the 

occupancy of available space upon orally relevant surfaces for fungi suggests that it is 

at least a bystander, but whether a major contributor to pathogenicity or not remains 

to be determined.  

 

The oral cavity contains numerous different micro-environments, ranging from 

enamel, mucosa, periodontal pockets, acrylic and metal substrates, and dentine, that 
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are inhabited by tens to hundreds of bacterial species (Xu et al., 2015). Polymicrobial 

communities can form biofilms upon this vast variety of substrates (Shibli et al., 2008, 

Diaz et al., 2012, Vieira Colombo et al., 2016). It is now generally well understood that 

dental plaque biofilms contain many resident species that modulate one another, 

their environment, and the host response (Millhouse et al., 2014, Hirschfeld et al., 

2017, Ramage et al., 2017). Despite the widely acknowledged presence of yeasts 

within the oral cavity, their active role and participation in oral diseases is generally 

perceived to be restricted to mucosal-related diseases. Yet, more than 100 fungal 

species have been reported to colonise the oral cavity and co-exist within complex 

biofilm populations within aggregates alongside resident bacterial microbiomes 

(Peters et al., 2017). The emergence of these datasets has been the catalyst for several 

studies investigating the importance of fungi within oral biofilm infections. This has 

fuelled the concept of interkingdom communities, which continues to grow above and 

beyond our traditional viewpoint of bacterial-bacterial interactions (Mukherjee et al., 

2017, Bamford et al., 2009, Boisvert and Duncan, 2008). Indeed, the advancement in 

sequencing technologies has facilitated the characterization of the fungal oral 

microbiome (Ghannoum et al., 2010, Persoon et al., 2017b, Peters et al., 2017). 

 

1.4.2 Periodontal disease 
Periodontitis is a disease, or group of diseases, characterised by a complex host 

inflammatory response that is stimulated by microbial interactions from complex 

polymicrobial biofilm plaque. This subsequently leads to damage to the surrounding 

gingival tissues and supporting structures of the tooth. It varies in severity from 

reversible gingivitis to severe irreversible periodontitis, where the periodontal 

ligaments and alveolar bone are destroyed (Page et al., 1978). Despite our ability to 

easily prevent this disease with oral hygiene measures, it remains one of the most 

prevalent diseases in the world, with nearly half of adults in the USA developing 

periodontitis (Eke et al., 2015). Periodontal disease has a well understood bacterial 

aetiology, with Porphyromonas gingivalis considered the keystone pathogen within 

periodontitis (Hajishengallis et al., 2012). Several other bacteria have also been 

implicated, including but not limited to, Tannerella forsythia, Aggregatibacter 

actinomycetemcomitans, and Fusobacterium nucleatum (Megson et al., 2015, Settem 
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et al., 2012). Given the diversity and numbers of other bacteria in and around the 

periodontal neighbourhood, then it is difficult to say with absolute certainty that 

particular periodontal pathogens are the sole cause of periodontitis. Indeed, the 

concept of oral ecotypes and pathotypes suggests that the sum of different varieties 

of periodontal pathogens and their functional capacity within the periodontal 

environment, despite functionally redundant metabolic processes, are more likely to 

drive synergised virulence leading to clinical disease (Zaura et al., 2017). 

 

Several fungal species have been isolated from the periodontal pockets of patients 

with periodontitis, with C. albicans generally being the most prevalent (Canabarro et 

al., 2013, Al Mubarak et al., 2013). Notably, the presence of C. albicans has also 

correlated with the severity of periodontitis (Canabarro et al., 2013). Whether it is 

simply innocently colonizing this environment and playing no active pathogenic role is 

unknown, yet mounting evidence suggests that it has the capacity to interact with 

periodontal pathogens and influence their behaviours. Specific bacteria frequently co-

isolated with C. albicans in periodontal pockets include the anaerobes F. nucleatum 

and P. gingivalis. Remarkably, it has been shown that fungi are able to rapidly deplete 

oxygen within mixed species environments, which may explain why obligate 

anaerobes and yeasts are observed together (Lambooij et al., 2017). For instance, P. 

gingivalis modulates and enhances the germ tube formation of C. albicans (Nair et al., 

2001), whereas F. nucleatum has been demonstrated to inhibit C. albicans hyphal 

morphogenesis (Bor et al., 2016). Other P. gingivalis-related studies however noted 

an antagonistic effect on the yeast-hyphal transition in C. albicans, with P. gingivalis 

notably down-regulating hyphal related genes ALS3, HWP1 and SAP4 (Cavalcanti et 

al., 2016b, Thein et al., 2006). Most recently, it has been demonstrated that the 

attachment of P. gingivalis to C. albicans is facilitated by the virulence factor InlJ from 

the internalin protein family, which interacts with the C. albicans adhesin ALS3 

(Sztukowska et al., 2018a). Additionally, co-adhesion specific interactions were 

observed, where adhesive interactions between these pathogens appears to induce 

the type 9 secretion system of P. gingivalis, a system characterised as having an 

increased community pathogenicity (Hajishengallis and Lamont, 2016).  
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Further studies have shown that enhanced invasion of a gingival epithelial cell line and 

gingival fibroblasts by P. gingivalis is enhanced by pre-incubation with heat-killed cells 

and the mannoprotein-β-glucan complex from C. albicans (Tamai et al., 2011). The 

mechanism by which C. albicans facilitates this invasion is unclear, though the authors 

hypothesise that the recruitment of C. albicans cell wall components increase the 

recruitment of clathrin in epithelial cells. This is a mechanism by which P. gingivalis 

has been shown to invade host cells (Boisvert and Duncan, 2008). Further physical 

interactions have been investigated with F. nucleatum. This contact-dependent 

interaction is mediated by the FLO9 C. albicans cell wall protein and the RadD F. 

nucleatum membrane protein, which prohibits the morphological switching from 

yeast to hyphae (Bor et al., 2016). Only recently has this interaction of FLO9 and RadD 

have been shown to be necessary for co-aggregation of F. nucleatum and C. albicans 

under both planktonic and biofilm conditions (Wu et al., 2015). It has additionally been 

shown that this co-aggregation with F. nucleatum has a modulatory effect on the 

innate immune response. MCP-1 and TNF-α production are reduced during co-

aggregation, which Bor et al (2016) conclude has the potential to provide a mutualistic 

protection from macrophage killing and recruitment of monocytes resulting in an 

increased persistence (Bor et al., 2016).  

 

Finally, A. actinomycetemcomitans has been associated with severe periodontitis 

(Brusca et al., 2010). In vitro, A. actinomycetemcomitans adheres to hyphae, although 

interactions with C. albicans show decreased fungal biofilm formation which is 

mediated by the luxS synthesized autoinducer-2 (AI-2) dependent mechanism. This 

was also mirrored using the 4,5-dihydroxy-2,3-pentanedione (DPD) synthetic 

molecule (Bachtiar et al., 2014). In Streptococcus gordonii, a ubiquitous oral 

commensal, it was shown that C. albicans hyphal formation was induced in a luxS 

dependent manner, and that the addition of DPD had no effect on hyphal formation 

(Bamford et al., 2009). It is evident, as the authors concede, that more studies are 

necessary to elucidate the interactions between C. albicans and A. 

actinomycetemcomitans. 
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There is still much that is unknown and there is conflicting evidence within the 

literature regarding the importance of interkingdom relationships and their 

involvement in the progression of periodontitis. The literature does highlight some 

potentially important synergistic relationships between fungal and bacterial species. 

However, as is true for many aspects of fungal-bacterial interactions further clinical 

studies are required to demonstrate functional dependency.  A starting point would 

be to show in vivo presence of hyphae within periodontal pockets of patients and 

associated bacteria. 

 

1.4.3 Denture stomatitis  
As the elderly population expands to a predicted two billion by 2050, the number of 

denture wearers are coincidently rising. Currently, around 20% of the UK population 

wear removable dentures of some form, with 70% of UK adults older than 75 years 

old wearing dentures (Hannah et al., 2017), with many of these individuals suffering 

from denture stomatitis (DS), an inflammation of the palate (Gendreau and Loewy, 

2011). Poor oral hygiene is frequently observed within this patient group and several 

factors can impact the onset of DS such as salivary flow, denture cleanliness, age of 

denture, smoking and diet (Martori et al., 2014). Soft tissue inflammation below or 

above the denture, as a result of persistent exposure to microorganisms, is 

characteristic of DS (O’Donnell et al., 2017). Microbes frequently adhere to the 

denture surface and a biofilm quickly develops which can contain numerous species 

of bacteria and fungi. This is aided by the varied topographical landscape that 

promotes microbial retention within cracks and crevices of acrylic substrates (Hannah 

et al., 2017). Denture plaque microbiome studies by our group have identified a 

variety of oral pathogens, including cariogenic bacteria, such as the Lactobacillus 

species that were positively correlated with high levels of Candida spp. (O’Donnell et 

al., 2015).  

 

Discovery of C. albicans and Lactobacillus species in denture plaques was unexpected, 

as these bacteria have previously displayed antagonism with C. albicans at other 

mucosal sites (Parolin et al., 2015). The interactions and mechanisms employed by C. 

albicans and Lactobacilli remain somewhat enigmatic. Lactobacilli species have 
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demonstrated the ability to inhibit C. albicans growth via the release of hydrogen 

peroxide and fatty acids (Li et al., 2012). Previous to this, in an ex vivo experiment, L. 

rhamnosus and L. reuteri altered host responses by eliciting an increased 

inflammatory cytokine response in a C. albicans co-infection model (Martinez et al., 

2009). Hypothetically, a pro-inflammatory response could exacerbate the 

inflammation of DS whilst ultimately assisting in the clearance of C. albicans. 

Lactobacilli supernatants have been shown to considerably reduce the ability of C. 

albicans to form biofilms (Matsubara et al., 2016). However, the supernatants were 

unable to significantly reduce the viability of mature biofilms compared to bacterial 

cell suspensions. It is likely that production of excreted metabolites such as hydrogen 

peroxide and short chain fatty acids may interfere with initial adhesion, but direct 

bacterial-fungal interactions occur to disperse mature C. albicans biofilms. Patients 

with more severe DS are colonised with greater numbers of C. albicans and 

Lactobacilli, indicating the possibility that these organisms can detect changes in their 

environment and alter their behaviours appropriately to effectively colonise the oral 

cavity (Bilhan et al., 2008). 

 

Although Lactobacillus species are the most commonly isolated bacteria from DS 

biofilms, other Candida species, namely C. glabrata, have also been detected (Coco et 

al., 2008a). Co-infection with C. glabrata results in upregulation of key virulence genes 

(ALS3 and HWP1) in C. albicans (Alves et al., 2014). This increased virulence, in return, 

complements the ability of C. glabrata to invade epithelial tissue (Silva et al., 2011). 

Authors hypothesised that during penetration of tissues by C. albicans, C. glabrata is 

transported into host cells via forming aggregates on the hyphae, as has been shown 

with various bacteria.  

 

As studies get closer to understanding the mechanisms of interactions within dual-

species biofilms, this will pave the way to elucidate how interactions within 

multispecies denture plaque contribute to disease processes. Indeed, it has been 

shown in vitro that multi-species interkingdom interactions synergise one another, 

with hyphae induced by Streptococcus oralis, and the overall biovolume of denture 

biofilms further enhanced with accompanying Actinomyces oris (Cavalcanti et al., 
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2016a). Understanding the behaviours of multi-species biofilms in vivo will prove more 

useful in the management of DS, where rough surface topography plays an additional 

physical role in supporting detrimental interactions. Though, this can be mitigated by 

physically altering denture surfaces to prevent Candida adhesion (Alalwan et al., 

2018). 

 

These sections have highlighted how some Candida is a key human pathogen with high 

variability in its ability to form biofilms, additionally through different interactions it is 

able to modulate its morphology and virulence. We have discussed how C. albicans, 

as in other host sites such as the vagina and bloodstream, forms a critical role in oral 

diseases. It undoubtedly plays an important accessory role to a variety of bacterial 

pathogens. Within the myriad of different microbial interactions that occur within the 

oral microbiome, there are synergisms and antagonisms, with the most dominant 

manifesting themselves in disease outcomes. C. albicans can physically, metabolically 

and through the release of soluble molecules, play an important participatory role in 

the oral diseases outlined above. 

 

1.5 Methodological approaches to understanding Candida and mixed-
species biofilms 

 

1.5.1 The conventional and established approaches 
When screening large collections of clinical isolates from different patient cohorts, 

several experimental strategies have been utilized, predominantly quantifying 

biomass using dry weight, stains such as crystal violet, and the metabolic dye XTT 

(Azeredo et al., 2017). Each technique has their own benefits and caveats, but caution 

must be taken when interpreting the data achieved from each assay, particularly when 

correlating it to clinical outcomes. Due to the heterogeneity found between strains 

and the varying laboratory models and techniques, standardization becomes 

problematic. One of the most used bioassays is the sodium salt XTT [2,3-bis(2-

methoxy-4-nitro-5-sulfo-phenyl)-2Htetrazolium-5-carboxanilide] (Hawser, 1996, 

Hawser et al., 1998). This biofilm assay is highly reproducible and allows for a high 

throughput of multiple microtiter plates without compromising accuracy. Its 
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usefulness comes with susceptibility testing, allowing for the direct comparison of 

antifungal treated samples compared to an untreated control (Ramage et al., 2001a). 

Given the metabolic variation observed between both different strains and species 

then caution must be taken when interpreting the assay, as a measurement for biofilm 

development may simply reflect high cell numbers (Kuhn et al., 2003, Taff et al., 2012). 

For example, scant biofilms of non-albicans yeasts may show a high XTT value, yet 

minimal biomass is present. Therefore, the output achieved from XTT is only cellular 

viability and it does not take into account other biofilm components such as the ECM, 

which are arguably the most important when it comes to biofilms (Nett et al., 2007).  

 

Another commonly used assay for biofilm formation is crystal violet staining. This 

method provides the total quantification of the biofilm biomass (cells and ECM) and 

allows for rapid high throughput processing of multiple samples. However, variability 

of the washing step can result in both over- and under-estimation of biomass, with 

the assay also unable to differentiate subtle differences between samples (Azeredo et 

al., 2017). An interesting example of this was described in a recent study, where these 

techniques were used to stratify the ability of Candida bloodstream isolates to form 

biofilms (Pongracz et al., 2016). There was no clear standard for their stratification to 

denote strains as biofilm or non-biofilm formers, with crystal violet values of OD570 

>0.09 simply denoted as a biofilm former. By doing so, it was concluded that NCAS 

form greater biofilms than C. albicans, and that biofilm formation does not correlate 

to clinical outcomes. This is in contrary to a wealth of previous literature, whereby the 

ability of Candida isolates to form a biofilm does associate with mortality (Rajendran 

et al., 2016d, Soldini et al., 2017, Tumbarello et al., 2012, Tumbarello et al., 2007).  

 

Discrepancies between these findings illustrates the necessity for standardised testing 

to elucidate biofilm-related risk factors. The Ramage group have taken a ‘belt and 

braces’ approach, using a combinational approach of crystal violet, XTT and SYTO9 

fluorescence quantitative biofilm assays. Here, significant correlations were observed 

in C. albicans biofilm formation, which was subsequently used to stratify biofilm-

forming ability (Rajendran et al., 2016d). Irrespective of the quantitative approach, 

wide-spread biofilm heterogeneity is observed within different clinical panels of 
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isolates (Kumar and Menon, 2006, Pongracz et al., 2016, Rajendran et al., 2016d, 

Sherry et al., 2014). Collectively, these data suggest that different Candida strains 

function differently, and that consideration should be given to the individual isolates 

as we try and understand their clinical importance with respect to antifungal 

resistance and pathogenic potential. 

 

Conventional culturing by process of nutrient plates is still a highly effective and 

efficient way of determining Candida characteristics. First stage identification via 

CHROMagar is a fast and effective way to distinguish between Candida spp. It is 

routinely used in first pass screening of clinical isolates from which improved 

identification can be performed (Ozcan et al., 2010). Matrix assisted laser desorption 

ionization time-of-flight mass spectrometry (MALDI-TOF) has become an integral tool 

in the microbiologist’s toolkit for the fast and accurate identification of clinical yeasts. 

This technique offers an improved method of identification with a higher resolution, 

capable of identifying more Candida spp. than previous techniques (Alizadeh et al., 

2017, Yaman et al., 2012). 

 

Microscopy, both light and fluorescence, have remained consistently used in Candida 

biofilm research. Useful in distinguishing between both yeast and hyphal forms and 

additionally visualising interactions with host and bacterial organisms. One of many 

examples of the utilisation of light and fluorescent microscopy has been to identify 

the level of C. albicans filamentation, and additionally the ability of C. albicans survival 

strategies in response to macrophages (Uwamahoro et al., 2014). Moreover, 

microscopy is useful in determining the level of interaction with synergistic and 

antagonistic bacteria. Methodologies that profile both Streptococcus and 

Porphyromonas spp. have been developed, aided by light microscopy to quantify the 

level of adherence between yeast and hyphal cells of C. albicans. Using bacterial and 

fungal specific probes C. albicans cells can be classified as adhered or non-adhered to 

bacteria allowing for quantification through high levels of repeated fluorescent images 

(Bamford et al., 2009, Sztukowska et al., 2018b). Additionally, confocal and scanning 

electron microscopy (SEM) are routinely utilised to identify structural and 

architectural changes in Candida biofilms. Confocal Scanning Laser Microscopy 
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(CSLM), as discussed previously, allows for the identification of overall structure and 

features such as the thickness of biofilms. It is also useful in biofilm models for 

determining changes in thickness and architecture of the biofilm in the presence of 

treatments or changes induced through genetic knockouts (Nobile and Mitchell, 

2005). Similarly, those biofilm changes that are elicited by the presence of bacteria 

can also be visualised using CSLM (Fox et al., 2014). 

 

1.5.2 The new and innovative approaches 
Over the past 20 years, the use of high throughput technologies has started to become 

routine to support biological discoveries and drive hypotheses. Omics approaches are 

a collection of technologies and bioinformatics approaches that allow for increasingly 

broad and in-depth analysis of the microbiome, transcriptome, metabolome, 

proteome, and genome. They can give a holistic view of the genes, mRNA expression, 

metabolites, and proteins of cell (Horgan and Kenny, 2011, Zhang et al., 2010). Such 

techniques are now increasingly being used to answer questions regarding 

interactions and functional properties of microbial communities. The literature shows 

that there are several clinically relevant sites in which poly-microbial communities are 

known to exist, comprising of numerous fungi and bacterial species (Harriott and 

Noverr, 2011, Peters et al., 2012, Sherry et al., 2016b, Thein et al., 2006). Relevant 

sites include diabetic foot wounds, sinus infections, oral cavity and respiratory tract 

infections, as well as medical device related infections (Peters et al., 2012). At these 

sites, fungal-bacterial biofilms, particularly Candida species biofilms, are responsible 

for the occurrence of disease driven by synergistic microbial interactions (Harriott and 

Noverr, 2011). Omics allow for new avenues of research in understanding these 

polymicrobial biofilm communities.  

 

1.5.3 Microbiome 
The “microbiome” is a term that has been used to mean both all the microorganisms 

and all the genetic material of microbes in a community. For the purposes of the work 

in this thesis we are commonly referring to the genomes of all the microbes (Kho and 

Lal, 2018). Over the last 10-15 years several NGS platforms have emerged including 

Roche 454, Ion torrent, Nanopore and Illumina based platforms. Due to the cost 
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effectiveness and the high-quality  reads provided by the Illumina platform it has 

become the primary platform for microbiome sequencing (Bharti and Grimm, 2019). 

The Illumina platforms sequence one base at a time through fluorescence signals in a 

process named sequencing by synthesis. Fragments of DNA are hybridised to a micro 

fluid flow cell with use of ligated adapters. Following cluster formation through bridge 

amplification nucleotides are then introduced to the flow cell each with their own 

fluorescent marker. Sequential images of the flow cell are taken at the incorporation 

of the nucleotide into the growing strand and the images are analysed with the colour 

of each base being recorded. Illumina has been improving their machines generation 

upon generation, each time providing larger throughput and improved error reduction 

with the Illumina Miseq/Hiseq becoming the most popular amplicon sequencing 

platforms. Work within this thesis was carried out using the Illumina MiSeq platform 

using short reads, however new sequencing platforms such as the MinION by Oxford 

Nanopore in the future may allow for faster identification of microbiomes on the lab 

bench. The ultra-long reads allow for the entire amplification of the 16s RNA region 

(Nygaard et al., 2020). Promising results from these studies which offer a potentially 

higher resolution and a faster and convenient method for microbiome sequencing. 

 

16S ribosomal RNA (rRNA) gene, the amplicon most used in identifying different 

bacterial species, is a group of nine regions (V1-9) that are “hypervariable” and 

present within all bacteria (Chakravorty et al. 2007). Each hypervariable region shows 

differing levels of consistency in identifying specific groups of bacterial species; it is 

thought that identification on one region alone can be biased due to “PCR bias and 

low taxonomic precision” (Guo et al. 2013). The sequences that are produced from 

the 16S rRNA sequencing are grouped into OTU’s based upon their similarity. 

Commonly a threshold of 97% is used, which assumes that bacterial strains have this 

similarity within the 16S rRNA gene and all sequences clustered to this OTU are 

identified as the same genus or species (Konstantinidis and Tiedje 2005). The accuracy 

of the 97% similarity threshold however is still under debate. To date one of the 

biggest limitations in 16S RNA sequencing is the ability to predict taxonomic profiles 

at the species level (Gao et al. 2017). OTUs are identified against comprehensive 
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taxonomic databases which include the ribosomal database Project (RDP), SILVA and 

Greengenes (Cole et al., 2014, Pruesse et al., 2007, DeSantis et al., 2006). 

 

In place of the commonly used OUT, similarity filtering based upon a fixed similarity 

amplicon sequence variant (ASV) is being advocated. ASV methods include the DADA2, 

Deblur and UNOISE (Callahan et al., 2016, Amir et al., 2017, Edgar, 2016). These 

methods aim to denoise the data identifying true biological sequence from noise 

within the data. With biological sequence variants being considered more likely to be 

repeatedly observed than errors (Callahan et al., 2017). 

 

Due to the cost, ease of analysis and speed of targeted gene or amplicon sequencing 

has led to its relatively popularity. Alternatively, entire metagenomic screening by 

shotgun sequencing is an alternative method of microbiome profiling. Metagenomics 

is comprehensive identification of the entire genetic composition of an environment 

(Bharti and Grimm, 2019). Metagenomics, despite its cost and increased difficulty, 

overcomes many of the limitations of 16S amplicon sequencing. Biases are introduced 

by regions and there are difficulties discerning different species from the 16S alone. 

Additionally, this method offers improved identification of novel species and also 

inference of the functional profile of the microbiome (Baker et al., 2019, Al-Hebshi et 

al., 2019). Functional properties as we have described such as regarding ecotypes have 

become interesting focuses within bacterial ecology. Tools such as Phylogenetic 

Investigation of Communities by Reconstruction of Unobserved States PICRUST which 

infer KEGG functionality from the amplicon target attempt to overcome this limitation 

(Zhang et al., 2019, Langille et al., 2013). However, functional predictions from the 

total genetic composition are obviously more desirable.  

 

The oral cavity contains one of the most diverse microbiomes of the human body, 

second only to that of the gastrointestinal tract (Human Microbiome Project, 2012). 

Around 280 bacterial species from the oral cavity have been cultured and classified 

(Dewhirst et al., 2010). However, this is less than half of the 700 species predicted 

using the Human Oral Microbiome Database (HOMD) and additionally 100 fungal 

species (Ghannoum et al., 2010, Chen and Dewhirst, 2013). In 2001 the term 
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microbiome was coined by Joshua Lederberg “to signify the ecological community of 

commensal, symbiotic, and pathogenic microorganisms that literally share our body 

space” (Lederberg and McCray, 2001). The term has since been adopted by 

investigators of the poly-microbial communities in oral health and disease. 

Investigation of the microbiome has become an important area of study. This is due 

to our understanding that oral diseases such as caries, periodontitis and denture 

stomatitis are related to dysregulation in a wide range of organisms as opposed to 

only one pathogen (Struzycka, 2014, Abusleme et al., 2013, O'Donnell et al., 2015b).  

 

Microbiome studies in oral disease have demonstrated the existence of distinct 

microbial communities compared to health. In periodontitis microbiome studies, in 

contrast to other clinical host sites (e.g., gastrointestinal tract), an increased bacterial 

diversity and richness in disease has been reported compared to health (Abusleme et 

al., 2013, Sousa et al., 2017). Additionally, these studies have elucidated previously 

unappreciated species. Next generation sequencing (NGS) technologies have revealed 

a greater complexity within the periodontal disease microbiome, well beyond the 

traditional “red complex” that is comprised of Tannerella forsythia, Porphyromonas 

gingivalis and Treponema denticola (Rocas et al., 2001). Microbiome studies have 

shifted this dogma, showing the prevalence of many disease associated genera and 

species, including but not limited to, Spirochetes, Filifactor and Fusobacterium, 

highlighting a more diverse disease community than previously considered (Griffen et 

al., 2012, Chen et al., 2018). 

 

Dysbiosis and the progression from a healthy to disease state is generally considered 

to be due to a decrease in the diversity of the microbiome (de Paiva et al., 2016, 

Giloteaux et al., 2016). However, within the oral cavity this assumption is not so 

straight forward. Within the oral cavity it has been shown that lower levels of diversity 

and microbial richness is associated with health in relation to periodontal disease, 

according to the Shannon alpha diversity measure (Griffen et al., 2012, Abusleme et 

al., 2013). Conversely, using multiple alpha diversity it was demonstrated that there 

was no marked difference in the species richness between periodontal disease and 

healthy microbiomes (Galimanas et al., 2014). The 2014 study highlights that 
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differences in the findings can be explained by sampling location and methodologies 

in DNA extraction. Indeed, within the oral microbiome there are diverse ecological 

niches, within which the microbial composition can vary greatly (Xu et al., 2015). This 

variation is in part due to the numerous surfaces within the oral cavity which include 

but is not limited to the hard and soft tissues of the teeth, and between teeth and the 

soft and hard palate (Aas et al., 2005). The heterogeneity of the oral microbiome 

increases the challenges of studying it, this is added to by the number of distinct 

microbiome niches within the oral cavity (Avila et al., 2009). 

 

1.5.4  The mycobiome 
In addition to bacterial species, fungal species also play pivotal roles in the oral 

microbiota of healthy and diseased individuals (Ghannoum et al., 2010). There are 

approximately 2 million fungal species and of these, 600 are thought to be able to 

cause infections in humans (Roilides, 2016). Analogously with the identification of the 

prokaryote microbiome the eukaryotic mycobiome has been defined primarily using 

amplicon sequencing (Cui et al., 2013). The amplicon utilities is an internal transcribed 

spacer region (ITS) which encompasses the locus of the 18S, 5.8S and 28S ribosomal 

subunits genes (Dollive et al., 2012). The eukaryotic component has been termed 

either the fungal microbiome or the mycobiome (Ghannoum et al., 2010). 

 

Comparatively very few studies have been carried out on the fungal microbiome 

compared to the bacterial microbiome. However the importance of studying the 

fungal component and its relationship with the bacterial microbiome has been noted 

not just in relation to oral health but in regards to skin, lung and GI tract microbiomes 

(Huffnagle and Noverr, 2013). Oral mycobiome studies to date have sought to validate 

the protocols and build a baseline of the healthy community within the oral cavity 

(Dupuy et al., 2014, Ghannoum et al., 2010).  

 

Within the gut of Crohn’s disease patients, a form of Inflammatory Bowel Disease 

(IBD), there are shifts in both the fungal and bacterial microbiome with some bacterial 

and fungal species being correlated. For example, Saccharomyces species are 

negatively associated with most bacteria whilst C. tropicalis is positively associated 
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with pathogenic bacteria (Hoarau et al., 2016). Another study regarding IBD showed 

changes in fungal biodiversity, with significant changes in eukaryotic species such as 

S. cerevisiae being associated with disease. Saccharomyces and Malassezia in this 

study were shown to be positively associated with numerous bacterial species (Sokol 

et al., 2017). These studies are indicative of inter- and intra-kingdom interactions that 

can occur in the transition from a healthy to disease state.  

 

In 2010, a study led the way in characterising the fungal component of the oral 

microbiota via amplification of the internal transcribed spacer (ITS). Unlike 16S 

sequences with fixed length amplicons, ITS sequences can produce variable sequence 

lengths, which makes bioinformatic processing more challenging. The authors 

observed that the most common genera of fungi were Cladosporium, Aureobasidium 

and Saccharomycetales (Ghannoum et al., 2010), many of which were subsequently 

confirmed by Dupuy and colleagues (Dupuy et al., 2014). Interestingly, amongst the 

observed operational taxonomic units (OTUs) were several genera that were not in 

consensus with the initial study, including Saccharomyces and taxa including the 

Saccharomycetales order that were not found in as high frequency as reported initially 

(Ghannoum et al., 2010).  

 

In more recent studies, comparisons between oral health and disease have been 

made. For instance, a study comparing the mycobiome of periodontal disease and 

healthy individuals reported similar levels of fungal species (over 100) compared to 

the first report (Ghannoum et al., 2010). However, in their cohort it was observed that 

Candida and Aspergillus were the most frequent genera, being present in 100% of 

samples. Interestingly, there was no significant difference in the overall diversity of 

fungal taxa between periodontal disease and the healthy cohort, or the overall 

composition. An increase in abundance the Candida genus in periodontal disease 

compared to health was observed, although this was not found to be statistically 

significant (Peters et al., 2017). Notably, this was a pilot study and was perhaps 

hampered by its limited cohort size. Future mycobiome studies with larger cohorts 

and more stringent classification of disease state and other metadata would provide 

a more comprehensive interpretation of the mycobiome in oral health. 
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With 16S now being well established, and ITS amplicon sequencing becoming more 

readily available, there is now the ability to perform co-occurrence studies (Mukherjee 

et al., 2017, Persoon et al., 2017a). Dual bacteriome and mycobiome analysis of sites 

within oral cavity (endodontic) infections has been demonstrated by Persoon and 

colleagues (2017). This group demonstrated a co-occurrence of acidogenic bacteria in 

the presence of fungal species, and an overall positive correlation of C. albicans with 

bacterial species. Negative correlations of bacterial species were observed with 

increased C. dubliniensis. These authors highlight the current limitations of these 

approaches, including increased difficulty in DNA extraction, PCR amplification due to 

length variation of ITS, and inconsistent fungal nomenclature. The oral mucosal 

mycobiome and microbiome were assessed regarding oral lichen planus in 2019. They 

were able to discern correlations between fungal and bacterial species in both 

diseased and healthy cohorts. This study found higher levels of the genera Candida 

and Aspergillus in patients with oral lichen planus compared to healthy. Correlating 

with the increase abundance of Candida in disease was the increased abundance of 

pathogenic aerobes. The authors additionally note how the mycobiome is often 

overlooked in studies of this type and studies such as this highlight the potential 

benefits of profiling both the mycobiome and bacteriome (Li et al., 2019). Despite 

these issues, as these types of studies grow and analytical pipelines become more 

developed, then the possibilities for understanding complex interkingdom 

interactions will become more fully realised.  

 

1.5.5 Transcriptome  
RNA-Seq or whole transcriptome shotgun sequencing and related processes allow for 

the whole of the gene expression data to be analysed at a given point in a time. RNA 

is isolated from the micro-organisms of interest and the mRNA is selected and then 

synthesised to cDNA, amplified and sequenced (Tan et al., 2015). Sequencing is 

typically through Illumina sequencing as previously described. Sequenced data 

undergoes computational processes or a pipeline of analysis which typically involves 

quality control and clean-up of the reads, alignment, mapping to the genome, 

quantification, and differential expression analysis of the genes (Conesa et al., 2016a). 

In contrast to genomic studies, this actual expression compared to potential 
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expression can lead to more accurate functional understanding of micro-organisms in 

various conditions (Horgan and Kenny, 2011). In microbiology, and specifically biofilm 

research, transcriptomics has allowed for the regulation of pathways to be shown such 

as fat metabolism, regulation of DNA repair genes and difference in regulation at 

different dynamic states (Nakamura et al., 2016). Within oral samples analysis of the 

transcriptome has been utilised to identify signatures of dysbiosis. Using databases of 

known and predicted functions, functional inferences can be made of the expression 

data. Libraries such as the KEGG and GO, which are compilations of what is currently 

known about a gene including its associated processes, importance in resistance, 

metabolism processes, signalling pathways and other key processes can be identified 

(Nakamura et al., 2016, Li et al., 2015). Metatranscriptomics is able to build upon 

metagenome/microbiome studies allowing for further inference of the functional 

activity of dysbiotic biofilms. For example in 2018 an oral study correlated the 

fluctuations in community composition with the functional changes in malate and 

lactate dehydrogenase and novel pathways in response to decreasing pH (Edlund et 

al., 2018). 

 

Previously, Rajendran and colleagues (2016) used profiling of the transcriptome to 

define C. albicans biofilm heterogeneity, demonstrating key metabolic pathways 

driving the biofilm phenotype (Rajendran et al., 2016b). A study which is a precursor 

for the work outlined within this thesis. The authors demonstrated the effectiveness 

of profiling gene expression to discern differences in low and high biofilm forming C. 

albicans. Transcriptomics has been utilised in interrogating in vitro biofilm models and 

for monitoring biofilm development from initial to mature stage in the biofilm cycle. 

Important information can be gleaned in biofilm models of many organisms including 

C. albicans. These include changes in lifestyle, biofilm-host, microbe-microbe 

interactions, and biofilm resistance. Biofilm profiling through transcriptomics has 

been previously shown in bacterial species Porphyromonas, Streptococcus, 

Psuedomonas, Enterococcus and Candida species (Romero-Lastra et al., 2019, Wu et 

al., 2019, Partoazar et al., 2019, Cheng et al., 2019, Kean et al., 2018b). Commonly 

transcriptomics by RNA-Seq has been used to compare planktonic to biofilm 

counterparts and biofilm dynamics in response to antimicrobial treatments. 



Chapter 1: Candida biofilms, their clinical significance and role in interkingdom 
interactions 

33 
 

Identification of biofilm related drug transporters, which were linked to drug 

resistance, in the multi-drug resistant emerging pathogen were discerned using 

transcriptomics. Transcriptome assembly and profiling of C. auris was instrumental in 

identifying key resistance features in this clinically important pathogen. Highlighting 

differences in efflux pump expression related to resistance (Kean et al., 2018b). 

Transcriptome analysis of mixed species biofilms has also emerged as a useful way of 

profiling bacterial-bacterial and fungal-bacterial interactions. Interkingdom 

interactions from both fungi and bacteria are possible to discern through a more 

complex method of ribosomal RNA depletion. Read alignment also requires reads first 

being aligned to the fungal species before then remaining unaligned reads being 

aligned to the bacterial species. This methodology has been successfully applied in C. 

albicans-Streptococcus and C. albicans-P. gingivalis interactions (Dutton et al., 2016, 

Sztukowska et al., 2018b, Ellepola et al., 2019).  

 

1.5.6 Metabolome  
Metabolomics provides a snapshot view of the whole metabolite profile of a cell at a 

given moment under specific conditions. Quantification of the metabolome is 

performed either by mass spectrometry (MS) or nuclear magnetic resonance (NMR) 

(Schauer et al., 2005, Villas-Boas et al., 2005, Markley et al., 2016). The use of 

metabolomics in microbiology and specifically biofilm research allows for the 

identification of pathways within target organisms. This pathway analysis informs the 

overall aetiology of single or polymicrobial communities (Washio et al., 2010). The use 

of novel mass spectrometry techniques has been demonstrated to be a powerful tool 

in the investigations of fungi-bacterial interactions in a biofilm model (Weidt et al., 

2016). A study in which the associations between Candida and S. aureus were inferred 

through the detection of intra and extra-cellular metabolites. 

 

In contrast to more typical biological methods, untargeted metabolomics allows for a 

whole and unbiased view of the chemical processes (Weckwerth, 2010). Metabolites 

can be indicators of pathogenicity and upstream pathways or directly responsible for 

the pathogenicity of an organism (Bien et al., 2011, Stipetic et al., 2016). Using 

metabolites as a method of discerning a state of illness or biological system is an old 
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concept in medical biology (Tang, 2011). The progress of MS and NMR technologies 

allow for this concept to be integrated with other omics and has become an important 

component of systems biology. Complementary to untargeted metabolomics targeted 

metabolomics which aims to quantify with greater sensitivity a select number of 

metabolites. These metabolites are discerned by standards, usually a pre-defined 

group of high-quality core compounds (Weidt et al., 2016). Either targeted or 

untargeted metabolic fingerprinting is the process of determining the intracellular 

metabolic activity and metabolic footprinting infers the metabolic profile from the 

supernatants (Aggio et al., 2010). Both footprinting and fingerprinting are commonly 

performed on microbiological cultures using the analytical method of mass 

spectrometry. This process is often preceded by chromatography, such as liquid 

chromatography; the process of passing metabolites through liquid within a column. 

An example is the pHILIC columns, used for separation of the analytes as they interact 

with liquid phase. The time to pass through the column and reach the detector then 

determines the retention time (RT) for the analytes (Xiang et al., 2003). Due to the 

vast number of metabolites in microbial cultures, analytes must first be separated 

before MS detection by machinery such as the Orbitrap Fourier transform analyser 

(Hu et al., 2005). The Orbitrap traps ions in orbit around a spindle via quadrupole and 

converts the image of the trapped ions in a mass spectrum m/z by fourier transform. 

LC-MS by this and similar methods can then be applied to identify the majority of 

biological metabolites. The RT and mass can then either be used in global untargeted 

fashion to identify metabolites against databases containing known masses or 

compared to pure standards for accurate RT and mass analysis resulting in a more 

targeted analysis. 

 

Targeted/untargeted metabolomics allows for a complementary analysis method 

leading to the identification of expected compounds and additionally more 

exploratory analysis. For example, in discerning the differences in mixed C. albicans-S. 

aureus biofilms which was demonstrated using targeted/untargeted metabolomics 

(Weidt et al., 2016). From spent media they were able to determine sugars, amino 

acids and organic acids that were differentially spent or excreted in the metabolic 

footprint of C. albicans single or C. albicans-S. aureus dual species biofilms. This 
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metabolomic footprinting allowed for inferences to be made about the modulation of 

the pentose phosphate pathway in dual species biofilms compared to single species.  

Untargeted fingerprinting analysis of C. albicans biofilms was also capable of 

discerning metabolomic reprogramming of amino acid, ergosterol, lipid and sugar 

metabolism in response to hypoxia.  The authors utilised ultrahigh-performance liquid 

chromatography–tandem mass spectrometry on Candida lab strains grown at 10 to 

180 minute timepoints in the presence and absence of hypoxic conditions. Hypoxia 

was induced in biofilms grown in media by reducing the atmospheric conditions to 5% 

oxygen. This study highlights the global metabolomic shifts that are associated with 

shifts in biofilm formation under different environments which could only by 

elucidated through high throughput methods (Burgain et al., 2020). Within this study 

there is complex rerouting of metabolic pathways such as carbon metabolism, 

pentose phosphate pathway and amino acid metabolism, that is undertaken by 

polymorphic fungi in response to stress and environment. They additionally were able 

to correlate their analysis to the transcriptome of the same samples. Similarly, gas 

chromatography-mass spectrometry has been utilised to identify changes in 

metabolism caused by gene knockouts in C. albicans. Metabolomic fingerprinting was 

able to identify metabolites that differed in their intracellular metabolic ratio in 

glutamate dehydrogenase mutants compared to wildtype in hyphae inducing 

conditions (Han et al., 2019b). They propose that under environmental stress C. 

albicans will globally downregulate central carbon metabolism. They also proposed 

that under stress C. albicans was unable to assimilate nitrogen sources from the 

proline rich media filamentation due to the lack of glutamate dehydrogenase. They 

therefore propose nitrogen metabolic pathways as targets for therapeutic potential 

in inhibiting hyphal morphogenesis. 

 

In addition to mass spectrometry, a fragment spectrum of metabolites can be utilised 

to distinguish between analytes with same m/z value for improved resolution of 

untargeted metabolomics. Fragmentation patterns of peaks can be compared to 

known spectrums to infer which analyte is present with the sample. This has also been 

used to infer greater detail from untargeted metabolomics in biofilm and in particular 

Candida biofilm hypoxia studies previously mentioned (Burgain et al., 2020). 
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Global metabolomics studies provide snapshots at a given point in time, they do not 

give much information of directionality through metabolic pathways or rates. 

Metabolic flux analysis aims to overcome these limitations using radioisotopes. 

Metabolic flux of these isotopes can be monitored and tracked as they are utilised and 

shuttled through metabolic pathways within the target cells, also highlighting changes 

in metabolic turnover rather than concentration alone. This has been demonstrated 

in a number of biofilm models in P. aeruginosa comparing fluctuations in pathways 

between planktonic and biofilm models (Wan et al., 2018). Similarly, in C. albicans, 

isotopes were utilised to identify changes in metabolomics of the glutamate 

dehydrogenase gdh2 and gdh3 mutants mentioned previously. These mutants 

effected morphogenesis and isotope labelling demonstrated changes in proline 

catabolism in the mutant strain failing to use both arginine and proline as carbon and 

nitrogen sources (Han et al., 2019a). Fragment spectrums of metabolites can be 

utilised to distinguish between analytes with same m/z value for improved resolution 

of untargeted metabolomics. Fragmentation patterns of peaks can be compared to 

known spectrums to determine which analyte is present with the sample. This has also 

been used to infer greater detail from untargeted metabolomics in biofilm and in 

particular Candida biofilm research (Burgain et al., 2020).  

 

1.5.7 Proteome 
In a similar fashion to metabolomics, shotgun proteomics has progressed to become 

a popular and effective method of identifying and characterising microbial 

populations. Proteomics like other omic technologies aims to provide a holistic and 

compete data set of proteins within a biological system at a given point in time. LC-

MS has been employed for example within C. albicans biofilms to identify many 

proteins in a high throughput manner (Shibasaki et al., 2018). In LC-MS the proteins 

undergo enzymatic cleavage, such as that performed by trypsin, into smaller peptides. 

These peptides are then ionised and mass spectrometry is performed by one of the 

MS platforms such as the Q-Exactive Plus (Thermo Fisher Scientific) before data 

acquisition of peptides by software such as the MASCOT searching engine (Karpievitch 

et al., 2010). These digested peptides are then used to infer the presence and quantity 

of proteins present in the biological sample. 
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Proteomics by LC-MS has been effective at characterising Candida dynamics in 

response to several conditions. Specifically, proteomics has been employed to 

decipher the physiological changes in C. albicans in the presence of serum over time 

(Shibasaki et al., 2018). Based upon an earlier study this analysis was performed within 

a type of strain to further elucidate the serum enhanced hyphal morphogenesis. They 

discerned that up to 50 serum induced protein changes were observed related to 

detoxification of oxidative species, glucose transport, TCA cycle and iron uptake (Aoki 

et al., 2013). Within the study mentioned here they considered proteomics an 

effective tool for identifying antigens for vaccines and therapeutic targets for drugs. 

In addition, proteomics by LC-MS has been performed to identify comparative 

differences between Candida species such as C. glabrata and albicans, host evasion 

mechanisms by C. albicans and C. albicans response to stress (Taff et al., 2012, Arita 

et al., 2019, Jacobsen et al., 2018). Shotgun proteomics has advanced Candida 

proteome research, as it has done for many biological systems, where previously we 

used lower throughput systems such 2D-PAGE (Shibasaki et al., 2018).  

 

The fungal cell wall plays a pivotal role in biofilm development, hyphal elongation, 

adhesion, and host invasion. Due to this the composition and the changing dynamics 

of the cell wall are of particular interest. As discussed earlier, many cell wall bound 

adhesions and enzymes are present that both aid in biofilm formation and virulence 

(de Groot et al., 2004). For fungal cell wall proteomics homogenisation of the cell wall 

must first be performed, followed by centrifugation and multiple washes in NaCl. Then 

crude cell walls are then extracted with SDS-mercaptoethanol buffer. Digestion and 

mass spectrometry can then be performed in the same fashion as mentioned early 

without cytoplasmic and none cell wall bound contaminants (Dutton et al., 2014). In a 

2014 study involving O-mannosylation deficient Candida mutants, a process of adding 

mannose to glycan chains, were investigated using cell wall proteomics. This process 

was previously determined to be important in hyphal formation and fungal  

interaction with bacterial species. Through cell wall proteomics they were able to 

determine perturbations in cell wall protein composition due knocking out the 

mannosyltransferase genes Mnt1 and Mnt2. Many adhesion and virulence related cell 

wall proteins such as the ALS adhesin family of proteins and the Sap candidapepsin-9 
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precursor were reduced due to inhibition of mannose transfer (Dutton et al., 2014). In 

a more recent study performed in Aberdeen, the influence of the antifungal agent 

caspofungin was performed. They investigated the specific fungal cell wall proteome 

changes that were influenced across several Candida spp. including C. albicans in 

response to the echinocandin caspofungin, identifying changes such as the conserved 

expression of the glycosidase Utr2 involved in crosslinking chitin and surface glucans.  

Echinocandins inhibit the correct synthesis of β-glucan in the fungal cell wall. 

Overexpression of the Urt2 was assumed to be a compensatory mechanism due to the 

inhibitory effect of caspofungin on glucan production (Walker and Munro, 2020). 

 

1.5.8 Integrative Analysis 
The systems biology approach to microbiology involves integration of the sum of 

microbiome, transcriptome, proteome, and metabolome data sets. This potentially 

allows for a more comprehensive view of the system of interest than just one 

individual technology would allow for. Integration of multiple omics data sets has been 

demonstrated to be a useful tool (Zhang et al., 2010). With the increase in data 

analysis tools and increase in computational power, methods for multiple level 

integration of datasets are now possible. 

 

In metabolomics and transcriptomic integration for example correlation analysis, 

following both data sets being processed allows for the identification of relevant 

metabolites and genes (Cavill et al., 2016). Network and pathway analysis have also 

become popular methods for integrating and interpreting different omics data sets 

(Liu et al., 2017, Fukushima et al., 2014). Numerous software packages have been 

created from online interfaces (Cottret et al., 2010) to packages developed for the R 

programming language (Luo et al., 2017). These packages allow for identification of 

overlapping enriched pathways in the transcriptome and metabolome data. 

 

Conceptual integration through separate analysis of two or more omics datasets are 

perhaps the simplest to implement and the first stage in data integration. Through our 

subjective observations of the outcomes of separate analysis of two data sets it is 

possible to identify changes that are consistent or complimentary across two parallel 
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datasets (Cavill et al., 2015, Fox et al., 2014). Pathway analysis is becoming a more 

robust method for interrogating omics data due to the increase in a priori knowledge 

that is continually being curated for an increasing number of species. This has led to 

the development of network and pathway integration tools such as MetExplore and 

PaintOmics which are able to accept data from multiple omics datasets (Cottret et al., 

2010, Hernández-de-Diego et al., 2018). They can overlay and map linked pathways 

between two datasets to identify features represented by both transcripts and 

metabolites. Enrichment methodologies additionally allow for significance to be 

determined based upon the representation of features from different omics 

(Gloaguen et al., 2017, Chong et al., 2018a). 

 

Multivariate and dimensionality reduction techniques have also been shown to make 

significant advancements in data integration. Both supervised and unsupervised 

methods have been developed. Unsupervised methods cluster the data into different 

groups based upon variability within the data without any external guidance 

(Bouhaddani et al., 2018). Supervised analysis in contrast through regression analysis 

such as in the case of partial least squares (PLS) based techniques allow for the 

identification of important and key features or variables which distinguish between 

categorized data (Rohart et al., 2017, González et al., 2012). Examples include 

identification of important features in metabolomics and transcriptomic data sets that 

are related to chemical exposure in liver cells (Mesnage et al., 2018). Discriminatory 

covariate features in the microbiome and metabolome are also possible to infer 

through a discriminatory version of PLS discriminatory analysis (PLS-DA). For example 

in faecal samples, by integrating metabolomics and the microbiome data the authors 

were able to identify bacteria that were correlated with metabolic alterations in the 

gut of Crohns’ disease sufferers (Metwaly et al., 2020). 

 

1.6 Concluding Remarks and Aims 
 

Biofilms as the mediators of disease are commonplace, with interkingdom interactions 

posing a difficult relationship to be fully understood. There are fluctuations in 

pathogenicity which are due to the varying relationships of different organisms, 
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environmental factors, pH of the host and genetic predisposition. Candida species live 

in complex biofilm communities, in particular C. albicans is of special note, being 

present at many clinically relevant sites. The species-species, kingdom-kingdom and 

even microbe-host relationships are extremely complex. It is due to this complexity 

that there is a need for a move towards holistic high throughput methodologies, RNA-

Seq and metabolomics. These approaches offer an unbiased, large scale view which 

can lead to the discovery of medically important biomarkers, functional pathway 

identification in disease and potential intervention points. An understanding of the 

factors which change a microbial system from an inert system to that of a disease 

forming one is a necessity and will ultimately allow for prophylactic methods and 

therapeutic targets to be discerned.  

 

Throughout the work within this thesis, we aim to utilise omics and combinations of 

omics platforms to interrogate heterogenous C. albicans biofilms. Previously, it has 

been discussed the complexities, the clinical relevance and the advancements that 

have motivated and enabled the work within this thesis. We hypothesise that we can 

improve our understanding of biofilm formation through these microbiome, 

transcriptome and metabolomic techniques. We also wish to validate these methods 

and similarly identify future biofilm models on which they can be utilised. We aim to 

comprehensively identify future complex-biofilm models and methods of holistic 

omics methodologies to which to apply to these models. Specifically, the work 

contained within this thesis aims to: 

 
1. Identify interactions with Candida in microbiome data from a recent denture 

stomatitis clinical study. We endeavour to reanalyse this clinically relevant 

denture microbiome study with a close focus on the impact of Candida 

albicans on the oral microbiome. We also aim to identify the impact of oral 

hygiene on both Candida and the bacterial microbiome through interrogation 

of microbiome data. 
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2. Utilise omic technologies to identify:  

A. Differentially expressed genes using RNA-Seq to profile the transcriptome 

of phenotypically distinct isolates. Additionally, how their profile changes 

in response to biofilm inducing stimulus.  

B. The changes in the composition of the cell wall proteome between 

phenotypically distinct isolates. Additionally, how the composition of the 

cell wall proteome is impacted in response to biofilm inducing stimulus 

C. The metabolic footprint from phenotypically distinct isolates in the 

presence and absence of biofilm inducing stimulus to determine changes 

in metabolic function.  

The commonly used foetal calf serum will serve as our biofilm inducing media 

throughout these experiments.  

 

3. Identify methods and analysis techniques that are available in the literature 

which can integrate omics data to assess the applicability of these 

methodologies at integrating metabolomic and transcriptomic datasets. 

Finally, we aim to determine the usefulness and interpretability of integrated 

data from microbiological datasets. 
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2.1 Background 
 

Denture stomatitis (DS) and denture related illness have historically been associated 

with and C. albicans and other members of the Candida genus. Indeed, it is common 

within microbiology for individual species to become heavily implicated in specific 

diseases. This is true of Candida spp. in the case of DS where clinical studies have 

demonstrated correlations with the quantities of Candida and the severity of the 

disease through the Newton’s classification of disease severity (Coco et al., 2008b, 

Bastiaan, 1976). It has been further reported that the individual strain of C. albicans 

and its relative capacity to form biofilms plays a role in disease outcome in denture-

related disease (O'Donnell et al., 2017); a characteristic trait that has also been shown 

to be true in other systemic diseases (Kean et al., 2018a, Rajendran et al., 2016d, 

Sherry et al., 2017). Moreover, it has been shown that strain specificity also has a 

bearing on denture cleansing capacity, with those individuals harbouring more prolific 

biofilm forming strains negatively responding to treatment (O'Donnell et al., 2017). 

Taken together, these studies support the dogma of a simple mono-species oral 

infection. This has led to the disproportionate focus on Candida spp., particularly 

related to assessing denture oral hygiene strategies in vitro and in vivo (Nunes et al., 

2016, Ramage et al., 2012c).  

 

Dentures are generally bathed in the salivary microbiome, a microbial soup interacting 

on the surface of the denture acrylic. Denture plaque biofilms are complex and are 

often represented by dense, mixed interkingdom communities (Delaney et al., 2018). 

The quantities of yeast and bacteria found residing upon the pores and varied denture 

topography are vast yet are relatively poorly explored (O'Donnell et al., 2015b, Shi et 

al., 2016). The first molecular-based microbial denture studies revealed a complex 

bacterial microbiota with potentially cariogenic, periodontopathic and malodourous 

capacities (Mantzourani et al., 2010, Sachdeo et al., 2008, Yitzhaki et al., 2017). 

Moreover, in mixed dentition where there is the presence of natural teeth within a 

partially edentulous patient, differential ecology is observed that may also have a 

bearing in the progression of oral disease (Teles et al., 2012). Despite these studies 

providing greater insights into the complexity of oral bacterial biofilm ecology, they 
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fail to account for the involvement of Candida spp. within the community. We know 

these yeasts are prone to contribute to a less diverse biofilm (Cho et al., 2014, 

O'Donnell et al., 2015b), which can also play a leading role in driving denture-related 

stomatitis.  

 

With this in mind and based on our greater understanding of the importance of 

bacteria and yeasts within the denture biofilm, investigating both the bacterial and 

yeast role during the development and testing of oral hygiene products is important. 

The Ramage laboratory were the first in 2017 to undertake a randomised double 

blinded control trial to assess the importance of frequency of denture cleaning 

(Ramage et al., 2019), where both bacteria and yeasts were quantified as primary 

outcome measures. This study statistically demonstrated the benefit of frequent 

(daily) cleansing regimens compared to intermittent regimens. Nevertheless, a key 

limitation of the study was the failure to employ next generation sequencing 

techniques to fully assess the microbial composition of patients under different 

cleaning regimens. Given the importance of both bacteria and yeasts within the 

denture environment, in addition to the impact of oral hygiene on DS, this study is the 

first seeking to understand how the oral microbiome is impacted by self-reported oral 

hygiene behaviours. 

 
2.2 Hypothesis and aims 
 

This component of the thesis hypothesised that denture cleansing hygiene practices 

influenced the presence of yeasts. The following chapter therefore examines the 

contribution of oral hygiene measures and the relevance of Candida spp. to the 

denture microbiomes of edentulous patients, with the overarching aim of improving 

denture antimicrobial strategies.  

Specifically, the study aims to identify: 

- Perturbations in the oral microbiome, within the dental plaque, mucosa, and 

denture plaque, which are due to differences in the oral hygiene of the wearer 
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- Perturbations in the oral microbiome within the dental plaque, mucosa, and 

denture plaque, which are due to the different sleeping habits within our 

patient cohort. 

- Changes in the oral microbial communities that are influenced by the presence 

or prevalence of Candida spp. within the dental plaque, mucosal and denture 

plaque communities.  

- Specific genera that are related or in higher abundance between our different 

patient demographics. 

 

Overall, any variances in the overall community, and any specific changes, that are 

influenced by the hygiene of the denture wearer or the proportion of yeasts, will be 

explored and interrogated in detail within this chapter 

 

This chapter has been published in the Elsevier journal Biofilm under the title 

“Interkingdom interactions on the denture surface: Implications for oral hygiene”- 

https://doi.org/10.1016/j.bioflm.2019.100002. Additionally, data from this chapter 

has been presented at the annual Oral Microbiology and Immunology Group (OMIG) 

conference.  

 

2.3 Methods 
 

2.3.1 In vitro denture cleansing study 
A denture plaque cleansing study and quantitative analysis of remaining viable cells 

was performed according to an established methodology devised within the 

laboratory (Sherry et al., 2016a). It was the sub-aim to investigate the impact of a 

frequent denture cleansing regimens on bacterial and yeast retention on denture 

acrylic, with an aim to understand how complex interkingdom biofilms respond to oral 

hygiene measures. Specifically, this was a combined chemical and mechanical 

brushing cleansing technique, employed sequentially over a 7-day treatment period.  
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Briefly, laboratory strains were used to create a polymicrobial denture plaque biofilm 

model based on the most dominant genera/species identified from our recent denture 

microbiome study (O'Donnell et al., 2015b, Ramage et al., 2019). 

Polymethylmethacrylate (PMMA) discs were manufactured by Dr Hasanain Alalwan 

(PhD student), as previously described (Alalwan et al., 2018), which provided the 

physical substrates on which biofilms were formed. The biofilms included the 

following composition of bacteria and yeasts: Streptococcus mitis NCTC 12261, 

Streptococcus intermedius ATCC 27335, Streptococcus oralis ATCC 35037, C. albicans 

3153A, Actinomyces naeslundii ATCC 19039, Veillonella dispar ATCC 27335, Rothia 

dentocariosa DSMZ 43762, Lactobacillus casei DSMZ 20011 and Lactobacillus zeae 

DSMZ 20178. Maintenance conditions on agar and overnight culture conditions for 

each of the organisms are outlined in Table 2.1. 

 

Table 2.1 Maintenance and culture conditions for oral denture species 

 
 

Initially, S. mitis, S. intermedius, S. oralis and C. albicans were grown and standardised 

in artificial saliva (AS) to 1 x 107 cells/mL. These were added to each well of a 24 well 

plate (Corning Inc, New York, USA) containing 13 mm2 PMMA discs (Chaperlin and 

Jacobs Ltd, Southend-On-Sea, UK) and incubated aerobically at 37oC for 24 h. Next, 

standardised (1 x 107 cells/mL) A. naeslundii, V. dispar, R. dentocariosa, L. casei and L. 

zeae were added to the preformed 24-h biofilm and incubated at 37oC in 5% CO2 

conditions for a further 4 days. Spent supernatants were removed and replaced with 

fresh AS daily. AS was comprised of porcine stomach mucins (0.25% w/v), sodium 

chloride (0.35% w/v), potassium chloride (0.02 w/v), calcium chloride dihydrate 

(0.02% w/v), yeast extract (0.2% w/v), lab lemco powder (0.1% w/v), proteose 

Oral Species Agar Broth Growth Condition Temperature
Streptococcus mitis  NCTC 12261 Columbia Blood Agar (CBA) Tryptic Soy Broth (TSB) CO2 37°C
Streptococcus intermedius  ATCC 27335 Columbia Blood Agar (CBA) Tryptic Soy Broth (TSB) CO2 37°C
Streptococcus oralis ATCC 35037 Columbia Blood Agar (CBA) Tryptic Soy Broth (TSB) CO2 37°C
C. albicans 3153A Sabouraud’s Dextrose Agar Yeast Peptone Dextrose (YPD) O2 30°C
Actinomyces naeslundii ATCC 19039 Fastidious Anaerobic Agar (FAA) Brain Heart Infusion (BHI) AnO2 37°C
Veillonella dispar  ATCC 27335 Fastidious Anaerobic Agar (FAA) Brain Heart Infusion (BHI) AnO2 37°C
Rothia dentocariosa  DSMZ 43762 Columbia Blood Agar (CBA) Brain Heart Infusion (BHI) O2 37°C
Lactobacillus casei  DSMZ 20011 MRS Agar MRS Broth CO2 37°C
Lactobacillus casei  DSMZ 20011 MRS Agar MRS Broth CO2 37°C
Lactobacillus zeae DSMZ 20178 MRS Agar MRS Broth CO2 37°C
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peptone (0.5% w/v) in ddH2O (Sigma-Aldrich). Urea was then added independently to 

a final concentration of 0.05% (v/v). 

 

The treatment regimen was a daily treatment (days 1-7) of a 3min soaking with a 

denture cleanser (Polident® 3-minute denture cleanser; GSK Consumer Healthcare, 

Weybridge, UK) followed by brushing with hard water. For analyses, sample biofilms 

were assessed pre- and post-treatment. Following each treatment, PMMA discs were 

incubated in Dey-Engley neutralising broth (Sigma-Aldrich, Gillingham, UK) for 15min. 

PMMA discs were then sonicated in phosphate buffered saline (PBS [Sigma-Aldrich, 

Gillingham, UK]) at 35 kHz for 10min to remove the biomass, as previously described 

(Ramage et al., 2012c). The treatment regimen is visualised in Figure 2.1. 

Figure 2.1 Treatment regimen for invitro assessment of denture cleansing on bacterial and 
fungal loads. The denture plaque biofilm model was prepared on PMMA discs. PMMA discs 
were prepared so that each day a pre and post treatment as well as an untreated PMMA disc 
could be taken. PMMA discs for subsequent days were also chemically and mechanically 
treated. PMMA discs control, pre and post treatment were prepared every day for the 7 days 
and sonicated before quantification of colony forming equivalents before qPCR. 

 

For quantitative analysis, quantitative live/dead PCR were performed, as described 

previously (Sherry et al., 2016a), and detailed below. Live/dead PCR was performed 
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using 16S and 18S bacterial and fungal specific primers, and quantified using 

appropriate bacterial and yeast standard curves (O'Donnell et al., 2015c). 

 

2.3.2 In vivo denture hygiene study 
The clinical study specimen collection was initially performed by Dr Lindsay O’Donnell. 

I can confirm that my role in this study was to undertake detailed microbiome analysis 

pipelines to interrogate and integrate the relevant meta-data. Study collection 

through to analysis is illustrated in Figure 2.2. 

 

Figure 2.2 Sample collection and Analysis Workflow. From 131 denture wearers a denture 
swab, mucosal swab and dental plaque scraping were taken. Swabs were sonicated and all 
samples were stored in RNA-Later. All samples from 131 patients underwent DNA extraction 
for sequencing due to failures in extraction and library prep 108 denture samples, 87 mucosal 
samples and 63 dental samples remained for sequencing. After sequencing samples reads 
were processed for analysis. Microbiome data was obtained from previously published study 
and full experimental details are published there. The original work was carried out by Lindsay 
O’Donnell at the Glasgow Dental Hospital and School (O'Donnell et al., 2015b). 
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2.3.3 Study participants  
131 denture wearing patients attending the University of Glasgow Dental Hospital and 

School were enrolled in the study, as described previously (O'Donnell et al., 2015b). 

Written informed consent was obtained from all participants. Ethical approval for the 

study was granted by the West of Scotland Research Ethics Service (12/WS/0121). 

Clinical assessments were carried out by six experienced dentists working in the 

prosthodontic department of the University of Glasgow Dental Hospital and 

School. All prosthodontists received personal training from Dr Douglas Robertson 

(Senior Clinical Lecturer in Restorative Dentistry and study Principal Investigator) to 

standardise the assessment of the clinical disease (inflammation), denture retention, 

stability, occlusion and cleanliness. 

 

Oral hygiene was graded after training and discussion as good (with little or no signs 

of denture or dental plaque visibly present), and poor (generalised or gross denture 

or denture plaque evident). All examiners were trained but no formal calibration 

calculations were carried out. The patient demographic and clinical examination data 

was recorded on a standardised data collection sheet. There were no age-related 

exclusion criteria for this study.  

 

There were several exclusion criteria included in this study which included the 

exclusion of pregnant women, those that had undergone radiotherapy for head and 

neck related malignancies, those with periodontitis and those using any prescribed 

antimicrobial therapies, prescription mouthwashes or immunosuppressants within six 

months of the study.  

 

2.3.4 Clinical sample collection 
Ethylene oxide sterilised swabs (Fisher Scientific, Loughborough, UK) were used to 

take samples from the denture surfaces in contact with the palatal mucosa and the 

palatal mucosal surface covered by the dentures. Samples were collected and 

processed as previously described (O'Donnell et al., 2015b). In total, samples from 131 

patients were collected, which included 131 denture swabs and 131 mucosal swabs. 

However, during DNA extraction process not all samples had sufficient DNA, and 
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therefore only DNA from 108 denture samples, 87 mucosal samples and 63 dental 

samples remained for sequencing, collectively all these samples originated from 123 

patients.  

 

In parallel, dentures removed from the patients’ mouths were placed in sterile bags 

(Fisher Scientific) containing 50 ml PBS (Sigma-Aldrich, Dorset, UK). Adherent denture 

plaque was then removed by sonication (Ultrawave, Cardiff, UK) for 5min, as 

previously described (O'Donnell et al., 2015b). Bacterial and fungal loads were 

quantified by qPCR using 16S and ITS primers, as described previously (Kraneveld et 

al., 2012, O'Donnell et al., 2015b). 

 

2.3.5 DNA Isolation 
All samples were prepared for DNA isolation as previously described (O'Donnell et al., 

2015b), using a combination of chemical and mechanical lysis. DNA was isolated from 

clinical samples by first either centrifugation at 13000g for 15min for dental plaque 

samples before resuspension in 150ul of TE buffer, or sonication for swab samples 

before the same treatment. All samples were then lysed within a plate containing 

0.24ml of lysis buffer 0.25 ml of lysis buffer (AGOWA mag Mini DNA Isolation Kit, 

AGOWA, Berlin, Germany), 0.3g zirconium beads (diameter, 0.1mm; Biospec Products, 

Bartlesville, OK, USA) and 0.2 ml phenol. The samples within the plate were then 

homogenised using the Mini-beadbeater (Biospec Products) for 2min (O'Donnell et al., 

2015b). Bacterial and fungal loads were quantified by qPCR using 16S and ITS primers, 

as described previously (Kraneveld et al., 2012, O'Donnell et al., 2015b). Primers and 

a probe for the 16S rRNA gene were used and primers for the Candida ITS genes 

utilised to determine Candida colony forming equivalents (CFEs) are shown in Table 

2.2.  

 

Table 2.2 Primers for qPCR and Illumina Sequencing. 
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A total reaction volume of 20 ul was used containing 3ul of DNA. Reactions contained 

2x PCR Probe Master Mix (Roche) for 16S or 2 X SYBR Green PCR Master Mix (Roche) 

in the case of ITS primers. The conditions of the qPCR were activation for 10min at 

95°C followed by 50 cycles of denaturation for 30secs at 95°, annealing for 40secs at 

60°C and extension for 30secs at 75°C. qPCR was carried out in the LC480-II light cycler 

(Roche) before bacterial 16S rDNA concentrations (CFE) were determined from 

standard curves of E. coli K12 cultures and fungal ITS concentrations were 

extrapolated using Candida dubliniensis.  

 

2.3.6 Illumina Sequencing 
For each individual sample amplicon libraries of the V4 hypervariable region of the 16S 

rRNA gene were generated. The amplification mixes and PCR conditions used were as 

previously described (O'Donnell et al., 2015b). Briefly, amplicons from the V4 

hypervariable region were prepared, and these primers also included Illumina 

adapters and unique 8nt long barcode sequences. The libraries were amplified using 

2 units of Phusion HotStart II High fidelity polymerase (Thermo Scientific), 1-unit 

Buffer Phusion HS II [5x], including 1.5 mM MgCl2 (Thermo Scientific), 0.2 mM dNTP 

(Thermo Scientific, Germany) and 1 μM of each primer. After denaturation (98°C; 

30sec), 35 cycles of denaturation (98°C; 10sec), annealing (55°C; 30sec), and extension 

(72°C; 30sec) were performed. DNA libraries were pooled in equal amounts before the 

being purified using the IllustraTM GFXTM PCR DNA and Gel Band Purification Kit (GE 

Healthcare, Eindhoven, the Netherlands). The amplicon was sequenced in paired end 

mode on a MiSeq sequencing system (Illumina, Eindhoven, the Netherlands) with the 

v2 kit (Illumina) (Caporaso et al., 2012, Kozich et al., 2013). 

 

2.3.7 Sequencing data analysis 
Reads were first quality filtered using Trimmomatic v0.32, (Bolger et al., 2014). Next, 

the reads were merged using fastq-join implemented in QIIME v.1.8.0 (Bolger et al., 

2014). Sequences were clustered into operational taxonomic units (OTUs) using 

USEARCH v7.01090 (Edgar, 2013), after quality filtered with usearch (maxee 0.5).The 

representative sequence of each cluster was assigned a taxonomy using the RDP 

classifier (Cole et al., 2009). The Ribosomal Database Project: improved alignments 
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and new tools for rRNA analysis. Nucl Acids Res 37: D141–145. doi: 

10.1093/nar/gkn879) (QIIME v.1.8.0) (Greengenes v13.8 97_otus set) with a minimum 

confidence of 0.8. 

 

2.3.8 Study design and statistical analysis 
The study was designed as a pilot study and was initially only powered to detect a 

biologically meaningful association between diseased or healthy mouths and 

microbiome composition, and therefore was not originally powered to detect 

differences between additional variables including, denture hygiene, cleaning 

frequency and sleeping habits.  

 

The data set was randomly sub-sampled to 770 reads per sample (minimum number 

of reads per sample was 776), the use of a rarefaction curve based on our data deemed 

that 770 reads per sample was sufficient to avoid minimal loss in diversity which 

allowed for inclusion of the maximum number of samples for analysis. Statistical 

analysis was performed within R on the OTU, and taxonomic tables created, as 

described above. Additionally, meta table data from clinical parameters and other in 

vitro analysis including CFEs from qPCR were used for analysis within this chapter. 

Community analysis was performed using the both the Simpson and Shannon alpha 

diversity indexes within the phyloseq package (McMurdie and Holmes, 2013). 

Diversity indexes aim to apply a numerical quantification to the level of species sample 

within a community. Simpson’s index gives a measure of dominance in which the value 

increases the level of dominance increases and therefore diversity is said to decrease. 

The Shannon index increases as both the richness and evenness of the community 

increases. 

 

Nonmetric Distance Scaling (NMDS) plots of community data were performed using 

Bray-Curtis distances on community data represented as OTUs. Additionally, the 

distance measure based upon Weighted UniFrac was implemented using the phyloseq 

package. UniFrac is a β-diversity measure which unlike other distance metrics such as 

bray Curtis incorporates phylogenetic information to discern whether communities 

differ in composition. Weighted version of UniFrac incorporates the abundance of 
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each feature so branches of the tree are weighted by the proportional abundance of 

each feature or taxa. This weighting removes the issue of low abundance taxa with 

long phylogenetic branches having unproportionate effect on the total distance 

calculated within the community. Non-metric multidimensional scaling (NMDS) 

ordination plots were constructed using one of the above distance metrics.  

 

To measure OTUs that significantly differed between conditions, we used the R 

package DESeq2 (Love et al., 2014), with an adjust p-value of <0.05 and log2 fold-

change cut off >1.5. DESeq2 was originally developed for identifying differential 

expressed transcripts/genes in RNA-Seq transcriptome studies. The same principles 

can be applied to identify features, in this case taxa, that are in higher abundance in 

one condition compared to another. Additionally, correlation analysis and analysis of 

variance (ANOVA) were performed using function within base R. ANOVA was utilised 

to compare differences in diversity measures, Shannon, or Simpson, between our 

different communities. When measuring significance with ANOVA a p-values of <0.05 

was used unless stated otherwise. 

 

When analysing the experimental treatment data distribution, graph production and 

statistical analysis were performed using GraphPad Prism (version 5; La Jolla, CA, USA). 

After assessing whether data conformed to a normal distribution, One-way Analysis 

of Variance (ANOVA) and t tests were used to investigate significant differences 

between independent groups of data that approximated to a Gaussian distribution. A 

Bonferroni correction was applied to the p value to account for multiple comparisons 

of the data.  

 

2.4 Results 
 

2.4.1 Influence of denture hygiene on in vitro biofilms 
In vitro denture biofilms were exposed to a combination of chemical and mechanical 

denture cleansing sequentially over a 7-day period. Live cell analysis was carried out 

by qPCR using the 16S and 18S rDNA primers. A control arm with no intervention was 

included for comparison. Figure 3.3 shows that denture cleansing was able to 
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significantly reduce the viable bacterial colony forming equivalents (CFEs) by at least 

1 log10 when comparing pre-treatment to post-treatment samples on each day of 

analysis (p < 0.01). However, when the Candida were quantified, we could not detect 

any significant difference in cell numbers within the treatment group pre- and post-

denture cleansing, despite highly significant differences between the treatment arm 

and control group from days 3–7 (p < 0.001). Figure 2.3 shows that total bacteria and 

Candida CFEs are higher in all control and treatment arms, suggesting dead cells make 

up a considerable component of the dead biofilm. Taken together, these data indicate 

that bacteria within the biofilm are more sensitive to denture cleansing than Candida, 

alternatively, bacterial numbers during regrowth can supress the ability of retained 

Candida cells to repopulate. Irrespective, significant numbers of Candida and bacteria 

are retained despite intense and frequent treatment regimens, suggesting some co-

operative protection or tolerance within an interkingdom biofilm. 

 

 
Figure 2.3 Quantitative live assessment of bacterial and Candida load following in 
vitro denture hygiene. Nine species of denture biofilms were grown on PMMA sections, 
followed by daily denture cleanser and brushing. Sonicate samples were taken pre- and post-
treatment, and an untreated positive control included. Live cell numbers were determined by 
qPCR or PMA treated samples (live cells) of (A) bacteria, and (B) Candida. Data was analysed 
by ANOVA with a Bonferroni correction (**p < 0.01, ***p < 0.001). 

 

One hundred and thirty-one (131) patients were recruited to this study, of which the 

primary demographics of these patients are shown in Table 2.3. The average patient 

age was 70.2 ± 11.5 years (min: 33, max: 95) with an average denture age of 4.5 ± 5.1 

years (min: 0.2 max: 40). In terms of gender, females represented the majority of the 

population at 64.9%, with males contributing only 35.1%. After clinical diagnoses, 
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62.6% of participants were found to have healthy oral mucosa and the remaining 

37.4% were diagnosed with DS. These data were collected by Dr Robertson and Dr 

O’Donnell. 

 

Table 2.3 Patient denture hygiene demographics.  

 

Patients were classed as having either good or poor denture hygiene, in total 95 

(72.5%) patients had good denture hygiene and 36 (27.5%) had poor denture hygiene.  

When separated into healthy and diseased groups, 20.7% and 38.8%, respectively, 

were classed as having poor denture hygiene. Denture cleaning varied among the 

cohort, however, the majority reported cleaning their dentures either once or twice 

per day. Forty-two (32.1%) participants reported cleaning their denture once per day, 

whereas 86 (65.6%) cleaned theirs twice per day. Going to sleep whilst wearing a 

denture is a habit that was commonplace amongst study participants, as 73 (55.7%) 

of the total patients reported that they sleep with their denture in situ (Table 2.2). 
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Additionally, patients were classified according to their oral health impact profile 

(OHIP) score calculated from the OHIP-14 questionnaire; each question had a 5-point 

scale to assess different aspects of oral health and quality of life. The sum of the 

questionnaire is used to assess their overall oral health with a maximum possible score 

of 56 (Allen and Locker, 2002). 

 

2.4.2 Influence of denture hygiene on the denture associated Candida 
The influence of Candida load on dentures was compared across several oral and 

denture hygiene practices, detailed in Figure 2.4. Regarding sleeping with the denture 

in situ, no statistical significance was observed between those who did and those who 

did not with respect to Candida load (Figure 2.4A). Whether the denture wearer had 

good, poor or excellent oral hygiene similarly appeared to have no effect on the 

Candida load (Figure 2.4B), nor did cleaning once or twice per day have an impact on 

Candida burden (Figure 2.4C). These data suggest that Candida species are not 

influenced by oral hygiene measures in vivo. 
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Figure 2.4 Candida load between hygiene variables and oral sites. Total 
Candida load (Log10 (ITS)) CFE within the denture, mucosal and plaque 
microbiomes. The Candida load is compared at each of these sites between 
those who slept in their dentures and those who did not (A) those with poor, 
good or excellent oral hygiene (B) and individuals who cleaned their dentures 
once or less than once a day and those who cleaned their dentures twice or 
more times a day (C). No significance was observed in the overall candida load 
between any of the conditions.  
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2.4.3 Influence of denture hygiene on the oral microbiome 
Ordination plots utilising the weighted UniFrac distance measure as well as ANOVA on 

the Shannon diversity and Simpson diversity index were implemented to compare the 

diversity and dominance of the denture microbiome for the different oral and denture 

hygiene practices. When using abundance and phylogenic distances (Weighted 

UniFrac) to compare hygiene status, denture cleaning and sleeping with the denture 

in situ we observed no patterns in diversity between the different conditions (Figure 

2.5). Similarly, when using the diversity metrics Shannon and Simpson to compare 

between conditions observed no significant differences. The diversity is not 

significantly affected by the hygiene status, denture cleaning frequency or whether an 

individual sleep in their denture within this cohort (Figures 2.6-2.8). These data 

suggest that bacterial species, composition, and diversity are not influenced by oral 

hygiene measures in vivo.  

 

Despite their being no overarching consequence on the diversity and richness of the 

oral community between different hygiene measures, some individual changes in 

species abundance were observed with respect to oral hygiene status and those who 

did and did not leave their dentures in situ whilst sleeping (Figure 2.9). No significant 

changes in abundance of species were observed in the dental microbiome (Figure 

2.9A), however the mucosal microbiome (Figure 2.9C) had 1 genus significantly 

represented (Dialaster) in those who slept with denture in situ. The denture 

microbiome (Figure 2.9E) had a number of genus (Leptotrichia, Selenomonas, 

Moryella, Prevotella) in significantly higher abundance in those who slept with their 

denture in situ compared to those who did not. Within the dental, mucosal and 

denture microbiome a number of species are in significantly higher proportion in 

those with poor oral hygiene (Figure 2.9). The bacterial genus Scardovia was in 

significantly higher abundance in all three microbiome sites (Figure 2.9B, D and F) in 

those who had poor oral hygiene. Those with poor oral hygiene also had higher levels 

of Fusobacterium and Schwartzia in the denture microbiome (Figure 2.9F), and 

increased levels of Lactobacillus within their dental microbiome (Figure 2.9B). These 

data indicate that specific genera of bacteria are influenced by oral hygiene practices.
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Figure 2.5 PCoA ordination plot based on phyloseq’s weighted UniFrac distances. Principal coordinates analysis (PCoA) of bacterial diversity based on weighted UniFrac 
distances from the microbiome of the mucosal (a, b), denture (c, d) and the dental (e ,f) surfaces. The patient variables: whether they sleep in their denture and their hygiene 
rating are coloured on individual plots. Additionally, the patient variable Denture cleaning, whether they clean their denture once a day/less once a day or twice a day/more 
than twice a day is represented by a shape. The largest amount of variation is visualised on the x axis with second largest on the y. Percentages represent the variance that 
is represented between samples on each axis.   
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Figure 2.6 Microbiome diversity measures between poor, good and excellent oral hygiene. Diversity between patients with poor, good and excellent oral 
hygiene were measured for each of the three oral sites: denture (a), mucosal (b) and dental (c) using the observed OTUs, Shannon Index and the Simpson 
diversity index. The upper and lower quartiles are indicated by the top and bottom boundaries of the boxplots while the line within the plot indicates the 
median values. Analysis of variance was performed (ANOVA) between patients’ variables for each site on each of the diversity measures and was only reported 
if P<0.05. None of the variables fulfilled this criterion so no significance bars are shown. 

MucosalDenture 

Dental

a b

c

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

Observed Shannon Simpson

Excellent Good Poor Excellent Good Poor Excellent Good Poor

0.4

0.6

0.8

1

2

3

25

50

75

OralHygiene

Al
ph

a 
Di

ve
rs

ity
 M

ea
su

re

DentureCleaning
●

●

Once

Twice

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

Observed Shannon Simpson

Excellent Good Poor Excellent Good Poor Excellent Good Poor

0.4

0.6

0.8

1.0

1

2

3

4

25

50

75

100

125

OralHygiene

Al
ph

a 
Di

ve
rs

ity
 M

ea
su

re

DentureCleaning
●

●

Once

Twice

b

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

Observed Shannon Simpson

Excellent Good Poor Excellent Good Poor Excellent Good Poor

0.7

0.8

0.9

1.5

2.0

2.5

3.0

3.5

25

50

75

OralHygiene

Al
ph

a 
Di

ve
rs

ity
 M

ea
su

re

DentureCleaning
●

●

Once

Twice

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

Observed Shannon Simpson

Excellent Good Poor Excellent Good Poor Excellent Good Poor

0.7

0.8

0.9

1.5

2.0

2.5

3.0

3.5

25

50

75

OralHygiene

Al
ph

a 
Di

ve
rs

ity
 M

ea
su

re

DentureCleaning
●

●

Once

Twice

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

Observed Shannon Simpson

Excellent Good Poor Excellent Good Poor Excellent Good Poor

0.7

0.8

0.9

1.5

2.0

2.5

3.0

3.5

25

50

75

OralHygiene

Al
ph

a 
Di

ve
rs

ity
 M

ea
su

re

DentureCleaning
●

●

Once

Twice

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

Observed Shannon Simpson

Excellent Good Poor Excellent Good Poor Excellent Good Poor

0.7

0.8

0.9

1.5

2.0

2.5

3.0

3.5

25

50

75

OralHygiene

Al
ph

a 
Di

ve
rs

ity
 M

ea
su

re

DentureCleaning
●

●

Once

Twice

Observed Shannon Simpson

Observed Shannon Simpson Observed Shannon Simpson

Oral Hygiene
Excellent Excellent ExcellentGood Good GoodPoor Poor Poor

Oral Hygiene
Excellent Excellent ExcellentGood Good GoodPoor Poor Poor

Oral Hygiene
Excellent Excellent ExcellentGood Good GoodPoor Poor Poor

Al
ph

a 
D

iv
er

si
ty

 M
ea

su
re

Al
ph

a 
D

iv
er

si
ty

 M
ea

su
re

Al
ph

a 
D

iv
er

si
ty

 M
ea

su
re



Chapter 2: The impact of Candida and its interactions with the microbiota at the denture surface 

61 
 

 

Figure 2.7 Microbiome diversity measures between denture cleaning once or twice. Diversity between patients who clean their dentures ≤ once a day and 
≥ twice a day were measured for each of the three oral sites: denture (a), mucosal (b) and dental (c) using the observed OTUs, Shannon Index and the Simpson 
diversity index. The upper and lower quartiles are indicated by the top and bottom boundaries of the boxplots while the line within the plot indicates the 
median values. Analysis of variance was performed between patients’ variables for each site on each of the diversity measures and was only reported if 
P<0.05. None of the variables fulfilled this criterion. None of the variables fulfilled this criterion so no significance bars are shown. 
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Figure 2.8 Microbiome diversity measures between sleeping with or not sleeping with dentures in situ. Diversity(observed, Shannon and simpson) between patients that 
did and did not sleep with their denture in situ were measured for each of the three oral sites: denture (a), mucosal (b) and dental (c) using the observed OTUs, Shannon 
Index and the Simpson diversity index. The upper and lower quartiles are indicated by the top and bottom boundaries of the boxplots. Analysis of variance was performed 
between patients’ variables for each site on each of the diversity measures and was only reported if P<0.05. None of the variables fulfilled this criterion. None of the variables 
fulfilled this criterion so no significance bars are shown. while the line within the plot indicates the median values. Analysis of variance was performed between patients’ 
variables for each site on each of the diversity measures and was only reported if P<0.05. None of the variables fulfilled this criterion.  
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Figure 2.9 Measure of taxa in significantly higher abundance between patient variables. MA plots, which are Log2 fold change plotted the against mean 
abundance, depict taxa that are in differing levels of abundance between patient variables. The patient variables are whether the patient sleeps with their 
denture in and their overall hygiene rating. The level of each genus between the two patient variables in the Dental (A, B), Mucosal (D, C) and Denture (E, 
F) microbiomes are indicated by each individual dot. The top ten taxa are labelled with their genus name and significant taxa, with an FDR adjusted p 
value < 0.01, are indicated in red. Plots A,C and E represent the Log2 fold change of those taxa in higher abundance in those who did sleep (+ve Log2 fold 
change) in their denture compared to those who didn’t (-ve). Plots B,D and F represent taxa that were in higher abundance in those with poor (+ve Log2 fold 
change) compared to those who had good (-ve) oral hygiene. 
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2.4.4 Influence of Candida load on hygiene and microbial communities 
The levels of Candida were next compared, which were ascertained by qPCR and 

converted to colony forming equivalent (CFE) counts and normalised to bacterial CFEs 

using amplification of ITS and 16s (Kraneveld et al., 2012, O'Donnell et al., 2015b). The 

Candida load was then compared between the three denture hygiene metrics denture 

cleaning frequency, oral hygiene and whether the denture was left in situ whilst 

sleeping.  

 

When comparing the overall Candida load between those who did and those who did 

not sleep in their denture, we observed that there was no discernible difference 

(Figure 2.10A). This was found to be true at each of the oral microbiome sites denture, 

mucosal and plaque. We also found that there was not significant difference in the 

Candida load when testing with ANOVA. Similarly, when comparing the Candida load 

between those with poor, good or excellent oral hygiene at each of the three sites 

there was no significant difference in the overall Candida burden (Figure 2.10B). The 

frequency of denture cleansing appeared to have no visible effect on the Candida load 

on denture, mucosal or plaque samples and there was no statistical significance found 

when using an ANOVA to compare the two cohorts. 

 

In addition to the impact of oral hygiene we considered the relationship between the 

levels of Candida and the composition and diversity of the bacterial community. 

Diversity as measured using Bray-Curtis was used to elucidate differences in bacterial 

diversity due to Candida load. Candida was compared between low, medium and high 

loads. From the NMDs there is no distinct separation of clusters relating to the low, 

medium and high Candida loads due to little dissimilarity between the samples (Figure 

2.10A). However, a slight trend in the ordination of the points can be observed in 

relation to the abundance of Candida, as shown by the gradient of Candida load 

(Figure 2.10B).  
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Figure 2.10 Non-metric dimensional scaling of OTU data based upon the Bray-Curtis distance 
measure. NMDS of Bray-Curtis beta diversity metric of oral microbiomes community data is 
indicated by oral site using shapes and Candida load is indicated as either low, medium or high 
by colour (A), community data is represented as a gradient of Candida load which is the total 
Candida CFE/bacterial CFE (ITS/16S) (B).  
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When comparing diversity between the low, medium and high Candida loads we 

observed that the overall abundance of different OTUs slightly decreases. Similarly, 

when comparing the diversity between low, medium and high Candida with the 

Shannon and Simpson diversity measures there is a small reduction in diversity, from 

the low to the medium and high Candida load (Figure 2.11). No significance in diversity 

was found using any of the three measures between low, medium and high Candida 

load.  

 

 

Figure 2.11 Microbiome diversity measures between Candida load low, medium and high. 
Diversity by the between patients with low, medium or high Candida burden were measured 
for all patients. The diversity metrics included are the Observed number of OTUs, Shannon 
and Simpson diversity indexes. The upper and lower quartiles are indicated at the top and 
bottom boundaries of the boxplots while the line within the plot indicates the median values. 
Analysis of variance was performed between patients’ variables for each site on each of the 
diversity measures and was only reported if p<0.05. None of the variables fulfilled this 
criterion. None of the variables fulfilled this criterion so no significance bars are shown. 

 

Finally, hygiene measures including the overall hygiene score, the OHIP score and 

denture cleaning frequency were all tested for correlations with genus of bacteria. 

OHIP score and denture cleaning frequency did not correlate significantly with any 
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genera of bacteria, as illustrated in Figure 2.12. The bacterial genus Scardovia was 

positively correlated with oral hygiene, implying an increased level of Scardovia within 

the mucosal microbiome as oral hygiene measures diminishes. A higher Candida load 

was correlated with a significantly higher level of genera including Lactobacillus at all 

three oral sites. Within the mucosal microbiome the abundance of the genera 

Acineobacter, Faecalibacterium, Janthinobacterium, Halomonas and Shewentalla is 

positively correlated with and increased Candida load. Within the plaque microbiome 

Scardovia is positively associated with increased levels of Candida. Conversely specific 

genera such as Leptotrichia are negatively associated with Candida in both the plaque 

and denture microbiome. Other significant negative correlations include, Tannerala 

(plaque), Captnocytphaga (plaque), Fusobacterium (denture & mucosal), 

Oribacterium (mucosal) and Haemophilus (mucosal). These data suggest that Candida 

species have a subtle influence on the bacterial microbiome in denture patients and 

can significantly influence specific genera. Oral hygiene measures had less influence 

on bacterial genera comparatively.  
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Figure 2.12 Correlations of variables with the levels of specific Genus on the mucosal, denture and dental surface. Heatmap depicting the specific 
correlations between clinically relevant patient meta-data. This meta data is comprised of physician measured (Hygiene and OHIP Score) and patient reported 
data (Denture Cleaning Frequency) as well as the relative Candida load (ITS/16s). Correlations were performed using the Pearson (pears) coefficient and p-
values were corrected using the Benjamini Hochberg false discovery rate. Correlations are shown between the bacterial genus and the clinical measures for 
each oral site which was either denture, mucosal or plaque. Significance is indicated by corrected p<0.05 *, p<0.01**, p<0.001***. 
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2.5 Discussion 
 

As the elderly population expands, the number of denture wearers will coincidently rise. In 

the UK population, approximately 20% wear removable dentures, with 70% of UK adults older 

than 75 years old wearing dentures (Hannah et al., 2017). Dentures can influence oral health 

status, particularly in relation to the oral microbiome. Other patient related factors may also 

alter the environment, such as denture hygiene. Poor oral hygiene is often to blame for 

associated oral inflammation, exacerbated by denture cleanliness, age of denture, salivary 

flow, diet and smoking (Martori et al., 2014). Soft tissue inflammation results from persistent 

exposure to microorganisms, a characteristic of DS (O’Donnell et al., 2017). Numerous 

bacterial species and yeasts frequently adhere to the denture surface and form a biofilm 

amongst cracks and crevices of acrylic substrates (Hannah et al., 2017). Here it is reported for 

the first time the relationship between denture hygiene practices, the oral microbiome and 

yeasts. The data presented demonstrates importance and resilience of Candida species in the 

denture wearing population, and how its presence has a bearing on the bacterial microbiome. 

 

Currently there are a limited number of denture related microbiome studies available in the 

literature (O'Donnell et al., 2015b, Shi et al., 2016, Yitzhaki et al., 2017). However, we were 

able to utilise these data to develop a representative model of denture plaque based on the 

most dominant genera represented (Ramage et al., 2012c), a concept in vitro denture model 

based on an earlier concept (Sherry et al., 2016a). This in vitro denture cleansing study 

revealed that the bacterial component of a 9 species biofilm was significantly more sensitive 

to chemical and mechanical disruption than the C. albicans component. The study revealed 

that despite clear differentiation from an untreated biofilm, the levels of live C. albicans 

retained on the acrylic surface did not change when challenged. These data suggested that a 

baseline level of C. albicans was retained that was less sensitive to an oral intervention than 

bacteria. The use of a more sensitive molecular assay was a primary reason for observing this 

effect, one that would otherwise be missed using standard microbiological plating (Ramage 

et al., 2012c).  

 

The results from these analyses prompted us to revisit microbiome data we had obtained in 

a previous microbiome analysis, where primary outcome measures were focussed on disease 
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subtypes (O'Donnell et al., 2015b). In this study design we had collected patient-related data, 

including oral hygiene information. Given the in vitro analysis outcomes, it was hypothesised 

that Candida species present in the clinical samples may also be less affected by oral hygiene 

interventions, with a caveat to the analysis that this was cross-sectional in nature. These data 

supported the notion of biofilm insensitivity, but instead of Candida being unimpacted alone, 

the bacterial microbiome was shown to also be uninfluenced by routine oral hygiene practices 

(composition and diversity). Interestingly though, the specific abundance of individual genera 

was observed, both on the denture and the mucosa, including genera such as Leptotrichia, 

Selenomonas, Moryella, Prevotella and Dialaster in those who slept with their denture in situ. 

Moreover, poor oral hygiene resulted in Scardovia and Lactobacillus at significantly higher 

abundance, along with Fusobacterium and Schwartzia in the denture microbiome. Whether 

these interactions constitute a synergistic or antagonistic relationship with Candida species 

remains to be determined, but at least suggest subtle dysbiosis correlating with reduced oral 

hygiene standards. 

 

Next, to establish the impact of Candida load on any microbiome changes, and how these 

were impacted by oral hygiene measures, we normalised both levels based on bacterial load 

by qPCR according to established methods (Kraneveld et al., 2012). Denture cleansing 

frequency and the other measures appeared to have no visible effect on the Candida load on 

denture, mucosal or plaque samples, a result mirroring our own in vitro observation. Indeed, 

there are no measurable changes in diversity indices across the different Candida loads. One 

of the caveats of the study design is the cross-sectional nature and lack of power, thus non-

significant results between these variables are not necessarily absence of effect, but rather a 

result of not achieving the optimum sample size required. Interestingly, although the bacterial 

microbiomes were not significantly influenced by Candida load, a slight trend can be observed 

in relation to the abundance. This suggests again that subtle changes to the microbial 

composition are reflected by changes in abundance of Candida rather than the oral hygiene 

intervention. 

 

Our final analysis involved correlation analysis at the genus level, looking at a range of 

parameters, including overall hygiene score, the OHIP score and denture cleaning frequency. 

This approach enabled us to observe clear positive and negative associations with different 
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oral sites, including the denture surface, and pick out significant positive correlations. This 

was deemed this an important tactic, as the breadth and depth of literature is now beginning 

to demonstrate important interkingdom relationships (O'Donnell et al., 2015a). Neither OHIP 

score and denture cleaning frequency were shown to correlate significantly with any genera 

of bacteria, though Candida load and oral hygiene did reveal significant associations. As has 

been described elsewhere, a higher Candida load correlated with a significantly higher level 

of genera including Lactobacillus. Moreover, the bacterial genus Scardovia was positively 

correlated with oral hygiene. Conversely specific genera such as Leptotrichia and 

Fusobacterium are negatively associated with Candida on the denture microbiome. Given 

that it is now understand that C. albicans specifically interacts with Staphylococcus aureus 

and oral streptococci using agglutinin-like sequence adhesins (ALS3) (Peters and Noverr, 2013, 

Kean et al., 2017), and P. gingivalis using InlJ, an internalin protein family, to interact with the 

same ALS3 adhesin (Sztukowska et al., 2018a), then it is unsurprising that we are able to tease 

out specific interactions. These analytical approaches, while not hypothesis driven per se, will 

help pinpoint the bacterial genera we should consider when designing and developing new 

biofilm models of microbial pathogenesis. Moreover, understanding the important elements 

of polymicrobial interkingdom interaction, no matter how subtle, could provide useful 

direction in the development of novel antibiofilm strategies. The concept of the mycofilm 

(Kean et al., 2017), where bacteria utilise bacteria as a scaffold to support their own biofilm, 

is a prime reason we ought to consider C. albicans as the real keystone oral microorganism 

(Janus et al., 2016). Targeting this may be crucial in generating a wider anti-biofilm effect.  

 

Although we did not observe any consistent effects of hygiene on the microbiome within this 

work poor oral hygiene has been previously associated with a worse case of DS. Studies have 

previously highlighted that there is a tendency within the denture wearing population for 

poor maintenance of their dentures. Additionally it has been previously shown that there is a 

relatively low percentage (11.9% in one study) and that poor denture hygiene was associated 

with an increased incidence of DS (Dikbas et al., 2006). Differences in denture cleaning 

methods and sleeping habits have also been attributed to differences in the incidence of DS 

(Martori et al., 2014, Sadig, 2010). The prolonged isolation of the denture from the beneficiary 

effects of the normal salivary flow are hypothesised to be responsible for this effect. The 

microbial community under the denture is sealed and isolated from the rest of the oral 
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environment allowing a pathogenic community to exist and thrive on the denture surface 

(Sobel et al., 1992). 

 

Microbiome analysis is relatively new in the context of the study of microbes and microbial 

communities. At the time of sequencing for this study the read depths were more limited with 

the read depth for some samples at <1000 bases; current platforms can generate >30,000 

reads per sample. Additionally, rarefication was used within this study as a method of 

determining the minimum acceptable sample depth and, in turn, subsampling all samples 

down to said minimum read depth. With the current data an alternative method would be to 

retain the entire resolution of the data with no rarefication and a repeat study would more 

than likely yield much higher levels of reads and hence improve the inferred taxonomic 

composition. In addition to this, at the time of study conception and design ITS sequencing 

for identification of fungal species was not widely adopted, although had been shown to 

speciate fungi, and therefore the cruder identification of fungal load by qPCR was utilised. 

The mycobiome is still under-utilised and is a weakness within this study and in future studies. 

As we have previously discussed, mycobiome studies are slowly on the rise and any future 

community profiling within the oral cavity would benefit from having joint ITS/16s sequencing 

such as in the case of recent studies carried out in dental caries (O'Connell et al., 2020). 

 

In summary, this study has been the first to specifically investigate the relationship between 

denture hygiene, the oral microbiome, and the influence of Candida species in denture 

wearers. The findings from this study suggest that maintaining good denture hygiene and 

hygiene practices do not appear to have a strong influence on altering the microbiome but 

taken positively this indicates a stabile microbial population. Candida species appear to be 

more resilient to the daily treatments which was mirrored in patient demographics, where 

denture cleaning and hygiene does not impact the fungal load. We predict this resilience is a 

key factor in Candida’s role within the oral microbiome. Therefore, future studies in oral 

microbiology and beyond should pay closer consideration to the mycobiome and the 

influence it can have on the bacterial microbiome. However, to better understand this it is 

important to understand the driving mechanisms that underpin biofilm formation in C. 

albicans.  



Chapter 2: The impact of Candida and its interactions with the microbiota at the denture 
surface 

73 
 

2.6 Highlights 
 

- Candida is less sensitive to a daily denture treatment regimen than oral bacteria 

species. The fungal load is not impacted by oral cleansing or oral hygiene measures 

indicating its high resilience and stability in the oral microbiome. 

- Candida load has an influence the overall denture and oral microbiome with shifts in 

the beta diversity being observed in response to fungi.  

- Hygiene measures have limited impact on the microbiome of individuals with few 

bacterial species being significantly different between good and poor oral hygiene. 

The diversity of the oral microbiome was not significantly affected by any of our oral 

hygiene or cleanliness measures.  

- Contrary to common assumptions correlations of co-existence of Candida and the 

Lactobacillus species in oral biofilms exist. Lactobacillus was positively correlated with 

p>0.05 in the mucosa, dentate and edentate surfaces within the oral cavity.
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3.1  Background and Introduction 
 

Biofilms are a major clinical concern due to their persistence, antimicrobial resistance, host 

evasion and other tolerance mechanisms (Ramage et al., 2012b). Candida biofilms are 

typically defined as an aggregate of cells attached to one another and/or a surface and 

encapsulated within an extracellular matrix (Nobile and Johnson, 2015). It is this aggregation 

and encapsulation of the cells that confers microbial tolerance. Biofilm formation is an 

important factor in C. albicans pathogenesis, however, there is variability from strain to strain 

in biofilm forming capability (Tumbarello et al., 2007, Tumbarello et al., 2012). There are 

various environmental and physiological factors, including nutrient availability, interaction 

with host/bacterial species, hypoxia, pH, and temperature that influences the phenotype of 

Candida species. This variability in biofilm formation has been categorised in vitro from 

clinically derived isolates. Within a population C. albicans isolates can range from low biofilm 

forming (LBF [yeast-like poorly aggregated strains]) to high biofilm forming (HBF [hyphal and 

extremely aggregated in their phenotype]), under the same conditions. This was shown to be 

true in clinically derived samples of patients with candidemia. The biofilm phenotype within 

this cohort was associated with increased tolerance to antimicrobials and increased 

pathogenicity (Sherry et al., 2014). This variability is not unique to bloodstream isolates but is 

also observed within other sites such oral and vaginal infections (O’Donnell et al., 2017, Sherry 

et al., 2017). 

 

Previously, the role of different metabolic pathways including amino acid metabolism has 

been determined in C. albicans biofilm heterogeneity (Rajendran et al., 2016b). Our 

understanding of C. albicans adaptation to the host environment have to date been mostly 

achieved from studies concerned with planktonic cultures. For the first time this project 

aimed to dissect the role of adaptive phenotypes of C. albicans biofilms in response to 

nutrient stimuli/stress. The control of cellular physiology in response to immediate 

environmental changes involves reprogramming of gene expression regulatory systems. A 

distinct component of biofilm adaption in C. albicans is phenotypic switching and growth, 

which is stimulated by a variety of factors, including changes to the carbohydrate source and 

amino acid starvation (Tripathi et al., 2002, Brown et al., 2014a, Sudbery, 2011). Changes in 
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functional and metabolic pathways impact C. albicans pathogenicity, which includes yeast-

hypha morphogenesis, phenotypic switching, adhesins, invasins, and secreted hydrolases 

(Brown et al., 2014a), factors all important to the biofilm phenotype (Nobile and Johnson, 

2015). Notably, biofilm related processes within C. albicans are driven by 6 key transcriptional 

regulators as part of a complex transcriptional circuitry (Nobile et al., 2012). C. albicans 

biofilm formation therefore seems to depend upon two factors: a genetic predisposition for 

enhanced biofilm formation and the correct external stimulus to induce the phenotype.  

 

The use of RNA-Seq, i.e., the identification of expressed mRNA transcripts through using high 

throughput sequencing technologies such as Illumina, has become common and, in some 

instances, routine within many medical and life science disciplines. The same is becoming true 

of microbiological research and the identification of transcriptional changes in Candida spp. 

(Chong et al., 2018b). Transcriptomics holistic identification of gene expression, this allows 

for identification of functional groups and network/pathway regulatory processes. Similarly, 

within fungal and Candida infection studies, RNA-Seq is a demonstrably powerful technology 

in discerning perturbations in the cellular response of C. albicans to different stimuli and 

environmental conditions as well as antimicrobial treatment responses (Romo et al., 2019, 

Burgain et al., 2019, Burgain et al., 2020). RNA sequencing has become a popular tool for 

discerning transcriptional changes, offering higher resolution compared to qPCR and 

microarray technologies at an ever-decreasing cost. This, in combination with the increase in 

bioinformatic pipelines, focussed upon discerning changes within networks and pathways 

allow for enhanced interpretation of Candida transcriptomic datasets.  

 

3.2 Aims 
 

It was hypothesised that molecular profiles could be discerned to differentiate LBF and HBF 

capacity. This chapter aims to interrogate the different gene expression and regulatory 

networks involved in biofilm formation. Additionally, it will build on our groups previous 

findings that metabolic adaptation is key to biofilm formation in C. albicans. The following 

work will interrogate clinical isolates identified as either low biofilm forming (LBF) or high 

biofilm forming (HBF) isolates both in the presence and absence of a biofilm inducing stimulus 

(serum).  
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Specifically, this chapter aims to identify: 

- Differences in morphology and phenotype in HBF and LBF in both the presence and 

absence of serum.  

- Evidence of transcriptomic differences between HBF and LBF isolates both in the 

presence and absence of serum. 

- Functionally relevant pathways and networks responsible or related to both these 

phenotypic differences. 

- Transcriptomic and functional pathways/networks related to the biofilm induced 

phenotype. 

 

This work has been presented at the following conferences: 

Eurobiofilms, Amsterdam 2017 - Integration of Metabolomics and Transcriptomics in Biofilm 

Research (Poster, Recipient of a travel grant to attend from the organisers) 

ECCMID, Madrid 2018- De novo transcriptome assembly and annotation for analysis of the 

emerging pathogen Candida auris (Poster) 

OMIG, Gregynog 2018- Omics approaches to studying microbial biofilms in oral health (Talk, 

Recipient of a travel grant to attend from the organisers) 

IADR, London 2018- Omics and bioinformatics approaches to studying oral biofilms (Poster) 

Eurobiofilms, Glasgow 2019 - Transcriptomic and multi-omics data integration approaches 

to interrogate mono and interkingdom species Candida biofilms (Talk) 

Invited talk, Newcastle 2020 - OMIC modelling of Candida albicans interkingdom biofilm 

interactions (Seminar) 

 

3.3 Methods 
 

3.3.1 Culture conditions and standardisation 
This chapter utilised clinical C. albicans (n = 10) bloodstream isolates, collected under the 

approval of the NHS Scotland Caldicott Guardian’s (Sherry et al., 2014, Rajendran et al., 2015). 

Isolates had been previously characterised in detail and classified as to their biofilm forming 

ability. Isolates were stored in Microbank® vials (Pro-Lab Diagnostics, Cheshire, UK) at -80°C 

until sub-cultured onto Sabouraud’s dextrose agar (SAB [Sigma-Aldrich, Dorset, UK]). C. 

albicans isolates were propagated in yeast peptone dextrose (YPD) medium (Sigma-Aldrich, 
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Dorset, UK), cultured for ~16h in a shaking incubator at 30°C, washed by centrifugation and 

resuspension in PBS twice before being standardised into RPMI-1640 (Sigma-Aldrich, Dorset, 

UK) to 1 × 106 cells/mL, as described previously (Ramage et al., 2001b).  

 
3.3.2 Biofilm assay 
C. albicans biofilms were grown according to our established protocols (Rajendran et al., 

2015). Pre-characterised C. albicans isolates with high (HBF [n=5]) or low (LBF [n=5]) biofilm 

forming ability were used throughout this chapter (Sherry et al., 2014, Rajendran et al., 2015). 

For all experiments, biofilms were grown in polystyrene plates, 75 cm2 tissue culture flasks or 

Thermanox coverslips in RPMI (Sigma) for 90min, 4h or 24h at 37°C. For induction 

experiments, RPMI media was supplemented with foetal calf serum (FCS [25% (v/v)]) or 

dialysed serum (DS [25% (v/v)]). Small molecular components were removed from the serum 

using dialysis membrane tubing. The biofilm biomass of each isolate was assessed with the 

crystal violet (CV) assay as previously described (Rajendran et al., 2015). Before being 

quantified using the FLUOstar Omega plate reader (BMG, UK) at 570nm. Hyphal formation 

was quantified using a light microscope and eye piece graticule and stage micrometre.  

Measurements were taken for total hyphal length at 90 and recorded before comparisons 

between HBF and LBF after 90min growth.  

 
3.3.3 RNA extraction and sequencing 
Two isolates were selected 1 LBF (204) and 1 HBF (39) based on their biofilm forming 

capabilities and their inclusion in previous group studies. These isolates had previously been 

compared a 2016 study (Rajendran et al., 2016b). Following incubation, biofilms were washed 

with phosphate buffered saline (PBS) to remove any non-adherent cells before a cell scraper 

was used to dislodge the biomass into 1ml of TRIzol™ (Life Technologies, Paisley, UK). The 

TRIzol containing the scraped biomass was transferred to a bead beating tube containing 

0.5mm sterile glass beads. The biomass then disrupted using a Mini-beadbeater (Biospec 

Products) for 3 x 30seconds. Following bead beating 100μl of bromo-chloropropane was 

added to the sample before the sample was vortexed and centrifuged for 15mins at 

13000rpm at 4°C. Subsequent to centrifugation samples split into 3 layers, the upper aqueous 

layer was decanted by pipette into a nuclease free Eppendorf tube. To the Eppendorf an equal 

amount of ice-cold isopropanol was added ~500μl before being inverted 3-4 times to mix 

thoroughly and then stored in a - 20°C freezer overnight. The samples where then centrifuged 
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for 10mins at 13000rpm at 4°C to pellet the RNA and the entire supernatant was removed. 

The pellet was then washed with 700μl of ice-cold 70% ethanol before being centrifuged for 

5mins at 6500rpm at 4°C. The ethanol was then removed, and the pellet allowed to air dry 

until no ethanol remained. 20μl of RNase free water was then added to resuspend the RNA 

pellet. Total RNA was DNase (Qiagen, Crawley, UK) treated and purified using the RNeasy 

MiniElute clean up kit (Qiagen, Crawley, UK), as per manufacturer’s instructions. RNA was 

quantified and quality assessed using a NanoDrop spectrophotometer (ND-1000, Thermo 

Scientific, Loughborough, UK). Each isolate was grown in triplicate and a minimum of 1 μg of 

total RNA was submitted for each sample and sent for sequencing to The GenePool 

(Edinburgh, UK). RNA integrity was assessed using a Bioanalyzer where an RNA integrity 

number (RIN) value >7.0 was deemed acceptable for RNA-Seq. TruSeq (Illumina v3 i7) 

stranded mRNA library prep kit was used to prepare libraries before sequencing on an 

Illumina HiSeq v4 yielding 50 base single end sequences. RNA-Sequencing is summarised in 

Figure 3.1. 

 

Table 3.1 Candidemia isolates used in each individual experimental design. Candida albicans isolates 

from blood stream infections categorised as either HBF or LBF by Ranjith Rajendran. + indicates that 

the isolates were used in each of the three study designs. Transcriptome profiling, metabolomic 

profiling or cell wall proteomics. Optical density from the original classification by crystal violet also 

indicated (OD). 

 

Isolate Number Biofilm classification OD (595 nm) Source Transcriptomics Metabolomics Proteomics
39 HBF 0.861 BSI + + +
48G HBF 0.542 BSI - + +
177A HBF 0.728 BSI - + +
17B LBF 0.015 BSI - + +
140 LBF 0.091 BSI - + +
204 LBF 0.1 BSI + + +
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Figure 3.1 Overview of sample preparation, RNA-Sequencing, and analysis approaches. Schematic 

depicting methodology starting with growth of C. albicans biofilms from high and low biofilm formers, 

extraction of RNA by trizol and column clean-up followed by 50bp sequencing, data retrieved from 

Edinburgh Genomics was then QC followed by differential expression and pathway analysis.  

 

3.3.4 RNA-Seq analysis 
RNA-seq reads were processed by first quality controlled using the software Trimmomatic 

v0.38 (Bolger et al., 2014) to remove Illumina adapters low quality bases leading=3 and 

trailing=3 and reads with remaining length of less than 30 bases. An index of the Candida 

genome (CGD) database reference C. albicans genome (SC5313_A22) was then constructed 

using Hisat2 (Kim et al., 2019). The current genome maintained by the CGD is diploid, we 

utilised a haploid genome for RNA-Seq analysis by disregarding the B variants of the 

chromosomes from the fasta and gff annotation files. 

 

Hisat2 (v2.1.0) was then utilised to map the trimmed sample reads to the SC5314 genome 

(Kim et al., 2019). Subsequent SAM files containing the aligned reads were then coordinate 

sorted and converted to BAM format using Samtools (v1.7) (Li et al., 2009). Quality of the 

alignments was assessed using the software Qualimap (v.2.2.2) and the BAM files for each 
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sample were counted to obtain gene counts using the corresponding SC5314_A22 gff file from 

the Candida genome database with the use of the program HTSeq-count (0.11.0) (Anders et 

al., 2015, Okonechnikov et al., 2016). All gene counts were then parsed into a single large 

array containing all the of the samples and the corresponding counts for each of the genes. 

The gene count array was then analysed within the R programming environment assisted by 

the R Studio GUI (http://www.rstudio.com/). Differential expression analysis was largely 

performed with the assistance of the DESeq2 (v1.26) R package (Love et al., 2014). DESeq2 

uses a negative binomial model to estimate gene abundance and differentia expression 

between variables. Differential expression was performed in a pairwise fashion between 

sample variables and significance was determined if genes had a Log2FC >1.5 and an FDR 

adjusted p-value of <0.05. In house scripts were written to perform analysis and 

visualisations. These scripts were based around many of the highly used and well validated R 

packages. These included Ordination plots MDS and PCA were performed using DESeq2 and 

the package pcaExplorer (v2.12.0) (Marini and Binder, 2019). Volcano plots were made with 

the R package EnhancedVolcano (v1.4.0) (Blighe K, 2020). Additional plots were also drawn 

with the use of the R package ggplot2 (v3.3.0) (Wickham, 2009). C. albicans transcripts that 

were significantly differentially expressed between pairwise comparisons underwent further 

functional analysis within the network software Cytoscape (v3.7.2) (Shannon et al., 2003). The 

plugin GlueGO annotated and grouped the genes into functional categories and significantly 

over-represented categories were found using the hypergeometric test which deemed 

functional categories to be enriched with an adjusted p-value <0.05. Networks of over-

represented functional categories using either the gene ontology or the KEGG databases were 

constructed using GlueGO (v2.5.5) plugin and drawn within the Cytoscape environment 

(Bindea et al., 2009). Additionally, fgsea (v1.12.0) was used to perform GSEA from within the 

clusterProfiler (v3.14.3) R package (Yu et al., 2012). Multivariate analysis and important 

feature identification were performed through the mixOmics (v6.10.9) R package utilising 

their sPLS and PLS-DA functions (Rohart et al., 2017). 

 

3.3.5 Electron microscopy 
Two C. albicans clinical isolates, utilised in transcriptomics experiments, HBF (39) and LBF 

(204) were grown on Thermanox™ in the presence or absence of serum for 24h (Table 3.1). 

After incubation period, biofilms were carefully washed with PBS and then fixed with a fixative 
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solution containing 2% paraformaldehyde, 2% glutaraldehyde and 0.15 M sodium cacodylate, 

and 0.15% w/v alcian blue (pH 7.4) and left in solution for 18h. The fixative was discarded, 

and the biofilms were then covered with 0.15M sodium cacodylate buffer and stored at 4°C 

until processing (Erlandsen et al., 2004). Briefly the samples were washed 3 × 5min with 0.15 

M cacodylate to remove the glutaraldehyde. Following this samples were treated using a 1% 

osmium tetroxide solution containing 0.15 M sodium cacodylate (1:1). Samples were then 

incubated in the fume hood for 1h. Samples were rinsed 3 × 10min with distilled water and 

then treated with 0.5% uranyl acetate and incubated in the dark for 1h. Uranyl acetate was 

removed from the samples and quickly rinsed with water before a series of dehydration steps 

were carried out. The biofilms where then washed twice for 5 min each of 500µL 30, 50, 70 

and 90% ethanol this was then followed by 4 × 10min washes of 500µL absolute followed 

again by 4 x 10min washes with 500µL molecular sieved absolute alcohol. 

Hexamethyldisilazane (HMDS) was used to dry the specimens by soaking the samples for 5min 

before transferring to a plate containing fresh HMDS. All samples were then placed in a 

desiccator overnight to allow evaporation of any residue and drying. The specimens were 

then mounted and sputter-coated with gold in an argon filled chamber, and then viewed 

under a JEOL JSM-6400 scanning electron microscope. 

 

3.3.6 Cell wall proteomic analysis 
Cell wall processing was performed by the postdoctoral researcher of the University of 

Glasgow Dr. Ranjith Rajendran. Furthermore, the processing and acquiring of data was 

performed by Dr. Ranjith Rajendran at the University of Aberdeen under the supervision of 

Prof. Carol Munro. 

Cell walls were extracted as described previously (Mora-Montes et al., 2007). Briefly, C. 

albicans, (HBF [n=3]) or low (LBF [n=3]) as described in table 3.1, biofilms grown in the 

presence and absence of FCS for 24h which were then dislodged and centrifuged at 3,000 × g 

for 5min, washed once with chilled deionized water, resuspended in deionized water, and 

mechanically homogenised with glass beads in a FastPrep machine (Qbiogene, Fisher 

Scientific, UK). The disrupted cells were collected and centrifuged at 5,000 × g for 5min. The 

pellet, containing the cell debris and walls, was washed five times with 1 M NaCl, resuspended 

in buffer (500 mM Tris-HCl buffer, pH 7.5, 2% [wt/vol] SDS, 0.3 M β-mercaptoethanol, and 1 

mM EDTA), boiled at 100°C for 10min, and freeze-dried. 
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Proteomics analysis was performed on the freeze-dried cell wall fractions by Aberdeen 

Proteomics at the University of Aberdeen. The pellets were digested with trypsin according 

to the PRIME-XS protocol. Mass spectrometry analysis was performed using a Q-Exactive Plus 

(Thermo Fisher Scientific) and tryptic peptides were identified using the MASCOT searching 

engine (Matrix Science). Data was processed using the Proteome discoverer v1.4 software 

quantifying and identifying proteins with >2 peptides against protein database derived from 

the Candida Genome Database (CGD) http://www.candidagenome.org/.  

 

3.4 Results  
 

3.4.1 Assessing the Biofilm Phenotype 
Initially the biofilm phenotype was assessed comparing LBF/HBF isolates in the presence (+ 

FCS) and absence (-FCS) of FCS. Addition of FCS was shown to significantly induce biofilm 

formation of LBF isolates by 5 to 7.4 times compared to isolates grown in RPMI control 

(p<0.01) (Figure. 3.2A). At 90min LBF+FCS samples showed more hyphal cells with greater 

extracellular matrix compared to predominantly yeast cells in control LBF-FCS samples. At 24h 

matured biofilm phase, LBF+FCS formed multi-layered hyphal structures with the appearance 

of being ‘glued’ together with extracellular matrix (Figure. 3.2B). HBF isolates have an 

increased biomass compared to LBF in RPMI and this does not significantly change with 

supplementation of serum (Figure 3.2A). LBF on the hand have a more comparable biomass 

to the HBF in the presence of serum. These observations seem to consistently find that the 

supplementation of LBF with FCS produces many of the features of HBF. 

 

Both the serum supplemented and non-supplemented HBF showed similar phenotypes 

regarding hyphal and biofilm formation, however, there was observably larger amounts of 

material attached to the hyphae (Figure 3.2B). 
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Figure 3.2 Variation in C. albicans biofilm formation in the presence and absence of FCS. Biofilm 

formation after 24h assessed using crystal violet assay of 5 low biofilm forming (LBF) and 5 high biofilm 

forming (HBF) isolates grown in RPMI or RPMI supplemented with serum (A). Scanning electron 

microscopy (SEM) images of high biofilm forming (HBF) or low biofilm forming (LBF) isolates 

morphology grown similarly in the presence and absence of serum grown on coverslips for 90min or 

24h (B). 

 
Overall, the biomass assays show an increase in biofilm formation in the presence of serum. 

This is consistent with an observation of a shift in cell morphology, increased hyphal 

formation and extracellular material.  

 

Additionally, germ tube formation was measurably different at 90min in both HBF and LBF 

Candida isolates. Germ tube formation was shown to be 3.5 and 1.8-fold higher in the 

presence of serum at 90mins in LBF and HBF respectively (Figure 3.3B). These observations 

seem to consistently find that the features associated with biofilm formation in C. albicans 

are apparent in the non-biofilm formers when they are grown in the presence of serum. 
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Figure 3.3 Biomass of LBF isolates grown in RPMI and RPMI supplemented with 25% serum. 

The effect of dialysation on the serum prior to supplementation was tested with biofilms 

grown in RPMI, RPMI supplemented with 25% serum or 25% dialysed serum for 24h. 

Significance was measured compared to RPMI control to RPMI supplemented with serum or 

dialysed serum by ANOVA with multiple comparison test showing significant differences 

(p<0.01**) between RPMI and serum (A). Bar chart depicting the overall length of hyphae in 

LBF and HBF candida isolates in the media RPMI and RPMI supplemented with 25% serum 

after 90min. Germ tube length measurements were taken and compared between groups 

using ANOVA with multiple comparison test displaying significant differences between germ 

tube length in RPMI compared to RPMI supplemented with serum in HBF and LBF (p<0.01**) 

(B).  
 
3.4.2 RNA-Seq read quality 
The HiSeq platform from Illumina provided an average of 24.4 million reads per sample. With 

the lowest sample (90m_S39_3) having 13.6 million reads and the highest sample having 52.4 

million reads (4h_S39_2) following Trimmomatic quality and adapter removal. The average 

GC of all reads was 39% and the average duplication rate per sample was 83%. All samples 

were deemed to have sufficient sequencing depth, greater than >10 million reads per sample, 

and were processed with Hisat2 with a 95% average alignment rate to the reference genome. 

These alignments were then assigned to a feature within the C. albicans (v22) gene feature 

format (GFF/.gff) file and the number of assignments counted by the software HTSeq-counts. 

Of the aligned reads an average of 75% of them were assigned a gene feature. These feature 

counts were subsequently analysed between samples for differential gene analysis. All 

sequencing statistics, alignment and assignments are summarised in Table 3.2.  
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Table 3.2 RNA-Sequencing, quality control and alignment statistics. Table depicting the total number of sequences for each sample before trimming, total 
following trimming and the percentage of duplicate reads and the GC percentage of all reads per sample. Hisat2 was used to align reads and the total number 
of reads aligned to the reference genome per read are shown with number of reads aligned once, multiple times or not at all shown. HTSeq was utilised to 
count the number of aligned reads that corresponded to a feature (exon) the percentage and total number of identified features per sample are shown. 
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3.4.3 RNA-Seq multivariate analysis 
Counts for features produced by Hisat2 and HTSeq counts were utilised to produce estimates 

of the abundance of each gene within each of the samples. DESeq2 models the gene counts 

following a negative binomial distribution and applies normalisation factors to account for 

differences in sequencing depth between samples. These normalised gene counts were then 

further used to calculate the distances between our samples. We then projected the two 

dimensions that represented the largest distance between our samples. The dimensional 

reduction of multifactorial data common referred to principal component analysis (PCA) 

allows for the differentiation of the samples with largest difference in its variables (PC1) and 

second largest difference (PC2). We visualised the component spaces of the 1st three 

components.  

 

From the first component it is possible to see that there is little variance between our 3 

replicates per sample and that the largest separation, i.e., the x axis PC1 representing 34% of 

the explained variance, is due to difference in time variable of biofilm formation primarily 

between early (90min and 4h) and late-stage (24h) biofilm formation (Figure 3.4A). Visualising 

the ordination of the 1st and 3rd components reveals larger separation of the components 

according to the two medias over the 3rd component (Figure 3.4B). Similarly, visualising the 

2nd and 3rd components there is visible distinction and clustering between the two strains 

across the 2nd component and 3rd component according to whether they were grown FCS or 

RPMI. The PC2 and PC3 account for 19.92% and 15.32% of the variability observed within the 

samples, respectfully (Figure 3.4C). The first 3 components are responsible for the >70% of 

the total variability as is shown within the scree plot (Figure 3.5A).  

 

Our observations in ordination were further confirmed when visualising the relationship of 

our components and covariates. The first component is influenced by the time covariate. The 

media, and strain covariates have a much larger influence on the second and third 

components (Figure 3.5B). In summary the difference between late and early-stage biofilms 

accounts for most of the variation between the samples.  
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Figure 3.4 Principal Components Analysis (PCA) of C. albicans transcriptome. Gene count data was submitted to DESeq2 for normalisation before the data 
was reduced to a two-dimensional space within R. This data was then subsequently visualised, and samples were coloured according to whether they were 
grown in RPMI or RPMI supplemented with Serum (FCS). Additionally, a shape was overlayed on the samples according to the length of time the biofilms 
were grown for. This was either 1.5, 4 or 24h. Samples are also labelled in the to indicate whether they were from HBF (39) or LBF (204) strains. PCA of RNA-
Seq on the HBF and LBF in the presence and absence of serum shown within a plot of PC1 /PC2 (A), PC1 /PC3 (B) and PC2/PC3 (C).

A B C
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Figure 3.5 Scree plot of PCA components. Scree plot depicting components 1-10 from the principal 

component analysis (PCA) of all RNA-Seq data for all samples. The yellow line indicates the total 

explained variation, when summing components, whilst each bar indicates the percentage variation 

explained by that component. Dotted line indicates the point at which the total variation crosses an 

80% threshold (A). Plots depicting the significance, indicated by the -log10 p-value, of the correlation 

of each grouping variable within the data versus components 1 and 2. The p-value is inverted so the 

higher the value the higher the significance and therefore the correlation between the covariate and 

that component (B). 

 
3.4.4 Candida albicans differential expression in response to nutrient stress 
We initially performed a pairwise comparison which only considered the grouping of samples 

as either grown in the presence of absence of serum. When considering the overall effect of 

serum on the gene expression of C. albicans, large numbers of differentially expressed genes 

were noted as discerned by using DESeq2 and grouping the samples as either serum 

supplemented or serum absent samples at 24h (Figure 3.6). 

 

CB

A
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Figure 3.6 Volcano plot depicting gross changes of C. albicans grown in RPMI vs Serum. Differential 

expression of counts as calculated between RPMI vs Serum by DESeq2. Log2 fold change plotted 

against the inverse of the log10 p value. Genes upregulated in Serum are represented by a +ve Log2 

fold change and those upregulated in the RPMI only media are represented with -ve Log2 fold change. 

Larger negative or positive values indicate a larger upregulation and the increased significance 

between the conditions is indicated by a larger negative Log10 p-value (-Log10P). Vertical dotted lines 

indicate a cut-off of Log2FC 1.5 coloured green, horizontal dotted lines indicate a cut-off of the p-

value<0.001, coloured blue or red if both cut-offs are met for illustration of the high levels of 

upregulated genes. 
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1309 genes were upregulated in strains supplemented with serum and 1184 genes were 

upregulated in media without supplementation, or conversely downregulated in the serum 

condition. Through the gene set enrichment (GSEA), which enriches based upon functional 

pathways, it is possible to quantify whether significant levels of differential expression across 

entire metabolic pathways. Gene Ontology (GO) terms and other functional groupings, such 

as those supplied by the KEGG database, of genes are shown significantly enriched between 

two conditions. We observed that between the two medias there was enrichment of 

numerous GO functional terms. These terms are groupings of genes belong to the same 

pathways and/or to the same functional groups. GSEA compared to over-enrichment analysis 

considers the expression profile of the all the genes of an organism and therefore considers 

even genes who’s differential expression is modest. 

 

GSEA identified several enriched GO pathways between our two medias. Fluctuations across 

multiple biological processes that include polysaccharide, lipid, glycoprotein, and protein 

metabolic processes were influenced (Figure 3.7A). The enrichment in pathways involved in 

multiple metabolic processes was mirrored when GSEA was performed against the C. albicans 

KEGG database. Fatty acid metabolic pathways which included the peroxisome, amino acid 

metabolism as well as carbon metabolism are all enriched within the strains grown in Serum.  

 

These pathways maintained and curated through the KEGG database also included changes 

in enrichment in the sugar, protein, and lipid pathways. Serum supplementation altered the 

regulation of metabolic functions throughout most super pathways in C. albicans (Figure 

3.7B). We observed that serum has a large effect on both ontological functions and the 

metabolic pathways in both of our strains. However, to determine which of these upregulated 

processes are conserved between the two strains and which are differing in HBF and LBF it 

was necessary to perform differential expression analysis of the strains independently in the 

presence and absence of serum.
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Figure 3.7 Bar plot depicting the differentially regulated Gene Ontology and KEGG pathways. Gene set enrichment analysis (GSEA) was performed on the 
total up and downregulated genes in the presence of serum vs the absence. Genes were ranked according to their log2FC highest positive to lowest negative. 
Positive normalised enrichment score (NES) as calculated by fgsea in R indicates those pathways enriched in serum and negative enrichment indicates those 
upregulated in the absence of serum for both Gene Ontology pathways (A) and KEGG pathways (B). Large +ve NES indicates a greater enrichment of genes 
within the samples grown in serum and a smaller -ve value represents a greater enrichment of genes in the samples grown in RPMI media. The intensity of 
the colour indicates the significance of the enrichment according to the nominal p-value which is indicate in the legend.

BA
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3.4.5 Gene expression of strain and time dependant genes in the nutrient stress response 
of Candida albicans  

Differential expression was calculated using the DESeq2 package, we performed pairwise 

comparisons between sample groups considering the variables media, time, and strain. 

Pairwise comparisons or contrasts were made between serum supplemented conditions and 

non-supplemented conditions for each of the strains at each of the three time points. We 

observed large numbers of differential expression between each of these conditions. The 

differences observed in HBF were much higher across each of the time conditions than the 

LBF, i.e., greater upregulation in RPMI and Serum were observed in HBF (Figure 3.8). Genes 

that had a log2 fold change (log2FC) ≥1.5 and FDR adjusted p-value of ≤0.05 were considered 

differentially expressed between our two conditions for subsequent analysis. LBF had a much 

lower number of differentially expressed genes, that met our cut off criteria, compared to 

HBF (Figure 3.8 and 3.9).  

 

 
Figure 3.8 Number of up or downregulated at each time point for each strain in the presence of 
Serum. Up or downregulated determined based upon Benjamini-Hochberg (FDR) cut-off of ≤0.05 and 
log2 fold change of ≥1.5. Total number of genes differentially expressed are either upregulated (Up) 
in Serum or downregulated in Serum (Down). This comparison Serum vs RPMI was performed for the 
HBF and LBF strains at each time point 1.5, 4 and 24h as indicated by the x axis labels. 
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Figure 3.9 Volcano plots depicting the 
levels of gene expression at each time and 
within either the HBF or LBF C. albicans 
strain. Differential expression of counts as 
calculated between RPMI vs Serum by 
DESeq2. Log2 fold change plotted against 
the inverse of the log10 p value. Genes 
upregulated in Serum are represented by a 
+ve Log2 fold change and those 
upregulated in the RPMI only media are 
represented with -ve Log2 fold change. 
Larger negative or positive values indicate a 
larger upregulation and the increased 
significance between the conditions is 
indicated by a larger negative Log10 p-value 
(-Log10P). Vertical dotted lines indicate a 
cut-off of Log2FC 1.5 coloured green, 
horizontal dotted lines indicate a cut-off of 
the FDR p value <0.05, coloured blue or red 
if both cut-offs are met for illustration of 
the high levels of upregulated genes. This 
analysis is plotted for all time points 
90mins/1.5h, 4h and 24h. Additionally this 
was performed for both the LBF (204) strain 
and the HBF (39) strain. 
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The genes expressed at each time point had little overlap between each time point. Genes 

that were differentially expressed in either strain at either 90min, 4h and 24h seemed to be 

time dependent expression and distinct to that time point (Figure 3.10A, B). 

  

 
Figure 3.10 UpSet plots depicting the overlap of differentially expressed genes. UpSet plots 
performing a similar function to Venn displaying the overlap in upregulated genes between 
the high and low biofilm forming strains (A) or the overlap of up or down regulated genes at 
each time point in the LBF (B). Plot A illustrates the overlap between upregulated genes in 
LBF and HBF with most LBF upregulated genes being upregulated in HBF and high levels of 
HBF genes being unique to HBF. Plot B indicates overlap of upregulated genes in the LBF strain 
in serum between the timepoints with many of the genes being unique to the individual time 
points. Total set size for each sample, which is the total number of differentially expressesed 
genes is also indicated in the orang bar chart. Sample names are indicated by the 
timepoint_media_strain.  

A A

B
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From DESeq2 the topmost differentially up (FCS) and down (RPMI) regulated genes are shown 

in tables 3.3-3.4. This data mirrors the most differentially expressed genes that are annotated 

within the volcano plots detailed in figure 3.9. In the HBF we can see that at 90min and 4h in 

FCS there are several Secreted Aspartyl Proteinases (SAP) families’ transcripts SAP6, 4 and 5 

which are involved in early biofilm formation, virulence, and nutrient acquisition. Hyphal wall 

related protein transcripts such as hyphal regulated cell wall protein 1 (HYR1) and hyphal wall 

protein (HWP1) are also upregulated in FCS in the early biofilm time points. Top genes in the 

later 24h biofilm with annotation where the spore wall formation SPO75 and marvel domain 

protein of unknown function MRV4 and the heat shock proteins SSA2, HSP21, HSP104. Heath 

shock proteins are a family of proteins by yeast in response to external stimuli and stress such 

as heat, pH and oxidative stress (Gong et al., 2017).  

 

The gene with the highest upregulation in the LBF grown in FCS is Endothelin-converting 

enzyme ECE1 at 90min and 4h time points. Following ECE1 is the biofilm related gene HWP1. 

Also, at these early biofilm time points are the ALS3 and SAP genes which as we have 

discussed in chapter 1 are typical biofilm response genes. Also, at 4h there is upregulation of 

the mating factor alpha MFALPHA. The MRV2 and MRV4 genes like HBF are upregulated 24h 

although little is known regarding their function. MFALPHA is one of the top upregulated 

genes also at the 24h time point. 

 

Several common genes feature within the top downregulated genes in FCS or upregulated 

genes in RPMI. Including the JEN family and ZRT family genes. In the LBF within the top 10 

genes the ALS2 and ALS4 are notably downregulated in FCS in contrast to the. The ZRT genes 

1 and 2 are downregulated in LBF at 90 min and 24h in the top 10 genes. These genes encode 

the transporter for high affinity to zinc. ZRT is thought to be regulated by the extracellular 

levels of zinc (Zhao and Eide, 1996). These genes also feature in the top downregulated genes 

in FCS in the HBF strain. With the JEN2 and JEN1 genes being in the top 10 at 90min and the 

ZRT1 and ZRT2 appearing in the top downregulated in 4h and 24h. There is a conserved 

response of downregulation of carboxylic acid transport through JEN1/2 and zinc metal 

transport through PRA1 and ZRT1/2 in the FCS (Table 3.3-3.4).  
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Table 3.3 DESeq2 results of the top 10 up and top 10 down regulated genes in HBF. Differential expression of genes from biofilms grown for 90min, 4h or 
24h in RPMI or RPMI supplemented with serum. Table includes the candida genome database identifier (GeneID), common name or gene symbol (Symbol), 
the FDR adjusted p value (pvalue adj) from DESeq2 and the log2 transformed fold change (Log2FC) between RPMI and RPMI+serum (FCS). 
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Table 3.4 DESeq2 results of the top 10 up and top 10 down regulated genes in LBF. Differential expression of genes from biofilms grown for 90min, 4h or 
24h in RPMI or RPMI supplemented with serum. Table includes the candida genome database identifier (GeneID), common name or gene symbol (Symbol), 
the FDR adjusted p value (pvalue adj) from DESeq2 and the log2 transformed fold change (Log2FC) between RPMI and RPMI+serum (FCS). 

  

90min 4h 24h
GeneID Symbol Pvalue (adj) log2FC GeneID Symbol Pvalue (adj) Log2FC GeneID Symbol Pvalue (adj) Log2FC

Up
 in

 FC
S

C4_03470C_A ECE1 <2.21E-308 12.67869901 C4_03470C_A ECE1 3.38E-245 8.105597402 C6_03600C_A C6_03600C 2.37E-296 9.442059298
C4_03570W_A HWP1 <2.21E-308 8.255221261 C1_13100W_A C1_13100W 8.19E-32 7.794597779 C2_08890W_A C2_08890W 1.63E-32 6.117204395
C6_02710C_A SAP6 4.24E-124 6.704516738 C4_03570W_A HWP1 1.06E-270 5.612377382 C1_04050C_A MFALPHA 0.000844085 6.084347752
C1_00780C_A HGC1 3.87E-52 6.472925756 C1_05830W_A C1_05830W 7.22E-12 5.147552394 C5_04370C_A PGA37 1.18E-71 5.876146652
C1_13450W_A HYR1 <2.21E-308 6.390079623 C1_04050C_A MFALPHA 0.02461027 5.125264634 C3_06660C_A C3_06660C 1.25E-61 5.666000006
CR_02750C_A PGA34 2.86E-24 6.028796729 C1_00780C_A HGC1 1.53E-22 4.930894311 C3_07840C_A C3_07840C 0.020310915 5.62512508
CR_07070C_A ALS3 <2.21E-308 5.628778798 C4_06920C_A CSA2 0.035162412 4.881475088 C5_04980W_A C5_04980W 3.58E-154 5.356780975
C2_08890W_A C2_08890W 6.33E-20 5.526122836 C4_06560W_A PGA15 5.80E-08 4.823173405 C5_04190W_A MRV2 <2.21E-308 5.349207219
C4_01940W_A PHO89 1.54E-121 5.255040098 C2_00670C_A C2_00670C 0.006120667 4.62664836 C5_04210C_A MRV4 4.75E-16 5.271240515
C2_00680C_A SOD5 <2.21E-308 5.230464941 C7_04080C_A C7_04080C 2.87E-08 4.495752642 C6_03280W_A C6_03280W 0.00233792 5.069912538

Up
 in

 R
PM

I

C4_06980W_A PRA1 1.01E-45 -6.204797538 C3_00220W_A HGT19 1.42E-24 -2.551670194 C1_04140W_A IFD6 2.16E-183 -10.35092483
CR_00930W_A ATO10 0.003265017 -5.605518716 C6_04380W_A ALS2 7.81E-16 -2.382991051 C4_06980W_A PRA1 9.35E-130 -9.329122823
C3_01540W_A C3_01540W 3.91E-56 -5.495682951 C6_04130C_A ALS4 6.83E-24 -2.382118599 CR_09390C_A CR_09390C 1.60E-23 -8.776433392
C2_08590W_A YWP1 <2.21E-308 -5.316051485 CR_03810W_A PRP13 9.42E-12 -2.232144112 C1_04010C_A C1_04010C <2.21E-308 -8.638735101
C4_06970C_A ZRT1 6.33E-35 -4.924355183 C7_00110W_A SOD3 3.70E-12 -2.203643359 C4_06970C_A ZRT1 <2.21E-308 -6.818469056
C1_04870W_A SAP7 4.64E-07 -4.825915327 CR_08420W_A CR_08420W 4.55E-16 -2.146439929 C6_03170C_A MDR1 <2.21E-308 -6.661184653
C1_04930C_A C1_04930C 0.029925725 -4.774792288 C3_03500W_A SKN2 3.47E-27 -2.143715118 C3_02800W_A ADH4 2.87E-126 -5.863051659
C3_06580W_A JEN1 0.046596771 -4.559240043 C2_09280C_A C2_09280C 3.96E-26 -2.116924199 C2_02590W_A ZRT2 <2.21E-308 -5.761689161
C4_05730W_A C4_05730W 4.64E-25 -4.559070311 CR_10800C_A CR_10800C 3.15E-10 -2.09767697 C5_01380W_A CFL5 7.70E-250 -5.744757463
CR_02920C_A AQY1 2.30E-110 -4.311441571 C6_04650W_A C6_04650W 1.95E-10 -2.097637894 C2_01270W_A CHA1 1.12E-67 -4.851203764
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Using the Upset plot technique, which is analogous to Venn diagrams, and the UpsetR 

package it was possible to visualise all the combinations of gene expression between the up 

and down regulated in RPMI vs FCS (Conway et al., 2017). From this it was observed that the 

large proportion of genes was unique to the condition with only a small proportion of the 

genes sharing an overlap with the other conditions (Figure 3.10A). When comparing 

expression between the Low and High biofilm formers it was observed that the HBF formers 

had many genes expressed in FCS compared to RPMI that were not observed in the LBF strain 

(Figure 3.10B). However, most of the genes upregulated in the LBF strains at any of the time 

points was also upregulated in the HBF as shown by the overlap. These seems to indicate a 

unique HBF expression profile that is not present in the LBF. Lower overall up and down 

regulation of genes within the LBF may explain some of these differences as less genes for the 

LBF are represented by our cut-offs. LBF shows the most drastic change in morphology in the 

presence of serum but a lower level of overall differential expression.  

 

We observed differences in gene regulation between the time points and the two strains in 

response to Serum stimulation. We wished to investigate this further by determining the 

pathways that are influenced by this phenotypic change. To achieve this, we employed 

functional over-representation analysis. Networks of related functionally enriched pathways 

were calculated and visualised using GO term functional enrichment in the Cytoscape plugin 

GlueGO.  

 

We began by comparing the overrepresented pathways in the LBF at 1.5, 4 and 24h to identify 

both serum induced and temporal changes A large network with acyl-coA oxidase and 

carboxylic acid catabolic process at the centre was found to be over-represented in LBF in 

serum compared to RPMI. When referring to p-value throughout this it is the FDR corrected 

p-value for the overrepresentation of pathways in the ClueGO overrepresentation test were 

pathways that were considered significantly overrepresented with FDR adjusted p-

value<0.05. 

 

Fatty acid metabolism related processes make up a large component of this network 

predominantly at the 24h biofilm time point (Figure 3.11 A,B). Within this central network the 

top upregulated processes acyl-coA oxidase activity is significantly overrepresented 
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(p=0.0045, nr genes=3) and fatty acid binding ((p=0.0045, nr genes =3) with the 3 genes POX1, 

POX1-3 and PXP2 resulting in the enrichment of this pathway. Similarly, over enriched was 

the carboxylic acid catabolic process (p=0.0046, nr genes =17). With many genes within this 

pathway being non-specifically expressed including POT1, POX1, POX1-3 and ARO10 and 

PXP2. 

 

Additional networks of gene pathways were over-represented, including plasma membrane 

and transmembrane transport were also represented within the upregulated genes in FCS in 

the LBF strains at 24h. Overrepresented terms included the plasma membrane acetate 

transporter (p=0.006, nr genes=5), which was enriched by the genes ATO1, ATO10, ATO9, 

FRP3, FRP5. This pathway was non-specific and over enriched at all time points. The pathway 

monocarboxylic acid transmembrane acid transport (p=0.026, nr genes=6) was 

overrepresented in this subnetwork also by the same genes with the addition of JEN1. 

 

Fungal cell wall terms were found to be over-represented at all time points with a couple of 

nodes or terms being specific to later biofilms. Cell wall and membrane component terms 

were also enriched at all time points, except for the anchored component of the cell 

membrane being unique to 24h. Fungal type cell wall (p=0.007, nr = 30) and hyphal wall 

(p=0.04, nr genes=14) GO terms where significantly overrepresented the cell wall 

subnetwork. Genes of families ALS, HWP SAP and SOD were over enriched at all time points 

including ALS1/3, HWP1, ECE1 and SAP4/5/6. 

 

Many enriched terms belong to either the 24h time or are considered non-specific, with only 

pre-ribosome (p=0.009, nr genes=14) being unique to 4h. Top genes enriching this pathway 

include BUD21, CICC, DIM 1, ECM1 and ENP1. The terms cellular meta homeostasis (p=0.009, 

nr genes=16) and dioxygenase activity (p=0.042, nr genes=6) were additionally specifically 

over-represented at 90min as shown by the two nodes although they are part of the much 

larger networks (Figure 3.11B).  
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Figure 3.11 ClueGO analysis of the upregulated genes in LBF in presence of serum and their 
associated pathways. Over representation analysis of pathway analysis performed within ClueGO 
representing pathways as nodes linked based upon their kappa score. Nodes are coloured to show the 
representation of either 90min (Green), 4h (Blue) and 24h (Red). Nodes shared by the different time 
points strains are colourised grey. An exploded view illustrates the pathways and subnetworks which 
are colourised to illustrate nodes belonging to related pathways (A) Pie charts for each time points 
90min, 4h and 24h and shared features summarise the percentage of terms related to a specific 
subnetwork of pathways also colourised to highlight the subnetwork (B). 
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A similar pattern is observed when considering the down-regulated pathway constructed 

from the RPMI enriched genes at 1.5, 4 and 24h in the low biofilm forming strains. Many of 

the over-enriched pathway nodes belong to the 24h time point or are considered non-specific 

to a particular time point, as shown by the points coloured in red or grey. This indicates that 

these pathways are either activated throughout biofilm formation or specifically at the 24h 

time point. A small number of nodes and sub-networks of 90mins downregulated genes can 

be seen related to protein translocation and post replication repair. Specifically, the terms at 

downregulated in serum at 90min are organic ion transmembrane transporter activity and 

chaperone cofactor-dependent protein refolding and many of the nodes are part of the larger 

sub-networks comprised of non-specific and 24h genes. (Figure 3.12B). 

 

Genes represented at 24h and non-specifically comprise nodes within the 3 largest 

subnetworks. A subnetwork comprised mostly of terms upregulated at 24h that includes 

small molecule catabolic processes, e.g., terms such as serine catabolism and other amino 

acid related metabolic processes (p= 0.021, nr genes=21). Genes involved in serine 

metabolism downregulated include ADE6, ARO9, CHA1 and MET, SHM family of genes.  

 

The largest sub-network and group of terms is summarised as transmembrane and iron 

transport and is comprised primarily of genes enriched either non-specifically, i.e., at all-time 

points or the 24h time point. Figure 3.12A and 3.12B. This network and linked networks show 

downregulation in the pathways involved in transmembrane transport, particularly with 

regards to ion homeostasis in LBF strains grown in FCS. Pathways involved in ion homeostasis 

represent the most some of the top overrepresented. The pathways ion transport (p= 

<0.00001, nr genes=64), anioin transport (p= 0.0034, nr genes=22) and ion transmembrane 

transport (p=<0.00001, nr genes=48) are all overrepresented. It can be observed large 

numbers of genes related to ion transport are downregulated. Common genes include AGP2 

and ATO10. ZRT2 is also a common gene within these pathways and is one of top 

downregulated in Serum. These and other genes are related to Zinc transport and other metal 

ion transport. 
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Figure 3.12 ClueGO analysis of the downregulated genes in LBF in presence of serum and their 
associated pathways. Over representation analysis of pathway analysis performed within ClueGO 
representing pathways as nodes linked based upon their kappa score. Nodes are coloured to show the 
representation of either 90min (Green), 4h (Blue) and 24h (Red). Nodes shared by the different time 
points strains are colourised grey. An exploded view illustrates the pathways and subnetworks which 
are colourised to illustrate nodes belonging to related pathways (A). Pie charts for each time points 
90min, 4h and 24h and shared features summarise the percentage of terms related to a specific 
subnetwork of pathways also colourised to highlight the subnetwork (B). 
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Many terms related to transmembrane transport are also downregulated in the LBF strains in 

Serum. These include integral component of the membrane (p=<0.00001, nr genes=152) and 

the transmembrane transport (p=<0.00001, nr genes=84). These terms are overrepresented 

at all time points. Transmembrane transport and ion transport are represented by brown 

nodes and comprise a large proportion of the overrepresented terms in the network. Pink 

nodes. The pink node related to serine and other amino acid metabolism is also comprised of 

oxireductase terms.  

 

When comparing the enriched terms in the high biofilm forming strain in FCS compared to 

the LBF there are numerous more nodes enriched in the HBF (Figure 3.13-3.15). In total there 

are 80 significantly overrepresented pathways FDR p-value <0.05 with 79 of these belonging 

to the HBF. Only nitric oxide dioxygenase (p= 0.0066, nr genes=3) activity was specific to LBF 

and there was no overlap in non-specific nodes between the LBF and HBF at 90min. There are 

large subnetworks of genes overrepresented in HBF that are not present in the LBF strain. 

Covering many areas of cell regulation including transcriptional control, nucleolus processes, 

microtubule and cytoskeleton and binding. Ras transcriptional control was overrepresented 

in HBF as well as single species biofilm. Indicating biofilm specific responses that are present 

at 90 mins that are not present in the LBF or at least at high levels. The top overrepresented 

pathways include genes involved in nucleolus (p=<0.00001, nr genes=49), ribosome 

biogenesis (p=<0.00001, nr genes=49) and rRNA processing (p=0.000042, nr genes=38).  

 

Additionally at 90 min the subnetworks were comprised for the genes upregulated in FCS for 

the HBF strain including cell adhesion and biofilm formation related terms, regulation of 

transcription terms, nucleolus, pre-ribosome and protein modification (Figure 3.13-3.15).  

 

At 4h, shown in Figure 3.14 there is more representation of nodes from the LBF strains 

compared to the 90min time point shown in Figure 3.13. There are several subnetworks 

containing terms related to ribosome and pre-ribosome, nitric acid dioxygenase activity and 

snRNA pseudo uridine synthesis overrepresented in the LBF. Although much larger 

subnetworks of overrepresented terms related to HBF similar to the 90 min network. There 

is a total of 37 significant pathways FDR p-value <0.05. 8 of these are specific to the LBF strain 

at 4h while 7 are non-specific, or overrepresented in both the LBF and HBF strains. The 
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remainder are specific to HBF strain. The top pathways in the LBF only are ribonucleoprotein 

complex biogenesis (p=0. 0.001, nr genes =30 genes) and the preribosome (p=0.001, nr genes 

=14). The top non-specific overrepresented terms include ribosomal large subunit biogenesis 

(p=0.001, nr genes =10), response to nitrosative stress (p=0.0061, nr genes =3). Nitrosative 

stress and nitric oxide catabolic process are enriched by the YHB1 and YHB5 genes that are 

involved in nitrosative and oxidative stress in yeasts. Additionally, of interest there are hyphal 

cell wall terms that are overrepresented in HBF in the presence of serum that aren’t present 

in the LBF. These include the fungal (p=0.009, nr genes=19) and hyphal cell wall (p=0.0091, nr 

genes=11). However not overrepresented many of the usual hyphal and biofilm related genes 

including ALS1, ECE1, HWP1, and SOD5 upregulated in both HBF and LBF. 

 

At 24h the representation of nodes and subnetworks comprised of HBF enriched terms is 

much more apparent than those by the LBF enriched terms shown in Figure 3.15. There are a 

total of 37 significantly overrepresented pathways with an FDR p value <0.05. 5 of these 

pathways were specific to LBF, 1 was non-specific and 31 were specific to HBF. 

 

LBF is terms comprise 2 singular nodes and a small subnetwork. The subnetwork is related to 

acyl-CoA and fatty acid oxidation activity and the two independent nodes are related to the 

anchored component of the cell wall and plasma membrane acetate support. The top 

pathways are fatty acid binding (p=0.00075, nr genes=3), acyl-CoA oxidase activity 

(p=0.00075, nr genes=3) and fatty acid beta-oxidation using acyl-CoA oxidase (p=0.00075, nr 

genes=3). Which all share the same 3 genes POX1, POX1-3 and PXP2. We previously observed 

these genes to be involved in a Serum specific response, they now seem to be a LBF specific 

response. Plasma membrane transport (p=0.00078, nr genes=5) is also overrepresented in 

only the LBF which is comprised of the ATO1, ATO10, ATO9, FRP3 and FRP5 genes. The 

functional term positive regulation of multi-organism process (p=0.047, nr genes= 16) was 

non-specific. This pathway includes genes that may be involved in influencing organisms of 

the same species. These genes may be involved in communication between Candida within 

the biofilm. Genes include the virulence ACE2, adhesin ALS1 and the mating pheromone alpha 

factor MFALPHA. A large, overrepresented sub-network and smaller subnetworks in the HBF 

strain in FCS at 24h is related to transcriptional regulation and control. Whilst other individual 

nodes and subnetworks represent mitotic cell cycle control (Figure 3.15). The top 
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overrepresented pathways that are specific to HBF at 24h in Serum are intracellular organelle 

(p=<0.00001, nr genes=197) and intracellular membrane organelle (p=<0.000001, nr genes 

=178). A subnetwork of transcriptional controlled processes including regulation of cellular 

processes p=<0.000001, nr genes =125). 

 

 

 
Figure 3.13 ClueGO analysis of the upregulated genes in LBF and HBF strains in the presence of 
Serum at 90min. Over representation analysis of pathway analysis performed within ClueGO 
representing pathways as nodes linked based upon their kappa score. Nodes are coloured to show the 
representation of either High (Red) and Low (Blue). Nodes shared by the two strains are colourised 
grey. An exploded view illustrates the pathways and subnetworks which are colourised to illustrate 
nodes belonging to related pathways (A). Pie charts for each strain and shared features summarise 
the percentage of terms related to a specific subnetwork of pathways also colourised to highlight the 
subnetwork (B). 
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Figure 3.14 ClueGO analysis of the upregulated genes in LBF and HBF strains in the presence of 
Serum at 4h. Over representation analysis of pathway analysis performed within ClueGO representing 
pathways as nodes linked based upon their kappa score. Nodes are coloured to show the 
representation of either High (Red) and Low (Blue). Nodes shared by the two strains are colourised 
grey. An exploded view illustrates the pathways and subnetworks which are colourised to illustrate 
nodes belonging to related pathways (A). Pie charts for each strain and shared features summarise 
the percentage of terms related to a specific subnetwork of pathways also colourised to highlight the 
subnetwork (B). 
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Figure 3.15 ClueGO analysis of the upregulated genes in LBF and HBF strains in the presence of 
Serum at 4h. Over representation analysis of pathway analysis performed within ClueGO representing 
pathways as nodes linked based upon their kappa score. Nodes are coloured to show the 
representation of either High (Red) and Low (Blue). Nodes shared by the two strains are colourised 
grey. An exploded view illustrates the pathways and subnetworks which are colourised to illustrate 
nodes belonging to related pathways (A). Pie charts for each strain and shared features summarise 
the percentage of terms related to a specific subnetwork of pathways also colourised to highlight the 
subnetwork (B). 
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3.4.6 Gene set enrichment analysis of strains in the presence of serum 
GSEA utilising the entire gene set of differentially expressed genes of Serum vs RPMI at 24h 

were utilised to identify the top enriched pathways according to their adjusted p-values. 

Comparable to over representation analysis such as those performed by ClueGO the entire 

gene set is utilised and the genes are ranked. In this case genes were ranked according to 

their log2FC determined by differential expression analysis by DESeq2. The high biofilm 

formers display larger levels of both activated and supressed pathways in the presence of the 

serum (Figure 3.16A). Larger numbers of pathways activated in HBF are unique to this strain 

like the ClueGO over representation analysis. However, there is a unique set of differentially 

enriched pathways in the LBF. 25 pathways that are enriched in the LBF in the presence of 

serum are unique to serum. Many of the pathways are involved in cell-to-cell fusion that and 

conjugation in the LBF strain. Also, the metabolic pathways of fatty acid oxidation and beta-

oxidation are enriched in the LBF compared to the HBF.  

 

When comparing the top enriched gene ontology pathways in HBF and LBF we see that most 

of the top pathways follow the same enrichment pattern in both LBF and HBF. The enrichment 

in HBF is usually higher than the LBF strains. There are several terms related to DNA 

replication the ribosome and nucleolus that are downregulated in LBF in serum but 

upregulated in HBF in serum at 24h. This concurs with our pathway analysis by ClueGo which 

identified significant networks of similar terms. (Figure 3.16B). Enrichment between the two 

strains does diverge in a few instances but many of the RPMI enriched terms are similarly 

enriched in both HBF and LBF. The term Oxidoreductase is downregulated in serum for the 

LBF strain, and it is downregulated and enriched in the absence of serum in the high biofilm 

formers. Transport is similarly enriched in both strains but more enriched in HBF. Metal ion 

terms are enriched in RPMI or downregulated in Serum in both which agrees with our 

previous pathway and gene expression. In this instance however the enrichment score is 

greater for the LBF compared to HBF (Figure 3.16B).  
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Figure 3.16 Gene set enrichment analysis demonstrating differentially regulated pathways in the 
presence/absence of serum in high and low biofilm formers at 24h. Venn diagram depicting all the 
enriched pathways with an adjusted p-value <0.05 in either the low or high biofilm formers (A). 
Enriched pathways are either up in serum or down in serum. Gene set enrichment analysis of the top 
enriched 15 pathways at 24h from LBF and HBF according to the Benjamini-Hochberg adjusted p-
value. GSEA shows enrichment of genes in presence of serum(+NES) and downregulated genes, i.e., 
in enriched the absence of serum (-NES) (B). Normalised enrichment score was calculated for each 
pathway by the fgsea algorithm within the ClusterProfiler R package. 
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3.4.7 Biomarker analysis 
Partial least squares-discriminant analysis (PLS-DA) is a method of multivariate reduction that 

differs from PCA in that it identifies the variables, in this case genes, that explain the highest 

variation in the response variable. PLS uses the response variable i.e., strain and media to 

maximise the variance in the different classes. Usefully in RNA-Seq it removes irrelevant or 

misleading variation and allows for a better prediction of markers, i.e., expressed genes that 

vary the most between our classes. Within the context of our analysis the PLS-DA 

methodology from the R package mixOmics was able to select the optimal number of genes 

and the most optimal number of components to depict the variation between HBF/LBF in 

Serum compared to RPMI. PLS-DA shows separation of the strains grown in RPMI and Serum 

with large separation based upon the 120 variables selected (Figure 3.17A). The relative effect 

on the variation on component 1 are shown with the relative effect on the variation between 

the strains grown in RPMI vs Serum. The loadings plot of the top 50 variables from the 1st 

component are shown (Figure 3.17B). It is also possible to see the distribution of our variables 

on component 1. Variables are those that have the most contribution to that component and 

the value is the loading of the sample with the highest contribution on that the component. 

Variables are coloured according to a group have the highest contribution or expression 

within that group. Indicating that they are more highly expressed within that group. The PLS-

DA here classifies our samples according to the molecular signatures which are the most 

optimum for our identifying samples in the groups (media and time). A heatmap of our 

signature variables and their relative expression are shown in Figure 3.17A. Many of the genes 

identified are unclassified and are only indicated by their CGD accession IDs. The top 

discriminatory annotated genes with higher relative expression in FCS were SWC4, CUP2 and 

BUD14. SWC4 is of the histone acetyltransferase complex involved chromatin remodelling, 

CUP2 is a copper binding response and BUD14 which has a predicted role in bud site selection. 

Two molecular signatures were determined to explain the classification of samples on our 

second component between our two strains. This included a gene expressed in RPMI 

C7_03580C and the gene C1_12890. Both genes are unclassified within the current literature. 
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Figure 3.17 Supervised analysis 
of HBF and LBF strains in the 
presence/absence of serum 
using PLS-DA. Partial least 
squares discriminant analysis 
(PLS-DA) multivariate analysis 
displays separation of our 
groups based upon biomarkers 
showing large separation 
between groups (A). The 
mixOmics R package allows for 
the tuning of data to select the 
most discriminant variables 
between our groups of interest. 
These are the two biofilm 
forming phenotypes HBF and 
LBF grown in either RPMI or 
RPMI+FCS. The separation of 
variables according to FCS or 
RPMI can be seen on the x-
variate. The loadings that have 
the largest impact are shown in 
the loadings plot (B) Loadings 
plot of the top 50 features that 
separate our groups on the first 
component and are colourised 
according to the sample with 
the largest loading for that 
variable. Clustered image 
heatmap of these discriminant 
features shows patterns of up 
and downregulated genes in 
RPMI and Serum (C). 
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3.4.8 Cell Wall Proteomics 
A cell wall proteomic analysis was performed on 3 separate clinical isolates previously 

classified as high biofilm forming and 3 strains classified as low biofilm forming. The isolates 

used are summarised in section 3.3.3 in Table 3.1. 

 

Cell wall proteomics was performed only once for every strain in each growth conditions. 

These were biofilms grown for 24h with or without the presence of serum. Proteins with 

peptides per protein ≥ 2 were quantified according to their relative peak area. Proteins were 

filtered so that there was consensus of at least two of our 3 strains per group with that protein 

present. Within the cell wall proteomics analysis, a limited number of samples were used 

without any technical replication. Due to this limitation proteins were considered only in 

regard to their presence or absence within the two phenotypic groups in the presence and 

absence of serum. This data was used to create Venn diagram like plots of overlaps between 

the different phenotypic groups (Figure 3.18A). Additionally, we visualised the log10 peak 

area of the proteins with each sample in the form of a heatmap to summarise the presence 

and absence levels between our two phenotypes and our two growth conditions (Figure 3.18). 

We hypothesised that there may be differences in the cell wall composition between high 

and low biofilm formers in how they remodel their cell walls in the presence of serum. 

However, due to limitations in the procedure, for example, its ability to discern only the cell 

wall proteins and the lack of technical replicates it was deemed inappropriate to form any 

statistical inference. For this reason, visual analysis only was performed, and the experiment 

was used for hypothesis formation only with no strong conclusions possible. 

 

The Venn diagram like, Upset plot, shows the overlap of cell wall proteins identified between 

our different groups of HBF and LBF and in our two nutrient conditions (Figure 3.18A). Within 

our different groups 10 unique proteins were identified in the LBF serum group, 3 in the HBF 

serum group, 2 in the LBF no serum and 1 in HBF no serum group. The remainder of the 

proteins showed some level of overlap with one or more of the different groups with 20 

proteins being extracted from all groups. 

 

In the LBF strains 10 proteins were found in the cell walls in the presence of serum. These 

included the heat shock protein Hsp70, Essential beta-1,3-glucan synthase subunit Gsc1, the 
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small (40S) subunit Rps21, the ATP synthase alpha subunit Atp1, the secreted yeast wall 

protein Ywp1, the ATP carrier protein Pet9, the Phosphoglycerate kinase Pgk1, the 

Hexokinase II Hxk2, putative histone H4 Hhf1 and a protein of unknown function. The 

translation elongation factor Tef2, Pyruvate decarboxylase Pdc11, Alcohol dehydrogenase 

Adh1 and the mRNA binding and RNA processing Sik1 were identified only in serum but 

appeared in both the LBF and HBF strains. Interestingly the Enolase protein Eno1 was present 

in LBF in serum but not in the absence of serum. It is important to note that many of these 

proteins are mitochondrial proteins and therefore could cloud or results. Some may be due 

to moonlighting proteins however the likelihood is that they are present due to poor 

separation of cell wall during processing or due to contaminants from serum 

supplementation. Many of these potentially contaminant proteins however are consistently 

and uniquely in the LBF cells supplemented with FCS. This may be due to differences in the 

LBF cells or response to stress which have meant that extraction from this group was 

particularly difficult. This is not true of all LBF+FCS specific proteins however, the yeast wall 

protein YWP1 protein for example is a cell wall protein and is thought to be involved in the 

maintenance of biofilm formation in some instances despite its name indicating otherwise.  

 

Between LBF and LBF+FCS there were 22 shared proteins, 5 only present in the LBF and 16 

unique to the LBF+FCS. Between HBF and HBF+FCS there were 24 shared proteins, 3 that were 

unique to HBF and HBF+FCS. Between the HBF and LBF cells there were 24 proteins shared 

and 3 unique to HBF and 3 unique to LBF. Similarly, in HBF+FCS and LBF+FCS there were 27 

proteins shared, 6 unique to HBF+FCS and 11 unique to the LBF+FCS. Shared proteins between 

all the phenotypes and media included ALS family proteins involved in adhesion between cells 

and surfaces. The GPI-Anchored Sap9 was also present across all phenotypes and nutrients 

and as previously discussed is consistently expressed in biofilm conditions. Cell surface 

mannoproteins are consistent across all biofilm conditions in the of Mp65 and the superoxide 

dismutase Sod5 which are involved in biofilm persistence (Bink et al., 2011). Most proteins 

seem to by typical cell wall proteins present in C. albicans and this can be observed by the 

overlap of the proteins in the Upset plot and the heatmap (Figure 3.18). Due to limitations 

with the methodology many of the atypical proteins observed could be erroneous due to poor 

extraction and or limited replication. Additionally, these results are summarised in the 

heatmap depicting the presence/absence and relative abundance indicated by log peak area 
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(Figure 3.18B). Presence/absence of identified proteins within each group and a description 

of their function are summarised in Table 3.5.  

Figure 3.18 Cell wall proteomics of HBF and LBF C. albicans isolates. Cell wall proteins were extracted 
from C. albicans high biofilm forming (HBF) or low biofilm forming isolates after 24h of incubation in 
either RPMI or RPMI+FCS. Proteins that were present in each of our groups were overlayed in the 
Venn diagram like upset plot (A). All proteins identified within that sample set are described as set 
size with the overlap between the other groups being represented by the connecting points and 
barplots. A heatmap also indicates the log transformed peak area of each of the proteins indicated 
the identified levels in each of our sample groups (B). Samples are clustered based upon similar 
patterns of protein levels. 
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Table 3.5 Table of identified cell wall proteins and their presence/absence within each group of strains. Proteins also contain short description as maintained 
by the CGD. Proteins are indicated by presence (+) or absence (-) in each of groups. Groups are formed of the two phenotypes and the two nutrient conditions. 

Names Description mycol HBF HBFSerum LBF LBFSerum Names Description mycol HBF HBFSerum LBF LBFSerum

C1_00220W Glycosidase Phr2 + + + + C4_03520C Cell wall protein with similarity to Hwp1 Rbt1 + + + -

C1_01480C Protein component of the small (40S) subunit Rps21 - - - + C4_04050C

GPI-anchored yeast-associated cell wall 

protein Rhd3 + + + +

C1_02420C Essential beta-1,3-glucan synthase subunit Gsc1 - - - + C4_04530C Cell surface glycosidase Phr1 + + + +

C1_03190C GPI-anchored cell wall protein Ecm33 + + + + C4_04530C Cell surface glycosidase Phr1 + + + +

C1_04240C Putative histone H4 Hhf1 - - - + C4_06570C Pyruvate decarboxylase Pdc11 - + - +

C1_04610W ATP synthase alpha subunit Atp1 - - - + C4_06980W

Cell surface protein that sequesters zinc 

from host tissue Pra1 + - + -

C1_08230C

Putative GPI-linked phospholipase B, fungal-

specific (no mammalian homolog) Plb5 + - + + C4_06980W

Cell surface protein that sequesters zinc 

from host tissue Pra1 + - + -

C1_08380W Translation elongation factor 1-alpha Tef2 - + - + C5_00590W

Mitochondrial ADP/ATP carrier protein 

involved in ATP biosynthesis Pet9 - - - +

C1_08500C Enolase Eno1 + + - + C5_04130C GPI-linked chitinase Cht2 + + + +

C1_10290W

Extracellular/plasma membrane-associated 

glucoamylase Gca1 - - + - C5_05050W Alcohol dehydrogenase Adh1 - + - +

C1_13450W GPI-anchored hyphal cell wall protein Hyr1 + + + - C5_05050W Alcohol dehydrogenase Adh1 - + - +

C1_13480W Putative hsp70 chaperone Hsp70 - - - + C5_05390C GPI-anchored cell surface protein Pga4 + + + +

C2_00680C Cu-containing superoxide dismutase Sod5 + + + + C6_00370C Ortholog of S. cerevisiae Nop58 Nop5 + + - +

C2_02410W Unknown Unknown - - - + C6_00750C Phosphoglycerate kinase Pgk1 - - - +

C2_08590W Secreted yeast wall protein Ywp1 - - - + C6_03700W Cell-surface adhesin Als1 + + + +

C2_08870C 1,3-beta-glucan-linked cell wall protein Pir1 + + + + C6_04130C GPI-anchored adhesin Als4 - + + +

C2_10030C Cell surface mannoprotein Mp65 + + + + C6_04380W ALS family protein Als2 + + + +

C2_10030C Cell surface mannoprotein Mp65 + + + + C6_04380W ALS family protein Als2 + + + +

C3_00720W Plasma membrane H(+)-ATPase Pma1 + + + + C7_00860W

Beta-glucan associated ser/thr rich cell-wall 

protein with a role in cell wall structure Ssr1 + + + +

C3_01550C

Protein similar to alpha agglutinin anchor 

subunit Tos1 + + + + C7_02300W

Putative aspartic-type endopeptidase with 

limited ability to degrade alpha pheromone Yps7 - - + -

C3_01730C Putative GPI anchored cell wall glycosidase Utr2 + + + + CR_04510W Hexokinase II Hxk2 - - - +

C3_03870C Secreted aspartyl protease Sap9 + + + + CR_04510W Hexokinase II Hxk2 - - - +

C3_06870W

NAD-linked glyceraldehyde-3-phosphate 

dehydrogenase Tdh3 + + + + CR_07070C Cell wall adhesin Als3 + + + +

C4_00130W GPI-linked cell wall protein Rbt5 + + + + CR_09950C Putative U3 snoRNP protein Sik1 - + - +

C4_02900C

GPI-anchored cell wall transglycosylase, 

putative ortholog of S. cerevisiae Crh1p Crh11 + + + +
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3.5 Discussion 
 

Within clinical cohorts in which C. albicans is found, we have observed that there is variability 

within those populations of this yeast’s biofilm forming ability. It has also been long 

understood that the biofilm forming phenotype is inducible. In experiments, primarily 

involving type and laboratory strains, it has been observed that numerous stimuli including 

nutrient sensing is able to invoke this phenotype (Kean et al., 2018a). This ability is not unique 

to nutrient stimulation and it has been discussed in greater depth within the introduction the 

numerous conditions that can moderate biofilm formation.  

 

Through the work outlined here we observed that seemingly biofilm inefficient clinical strains 

are inducible to form a biofilm under stimulation with foetal calf serum. This effect of FCS 

outlined within the literature and in certain instances utilised to assure this phenotype within 

in vitro experiments (Chandra et al., 2001, Tammer et al., 2014). The use of FCS in C. albicans 

biofilm research has been leveraged to gain insights into the molecular and physiological 

changes that occur during biofilm formation (Pierce et al., 2015). Due to the clinical 

implications of biofilm formation and the consensus that biofilms result in a worse clinical 

outcome in many pathologies, then our increased understanding of the C. albicans biofilm 

allows for improving our knowledge of virulence and potential modes of interfering with the 

yeasts ability to harm in vivo (Cavalheiro and Teixeira, 2018).  

 

We observed that FCS could induce biofilm formation into those strains that we had 

previously categorised as LBFs from the clinical cohort. Although the growth of C. albicans is 

sufficient to induce hyphal and biofilm growth in many isolates, it has been demonstrated 

that certain clinical isolates will more readily form biofilms than others. They took on the 

phenotypic properties visually of the HBF and their biomass and hyphal formation became 

much more comparable to the HBF strains. This effect was not seen in dialysed serum which 

has small molecules removed. 

 

Transcriptomic profiling was hypothesised to identify similarities, deficiencies and contrasting 

changes that were occurring in the low biofilm forming strains. This allowed us to identify 

how the LBFs were regulating this phenotypic switching. RNA sequencing was utilised within 
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this research to identify changes in the transcriptional changes between two distinct clinical 

isolates with and without the nutrient stimulation of serum. RNA sequencing using the 

Illumina HiSeq platform was successful for all samples with all samples receiving adequate 

sequencing depth. There was a wide range of reads from ~11 to greater than 30 million for 

some of the samples. Average alignment rates were adequate as were the percentage of 

assigned genes. The Illumina platform provided adequate quality with no obvious failings 

within the data. The data was derived from single end reads which comparative to paired end 

reads do not allow for identification of novel features such as fusions or splice isoforms 

(Rossell et al., 2014). Single end reads are a simple and effective and high throughput method 

to achieve adequate read depth for broader RNA-Sequencing applications such as those 

utilised here. The identification and counting of features within our different conditions was 

our primary goal and this sequencing methodology was sufficient.  

 

Both clinical C. albicans strains displayed a great deal of transcriptional plasticity when 

confronted with the FCS supplemented media. It would seem however that the degree of 

differentiation in gene expression is greater within the high biofilm forming. A larger number 

of genes were both up and down regulated in the HBF strain compared to the LBF strain. 

However, the largest determinant of transcriptional variability within our experimental 

samples was early and late biofilm formation. Which is perhaps not unexpected, variability 

due to strain and media changes was the 2nd and 3rd largest contribution to variability, 

respectively. Gene Ontology and over representation or enrichment analysis has become a 

popular tool for identifying patterns in gene expression (Conesa et al., 2016b). 

 

Interestingly when considering our top differentially expressed genes between FCS and RPMI 

we observed that zinc transport was more upregulated in the RPMI only grown biofilms. 

ZRT1/2 zinc transport and PRA1 zincophore was consistently down regulated to a high level 

across all of our time points and biofilm conditions in FCS. The interaction between Pra and 

Zrt complexes allows for the efficient uptake of zinc in C. albicans (Łoboda and Rowińska-

Żyrek, 2018). Zinc is required by many enzymes in yeasts and is thought to be a factor in 

Candida virulence and host interactions (Jung, 2015). Iron homeostasis has been linked to 

both fitness and biofilm formation in C. albicans however the intricacies of these factors and 

their roles are not fully understood (Mayer et al., 2013). Preliminary work by researchers in 
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Tokyo seemed to imply the increase of zinc in biofilm formation in C. albicans (Kurakado et 

al., 2018). Our data is slightly confounded by the HBF and LBF in RPMI where it is upregulated 

in both. HBF does form biofilms in RPMI and therefore may be biofilm related and LBF only 

form weak biofilms in RPMI, but it is still upregulated. Therefore, it is difficult to determine a 

role for zinc in biofilm formation with our dataset. It is however interesting to note that the 

supplementation of FCS is downregulating this response in both strains. This may indicate 

that zinc homeostasis is a key factor in biofilm formation and cellular elongation. Zinc maybe 

so readily available within the FCS that its metabolic needs are met earlier in biofilm 

formation. An even closer look at the initial stages of biofilm development and 

experimentation with increased zinc and zinc starvation in future experiments may help to 

decipher the role of zinc in biofilm formation.  

 

From functional analysis it was possible to identify differentially programmed pathways and 

ontologies in the LBF in the presence of serum. Predictably, genes implicated in biofilm 

formation were changing at all time points. Cell adhesion and biofilm formation were also 

terms appearing in both HBF and LBF. Cell wall related terms, including fungal type and hyphal 

cell wall terms were represented at all time points and both HBF and LBF. Early biofilm 

formation in the LBF stimulated by the serum involved dioxygenase and preribosome. Late 

biofilm formation transcribed functional groups involved a larger number of processes. The 

largest majority was functional groups related to Acyl-CoA oxidase activity and fatty acid 

metabolism. β-oxidation of fatty acids in C. albicans takes place within the peroxisome. Acetyl 

units can then be integrated into the glyoxylate cycle or exported outside of the peroxisome 

by the carnitine shuttle system (Strijbis and Distel, 2010). These pathways are also 

overrepresented in the LBF in serum when compared to the HBF strains. Also distinct to LBF 

in serum compared to RPMI in the presence of serum is plasma membrane acetate transport.  

C. albicans utilising non-sugar carbon sources such as β-oxidation of fatty acids is known to 

be flexible and important for virulence in C. albicans. The fatty acid metabolites eicosanoids 

such as prostaglandin E2 and thromboxane B2, present in serum have been shown to 

influence germ tube formation in C. albicans (Noverr and Huffnagle, 2004). LBF strains can 

utilise alternative carbon metabolic pathways to enable yeast-hyphal morphogenesis and 

biofilm formation. We observed fatty acid metabolism and acetyl-CoA were distinctly LBF 

enriched terms in our low biofilm strains. The fatty acid binding and acyl-coA related genes 
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for Acyl-coenzyme A oxidase POX1 and POX 1-3 and PXP3 were specifically overrepresented 

in LBF. GSEA also revealed the fatty acid metabolism related genes FOX3, FOX2, ECI1, CAT2, 

FOX3, PEX11 and ANT1 were also upregulated and lead to the enrichment of the fatty acid 

oxidation related term. The fox 3-hydroxyacyl-CoA epimerase genes are involved in beta 

oxidation and induced in phagocytosis. PEX11 is a peroxisomal protein required for 

peroxisome proliferation and ANT1 is also described as a peroxisomal adenine nucleotide 

transported. EC1 and CAT2 are putatively linked to beta oxidation of medium chain fatty acids 

like the other genes. These genes are putatively assigned functions from the S. cerevisiae 

database with little annotation according to the STRING database. 

 

Members of the ATO gene family ATO1, ATO10 and ATO9 were over-represented in the term 

“plasma membrane acetate transport” and they are upregulated in the LBF forming strains in 

the presence of FCS which are linked to acetate membrane transport and mutations in the 

ATO family have been demonstrated to affect the yeast to hyphal switch (Danhof and Lorenz, 

2015). ATO genes are also thought to be dependent upon the transcription factor Stp2 

(Danhof and Lorenz, 2015). Similarly, the associated genes FRP3 and FRP5 were upregulated 

associated with this pathway. FRP3 is a putative ammonium permease candidate. This 

pathway is associated with C. albicans’ ability to induce alkalinisation through ammonia 

release and overcome macrophages (Danhof and Lorenz, 2015). They are involved in amino 

acid catabolic change and are induced to mitigate changes in pH. This need for alkalinisation 

may be a response from the LBF to account for changes in pH influenced by alternative carbon 

metabolism. pH is a known promoter of hyphal formation and is hyphal formation has been 

previously linked with alkalinisation (Vylkova et al., 2011a). 

 

Iron homeostasis is upregulated at 4h in LBF in serum and downregulated at 24h. This could 

be indicative of C. albicans responding to higher levels of iron availability in serum compared 

to RPMI only. Iron concentrations previously being shown to instigate shifts from yeast to 

hyphal forms which previously has been theorised to be and an environmental trigger for C. 

albicans to reprogram its metabolism.  

 

The C. albicans cell wall plays an important role in the cell morphology and protection against 

external insults. Adaptively, C. albicans remodels their cell walls in response to environmental 



Chapter 3: Transcriptomic profiling of phenotypically distinct Candida albicans isolates 
 

122 
 

changes, a process controlled by well-known stress (Hog1) and cell integrity (Mkc1, Cek1) 

signalling pathways (Ene et al., 2015). The cell walls mainly comprised of β-glucans (glucose 

polymers [50-60%]), chitin (N-acetylglucosamine polymer [1-2%]), and mannoproteins (30-

40%) (Poulain, 2015). Hsp70 has been evidenced previously in the cell wall of C. albicans 

indicating although not commonly found outside the cell membrane it has been hypothesised 

that they are molecular chaperones performing roles in cell wall biosynthesis (López-Ribot et 

al., 1996, López-Ribot and Chaffin, 1996). Hsp70 is responsible for protein folding under heat 

shock conditions and although it has been observed within the cell wall little is known about 

its function there. Gsc1 is an S. cerevisiae homolog where it is a subunit of the beta-1,3-glucan 

synthase (Mio et al., 1997) where it has a role in the production of beta-glucan a major 

component of the hyphal cell wall. Although similarly this is usually a membrane bound 

protein so its presence in the cell wall is unusual. The Rps21 ribosomal protein is localised 

within the endoplasmic reticulum but in the case of LBF in serum it was observed in the cell 

wall. Pet9 the ATP carrier is also localised within the mitochondria and not usually within the 

cell wall. Tef2, and Pdc11 are also not typically present on the cell wall. Pdc11 as well as 

several other proteins including Eno1 have previously been described as “moonlighting” 

proteins. Moonlighting proteins have been observed in response to chemical and host-

interactions. It is perhaps only possible to say that LBF in serum is modulating the composition 

of its cell wall. We can only hypothesis that this is response to stress or compensating for 

deficiencies in cell wall biosynthesis comparative to HBF. This is an interesting question that 

cannot be answered within the work here but warrants further investigation. Additionally, as 

we discussed in the results the issues with cell wall protein extraction cannot be overlooked. 

Complications with proteomics methodology and preparation of cell wall fraction meant that 

potentially spurious results were introduced by presence of mitochondrial proteins. Although 

classified as an omics technology the cell wall proteome showed very little coverage and was 

not representative of the whole cell wall proteome. This again points to issues with extraction 

and processing that have been introduced through experimental design. It would be 

advantageous for this experiment to be repeated with greater number of replicates to both 

improve the power and to rule out any issues with contaminants. Results obtained were both 

limited and relative, so future experiments should aim to address the extraction of cell wall, 

processing to maintain a clean cell wall fraction and improve processing measurements to 

allow for quantitative measurements between sample groups.  
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It is fair to conclude that transcriptome analysis of our two strains has been successfully in 

determining that there is transcriptional reprogramming between these two strains. 

Biomarker analysis, however, found that their a select group of features that are consistent 

between the two strains and that can distinguish between RPMI and serum grown biofilms. 

With many transcriptional studies it drives hypothesis and creates as many questions as it 

answers. It is perhaps interesting that although LBF seem deficient, it is inducible through 

alternative pathways that we have shown here, and these are also pathways that have been 

observed within the host to induce hyphal morphogenesis such as the alkalinisation induced 

mechanisms within the macrophage. Therefore, these strains may still be capable of 

morphogenesis and invasion within the host. 

 

3.6 Highlights 
 

- C. albicans clinical isolates display heterogeneity in their ability to form biofilm but 

additionally in their morphological response to external stimuli. 

- High and Low biofilm formers have drastically different gene expression profiles in 

response to foetal calf serum. 

- The Low biofilm specific response to serum involves fatty acid metabolism and acyl-

coA activity. 

- Low biofilm forming isolates display potential “moonlighting” proteins in their cell wall 

not typically found.
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4.1 Background 
 

The discipline of metabolomics continues to grow and so does its application to studying 

microbial biofilms (Burgain et al., 2020, Wong et al., 2018). It is becoming clear that primary 

and secondary metabolites play important roles in the biofilm formation of microbes, and 

therefore targeted and untargeted metabolomics have become an invaluable tool in the 

microbiologist’s arsenal. Metabolomics offers a systematic and holistic method of identifying 

the metabolic profile during biofilm formation, and in turn the opportunity to identify 

important pathways and therapeutic targets. Recently metabolomics was used in C. albicans 

to identify all the key metabolic pathways that were reprogrammed in response to hypoxic 

stress and has previously been utilised metabolomic changes during morphogenesis and the 

metabolome in response to bacterial species such as S. aureus (Weidt et al., 2016, Burgain et 

al., 2020, Han et al., 2012). 

 

C. albicans is a polymorphic fungus which can sense and adapt to its environment (Mayer et 

al., 2013). The “metabolic flexibility” has been linked and associated with C. albicans virulence 

and its interaction with host (Brown et al., 2014b). C. albicans and other fungal species 

possess mechanisms for metabolic adaption to amino acid and sugar metabolic pathways. 

Amino acid metabolism has been associated with the induction of hyphal morphogenesis 

through cAMP/PKA signalling pathways and through the alkalinisation of the environmental 

conditions (Silao et al., 2019, Vylkova et al., 2011b). Arginine metabolism in Candida spp. has 

been studied in some detailed and is reported to induce C. albicans hyphal formation and 

elongation. This is linked to the cAMP-dependent protein kinase A (PKA) pathway and through 

CO2 production thought to induce germ tube formation (Ghosh et al., 2009). Prior to interest 

in C. albicans as a biofilm forming opportunistic pathogen, it was well understood that 

morphogenic switching was observed in the presence of different nutrient sources, such as 

serum, amino acids (such as proline) and the monosaccharide N-acetylglucosamine (Feng et 

al., 1999, Dabrowa et al., 1976, Holmes and Shepherd, 1987). 

 

Serum has been known for some time to be a potent inducer of hyphal morphogenesis and 

biofilm formation, through activation of the GTPase Ras1 dependent cAMP signalling leading 

to the phosphorylation of Efg1p (Ramage et al., 2002b). The leads to hyphal production in C. 
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albicans, and key structural component of biofilms. Hypoxia is another common stress and 

virulence response known to induce hyphal morphogenesis and biofilm formation. 

Metabolomic profiling by Burgain et al (2020) identified high levels of metabolomic 

reprogramming in C. albicans type strains in response to hypoxic stress (Burgain et al., 2020). 

Importantly, early hypoxic stimulation leads to a response that causes a reprogramming of all 

major components of C. albicans metabolism, including carbohydrate, nucleotide, lipid and 

amino acid pathways. Similarly, it has previously been shown that sugar sensing or adaption 

to different sugar sources can influence the biofilm forming morphology of C. albicans 

(Pemmaraju et al., 2016, Ng et al., 2016). Availability of dietary carbohydrates can influence 

hyphal formation and biofilm development (Santana et al., 2013). Most recently, through the 

use of heterogenous C. albicans clinical isolates it was shown that metabolic pathways 

including arginine, proline and pyruvate metabolism were transcriptionally upregulated in 

biofilm competent, or high biofilm forming isolates, compared to strains which were deficient 

in biofilm growth (Rajendran et al., 2016a). This study indicated that amino acid metabolism 

was a key pathway supporting this phenotype. 

 

Exploiting C. albicans metabolism has become an area of interest for therapeutic targets. It 

has been suggested that drugs could target and inhibit metabolic pathways, thereby reducing 

the virulence capacity of C. albicans. For example, through interruption of the glucose 

metabolism pathways in C. albicans through compounds that target the gluconeogenesis 

glyoxylate pathway. Recent examples include the uncompetitive inhibition of the trehalose-

6-phospte synthase and inhibition of the glucosamine-6-phospate synthase inhibitors via N3-

(4-methoxyfumaroyl)-(S)-2, 3-diaminopropanoic amide derivatives (Pawlak et al., 2016, 

Magalhães et al., 2017). Glycolysis has been the target of interest in a number of studies. 

Similarly, numerous studies have discussed potential, and in some cases, tested amino acid 

metabolism as a target for therapeutics because of their key roles in virulence and 

morphogenesis (Garbe and Vylkova, 2019). Similarly, reports exist on effects of attenuation 

of amino acid pathways in other fungal species such as Cryptococcus neoformans, Aspergillus. 

fumigatus, as well as for C. albicans (McCarthy and Walsh, 2018, Jastrzębowska and Gabriel, 

2015). For example, in C. neoformans disruptions of the catabolic proline pathway was 

observed to decrease virulence through reducing the organism’s ability to respond to 

oxidative and nitrosative stress (Lee et al., 2013). In A. fumigatus it has also been proposed 
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that due to this dependence on amino acids during aspergillosis. As the disruption of carbon 

metabolism linked to amino acid metabolism such as methycitrate cycle can attenuate 

virulence (Ibrahim-Granet et al., 2008). 

 

4.2 Aims 
 

We hypothesised that using targeted/untargeted metabolomics that we could identify 

metabolomic differences between C. albicans phenotypically distinct isolates defined as high 

and low biofilm formers. Additionally, we hypothesised that we could identify metabolic 

changes that occur during the phenotypic shifting of C. albicans in the presence of serum. This 

chapter aims to interrogate the differentially modulated pathways under the biofilm inducing 

condition of serum supplementation. 

 

We additionally aimed to identify any metabolic response or reprogramming in C. albicans 

low, or biofilm deficient, clinical isolates compared to high or biofilm capable isolates. 

 

Specifically, this chapter aims to identify: 

- Differences in the metabolomic footprint of key metabolites using targeted LC-MS 

metabolomics.  

- Difference in the targeted metabolomic footprint which was unique to the low or high 

biofilm forming clinical isolates 

- Pathways that were reprogrammed or underwent changes in the response to serum 

using untargeted metabolomics  

- Pathway activity which was unique or specific to the either the low or high biofilm 

clinical isolates.  

 

This work has been presented at the following conferences: 

- Eurobiofilms, Amsterdam 2017 - Integration of Metabolomics and Transcriptomics in 

Biofilm Research (Poster, Recipient of a travel grant to attend from the organisers) 
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- ECCMID, Madrid 2018- De novo transcriptome assembly and annotation for analysis 

of the emerging pathogen Candida auris (Poster) 

- OMIG, Gregynog 2018- Omics approaches to studying microbial biofilms in oral 

health (Talk, Recipient of a travel grant to attend from the organisers) 

- IADR, London 2018- Omics and bioinformatics approaches to studying oral biofilms 

(Poster) 

- Eurobiofilms, Glasgow 2019 - Transcriptomic and multi-omics data integration 

approaches to interrogate mono and interkingdom species Candida biofilms (Talk) 

- Invited talk, Newcastle 2020 - OMIC modelling of Candida albicans interkingdom 

biofilm interactions (Seminar) 

 

4.3  Methods 
 

4.3.1 Biofilm Preparation  
HBF (n=3) and LBF (n=3) isolates were grown as biofilms for 4 and 24h in RPMI ± FCS, as 

described previously, in triplicate for a total of 9 biofilms per sample group.  All isolates used 

in this component of the thesis are summarised in Table 3.1 (found in section 3.3.3). 

 

Biofilms were grown as previously stated in polystyrene plates at 30ºC. 5μL of the spent media 

was added to 200μL of an ice cold solvent solution containing chloroform:methanol:water in 

a (1:3:1:v:v:v) ratio. This solution was then vortexed at maximum speed for 15sec and stored 

at -80ºC. The mixture solution was separated using Hydrophilic interaction liquid 

chromatography on SeQuant® ZIC® -pHILIC columns (Merck KGaA, Darmstadt, Germany), 

before LC-MS analysis performed on the Thermo Scientific Exactive Orbitrap system (Thermo 

Scientific, Hemel Hempstead, UK). Fresh media harvested at both 4h and 24h was used as a 

control and solvent solution was used as a blank. Thermo Xcalibur™ (version 2.2.42) was used 

for instrument control and data acquisition.  
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4.3.2 Data Acquisition and Processing 
Mass spectrometry raw data files were filtered and converted to mzXML file format using the 

msconvert component of the ProteoWizard software package (Chambers et al., 2012). 

mzXML files were submitted to the Polyomics integrated Metabolomics Pipeline (PiMP) 

(http://polyomics.mvls.gla.ac.uk/) (Gloaguen et al., 2017). In summary the integrated pipeline 

utilises the program XCMS for peak picking and MZmatch for peak matching, noise filtering 

and annotation of related peaks. Principal metabolites were identified against a panel of 

authentic pure standards (Sigma-Aldrich), that are maintained in the University of Glasgow 

Polyomics standard compound library, using accurate mass and RT (error 5%) and were 

defined as Identified based upon the Metabolite Standards Initiative. Putatively assigned 

compounds using the accurate mass and to give a predicted compound.  

 

4.3.3 Statistical Analysis 
Once peaks are identified their intensities was logged by base 2 and pairwise analysis was 

performed on group-to-group comparisons. PiMP is a web-based interface which allows for 

the uploading, hosting, processing, and analysis of metabolomics datasets. It includes 

pairwise and functional analysis parameters processed data was exported as abundance 

tables for further analysis. 

 

Tables were exported with peak Ids and the corresponding KEGG and compound identifiers, 

in addition to the identification status against the standard compounds. A total of 612 peaks 

were present within the data, of these, 49 corresponded to the known standards and the rest 

were identified putatively against the KEGG database compounds. Principal Component 

Analysis was performed on total sum scaled and log transformed peak relative abundance 

data to visualise overall variance within the data. The relative abundance for each sample was 

normalised to the relevant media controls before principal component analysis (PCA) to 

visualise variance after normalisation to the control media. Analysis of variance (ANOVA) was 

performed on the identified compounds followed by Benjamini-Hochberg false detection rate 

FDR of the p-values to account for the numerous ANOVA tests performed. Those metabolites 

which were still deemed to be significant following FDR of p-values were selected for further 

analysis and the post hoc Tukey test was performed. Tukey tests determined the significance 

between RPMI and Serum for each of the metabolites. 
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With many mass peaks being putatively assigned compounds accurate detection of all 

compounds in untargeted metabolomics is not possible. Therefore, compounds were 

analysed according to their contribution to metabolic pathways. Activity scores of the KEGG 

functional groups were calculated for each of the samples using the R package Pathway 

Activity Profiling algorithm (PAPi)(v1.12.0) (Aggio et al., 2010). ANOVA followed by Tukey post 

hoc test were performed to determine significantly changing pathways between our sample 

groups within base R. Partial Least Squares Discriminant Analysis was performed on all 

identified peaks for biomarker analysis. PLS-DA. PLS-DA is a multivariate supervised analysis 

useful in class discrimination. It is a classification approach which is also able to determine 

discriminatory markers between our groups. Important features are discernible through their 

variable importance in the projection (VIP) scores. PLS-DA was performed within the 

MetaboAnalyst (V4.0) software utility following the data being exported sample and peak 

relative abundance tables (Chong et al., 2018a). Biofilm processing data acquisition and 

analysis is summarised in Figure 4.1. 

 

 
Figure 4.1 Schematic depicting our workflow. This diagram illustrates from the wet lab stage of 
biofilm growth of biofilms and collection of supernatants to mass spectrometry and the pre-
processing by the Glasgow Polyomics in house analysis server and then final data analysis and 
interpretation through R statistical programming analysis and online analysis databases. 
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4.4 Results 
 
4.4.1 Comparisons between media controls 
Volcano plots, scatter plot of log2 fold change (log2FC) against the negative log10 adjusted p-

value, were created for the comparison of media ± FCS after 4h and 24h incubation. A positive 

fold change indicates that the peak was observed at a higher relative abundance in the media 

± FCS. 16 different peaks were observed at the 24h time point and 20 peaks at the 4h time 

point (Figure 4.2). 8 of these metabolites were Identified within the standards and were 

higher in the media ± FCS. In RPMI + FCS compared to RPMI the identified metabolites in order 

of the significant abundance were Creatinine (p=3.8e-09), L-Glutamine (p=1.2e-07), Ornithine 

(p=0.00023), Hypoxanthine (p=1.1e-05), L-Malic acid (p=0.0022), Pantothenate (p= 0.013), 

Choline (p=0.016) and O-Acylcarnitine (p= 0.0051). 

 

 
Figure 4.2 Volcano plots depicting differentially represented metabolites in our media controls. 
Metabolite abundance was compared between the media controls RPMI and RPMI supplemented 
with FCS by LCMS. This was processed within PiMP to derive significance and log2 fold change between 
the two medias. Media that had been incubated for 4h and 24h was compared. The volcano plots 
depict the features changing between RPMI and RPMI supplemented with FCS. Comparison is 
between the media controls at 4h (A) and 24h (B). 

 

The most significantly changing metabolites after FDR are displayed with a log2 FC >2 are 

shown in Table 4.1. Most of these metabolites were involved in amino acid metabolism 

followed by carbohydrate and energy metabolism related metabolites. 

 

A B
24/03/2021 PiMP

polyomics.mvls.gla.ac.uk/accounts/project/242/analysis/647/ 1/1

Adj. P-value > 0.05 Adj. P-value < 0.05

24/03/2021 PiMP

polyomics.mvls.gla.ac.uk/accounts/project/242/analysis/647/ 1/1

Adj. P-value > 0.05 Adj. P-value < 0.05
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Table 4.1 Fold changes of FCS metabolites compared to RPMI. Metabolite abundance was compared 
between the media controls RPMI and RPMI supplemented with FCS by LCMS. This was processed 
within PiMP to derive significance and log2 fold change between the two medias. This table depicts 
those metabolites that were different between RPMI and RPMI supplemented with serum after 4 and 
24h. with a fold change greater than 1.5 indicated by light shading and dark shading of red (+ve) and 
green (-ve) fold change greater than 2. 

 
 
 

RPMI media is comprised of sugars (glucose and glutathione), pH indicator (phenol red), 

inorganic salts (sodium chloride, sodium bicarbonate, disodium phosphate, potassium 

chloride, magnesium sulfate, and calcium nitrate), vitamins i-inositol; choline chloride; para-

aminobenzoic acid, folic acid, nicotinamide, pyridoxine hydrochloride, and thiamine 

hydrochloride; calcium pantothenate; biotin and riboflavin) and amino acids (glutamine; 

arginine; asparagine, cystine, leucine, and isoleucine; lysine hydrochloride; serine;  aspartic 

acid, glutamic acid, hydroxyproline, proline, threonine, tyrosine, and valine; each histidine, 

methionine, and phenylalanine; glycine; tryptophan; and reduced glutathione). RPMI is a 

well-defined media typically produced for cell culture and has been commonly utilised for 

Metabolite Formula logFC 4hFCS/4hRPMI logFC 24hFCS/24hRPMI Identification
Creatinine C4H7N3O 8.71 8.88 I
3-(N-Nitrosomethylamino)propionitrile C4H7N3O 8.71 8.88 A
Creatine C4H9N3O2 8.23 5.4 A
3-Guanidinopropanoate C4H9N3O2 8.23 5.4 A
L-Glutamine C5H10N2O3 5.26 5.07 I
Alanylglycine C5H10N2O3 5.26 5.07 A
3-Ureidoisobutyrate C5H10N2O3 5.26 5.07 A
D-Glutamine C5H10N2O3 5.26 5.07 A
Glutamine C5H10N2O3 5.26 5.07 A
Isoglutamine C5H10N2O3 5.26 5.07 A
Mannitol C6H14O6 4.01 1.7 A
Galactitol C6H14O6 4.01 1.7 A
D-Sorbitol C6H14O6 4.01 1.7 A
L-Iditol C6H14O6 4.01 1.7 A
L-Glucitol C6H14O6 4.01 1.7 A
D-Iditol C6H14O6 4.01 1.7 A
L-Ornithine C5H12N2O2 2.2 1.85 I
D-Ornithine C5H12N2O2 2.2 1.85 A
2,5-Diaminopentanoic acid C5H12N2O2 2.2 1.85 A
(2R,4S)-2,4-Diaminopentanoate C5H12N2O2 2.2 1.85 A
Hypoxanthine C5H4N4O 1.79 2 I
Allopurinol C5H4N4O 1.79 2 A
N-Acetylhistidine C8H11N3O3 1.72 2.01 A
HC Red No. 3 C8H11N3O3 1.72 2.01 A
N-Acetyl-L-histidine C8H11N3O3 1.72 2.01 A
(R)-Piperazine-2-carboxamide C5H11N3O -3.22 -0.06 A
(S)-Piperazine-2-carboxamide C5H11N3O -3.22 -0.06 A
4-Guanidinobutanal C5H11N3O -3.22 -0.06 A
Dimethyl sulfoxide C2H6OS -2.35 -1.45 A
Mercaptoethanol C2H6OS -2.35 -1.45 A
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culturing C. albicans. Serum or FCS however is undefined media with uncontrolled levels of 

constituents. However, it is a mixture of sugars such as glucose, hormones such as insulin, 

testosterone and progesterone, creatinine, bilirubin, proteins, salts, vitamins A/B and 

prostaglandins.  

 
4.4.2 Metabolomic profiling of Low and High Biofilm Forming Isolates 
The initial comparison exists between the low and high biofilm formers in RPMI with 

comparisons to changes that exist in those that are grown in Serum. We have previously 

identified transcriptomic changes between high and low biofilm formers. Between LBF and 

HBF grown for 24h in RPMI we identified significant changes (adjusted p-value less than 0.05) 

of 10 identified compounds and 19 annotated compounds. We identified 2 annotated 

compounds significantly changing in between HBF and LBF. Comparatively we identified 7 

identified compounds and 12 annotated peaks significantly changing at 24h between HBF and 

LBF in serum. This was much less at 4h in serum with 2 identified compounds significantly 

changing and 7 annotated peaks meeting the significance criteria. Volcano plots depicting 

these changes at each time point and media are shown in Figure 4.3. Blue dots indicate peaks 

that were not significant where those coloured black indicate that they were significant. 
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Figure 4.3 Volcano plots showing differences between LBF and HBF at each respective timepoint in both RPMI and RPMI+FCS. Metabolite abundance was 
compared between high (HBF) and low (LBF) biofilm forming strains at 4h and 24h in both RPMI and Serum. This was processed within PiMP to derive 
significance and log2 fold change between the two strains. Significantly different metabolites between HBF and LBF are indicated with black dots. Significance 
is indicated by negative log10 of the adjusted on they y axis and log2 fold change is indicated on the x.  
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Between the LBF and HBF in RPMI, the most significantly changing metabolites in higher 

relative abundance in the low biofilm forming supernatants were L-Aspartate, L-

phenylalanine, L-glutamate, L-glutamine, L-tyrosine and Hydroxyproline 

trans-4-Hydroxy-L-proline according to the adjusted p-value <0.05. The most significant 

differences in serum according between the low and high biofilm formers were Betaine, sn-

glycero-3-Phosphocholin which were in higher relative abundance in the high biofilm forming 

strains media. L-glutamate, L-Aspartate and L-Arginine and O-Acetyl carnitine were in higher 

abundance in the media of the LBF (Figure 4.4).  

 

 
Figure 4.4 Bar chart of significantly changing identified compounds between HBF and LBF. From the 
analysis within the PiMP platform univariate comparisons between HBF and LBF was performed in for 
both Serum and RPMI independently. The log2 fold change and their significance (p<0.05) was then 
exported. Metabolite fold change between HBF and LBF grown for 24h in RPMI are coloured red and 
those grown in serum are coloured blue. Significant p-value of less than 0.05 than within each of the 
pairwise conditions HBF/LBF in their respective mediums is indicated by (*). A +ve log2 fold change 
indicates a higher level in the LBF strains and -ve log2 fold change indicates a higher level in the HBF. 

LBFHBF

-2 0 2
Log2 fold change
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Through Pathway Activity Level Scoring within PiMP, it was also noted that in order the top 

five pathways significantly changing were the bacterial chemotaxis, Lysine biosynthesis, beta-

Alanine and metabolism, the Glutamatergic synapse and Nitrogen metabolism where the 

most enriched KEGG pathways in RPMI at 24h between HBF and LBF. In serum at 24h the top 

five significantly changing where, in order, sulphur metabolism, glutamatergic synapse, FoxO 

signalling pathway, bacterial chemotaxis and nitrogen metabolism. 

 

The FoxO pathway is associated the identified or annotated compounds D-glucose and L-

glutamate and was significant in serum between LBF and HBF due to the higher levels of 

glutamate in the HBF media. The FoxO pathway is a mammalian signalling pathway not 

typically found in microorganisms.  

 

Bacterial chemotaxis is a KEGG pathway which is not specific to C. albicans but is enriched by 

the identified L-aspartate. This is due to a limitation within the PiMP software and it being 

unable to filter the KEGG pathway assignment based upon species. The glutamatergic synapse 

was enriched between LBF and HBF due to the high peak abundance of L-glutamate followed 

by L-glutamine. Both were in higher abundance in the HBF strains media after 24h. Sulphur 

metabolism was enriched due to the significantly higher levels of the p-value 0.05 of O-Acetyl-

L-Serine in the LBF media and the significantly higher levels of Succinate in the HBF strains 

media. Nitrogen metabolism is similarly enriched by the L-glutamate and L-glutamine 

compounds. Many of the pathways within the pathway analysis included in the PiMP 

processing pipeline are unlikely to be representative of C. albicans. Currently the pathway 

profiling within the PiMP platform relies upon the larger, more general, KEGG database rather 

than species specific ones. As such many of the pathways are not specific to the organism 

being studied. In addition, because of the small differences in metabolite abundance between 

HBF and LBF the pathways that are overrepresented based upon small numbers of 

metabolites.  

 

PLS-DA shows the top discriminatory compounds between HBF isolate and LBF (Figure 4.5A). 

This comparison shows the direct changes of metabolome directly related to the two different 

strain types. L-phenylalanine, L-glutamate and L-tryptophan distinguish between the low and 

high biofilm formers according to the variables importance in the projection (VIP) (Figure 
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4.5B, C). Additional peaks also distinguish between the two isolate types however they show 

decreasing importance in the projection and due to being putatively identified these 

compounds could be a number of different metabolites. The top discriminatory variables 

were also observed in our univariate analysis described above.  

 

 
 

 
 
Figure 4.5 Partial Least Squares of LBF and HBF C. albicans isolates at 24h. The metabolite abundance 
values identified by the PiMP software were submitted to MetaboAnalyst for partial least squares 
analysis (PLS). PLS was performed for Identification of the most discriminatory metabolites between 
HBF and LBF. HBF (red) are distinguished here from the LBF (green) (A). Variable importance in the 
projection (VIP) scores of the top discriminatory compound peaks (B). These scores indicate how 
impactful they are at discriminating the two conditions in order of importance. There compound peaks 
were then compared to their compound or metabolite name if they could be identified. Identification 
status and Name or compound of the VIP peaks are described in a table (C). 

Peak ID Identification Name/Compound
4313270 Identified L-Phenylaline
4312923 Identified L-Phenylaline
4312990 Identified L-glutamate
4313057 Identified L-tryptophan
4313026 Annotated C6H9N3O2 /C4H6N2O2
4313227 Annotated C10H20O3
4313119 Annotated C2H4O2S
4313007 Annotated C6H9N3O2 /C4H6N2O2
4313217 Annotated C6H10O3
4313143 Annotated C8H16O2S2/C10H19NO2S2

C 

A
 

B 
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4.4.3 Multivariate analysis of C. albicans HBF and LBF  
Principal component analysis (PCA) displayed good separation of the different groups 

between our two medias and time points (Figure 4.6A). However, little separation was 

observable between our two different strain phenotypes (i.e., HBF and LBF). Samples also 

clustered together in groups of media and time. We have previously shown that there are 

strong phenotypic differences and previously identified metabolomic profile within the 

transcriptome (Rajendran et al., 2016a). Within our study design of samples strain to strain 

variation did not account for much of the total variation observed as shown with the PCA. For 

example, the samples grown for 24h in RPMI formed a distinct cluster. Data was normalised 

to media controls, by dividing the metabolite abundance by of the sample by the metabolite 

abundance within the media only controls, the values became log relative compared to the 

media control. This alleviated the high skew within the data and removed some of the 

heteroscedastic within the data (Figure 4.6B). It also improves the interpretability when 

comparing the footprint of the organisms between two different medias. As some values will 

be positive, indicating that they are added or secreted to the media by the cells, or the values 

would become negative indicating that they had been taken away from the media or spent. 

PCA projection of the normalised data again showed separation of the data by time and by 

media. Similarly, to the non-media normalised data our samples seemed to group and cluster 

according to their incubation times and media. One outlier was also removed from the data 

according to a cut of 50% or more missing features for further analysis. Other failures prior to 

processing within PiMP, due to failures during mass spectrometry and/or data acquisition 

meant that only two sample groups had a total of 9 replicates. However, the lowest number 

of replicates per sample was 6 during PiMP processing and this was deemed adequate. 

Samples also showed clear reproducibility within their metabolomic profiles (Figure 4.6). All 

peaks and successful samples and their corresponding peaks are available in additional 

appendix I.

 



 

 139 

 

Figure 4.6 Principal component analysis (PCA) of metabolomics secretome/metabolic footprint analysis of C. albicans high and low biofilms in the presence 
or absence of serum at 4h or 24h. All untargeted metabolites were included in the principal component for all samples (A). The highest variability within the 
sample set is shown on PC1 (60.03%) with the second highest shown on PC2 (18%) (A). PCA of the same metabolomics data normalised to the growth media 
controls with the largest variation between the media corrected samples PC1 (29.39%) and the second largest variation on component 2 (21.49%) (B). 
Colourisation of the points is according to the sample group. Sample group is indicated by biofilm growth time_media_strain.  
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4.4.4 Profiling of targeted metabolites in isolates grown in serum vs RPMI 
Within the different samples a total 49 compounds matched to a known standard from the 

Polyomics standards collection. Many metabolites within the standard compound library 

were not observed. These may be due to metabolites being below the detection limit of the 

machinery. More plausibly it could be due to the limitations of doing metabolic foot printing 

or extracellular metabolomics. Many intermediate metabolites within the metabolic 

networks of C. albicans may not have been externalised during growth and biofilm formation. 

However, this limitation is consistent throughout our testing and therefore comparison of the 

metabolic footprint left between our different sample groups still allows comparison and 

inference of the metabolic pathways being differentially regulated between our samples. Of 

the 49 metabolites that were identified, 38 were found to be in significantly different 

abundance between our groups. Of these, 21 had a difference in abundance between the 

sample groups according to ANOVA following correction for multiple tests with an FDR p-

value. Identified metabolites were grouped into super pathways according to their KEGG 

designation for visualisation. Although, many of the metabolites appear in several different 

KEGG database pathways. The 49 compounds relative fold change compared the media is 

summarised in Figure 4.7. Additionally, their super pathway grouping is also shown. Due to 

the data being a log2 fold change relative to the media control an increase or positive fold 

change indicates an increase in the media (the metabolite is secreted or released) and the 

larger the negative value indicates that the metabolite is spent relative to the negative 

control. ANOVA was performed for each of the metabolites, and they were considered 

significant after these values were corrected if the FDR p-value ≤ 0.05. Significant differences 

between RPMI and FCS grown strains was determined using the Tukey’s honestly significant 

difference (HSD) ≤ 0.05 and are discussed in the following sections.  
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Figure 4.7 Grid or heat plot of the relative abundance compared to the media control of the targeted 
or identified metabolites. Positive log2 values infer secretion of metabolites to the media and 
negative values infer that metabolites have been spent from the media. Values are log2 metabolites 
relative abundance which have been divided by the control values. The values have also been grouped 
into their super-pathway metabolic groups according to their KEGG classification. These values are 
grouped into each sample group which is determined as time_media_strain. 
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4.4.5 Identified amino acid metabolism 
Many of the identified metabolites are amino acids (24 identified metabolites), and of these 

11 were found to be in significantly greater abundance between RPMI and RPMI+FCS as 

determined by Tukey HSD <0.05 (Figures 4.8-4.9). Betaine is a metabolite in C. albicans that 

is found in the threonine, serine and cysteine metabolic pathways. Betaine was observed to 

be spent in FCS compared to RPMI in our LBF strain at 24h (p <0.0001). A difference in 

abundance is observable between FCS and RPMI in the HBF strain at 24h, with the FCS media 

showing less betaine secreted. However, this was not found to be significant. L-glutamine is 

a metabolite found in C. albicans in the arginine, purine and pyrimidine metabolism, as well 

as several other different metabolic pathways. It was observed to be excreted at a lower level 

in the 4h time points for both LBF and HBF in FCS and spent in comparison to excreted at 24h. 

This was significant for both strains at both time points with a p<0.0001 (Figure 4.8).
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Figure 4.8 Identified metabolites between RPMI and 
Serum in C. albicans isolates. Bar charts depicting the 

significantly different amino acid related metabolites 

selected by Analysis of Variance (ANOVA) followed by 

adjusting the p-value using Benjamini-Hochberg FDR. 

Identification of significant changes was performed 

using the Tukey HSD. Values are log2 peak area 

compared to media control with positive values 

indicating secretion and negative values indicating that 

the metabolite was spent compared to media control. 

For each plot significance is indicated according by the 

Tukey derived p-value where there is a significant 

difference between the log2 relative area in RPMI vs 

Serum in either HBF or LBF and at either 4 or 24h. 

Significance is indicated between the four comparisons 

as ns, p<0.05*,p<0.01**,p<0.001*** or p<0.0001****. 

Amino Acid
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Nucleo-de

Other Amino Acid

Other

Figure 4.9 Identified 
metabolites between RPMI 
and Serum in C. albicans 
isolates. Bar charts depicting 

the significantly different 

amino acid and nucleotide 

related metabolites selected 

by Analysis of Variance 

(ANOVA) followed by adjusting 

the p-value using Benjamini-

Hochberg FDR. Identification 

of significant changes was 

performed using the Tukey 

HSD. Values are log2 peak area 

compared to media control 

with positive values indicating 

secretion and negative values 

indicating that the metabolite 

was spent compared to media 

control. For each plot 

significance is indicated 

according by the Tukey 

derived p-value where there is 

a significant difference 

between the log2 relative area 

in RPMI vs Serum in either HBF 

or LBF and at either 4 or 24h. 

Significance is indicated 

between the four comparisons 

as ns, p<0.05*, p<0.01**, 

p<0.001*** or p<0.0001****. 
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L-isoleucine was found to be spent to a higher degree in FCS at all time points and in both 

strains. It was found to be significant between serum and RPMI at 4h in LBF(p=2.87e-07), 24h 

LBF (p=3.33e-05), 4h HBF (p=9.62e-05) and 24h HBF (p=0.000211). 

 

This same pattern was also observed in the L-leucine metabolite. L-leucine and L-isoleucine 

are metabolites involved in the valine, leucine and isoleucine degradation pathways, as well 

as the aminoacyl-tRNA biosynthesis pathway amongst others. 

 

L-tryptophan was spent to a higher degree in the FCS compared to RPMI at 24h in both strains, 

however, this was found to be significant in the HBF strain only (p=3.07e-05). Creatinine was 

spent in the RPMI media at 4h and was secreted in the FCS media in both strains and found 

to be significant in both strains at 4h (LBF p=3.60e-09, HBF p=1.08e-10). Tryptophan is found 

in the tryptophan metabolic pathway and in the phenylamine, tyrosine and tryptophan 

metabolic pathways in C. albicans. It is also found in the amino-acyl-tRNA biosynthesis 

pathway in addition to many other pathways. Amino acid data is shown as a bar chart with 

significance shown in Figure 4.8. Creatinine is additionally found as an intermediate of the 

arginine and proline metabolic pathways in C. albicans. L-arginine was found to be spent in 

all sample cultures however this was more so in the case of FCS at 24h. L-arginine was 

significantly more spent or utilised in the FCS media compared to the RPMI at 24h (LBF p= 

0.000956, HBF p=4.24e-08). Both L-alanine (LBF p=1.88e-08, HBF p=7.21e-09) and beta-

alanine were found to be more highly secreted in the media at 4h in the FCS media however 

there was found to be no significant differences at 24h. A similar pattern was observed in 5-

oxyproline with significantly higher level of metabolite being found to be secreted in the FCS 

media at 4h (LBF p=4.37e-13, HBF p=4.37e-13) and 24h (LBF p=4.37e-13, HBF p=4.37e-13) 

compared to RPMI. L-arginine is involved in the arginine and proline metabolic pathway as 

well as the aminoacyl-tRNA biosynthesis pathway. L-alanine and beta alanine found in the 

alanine, aspartate and glutamate metabolic pathways in addition to many others including 

amino-acyl-tRNA biosynthesis and cysteine and methionine metabolism. O-acetyl-carnitine 

was absent in the media controls for RPMI and was not present in any of the RPMI samples. 

It was found to be secreted to a small degree at 4h in FCS in both strains and then spent to a 

significant level at 24h (LBF p=4.13e-05, HBF p=2.90e-07). It is involved in the degradation of 

fatty acids and fatty acid metabolism, and specifically facilitates the movement of acetyl-CoA.  
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Other amino acid metabolism is shown as bar charts with significance between RPMI and 

Serum indicated in Figure 4.9. 

 

4.4.6 Identified Nucleotide metabolism  
Of the metabolites identified under the super pathway of nucleotide metabolism changes in 

level of metabolite were observed compared to the media control in the FCS media however 

no secretion or uptake was observed in the RPMI only (Figure 4.9). Hypoxanthine, a 

component of purine metabolism in C. albicans, was found to be significantly spent in the FCS 

media at 24h (LBF p=8.05e-10, HBF p=3.05e-06), whereas there was no change in level 

compared to media control in the RPMI in either strain or time point. This metabolite was 

also found to be completely absent in the RPMI media but was found in the FCS media control. 

Cytidine was similarly absent in the RPMI controls whereas it was present in the FCS media 

control. Cytidine a component of pyrimidine metabolism was secreted to a significant level 

compared to media control and compared to RPMI at both 4h and 24h and in both strains 

(p=4.37e-13). The same trend and level of significance was found of alantoin in FCS compared 

to RPMI. Allantoin was also found to be completely absent in the media control. Allantoin is 

a by-product of nucleic acid and ureic acid decomposition involved in the KEGG purine 

metabolism pathway.  

 

4.4.7 Carbohydrates 
Only 2 compounds classified as part of the carbohydrate super pathway designation within 

the KEGG database were found to be significant these were citrate and cis-aconitate when 

comparing supernatant of C. albicans grown in FCS to RPMI (Figure 4.10). Citrate was highly 

secreted in the 4h FCS media by C. albicans whereas it was spent in the RPMI. However, the 

relative concentrations of citrate in the media controls were relatively low to begin with. This 

difference was found to be significant in both strains (LBF p=0.00242, HBF p=4.38e-05) 

However, there were no differences found between media at 24h. cis-aconitate was also 

found to be much more excreted by C. albicans at 4h in the FCS compared to the RPMI (LBF 

p=5.12e-10, HBF p=6.50e-09) this was true for both strains however this was not found to be 

true at 24h.  
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4.4.8 Identified lipid and fatty acids 
Of the identified metabolites, 1 fatty acid and 3 lipid super-pathway related metabolites were 

found to be differentially excreted or spent within our media between our two strains and 

our two growth medias at 4 or 24h (Figure 4.10). L-carnitine a facilitator of fatty acid 

metabolism and specifically the transport of acyl-CoA following β-oxidation. Its level of 

regulation in FCS being almost identical to O-acylcarnitine. It was found to be significantly 

different than RPMI in both strains at 24h (LBF p=0.00375, HBF p=6.88e-05) with it being 

spent in the FCS compared to the RPMI. It was however secreted to a low level in the FCS and 

in the RPMI at both time points. There was no change from the media control in the HBF 

grown in the RPMI media. Taurine is found within the taurine and hypo taurine metabolic 

pathways in C. albicans. It was found to be excreted significantly more in FCS (p=4.37e-13) 

compared to RPMI where it was absent. The level of expression was visibly greater at 4h than 

24h (Figure 4.10). sn-glycero-3-phosphocholine a metabolite of the glycerophospholipid 

metabolic pathway was found to be significant when comparing FCS to RPMI at all time points 

and in both strains. It is excreted significantly more after 4h (LBF p=0.000189, HBF p=0.00981) 

of incubation in RPMI and was spent to significant degree at 24h (LBF p=0.0139, HBF 

p=0.0115) in contrast to secreted in FCS. Choline is a precursor in phospholipid biosynthesis 

in C. albicans. Choline was found to be spent in the media by C. albicans in all sample groups 

compared to the media control, however, this was to a significantly greater degree in the 

RPMI media at 24h (LBF p=4.37e-13, HBF p=4.37e-13). 
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Figure 4.10 Identified metabolites between 
RPMI and Serum in C. albicans isolates. Bar 
charts depicting the significantly different 
carbohydrate, fatty acid and lipid related 
metabolites selected by Analysis of Variance 
(ANOVA) followed by adjusting the p-value using 
Benjamini-Hochberg FDR. Identification of 
significant changes was performed using the 
Tukey HSD. Values are log2 peak area compared 
to media control with positive values indicating 
secretion and negative values indicating that the 
metabolite was spent compared to media 
control. For each plot significance is indicated 
according by the Tukey derived p-value where 
there is a significant difference between the log2 
relative area in RPMI vs Serum in either HBF or 
LBF and at either 4 or 24h. Significance is 
indicated between the four comparisons as ns, 
p<0.05*, p<0.01**, p<0.001*** or 
p<0.0001****. 

Carbohydrate Fa,y Acid

Lipid
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4.4.9 Pathway activity profiling of C. albicans metabolic footprint 
Pathway activity profiling was applied to our datasets. The activity of C. albicans pathways 

was predicted from their extracellular abundance data. This data comprised all peaks, both 

annotated and identified from our targeted/untargeted metabolomics analysis. Pathway 

activity profiling is dependent upon KEGG identifiers due to the database being used was 

constructed from KEGG API. Pathways were filtered to include only those in the C. albicans 

KEGG database. This avoids misleading results caused by identification of enriched pathways 

that are not likely or implausible. Peak IDs were matched to KEGG identifiers and a matrix of 

samples/IDS against log2 media normalised peak abundances was utilised for PAPi analysis. 

Using the values relative to media is recommended for metabolic footprint or extracellular 

metabolomics by the authors of this methodology. It improves interpretability especially 

considering that our comparisons are between the metabolomic profiles of two separate 

medias. It allows for activity to be identified as either secretion or utilisation (spent) of 

metabolites within a pathway. 

 

An activity score with a positive value would indicate that this pathway activity is due to 

secreted metabolites to the media, and a negative score corresponds to a pathway activity 

relating to uptake of metabolites from the media or spent metabolites. Pathways that were 

different between any of sample groups are shown in as a grid plot (Figure 4.11). These 

pathways were filtered on a database of known pathways that can possibly occur in C. 

albicans KEGG specific pathways. This was a custom filter added to the analysis to further 

improve interpretability. As shown with the PiMP based enrichment metabolites are assigned 

to all possible KEGG pathways as opposed to those that are possible for that organism. 

Pathways that are theoretically possible from the KEGG database were further screened to 

identify those that were specifically different in FCS compared to RPMI. ANOVA was 

performed to identify significantly activate pathways within our entire sample group. 

Significantly changing pathways with a corrected p-value of ≤0.05 according to ANOVA are 

shown Figure 4.11. These pathways were then further filtered to identify those that 

specifically changed between RPMI and Serum. Pathways were found to both be significantly 

different between our sample groups and significantly different between our two media 

groups. This was ascertained with the Tukey’s HSD ≤0.05 (Figure 4.12-4.13).  
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Bar plots were drawn to illustrate the differences in pathway activation and their significance 

for the top 16 significantly changing pathways that were significant between FCS and RPMI in 

either HBF or LBF (Figure 4.12-4.13). The analysis methodology for first identifying significant 

terms by ANOVA and then identifying specifically those that differ between FCS and RPMI by 

Tukey HSD was similar to the identification of significantly changing targeted metabolites as 

outlined earlier in section 4.4.4. 

 

Figure 4.11 . Grid plot of the level of pathway activation according to Pathway Activity Profiling 
(PAPi).  Summary of activity by relative square root transformed activity score. The grid plot contains 
pathways found to be significant between any of our sample groups by ANOVA followed by Benjamini-
Hochberg FDR. Positive values indicate that the pathways activated where through secretion of 
metabolites and negative values indicate that pathways were activated through acquisition or 
utilisation of metabolites. The grid plot gives a summary overview of the differentially activated 
pathways in each of our sample groups. 
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Figure 4.12 Top 8 activated 
pathways according to PAPi. Bar 
charts depicting the first 8 top 
significantly activated pathways 
according to PAPi followed 
selected by Analysis of Variance 
(ANOVA) followed by adjusting 
the p-value using Benjamini-
Hochberg FDR. Identification of 
significant changes was 
performed using the Tukey HSD. 
Values are the activity score 
assigned by PAPi metabolomic 
pathway analysis algorithm 
against the KEGG database. 
Activity scores are either +ve 
indicating metabolites within 
that pathway were secreted to 
the extracellular media or -ve 
indicating they were spent from 
the extracellular media. For each 
plot significance is indicated 
according by the Tukey derived p-
value where there is a significant 
difference between the activity 
score in RPMI vs Serum in either 
HBF or LBF and at either 4 or 24h. 
Significance is indicated between 
the four comparisons as ns, 
p<0.05*, p<0.01**, p<0.001*** 
or p<0.0001****. 
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Figure 4.13 Second top 4 activated pathways according to PAPi. Bar charts depicting the second top 4 significantly activated pathways according to PAPi 
followed selected by Analysis of Variance (ANOVA) followed by adjusting the p-value using Benjamini-Hochberg FDR. Identification of significant changes was 
performed using the Tukey HSD. Values are the activity score assigned by PAPi metabolomic pathway analysis algorithm against the KEGG database. Activity 
scores are either +ve indicating metabolites within that pathway were secreted to the extracellular media or -ve indicating they were spent from the 
extracellular media. For each plot significance is indicated according by the Tukey derived p-value where there is a significant difference between the activity 
score in RPMI vs Serum in either HBF or LBF and at either 4 or 24h. Significance is indicated between the four comparisons as ns, p<0.05*, p<0.01**, 
p<0.001*** or p<0.0001****. 
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Arachidonic metabolism was the most significantly regulated pathway due to a high 

abundance of metabolite secreted to the media by our isolates grown in the presence of FCS, 

and no activity of the metabolites related to this pathway in our isolates grown in the 

presence of RPMI only. It was found to be significant at both time points in both strains 

(p=4.37e-13). There is a visibly high activity at 4h with a reduction in activity at 24h in FCS 

compared to RPMI (Figure 4.12). This would seem to indicate a production and then utilisation 

of the metabolite involved in this pathway. However, arachidonic acid is not produced by C. 

albicans so is likely cleaving arachidonic acid from phospholipids found within the FCS. This 

may explain the lack of arachidonic in the RPMI controls. This is confirmed by looking at the 

relative peak abundance data for the arachidonic acid identified peak. There is a high 

abundance of this metabolite in our FCS supplemented C. albicans strain media, but no 

abundance in our RPMI only media C. albicans strain media.  

 

Biosynthesis of unsaturated fatty acids had a much higher positive activity score in both of 

our isolates grown in FCS which was significant at both 4 and 24h time points (p=4.37e-13). 

More pathway intermediates were present in the media than in the RPMI. This was true for 

both time points with slightly more activation of this pathway at 4h in the FCS. This difference 

was significant at both 4 and 24h and in both strains between RPMI and FCS. Biotin 

metabolism was shown to have a similar trend in all conditions with the metabolites secreted 

at 4h (LBF p=4.37e-13, HBF p=4.37e-13) and then either less secreted in FCS or spent in the 

case of RPMI at 24h (LBF p=3.97e-06, HBF p=1.11e-08). The difference was significant at all 

time points and both strains between FCS. Fatty acid biosynthesis is an integral process 

involved in the process of producing fatty acids for energy storage, constituents of the cell 

and protein modification. Biotin is required in C. albicans for growth and fatty acid 

metabolism.  

 

Glycerolipid metabolism had a higher positive activity score in all FCS samples compared to 

RPMI which was deemed to be significant at all time points (p=4.37e-13). A positive activity 

score (AS) is indicative of metabolites from this pathway being secreted into the media by C. 

albicans. The same trend was apparent in the pyruvate metabolism, which was shown to have 

a higher AS, and therefore higher abundance of pathway metabolites in the extracellular 

media in FCS compared to RPMI. This was found to be true in both strains and in both time 
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points. However, this difference was less pronounced at 24h with the AS being higher in RPMI 

at 24h compared to 4h. Pyruvate metabolism is pivotal metabolic pathway in yeast. Pyruvate 

is a ketone that is a junction in metabolism produced from glycolysis and can be converted to 

carbohydrates or utilised in the production of fatty acids. Glycerophospholipid was shown to 

have a difference in uptake activity in both our strains in RPMI compared to FCS in both strains 

at 4h (LBF p=0.000973, HBF p=0.00302) and 24h (LBF p=4.37e-13, HBF p=4.37e-13). 

Propanoate pathway activity showed a similar pattern in both strains at all time points 

however was significantly different between FCS and RPMI. 

 

Atrazine degradation pathway activity was significantly more positive in the FCS media at 4h 

(LBF p=4.39e-13, HBF p=4.37-13) and 24h (LBF p=3.44e-06, HBF p=4.28e-07) in both strains. 

This is indicative of a higher level of pathway metabolite intermediates present in the media 

point. This difference was found to be significant in both strains in FCS compared to RPMI. A 

very similar pattern of activity and significance was observed for pyruvate at 4h and 24h with 

p=4.37e-13. 

 

Glycerine serine and threonine metabolism showed fluctuation in activity between our 

groups. With it being significantly more excreted at 4h (LBF p=9.76e-06, HBF p=2.88e-06) and 

significantly less spent at 24h (LBF p=9.07e-11, HBF p=5.51e-10) in the FCS media. 

 

Lysine degradation was significantly activated at 4h (LBF p=0.656, HBF p=0.00162) in HBF but 

not LBF. Both medias showed positive activity however this was more positive in the HBF in 

FCS. At 24h the pathway was found to be negatively activated with the pathway metabolites 

being spent except for in the case of HBF grown in FCS which had a positive activity score. The 

level of activity was significantly different between RPMI and FCS in both strains at 24h (LBF 

p=0.00363, HBF p=4.30-08).  

 

In general, as indicated by our PCA analysis the level of pathway activity and metabolite 

regulation was found to be consistent between our two strains. Some differences were 

observed such as alanine, aspartate and glutamate metabolism specifically between the 

strains grown in FCS and lysine biosynthesis. Fluctuations in many important metabolic 

pathways were observed to be distinguished in the C. albicans in the FCS supplemented media 
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compared to RPMI alone. The most significant feature was the arachidonic acid, but this may 

be due to identification of high levels of metabolite in the FCS and complete absence in the 

RPMI despite its low representation of metabolites. However relatively high levels of 

arachidonic acid were observed in the peak abundance data in the samples grown in FCS 

(Figure 4.13).  Arachidonic acid pathway enrichment is however only enriched by arachidonic 

acid. As noted earlier arachidonic acid is not produced by Candida but could be cleaved from 

phospholipids by phospholipases. Candida utilises host derived phospholipids, which may be 

present in serum, to derive arachidonic acid. This in turn can be used as a carbon source and 

production of eicanosoids (Mishra et al., 2014, Ells et al., 2008).  

 

Figure 4.14 Bar chart comparing the relative abundance of arachidonic acid. Relative abundance of 
Arachidonic acid as discerned by the PiMP processing pipeline. Metabolites are representative of 
levels detected in the spent media of high and low biofilm C. albicans isolates in the grown in presence 
or absence of FCS and at 4h and 24h incubation times. Relative abundance with standard deviation is 
plotted for each sample group noted as isolate type, followed by the time the biofilm was grown for 
followed by the media it was grown in.  
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4.5 Discussion 
 

This research aimed to apply the widely targeted/untargeted pHILIC/LCMS to interrogate the 

metabolomic footprint of C. albicans clinical isolates in the presence and absence of foetal 

calf/bovine serum (FCS). The clinical strains were categorised as either HBF or LBF, as 

previously described in Scottish Candidemia studies performed by Rajendran et al (2012) at 

the Glasgow Dental Hospital (Rajendran et al., 2016d). We aimed to compare the metabolic 

footprint of these high and low biofilm forming isolates in response to serum which is a known 

agitator of hyphal switching and morphogenesis in C. albicans (Villa et al., 2020). Hyphal 

morphogenesis is a feature of C. albicans heavily associated with biofilm phenotype. 

Additionally, we wished to contrast the difference in the impact of FCS on the LBF compared 

to HBF. From in vitro observations, highlighted previously in chapter 3, the biofilm inducing 

effects are more pronounced in the biofilm deficient or low biofilm forming strains. 

 

We use the term metabolic footprinting to distinguish it from metabolic fingerprinting, which 

is the measure of intracellular metabolite levels. Metabolic footprinting within  the research 

performed here is the measure of levels in the supernatant or spent media of the organism 

(Kell et al., 2005). Fluxes in the metabolic activity of the cell is reflected within the spent media 

through extracellular changes in secreted and spent metabolites. Metabolomic footprinting 

was chosen due to the nature of the work looking at the metabolism of components of the 

two medias. The initial aimed wished to look at the specific components of the serum media 

which were utilised by the C. albicans biofilms. Metabolic footprinting offers a simple 

procedure for extraction of metabolites and inference of the phenotype of microorganisms. 

However, it is less informative in comparison to some other metabolomics methodologies. 

Metabolomic footprinting provides a proxy for interpretation of intracellular activity, 

however, it is only a proximally, and the method could be improved with the integration of 

the intracellular metabolome or the fingerprint and even further improved with the use of 

metabolic flux by stable isotope labelling (Han et al., 2019b). Intracellular metabolomics is 

more commonplace and in combination with footprinting may have served to fill in gaps. This 

combined intracellular/extracellular profiling approach has been performed previously in 

2016 by Weidt et al in Candida biofilms (Weidt et al., 2016). Analytes that are not externalised 

during growth would not be detectable, and therefore a combination approach would offer 



Chapter 4: Metabolomic profiling of phenotypically distinct Candida albicans clinical isolates 

157 

 

greater insight and may explain incompleteness of metabolic pathways. Metabolic flux 

analysis would also offer improved resolution through characterisation of reaction rates of 

enzymes within the biofilms (Sauer, 2006). Commonly 13C labelled carbon atoms are utilised 

to detect rates and fluxes of networks through tracking the abundance of these carbons 

through the metabolic pathways. This method would allow you to track rates of metabolic 

networks between the two strains or between two growth medias. Metabolic flux such as 

that using 13C labelled carbon has been demonstrated within C. albicans to identify metabolic 

activity specific to hyphal formation (Han et al., 2019b). 

 

The footprint often referred to as the exometabolomic does provide a high level of 

information of microbial activities specifically under different culture conditions in 

comparison to other more limited fluorometric assays. Within our research it has proven 

sufficient to distinguish differences in the metabolome under two specific culture conditions 

(Sue et al., 2011). We used 3 different high and 3 different LBF strains and 3 technical 

replicates which showed a great deal of overlap and reproducibility in their metabolic profiles. 

This was confirmed by our PCA analysis which showed that our metabolic footprints were 

reproducible for our 3 strains. Interestingly there was also the two phenotypically different 

strains were similar in their metabolic profiles. The samples were distinguishable by their time 

point of collection and by the media they were grown in. Initial observations would seem to 

imply that exposure to serum alters the metabolome of C. albicans, however, this is consistent 

from strain to strain. Despite failure of a few technical replicates within the mass 

spectrometry run we retained enough samples adequate for drawing conclusions from our 

data. Fragmentation data would have likely improved the interpretability of our untargeted 

analysis. Fragmentation data or ms/ms spectrum data would have allowed resolution of some 

of analytes which are ambiguous within our untargeted data (Pitt, 2009). 

 

When comparing LBF to HBF in comparison with the previous studies, we have performed 

within the group. L-phenylalanine, L-glutamate, L-trptophan were identified as key 

differentiators of HBF compared to LBF. We previously identified that AAT1 was at the centre 

of network of genes linked to amino acid metabolism (Rajendran et al., 2016a). Specifically, 

phenylamine, tyrosine and tryptophan metabolism and alanine, aspartate, and glutamate 

metabolism.  It is known that amino acid uptake such as l-phenylamine has a functional role 
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in germ tube formation (Kaur and Mishra, 1991). With uptake of L-phenylamine being much 

greater in full hyphae compared to non-hyphal cells in these early studies. Amino acid uptake 

is related to the pH regulation in C. albicans, pH in turn is a regulator of dimorphism in C. 

albicans. L-glutamate is a preferred nitrogen source for yeast followed by less preferable 

amino acids such as L-tryptophan, however both were found to be distinguishing features 

between LBF and HBF (Kraidlova et al., 2016).  These amino acids were in higher concentration 

in the LBF indicating that they are not being utilised to the same degree as HBF. 

 

This data perhaps helps to inform and confirm our earlier observations in 2016 that amino 

acid metabolic processes are important in biofilm formation (Rajendran et al., 2016a). 

Additionally, these processes are seemingly activated in HBF to a greater extent than LBF. PLS 

was able to identify these key differentiators between the high and low biofilm formers with 

many of the differentiating features between HBF and LBF being involved in amino acid and 

carbon metabolism. Identification of changes between HBF and LBF was based upon targeted 

metabolomics which could influence the analysis towards amino acid metabolism due to the 

standards used. From the metabolic footprint data, it was possible to determine that there 

are differences in the metabolism between HBF and LBF. However, it is difficult to draw 

conclusions about how these metabolites are being utilised by the cells. Fingerprinting and/or 

confirmatory experimentation would be needed to discern a greater understanding of amino 

acid metabolism in these phenotypically different isolates. 

 

Targeted analysis based upon known standard with accurate mass and retention time 

successfully identified 49 compounds within our samples.  Additionally, we identified 691 

putatively assigned metabolites using only mass and no standards which were then annotated 

with corresponding KEGG IDs. We performed a direct statistical comparison between our 

groups on the identified metabolites, this was possible due to our increased confidence in the 

identity of these metabolites. Annotated metabolites due to their more spurious nature were 

considered and visualised as contributors to entire metabolic pathways in enrichment type 

analysis. PAPI analysis was employed as this methodology is well suited to metabolic foot 

printing due of its ability to visualise both secreted and spent pathways activities. Pathway 

analysis software’s such as PAPi are dependent upon a priori knowledge maintained in 

databases such as the KEGG databases. R packages such as PAPi and other GUI based software 
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can access these databases through their APIs. By subtracting the observed analyte values 

from the media before undertaking PAPi allowing for activity scores to be calculated as 

positive or negative relative to the media. This allows not only for a determination of activity 

relevant to other samples but also to see the overall direction of the activity, whether that be 

an increase in secretion or uptake of metabolites. This feature of PAPi for metabolic 

footprinting added an extra layer of interpretability to the pathway findings. 

 

Our targeted analysis using the identified metabolites revealed numerous changes within our 

list of standard compounds between the FCS supplemented C. albicans. Significant changes 

in amino acids were observed, with the majority of significant metabolites belonging to this 

family, which in part is due to the larger representation of amino acids within the standards 

used. Those spent over time by C. albicans in FCS included betaine, L-glutamine, L-asparagine, 

L-isoleucine and L-leucine. Those spent more in the FCS un-supplemented included L-

tryptophan and creatinine. 

 

Amino acid sensing and uptake in C. albicans is a known inducer of hyphal morphogenesis. 

The amino acid sensor ssy1p (csy1p) is nutritional response sensor that activates the amino 

acid permease AAP genes (Klasson et al., 1999). AAP genes are responsible for transcription 

of amino acid permease, a superfamily of proteins responsible for transport of amino across 

the plasma membrane (Martínez and Ljungdahl, 2005). The regulation of these genes has 

been previously demonstrated to be dependent upon sensing through the ssy1p. The SPS 

plasma membrane sensor, comprised of the subunits Ssy1, Pr32 and Ssy5, activated in fungi 

upon sensing of extracellular amino acids results in proteolytic cleavage of the transcription 

Stp2 inducing genes responsible for amino acid metabolism (Böttcher et al., 2020). This 

mechanism in C. albicans is associated with virulence, triggering of yeast to hyphae 

morphogenesis and biofilm formation (Miramón and Lorenz, 2016, Ramachandra et al., 

2014). Several amino acids were differentially changing in FCS in both our low and high biofilm 

formers including l-arginine, l-alanine, beta-alanine, s-oxyproline and l-carnitine. These amino 

acids are related to several KEGG pathways within C. albicans. Amino acids are thought to 

trigger signalling pathways in C. albicans either directly or in directly such as Arginine in the 

activation of SPS plasma sensor and or indirectly through their biosynthesis leading to 

alkalinisation (Garbe and Vylkova, 2019). Amino acid pathways including cyanamino acid 
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metabolism, glycine, serine and threonine, and others are activated differentially between 

FCS compared to RPMI. 

 

From the identified metabolites related to nucleotide metabolism many failed to be identified 

in any of the RPMI samples. Serum contained higher levels of hypoxyxanthine, which were 

spent at 24h. Citidine was found to be excreted in the FCS media. Hypoxyxanthine is a purine 

base related compound, transported by C. albicans by the Fcy21p adenine-guanine-

hypoxanthine-cytosine permease (Pantazopoulou and Diallinas, 2007). C. albicans can utilise 

purines as a nitrogen source. The Fcy21p expression is thought to be linked to nitrogen 

starvation as demonstrated by Goudela et al (Goudela and Tsilivi, 2006). Citrate from the 

super pathway of carbohydrate was secreted more by the C. albicans grown in serum at 4h 

at which point the C. albicans strains in RPMI had spent this metabolite. Higher levels of the 

metabolites citrate and aconitate indicate higher level of TCA at the 4h time point in C. 

albicans. However, citrate to cis-aconitate is a reversible reaction so directionality is not 

deducible from these identified metabolites. The TCA cycle was shown to be more active at 

the earlier biofilm time points in the FCS than RPMI from the PAPi analysis. Mature biofilm 

formation is linked to the essential activation of both the amino acid and TCA metabolic 

pathways (Tao et al., 2017). Pyruvate was activated to a higher degree in C. albicans 

metabolism through the putative analyte secretion lactate and malate. 

 

Biosynthesis of unsaturated fatty acids and the related propanoate metabolic pathway were 

highly activated in FCS compared to RPMI putatively assigned compounds arachidonic acid, 

docosahexadonic acid, oleic acid and steraic acid. Arachidonic acid and oleic acid play an 

important role in the synthesis of prostaglandins. Arachidonic acid is a precursor for the 

production of Prostaglandin E2 (PGE2) (Mishra et al., 2014). Production of prostaglandins by 

C. albicans has been shown to modulate hyphal formation and control the host inflammatory 

response (Noverr and Huffnagle, 2004). Arachidonic acid was visualised noted as it was found 

to be a very serum specific metabolite, having no activity within the RPMI only or serum 

deficient cultures. Future work will need to consider in vitro experimentation to determine 

the quantity and related enzymatic activity within a larger population of strains to determine 

the relationship between biofilm formation and hyphal morphogenesis in C. albicans. 

Arachidonic acid was noted as it was found to be a very serum specific metabolite having no 
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activity within the RPMI only or serum deficient cultures. Arachidonic is typically reported as 

being an exogenous metabolite utilised by fungal species in the production of prostaglandins 

(Mishra et al., 2014, Liu et al., 2016). As we have indicated C. albicans does not produce 

arachidonic acid and is likely deriving this from phospholipids within the FCS. These 

phospholipid biproducts could be the nutritional and biosynthesis requirements for LBF 

biofilm development. This is interesting as these are host derived metabolites. 

 

Glycerolipid intermediates were secreted in the FCS and the glycerophospholipids were more 

spent in the RPMI. These pathways were putatively annotated by their intermediate’s 

glycerol, Glycerone, D-glycerate and D-glyceraldehyde. Glycerophospholipids are synthesised 

from products of fatty acid synthesis for production membrane glycerophospholipids in yeast 

(Klug and Daum, 2014). 

 

Within this chapter we have identified key metabolites that differentiated between HBF and 

LBF which confers some of the findings of our previous work. We have also identified 

interesting links in amino acid, fatty acid metabolic and prostaglandin producing pathways. 

Many of which are previously linked to hyphal and biofilm formation within the literature. 

Again, it is interesting to note that our LBF strains mirror the HBF strains in their metabolism 

under the influence of FCS. Many similarities exist between the two strains in response to 

serum, however, there are instances in which LBF vary in their metabolic profile in comparison 

to HBF.  

 

In conclusion, metabolic foot printing identified several pathways and identified metabolites 

changing in serum and RPMI. This goes to show the metabolic flexibility and plasticity 

undertaken by C. albicans in response to nutrient and environmental stress. More focused 

approaches to see the activation of specific pathways as discussed using metabolic flux 

analysis and removal of ambiguity of ms/ms would improve this study design. Within the 

current study putatively assigned metabolites are responsible for the enrichment of 

numerous pathways. However unlike in transcriptome-based studies, which also use 

enrichment, these metabolites are also identified from the same peaks as other metabolites. 

Pathway analysis, however, serves our interpretation well as we can hypothesis pathways 

that are being reprogrammed in FCS by our strains. What we observed from our 
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transcriptome data in chapter 4 was that there were numerous differences in up and 

downregulated differences in pathways in ± FCS. From our multivariate analysis, individual 

analysis of identified metabolites and through analysis of differentially activated pathways 

we observed that there were fewer differences between HBF and LBF in response to serum 

in the metabolomics data. This may be due to the methodology of metabolic footprinting as 

we have discussed in that we do not see what is happening within the organism. Therefore, 

it would be interesting to integrate the pathways and metabolic and transcriptomic profiles. 

A few methodologies have been developed to approach this topic as touched upon within 

Chapter 1 and will be explored in greater detail in the next chapter. 

 

4.6 Highlights 
 

- Identification of amino acid metabolism and related pathways in HBF compared LBF. 

- Distinct metabolomic profile of C. albicans isolates in FCS compared to RPMI. 

- Metabolic footprint is modified by activation of Amino acid, Lipid and Carbohydrate 

pathways. 

- In contrast to transcriptome fewer distinguishing features between HBF and LBF in the 

presence of FCS.
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5.1  Introduction  
 

Within the human host the switch from free floating planktonic cells to surface-attached and 

aggregated biofilm communities pose a particular clinical concern. Advantages offered to 

biofilms through this phenotype include increased tolerance to antimicrobial therapies and 

difficulties in clinical management. Like many bacterial pathogens it has been observed that 

the biofilm phenotype is observed within fungal species like C. albicans. We have shown 

through the literature that virulence and resistance has been a key feature underpinning the 

direction of C. albicans biofilm research, with a growing interest in interkingdom interactions. 

Work has been undertaken to test this phenotype in vitro and to interrogate the underlying 

mechanisms driving biofilm formation. As with many areas of academia, as research 

progresses in one area then this opens avenues of investigation in others. Indeed, it has been 

observed within microbial populations, including C. albicans, that not all strains and 

populations behave the same. We have observed within clinical cohorts that biological 

heterogeneity with respect to biofilm formation and resistance is a prominent feature in 

patients (Rajendran et al., 2016d, Rajendran et al., 2016a). These higher levels of antifungal 

resilience and biofilm forming ability is associated with increased mortality through clinical 

observations (Rajendran et al., 2016d). This thesis sought to explore this heterogeneity using 

a range of computational approaches to better understand the direction of research within 

the C. albicans biofilm community, which species it interacts with in biofilm infections, and 

the mechanisms underpinning biofilm formation.  

 

5.2 Understanding the biogeography of biofilms 
 

The field of microbiology continues to progress rapidly in no small part due to the rate of 

growth and cost effectiveness of omics technologies. Sequencing, mass spectrometry and 

NMR based technologies have propelled our hypothesis driving methodologies through 

providing holistic and high throughput profiling of molecular changes within microbial 

populations. NGS, most utilised in genomics, amplicon, shotgun sequencing transcriptomics 

within microbiology, has gone from being from expensive and niche to inexpensive and 

commonplace within the field. The availability of genome assemblies of bacterial and fungal 

pathogens has grown with the availability, and although many microbial genomes exist in 
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different stages of assembly, long read assembly methods through PacBio technologies and 

the Nanopore sequencers offer possibilities of increasing these assemblies further. 1000s of 

prokaryote genomes have been sequenced, and this number had grown to around 28,000 in 

2014, around 70,000 in 2017, and as of 2020 this number has grown closer to 200,000, with 

nearly 20,000 of these being considered complete genomes (Tatusova et al., 2014, Parks et 

al., 2017). The rise in genome databases has become an invaluable tool for amplicon-based 

and shotgun sequencing microbiome studies, and has allowed for taxonomic identification 

against the vast database of genomes (Balvočiūtė and Huson, 2017). Fungal amplicon or 

mycobiome studies, utilising the hypervariable ITS region, are starting to appear more readily 

in the literature (O'Connell et al., 2020, Richardson et al., 2019). These are more limited than 

bacterial 16S microbiome studies, though comparable in nature, due to our lesser knowledge 

base in fungi and the maturity of bioinformatic methods to analyse them (McTaggart et al., 

2019). 16S amplicon studies have benefited from the field developing over time and improved 

analytics (McTaggart et al., 2019). The number of genome assemblies for fungal species in 

comparison is only 348, within the refseq database, at the time of writing, with only 15 of 

these described as complete (O'Leary et al., 2016, 2020). Initiatives such as the 1000 fungal 

genomes project have been progressing this and aim to address the under representation of 

fungal genomes (http://1000.fungalgenomes.org).  

 

It is clear that C. albicans does not exist in isolation, and that it often resides within a complex 

interkingdom biofilm in a number of sites within the human host (Nobile, 2013). Due to 

numerous advancements within microbiology, it has become apparent that diseases are 

influenced by communities of organisms. These discoveries have been aided in no small part 

through NGS and 16S amplicon sequencing. As we have observed anecdotally, and 

additionally through reviewing the literature within this thesis, interkingdom relationships are 

important in the context of C. albicans biofilms. Clearly, there are key synergistic and 

antagonistic relationships that influence community structure and the overall biogeography 

of mucosal surfaces. The use of high throughput technologies on these interkingdom biofilms 

has already been applied to dual-species models including S. gordonii, S. mutans and P. 

gingivalis (Sztukowska et al., 2018b, Dutton et al., 2016, He et al., 2017). However, in general 

these communities are more complex than these two species models. Future work would aim 

to build upon these models further, with the addition of multiple organisms simultaneously 
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drive greater complexity to the biofilm models. The possibility to do this with greater 

frequency as these technologies move from being specialist facilities and services to everyday 

benchtop equipment, thereby minimising bottlenecks for innovation and advancement. 

Understanding these interactions perhaps needs to begin with improved profiling of the 

important interactions within a given disease.  

  

As a part of this work, we identified relationships that exist between Candida spp. and 

bacterial species within oral sites within the host. There was an important limitation in that 

qPCR was used for total fungal load to compare to our amplicon data. A better indicator of 

interactions would have been profiling of the fungal mycobiome, though these experiments 

predated our current technological capacity for ITS sequencing. The mycobiome has perhaps 

been overlooked, microbiome studies and their supporting databases have increased 

dramatically whereas the same is not true of the mycobiome research with methodologies 

for microbiome being far more standardised (Proctor et al., 2019, Cullen et al., 2020, 

McTaggart et al., 2019, Tiew et al., 2020). Importantly, future whole community studies 

should also consider the mycobiome as part of their methodology. Fungal mycobiome studies 

do exist that highlight their importance in disease and health comparisons such as the 

differently abundant taxa observed in caries (O'Connell et al., 2020). Bacteriome and 

mycobiome joint studies also have been performed within the oral cavity, however wider 

adoption would enable the fungal mycobiome studies to improve and have a greater level of 

standardisation similar the bacterial microbiome (Li et al., 2019, Peters et al., 2017, Persoon 

et al., 2017b). Nevertheless, as with many fungal diseases there is a reluctance to accept the 

notion that fungi play a significant role. Despite this, my own ideas that have evolved from 

the evidence generated within this thesis is that C. albicans plays an important ‘active 

participant role’ opposed to an ‘innocent bystander’ in complex communities. This is 

supported by studies by the Krom group who suggests that C. albicans may serve as a 

‘keystone commensal’ in multispecies oral communities (Janus et al., 2016). It seems logical 

that incorporation of a fungal element provides physical support amongst other attributes to 

bacterial members of the community. However, to fully appreciate this we must first decipher 

how C. albicans biofilm formation is co-ordinated before we add complexity and start 

investigating interkingdom interactions at the molecular level. 
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5.3 Omics approaches to Candida albicans biofilms 
 

To support bioinformatics and the high throughput methods for interrogating molecular 

biology systems, many protein bioinformatic databases have been developed. Sequence 

databases, structural, chemistry, enzymatic and ontological to name a few have been 

developed (Chen et al., 2017). These databases have been developed to address more 

specialised and more specific bioinformatic databases. For example,  the Kyoto Encyclopaedia 

of Genes which contains a per species database of enzymes and related pathways (Kanehisa 

et al., 2015). Gene Ontology is a database that was developed to maintain a high-level 

consistent dictionary of terms (ontologies) to describe molecular functions within systems 

biology (2006). These terms are also maintained across species for the most part unless highly 

specific to the organism. Many of these databases, for example UniProtKB, PANTHER, pfam 

and TIGRFAMS and other family databases are utilised in homology-based methods, such as 

BLAST+ and HMM to annotate genome assemblies (Apweiler et al., 2004). Fungal specific 

databases include the Saccharomyces Genome Database (SGD) and the Candida Genome 

Database (CGD). The CGD is based upon the SGD and maintains a curated database of 

genomic and protein information for Candida spp. Additionally they maintain orthologous 

information and cross reference to other protein databases such as UniProt (Skrzypek et al., 

2016). These bioinformatic databases improve interpretability of sequencing-based 

experiments and provide biological interpretability of otherwise insurmountable datasets. 

These databases are integral to amplicon, RNA-Seq, metabolomics, proteomics, and other 

omics experiments. The more complete our knowledge base is then the more informed our 

interpretation of omics data can be. GSEA, ORA and other pathway analysis methods all 

depend upon this solid a priori knowledge. The growth of these resources also parallels the 

growth of omics techniques. Collectively, these tools have provided the possibility to 

interrogate large data sets with greater rigour and enabled us to start integrating data. 

 

These databases can be utilised to perform ORA and GSEA, and this API is utilised by many 

software’s that implement either ORA of GSEA that includes metexplore, PiMP and 

PaintOmics3. It is through these knowledge bases that many of the functional, pathway and 

network-based models are possible. Human and mice studies have led the way, such as the 



Chapter 5: Omics Integration and Discussion 

168 

 

large functional databases held by the GO consortium. Both tools and databases for larger 

variety of species are becoming available and these are being advanced all the time. 

 

The R package clusterProfiler additionally uses KEGG, which is a wrapper that provides both 

ORA and GSEA through the R function fgsea. GSEA has been performed on the upregulated 

genes in serum in both LBF and HBF Candida isolates. From this we have ascertained 

overlapping pathways upregulated in both HBF and LBF (Figure 5.1). What we observe is that 

over representation analysis shows difference between HBF and LBF and the overlap between 

the two. LBF genes are significantly enriched in more pathways than HBF with more pathways 

having an adjusted p-value of less 0.05. It is possible to observe that genes involved in a 

number of pathways that we observed to have differential activity from our metabolomics 

footprint. Notably, biosynthesis of unsaturated fatty acids and propanoate and fatty acid 

metabolism. Many of the pathways that we see overrepresented in the LBF grown in serum 

compared to RPMI did not appear in our PAPi analysis. The top 10 pathways are illustrated 

for HBF, LBF and the overlap despite many not being significant in HBF. An explanation for 

this may be that the LBF is regulated or reprogramming its metabolism to a greater extent 

than the HBF. Interestingly we also observed upregulation of the MAPK signalling pathway in 

LBF in serum.  

 

5.4 Integration 
 

Single omic experiments are almost “commonplace” in the year 2020 within life sciences and 

microbiology. However, progress and breakthrough in technology creates hypothesis and 

further avenues within research. This is common to all of life sciences including microbiology 

and more specifically biofilm research. Integration within the field of microbial bioinformatics 

is one of the current challenges. There is interest in integrating omics of every description 

including the integration of transcriptomic and metabolomic datasets. Transcriptomics and 

metabolomics have a complicated, not necessarily direct, relationship which makes 

integration challenging and interpretation convoluted (Cavill et al., 2015).  
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Methodologies for integrating transcriptomics and metabolomics can be categorised as 

conceptual, multivariate and pathway. In the coming sections we aim to discuss these 

methodologies in detail regarding C. albicans biofilm research. Using metabolomics and 

transcriptomics data derived from research in previous chapters we will identify strengths 

and potentials of these methodologies at interrogating biofilms. Some limitations exist within 

the data which is important to note. A repeat study methodology was used to derive the 

samples for the transcriptomics and metabolomics. This introduces a batch effect which due 

to the nature of the two data types formed is not possible to correct for the inherent batch 

effects introduced. As the biofilms were grown on separate days from separate medias there 

are variables that are technical and variability that are unique to the analysis performed in 

each batch. Some variability can be typically removed within individual technologies, such as 

gene expression data with which you can normalise data to the same features across batches. 

Figure 5.1 Comparative analysis of the enriched KEGG terms serum in both low and high biofilm 
forming C. albicans isolates. Differentially expressed genes that were upregulated in C. albicans 
isolates that were grown in serum compared to RPMI are compared. Those genes that were unique 
to HBF, LBF or overlapped between the two were submitted to over enrichment analysis against the 
known KEGG pathways for C. albicans. The top ten terms for each analysis are shown although they 
are not considered significant unless adjusted p-value <0.05. Significance was determined by 
hypergeometric testing. Dotplots indicate the level of significance of the FDR adjusted p-value 
(p.adjust) and the size of the dot indicate the number of over enriched genes within the pathway 
within each analysis. 
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The batch effect is between two different methodologies therefore it is not possible to 

normalise the metabolomic data in one batch to the gene expression in another batch as they 

do not share features. This is an important consideration and ultimately limits the power of 

the data. However, we still wished to utilise the data to assess the current approaches to 

integrate data sets. The metabolomics data was also derived from a larger sample set, so in 

certain instances such as multivariate analysis it was considered necessary to reduce the 

sample set to make it comparable with the transcriptomics. This also introduced a further 

limitation as we had an incomplete dataset for both the transcriptomic and metabolomic 

datasets which will be outlined. 

 

5.4.1 Conceptual integration 
Conceptual integration is perhaps the simplest method of data integration. In the case of 

transcriptomics and metabolomics it involves the direct comparison of separately analysed 

data sets. A recent example investigating the metabolomic reprogramming of C. albicans in 

response to hypoxic stress utilised both metabolomics and transcriptomics (Burgain et al., 

2020). The authors identified metabolomic pathways that underwent perturbations in 

response to hypoxia. Subsequently they visualised differentially expressed metabolites to 

observe whether these perturbations were also observed in the transcriptome of C. albicans. 

The research does not make any strong claims regarding the effectiveness of this method. 

However, they highlight transcriptional signatures that overlap with the metabolomic 

findings. The use of ontologies in the form of metabolomic pathways allows for at least 

related genes to be integrated. Similarly, a study identifying changes in metabolism of S. 

mutans cultured with C. albicans utilises both the transcriptome and metabolome (He et al., 

2017). In this instance transcriptomics drives the hypothesis of changes regarding sugar 

metabolism in S. mutans. The usefulness of metabolomics is in its ability to test the 

extracellular concentrations of metabolites to observe this sugar utilisation. Whether or not 

this is strictly regarded as integration, it nevertheless has an additive usefulness to utilise both 

technologies to improve the completeness of the interpretation. 

 

We performed conceptual integration of our metabolomic and transcriptomic data. We did 

this based upon key pathways that had been identified through PAPi in our metabolomics 

analysis. A list of pathways with differential activity scores was compiled from analysis in 
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chapter 4. From our list of metabolic pathways, we then identified transcripts which were 

differentially changing between RPMI and serum at 4h or 24h and in HBF or LBF. The 

transcripts which were differentially expressed were filtered and considered significantly 

changing according to original cut-off of ≥ 1.5 log2 fold change and adjusted p-value ≤0.05. A 

custom script within R was used to filter by differential expression and then by whether those 

transcripts were present in our significantly changing pathways from our PAPi analysis as 

determined by FDR ANOVA p<0.05. Of our 51 pathways that were significantly changing in 

serum compared to RPMI in either of our strains, 46 of those pathways that contained genes 

that were significantly changing within those pathways. The core metabolic pathways and 

their corresponding transcriptional changes are visualised in Figure 6.2. Gene expression is 

displayed in heatmaps with upregulation (i.e., higher in FCS shown in red) and downregulation 

(i.e., higher in RPMI shown in blue) for each of our two strains at time points 4h and 24h. 

 

From the transcriptional activity it is possible to see corresponding changes that align with 

our metabolomics data (Figure 5.2). Notably biosynthesis of unsaturated fatty acids displayed 

increased gene expression in our LBF at 24h in FCS. This same pattern is not observed in the 

HBF strain. Many of these distinguishing genes in LBF were also observed in the propanoate 

metabolic pathway. Fatty acid metabolism has been previously shown to modulate 

morphogenesis in C. albicans (Noverr and Huffnagle, 2004). Our observations here would 

indicate that the observed phenotypic switching or increased morphogenesis that we observe 

in our LBF is through the utilisation of these pathways. From our overlayed transcriptional 

expression in Figure 5.2, we can see LBF are alternating to beta-oxidation of fatty acids. The 

genes within the Glycine, serine and threonine pathway SER33, GCV2, GCV1 are upregulated 

in in FCS to a greater degree than HBF at 4 hours additionally IFG3 and SHM2 are also 

upregulated in FCS in HBF but to a lesser extent. Pyruvate metabolism genes show a similar 

pattern at 4h in both strains apart from LYS22 which encodes homocitrate synthase activity. 

ALD5 is upregulated in LBF FCS at 24h and not HBF as is the putative gene C7_02010C. ALD5 

is aldehyde dehydrogenase and C7_02010C shares homology with aldehyde dehydrogenase 

according to the CGD, which are involved in the biosynthesis of acetate. Both are also 

identified in the pantothenate and CoA biosynthesis pathways, as well as the lysine 

degradation pathways. Glycerolipid and glycerophospholipid showed differential activity in 
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the metabolomics data glycerolipid metabolites showed high (secreted activity) in FCS and 

high (spent activity) in the RPMI. Visualised higher levels of gene expression are observed in 

some FCS with very high levels in certain genes in the HBF. Through overlaying our transcripts 

on our metabolic pathways, it is possible to discern that there are corresponding features 

within the transcriptomics as shown in Figure 5.2. And some patterns such as the gene 

expression in biosynthesis of unsaturated fatty acids are easier to discern than others. 
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Figure 5.2 Differential expression of genes associated with key metabolic pathways. Differential expression of C. albicans transcripts in FCS 
vs Serum was performed between LBF and HBF at 4h and 24h. Those differentially expressed genes that were differentially expressed and that 
also belonged to a pathway that was determined to be significant by PAPi analysis based upon differences in activity score between our sample 
groups according to FDR corrected ANOVA. Pathways filtered first on significance within the PAPi analysis then pathways with significantly DE 
genes from at least one condition are displayed. Leaving genes involved in pathways that. Log2 fold change RPMI compared to Serum for each 
strain at both 4 and 24h are represented within the heatmaps within each pathway shown. 
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5.4.2 Pathway models 
Pathway driven models are based on a priori knowledge on biological databases that are 

maintained either generically or for individual species. These databases include, but are not 

limited to, the KEGG, Reactome, wikiPathways, MSigDb and Gene Ontology databases 

(Kanehisa et al., 2015, Jassal et al., 2020, Slenter et al., 2018). Methods of functional scoring 

or enrichment have become prominent, especially with classification of genes within 

transcriptome studies, in which pathways are scored or enriched dependent upon how 

represented they are. Gene set enrichment analysis and over representation-based analysis 

have become popular methods to identify the most represented functional classes from these 

databases. The hypergeometric distribution of identifying overrepresented classes utilises a 

list of genes of interest typically those that are differentially expressed. The hypergeometric 

distribution is utilised to assess whether that set of genes are significantly associated with a 

specific pathway or classifier. In contrast, the GSEA methodology utilises the entire list of 

features without any prior filtering or selection. GSEA uses the aggregates of per gene or 

features within the set-in order to address the limitation of ORA in which identification of 

small but coordinated changes are missed (Subramanian et al., 2005). By this method 

pathways that have small but consistent changes across the entire gene set are detected. This 

method also requires the gene rank in contrast to ORA. The gene rank based upon the 

expression score commonly the log fold change of a gene within gene list. These techniques 

are no longer limited to gene expression and ORA and metabolite set enrichment analysis 

(MSEA) are utilised within the field of metabolomics. ORA for metabolomics is available 

through numerous bioinformatic tools including IMPaLA, MBRole, MetaboAnalyst, 

MetExplore and PiMP. MSEA is also available through a number of these tools including the 

widely used MetaboAnalyst (Gloaguen et al., 2017, Cottret et al., 2018, Chong et al., 2018a, 

Kamburov et al., 2011). 

 

The pathway approach to many single omic studies has been preferrable way to approach 

omics data with a large number of features that can be difficult to interrogate and interpret 

an individual level. Pathway and functional classification of gene, protein, metabolite and 

other molecular level features considered in regard to their overall function within a cell or 

organism have been chosen by many researchers to interpret the phenotypic changes that 

they observe (Cruickshank-Quinn et al., 2018). Pathway analysis methods have been 
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expanded to the integration of more than metabolomics. Many of the software tools noted 

including IMPaLA, MetaboAnalyst, Metexplore have either been created or expanded to 

incorporate the integration of transcriptomic data (Chong et al., 2018a, Cottret et al., 2018, 

Kamburov et al., 2011). The specifically address IMPaLA for example was first utilised in 2011 

to integrate transcriptome and metabolism in consensus pathway-based approach. The 

approach is essentially an extension of the ORA using Fishers method to consider pathway 

overrepresentation based upon the joint probabilities from both the transcriptome and 

metabolome feature lists (Kamburov et al., 2011). It was noted that due to the necessity of 

robustly annotated databases of pathways for both genes and metabolomics there exists a 

limitation that this technique cannot identify any novel functions. It could also be added that 

this study was a human biological study in which the technique was tested and there are other 

considerations when applying integration to other organisms. Specific microbes suffer in 

comparison to human and mouse studies in that they are less well studied. This means that 

limitation that exist in pathway-based approaches are amplified for other organisms and 

microorganisms. 

 

This approach has gained popularity and is included within other popular and visualisation 

packages. These include PaintOmics 3 which has a specific focus on integration of data from 

multiple omics sources including proteomics and utilises the KEGG database for feature 

classification. MetaboAnalyst which is widely popular and has become a “one stop shop” for 

metabolomics analysis incorporates many of the popular tools for single omics and now the 

ability to incorporate transcriptomic data. Joint pathway enrichment/over representation 

methods are utilised by both tools in this specific application, and both offer a number of 

methods for visualising the data. Limitations exist for individual species across many of the 

integration and single omics tools in OR. It is possible to map identifiers to the model yeast S. 

cerevisiae for analysis of C. albicans and other yeasts. Availability of different species 

databases within these tools is increasing and this will inevitably continue to grow as omics 

and analysis tools become more utilised within microbial research. 

 

An important consideration is that when utilising RNA-Sequencing you measure the total 

mRNA and therefore all features are represented. Metabolomics data depending on the 

instrument and method utilised can influence the metabolites that are represented 



Chapter 5: Omics Integration and Discussion 

176 
 

(Bhinderwala et al., 2018). Metabolites are more likely or easier to find dependant on whether 

NMR, GC-MS or LC-MS is used in acquiring metabolomic data. 

 
Figure 5.3 Integrated pathway enrichment from C. albicans transcripts and metabolomes. 

Upregulated genes in FCS compared to RPMI media after growth of biofilms in for 24h were mapping 

of IDs to S. cerevisiae orthologs, before being submitted for joint pathway analysis through 

MetaboAnalyst. Metabolites that were also in differential abundance between C. albicans isolates 

grown in FCS media compared RPMI at 24h were also submitted for joint pathway over representation 

analysis. From this the joint inverse p-value (-Log10pval) and pathway impact from central and highly 

important pathways. This was performed for both LBF (A) and HBF (B) isolates comparing pathways 

impacted in FCS grown cells in a joint metabolome-transcriptome analysis. The pathway impact is 

plotted on the x with the inverse joint log10 p value plotted on the y. The node size increases with 

pathway impact.   
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The method utilised here was the method of pathway enrichment utilised by the widely used 

MetaboAnalyst software package. This software supports the overlapping of pathways from 

multiple organisms which currently does not support C. albicans, but it does support S. 

cerevisiae. S. cerevisae is a commonly used model organism from which a lot of the homology 

information of C. albicans is drawn (Skrzypek et al., 2016). Candida gene IDs from the CGD 

were first mapped to their corresponding Saccharomyces corresponding systematic name. 

Upregulated genes from HBF at 24 in FCS and LBF at 24h in FCS relative to RPMI were selected 

based upon our previous cut-offs. Like ORA performed on individual datasets this list of 

“important” features is what are submitted. A corresponding list of metabolites assigned to 

their KEGG identifiers, from our metabolomics analysis were also submitted for pathway 

enrichment analysis. In total two enrichment analysis were performed one for LBF and one 

for HBF both at 24h (Figure 5.3). Metabolites and genes are then integrated either by 

combining queries. Combining queries pools both metabolites and transcripts. Or by 

performing two separate over representation analysis and combining p-values. Pathway-level 

p-value joining was chosen for our data. Pathway level weights the gene and metabolite data 

based on how many genes or metabolites are in the corresponding pathways. Pathway level 

also allows for pathways to be enriched even if there are only features available from one 

data set (either genes or metabolites). We observed that amino-acyl-tRNA biosynthesis was 

the most significantly upregulated according to false detection rate (FDR) adjusted p-value in 

both LBF and HBF. It is important to note that aminoacyl tRNA synthesis has only one enzyme 

within this pathway and therefore it is significantly overrepresented within our data but has 

a lower bar for enrichment due to the few features. However, this is indicated by the low 

pathway impact score received by this pathway despite its significance value. KEGG and other 

databases include aminoacyl tRNA synthesis within their pathways however it is perhaps 

should not be considered as such. Pathway analysis attempts to account for pathways with 

low smaller or larger numbers of features such as in the case of hypergeometric analysis.  

 

This significance was driven by mapped metabolites and not transcripts. Arginine and proline 

were over-enriched in both LBF and HBF as was arginine biosynthesis. In LBF beta-alanine was 

also enriched significantly but not in HBF. In HBF the Glycerolipid metabolism was enriched 

but not in LBF. Joint pathway scores and metabolite/gene numbers are available in Appendix 

IV. 
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5.4.3 Statistical and multivariate methods 
Multivariate based methods or dimensionality reduction-based approaches are widely used 

within bioinformatics. They are often applied to single omics data, such as the commonly used 

principal component analysis (PCA), to reduce the data and identify the largest variation 

which exists within the feature set (Marini and Binder, 2019). PCA seeks the directions that 

account for the largest variation and therefore can visualise natural separation in the data. 

Separation that is due to the overall variation in the data is determined by PCA and because 

of this is classified as an unsupervised dimensionality reduction technique (Stein-O'Brien et 

al., 2018). 

 

Several multivariate methods in recent years have been proposed for integrating omics 

datasets with a number of variations of these techniques appearing within the literature. 

Notably partial least squares (PLS) regression which aims to maximise the covariance between 

the datasets (e.g. Transcriptome and Metabolome (Wold, 1973). Also, Canonical Correlation 

Analysis (CCA) which aims to maximise correlation rather than covariance. Both have been 

utilised as methods of dimensionality reduction, classification and in variable discrimination 

(Wold, 1973, González et al., 2012). 

 

PLS and CCA in contrast to PCA can correlate the information from one matrix [x] to the 

information in another [y]. In omics x and y are our feature tables from two omics data 

experiments. PLS is perhaps the most widely used multivariate technique for data integration 

of omics data in particular integration of metabolomic-transcriptomic data (Worley and 

Powers, 2013). Due to its capabilities in handling data with high levels of collinearity and when 

trying to identify aspects of one dataset that predict features of another or covariance such 

as in the case of metabolomic and transcriptomic data (González et al., 2012). PLS is long 

standing multivariate tool which pre-dates omics technologies however was applied to omics 

data sets as early as 2004 (Griffin et al., 2004). Sparse PLS in transcriptomic-metabolomic 

integration is novel variation of the PLS method which arose specifically to address the 

selection of variables for biological interpretation through lasso penalization (KA et al., 2008). 

This method allows for the variable selection and classification allowing for the use of PLS 

which allows it to resolve the classification problems. PLS discriminant analysis has (PLS-DA) 

has also been shown to be another effective variation of PLS capable of performing 
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classification and discrimination on similar omics sets (Boccard and Rutledge, 2013). The 

sparse PLS-DA described by Lê Cao et al is able to identify discriminatory variables given and 

matrix of features and their classes (Cao et al., 2011). 

 

Similar to pathway analysis, a field of data integration by multivariate methods has arisen and 

now many of these methods are becoming available in software packages. Many of these are 

biostatical packages written in an implanted through the R programming language. These 

include integrOmics, MixOmics, OmicsPLS and 02PLS in the Siumca software package (Rohart 

et al., 2017, KA et al., 2009, Bouhaddani et al., 2018). MixOmics offers several multivariate 

methods both supervised and unsupervised for single, dual and multiple integration models 

(Rohart et al., 2017). 

 

We utilised MixOmics to assess multivariate integration upon multiple omics datasets. We 

utilised a supervised discriminatory analysis to identify features which discriminate between 

our classes. Our classes provided were the two time points and the two medias. We did not 

classify the samples in terms of their strain due to low replicate number and to primarily 

identify covariate features in the Serum vs RPMI. The MixOmics contains several analysis 

methods some which are common and others which are novel within the MixOmics package. 

Supervised classification of multiple omics data is provided by their block.plsda and sPLS-DA 

methods. The aim of which is to identify co-expressed variables within our dataset which 

explain our classes as described. A caveat to this approach with our dataset these integration 

methods are described as highly sensitive to differences in omics platforms even in the case 

of measurements on the same samples. Due to our repeat measures study design in which 

we prepared to different batches of samples, one for metabolomics and one for 

transcriptomics. This batch effect is something that we are unable to control for across 

different omics technologies and therefore we utilised multivariate integration as “fishing” or 

hypothesis driving tool and therefore do not intend to draw firm conclusions from them.  

 

For integrating samples, we use block.splsda function from within MixOmics we utilised log 

relative normalised transcripts from DESeq2 and the log media normalised metabolites. 

Metabolites were filtered to leave only identified metabolites within the data set and reduced 

the metabolomics data set so that only the matching LBF and HBF strain used in both assays 
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remained. After our matched datasets were created the block.splsda uses a multiblock 

method for data integration. Where the blocks are the data types organised by matching 

sample identifiers. sPLS-DA combines PLS-DA with Lasso penalisation for selecting the most 

discriminant variables. Samples were assigned as time and media and strain type was ignored. 

Our hypothesis was to maximise the discriminant variables between FCS and RPMI. sPLS-DA 

multiblock has the dual objective of maximising the co-variance within the blocks of omics 

(i.e., metabolomic and transcriptomic) whilst discriminating between our groups. The correct 

number of components was tuned based on the balanced error rate which was deemed to by 

2 components. Tuning parameters were used to determine the number of metabolites and 

transcripts needed for discrimination on each component this was 20,20 for transcripts and 

10,10 for metabolites. From our block plots shown in Figure 5.4A our first component 

discriminated between time and our second component by media with our most covariate 

variables Figure 5.4B. Discriminant features and their contributions to component 2 are 

shown in Figure 5.5A and the correlation between these variables are shown in the circus plot 

5.5B. We identified a subset of our identified metabolites that discriminant between C. 

albicans grown in FCS vs RPMI and secondly covariate genes that discriminate between these 

two biofilms. VPS28 is an important discriminatory feature in FCS involved in the proteolytic 

activation of Rim101, a pH alkaline response promoter if hyphal formation (Figure 5.4). DAD2 

also an identified discriminator is involved in microtubule binding subcomplex DASH required 

for proper chromosome segregation (Figure 5.4). STRING analysis which identifies protein-

protein interactions based on function, homology, publication history and many other 

identifiable relationships did not identify any common links between our subset of transcripts 

(Szklarczyk et al., 2019). 
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Figure 5.4 Sparse partial least squares discriminant analysis (sPLS-DA) of C. albicans isolates in the 
presence and absence of serum. The log2 relative to the media control normalised metabolome 

matrix and the DESeq2 normalised transcript matrix were submitted to sPLS-DA in the mixOmics 

package. Data projection of the transcriptome data and the metabolome data based upon the most 

discriminant features are shown (A). Sample groups of timepoint and media that isolates are grown in 

are colorised. The correlation between the most discriminant metabolites and transcripts are shown 

(B). Metabolic and transcriptomic features are colourise.  

A

B
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Figure 5.5 Important features and correlations between metabolites and transcripts. Loadings plot 

of discriminant features on component 2 (A). The loading weight for transcripts and metabolites which 

discriminate most highly on component two are displayed in a bar plot. Colour of the bar is dependent 

on the sample in which the feature (transcript or metabolite) is most abundant. Correlations of 

discriminant metabolites and transcripts (B). Circos plot displays the correlation between all our 

discriminatory variables on component 2. Component 2 shows the largest separation between 

samples grown in FCS compared to RPMI. Lines between metabolites and transcripts indicate 

correlation and coloured either red for +ve or blue for +ve correlation. 
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5.4.4 Data Integration Conclusions  
Through metabolomic and transcriptomic profiling we have identified several key pathways 

that are differentially changing between C. albicans in serum vs RPMI. Additionally, we have 

been able to identify metabolic networks which are being reprogrammed in otherwise biofilm 

deficient strains to induce them to form biofilms and undergo morphogenesis. Fatty acid 

biosynthesis seems to be key appearing in transcriptomic and metabolomic data alike as an 

important feature in the metabolomic adaptation in serum. 

 

By integrating the two data sets we have identified important features which were not 

apparent when considering each individual data set alone. To date integrated metabolomics 

and transcriptomics have rarely been performed on in vitro biofilm models. There are 

limitations that exist within the data which have been highlighted throughout. Using both 

knowledge based and multivariate methods however it is possible to apply these analytical 

techniques to in vitro to determine both underlying pathways and important “signatures” 

within the models. As our bioinformatic databases on non-model organisms continues to 

grow as with the growth of omics technologies and it is these continued advancements will 

continue to help us decipher biofilms in vitro.  

 

5.5 Final discussion and Conclusions 
 

C. albicans biofilms are increasingly being recognised as important contributors to clinical 

infections, where historically they had been dismissed. These biofilms compared to planktonic 

cells are more resilient and drug resistant. Understanding the mechanisms of biofilm 

formation have become a key focus in Candida research. Through reviewing the literature and 

careful experimentation, with two distinct phenotypes, in biofilm inducing conditions we have 

begun to decipher the pathways driving this phenomenon in clinical isolates. 

 

Within chapters 3, 4 and above, we have shown that within different clinical isolates of C. 

albicans, their phenotypic behaviour is distinct, which is governed by their transcriptomic and 

metabolomic profiles. Further to this even under the same stimulus, in our case serum, their 

metabolome and transcriptomic response is not completely parallel. These are observations 

that would not be made with traditional in vitro that focuses on type strains. Serum is just 
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one stimulus and C. albicans biofilm formation is differentially affected by number of known 

stimulus including pH, host factors, nutrients, and bacterial interactions. Biofilm formation is 

complex, and C. albicans is known to have a regulatory network of 6 genes that in turn 

regulate 1000 genes responsible, or linked to, hyphal formation (Nobile et al., 2012). We and 

others have also observed this to be heterogenous, especially within clinical strains. Another 

layer of complexity is the interactions of differentially “biofilm-ready” strains and their 

interactions with these promotors such as serum. As we have highlighted, the response of 

different C. albicans isolates to serum is not consistent and regulation of different metabolic 

networks to achieve hyphal and biofilm formation is strain dependant (Rajendran et al., 

2016a, Rajendran et al., 2016d). LBF do not respond to RPMI 1640, which typically triggers 

hyphal and biofilm formation due to the copious amounts of glucose (Kucharíková et al., 

2011), a response that is observed in well characterised type strains and many of our clinical 

isolates (Weerasekera et al., 2016, Rajendran et al., 2016d). Biofilm formation through 

glucose sensing in C. albicans is modulated through three key networks glucose repression, 

the sugar receptor repressor (SRR), and adenylate cyclase networks. Two of these cascades, 

the SRR and adenylate cyclase are implicated in cellular morphogenesis. LBF strains do not 

respond to this stimulus in the same way and remain unadhered and predominantly as yeast. 

However, as we have demonstrated they are not biofilm defective, and additional stimuli are 

able to induce alternative metabolic reprogramming to induce this phenotype. In serum the 

LBF can utilise the fatty acid metabolic pathway to induce this phenotype. LBF and HBF 

seemingly differed more in their transcriptional activity than in their metabolic. A limitation 

of our study design perhaps that we did not have the intracellular metabolic activity to 

interrogate alongside our extracellular data. As indicated previously within the thesis, 

improved metabolomics techniques such as ms/ms and metabolic flux would also perhaps 

demonstrate with greater resolution the activation of metabolic networks of our different 

strains under the different stressors. 

 

Throughout this work LBF and HBF isolates were compared against each other and were 

grown in either FCS or RPMI. RPMI was considered the baseline or control media with the 

supplementation of FCS to the media being our test condition. Similarly, HBF was our point of 

comparison with which we compared the LBF isolates. This was due to the larger and much 

more stark effect of FCS on LBF as shown in chapter 3. In which the non-biofilm formers 
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morphogenically switch to biofilm formers in FCS supplemented media. FCS is poorly defined 

and poorly controlled media, particularly when compared to synthetically made medias such 

as RPMI. This introduces lots of variability which cannot be controlled. Further 

experimentation would benefit from introduction of metabolites, metals and vitamins found 

in FCS in known quantities to provide more reproducible and better controlled 

experimentation. Such as the introduction of individual amino acids or metal ions such as zinc 

to minimal media. In this fashion we could identify the individual effects of metabolites and 

potential biofilm influencers without confounding factors and variability from poorly defined 

medias. These are avenues of research that could be taken forward from the work presented 

here. 

 

Within this body of work and throughout much of the work within Oral Sciences group we 

have opted to use clinical isolates in the place of laboratory type strains. Type strains, despite 

being well defined, are unrepresentative and do not model the heterogeneity that is seen in 

clinical samples. This heterogeneity amongst clinical isolates is well highlighted in the Scottish 

candidaemia study from which these isolates were received (Rajendran et al., 2016d). 

However, comparison to a type of strain control may have been beneficial when identifying 

shared and differing responses, due to the literature on biofilm formation strains such as 

SC5314 being much larger. Another limitation is that throughout many of our comparisons 

we only used a small number of isolates, such as those within the RNA-Seq work in chapter 3 

were we used 1 HBF and 1 LBF. We used these to represent our two phenotypes to compare 

the effects of FCS on Low vs High Biofilm formers. However, in the light of how much 

heterogeneity and biofilm forming variation there is between strains, as highlighted by the 

Candidemia study, other methodologies may have been more appropriate. For example, 

rather than a 1 vs 1 controlled experiment with technical replication, profiling of a larger 

cohort of isolates may have yielded further information. By comparing a larger number of 

isolates, we would have been able to observe trends and correlations in features from 

metabolomic, transcriptomic and proteomic with the observed phenotype. This study design 

would have been less biased towards select isolates that show extremes of the two isolates 

and discerned more suitable differences that are related to phenotype.  
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We have previously described metabolomics and transcriptomic experiments as hypothesis 

driving methodologies in contrast to hypothesis testing experiments. A limitation of the work 

presented in this thesis is the lack of confirmatory experimentation. For example, work using 

minimal media with metabolites incrementally added would have confirmed some of our 

findings. Addition of zinc to the media to confirm the downregulation of these genes for 

example. Further work to elucidate the presence of arachidonic acid such as confirmatory 

assays available in the form of enzyme-linked immunosorbent assays (ELISA). The lack of 

these assays are due to a time and lab access restriction but would be interesting avenues of 

research for the Oral Sciences research group. Similarly, we saw amino acid metabolism and 

fatty acid metabolism changes. Experimentation with different phenotypic isolates of Candida 

in the presence and absence of amino acids such as proline, arginine and serine could yield 

interesting results. Simple biofilm assays such as crystal violet could inform whether amino 

acid presence is able to induce biofilm formation in low or intermediate biofilm formers. 

Similarly, it is common to confirm RNA-Seq findings with qPCR of select genes of interest. The 

aim being to check that qPCR findings match with our high throughput observations. This is 

commonly performed using RNA that is retrieved from samples that have had all the same 

experimental steps as the RNA-Seq data. There has been arguments made that the 

information that this adds is low and that RNA-Seq is robust enough that this is no longer 

necessary (Coenye, 2021). Validating by qPCR has potentially been inherited from microarrays 

which had higher error and bias compared to RNA-Seq and RNA-Seq by comparison shows 

low concordant results with only around 1.8% of genes (Everaert et al., 2017). Additionally, 

the use of small number of genes to validate a much larger dataset may seem unintuitive. As 

is discussed in the review from 2021 the lack of correlation with a single gene through 

validation does not speak to the validity of the remainder of the dataset (Coenye, 2021). 

However, due to our collection of blood stream isolates being so large with >100 categorised 

isolates then qPCR could possibly add to our findings. Taking a larger and more varied 

selection of C. albicans isolates we could have profiled the expression of genes of interest, 

such as the SAPs which were upregulated in FCS, zinc transporters which were up in RPMI or 

the ATO gene family which were specific to the LBF in FCS, in a much larger selection of 

isolates. This would have allowed us to see if the differential expression of these genes was 

consistent across phenotypically similar strains. This adds to the previous point that a simpler 
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RNA-Seq study design on a much larger selection of biologically varying C. albicans isolates 

would similarly add more power to the study design.  

 

Throughout this thesis we have discussed multi-omics and focused on transcriptomic and 

metabolomic analysis. There are many other omics, including lipidomic and genomics. There 

are also many variations of some of the techniques used as we highlighted in the 

metabolomics section. Notably missing from this work is the inclusion of genomic data. A 

genomic profile of all the isolates from the Scottish candidaemia study would be the logical 

progression. Whole genome sequencing by Illumina or similar platforms followed by assembly 

of genomes and identification of variants, either copy number of single nucleotide variants 

(SNV). This is future work that will be of great importance, through using NGS to genotypically 

understand any phenotypic and clinical variation within these strains. This work would answer 

questions both about variation that determines our observed phenotypes in vitro and 

variation related to our epidemiological findings (Rajendran et al., 2016d). These isolates were 

highly curated with both clinical data and antifungal resistance and sensitivity data. Links to 

the genomic data could also provide insights into the heterogeneity in antifungal 

susceptibility and resistance that was observed between these isolates. Functional genomics 

is an effective tool at linking the genome to phenotype and pathogenicity/virulence related 

functions in yeasts and fungi (Farrer and Fisher, 2017).  

 

Within the literature review we also highlighted the importance of transcriptional control on 

the much larger network of biofilm and hyphal genes. These were important findings that 

were first discovered by Nobile and colleagues in 2012 (Nobile et al., 2012). Transcription 

factor activity through these cascades could therefore have been profiled using 

phosphoproteomics. Phosphoproteomics identifies active pathways through mass 

spectrometry phosphoprotein analysis (Dudley and Bond, 2014). This methodology has 

previously been shown to be effective in tracking the phosphorylation of proteins involved in 

pathogenesis in C. albicans and was applied to identify the activity of protein kinases during 

hyphal elongation (Ghorai et al., 2018). It would be interesting therefore to see if there were 

any changes in the dynamics of these hyphal regulating kinase cascades between high and 

low forming isolates. To our knowledge this would be the first study looking at the differences 
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in protein kinase and kinase interaction with phosphoproteins between clinically relevant 

isolates.  

 

Considering omics approaches as hypothesis drivers and not hypothesis testers, however, this 

body of work opens several avenues of investigation. Further work would hope to expand on 

the inducibility of biofilm formation from other known inducers. It is also assumed that HBF 

are more tolerant to antimicrobials, and to date little is known about whether this resistance 

is shared by LBF that have been induced. Because hyphal formation and biofilm formation is 

inducible it is perhaps also possible to hypothesis that these conditions exist within the host. 

Novel antifungal regimens that consider alternative metabolic pathways may also yield 

improved antifungal sensitivity in vivo. As discussed, we have only discussed one stimulus out 

of the many that are known to induce heterogeneity. Anecdotally, work not presented in this 

thesis show that certain bacteria are able to induce this biofilm phenotype. This indicates that 

biofilm heterogeneity is more complex, and perhaps these LBF strains are more adapted to 

co-exist mutually or synergistically with bacterial species. It has been shown that the 

relationship with bacteria is a growing trend and within the oral cavity we additionally 

demonstrated that fungi do impact the microbial community. Candida’s role within multi-

species biofilms is still needed to be understand fully and how both Candida and bacteria 

interact with each other. This is particularly true in the oral cavity as we have identified from 

the literature over the last 20 years and our own microbiome studies. The studies outlined 

here lead the way for further omics profiling of increasingly complex interkingdom 

communities. It is our belief that these studies need to be performed and the thought of what 

omic studies could tell us about interkingdom biofilm communities and their interactions is 

tantalising. 
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