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Abstract 

Glucose homeostasis in the human body is maintained by hormones of the 

pancreas, mostly glucagon and insulin. Insulin is secreted when blood glucose 

levels are high and triggers a signalling cascade that results in glucose uptake via 

the glucose transporter GLUT4 in peripheral tissues. 

GLUT4 is the only glucose transporter that responds to insulin stimulation and it 

slowly recycles between intracellular storage compartments and the plasma 

membrane. In the basal state, the majority of GLUT4 is intracellularly localised. 

Insulin stimulation results in movement (“translocation”) of GLUT4 from these 

intracellular stores to the plasma membrane. The signalling cascade from insulin 

binding to its receptor to translocation of GLUT4 is comparatively well 

understood. Less is known about the dynamics of GLUT4 within the plasma 

membrane itself. Advances in light microscopy techniques, such as Total Internal 

Reflection Fluorescence and super-resolution microscopy, have allowed new 

insights into the events in the membrane. It has recently been proposed that 

GLUT4 is located in plasma membrane clusters and that another effect of insulin 

is the dispersal of these GLUT4 clusters. 

The main objective of this work was to develop a microscopy-based assay to 

visualise and quantify these clusters and to investigate the molecular 

mechanisms behind clustering and dispersal of the glucose transporter in 

response to insulin. The majority of this work has been carried out in 3T3 L1 

adipocytes, a widely used cell model for the study of GLUT4. However, this cell 

line is difficult to maintain, and its genetic manipulation is very challenging. For 

this reason, we investigated HeLa cells as a suitable substitute cell model for 

preliminary screenings. 

Using Total Internal Reflection Fluorescence Microscopy and Spatial Intensity 

Distribution Analysis, we gained new insight into the dynamics of plasma 

membrane GLUT4 in both 3T3 L1 adipocytes and HeLa cells. We found that the 

transporter forms an oligomer of high order in the plasma membrane in both cell 

types. Further, we compared the dynamics of GLUT4 mobilisation in response to 

insulin and found similar results. Based on these findings, we carried out an 

siRNA knock-down screening to determine proteins involved in intracellular 
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GLUT4 trafficking and found that GOSR1 and Ykt6 are promising targets for 

further examination. 

Single molecule localisation microscopy allowed us to accomplish our aim to 

assay GLUT4 clustering and dispersal. Using dSTORM and Ripley’s K-function, as 

well as Bayesian cluster analysis methods, we showed that GLUT4 is indeed 

located in clusters in the plasma membrane and that insulin stimulation leads to 

its dispersal. We found that treatment with Galectin-3, a drug that inhibits 

glucose uptake, impedes the dispersal. Building upon previous research in our 

group that identified EFR3a as a membrane-localised protein involved in glucose 

uptake, we knocked-down EFR3a in 3T3 L1 adipocytes and found that this also 

disrupts GLUT4 dispersal, which we hypothesise could be a potential drug target 

for type 2 diabetes. 

Taken together, the findings presented in this thesis suggest HeLa cells as a 

suitable cell model for initial assessments of research questions related to 

GLUT4 trafficking. Furthermore, a robust assay to measure GLUT4 dispersal was 

established. 

  



4 
 

Table of Contents 
Abstract ...................................................................................... 2 

List of Tables ................................................................................ 8 

List of Figures ............................................................................... 9 

Acknowledgements ........................................................................ 11 

Author’s Declaration ...................................................................... 13 

Abbreviations .............................................................................. 14 

Chapter 1 Introduction ................................................................. 18 

1.1 Glucose Homeostasis ............................................................ 18 

1.2 Diabetes Mellitus ................................................................ 20 

1.3 Glucose Transporters ........................................................... 21 

1.3.1 Glucose Transporter 4 ..................................................... 23 

1.4 The GLUT4 Storage Compartment ............................................ 25 

1.4.1 Endocytosis of GLUT4 ...................................................... 30 

1.4.2 Other Components and Biogenesis of GSVs ............................. 30 

1.5 Insulin Signalling ................................................................. 33 

1.5.1 The APS Pathway ........................................................... 34 

1.5.2 The PI3K Pathway .......................................................... 34 

1.6 GLUT4 Trafficking Proteins .................................................... 36 

1.6.1 Rab Proteins ................................................................. 36 

1.6.2 SNARE and SM Proteins..................................................... 38 

1.6.2.1 The SNARE Complex ................................................... 38 

1.6.2.2 VAMPs ................................................................... 39 

1.6.2.3 SM Proteins ............................................................. 40 

1.6.3 Translocation of GSVs Along Filaments and Microtubules ............ 41 

1.7 GLUT4 in the Plasma Membrane ............................................... 42 

1.7.1 GSVs in the TIRF Zone ...................................................... 45 

1.7.2 GLUT4 Clustering in Response to Insulin ................................ 46 

1.7.3 Tethering and Fusion of GSVs with the Plasma Membrane ........... 46 

1.7.4 GLUT4 Clustering and Dispersal .......................................... 49 

1.7.5 Single Molecule Imaging of GLUT4 in the Plasma Membrane ......... 50 

1.7.6 Possible Mechanisms of GLUT4 Clustering .............................. 52 

1.7.7 EFR3 and its Potential Role in GLUT4 Dispersal ........................ 53 

1.8 Working Hypothesis and Aims of this Study .................................. 54 

Chapter 2 General Materials and Methods ........................................... 57 

2.1 Materials .......................................................................... 57 

2.1.1 Reagents and Enzymes ..................................................... 57 

2.1.2 Buffers and Solutions ....................................................... 60 

2.1.3 Antibodies ................................................................... 62 



5 
 

2.1.3.1 Primary Antibodies .................................................... 62 

2.1.3.2 Secondary Antibodies for Western Blotting ........................ 63 

2.1.3.3 Secondary Antibodies for Immunofluorescence ................... 63 

2.1.4 Plasmids and siRNA ......................................................... 64 

2.1.5 Mammalian Cell Lines ...................................................... 65 

2.1.6 Materials ..................................................................... 65 

2.2 Methods ........................................................................... 65 

2.2.1 Cell Culture Methods ....................................................... 65 

2.2.1.1 Growth and Maintenance of HeLa and HEK Cells ................. 66 

2.2.1.2 Growth and Maintenance of 3T3 L1 Cells .......................... 66 

2.2.1.3 Differentiation of 3T3 L1 Cells ....................................... 66 

2.2.1.4 Freezing and Resurrecting Cells ..................................... 67 

2.2.1.5 Cleaning and Seeding on Cover Glasses ............................ 67 

2.2.1.6 Transfection ............................................................ 67 

2.2.1.7 siRNA Electroporation of 3T3 L1 Adipocytes ....................... 68 

2.2.2 IF Staining ................................................................... 68 

2.2.2.1 IF Staining for Permeabilised Cells .................................. 68 

2.2.2.2 IF Surface Staining for Confocal Microscopy ....................... 69 

2.2.2.3 IF Surface Staining for dSTORM ...................................... 69 

2.2.3 Lentivirus .................................................................... 70 

2.2.3.1 Lentivirus Production ................................................. 70 

2.2.3.2 Lentiviral Infection .................................................... 70 

2.2.3.3 Generation of a Stable Cell Line Using Lentivirus. ............... 70 

2.2.4 Molecular Biology Methods ................................................ 71 

2.2.4.1 Transformation ......................................................... 71 

2.2.4.2 Plasmid DNA Purification ............................................. 71 

2.2.4.3 Agarose Gel Electrophoresis ......................................... 72 

2.2.4.4 Restriction Endonuclease Digest ..................................... 72 

2.2.4.5 Cloning .................................................................. 72 

2.2.5 Gel Electrophoresis and Western Blotting .............................. 73 

2.2.5.1 Cell Lysates ............................................................. 73 

2.2.5.2 SDS-PAGE ................................................................ 73 

2.2.5.3 Immunoblotting ........................................................ 73 

2.2.6 BN-PAGE ..................................................................... 74 

2.2.6.1 BN-PAGE Sample Preparation ........................................ 74 

2.2.6.2 BN-PAGE ................................................................. 75 

2.2.6.3 BN-PAGE Immunoblotting ............................................. 76 

2.2.7 Microscopy ................................................................... 76 

2.2.7.1 Confocal Microscopy ................................................... 76 



6 
 

2.2.7.2 TIRF Microscopy ........................................................ 76 

2.2.7.3 dSTORM ................................................................. 77 

2.2.8 Image Analysis .............................................................. 77 

2.2.8.1 HA/GLUT4 Ratio ....................................................... 77 

2.2.8.2 Spatial Intensity Distribution Analysis .............................. 77 

2.2.8.3 Colocalisation Analysis ................................................ 77 

2.2.8.4 dSTORM Analysis ....................................................... 78 

2.2.9 Statistical Analysis .......................................................... 78 

Chapter 3 Comparison of HeLa Cells and 3T3 L1 Adipocytes Using TIRFM ...... 79 

3.1 Introduction ...................................................................... 79 

3.1.1 Principles of Fluorescence Microscopy .................................. 79 

3.1.2 Principles of Total Internal Reflection Fluorescence Microscopy .... 81 

3.1.3 The Built In-House TIRFM System ........................................ 84 

3.1.4 Hypothesis and Aims ....................................................... 85 

3.2 Results ............................................................................ 86 

3.2.1 HA-GLUT4-GFP Expression in HeLa Cells and 3T3 L1 Adipocytes .... 86 

3.2.2 Fluorescence Intensity in the TIRF Zone ................................ 88 

3.2.3 Mobile and Static Vesicles in the TIRF Zone ............................ 92 

3.3 Discussion ......................................................................... 95 

Chapter 4 The Oligomeric State of GLUT4 in the Plasma Membrane ............ 99 

4.1 Introduction ...................................................................... 99 

4.1.1 Oligomerisation of Proteins ............................................... 99 

4.1.2 Spatial Intensity Distribution Analysis .................................. 100 

4.1.3 Hypothesis and Aims ...................................................... 101 

4.2 Results ........................................................................... 102 

4.2.1 Construction of a HA-GLUT4-eGFP Lentiviral Plasmid ............... 102 

4.2.2 Production and Testing of Lentivirus ................................... 105 

4.2.3 Generation of a 3T3 L1 Cell Line Expressing HA-GLUT4-eGFP ...... 107 

4.2.4 Validation of the Method – Oligomeric State of the M1 Muscarinic 
Receptor .............................................................................. 109 

4.2.5 Oligomeric State of GLUT4 as by SpIDA ................................ 111 

4.2.6 Oligomeric State of GLUT4 as by BN-PAGE ............................ 114 

4.3 Discussion ........................................................................ 115 

Chapter 5 Clustering and Dispersal of GLUT4 in the Plasma Membrane ....... 120 

5.1 Introduction ..................................................................... 120 

5.1.1 Super Resolution Microscopy ............................................. 120 

5.1.2 Stochastic Optical Reconstruction Microscopy ........................ 122 

5.1.3 Cluster Analysis ............................................................ 125 

5.1.3.1 Ripley’s K Function Analysis ......................................... 126 



7 
 

5.1.3.2 Bayesian Cluster Analysis ............................................ 127 

5.1.4 Hypothesis and Aims ...................................................... 127 

5.2 Results ........................................................................... 128 

5.2.1 Insulin Regulates GLUT4 Dispersal ...................................... 128 

5.2.2 Galectin-3 Inhibits GLUT4 Clustering ................................... 134 

5.2.3 EFR3a Knock-Down in 3T3 L1 Adipocytes .............................. 138 

5.2.4 EFR3a Controls Insulin Regulated GLUT4 Dispersal ................... 140 

5.3 Discussion ........................................................................ 142 

Chapter 6 SNARE Proteins Regulating Intracellular GLUT4 Trafficking ......... 146 

6.1 Introduction ..................................................................... 146 

6.1.1 The ERGIC is Involved in the GSC formation in Human Cells ........ 146 

6.1.2 SNAREs Involved in Intracellular Trafficking ........................... 147 

6.1.3 Hypothesis and Aims ...................................................... 149 

6.2 Results ........................................................................... 150 

6.2.1 GLUT4 Colocalisation ..................................................... 150 

6.2.1.1 GLUT4 Colocalisation with the ERGIC ............................. 150 

6.2.1.2 GLUT4 Colocalisation with the ER .................................. 152 

6.2.1.3 GLUT4 Colocalisation with the Golgi .............................. 154 

6.2.2 Total GLUT4 Levels after SNARE Knock-Down ......................... 155 

6.2.3 Intracellular GLUT4 Distribution After SNARE Knock-Down ......... 156 

6.3 Discussion ........................................................................ 158 

Chapter 7 Discussion ................................................................... 163 

7.1 Summary of Results ............................................................ 163 

7.2 Results in the Context of Existing Literature ............................... 165 

7.3 Future Directions ............................................................... 166 

7.3.1 GLUT4 Clustering and EFR3a ............................................. 166 

7.3.2 HeLa Cells as Model for GLUT4 Trafficking ............................ 168 

7.4 Conclusions ...................................................................... 169 

Chapter 8 Appendices ................................................................. 170 

List of References ........................................................................ 173 

 
 

  



8 
 

List of Tables 

Table 1.1 Studies on GLUT4 in the Plasma Membrane ............................... 44 

Table 2.1 Reagents and Enzymes ....................................................... 57 

Table 2.2 Buffers and Solutions ......................................................... 60 

Table 2.3 Primary Antibodies ............................................................ 62 

Table 2.4 Secondary Antibodies for Western Blotting ............................... 63 

Table 2.5 Secondary Antibodies for Immunofluorescence ........................... 63 

Table 2.6 Plasmids ........................................................................ 64 

Table 2.7 siRNAs ........................................................................... 64 

Table 2.8 Mammalian Cell Lines ......................................................... 65 

Table 2.9 Materials ........................................................................ 65 

Table 2.10 SDS-PAGE Gel Components ................................................. 73 

Table 2.11 BN-PAGE Gel Components .................................................. 75 

 

  



9 
 

List of Figures 

Figure 1.1 Regulation of Blood Glucose Levels through the Pancreas. ............ 19 

Figure 1.2 Structure of the Membrane Protein GLUT4. .............................. 23 

Figure 1.3 Model of Dynamic Exchange and Static Retention of GLUT4. .......... 28 

Figure 1.4 Schematic of the APS Pathway ............................................. 34 

Figure 1.5 Schematic of the PI3K Pathway. ........................................... 35 

Figure 1.6 Formation of the SNARE Complex and Vesicle Fusion ................... 39 

Figure 1.7 Fusion of GSV with the Plasma Membrane ................................ 49 

Figure 1.8 Clustering and Dispersal of GLUT4 in Response to Insulin. ............. 55 

Figure 1.9 Schematic of the Working Hypothesis Involving EFR3a and PI4P. ..... 55 

Figure 3.1 Schematic of an Epifluorescence Widefield Microscope ................ 80 

Figure 3.2 Principle of TIR ............................................................... 81 

Figure 3.3 Widefield vs Confocal vs TIRF .............................................. 83 

Figure 3.4 TIR Alignment Mask .......................................................... 84 

Figure 3.5 HA Surface Staining of HA-GLUT4-GFP HeLa Cells in Response to 
Insulin ....................................................................................... 87 

Figure 3.6 HA Surface Staining of HA-GLUT4-GFP 3T3 L1 Adipocytes in Response 
to Insulin .................................................................................... 88 

Figure 3.7 Time Course of Insulin Stimulated HeLa Cells in TIRFM................. 89 

Figure 3.8 Normalised Fluorescence Intensity in HeLa Cells in TIRFM ............. 89 

Figure 3.9 Time Course of Insulin Stimulated 3T3 L1 Adipocytes in TIRFM ....... 91 

Figure 3.10 Normalised Fluorescence Intensity in 3T3 L1 Adipocytes in TIRFM .. 91 

Figure 3.11 Static and Mobile GLUT4 Vesicles in 3T3 L1 Adipocytes ............... 94 

Figure 3.12 Static and Mobile GLUT4 Vesicles in HeLa Cells ........................ 95 

Figure 4.1 The Quantal Brightness ε Depends on the Oligomeric State of the 
Protein. .................................................................................... 101 

Figure 4.2 Maps of pCDH-CMV-MCS-EF1-Puro and pcDNA3.1 HA-GLUT4-eGFP ... 102 

Figure 4.3 pCDH-CMV-MCS-EF1-Puro Digested with BamHI and NotI .............. 103 

Figure 4.4 pcDNA3.1 HA-GLUT4-eGFP Digested with BamHI and NotI ............ 104 

Figure 4.5 pCDH HA-GLUT4-eGFP Clones ............................................. 105 

Figure 4.6 HeLa Cells Infected with HA-GLUT4-eGFP Lentivirus .................. 106 

Figure 4.7 Kill Curve of 3T3 L1 Cells Treated with Puromycin ..................... 107 

Figure 4.8 3T3 L1 Adipocytes Stably Expressing HA-GLUT4-eGFP ................. 108 

Figure 4.9 Oligomeric State of the M1 Muscarinic Receptor ........................ 110 

Figure 4.10 Oligomeric State of GLUT4 in HeLa Cells ............................... 111 

Figure 4.11 Oligomeric State of GLUT4 in 3T3 L1 Adipocytes ..................... 113 

Figure 4.12 BN-PAGE of 3T3 L1 Lysates ............................................... 114 

Figure 5.1 Principle of Resolution ...................................................... 120 

Figure 5.2 Principle of STORM and other SMLM Techniques ........................ 123 

Figure 5.3 Principle of Photoswitching ................................................ 124 

Figure 5.4 STORM Images of Surface GLUT4 in Basal and Insulin Stimulated 
3T3 L1 Adipocytes ........................................................................ 128 

Figure 5.5 STORM Localisation Density in Basal and Insulin Stimulated 3T3 L1 
Adipocytes ................................................................................. 129 

Figure 5.6 Bayesian Cluster Analysis of Basal and Insulin Stimulated 3T3 L1 
Adipocytes ................................................................................. 132 

Figure 5.7 Ripley's K-Function Analysis of Basal and Insulin Stimulated 3T3 L1 
Adipocytes ................................................................................. 133 

Figure 5.8 HA-Surface Staining in Galectin-3 Treated 3T3 L1 Adipocytes ....... 136 

Figure 5.9 Ripley's K-Function Analysis of Galectin-3 Treated Basal and Insulin 
Stimulated 3T3 L1 Adipocytes .......................................................... 137 



10 
 
Figure 5.10 EFR3a Knock-Down in 3T3 L1 Adipocytes ............................... 139 

Figure 5.11 Ripley's K-Function Analysis of EFR3a Knock-Down Basal and Insulin 
Stimulated 3T3 L1 Adipocytes .......................................................... 141 

Figure 6.1 Model of Intracellular GLUT4 Trafficking in Human Cells ............. 147 

Figure 6.2 Intracellular Localisation of ERGIC-related SNARE proteins ........... 148 

Figure 6.3 ERGIC and DAPI Staining of HA-GLUT4-GFP HeLa Cells (negative 
control) .................................................................................... 150 

Figure 6.4 GLUT4/ERGIC Colocalisation ............................................... 151 

Figure 6.5 ER and DAPI Staining of HA-GLUT4-GFP HeLa Cells (negative control)
 .............................................................................................. 153 

Figure 6.6 GLUT4/ER Colocalisation ................................................... 153 

Figure 6.7 Golgi and DAPI Staining of HA-GLUT4-GFP HeLa Cells (negative 
control) .................................................................................... 154 

Figure 6.8 GLUT4/Golgi Colocalisation ................................................ 155 

Figure 6.9 Total GLUT4 Levels after siRNA Knock-Down ............................ 156 

Figure 6.10 Intracellular GLUT4 Distribution ......................................... 157 

Figure 8.1 Full GAPDH Blot from Figure 5.10 ......................................... 171 

Figure 8.2 Full EFR3a Blot from Figure 5.10 .......................................... 171 

Figure 8.3 Full GLUT4 Blot from Figure 5.10 ......................................... 171 

Figure 8.4 Full Stx16 Blot from Figure 5.10 .......................................... 172 

Figure 8.5 Full SNAP23 Blot from Figure 5.10 ........................................ 172 

 

  



11 
 

Acknowledgements 

This work could not have been completed without the help of many amazing 

people. First and foremost, I would like to thank my Doktorvater, Gwyn, who has 

been the most amazing supervisor. Thank you so much, Gwyn, for always leaving 

your door open and for always being there when I needed you. For listening and 

helping when experiments didn’t work and for your infectious excitement when 

we got a great result. Working with you was fantastic and I have learned so 

much thanks to you. 

I would like to thank the University of Glasgow for funding my research with a 

Lord Kelvin Adam Smith scholarship and also for supporting me through two 

periods of maternity leave. 

All members, past and present, of Lab241, particularly my fellow PhD students 

Kamilla, Shaun, Peter, Mohammed, Rachel, Fatmah, and Anna, as well as our 

amazing lab tech Laura. You are a wonderful bunch and I loved seeing your faces 

every day in the lab. Thank you for always being there for a chat, for helping out 

with experiments, and for providing me with vegan sweets when I was a very 

hungry pregnant PhD student.  

Light microscopy, as beautiful as it is, needs to be carried out in dark, 

windowless rooms and I’m grateful to the smart people who kept me company 

and shared their knowledge and expertise with me. Niall Geoghegan, who built 

the TIRF microscope and showed me how to use it. John Pediani and Richard 

Ward for helping me with SpIDA. Alison Dun, the lovely manager at the 

Edinburgh Super-Resolution Imaging Consortium who I’m so happy to now call my 

friend and Colin Rickman, who always managed to fix the instrument when 

nobody else could. Sebastian van de Linde, the dSTORM god, who was always 

eager to hear about my results using his method and for helping me with the 

analysis. Lucy Miller and Marco Laub, my fantastic summer students who spent 

many hours imaging for me, and Peter Bowman for helping me with the stats. 

Afroditi Chatzi who explained the dark arts of BN-PAGE to me and to Kostas 

Tokatlidis for letting me borrow his lab equipment. 



12 
 
Mama und Papa, danke, dass ihr mich auf meinem Weg immer unterstützt und an 

mich geglaubt habt. Diabetes habe ich leider nicht geheilt, aber zumindest sind 

wir jetzt einen Schritt weiter. 

I would like to thank my wonderful children, Logan and Eva. You didn’t exactly 

help getting this thesis written, but you reminded me that life is not all about 

work and even though I loved being in the lab, at least most of the time, I also 

loved the time I got to spend going on adventures with you. 

Last but certainly not least, I would like to thank my Hasi-husband. Thank you 

for always being there for me, for keeping my imposter syndrome at bay and for 

admiring the pretty pictures I took on various microscopes. Thank you for not 

only being there for me as my husband, but also as a fellow scientist. I love you! 

  



13 
 

Author’s Declaration 

I declare that the work presented in this thesis is my own, unless otherwise cited 

or acknowledged. It is entirely of my own composition and has not, in whole or 

in part, been submitted for any other degree. 

 

Silke Morris (née Machauer) 

  



14 
 

Abbreviations 

2YT    2 Yeast Tryptone 

AMPK    AMP-activated protein kinase 

AP    Adaptor Protein 

APS Adaptor protein with Pleckstrin homology and Src 

homology 2 domains 

APS Ammonium Persulfate 

AS160    Akt Substrate of 160 kDa 

ATP    Adenosine Triphosphate 

BMI    Body Mass Index 

BN-PAGE   Blue Native Polyacrylamide Gel Electrophoresis 

BRET    Bioluminescence Resonance Energy Transfer 

BSA    Bovine Serum Albumin 

CAP    c-CBL-Associated Protein 

CHO    Chinese Hamster Ovary 

CLSM    Confocal Laser Scanning Microscopy 

DAPI    4′,6-Diamidino-20-Phenylindole 

DMEM    Dulbecco’s Modified Eagle’s Medium 

DMSO    Dimethyl Sulfoxide 

dSTORM   Direct Stochastic Optical Reconstruction Microscopy 

DTT    Dithiothreitol 

DV    Docked Vesicle 

E. coli    Escherichia coli 

ECL    Enhanced Chemiluminescence 

EDTA    Ethylenediaminetetraacetic acid 

eGFP    Enhanced Green Fluorescent Protein 

EGTA Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-

tetraacetic acid 

ER    Endoplasmic Reticulum 

ERGIC    ER-to-Golgi Intermediate Compartment 

FCS    Foetal Calf Serum 

FKBP    FK506 Binding Protein 12 

FPALM    Fluorescence Photoactivation Localisation Microscopy 

FRB    FKBP Rapamycin Binding protein 



15 
 
FRET    Fluorescence Resonance Energy Transfer 

GAP    GTPase-Activating Protein 

GFP    Green Fluorescent Protein 

GGA Golgi-localized, gamma-ear containing, ADP-

ribosylation factor binding 

GLUT    Glucose Transporter 

GLUT4/G4   Glucose Transporter 4 

Gly    Glycine in PBS 

GPCR    G-Protein Coupled Receptor 

GSC    GLUT4 Storage Compartment 

GSV    GLUT4 Storage Vesicle 

HA    Haemagglutinin 

HDM    High Density Microsome 

HEPES    4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HES    HEPES-EDTA-Sucrose 

HMIT    H+-coupled Myo-Inositol Transporter 

HRP    Horseradish Peroxidase 

IB    Immunoblotting 

IBMX    3-isobutyl-1-methylxanthine 

IF    Immunofluorescence 

IRAP    Insulin-Responsive Aminopeptidase 

IRS    Insulin Receptor Substrate 

ISC    Intersystem Crossing 

LDM    Low Density Microsome 

LRP1    Lipoprotein Receptor related Protein 1 

LSB    Laemmli Sample Buffer 

M6PR    Mannose-6-Phosphate Receptor 

MEA    Mercaptoethylamine 

MEU    Monomeric Equivalent Unit 

MOI    Multiplicity of Infection 

mTORC2   mTOR Complex 2 

MV    Moving Vesicle 

NA    Numerical Aperture 

NAPA N-ethylmaleimide-sensitive factor Attachment Protein 

Alpha 



16 
 
NCS    Newborn Calf Serum 

PAGE    Polyacrylamide Gel Electrophoresis 

PAO    Phenylarsine Oxide 

PBS    Phosphate Buffered Saline 

PBST    Phosphate Buffered Saline with Tween 

PDK1    Phosphoinositide-Dependent Kinase 1 

PFA    Paraformaldehyde 

PI    Phosphoinositide 

PI3K    Phosphoinositide 3-Kinase 

PI4KIIIα   Phosphatidylinositol 4-Kinase type III α 

PI4P    Phosphatidylinositol 4-Phosphate 

PIK    Phosphoinositide Kinase 

PIP3    Phosphoinositide-3,4,5-triphosphate 

PKB    Protein Kinase B 

PLD    Phospholipase D1 

PSF    Point Spread Function 

ROI    Region of Interest 

SD    Standard Deviation 

SDS    Sodium Dodecyl Sulfate 

SE    Standard Error 

SIM    Structured Illumination Microscopy 

SM Sec1/Munc18 

SMLM Single Molecule Localisation Microscopy 

SNAP    Soluble NSF Attachment Protein 

SNAP    Synaptosome-Associated Protein 

SNARE Soluble N-ethylmaleimide sensitive fusion protein 

Attachment protein Receptor 

SOC Super Optimal Broth with Catabolite repression 

SORL1    Sortilin-related Receptor 

SpIDA    Spatial Intensity Distribution Analysis 

STED    Stimulated Emission Depletion 

STORM   Stochastic Optical Reconstruction Microscopy 

TAE    Tris-Acetate EDTA 

TfR    Transferrin Receptor 

TGN    Trans-Golgi Network 



17 
 
TIR    Total Internal Reflection 

TIRF    Total Internal Reflection Fluorescence 

TIRFM    Total Internal Reflection Fluorescence Microscopy 

t-SNARE   Target-SNARE 

VAMP    Vesicle-Associated Membrane Protein 

v-SNARE   Vesicle-SNARE 

 



18 
 

Chapter 1 Introduction 

1.1 Glucose Homeostasis 

Carbohydrates are sugars and their polymers, polysaccharides. The most basic 

carbohydrates are monosaccharides and glucose is the most common 

monosaccharide. Glucose is our bodies main energy supplier. Its energy is 

released by an oxidative process called cell respiration, in which it is 

enzymatically broken down. Glycolysis and the citric acid cycle are the first two 

steps of cell respiration, in which each molecule of glucose is broken down to 

two molecules of pyruvate. Pyruvate is then converted to coenzyme A, which 

undergoes the citric acid cycle where CO2 is released. Some steps of glycolysis 

and citric acid cycle are redox reactions, in which electrons and protons are 

transferred onto substrates which are then fed into the electron transport chain, 

which ultimately ends in oxidative phosphorylation and the production of 

adenosine triphosphate (ATP). Glucose is produced by plants through 

photosynthesis, a reaction that converts CO2 and H2O to Glucose and O2 using 

light energy. But animals also produce glucose from pyruvate and oxaloacetate, 

products of the amino acid metabolism during a process called gluconeogenesis, 

which takes place mostly in the liver and in the kidney (Campbell & Reece, 

2006; Nelson & Cox, 2017). 

In healthy individuals blood glucose levels are controlled by the pancreas and 

are typically maintained at a level around 4-6 mmol l-1 (Nelson & Cox, 2017; 

Perley & Kipnis, 1967). The pancreas contains endocrine cells, α-, β-, and δ-

cells, which are located within the islets of Langerhans. When blood glucose 

levels are low during hypoglycaemia due to lack of food and continuing oxidation 

of glucose by the brain and other tissues, α-cells secrete glucagon which in turn 

facilitates the hydrolysis of glycogen to glucose in the liver, but glucose is also 

newly synthesised during gluconeogenesis as previously mentioned. In fact, the 

liver can produce up to 500 g of glucose during this process every day. After a 

meal, when blood glucose levels rise, pancreatic β-cells secrete insulin, thus 

allowing glucose transport into the liver, muscle, and adipose tissue, where it is 

converted to glycogen (liver and muscle) and triacylglycerols (adipose tissue) 

(Nelson & Cox, 2017).  
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Figure 1.1 Regulation of Blood Glucose Levels through the Pancreas. 
Blood glucose levels are regulated by the α- and β-cells of the pancreas. In case of hypoglycaemia 
α-cells secret glucagon, which initiates breakdown of glycogen in the liver to glucose. During 
hyperglycaemia β-cells release insulin, which stimulates fat and skeletal muscle cells to take up 
glucose from the blood stream. 

Figure 1.1 schematically shows glucose homeostasis as regulated by the 

pancreas. δ-cells secret somatostatin, which regulates the secretion of both 

glucagon and insulin (Gerich, 1981). 

The vast majority of insulin-stimulated glucose-uptake (~90 %) occurs in skeletal 

muscle tissue (Kraegen et al., 1985). The remaining less than 10 % that is cleared 

by adipose tissue is, however, not to be neglected. Adipose tissue is in fact 

significant for insulin sensitivity, as insulin-resistant individuals show decreased 

expression of Glucose Transporter 4 (GLUT4) in adipocytes, but not in muscle 

(Shepherd & Kahn, 1999). Abel et al. confirmed this by adipose selective knock-

down of GLUT4 in mice and found that this led to whole-body insulin-resistance 

and glucose intolerance (Abel et al., 2001). Therefore, while liver and muscle 
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take up most of the blood glucose, adipocytes play an important role in overall 

glucose homeostasis and communicate with liver and muscle in this regard. 

1.2 Diabetes Mellitus 

Diabetes is one of the most prevalent diseases worldwide, with currently about 

422 million adults affected. This number has nearly quadrupled since 1980, 

whilst the age-standardised frequency has almost doubled from 4.7 % in 1980 to 

8.5 % in 2014 and is expected to rise even further (Mathers & Loncar, 2006; 

Tareque et al., 2016). This increase has been especially steep during the last ten 

years in low- and middle-income countries. In the UK, it is estimated that 4.5 

million people currently live with diabetes (Diabetes UK, 2016). Diabetes not 

only affects patients’ personal lives but also has a huge impact on health-care 

systems and indirectly on the global economy. It is estimated that in the UK, 

about 10 % of the NHS budget is spent on diabetes care, which accounts for 

approximately £9.8bn for direct costs and £13.9bn for indirect costs. This figure 

is suspected to rise to a total cost of £39.8bn or 17 % of the NHS budget in 

2035/2036 (Hex et al., 2012; Seuring et al., 2015). 

Diabetes mellitus is a metabolic disorder, which is mainly characterised by 

chronic hyperglycaemia. Insulin plays an important role in the development of 

diabetes, because the release of insulin from the pancreatic β-cells is disturbed 

or even completely inhibited. This results in elevated blood glucose levels and 

the inability of cells to effectively take up glucose. Depending on the underlying 

mechanisms, there are different types of diabetes. 

Type I diabetes is an autoimmune disease, in which the immune system produces 

antibodies against pancreatic β-cells, which leads to β-cell destruction, 

inflammation and consequently the immediate need for external insulin 

substitution. Therefore, this form of diabetes is also referred to as insulin-

dependent diabetes. An estimated 10 % of people with diabetes suffers from this 

type. The onset is typically early on in life, where the terms juvenile and 

childhood-onset diabetes are derived from and it is not yet curable or 

preventable (Atkinson et al., 2014; Diabetes UK, 2016; Knip et al., 2005). 



Chapter 1 21 
 
Type 2 diabetes, or non-insulin-dependent diabetes, is far more common (90 % 

of people with diabetes) and is primarily characterised by insulin resistance, 

hyper-insulinaemia. Insulin resistance is caused by a disturbance in insulin 

signalling, which results in the cell requiring increased amounts of insulin to take 

up the glucose from the blood stream. The body reacts with increased insulin 

production, which eventually leads to an impairment of the pancreas and other 

organs. This in turn will lead to pancreatic β-cell failure. Different from type 1 

diabetes, the development of type 2 is largely due to poor life-style choices, 

such as little to no exercise and the consumption of food and drinks high in fat 

and sugar, which can lead to overweight or obesity (Diabetes UK, 2016). 60 % of 

type 2 diabetics are classified as obese, although there is also a genetic 

component to the development of the disease. However, changes to a more 

active and healthier lifestyle have been shown to be effective in prevention or 

even reversal of type 2 diabetes (Chatterjee et al., 2017). Formerly also known 

as adult-onset diabetes, type 2 diabetes was long thought to be only present in 

adults, but since the first reported cases of type 2 diabetes in children in 2000, 

more and more children and adolescents are becoming affected (Ehtisham et al., 

2000). 

Where lifestyle changes and weight loss are not enough to control blood glucose 

levels in type 2 diabetics, medication can be given to treat the symptoms of the 

disease. Metformin is usually the first drug that is prescribed in this case 

(Maruthur et al., 2016). It works by inhibiting gluconeogenesis in the liver and 

increasing insulin sensitivity, thus making glucose uptake more efficient. Other 

drugs such as sulfonylureas and meglitinides stimulate the pancreas to increase 

insulin production. Eventually, with the progression of type 2 diabetes, external 

administration of insulin will be necessary (Maruthur et al., 2016; Tareque et al., 

2016). All those medications have in common that they only treat the symptoms 

of the disease; a cure for type 2 diabetes is yet to be found and relies on a 

better understanding of glucose uptake in healthy individuals as well as type 2 

diabetics. 

1.3 Glucose Transporters 

Glucose and other hexoses are transported from the blood stream into cells by 

glucose transporters (GLUTs). They are facilitative transporters that transport 

glucose and other hexoses through aqueous pores along a concentration gradient 



Chapter 1 22 
 
into the cell. Although structurally very similar, GLUTs differ in their kinetic 

properties, substrate specificity, as well as their tissue and intracellular 

distribution (Kahn, 1992). GLUT1 was the first transporter to be characterised 

(Mueckler et al., 1985) and is mostly expressed in erythrocytes, the brain, and 

the placenta. GLUT2 has a high Km for glucose, allowing rapid glucose flux into 

the cell or out of the cell, such as after gluconeogenesis (Gould et al., 1991). 

Another transporter that is highly expressed in the brain is GLUT3. Because the 

energy demand in this tissue is relatively constant, the GLUTs in the brain are 

constitutively targeted to the plasma membrane (Duelli & Kuschinsky, 2001). In 

contrast, muscle tissue for example does not require a constant supply of 

energy, but its demand increases sharply during exercise. Muscle tissue 

therefore requires a more specialised glucose uptake system and GLUTs that can 

respond quickly to sudden changes in energy demand (Shepherd & Kahn, 1999). 

GLUT4 is found mostly in muscle and fat. It is located intracellularly and 

translocates to the plasma membrane in response to insulin stimulation, or, in 

the case of skeletal muscle, in response to muscle contraction, which is a unique 

behaviour and not exhibited by the other GLUTs (Bryant et al., 2002). In muscle 

tissue, this feature is responsible for the quick response during exercise. GLUT4 

translocation in skeletal muscle cells is related to the release of Ca2+, which is 

thought to activate other signalling molecules. Muscle contraction also results in 

the activation of AMP-activated protein kinase (AMPK), which is thought to 

decrease the rate of GLUT4 endocytosis and enhances GLUT4 regulation (Richter 

& Hargreaves, 2013). 

Currently, 13 different GLUTs are known (GLUT1-12 and HMIT (H+-coupled myo-

inositol transporter)). They are integral membrane proteins that are each unique 

in their kinetic properties and function, and are expressed in different tissues (S. 

Huang & Czech, 2007; Wood & Trayhurn, 2003). Mueckler et al. were the first 

who described the membrane topology of the transporter GLUT1, which is 

similar in all GLUTs: the proteins consist of 12 amphiphilic transmembrane 

helices that are embedded in the plasma membrane as well as an exofacial and 

a cytoplasmic loop. These domains are arranged in such a way that hydrophobic 

parts are facing the plasma membrane, while hydrophilic parts are forming the 

pore. Both, the C- and the N-terminus are located on the cytosolic side of the 

membrane as depicted in Figure 1.2 (Mueckler et al., 1985). 
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Figure 1.2 Structure of the Membrane Protein GLUT4. 
GLUT4 spans the plasma membrane 12 times and exhibits an exofacial as well as a cytoplasmic 
loop. Both, the N- and the C-terminal region are on the cytoplasmic side. All 13 GLUTs have a 
similar structure, the specificity of GLUT4 is thought to lie in the unique N- and C-terminus (Bryant 
et al., 2002; S. Huang & Czech, 2007). 

The 13 types of GLUTs are divided into three sub-classes based on homologies in 

their primary structure: class I (GLUT1-4) contains glucose transporters, class II 

(GLUTs 5, 7, 9, 11) are fructose transporters, and the remaining GLUTs as well 

as HMIT belong to class III, they are yet to be defined in more detail (Bryant et 

al., 2002; Wood & Trayhurn, 2003).  

1.3.1 Glucose Transporter 4 

In 1980 the two independent groups of Cushman and Kono were the first to 

report that insulin-stimulated glucose transport was the result of translocation 

of pre-existing glucose transporters from intracellular storage sites to the plasma 

membrane. They observed this effect in isolated rat adipocytes (Cushman & 

Wardzala, 1980) and in cell fractions respectively (Suzuki & Kono, 1980). We now 

know that the glucose transport systems they described are in fact GLUT4 

containing vesicles and that this behaviour is specific for the GLUT4 isoform. 

Glucose transporter 4 was first identified by James et al. in 1988, when they 

identified a protein of a molecular mass of Mr = 43,000 that was expressed only 

in adipose, skeletal muscle, and heart tissue. Furthermore, they found that the 

subcellular distribution of this protein responded to insulin stimulation by 

increasing the concentration of the protein in the plasma membrane while 

decreasing the concentration in low density microsomes (James et al., 1988). 

Kayano et al. isolated the mRNA of this protein and published the result in the 
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same year (Kayano et al., 1988). James et al. characterised it further by 

molecular cloning of a cDNA isolated from rat adipocyte and heart libraries, 

which shared 65 % of its nucleotide sequence with GLUT1; back then known as 

HepG2 glucose transporter. The protein encoded by this sequence exhibited an 

almost identical hydropathy plot and tertiary structure to GLUT1. Moreover, the 

protein could be found in insulin responsive tissues and in 3T3 L1 adipocytes, but 

not in fibroblasts. Interestingly, it showed translocation to the plasma 

membrane in response to insulin. They concluded that the sequence they had 

cloned belonged to a highly insulin-sensitive glucose transporter(James et al., 

1989). This transporter is today known as GLUT4. 

Around the same time, other groups from all over the world reported that they 

had isolated cDNA clones encoding GLUT4 in insulin responsive tissues from rats 

and humans (Charron et al., 1989; Fukumoto et al., 1989), other groups found 

that 3T3 L1 cells expressed GLUT4 after differentiation into adipocytes, but not 

as fibroblasts (de Herreros & Birnbaum, 1989; Kaestner et al., 1989). 

GLUT4 displays the same structure as other GLUTs shown in Figure 1.2, but has 

distinct sequences specifically in its NH2- and COOH-termini. The COOH-terminal 

domain contains an acidic motif as well as a double leucine that regulate the 

intracellular distribution of GLUT4. Mutation of the acidic region results in 

accumulation of GLUT4 at the plasma membrane (Shewan et al., 2000), while 

the dileucine is crucial for endocytosis and retention (Corvera et al., 1994). The 

NH2-terminus contains an F5QQI motif that interacts with adaptor proteins (APs) 

AP1 and AP2, which are important for endosomal sorting (Bernhardt et al., 

2009). Furthermore, mutation of a phenylalanine in the NH2-terminus leads to 

constitutive targeting of GLUT4 to the plasma membrane (Piper et al., 1993). 

While other GLUTs are mostly found in the plasma membrane of tissues that 

have consistent energy and therefore glucose requirements (e.g. GLUT1 and 3 in 

the brain) or act as a glucose sensor (GLUT2 in pancreatic β-cells), GLUT4 is 

mostly found in cardiomyocytes, skeletal muscle and adipose tissue and it is the 

only one of the 13 glucose transporters that responds to insulin and other 

stimuli, such as exercise (in muscle tissue), with increased translocation to the 

membrane; This makes sense because glucose requirements vary in these 

tissues. Muscle cells need to adapt quickly to physical activity and adipocytes 
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are responsible for post-prandial glucose uptake, so need to respond to insulin 

stimulation when blood glucose levels rise after a meal. Consequently, these cell 

types require a glucose transport system that can be regulated by the current 

glucose concentration in the blood through insulin.  

If this mechanism is defective, it contributes to insulin resistance and ultimately 

type 2 diabetes (Garvey et al., 1988; Maianu et al., 2001; Sinha et al., 1991), 

which is why GLUT4 and its associated signalling pathways are particularly 

interesting as potential drug targets. 

1.4 The GLUT4 Storage Compartment 

In the absence of stimuli, GLUT4 is mostly located in tubulo-vesicular structures 

within the cell and only a small percentage is at the cell surface (Dawson et al., 

2001; Piper et al., 1991; Slot et al., 1991). Slot et al. investigated the 

intracellular distribution of GLUT4 in rat adipose tissue of basal and insulin-

stimulated animals by immunolocalization and electron microscopy. Under basal 

conditions, they found that the majority of GLUT4 is located in small vesicles 

(60 – 100 nm) as well as tubulo-vesicular structures near the Golgi and only 1 % 

of total GLUT4 is in the plasma membrane. This increased to 40 % after insulin 

stimulation, which was not exclusive to certain regions of the membrane but 

universally distributed (Slot et al., 1991). Herman et al. confirmed the existence 

of these unusually small vesicles that are exclusive to GLUT4 by density gradient 

centrifugation (Herman et al., 1994). Using subcellular fractionation of 3T3 L1 

adipocytes, Livingstone et al. found a compartment that was separate from the 

endosomal system; 60 % of total GLUT4 did not colocalise with its marker the 

transferrin-receptor (TfR) the way other membrane proteins such as GLUT1 do. 

They concluded that there is another intracellular compartment of GLUT4 that 

does not participate in the cycling with the plasma membrane and eluded that 

this may be essential for the insulin responsiveness of GLUT4 (Livingstone et al., 

1996). In a review, Rea and James named this the GLUT4 storage compartment 

(GSC) and the small vesicles that had previously been described received the 

term GLUT4 storage vesicles (GSVs) (Rea & James, 1997).  

Because GLUT4 does only colocalise with furin, a Trans-Golgi network (TGN) 

marker, in the presence of the TfR, the Golgi was not considered to be this 
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second compartment (Karylowski et al., 2004). However, the Golgi does seem to 

play a role in insulin regulated GLUT4 trafficking. When adipocytes are 

incubated at 19 °C, a temperature where trafficking out of the TGN is inhibited, 

there is no insulin response. This finding suggests that the TGN precedes the 

sorting of GLUT4 into insulin sensitive vesicles (Robinson & James, 1992). It is 

thought that Syntaxins 6 and 16 are involved in this sorting step (Perera et al., 

2003; Proctor et al., 2006; Shewan et al., 2003). 

Subcellular fractionation of cell lysates can resolve five different fractions: the 

cytosol, mitochondria and nuclei, the plasma membrane, high density and low 

density microsomes (HDM and LDM) (I. A. Simpson et al., 1983). GLUT4 can be 

found mostly in the HDM, LDM, and the plasma membrane fractions. Insulin 

stimulation leads to a 10-fold increase of GLUT4 in the plasma membrane 

fraction (Piper et al., 1991), which mirrors the results of the previously 

discussed experiments by Slot et al. Using vesicle immunoadsorption and 

iodixanol equilibrium sedimentation analysis together with the transferrin-

horseradish peroxidase-3,3’-diaminobenzidine-mediated endosomal ablation 

technique, Hashiramoto and James managed to resolve the LDM fraction of 3T3 

L1 adipocytes further. They found two separate GLUT4 containing peaks in the 

fractions they collected. One peak was rich in markers of endosomes and the 

TGN, the other peak had a higher GLUT4 concentration and was very responsive 

to insulin stimulation. They concluded that with this peak they had found 

another vesicular population of GLUT4 that is probably derived from the 

endosomal cycle (Hashiramoto & James, 2000). The question remained whether 

GSVs are part of the known recycling pathways or if they represent a new GLUT4 

specific organelle. 

The translocation of GLUT4 to the cell surface happens quickly and reaches its 

maximum after about 10-15 minutes in 3T3 L1 adipocytes (Brewer et al., 2014; 

Govers et al., 2004). To facilitate this rapid response to insulin, GLUT4 must be 

either selectively retained in intracellular storage compartments until insulin 

triggers its release (static retention model), or it is constantly recycling between 

intracellular organelles and the plasma membrane and insulin stimulation leads 

to an increase of exocytosis and/or a decrease of endocytosis (dynamic exchange 

model) (Govers et al., 2004; Karylowski et al., 2004; O. J. Martin et al., 2006). 
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Mathematical modelling showed that either model is likely to be comprised of 

four or five pools: two intracellular compartments and two or three at the 

plasma membrane, with occluded pools that act as intermediates in endo- 

and/or exocytosis (Holman et al., 1994). Only a model with multiple 

intracellular pools accounts for the fast initial insulin response and subsequent 

slow recycling of plasma membrane GLUT4, therefore excluding a simple 2-pool 

model. The modelling results also showed that insulin must have a greater effect 

on GLUT4 exocytosis than endocytosis, because changing the latter does not 

result in a response as fast as it is observed experimentally (Holman et al., 

1994). 

It has been shown that the majority of total GLUT4 is not recycling via the 

plasma membrane in the basal state and that increasing insulin concentration 

increases the number of GLUT4 molecules participating in this pathway (Govers 

et al., 2004). However, even at maximal insulin concentration only 70 % of total 

GLUT4 is recycling with the plasma membrane. The static retention model 

argues that the proportion of GLUT4 that is not involved in recycling is therefore 

stored in a static intracellular compartment (Coster et al., 2004). Single 

molecule tracking in basal and insulin stimulated 3T3 L1 adipocytes supported 

this model, as GLUT4 molecules showed a significant increase in mobility in the 

presence of insulin (Fujita et al., 2010). 

In the basal state, the equilibrium of GLUT4 between the GSC and the 

endosomal compartment is reached much quicker (t1/2 = 20 min) than with the 

plasma membrane (t1/2 = 230 min) (Karylowski et al., 2004). This means a GSV is 

about 5 times more likely to fuse with an endosome than with the plasma 

membrane. The movement between the two compartments has been suggested 

to be part of a dynamic retention system of GLUT4 in the absence of insulin. 

Insulin stimulation then leads to an increase in the exocytosis rate, even under 

physiological insulin concentrations. Different from GLUT4 exocytosis, this 

cycling does not require intact microtubules, as it is not affected by nocodazole 

treatment (Karylowski et al., 2004; O. J. Martin et al., 2006). The rapid cycling 

between the intracellular GLUT4 containing compartments supports the dynamic 

exchange model.  
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Interestingly, the cell culture conditions also influence the size of the cycling 

GLUT4 pool in the basal state. Replating the cells for microscopy, which is a 

common practice, was shown to increase the percentage of cycling GLUT4 from 

22 % in confluent cells to 80 % in replated cells (Muretta et al., 2008). This 

illustrates further the complexity of the process and shows how different 

experimental procedures can have a significant effect on results. 

 

Figure 1.3 Model of Dynamic Exchange and Static Retention of GLUT4. 
GLUT4 is thought to be recycled within two different cycles. Cycle 1 comprises the endosomal 
system, while cycle 2 comprises the static retention model, where GLUT4 continuously cycles 
between the recycling endosome and the Trans-Golgi network until insulin stimulation leads to 
rapid translocation of GSVs to the plasma membrane (Bryant et al., 2002). 

  



Chapter 1 29 
 
Currently, it is believed that in fact both models are valid and GLUT4 is indeed 

found in two different intracellular recycling pathways. (Bryant et al., 2002). 

Using flow cytometry, Muretta et al. developed an assay that allowed them to 

analyse large numbers of cells, in contrast to microscopy-based experiments. 

They found that under basal conditions the majority of GLUT4 is retained 

statically within the cell and insulin controls the population that is actively 

cycling through the plasma membrane through quantal release; i.e. the amount 

of GLUT4 in the actively cycling pool is proportional to the concentration of 

insulin. When insulin is withdrawn, GLUT4 returns to the static compartment 

very slowly. Only after 12 hours post insulin, the static GLUT4 pool has returned 

to its original size. However, GLUT4 is cleared from the plasma membrane in a 

much faster manner by adjusting the endo- and exocytosis rates accordingly, 

suggesting that GLUT4 remains within this cycling pool until it has fully returned 

to the intracellular static pool. Under physiological conditions this might mean 

that the mode of GLUT4 cycling depends on the fluctuation of serum insulin. 

When insulin levels are fluctuating rapidly, the dynamic exchange model applies, 

and in the case of slow insulin level fluctuation, such as in basal versus 

stimulated model cell culture systems, the static retention model is valid 

(Muretta et al., 2008). 

 

Figure 1.3 shows the model of the two cycling pathways that are thought to be 

comprising both the static retention and the dynamic exchange model previously 

described, which was first thought of as early as 1996 by Martin et al. (S. Martin 

et al., 1996). After synthesis and post-translational modifications in the Golgi 

network, GLUT4 is packaged into GSVs, which upon insulin stimulation rapidly 

translocate to and fuse with the plasma membrane. In the absence of insulin 

GLUT4 enters the endosomal system, but it is selectively held back in favour of 

other membrane proteins, such as TfR, and only a small portion of GLUT4 

recycles between the plasma membrane and the endosomes, while the majority 

is in a second cycle between transport vesicles, the TGN, and newly formed 

GSVs, ready for translocation in the event of insulin stimulation. This second 

cycle is unique to insulin-responsive cells and forms during the early stages of 

3T3 L1 differentiation into adipocytes, even before GLUT4 is expressed in these 

cells (Bryant et al., 2002; El-Jack et al., 1999) 
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1.4.1 Endocytosis of GLUT4 

Clathrin, a protein that is involved in the formation of coated vesicles and 

endocytosis (Pearse, 1976), appears to be involved in the intracellular retention 

of GLUT4. GLUT4 is present in clathrin-coated vesicles derived from both, the 

plasma membrane and the TGN (Robinson et al., 1992). About 5 % of total GLUT4 

is in clathrin-coated vesicles at the plasma membrane, which is noteworthy, and 

it is hypothesised that insulin has an effect on the coating and uncoating of GSVs 

with clathrin, thus regulating their endocytosis (Chakrabarti et al., 1994). It has 

also been shown that the GTPase dynamin is involved in the endocytosis of 

GLUT4, since expression of dynamin decreases the GLUT4 levels in the plasma 

membrane. In contrast, maximal expression of a GTPase-negative mutant form 

of dynamin leads to the majority of GLUT4 being located in the plasma 

membrane and insulin has no further effect (Al-hasani et al., 1998). 

Blot and McGraw found that GLUT4 can be internalised by two different 

mechanisms: a cholesterol- and an AP2-dependent pathway. Under basal 

conditions a cholesterol-dependent pathway is favoured. Insulin-stimulation 

results in preferred GLUT4 uptake by the AP2-dependent mechanism. The latter 

involves the FQQI motif and is less rapid than basal GLUT4 endocytosis (Blot & 

McGraw, 2006). 

By determining the half-time for internalisation of labelled surface GLUT4, the 

endocytosis rate of the transporter could be calculated. It was found that insulin 

has a small effect on GLUT4 endocytosis. The endocytosis rate constant is about 

30 % slower after insulin stimulation compared to the basal state. The main 

effect of insulin however, is on the exocytosis rate (J. Yang & Holman, 1993). 

1.4.2 Other Components and Biogenesis of GSVs 

In undifferentiated 3T3 L1 adipocytes exogenous GLUT4 does not translocate to 

the plasma membrane in response to insulin. Instead, it enters the lysosomal 

pathway and degrades quickly (Haney et al., 1991; Shi & Kandror, 2005). GSVs 

begin to form between day 2 and 3 of differentiation (El-Jack et al., 1999; Shi et 

al., 2008). After this point, increased insulin-responsiveness and insulin-

stimulated glucose uptake can be observed. Moreover, exogenous GLUT4 is now 
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stable and can be found within small vesicles that do not sediment after 

centrifugation at 16,000 × g: the GSVs. At the same time the concentration of 

the membrane protein sortilin increases dramatically (Lin et al., 1997; N. J. 

Morris et al., 1998; Shi & Kandror, 2005). This discovery led to the hypothesis 

that sortilin is in fact involved in the biogenesis of GSVs. Indeed, overexpression 

of sortilin in 3T3 L1 adipocytes leads to increased GSV formation. 

Correspondingly, knock-down of sortilin results in a decrease of total GLUT4 

expression, insulin-stimulated glucose-uptake and formation of GSVs (Shi & 

Kandror, 2005). Interestingly, if undifferentiated 3T3 L1 fibroblasts are 

transfected with both GLUT4 and sortilin, they form GSVs and become insulin-

responsive. These findings suggest that sortilin is in fact not only necessary but 

also sufficient for the biogenesis of GSVs (Kandror, 2018; Shi & Kandror, 2005). 

After GLUT4 itself, the insulin-responsive aminopeptidase (IRAP) is probably the 

most significant component of GSVs (Kupriyanova et al., 2002; Shi et al., 2008). 

It was discovered in traditional protein sequencing studies and was found to 

colocalise with GLUT4 almost completely (Kandror & Pilch, 1994; Mastick et al., 

1994). It is expressed in the same tissues as GLUT4, namely fat and skeletal 

muscle, but it was also found in other tissues and cells that do not express 

GLUT4 (Albiston et al., 2001; Nikolaou et al., 2014). IRAP is a zinc-dependent 

membrane aminopeptidase, which features large extracellular and cytoplasmic 

domains and spans the membrane once (Rogi et al., 1996). Interestingly, the 

intracellular domain features two dileucine motives, like the C-terminus of 

GLUT4, which may be involved in trafficking of the protein similar to the glucose 

transporter (Keller et al., 1995). Chinese Hamster Ovary (CHO) cells express 

IRAP, but not GLUT4. Johnson et al. expressed a fusion protein of C-terminal 

IRAP and N-terminal TfR in this cell line and found that the chimera recycled 

slowly through the endosomal compartment to the plasma membrane. Insulin 

stimulation increased this 2-3-fold (Johnson et al., 1998). The chimera expressed 

in undifferentiated 3T3 L1 fibroblasts behaves the same way (Lampson et al., 

2000). The fact that IRAP and GLUT4 are so similar in their localisation and their 

response to insulin makes IRAP a popular protein for the study of GSVs (Stenkula 

et al., 2010). It is debated whether IRAP and GLUT4 physically interact with 

each other. The two proteins do not co-precipitate, eliminating the possibility of 

a strong interaction (Keller, 2003). However, experiments with a yeast two-
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hybrid system showed that there is an interaction between the luminal domain 

of IRAP and the first luminal loop of GLUT4 (Shi et al., 2008), although it has 

now been suggested that this is via a retromer that binds to GLUT4 and IRAP 

(Pan et al., 2017; Z. Yang et al., 2016). When IRAP is knocked down in 3T3 L1 

adipocytes, intracellular GLUT4 retention under basal conditions is not as 

effective, while membrane trafficking of other proteins, such as TfR, is not 

affected (Jordens et al., 2010). Determination of the exocytosis rate constants 

revealed that it is in fact the exocytosis rate that is elevated after IRAP knock-

down. Using the endosome ablation assay, it could be shown that IRAP knock-

down specifically leads to an increased amount of GLUT4 within endosomes, 

which led to the conclusion that IRAP plays a crucial role in the sorting of GLUT4 

into GSVs. On the other hand, knock-down of GLUT4 does not alter the 

intracellular distribution of IRAP, suggesting that IRAP traffics independently of 

GLUT4 (Jordens et al., 2010). 

Low density lipoprotein receptor-related protein 1 (LRP1) is a large (~500 kDa) 

protein, also known as α2-macroglobulin receptor (Corvera et al., 1989). 

Crosslinking experiments have shown a direct interaction between the luminal 

domains of LRP1 with GLUT4, IRAP, and sortilin. It also binds AS160, a protein 

that is part of the insulin signalling pathway (see 1.5 Insulin Signalling) Knock-

down of the protein inhibits the formation of fully functional GSVs, which means 

it must play a role in the biogenesis of the vesicles (Brewer et al., 2014; 

Jedrychowski et al., 2010). 

GLUT4, IRAP, sortilin, and LRP1 are thought to interact with each other via their 

luminal domains and form an oligomeric complex. Golgi-localized, gamma-ear 

containing, ADP-ribosylation factor binding (GGA) proteins then recognise the 

DXXLL sequence of sortilin and enable the sorting into GSVs. All four proteins 

contain amino acid sequences that are known to bind clathrin APs, which then 

facilitate budding off the donor membrane (Kandror & Pilch, 2011). 

Other proteins that are associated with GSVs and show significant colocalisation 

with GLUT4 in microscopy images are TfR (Davis et al., 1986), mannose-6-

phosphate receptor (M6PR) (Oka et al., 1984), syntaxins 6 (Perera et al., 2003) 

and 16 (Proctor et al., 2006), and Vti1a (Kandror & Pilch, 2011). These proteins, 

particularly TfR and M6PR have long been known to translocate to the cell 
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surface in response to insulin stimulation (Kandror & Pilch, 1996). About 50 % of 

total TfR and 10 – 15 % of total M6PR is associated with GSVs in adipocytes. It 

was hypothesised that they recycle in GSVs to fulfil general nutritional 

requirements of the cell during insulin stimulation (Kandror & Pilch, 1996). More 

recently it has been suggested that these proteins are not actively sorted into 

GSVs but rather end up there “by chance” because they share the same donor 

membrane (recycling endosome and/or TGN) (Kandror & Pilch, 2011). 

1.5 Insulin Signalling 

Since this work has been mostly carried out in adipocytes, the following section 

will concentrate on insulin signalling leading to GLUT4 translocation and omit 

the signalling pathways that are mediated by muscle contraction. 

The insulin receptor is located in the plasma membrane and consists of two 

subunits α and β. The α domain is located extracellularly and binds insulin, while 

the intracellular β domain has tyrosine kinase activity. When insulin binds to the 

α subunit of the receptor, this leads to autophosphorylation of a tyrosine residue 

in the β subunit (Kasuga et al., 1982; Shia & Pilch, 1983). Autophosphorylation 

initiates two different signalling cascades: the adaptor protein with pleckstrin 

homology and Src homology 2 domains (APS) pathway and the phosphoinositide 

3-kinase (PI3K) pathway. 
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1.5.1 The APS Pathway 

 

Figure 1.4 Schematic of the APS Pathway 
(1) Insulin binds to its receptor (2) Autophosphorylation of the insulin receptor (3) Recruitment of 
APS, CAP, and c-CBL (4) Phosphorylation of c-CBL (5) Recruitment of C3G and CRK 
(6) Activation of TC10 (7) Interaction with exocyst subunit (enabling exocytosis) (8) Interaction with 
CIP4/2 (inhibiting GSV retention) (9) GSV translocation and exocytosis. (Saltiel & Kahn, 2001) 

Autophosphorylation of the insulin receptor leads to the recruitment of APS, the 

proto-oncogene c-CBL and c-CBL-associated protein (CAP). C-CBL is then 

phosphorylated on three different tyrosines by the insulin receptor (Liu et al., 

2002). Activated c-CBL recruits a complex of CRK and C3G (Ribon et al., 1996) 

which in turn leads to the activation of the GTPase TC10. The active form of 

TC10 interacts with CIP4/2, which is involved in GSV retention (Chang et al., 

2002). It also interacts with EXO70, a subunit of the exocyst, which plays a role 

in the exocytosis of vesicles (Leto & Saltiel, 2012). 

1.5.2 The PI3K Pathway 

The second pathway initiated by binding of insulin to its receptor is the PI3K 

pathway. Autophosphorylation of the insulin receptor is followed by 

phosphorylation of several insulin receptor substrates (IRS). IRS1 and IRS2 are 

the most common IRS in fat cells (White, 2002). IRS do not have any inherent 

enzymatic activity, but enable the recruitment of other proteins, such as PI3K, 

to the membrane (Sun et al., 1991). The PI3K family consists of various 

structurally related enzymes that are divided into four subgroups based on the 
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structure of their catalytic subunits and substrate specificity (Leevers et al., 

1999). The activation of PI3K has multiple consequences that are not yet all 

known. An obvious effect is the phosphorylation of phosphoinositides (PIs), which 

generates PI-3,4,5-triphosphate (PIP3) (Saltiel & Kahn, 2001). The 

serine/threonine kinase Akt, also known as protein kinase B (PKB) is downstream 

off PI3K and is an important regulator of glucose uptake (Kohn et al., 1996). It 

binds to PIP3 at the plasma membrane via the pleckstrin homology domain at its 

N-terminus and is phosphorylated by phosphoinositide-dependent kinase 1 

(PDK1) and mTOR complex2 (mTORC2) (Stephens et al., 1998). The Rab GTPase-

activating protein (GAP) AS160 (Akt substrate of 160 kDa) is one of the many 

substrates of phosphorylated Akt (Kane et al., 2002). Rab proteins are GTPases 

that are associated with membrane trafficking, they switch between an active 

form (GTP loaded) and an inactive form (GDP loaded) (Zerial & McBride, 2001). 

Phosphorylation of AS160 inhibits its GAP activity, which activates the GSV 

associated Rab proteins and allows translocation of GSVs to the plasma 

membrane (Manning & Toker, 2007; Zeigerer et al., 2002). This process is likely 

linked to the fact that AS160 is associated with IRAP in the membrane of GSVs in 

the basal state but separates after insulin stimulation. 

 

Figure 1.5 Schematic of the PI3K Pathway. 
(1) Insulin binds to its receptor (2) Autophosphorylation of the insulin receptor (3) Phosphorylation 
of several insulin receptor substrates (4) Activation of PI3K (5) Production of PIP3 in the plasma 
membrane (6) Recruitment of Akt to the plasma membrane (7) Phosphorylation of Akt by PDK1 
and mTORC2 (8) Phosphorylation of AS160 (9) Activation of GSV associated Rab proteins 
(10) Translocation of GSVs to the plasma membrane (Bryant et al., 2002; Saltiel & Kahn, 2001; 
Shepherd & Kahn, 1999). 
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Knock-down of AS160 in adipocytes indeed leads to GLUT4 translocation even 

under basal conditions (Larance et al., 2005) and overexpression of a dominant-

negative mutated form of AS160 in which each of the phosphorylation sites are 

mutated, hinders GLUT4 translocation (Sano et al., 2003).The signalling 

pathways associated with insulin-mediated GLUT4 translocation to the plasma 

membrane are not yet fully resolved and are far more complex than outlined in 

this chapter (Bryant et al., 2002; S. Huang & Czech, 2007; Tavaré et al., 2001). 

Figure 1.5 shows a simplified representation as described here.  

Funaki et al. found that the PI-binding peptide (PBP10) can induce GLUT4 

translocation to the plasma membrane but does not affect glucose uptake, 

indicating that insulin stimulation has these two different effects. Pre-treatment 

of 3T3 L1 adipocytes with PBP10 before insulin stimulation showed that the 

insulin response was faster than without PBP10 pre-treatment. Thus, activation 

of GLUT4 for glucose uptake by insulin must happen while the transporter is 

already in the membrane. Both, the translocation and activation of GLUT4 

involve PI3K (Funaki et al., 2004). 

1.6 GLUT4 Trafficking Proteins 

The cargo of GSVs was discussed in chapter 1.4.2, but there are other proteins 

associated with GSVs that enable translocation and fusion with membranes. 

1.6.1 Rab Proteins 

Rab proteins are monomeric small GTPases that are involved in most, if not all 

steps of intracellular vesicle transport. They play an important role in the 

tethering/docking and fusion of vesicles with acceptor membranes but are also 

implicated in the budding off donator membranes and transport along the 

cytoskeleton. Their intracellular location is very specific and different Rab 

proteins are linked to different organelles. Some Rab proteins even show cell- or 

tissue-specificity (Zerial & McBride, 2001). Subcellular membrane fractionation 

and immunopurification studies have revealed a number of Rab proteins that are 

associated with the GSC or GSVs, among them are Rab2A, Rab3A, Rab8A, Rab10, 

Rab11, and Rab14 (Koumanov et al., 2015; Larance et al., 2005; Mîinea et al., 

2005). 
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Rab10 is thought to be the key Rab protein for GSV translocation (Sadacca et al., 

2013; Sano et al., 2007). It is a downstream target of AS160, which has a Rab 

GAP domain. Rab GAPs interact with Rabs and trigger their GTPase activity, thus 

increasing the proportion of inactive GDP-bound Rab proteins (Zerial & McBride, 

2001). In the basal state, AS160 is active, which leads to the inactivation of the 

associated Rab and consequently retention of GSVs (Kane et al., 2002). 

Expression of mutated Rab10 that lacks the ability to hydrolyse GTP to GDP, 

leads to increased levels of GLUT4 in the plasma membrane. Knock-down inhibits 

insulin-induced translocation (Sano et al., 2007). 

Using total internal reflection fluorescence (TIRF) microscopy (TIRFM), Chen et 

al. developed an assay that allowed them to link the different Rabs to specific 

steps in insulin-mediated GLUT4 trafficking. They visualised GSVs in the TIRF 

zone using mCherry-tagged GLUT4 and determined the colocalisation with GFP-

tagged Rabs. In the basal state Rab4A, Rab4B, Rab14, and Rab8A colocalised 

with GLUT4 to a high degree. Interestingly, Rab10 showed only little 

colocalisation under basal conditions (Yu Chen et al., 2012). To distinguish 

between GSVs close to the membrane and fusing GSVs, they tagged IRAP with 

the pH-sensitive fluorescent protein pHluorin. Within the acidic environment of 

the GSVs the fluorescence of pHluorin is quenched. Upon fusing with the 

membrane, the protein comes into contact with the neutral pH of the medium, 

which turns on fluorescence (Yu Chen & Lippincott-Schwartz, 2015; Jiang et al., 

2008). After insulin stimulation >90 % of the fusion events they observed 

colocalised with Rab10, while Rab4A and Rab4B did not. This result led to the 

hypothesis that Rab10 is a mediator of GSV fusion, while Rab4A and Rab4B are 

involved in GLUT4 recycling with the early endosome. Rab14 showed moderate 

association with fusing vesicles but little overlap with Rab10. Further 

investigation revealed that Rab14 is indeed present in endosomal vesicles and 

thus probably associated with the recycling of GSVs within the endosomal cycle 

(Yu Chen et al., 2012). Rab10 in its active GTP-form was also found to be 

associated with the exocyst subunits Exoc6 and Exoc6b (Sano et al., 2015). 

In a study investigating GTP loading of Rabs in response to insulin in primary rat 

adipocytes, Rab3A was found to play a role in GLUT4 translocation. Rab3A is 

inhibited by Noc2 and insulin-mediated loading of Rab3 with GTP disrupts this 
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complex, allowing translocation of GSVs to the plasma membrane (Koumanov et 

al., 2015). The number of Rabs colocalising with GSVs may be even higher, as 

GSV trafficking is comprised of many different steps, that may be regulated by 

different Rabs. 

1.6.2 SNARE and SM Proteins 

Most membranes in eukaryotic cells consist of phospholipid bilayers. Water 

molecules arrange themselves around the hydrophilic head groups and are 

difficult to separate, which makes two membranes repel each other. To 

overcome this hydration repulsion and enable fusion, it requires the membranes 

to be in very close proximity to each other. This is mediated by SNARE (soluble 

N-ethylmaleimide sensitive fusion protein attachment protein receptor) 

proteins. This family consists of syntaxins, vesicle-associated membrane proteins 

(VAMPs), and synaptosome-associated proteins (SNAPs) (Malsam et al., 2008). 

SNAP25 is not to be confused with soluble NSF attachment proteins (SNAPs) also 

termed N-ethylmaleimide-sensitive factor Attachment Protein Alpha (NAPA), which 

recruit NSF to the membrane 

1.6.2.1 The SNARE Complex 

SNAREs are anchored to their membrane via their C-terminus or in the case of 

SNAPs by palmitoylation and can be divided into two groups, depending on their 

location: v-(vesicle)-SNAREs and t-(target)-SNAREs (Malsam et al., 2008). They 

contain a ~60 amino acid sequence made up of heptads, the SNARE motif 

(Laidlaw et al., 2017). When a v- and a t-SNARE come into close proximity to 

each other they form the SNARE complex, a tight alpha helical bundle consisting 

of four helices, one each from VAMP and syntaxin, two from SNAP. The side 

chains of the amino acids in the SNARE domains interact with each other and 

form hydrophobic layers (Sutton et al., 1998). The formation of a SNARE complex 

from these components is energetically favourable, as this occurs spontaneously 

in vitro. These experiments have also shown that SNARE complexes are not only 

necessary but also sufficient for vesicle fusion with a target membrane (Weber 

et al., 1998). The SNARE hypothesis postulates that the specificity of fusion 

events is derived from the pairing of a v-SNARE with its cognate t-SNARE 

(Söllner, Bennett, et al., 1993; Söllner, Whiteheart, et al., 1993). 
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Figure 1.6 Formation of the SNARE Complex and Vesicle Fusion 
A: GSV containing the v-SNARE VAMP2 approaches the plasma membrane with embedded 
t-SNAREs syntaxin4 and SNAP23 B: SNAREs form the SNARE complex and zipper up, bringing 
the vesicle and plasma membrane into close proximity to each other C: Vesicle fusion and 
disassembly of the complex using energy provided by ATPase (Y. A. Chen & Scheller, 2001). 

The zippering up of the complex is thought to provide the energy that brings the 

two membranes close together, overcoming hydration repulsion, and thus 

allowing fusion. Figure 1.6 demonstrates this process. 

The key t-SNAREs involved in GSV fusion with the plasma membrane are 

syntaxin4 and SNAP23. Knock-down of either of these proteins results in 

inhibition of vesicle tethering to the membrane. Knock-down of the v-SNARE 

VAMP2 on the other hand does not interfere with the tethering process but 

inhibits vesicle fusion (Kawaguchi et al., 2010; Kioumourtzoglou, Sadler, et al., 

2014). 

Other SNAREs are involved in intracellular GSV trafficking, which will be 

expanded on in more detail in Chapter 6. 

1.6.2.2 VAMPs 

VAMPs 2, 3, 4, 5, 7, and 8 are all expressed in 3T3 L1 fibroblasts, but they are 

selectively up-regulated during differentiation into adipocytes, which indicates a 

role in insulin-sensitivity (Larance et al., 2005; Sadler et al., 2014; Volchuk et 

al., 1995). Levels of VAMP 2, 3, and 4 increase significantly, while VAMPs 5, 7, 

and 8 remain unchanged. Subcellular fractionation showed that VAMPs 2, 5, and 

8 are present in both GSVs and recycling endosomes, while VAMPs 3,4, and 7 are 
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mostly found in recycling endosomes. Insulin stimulation leads to an increase of 

VAMP2 and 3 in the plasma membrane, suggesting that these two VAMPs are 

present in GSVs and are involved in GSV fusion with the plasma membrane 

(Cheatham et al., 1996; Sadler et al., 2014). It is thought that VAMP2 is the v-

SNARE that mediates membrane fusion, since depletion of the protein inhibits 

GLUT4 translocation and glucose uptake (Bryant & Gould, 2011). On the other 

hand, in vitro experiments have shown that all VAMPs can form SNARE 

complexes with syntaxin4 and SNAP23 (Sadler et al., 2014). Suggesting that 

VAMPs can be redundant, it was found that when inhibiting GSV fusion by 

disruption of the VAMPs 2, 3, and 8, insulin sensitivity could be restored by 

either of these VAMPs (Zhao et al., 2009). 

Contradictory, other studies found that VAMP2 depletion alone can impair GSV 

translocation (L. B. Martin et al., 1998) and, more specifically, fusion 

(Kawaguchi et al., 2010). Moreover, while both, VAMP2 and VAMP3 translocate 

to the plasma membrane in response to insulin, VAMP2 is more abundant in GSVs 

and it also co-precipitates with syntaxin4 in immunoprecipitation experiments, 

while VAMP3 does not (Sadler et al., 2014). These studies indicate, that VAMP2 

plays a major role in GLUT4 exocytosis. 

1.6.2.3 SM Proteins 

Sec1/Munc18 (SM) proteins are known to control the assembly of SNARE 

complexes (Toonen & Verhage, 2003). Adipocytes express two Munc18 

homologues: Munc18b and c, while Munc18a is neuronal specific and not found in 

fat cells (Tellam et al., 1995). While Munc18a and b have been shown to bind to 

syntaxins 1A, 2, and 3 in in vitro binding assays, only Munc18c binds to 

syntaxin4. In addition, both proteins translocate to the plasma membrane from 

intracellular membranes in response to insulin in 3T3 L1 adipocytes, as assessed 

by subcellular fractionation (Tellam et al., 1997). Munc18c is an arch-shaped 

protein that can bind to the regulatory domain Habc of syntaxin4. The Habc 

domain binds to the SNARE motif of the syntaxin, which inhibits SNARE complex 

assembly. The arch-shape of the SM protein holds the syntaxin in this closed 

conformation (Bracher & Weissenhorn, 2002). The relationship between SNAREs 

and SM proteins is however more complicated than this, as there are different 
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modes of interaction, which can in fact enable fusion of vesicles with target 

membranes (Laidlaw et al., 2017). 

Using the microscopy-based proximity ligation assay, Kioumourtzoglou et al. 

found that insulin does indeed facilitate the formation of SNARE complexes 

containing syntaxin4, SNAP23, VAMP2, as well as the SM protein Munc18c in 3T3 

L1 adipocytes. Tyrosin phosphorylation of Munc18c on Tyr521 allows SNARE 

complex assembly in vitro and this residue is also a direct target of the insulin 

receptor (Jewell et al., 2011; Schmelzle et al., 2006). This data has led to the 

hypothesis that phosphorylation of Munc18c in response to an insulin stimulus 

enables SNARE complex formation and thus allows GSV fusion with the 

membrane (Kioumourtzoglou, Gould, et al., 2014). 

1.6.3 Translocation of GSVs Along Filaments and Microtubules 

Using high-speed microscopy, Patki et al. were the first to live image individual 

cells expressing GLUT4-GFP under the influence of insulin. Within six minutes of 

insulin stimulation, individual GSVs can be observed to translocate from the 

perinuclear region of 3T3 L1 adipocytes towards the plasma membrane with a 

speed of 0.180 to 0.707 µm s-1. This movement is enabled by the interaction with 

both, actin and the microtubulin network, since disruption of either inhibits 

translocation as well as intracellular compartmentalisation (Patki et al., 2001). 

When treated with nocodazole, a potent drug that disrupts microtubulin 

filaments, 3T3 L1 adipocytes do not show the typical distribution of GLUT4 in 

the basal state that includes concentration around the nucleus. Instead, GLUT4 

is homogenously distributed in the cytoplasm (J. Huang et al., 2005; Karylowski 

et al., 2004). Another effect of the drug is diminished glucose uptake in response 

to insulin. Similarly, the addition of the actin-depolymerising toxin Lat-A stops 

all movement of GLUT4 within 3T3 L1 adipocytes, resulting in accumulation of 

the transporter in the juxtanuclear region and also inhibits glucose uptake. On 

the base of their findings, Patki et al. hypothesised that actin enables the 

interaction of GSVs with microtubules, thus allowing GSV translocation, and that 

insulin stimulation supports this interaction (Patki et al., 2001). This and other 

studies found that microtubules are necessary for insulin induced GSV 

translocation (J. Huang et al., 2005; Karylowski et al., 2004; Molero et al., 

2001). The entire process, however, is clearly not regulated by microtubules 
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alone. Stabilisation of microtubules has no increasing effect on GSV translocation 

in the absence of insulin (Molero et al., 2001). 

In fact, microtubules at the membrane appear to be involved in GSV fusion itself 

and not only transport to the membrane as microtubule density near the plasma 

membrane increases with insulin stimulation and fusion events colocalise with 

microtubules. This colocalisation is not due to previous transport of the GSV 

along microtubules (Dawicki-McKenna et al., 2012).  

Studying isolated rat adipocytes via TIRFM, Lizunov et al. found that GSVs are 

indeed moving rapidly along microtubules close to the plasma membrane, but 

this movement is decelerated significantly after addition of insulin when GSVs 

are tethered to the membrane in preparation for fusion (Lizunov et al., 2005). 

These results illustrate the important role that the cytoskeleton plays in the 

insulin-induced translocation of GSVs. Particularly microtubules are involved in 

GSV trafficking near the membrane, how exactly insulin stimulation inhibits 

these movements remains to be discovered.  

1.7 GLUT4 in the Plasma Membrane 

While GLUT4 signalling pathways have been studied extensively since the 

discovery of the transporter, its dynamics within the plasma membrane have 

been mostly neglected, which has been due to the lack of a suitable 

experimental setup to study exocytosed GLUT4. Classical biochemical 

approaches do not or only partially allow differentiation between intracellular 

and plasma membrane GLUT4. The discovery of the green fluorescent protein 

(GFP) and the ability to express it in living organisms opened up new ways for 

the study of all kinds of proteins (C. Martin et al., 1994; Shimomura et al., 

1962). Enhanced GFP (eGFP) is a variant of GFP (Cormack et al., 1996). Two 

years after GFP had first been expressed in Escherichia coli (E.coli) by Martin et 

al. (C. Martin et al., 1994), Dobson et al. used the back then revolutionary 

technology to express the fusion protein GLUT4-GFP in CHO cells, thus allowing 

visualisation of GLUT4 in single cells. For the first time, GLUT4 translocation to 

the plasma membrane upon insulin stimulation was observed (Dobson et al., 

1996). Shortly afterwards the same group managed to express their construct in 

3T3 L1 adipocytes (Powell et al., 1999). 
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By inserting a haemagglutinin (HA) tag into the first exofacial loop of GLUT4-GFP 

and visualise this by non-permeable immunofluorescent surface staining, it was 

furthermore possible to distinguish between intracellular GLUT4 and GLUT4 that 

had been inserted into the plasma membrane (Dawson et al., 2001), making HA-

GLUT4-GFP the most commonly used genetically modified variant of GLUT4. 

Engineering of GLUT4-GFP and later HA-GLUT4-GFP lay the foundation for most 

of the work that involves GLUT4 and fluorescence microscopy. 

The development of light microscopy techniques such as TIRFM and super-

resolution microscopy allowed to characterise GLUT4 in the plasma membrane. 

This field is still very young and the key studies that will be described in more 

detail in this section are summarised in Table 1.1. 
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Table 1.1 Studies on GLUT4 in the Plasma Membrane 
Studies used Total Reflection Fluorescence Microscopy (TIRFM), Fluorescence Photoactivation 
Localisation Microscopy (FPALM), and direct Stochastic Optical Reconstruction Microscopy 
(dSTORM) 

Study Microscopy 
Method and Main 

Probe 

Cell System Key findings 

Li et al. 2004 TIRFM 
GLUT4-EGFP 

3T3 L1 adipocytes Movement of 
GLUT4 in the 
membrane is 
restricted 

Lizunov et al. 
2005 

TIRFM 
HA-GLUT4-GFP 

Rat adipocytes Insulin induces 
vesicle tethering 
to the membrane 

Huang et al. 
2007 

TIRFM 
GLUT4-EGFP 

3T3 L1 adipocytes GLUT4 colocalises 
with clathrin in 
the membrane 

Bai et al. 2007 TIRFM 
GLUT4-EGFP 

3T3 L1 adipocytes Insulin regulates 
the fusion of GSVs 
with the 
membrane 

Jiang et al. 2008 TIRFM 
TDimer2-IRAP-
pHluorin 

3T3 L1 adipocytes Some fusion 
events are of the 
kiss-and-run type 

Stenkula et al. 
2010 

TIRFM 
IRAP-pHluorin 

Rat adipocytes Insulin induces 
dispersal of 
GLUT4 in the 
membrane 

Xu et al. 2011 TIRFM 
VAMP2-pHluorin 

3T3 L1 adipocytes Insulin 
stimulation 
decreases the 
number of kiss-
and-run events 

Lizunov, Lee et 
al. 2013 

TIRFM 
HA-GLUT4-GFP 

Human adipocytes Insulin resistance 
in humans results 
in impaired GSV 
tethering 

Lizunov, 
Stenkula et al. 
2013 

FPALM 
HA-GLUT4-EOS 

Rat adipocytes Further 
characterisation 
of GLUT4 
clusters. 
Eliminating some 
possible 
clustering 
mechanisms, such 
as clathrin 

Gao et al. 2017 dSTORM 
HA-GLUT4-GFP 

3T3 L1 adipocytes Insulin-induced 
dispersal of 
GLUT4 is impaired 
in insulin-
resistance 
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1.7.1 GSVs in the TIRF Zone 

TIRFM has been a valuable tool in the study of GLUT4 near the plasma 

membrane. The evanescent wave that is formed when the laser beam is totally 

reflected off the glass coverslip illuminates only the plasma membrane and a 

thin layer of cytosol adjacent to the coverslip, allowing the examination of 

fluorescent labelled proteins less than 100 nm away from the membrane while 

fluorescence of intracellularly located proteins does not disturb the image 

(Axelrod, 2001a; Mattheyses et al., 2010). The principles of TIRFM are described 

in more detail in Chapter 3. 

Li et al. were the first to employ TIRFM to track single GSVs near the plasma 

membrane and study their mobility and dynamics. Another characteristic of the 

evanescent wave generated in TIRFM is that it is exponentially decreasing with 

the distance from the coverslip (Axelrod, 2001a). This means that a GSV 

containing GFP-tagged GLUT4 can be seen approaching by its increasing 

fluorescence (C. H. Li et al., 2004). Li et al. used this attribute to study the 

vertical movement of GSVs. They found that most GSVs move up and down in the 

TIRF zone repeatedly, which indicates that they are not docked to the plasma 

membrane. Laterally, GSVs moved in a constrained or caged fashion, usually not 

more than 100 nm away from their initial site, indicating some sort of tethering 

(C. H. Li et al., 2004). 

Under basal conditions, GSVs can be seen moving near the plasma membrane in 

the manner previously described. A lot of this movement is along trajectories 

that are likely related to the microtubule network. One study found that insulin 

stimulation reduced this movement by a factor of 8, which is due to the 

immobilisation of GSVs to the membrane. Immobilised vesicles also “wriggle” to 

a lesser degree in the presence of insulin than they do in the basal state 

(Lizunov et al., 2005). 

With TIRF microscopy, it was possible to investigate processes happening directly 

at the plasma membrane in response to an insulin stimulus. Specifically, the 

docking and fusion of GSVs could be examined more closely and differences 

between the basal and insulin stimulated state could be observed on a much 

more resolved level. 
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1.7.2 GLUT4 Clustering in Response to Insulin 

In their first TIRFM experiments, Lizunov et al. noticed that insulin stimulation 

leads to immobilisation of GLUT4 in the plasma membrane. While the 

distribution is relatively homogenous in the basal state, insulin stimulation 

results in accumulation of glucose transporters in specific areas of the 

membrane (Lizunov et al., 2005). This immobilisation could be due to two 

reasons: Tethering of GSVs in these regions prior to fusion as suggested by 

Lizunov et al. or the movement of GLUT4 into relatively static regions within the 

plasma membrane. Clathrin has been shown to localise to mostly immobile 

domains within the plasma membrane (Bellve et al., 2006) and GLUT4 indeed 

colocalises with these static patches after insulin stimulation but to a much 

lesser degree in the basal state (S. Huang et al., 2007). Contradicting this 

finding, more recent data using surface staining has revealed that most of the 

GLUT4 that colocalises with clathrin is found in close proximity to the membrane 

but is not actually exocytosed. Instead, clathrin is probably involved in the 

endocytosis of existing GLUT4 clusters (Stenkula et al., 2010). 

1.7.3 Tethering and Fusion of GSVs with the Plasma Membrane 

The single steps that happen at the plasma membrane are thought to be 

reversible docking and fusion of the vesicle (Bai et al., 2007). When imaging 

GLUT4-GFP expressing adipocytes in TIRF, a docking event is characterised by a 

fluorescent spot, the GSV, approaching the membrane and then remaining static 

for a defined period. After docking the fluorescence can disperse in the field of 

view, which signifies fusion of the vesicle. In other cases, the fluorescence 

decreases again, meaning that the vesicle has undocked. Bai et al. described 

this behaviour with the following reaction scheme: 

MV  DV
k−1
←  

k   1

→  
k  2

→ Fusion 

According to this scheme, moving vesicles (MV) are mobile fluorescent GSVs 

within the TIRF zone. They dock to the membrane with the docking rate k1 and 

become docked vesicles (DV). From this state they can either undergo fusion 

with the fusion rate k2 or they undock again with the undocking rate k-1. Kinetic 

analysis of these steps revealed that insulin increases the fusion rate by 
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approximately 8-fold, but the docking rate only about 2-fold. The time the 

vesicles remained in the docked state, the mean dwell time, decreased by about 

30 %. The docking step appears to be regulated by PI3K, since treatment with 

the PI3K inhibitor Wortmannin reduces the docking rate significantly. In 

conclusion, insulin stimulates mainly the fusion of vesicles with the membrane 

and there may be an insulin-regulated priming step after docking that prepares 

the GSVs for fusion (Bai et al., 2007). 

Fusion of other GSV specific proteins such as IRAP and VAMP2 with the pH 

sensitive fluorescent protein pHluorin offered the opportunity to witness fusion 

events of GSVs with the membrane based on the protein’s fluorescent properties 

(Ashby et al., 2004). If fused with the C-terminus of IRAP or VAMP2, pHluorin is 

located inside the GSV where the pH is acidic. Fusion of the GSV with the plasma 

membrane exposes the protein to the neutral pH of the extracellular culture 

medium, which activates fluorescence (Yu Chen & Lippincott-Schwartz, 2015; 

Jiang et al., 2008). Using pHluorin tagged GSV proteins is a very elegant way to 

visualise fusion. Fusion events are much easier to witness by a sudden increase 

in fluorescence than by simply observing a spreading of fluorescence as Bai et al. 

did. It is also less ambiguous whether a vesicle is indeed fused with the 

membrane or only docked to it. 

Jiang et al. used the unique properties of IRAP-pHluorin and engineered the 

fusion protein further by adding the red fluorescent protein Tdimer2 to its 

N-terminus. With the help of this construct and dual-colour TIRFM they could 

observe the docking and fusion of GSVs in real time and reported that some of 

the fusion events were of the “kiss-and-run” type, meaning that the vesicles 

fused briefly with the membrane to be endocytosed again shortly after. 

According to their observations, 15 % of fusion events in the basal state were of 

the kiss-and-run type. By expressing a mutated form of AS160 in adipocytes, the 

four times phosphorylated AS160-4P, they found out that this leads to the 

inhibition of insulin stimulated GSV docking, indicating that AS160 is crucial for 

the docking, but not the fusion of GSVs (Jiang et al., 2008). 

Using a similar probe, VAMP2-pHluorin, Xu et al. also reported kiss-and-run 

events. In contrast to the findings of Jiang et al., with almost 40 % of fusion 

events they found them to be very common in unstimulated cells. This number 
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dropped to about 5 % after insulin stimulation. Disruption of the phospholipase 

D1 (PLD) increased the number of kiss-and-run events in both the basal and the 

insulin-stimulated state. In another experiment they quantified fusion events 

further by determining the duration between docking and fusion. This fusion 

pore duration was significantly shorter in insulin stimulated cells than in basal 

cells. They concluded that insulin must lower the energy barrier for full fusion 

after vesicle pore formation, possibly in correlation with PLD. Thus, insulin not 

only regulates GSV translocation to the plasma membrane, but it also appears to 

have a direct effect at the fusion pore itself (Y. Xu et al., 2011). 

Figure 1.7 shows the process of vesicle fusion schematically. When the GSV 

approaches the plasma membrane (A) it can dock, and a fusion pore opens up 

(B). From here, there are two possibilities: the fusion pore can either close again 

and the vesicle undocks in a kiss-and-run like fashion (C), this is more likely in 

the basal state. During insulin stimulation the likelihood of the vesicle fusing 

entirely is increased, allowing dispersal of GLUT4 in the membrane (D). 

Defective tethering of GSVs has been linked to type 2 diabetes (Lizunov, Lee, et 

al., 2013). Human adipocytes from subjects with varying systemic insulin 

sensitivity and body mass index (BMI) were transfected with fluorescently tagged 

GLUT4 and observed via TIRFM in the basal state and after insulin stimulation. 

Interestingly, cells from all subjects behaved the same under basal conditions, 

whether they were derived from lean, obese, insulin-sensitive, or insulin-

resistant subjects. GSVs all translocated, tethered, and fused in the same 

manner, indicating that the machinery that is required for basal GSV trafficking 

is not affected by either BMI or insulin-sensitivity. Insulin-stimulated GLUT4 

translocation, however, was significantly impaired in insulin-resistant subjects. 

Surface staining of GLUT4 revealed that there was less total GLUT4 present in 

the plasma membrane after insulin stimulation at low systemic insulin-

sensitivity. This is due to fewer fusion events as a result of impaired vesicle 

tethering. BMI alone did not have such drastic effect (Lizunov, Lee, et al., 2013). 
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Figure 1.7 Fusion of GSV with the Plasma Membrane 
A: A GSV is approaching the membrane. B: Docking of the vesicle and opening of the fusion pore. 
C: Retreat of the GSV in a kiss-and-run like fashion D: Full vesicle fusion with the membrane 

1.7.4 GLUT4 Clustering and Dispersal 

Although insulin has been shown to regulate many steps from GLUT4 recycling to 

translocation to the membrane, it is now thought that it has a major effect on 

the distribution of GLUT4 in the plasma membrane itself. Stenkula et al. 

delivered evidence for this when they reported that in the basal state GLUT4 can 

be mostly found in clusters, whereas insulin stimulation leads to a much more 

dispersed distribution of the transporter. Importantly, this is not an artefact of 

fixation or labelling. What exactly mediates the formation of clusters and their 

dispersal remains unknown, but it has been shown that they are associated with 

neither caveola, nor clathrin (Stenkula et al., 2010). The latter however is 

involved in the endocytosis of pre-existing clusters particularly in the basal 

state. In terms of exocytosis, Stenkula et al. described two different modes: 

fusion-with-retention (previously referred to as kiss-and-run) and fusion-with-

release. In the basal state 95 % of all fusion events were attributed to the 

fusion-with-retention type. Insulin stimulation then not only increased the 

overall fusion rate from 0.03 events/µm2/min in the basal state to 



Chapter 1 50 
 
0.15 events/µm2/min after only 2 minutes, but it also led to a 60-fold increase 

of fusion-with-release events, while only having a very small effect on the 

number of fusion-with-retention events. This indicates that fusion-with-

retention events form clusters of GLUT4 in the plasma membrane. The group 

developed a mathematical model that assumes that insulin only affects the 

dispersal of GLUT4 and assumes GLUT4 to be relatively constant in all other 

GLUT4 containing compartments in response to insulin. Remarkably, this model 

fits experimental data of number of fusion events over time very well. Based on 

their observations, Stenkula et al. proposed a new mode of insulin-regulated 

glucose uptake. In unstimulated cells GLUT4 is mostly found in clusters which 

can be readily re-endocytosed. Insulin-stimulation leads to a dispersal of these 

clusters and monomeric GLUT4 takes up glucose more efficiently (Stenkula et 

al., 2010). 

1.7.5 Single Molecule Imaging of GLUT4 in the Plasma Membrane 

Single molecule imaging had been used in the past to describe the trafficking 

kinetics of GLUT4 inside the cell (Fujita et al., 2010; Hatakeyama & Kanzaki, 

2011), but not to investigate the dynamics of GLUT4 in the plasma membrane. 

Single molecule localisation microscopy (SMLM) is a form of light microscopy in 

which super-resolution is achieved by localising single molecules based on the 

centre of a fluorescent tag’s point-spread function (Betzig et al., 2006; Hess et 

al., 2006; van de Linde, Löschberger, et al., 2011). In short, structures of 

interest are labelled either externally with a fluorescently tagged antibody, or 

internally fused to a fluorescent protein. This fluorophore has the ability to 

switch between the dark and the light state, which results in blinking when 

excited. Blinking means that not all fluorophores are “switched on” at the same 

time, which makes it possible to detect single molecules in different frames (for 

a more detailed explanation refer to Chapter 5). Two SMLM techniques have 

been applied to address the clustering and dispersal of GLUT4: Fluorescence 

Photoactivation Localisation Microscopy (FPALM) (Lizunov, Stenkula, et al., 

2013) and Direct Stochastic Optical Reconstruction Microscopy (dSTORM) (Gao et 

al., 2017). 
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In order to characterise the nature of GLUT4 clusters further, the same group 

that first reported them developed a GLUT4 variant tagged with a 

photoswitchable fluorophore: HA-GLUT4-EOS. This allowed the tracking of single 

GLUT4 molecules in live cells. Using the probe in FPALM, they found three 

different types of GLUT4 movement in the plasma membrane: directed motion, 

free lateral diffusion, and constrained diffusion within clusters. In the basal 

state, almost half of all trajectories were of the constrained diffusion type, this 

decreased to 27 % after insulin stimulation, while more than 70 % were freely 

diffusing in the membrane. This process is not ATP-dependent. Single molecules 

can enter and leave the clusters, but formation of new clusters from freely 

diffusing molecules was not observed. Interestingly, the rate at which single 

GLUT4 molecules leave clusters more than doubles with insulin stimulation. 

When imaging adipocytes expressing HA-GLUT4-EOS as well as IRAP-pHluorin, it 

becomes clear that cluster formation happens upon fusion of GSVs with the 

plasma membrane as the previously described fusion-with-retention events. The 

retention and subsequent cluster formation is specific for GLUT4, as IRAP 

diffuses after exocytosis and is not retained (Lizunov, Stenkula, et al., 2013). 

Recently, dSTORM has been deployed to confirm the formation of GLUT4 clusters 

and their dispersal upon insulin stimulation in 3T3 L1 adipocytes (Gao et al., 

2017). Compared to the basal state, insulin stimulated cells show more clusters, 

which is due to the higher GLUT4 concentration. However, the degree of 

clustering is clearly reduced, and the transporters tend to a more dispersed 

distribution. The cluster size itself is unchanged, but the proportion of GLUT4 

molecules in small clusters is increased. This data strongly supports the 

hypothesis that insulin induces dispersal of GLUT4 in the cell membrane of 

adipocytes. When insulin-resistance is induced by incubation with insulin 

overnight, both insulin-resistant basal and insulin-resistant insulin-stimulated 

cells show a more clustered pattern. This is a ground-breaking revelation, as it 

indicates that GLUT4 cluster formation and dispersal is involved in the 

development of insulin-resistance and therefore diabetes. 

The clustering appears to be linked to the N-terminal F5QQI motif of GLUT4, 

indicating that this region is involved in the maintenance of GLUT4 clusters. 
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Cells expressing a mutant of this motif exhibit less clustering than the wild-type, 

while size and shape of the clusters remains unaltered. (Gao et al., 2017).  

To my knowledge, Lizunov et al. and Gao et al. are the only research groups 

that have investigated the clustering and dispersal of GLUT4 via SMLM. Both 

their studies deliver compelling evidence that insulin-sensitivity of adipocytes 

relies on the ability of GLUT4 to form clusters and disperse in the plasma 

membrane. The question remains how clusters are formed and maintained in the 

absence of insulin on a molecular basis. 

1.7.6 Possible Mechanisms of GLUT4 Clustering 

GLUT4 clusters appear to be elongated rather than round and have a diameter of 

approximately 90-170 nm, which does not change in the presence of insulin. The 

elongated shape of the clusters suggests that they are not maintained by cross-

linked structures. Solid-phase domains can be excluded as a reason, as this 

would not allow mobility of single GLUT4 molecules within them, which is, 

however, the case. Nor are they dependent on lipid rafts, as disruption of 

cholesterol does not alter the cluster shape or size (Lizunov, Stenkula, et al., 

2013). Contradicting this conclusion, Gao et al. find that disruption of 

cholesterol does indeed lead to loss of clusters. This could be explained by the 

higher methyl-β-cyclodextrin concentration they used or by the fact that they 

conducted this experiment in cells expressing the mutated form of the F5QQI 

motif (Gao et al., 2017). This needs to be addressed further, however the lipid 

raft theory itself is heavily disputed amongst scientists (Shaw, 2006). It is likely 

that GLUT4 clusters form in the GSVs before fusion with the membrane and 

components retaining GLUT4 inside the clusters are present in GSVs but not 

necessarily at the plasma membrane. The elongated shape of the clusters could 

therefore also be explained by fusion of tubular-vesicular GSVs (Lizunov, 

Stenkula, et al., 2013). 

The picket fence model was originally proposed to explain why the diffusion 

velocity is much slower in biological membranes than in artificial phospholipid 

bilayers. According to this model, membranes are compartmentalised, and 

regions are separated from each other by molecular “picket fences”. The pickets 

in these fences are proteins anchored to the actin cytoskeleton (Fujiwara et al., 
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2002). It is conceivable that the clustering of GLUT4 is based on its confinement 

within a molecular picket fence, however, the disruption of actin structures 

does not lead to a change in cluster features (Lizunov, Stenkula, et al., 2013). 

This means that the fence around GLUT4 clusters must be maintained 

independently of the actin cytoskeleton. The idea of a protein structure 

corralling GLUT4 in the basal state is nevertheless plausible. The fact that IRAP 

can diffuse from newly formed clusters, but GLUT4 cannot (Lizunov, Stenkula, et 

al., 2013), excludes the classical picket-fence hypothesis, since this would not 

allow for diffusion of any proteins. Stenkula et al. instead proposed a slightly 

altered protein-specific confinement model. It is possible that GLUT4, but not 

IRAP, interacts directly with a component of the molecular picket-fence. 

1.7.7 EFR3 and its Potential Role in GLUT4 Dispersal 

A genetic screen of the yeast Saccharomyces cerevisiae has revealed a potential 

role of the protein EFR3 in the dynamics of GLUT4 in the plasma membrane 

(Wieczorke et al., 2003). EFR3 is a highly conserved membrane protein that has 

been shown to be involved in the formation of Stt4 phosphoinositide kinase (PIK) 

clusters in yeast. It binds to Ypp1, which binds to Stt4. This complex is held at 

the plasma membrane via palmitoylation of the N-terminus of EFR3 (Baird et al., 

2008; Wu et al., 2014). The mammalian homologues of Ypp1 and Stt4, are TTC7 

and phosphatidylinositol 4-kinase type III α (PI4KIIIα) respectively (Nakatsu et 

al., 2012). In mammalian cells, another protein, FAM126A, is part of the PI4KIIIα 

complex (Baskin et al., 2016). Phosphatidylinositols are glycerphospholipids that 

contain a myo-inositol head group, which can be phosphorylated or 

dephosphosphorylated at the 3’, 4’, and/or 5’ hydroxyl group, allowing for 

diversity in signalling pathways (Falkenburger et al., 2010). When 

phosphorylated, phosphatidylinositols are referred to as phosphoinositides (PIs). 

The location of each PI is specific to a cellular membrane and their principal role 

is to interact with proteins that have a function in the respective membrane 

(Tan & Brill, 2014). PI3K for example can be found in the late endosome and 

plays an important role in insulin signalling as has been discussed in chapter 1.5. 

PI4K is predominantly found in the TGN but it is also part of GSVs (DelVecchio & 

Pilch, 1991) It catalyses the conversion of PI to phosphatidylinositol 4-phosphate 

(PI4P) and generates pools of this in the plasma membrane (Tan & Brill, 2014). 
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Recent studies in our laboratory have revealed that the homolog EFR3a plays a 

role in glucose uptake in 3T3 L1 adipocytes. It is localised at the plasma 

membrane and has a regulating effect on GLUT4. Overexpression of EFR3a leads 

to increased GLUT4 translocation and glucose uptake, which is probably due to 

its association with PI4KIIIα. Inhibition of PI4KIIIα with phenylarsine oxide (PAO) 

inhibits glucose uptake, indicating that PI4P is involved in the process. The 

subcellular localisation of PI4KIIIα does not change in response to insulin, 

however, knock-down of PI4KIIIα in 3T3 L1 adipocytes leads to a significant 

decrease in insulin-stimulated glucose uptake, indicating that insulin signalling 

leads to the activation of PI4KIIIα and thus enabling glucose uptake via GLUT4 

(Laidlaw, 2018). 

1.8 Working Hypothesis and Aims of this Study 

Since the discovery of GLUT4 and its association with type 2 diabetes, research 

in the field has come a long way. Numerous effects insulin has on the glucose 

transporter and its associated signalling pathway have been found and analysed 

and the malfunction of either of them may or may not be involved in the 

development of the disease. There is still no cure for type 2 diabetes and 

therapies and medication mostly target the symptoms but not the underlying 

cause. During the previous years it has become clear that insulin has a 

considerable effect on GLUT4 translocation and specifically on its dynamics in 

the plasma membrane. In the basal state, GLUT4 can be found in clusters which 

can be readily endocytosed, which was observed as so-called kiss-and-run 

events. Insulin stimulation then leads to dispersal of the transporter and this is 

thought to facilitate glucose uptake. The exact mechanisms of these clustering 

and dispersal processes remain unclear but could provide a valuable drug target 

for the treatment of type 2 diabetes. 
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Figure 1.8 Clustering and Dispersal of GLUT4 in Response to Insulin. 
In the basal state the majority of GSVs is located in the perinuclear region and GLUT4 in the 
plasma membrane is mostly clustered. Insulin stimulation leads to increased translocation of GSVs 
to the plasma membrane and dispersal of GLUT4. 

 

 

Figure 1.9 Schematic of the Working Hypothesis Involving EFR3a and PI4P. 
A: In the basal state PI4KIIIα is inactive and GLUT4 is corralled in clusters by PI. B: Activation of 
PI4KIIIα by mobilisation of EFR3a, TTC7, and FAM126A after insulin stimulation leads to 
phosphorylation of PI at the 4’ position, resulting in the generation of PI4P. This releases GLUT4 
clusters and allows dispersal of the transporter. 

Based on the research that has been described in the previous sections, we have 

developed a working hypothesis that is illustrated in Figure 1.8 and Figure 1.9. A 

small percentage of GLUT4 is located in the plasma membrane under basal 

conditions. Those molecules can be found in clusters, which enable the 

transporter to be easily re-endocytosed and undergo recycling with the 

endosomal system. We propose that these clusters are maintained by lipid 

domains in the plasma membrane containing unphosphorylated PI. The binding 

of insulin to its receptor leads to a signalling cascade that eventually results in 
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the translocation of GSVs to the plasma membrane and an increase in fusion 

events. We believe that insulin also has an effect on the EFR3 machinery by 

activating PI4KIIIα. This results in the phosphorylation of PI in the plasma 

membrane to PI4P, which loses the ability to coral GLUT4 clusters. 

Consequently, GLUT4 disperses from its clusters, which not only prevents re-

endocytosis but also allows efficient glucose uptake. 

The main objective of this work was to develop a microscopy-based assay to 

observe and quantify the clustering and dispersal of GLUT4 and to shed light on 

its molecular mechanisms. This will be further discussed in Chapter 4 and 

Chapter 5. The majority of experiments have been carried out in 3T3 L1 

adipocytes, which can be challenging to work with. For this reason, the human 

HeLa cell line, expressing HA-GLUT4-GFP has been studied and compared to 3T3 

L1 adipocytes to determine whether it could be used as a suitable cell model 

that is easier to work with. For this study TIRFM has been used, which is 

discussed in Chapter 3. Based on the results of this chapter, a different angle of 

GLUT4 signalling in human cells has been illuminated by focusing on SNARE 

proteins facilitating GLUT4 transport between the endoplasmic reticulum (ER), 

the Golgi, and the ER-to-Golgi intermediate compartment (ERGIC). This is 

discussed in Chapter 6. 
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Chapter 2 General Materials and Methods 

2.1 Materials 

2.1.1 Reagents and Enzymes 

Table 2.1 Reagents and Enzymes 

Reagent/Enzyme Supplier Catalogue 
Number 

Acetic Acid VWR Chemicals 
(Leicestershire, UK) 

20104.334 

Acetone VWR Chemicals 
(Leicestershire, UK) 

20066.330 

Acrylamide BDH (Dubai, UAE) 442993Y 

30 % Acrylamide Mix Severn Biotech 
(Worcestershire, UK) 

20-2100-10 

Agar  Formedium (Norfolk, UK) A6A02 

Agarose Invitrogen (Paisley, UK) 16500 

6-aminocaproic acid Sigma-Aldrich (Dorset, UK) A2504 

Ammonium Persulfate 
(APS) 

ThermoFisher Scientific 
(Leicestershire, UK) 

A/6160/60 

Ampicillin Sigma-Aldrich (Dorset, UK) A0166 

β-mercaptoethanol Sigma-Aldrich (Dorset, UK) M6250 

Bisacrylamide Sigma-Aldrich (Dorset, UK) 146072 

Bis-tris Sigma-Aldrich (Dorset, UK) B9754 

Blasticidin Sigma-Aldrich (Dorset, UK) 15205 

BN-PAGE marker GE Healthcare BioSciences 
(Chalfont, UK) 

17044501 

Bovine Serum Albumin 
(BSA) 

ThermoFisher Scientific 
(Leicestershire, UK) 

BP9702 

Bromophenol blue Sigma-Aldrich (Dorset, UK) B8026 

BSA Promega (Southampton, UK) R396E 

CaCl2 BDH (Dubai, UAE) 275844L 

Collagenase Type I 
 
 

Worthington Biochemical 
Corporation (Lakewood, USA) 

4197 

Coomassie Brilliant Blue 
G-250 

Serva (Heidelberg, Germany) 35050 

Cysteamine Sigma-Aldrich (Dorset, UK) 30070 

Cytochalasin B Sigma-Aldrich (Dorset, UK) C6762 

[3H]Deoxy-D-Glucose Perkin Elmer (Massachusetts, 
USA) 

NET328A001MC 

4′,6-diamidino-20-
phenylindole (DAPI) 

Sigma-Aldrich (Dorset, UK) D9542 

Dexamethasone Sigma-Aldrich (Dorset, UK) D4902 

Digitonin Calbiochem (San Diego, USA) 300411 

Dimethyl Sulfoxide (DMSO) ThermoFisher Scientific 
(Leicestershire, UK) 

D/4120/PB08 

Dithiothreitol (DTT) Melford Laboratories (Suffolk, 
UK) 

3483-12-3 
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Reagent/Enzyme Supplier Catalogue 
Number 

DNA Marker 1kb Promega (Southampton, UK) G571A 

DNA 6x sample buffer Promega (Southampton, UK) G1881 

Donkey Serum Sigma-Aldrich (Dorset, UK) D9663 

Doxycycline Sigma-Aldrich (Dorset, UK) D1822 

Dulbecco’s Modified 
Eagle’s Medium (DMEM) 

Gibco (Paisley, UK) 41965-039 

Dulbecco’s Phosphate 
Buffered Saline (DPBS) 

Gibco (Paisley, UK) 14190-094 

Enhanced 
Chemiluminescence (ECL) 
Western Blotting Substrate 

ThermoFisher Scientific 
(Leicestershire, UK) 

32106 

Ethanol VWR Chemicals 
(Leicestershire, UK) 

20821.330 

Ethylenediaminetetraacetic 
acid (EDTA) 

Sigma-Aldrich (Dorset, UK) E4884 

Ethylene glycol-bis(2-
aminoethylether)-
N,N,N′,N′-tetraacetic acid 
(EGTA) 

Sigma-Aldrich (Dorset, UK) E4378 

Foetal Calf Serum (FCS) Gibco (Paisley, UK) 10500-064 

Galectin 3 R&D Systems (Minneapolis, 
USA) 

1197-GA 

Gelatin from cold water 
fish 

Sigma-Aldrich (Dorset, UK) G7765 

Glucose ThermoFisher Scientific 
(Leicestershire, UK) 

G/0500/53 

Glycerol ThermoFisher Scientific 
(Leicestershire, UK) 

G/0650/17 

Glycine ThermoFisher Scientific 
(Leicestershire, UK) 

G/0800/60 

Goat Serum Sigma-Aldrich (Dorset, UK) G9023 

HCl ThermoFisher Scientific 
(Leicestershire, UK) 

H/1200/PB17 

4-(2-hydroxyethyl)-1-
piperazineethanesulfonic 
acid (HEPES) 

VWR Chemicals 
(Leicestershire, UK) 

441485H 

Hygromycin Sigma-Aldrich (Dorset, UK) H3274 

Insulin Sigma-Aldrich (Dorset, UK) I5523 

3-isobutyl-1-
methylxanthine (IBMX) 

Sigma-Aldrich (Dorset, UK) I5879 

Isopropanol Riedel-de Haën (Seelze, 
Germany) 

24137 

Kanamycin Sigma-Aldrich (Dorset, UK) 60615 

KCl VWR Chemicals 
(Leicestershire, UK) 

26764.260 

KH2PO4 ThermoFisher Scientific 
(Leicestershire, UK) 

P/4800/53 

Lentiviral Packaging Kit 
pPACKH1 

System Biosciences (Palo Alto, 
USA) 

LV510A-1 
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Reagent/Enzyme Supplier Catalogue 
Number 

Lenti-X GoStix Clontech (Mountain View, USA) 631244 

L-Glutamine Sigma-Aldrich (Dorset, UK) G7513 

Ligase Buffer Invitrogen (Paisley, UK) P/N Y 90001 

Lipofectamine 2000 Invitrogen (Paisley, UK) 11668-022 

Maxiprep Kit Quiagen (Crawley, UK) 12163 

Methanol ThermoFisher Scientific 
(Leicestershire, UK) 

M/4000/PC17 

MgCl2 VWR Chemicals 
(Leicestershire, UK) 

25108.260 

MgSO4 BDH (Dubai, UAE) 1015144 

Milk Powder Marvel (London, UK) n.a. 

Miniprep Kit Promega (Southampton, UK) A1330 

Mounting Medium Ibidi (Martinsried, Germany) 50001 

Immu-Mount ThermoFisher Scientific 
(Leicestershire, UK) 

9990402 

Mycoplasma Detection Kit Minerva Biolabs (Berlin, 
Germany) 

11-1100 

Na2HPO4 VWR Chemicals 
(Leicestershire, UK) 

102494C 

NaCl Merck (Darmstadt, Germany) 1.06404 

NaH2PO4 Merck (Darmstadt, Germany) 1.06345 

NaOH ThermoFisher Scientific 
(Leicestershire, UK) 

S/4920/60 

Newborn Calf Serum (NCS) Gibco (Paisley, UK) 16010-159 

NH4Cl Fisons (Loughborough, UK) A/3920 

One Shot® Stbl3™ 
Chemically Competent 
E. coli 

ThermoFisher Scientific 
(Leicestershire, UK) 

C737303 

Opti-MEM Gibco (Paisley, UK) 31985-062 

Paraformaldehyde (PFA) Sigma-Aldrich (Dorset, UK) P6148 

Penicillin/Streptomycin Gibco (Paisley, UK) 15140122 

Pirenzepine Tocris Bioscience (Abingdon, 
UK) 

1071 

Polybrene Sigma-Aldrich (Dorset, UK) TR-1003 

Ponceau S Sigma-Aldrich (Dorset, UK) P3504 

Protease Inhibitor Tablet ThermoFisher Scientific 
(Leicestershire, UK) 

A32965 

Protein Marker Bio-Rad Laboratories 
(Hertfordshire, UK) 

161-0373 

PureFection Transfection 
Reagent 

System Biosciences (Palo Alto, 
USA) 

LV750A 

Puromycin Sigma-Aldrich (Dorset, UK) P8833 

Restriction Endonuclease 
BamHI 

New England Biolabs 
(Massachusetts, USA) 

R3136 

Restriction Endonuclease 
NotI 

New England Biolabs 
(Massachusetts, USA) 

R3189 

Shrimp alkaline 
phosphatase 

New England Biolabs 
(Massachusetts, USA) 

M0371 
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Reagent/Enzyme Supplier Catalogue 
Number 

Sodium dodecyl sulfate 
(SDS) 

VWR Chemicals 
(Leicestershire, UK) 

442444H 

Sodium Pyruvate Gibco (Paisley, UK) 11360070 

Sucrose Sigma-Aldrich (Dorset, UK) S9378 

SYBRTM Safe DNA Gel Stain Invitrogen (Paisley, UK) S33102 

T4 DNA Ligase Invitrogen (Paisley, UK) 15224-017 

Temed  Sigma-Aldrich (Dorset, UK) T9281 

Tricine Sigma-Aldrich (Dorset, UK) T0377 

Tris Base ThermoFisher Scientific 
(Leicestershire, UK) 

BP152-1 

Tris acetate Sigma-Aldrich (Dorset, UK) T1258 

Triton X-100 Sigma-Aldrich (Dorset, UK) T9284 

Troglitazone Tocris Bioscience (Abingdon, 
UK) 

3114 

Trypan Blue Sigma-Aldrich (Dorset, UK) T6146 

Trypsin-EDTA (0.05 %) Gibco (Paisley, UK) 25300054 

Tryptone Formedium (Norfolk, UK) TRP02 

Tween-20 Sigma-Aldrich (Dorset, UK) P7949 

Twinsil® Picodent (Wipperfürth, 
Germany) 

1300 1000 

Virapower Invitrogen (Paisley, UK) A11145 

Virkon Rely+On Lanxess (Köln, Germany) 12358662 

Wizard® SV Gel and PCR 
Clean-Up System 

Promega (Southampton, UK) A9281 

Yeast Extract Sigma-Aldrich (Dorset, UK) M6250 

 

2.1.2 Buffers and Solutions 

If not stated otherwise, all buffers and solutions were made up in demineralised 

water. If necessary, pH was adjusted using HCl or NaOH. 

Table 2.2 Buffers and Solutions 

Buffer Components 

2 Yeast Tryptone (2YT) Medium 1.6 % (w/v) Tryptone 
1 % (w/v) Yeast extract 
0.5 % (w/v) NaCl 
(2 % (w/v) Agar for plates) 

Blue Native Polyacrylamide Gel 
Electrophoresis (BN-PAGE) Acrylamide 
Solution 

48 % Acrylamide 
1.5 % Bisacrylamide 

BN-PAGE Anode Buffer 50 mM BisTris/HCl 
pH 7.0 

BN-PAGE Cathode Buffer 50 mM Tricine 
15 mM BisTris/HCl pH 7.0 
0.02 % (w/v) Coomassie Blue G-250 

BN-PAGE Cathode Buffer (colourless) 50 mM Tricine 
15 mM BisTris/HCl pH 7.0 
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Buffer Components 

BN-PAGE Destain Solution 25 % (v/v) Methanol 
10 % (v/v) Acetic Acid 

BN-PAGE Gel Buffer 100 mM BisTris/HCl pH 7.0 
1 M 6-aminocaproic acid 

BN-PAGE 10x Sample Buffer 5 % (w/v) Coomassie Brilliant Blue 
G-250 
0.5 M 6-aminocaproic acid 
100 mM BisTris/HCl pH 7.0 

Glycine in PBS (Gly) 20 mM Glycine 
In PBS 

HEPES-EDTA-Sucrose (HES) Buffer 250 mM Sucrose 
20 mM HEPES 
1 mM EDTA 
pH 7.4 

Immunofluorescence (IF) Buffer 0.2 % (w/v) Fish skin gelatin 
0.1 % (v/v) Goat serum 
In PBS 

Laemmli Sample Buffer (LSB) 100 mM Tris/HCl pH6.8 
4 % (w/v) SDS 
20 % (v/v) Glycerol 
0.2 % (w/v) bromophenol blue 
10 % β-mercaptoethanol 

Lysis Buffer 50 mM HEPES pH 7.2 
100 mM KCl 
5 mM NaCl 
1 mM MgCl2 
0.5 mM EGTA 
1 mM EDTA 
0.1 % (v/v) Triton X-100 
Complete protease inhibitor (1 tablet 
per 50 ml) 

Mercaptoethylamine (MEA) Buffer 10 mM Cysteamine 
In PBS 
pH 7.4 

Phosphate Buffered Saline (PBS) 170 mM NaCl 
3.4 mM KCl 
10 mM Na2HPO4 
1.8 mM KH2PO4 

pH 7.2 

Phosphate Buffered Saline with Tween 
(PBST) 

170 mM NaCl 
3.4 mM KCl 
10 mM Na2HPO4 
1.8 mM KH2PO4 
0.1 % Tween-20 
pH 7.2 

Permeabilisation Buffer 0.1 % Triton X-100 
In PBS 

PFA solution 3 % (w/v) PFA 
1 mM CaCl2 
1 mM MgCl2 
In PBS 



Chapter 2 62 
 

Buffer Components 

Ponceau S 0.2 % Ponceau S 
1 % (v/v) acetic acid 

SDS-Polyacrylamide Gel 
Electrophoresis (PAGE) Running Buffer 

25 mM Tris 
192 mM Glycine 
0.1 % (w/v) SDS 

SDS-PAGE Transfer Buffer 25 mM Tris 
192 mM Glycine 
20 % (v/v) Ethanol 

Semi-Dry Transfer Buffer 9.6 mM Tris 
7.8 mM Glycine 
0.26 mM SDS 
20 % Methanol 

Super Optimal broth with Catabolite 
repression (SOC) medium 

2 % (w/v) Tryptone 
0.5 % (w/v) Yeast extract 
0.05 % (w/v) NaCl 
0.02 % (w/v) KCl 
2 mM MgCl2 
8 mM Glucose 
pH 7.0 

Tris-acetate EDTA (TAE) Buffer 40 mM Tris acetate 
1 mM EDTA 

Quenching Buffer 50 mM NH4Cl 
In PBS 

 

2.1.3 Antibodies 

2.1.3.1 Primary Antibodies 

Primary antibodies were used for immunoblotting (IB) and IF. 

Table 2.3 Primary Antibodies 

Antigen Details Working Dilution Supplier 

EFR3a Rabbit 
polyclonal 

IB 
1:250 

Sigma-Aldrich 
(HPA023092) 

ID3 Mouse monoclonal 
Cell Culture 
Supernatant 

IF 
1:2 

Gift from Neil 
Bulleid 

ERGIC-53/p58 Rabbit 
Polyclonal 

IF 
1:200 

Sigma Aldrich 
(E1031) 

GAPDH Mouse 
monoclonal 

IB 
1:10,000 

Applied 
Biosystems 
(AM4300) 

GLUT4 Rabbit 
polyclonal 

IB 
1:1000 

AbCam 
(ab654) 

GM130 Mouse 
Monoclonal 

IF 
1:200 

BD Biosciences 
(610823) 

HA Mouse 
Monoclonal 

IF 
1:500 

Covance Research 
Products 
(MMS 101P) 
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Antigen Details Working Dilution Supplier 

HA Mouse 
Monoclonal 

IF/dSTORM 
20 μg·ml-1 

Invitrogen 
(26183-A647) 

IRAP Mouse 
Polyclonal 

IB 
1:1000 

Cell Signalling 
(3808) 

SNAP23 Rabbit 
Polyclonal 

IB 
1:1000 

Synaptic Systems 
(111202) 

Syntaxin 5 Rabbit 
Polyclonal 

IB 
1:1000 

Synaptic Systems 
(110053) 

Syntaxin 6 Mouse 
Monoclonal 

IB 
1:1000 

BD Biosciences 
(610635) 

Syntaxin 16 Rabbit 
Polyclonal 

IB 
1:1000 

Synaptic Systems 
(110162) 

 

2.1.3.2 Secondary Antibodies for Western Blotting 

Table 2.4 Secondary Antibodies for Western Blotting 

Antigen Details Working Dilution Supplier 

Mouse IgG Donkey 
IRDye 680LT 

1:10,000 LI-COR 
Biosciences 
(926 68022) 

Rabbit IgG Donkey 
IRDye 800CW 

1:10,000 LI-COR 
Biosciences 
(925 32213) 

Rabbit IgG Donkey 
Horseradish 
peroxidase (HRP) 
linked 

1:3000 GE Healthcare 
(RPN1004) 

 

2.1.3.3 Secondary Antibodies for Immunofluorescence 

Table 2.5 Secondary Antibodies for Immunofluorescence 

Antigen Details Working Dilution Supplier 

Mouse IgG Goat 
Alexa Fluor 647 

1:500 Invitrogen 
(A21235) 

Mouse IgG Goat 
Alexa Fluor 568 

1:500 Invitrogen  
(A11004) 

Rabbit IgG Goat 
Alexa Fluor 568 

1:500 Invitrogen  
(A11011) 
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2.1.4 Plasmids and siRNA 

Table 2.6 Plasmids 

Plasmid Details Supplier 

Synthetic 
HA-GLUT4-eGFP 
 

Synthetic plasmid 
Vector: pcDNA3.1(+) 
Cloning Site BamHI-EcoRI 
Ampicillin Resistance 

Genscript, custom-made 

pCDH-CMV-MCS-EF1-Puro Cloning and Expression 
Lentiviral Vector 

System Biosciences 
(CD510) 

 

All siRNAs were purchased from ThermoFisher Scientific 

Table 2.7 siRNAs 

siRNA - Target Catalogue Number 

BET1 s20092 
s20093 

BET1L s226724 
s226725 

EFR3a s94605 

GOSR1 s18278 
s18279 

GOSR2 s18383 
s18384 

SEC22A s25658 
s25659 

SEC22B s18347 
s18348 

SEC22C s17398 
s17399 

Syntaxin 5 s13598 
s13599 

Syntaxin 6 s19958 
s19959 

Syntaxin 16 s16528 
s16529 

Ykt6 s20936 
s80937 
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2.1.5 Mammalian Cell Lines 

Table 2.8 Mammalian Cell Lines 

Cell Line Source 

3T3 L1 American Tissue Culture Collection (ATCC)  

HeLa American Tissue Culture Collection (ATCC)  

HA-GLUT4-GFP 3T3 Previously generated in our laboratory 

HA-GLUT4-GFP HeLa Previously generated in our laboratory 

HEK293TN American Tissue Culture Collection (ATCC) 

M1mEGFP T-Rex 293 cells Provided by Richard Ward 

 

2.1.6 Materials 

Table 2.9 Materials 

Material Supplier 

3 mm filter paper ThermoFisher Scientific 
(Leicestershire, UK) 

96 well plates with glass bottom Mat Tek (Ashland, USA) 

Cavity Microscope Slides Agar Scientific (Stansted, UK) 

Cell Culture Dishes and Flasks (for 
HeLa and HEK293TN) 

Corning (Maine, USA) 

Cell Culture Dishes and Flasks (for 
3T3 L1) 

Falcon by Corning (Maine, USA) 

Chamber Slides Ibidi (Martinsried, Germany) 

Electroporation cuvettes 
 

Bio-Rad Laboratories (Hertfordshire, 
UK) 

Glass cover slips for confocal 
microscopy (13 mm) 

VWR Chemicals (Leicestershire, UK) 

High performance glass cover slips for 
dSTORM (18 mm) 

Marienfeld-Superior 
(Lauda-Königshofen, Germany) 

Microscope Slides VWR Chemicals (Leicestershire, UK) 

Needles BD Biosciences (Oxford, UK) 

Nitrocellulose transfer membrane, 
0.2 μm pore size 

Pall Life Sciences (Portsmouth, UK) 
 

Syringe filters Sartorius (Göttingen, Germany) 

Syringes BD Biosciences (Oxford, UK) 

μ-dishes Ibidi (Martinsried, Germany) 

 

2.2 Methods 

2.2.1 Cell Culture Methods 

Cell culture was carried out in laminar airflow cabinets under sterile conditions. 

Testing for mycoplasma contamination was carried out for all cell lines at 

regular intervals. 
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2.2.1.1 Growth and Maintenance of HeLa and HEK Cells 

HeLa, HEK293TN, and M1mEGFP T-Rex 293 cells were routinely cultured on 

Corning tissue culture flasks and dishes in a 5 % CO2 humidified incubator at 

37 °C. HeLa cells were cultured in DMEM containing 10 % FCS and 1 % 

L-Glutamine. HEK293TN cells were cultured in DMEM containing 10 % FCS, 1 % 

L-Glutamine and 1 % sodium pyruvate. M1mEGFP T-Rex 293 cells were cultured 

in DMEM containing 10 % FCS, 1 % Penicillin/Streptomycin, 10 μg·ml-1 blasticidin, 

and 200 μg·ml-1 hygromycin. Medium was changed every second day and cells 

were passaged when they reached approximately 70 % confluency. Passaging was 

undertaken by washing the cells with DPBS and detaching them off the plastic 

surface with trypsin-EDTA. If cells had to be counted for subsequent 

experiments, this was done using a haemocytometer and trypan blue solution.  

2.2.1.2 Growth and Maintenance of 3T3 L1 Cells 

3T3 L1 cells were routinely cultured on Falcon tissue culture flasks and dishes in 

a 10 % CO2 humidified incubator at 37 °C. Fibroblasts were cultured in DMEM 

containing 10 % NCS. Medium was changed every second day and cells were 

passaged when they reached approximately 70 % confluency. Passaging was 

undertaken by washing the cells with DPBS and detaching them off the plastic 

surface with trypsin-EDTA. 

2.2.1.3 Differentiation of 3T3 L1 Cells 

3T3 L1 fibroblasts were differentiated into adipocytes 2 days post-confluency, 

referred to as “day 0”, using differentiation medium. Day 0 differentiation 

medium consisted of DMEM supplemented with 10 % FCS, 250 μM IBMX, 170 nM 

insulin, 0.25 μM dexamethasone, and 5 μM troglitazone. After three days, this 

was replaced with Day 3 differentiation medium, which consisted of DMEM 

supplemented with 10 % FCS, 170 nM insulin, and 5 μM troglitazone. After day 6 

post differentiation the medium was replaced with DMEM with 10 %FCS, which 

was then replaced every second day until day 8-12 post differentiation. If cells 

were used for electroporation, day 0 medium contained 680 nM insulin and day 3 

medium did not contain insulin (Miller, 2006). 
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2.2.1.4 Freezing and Resurrecting Cells 

To ensure the maintenance of stocks of all cell lines, cells were frozen down 

regularly. For this, they were grown in flasks until 70 % confluence, washed with 

DPBS and detached with trypsin-EDTA. The cell suspension was centrifuged, and 

the resulting cell pellet washed with DPBS and resuspended in freezing medium 

consisting of FCS with 10 % DMSO. Aliquots were immediately transferred into a 

cryogenic freezing container and kept at -80 °C overnight before long term 

storage in liquid nitrogen. 

Fresh cells were resurrected by thawing an aliquot rapidly at 37 °C and 

transferred into prewarmed cell culture medium. Medium was changed after 

24 h when the cells had attached to remove DMSO. 

2.2.1.5 Cleaning and Seeding on Cover Glasses 

Cells that were to be stained and examined by either confocal microscopy or 

dSTORM were seeded onto cover glasses. Prior to this cover glasses were 

sterilised by dipping them in 100 % ethanol and dried in a safety cabinet under 

UV light. 

For dSTORM an extensive cleaning protocol of the cover glasses was carried out. 

Cover glasses were submerged in the following solutions under constant 

sonication in an ultrasound bath for 90 seconds each: 0.1 M NaOH, 0.1 % Virkon, 

deionised water 3x, 100 % ethanol, 100 % acetone, deionised water. After this 

the cover glasses were dipped in 100 % ethanol to sterilise and left to dry under 

UV light in a safety cabinet for a minimum of 1 h. 

2.2.1.6 Transfection 

Transfection of HeLa cells was carried out using Lipofectamine 2000 according to 

the manufacturer’s instructions. For transfection with plasmid DNA, cells were 

plated on cover glasses in a 12 well tissue culture plate. 4 μg of plasmid DNA per 

well was used and diluted in 100 μl Opti-MEM, 4 μl Lipofectamine was used per 

reaction and also diluted in 100 μl Opti-MEM. Diluted DNA and Lipofectamine 

were combined and incubated at room temperature for 5 min before being 
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added to the cells. After transfection, cells were incubated for 1-3 days before 

further analysis. 

For transfection with siRNA, HA-GLUT4-GFP HeLa cells were cultured on 96 well 

tissue culture plates with glass bottom. The day prior to transfection 9000 cells 

per well were plated. Per well 1.5 pmol of siRNA and 0.5 μl Lipofectamine were 

used and diluted in Opti-MEM prior to transfection. Lipofectamine was incubated 

in Opti-MEM for 7 min and the combined Lipofectamine and siRNA were 

incubated for 20 min before being added to the cells. Cells were incubated with 

the Lipofectamine and siRNA in serum-free DMEM for 4 h before adding 30 % FCS 

medium and cells were incubated for another 48 h before analysis. 

2.2.1.7 siRNA Electroporation of 3T3 L1 Adipocytes 

siRNA knock-down of EFR3a in 3T3 L1 adipocytes was carried out by 

electroporation. Cells were cultured in 10 cm dishes and differentiated as 

described in 2.2.1.2 and 2.2.1.3. Electroporation was carried out on day 5 of 

differentiation using the Bio-Rad Gene Pulser® II. All solutions were prewarmed 

to 37 °C. Cells were washed twice with DPBS and detached by adding a 

detaching solution made up of equal parts trypsin-EDTA and 2 mg·ml-1 

collagenase type I. The detaching solution was neutralised with complete 

medium and cells centrifuged for 2 min at 500 x g. The resulting cell pellet was 

washed 3x with DPBS and resuspended in DPBS (0.5 ml per 10 cm dish). 3 nmol of 

siRNA and 400 μl of this cell suspension were added in an electroporation 

cuvette and electroporation was carried out at 0.25 kV and 950 μF. Dead cells 

that had floated to the top were discarded and remaining cells were re-plated 

on glass cover slips for dSTORM. 

2.2.2 IF Staining 

IF staining was carried out using antibodies described in 2.1.3.1 and 2.1.3.3. 

2.2.2.1 IF Staining for Permeabilised Cells 

Cells were cultured on cover glasses as described in 2.2.1.5 or on 96 well plates 

with glass bottom. For cells expressing a GFP construct the following incubations 

were carried out in the dark. Prior to staining, cells were washed 3x with PBS 
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and fixed with PFA for 20 min at room temperature. Cover glasses were washed 

3x with PBS and any residual PFA activity was removed by incubation in 

quenching buffer for 10 min. Cover glasses were washed again 3x with PBS and 

incubated in permeabilisation buffer for 4 min. Cover glasses were washed 3x 

with PBS and blocked in IF buffer for 30 min. Staining was then carried out by 

incubating the cover glasses with the primary antibody in IF buffer for 60 min. 

Cover glasses were washed 3x with IF buffer and incubated with the secondary 

antibody in IF buffer. Cover glasses were washed 3x with IF buffer and if nucleus 

staining was required, they were incubated in 1 μg·ml-1 DAPI in IF buffer for 

5 min. Cover glasses were then washed again 3x with IF buffer and mounted onto 

microscope slides using Immu-Mount mounting medium. Cover glasses were left 

to dry at room temperature for at least 12 h prior to imaging. 

2.2.2.2 IF Surface Staining for Confocal Microscopy 

Cells were cultured on cover glasses as described in 2.2.1.5. For cells expressing 

a GFP construct the following incubations were carried out in the dark. Prior to 

staining, cover glasses were washed 3x with ice-cold PBS and fixed with PFA for 

20 min on ice. Cover glasses were washed 3x with PBS and PFA activity was 

quenched by incubating in Gly for 10 min. Cover glasses were washed 3x with 

Gly and blocked by incubating in Gly with 2 % BSA and 5 % goat serum for 30 min. 

Staining was then carried out by incubating the cover glasses with the primary 

antibody in the blocking solution for 45 min. Cover glasses were washed 3x in 

the blocking solution and incubated with the secondary antibody in the blocking 

solution for 30 min. Cover glasses were then washed again 3x with blocking 

solution and mounted onto microscope slides using Immu-Mount mounting 

medium. Cover glasses were left to dry at room temperature for at least 12 h 

prior to imaging.  

2.2.2.3 IF Surface Staining for dSTORM 

Cells were cultured on high performance cover glasses as described in 2.2.1.5. 

Prior to staining, cover glasses were washed 3x with ice-cold PBS and fixed with 

PFA at 4 °C for at least 12 h. Cover glasses were washed 3x with PBS and PFA 

activity was quenched by incubating in Gly for 10 min. Cover glasses were 

washed 3x with Gly and blocked by incubating in Gly with 2 % BSA and 5 % goat 
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serum for 30 min. Staining was then carried out by incubating the cover glasses 

with the Alexa Fluor 647 tagged HA antibody in the blocking solution for 45 min. 

Cover glasses were washed 3x with PBS, returned to a fresh 12 well dish in PBS, 

and stored in the dark at 4 °C. On the day of imaging, cover glasses were 

mounted on cavity microscope slides containing MEA buffer and sealed using 

Picodent Twinsil®. 

2.2.3 Lentivirus 

2.2.3.1 Lentivirus Production 

Lentivirus was produced using HEK 293TN cells and the pPACKH1 Lentiviral 

packaging kit according to the manufacturer’s instructions. 7 x 106 HEK 293TN 

cells were seeded per T150 cell culture flask one day prior to transfection. 45 μl 

of the commercially provided pPACKH1 and 4.5 μg of plasmid DNA were 

incubated in serum-free DMEM for 15 min at room temperature. 55 μl 

PureFection transfection reagent was added and incubated for another 15 min 

before being added to the cell culture flask. Supernatant containing lentivirus 

was collected at 48 h and 72 h after transfection and presence of lentiviral 

particles was confirmed with Lenti-X GoStix. Supernatants were stored at -80 °C 

prior to further use. 

Custom-made lentivirus was purchased from VectorBuilder and stored at -80 °C. 

2.2.3.2 Lentiviral Infection 

HeLa cells were infected with lentivirus at 70 % confluence. 3T3 L1 adipocytes 

were infected on day 6 of differentiation. 0.5 ml untreated lentiviral 

supernatant from 2.2.3.1 was used per ml of serum-free DMEM. 5 μg·ml-1 

polybrene was included to increase infection efficiency. After 5-6 h, the medium 

was diluted 2:1 with FCS containing DMEM. Medium was replaced with fresh 

DMEM after 24 h and incubated for an additional 48-96 h before analysis. 

2.2.3.3 Generation of a Stable Cell Line Using Lentivirus. 

A 3T3 L1 cell line stably expressing HA-GLUT4-eGFP was generated using custom-

made lentivirus. Undifferentiated cells of a low passage number were infected 
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with the virus at a multiplicity of infection (MOI) of 100-200 as described in 

2.2.3.2. Selection pressure was applied by adding selection medium containing 

1.5 μg·ml-1 puromycin. This concentration had previously been determined to kill 

cells not expressing the lentiviral plasmid. Selection medium was added every 

other day until all cells in a negative control well (not infected) had died. The 

stable cell line was maintained by continual addition of 0.15 μg·ml-1 puromycin. 

2.2.4 Molecular Biology Methods 

2.2.4.1 Transformation 

Transformation was carried out under semi-sterile conditions in the vicinity of a 

Bunsen burner flame. 

50 μmol of One Shot® Stbl3™ or XLO-1 (generated by Alexandra Kaupisch or Laura 

Stirrat) chemically competent E. coli was used per transformation. Depending on 

the DNA concentration, 1-50 ng of plasmid was added to the cells and incubated 

on ice for 30 min. DNA was then taking up by cells during a heat-shock at 42 °C 

for 30 sec and cells were returned on ice for another 2 min. 450 μl of prewarmed 

SOC medium was added to the cells and incubated at 37 °C in a shaking 

incubator for at least 30 min. 1-100 μl of the cell suspension was then streaked 

out onto agar plates containing 2YT medium and 1 μg·ml-1 ampicillin and 

colonies grew at 37 °C overnight. 

2.2.4.2 Plasmid DNA Purification 

Bacterial cultures were grown in 2YT medium supplemented with 1 μg·ml-1 

ampicillin. Cultures were inoculated with single colonies from agar plates and 

grown at 37 °C in a shaking incubator. 

Depending on the growth culture volume, plasmids were purified either by 

Miniprep (Promega, A1330) or Maxiprep (Quiagen, 12163) according to the 

manufacturer’s instructions. DNA concentration was determined by NanoDrop 

1000 spectrophotometry.  
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2.2.4.3 Agarose Gel Electrophoresis 

Agarose gels were made up of 1 % (w/v) agarose in TAE buffer. SYBRTM safe DNA 

stain was added at a dilution of 1:10,000 to enable visualisation of DNA bands. 

DNA 6x sample buffer was added to the samples and run on the gel alongside the 

1 kb DNA marker at a constant voltage of 100 V. Gels were visualised under UV 

light with the Bio-Rad Gel DocTM System. 

2.2.4.4 Restriction Endonuclease Digest 

Restriction endonuclease digest was carried out using enzymes and the 

corresponding buffers from New England Biolabs in 50 μl reaction volume, using 

1 μl plasmid DNA. The components of the reaction mix were mixed by pipetting 

and incubated for at least 60 min at the enzyme-specific temperature. 

2.2.4.5 Cloning 

Vector and insert plasmids were both digested as described in 2.2.4.4 in a “big” 

reaction, using at least 2 μg of DNA and leaving the reaction overnight. The 

reaction mix was run by agarose gel electrophoresis as described in 2.2.4.3 and 

bands visualised under UV. The bands containing the cut vector and insert were 

cut out and purified using the Wizard® SV Gel and PCR Clean-Up System 

according to the manufacturer’s instructions. 

The vector was dephosphorylated to prevent re-ligation using shrimp alkaline 

phosphatase at 37 °C for 30 min and the reaction was subsequently heat-

inactivated at 65 °C for 5 min. Vector and insert were combined at a 1:1 and 1:2 

molar ratio and ligated using T4 DNA ligase at room temperature for 15 min. The 

ligation mix was used to transform XLO-1 cells as described in 2.2.4.1 and the 

complete reaction was streaked out onto a 2YT agar plate containing ampicillin. 

Single colonies were picked and grown in liquid cultures. Plasmids were then 

purified by Miniprep and successful clones were determined by restriction 

endonuclease digest and agarose gel electrophoresis as described in 2.2.4.4 and 

2.2.4.3. 
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2.2.5 Gel Electrophoresis and Western Blotting 

2.2.5.1 Cell Lysates 

Cells in cell culture dishes were placed on ice and washed 3x with ice-cold PBS. 

Lysis buffer was added and the cells were scraped off the surface of the well. 

The cell suspension was passed through a 26G needle 10x, incubated on ice for 

20 min and passed through the needle 10x again. Cell debris was removed by 

centrifugation at 14,000 rpm for 10 min at 4 °C and lysates were stored 

at -20 °C prior to further use. 

2.2.5.2 SDS-PAGE 

Table 2.10 SDS-PAGE Gel Components 

Gel  Components (For 10 ml) 

5 % polyacrylamide stacking gel 6.8 ml H2O 
1.7 ml 30 % acrylamide 
1.25 ml 1 M Tris (pH 6.8) 
100 μl 10 % SDS 
100 μl 10 % APS 
10 μl TEMED 

12 % polyacrylamide resolving gel 3.3 ml H2O 
4 ml 30 % acrylamide 
2.5 ml 1.5 M Tris (pH 8.8) 
100 μl 10 % SDS 
100 μl 10 % APS 
4 μl TEMED 

 

Polyacrylamide mini gels were cast on the Bio-Rad mini-Protean III equipment 

and consisted of 12 % resolving gels and 5 % stacking gels, as described in Table 

2.10. Cell lysates (see 2.2.5.1) were combined with LSB in a ratio of 1:1 and 

samples were boiled at 95 °C (GLUT4 at 65 °C) for 10 min. Samples were then 

run alongside a protein marker at a constant voltage of 120 V until the blue dye 

had run off the gel. 

2.2.5.3 Immunoblotting 

Protein bands were transferred from SDS-PAGE gels onto nitrocellulose 

membranes by wet transfer. The gel and the membrane were sandwiched 

together with sponges and 3 mm filter paper in a transfer cassette and placed 
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into a tank filled with transfer buffer. Transfer was then carried out at a 

constant current of 200 mA for 2 h or at 30 mA overnight.  

After transfer, the nitrocellulose membrane was stained with Ponceau S to verify 

that transfer had worked. Ponceau S was washed off with PBS and the membrane 

was blocked with 5 % milk in PBS for 30 min while constantly moving on a roller. 

The membrane was then incubated with the primary antibody at 4 °C overnight. 

The next day, the antibody was removed and frozen at -20 °C for the next use. 

The membrane was washed 3x with PBST and incubated with the secondary 

antibody for 1 h at room temperature in the dark. The antibody was removed 

and refrozen, while the membrane was again washed 3x with PBST. Blots were 

then visualised with the Odyssey infra-red LICOR imaging system. 

2.2.6 BN-PAGE 

2.2.6.1 BN-PAGE Sample Preparation 

3T3 L1 cells were differentiated into adipocytes and cultured on 10 cm dishes 

and lysed for BN-PAGE immediately before loading on the gel. Every step was 

carried out at 4 °C to avoid sample denaturation. Cell lysates were prepared by 

scraping the cells into HES buffer containing protease inhibitor (1 tablet per 

50 ml). They were lysed mechanically with a dounce glass homogeniser and by 

passing through a 26G needle. The cell lysate was then mixed with either triton 

or digitonin in varying concentrations and incubated on a vortex for 30 min at 

4 °C before mixing with BN-PAGE sample buffer and loading on the gel. 
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2.2.6.2 BN-PAGE 

Table 2.11 BN-PAGE Gel Components 

Gel  Components (For 10 ml) 

4 % polyacrylamide stacking gel 4.15 ml H2O 
5 ml Gel Buffer 
800 μl BN-PAGE polyacrylamide 
solution 
80 μl APS 
8 μl TEMED 

6 % polyacrylamide resolving gel 3.7 ml H2O 
5 ml Gel Buffer 
1.25 ml BN-PAGE polyacrylamide 
solution 
80 μl APS 
8 μl TEMED 

16 % polyacrylamide resolving gel 5 ml Gel Buffer 
3.3 ml BN-PAGE polyacrylamide 
solution 
1.7 ml 87 % Glycerol 
80 μl APS 
8 μl TEMED 

 

6-16 % gradient mini polyacrylamide gels were cast with the help of a gradient 

mixer and the Bio-Rad mini-Protean III equipment. The gradient mixer was 

placed on a stirrer above the gel cast and both chambers filled with the gel 

solutions. The 16 % gel solution poured into the cast by gravity flow. Once the 

bottom of the gel had poured, the valve on the gradient mixer was opened to 

allow mixing of the two gel solutions. The gradient gel was left to polymerise for 

one hour covered with isopropanol before the stacking gel was added. 

Every step after preparing the gels was carried out at 4 °C to avoid denaturation 

of the samples. 

Gels were run in a dedicated gel tank for BN-PAGE to avoid Coomassie 

contamination of SDS-PAGE gels. The cathode compartment between the gels 

was filled with blue cathode buffer and the anode compartment around the gels 

was filled with anode buffer. Samples were mixed with BN-PAGE 10x sample 

buffer and loaded in the dry gel wells before they were topped up with blue 

cathode buffer. Samples were run alongside a BN-PAGE protein marker at 100 V 

for 90 min. Then the blue cathode buffer was replaced with the colourless 

cathode buffer and the run continued for 60 min at 300 V. 
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2.2.6.3 BN-PAGE Immunoblotting 

BN-PAGE gels were transferred onto PVDF membranes by semi-dry transfer. PVDF 

membranes were soaked in methanol prior to transfer and gels were destained 

using BN-PAGE destain solution for 10 min. Semi-dry transfer was carried out 

using the Bio-Rad Trans-Blot® SD Semi-Dry Transfer Cell and semi-dry transfer 

buffer. The gel and PVDF membrane were wedged between moistened filter 

papers and transfer was carried out at a constant voltage of 15 V for 50 min. 

Antibody incubation was carried out as in 2.2.5.3, except the secondary antibody 

was HRP-tagged and blots were visualised via ECL. 

2.2.7 Microscopy 

The microscopy-based techniques are described in more detail in the 

corresponding chapters of this thesis. 

2.2.7.1 Confocal Microscopy 

Live and fixed cells were imaged by confocal microscopy using a 63x plan 

apochromat oil-immersion objective lens with a numerical aperture of 1.4 fitted 

to a Zeiss LSM 5 Pascal Exciter laser scanning head coupled to a Zeiss Axiovert 

200M inverted microscope and the corresponding software. 

2.2.7.2 TIRF Microscopy 

TIRFM was carried out using an objective based TIRFM system constructed by 

Niall Geoghegan (Geoghegan, 2015). The light from a Horiba 481 nm diode laser 

was directed to the far aperture of a Zeiss objective lens with a numerical 

aperture of 1.45 using a Till Photonics TIRF condenser. The condenser contained 

a micrometre screw gauge for lateral manipulation of the beam relative to the 

optical axis. The resultant fluorescence light was collected by the same 

objective and focussed to an Andor Ixon EMCCD using a C-mount 1.6x expansion 

lens. 
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2.2.7.3 dSTORM 

dSTORM experiments were performed on an Olympus IX-81 microscope equipped 

with Olympus Cell^R acquisition software, an ImageEM EM-CCD 512 × 512 camera 

(Hamamatsu) and an Olympus × 150 UAPO oil lens with a numerical aperture of 

1.45 and a resulting pixel size of 106 nm. 

2.2.8 Image Analysis 

Images acquired by confocal and TIRF microscopy were analysed and processed 

using ImageJ/Fiji.  

2.2.8.1 HA/GLUT4 Ratio 

HA/GLUT4 ratios of cells expressing HA-GLUT4-GFP were determined by dividing 

the fluorescence intensity of the blue channel (HA signal, plasma membrane 

located GLUT4) by the fluorescence intensity of the green channel (GFP signal, 

intracellular GLUT4). 

2.2.8.2 Spatial Intensity Distribution Analysis 

For Spatial Intensity Distribution Analysis (SpIDA), the stand-alone MATLAB 

Graphical User Interface program, available at the Neurophotonics Web site 

(Godin et al., 2011) was used. The pixel size was 0.09 μm and the beam size was 

set to 0.2215 μm. These values had previously been determined by John Pediani.  

2.2.8.3 Colocalisation Analysis 

Colocalisation analysis was carried out using the JaCoP plugin in ImageJ (Bolte & 

Cordelières, 2006). Each image was recorded twice and the Pearsons coefficient, 

which relates to colocalisation, was determined for the two images of the green 

and the red channel respectively (Pgreen and Pred). These values were used to 

determine the correction factor C: 

 C =
1

√Pgreen ∙ Pred
 (2-1) 
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Then the Pearsons coefficients for all four combinations of red and green 

channels were calculated. The colocalisation value was the average of all four 

coefficients multiplied by the correction factor C. 

2.2.8.4 dSTORM Analysis 

dSTORM images were processed using the ThunderSTORM plugin in ImageJ 

(Ovesný et al., 2014). The base level A/D counts was 1693, as determined by 

recording an image with the camera cap on. The EM gain for all images was 300. 

Default values of the software were used for all other input values. 

Localisation density was determined using the Plugin LocFileVisualizer_v1.1 (van 

de Linde, 2019). Cluster analysis was carried out using Bayesian cluster analysis 

(Griffié et al., 2016) and Ripley’s K-function analysis (Levet et al., 2015). 

2.2.9 Statistical Analysis 

Statistical analysis was carried out using GraphPad Prism (version 5). Depending 

on the data, unpaired t-test, 2-way ANOVA, or Chi Square test was performed, 

all with 95 % confidence levels. Details are given in the respective figure 

legends. The values reported are mean ± standard error unless stated otherwise. 
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Chapter 3 Comparison of HeLa Cells and 3T3 L1 
Adipocytes Using TIRFM 

3.1 Introduction 

3.1.1 Principles of Fluorescence Microscopy 

Fluorescence microscopy is a very common technique that has been used for 

many years to visualise biological mechanisms on a cellular and even molecular 

level. Cells can be either genetically modified to express a fluorescent protein 

such as GFP or stained with an external fluorophore, which can be essentially 

any fluorescent molecule (Combs, 2010). A fluorescent molecule absorbs light of 

a certain wavelength and in response, emits light of a slightly longer 

wavelength. The shift between the absorption and emission spectrum is known 

as the Stokes shift and is characteristic for each fluorophore (Coling & Kachar, 

1997). The absorption maximum of GFP, for example, is 489 nm and its emission 

peaks at 508 nm (Patterson et al., 2001). This characteristic is used in 

fluorescence microscopy.  

Figure 3.1 shows a schematic of an epifluorescence widefield microscope. The 

excitation light is passed through a filter that only permits a specific 

wavelength. The light is reflected off a dichroic mirror and directed to the 

sample through an objective lens. The light excites the fluorophores in the 

sample, which upon return from their excited state emit light of a longer 

wavelength than the excitation light. This light passes through the dichroic 

mirror and an emission filter and is collected in a tube lens before the image is 

generated either digitally or in the eyepiece. In epifluorescence microscopy, 

both, the excitation and the emission light are passed through the same 

objective lens (Webb & Brown, 2013). 

Widefield microscopy provides good temporal and spatial resolution in XY. It 

does not require high laser power and is therefore less phototoxic for live cell 

imaging. Another advantage is its relatively low cost. The biggest disadvantage 

in widefield microscopy is the poor resolution in Z. Since the excitation light 

passes through the entire sample every fluorophore gets excited and emits light 

(Combs, 2010). This is particularly problematic for cells with high expression 
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levels of fluorescent proteins, as this leads to a very high background from 

fluorescence from outside the focal plane and blurred images. 

 

Figure 3.1 Schematic of an Epifluorescence Widefield Microscope 
Excitation light passes through a filter and reflects off a dichroic mirror through the objective lens 
onto the sample. Emission light from the excited fluorophores then passes through the same lens 
and mirror and through another filter and the tube lens to the eyepiece or a camera to generate the 
image. 
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With the development of the confocal microscope, this problem was 

circumvented (Paddock, 1999). In this technique, a small pinhole is placed 

between the tube lens and the detector, which excludes light that originates 

from outside the focal plane. This allows the user to take images of optical 

sections with much better resolution along the Z-axis, which is typically between 

600 nm and 1 μm (Combs, 2010). Although this is a significant improvement 

compared to widefield microscopy, this axial resolution is not good enough to 

resolve processes inside or close to the plasma membrane. For such applications, 

Daniel Axelrod developed TIRFM in 1981 (Axelrod, 1981). 

3.1.2 Principles of Total Internal Reflection Fluorescence 
Microscopy 

The first imaging technique using total internal reflection (TIR) was already 

described in 1961 as “Surface Contact Microscopy”. It was used to study the 

movements of fibroblasts (E. J. Ambrose, 1961). 

The principle of TIR is demonstrated in Figure 3.2. 

 

Figure 3.2 Principle of TIR 
Incident light arrives at the interface of two media with refractive indices n1 and n2, with n1<n2, at an 
angle θ that is equal to or greater than the critical angle θc and is totally internally reflected, which 
generates an exponentially decaying evanescent wave. 
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Two factors are crucial for TIR: the refractive indices n1 and n2 of the liquid and 

the solid medium and the incidence angle θ at which the light arrives at the 

surface between the two media. The incident light beam propagates through the 

solid medium, e.g. glass, which has a high refractive index n2 at an incident 

angle θ that exceeds the critical angle θc. The refractive index n1 of the liquid 

medium, e.g. water, is lower, which means the light beam will undergo TIR 

(Axelrod, 2001b). The critical angle θc depends on n1 and n2 and is given by 

If n1<n2 and θ>θc, the incident light beam is totally reflected back into the solid 

medium except for a small amount of light which propagates perpendicularly to 

the interface between the two media as a so-called evanescent wave. 

The evanescent wave is an electromagnetic field that decays exponentially 

(Axelrod, 2001b). The intensity I at a given distance z from the interface is 

defined by  

Where I0 is the intensity at the interface and d is the penetration depth, which 

depends on the wavelength λ of the incidence light beam as well as n1, n2, and θ 

It is incurred from equation 3-3 that the penetration depth decreases with 

increasing incidence angle. Practically, this means that the evanescent wave can 

illuminate an area of less than 100 nm (Martin-Fernandez et al., 2013). 

With Ambrose’s technique, cells were imaged in brightfield and the contrast was 

very low. 20 years later, the technique was therefore developed further by 

changing the light source to a laser beam, which allowed imaging of 

fluorescently labelled targets near the plasma membrane and also increased the 

accuracy of the penetration depth d, as a laser beam with a defined wavelength 

was used rather than the whole range of visible light (Axelrod, 1981). 

 θc = sin−1(n1 n2)⁄  (3-1) 

 I(z) = I0e
−z d⁄  (3-2) 

 d =
λ

4π
∙

1

√n1
2sin2θ − n2

2
 (3-3) 
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TIR can be achieved by two different means: in prism based TIRFM, the 

evanescent wave is generated on top of the sample through a prism, while the 

objective is placed underneath. This allows for a large incidence angle of the 

laser beam, which results in a very small penetration depth (see equation 3-3). 

The other advantage is that the reflected light is directed away from the 

objective and is not collected (W. P. Ambrose et al., 1999). This set-up, 

however, can only be used for very thin samples and is unsuitable for thick cell 

lines such as adipocytes. An easier and more versatile set-up is objective based 

TIRFM. Here, excitation and emission light are both passing through the 

objective lens, which makes the system easier to manipulate and suitable for 

thick cell types or even tissue samples. The obvious disadvantage is that the 

angle of the incidence light beam is limited and penetration depth is therefore 

higher (Martin-Fernandez et al., 2013). 

Figure 3.3 summarises the difference between widefield, confocal, and TIRF 

illumination. In widefield, the laser beam penetrates the entire cell and all 

fluorophores are equally excited, which leads to a high background and very 

poor axial resolution. This is less of an issue in confocal microscopy, where out-

of-focus light is eliminated by a pinhole in front of the detector and only 

fluorophores along the focal plane are imaged. TIRF illumination allows imaging 

of a very thin area adjacent to the coverslip and is ideal for imaging of 

membrane proteins. 

 

Figure 3.3 Widefield vs Confocal vs TIRF 
A: Widefield illumination, the laser penetrates the entire sample and excites all fluorophores. B: 
Confocal illumination, the sample is rastered through along the focal plane. C: TIRF illumination, 
the laser beam is totally reflected, and the surface is illuminated by an evanescent wave. 
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Since its first implementation (Axelrod, 1981), TIRFM has been used in many 

studies. An obvious application is the spatial and temporal imaging of processes 

near the plasma membrane that would otherwise be dominated by a high 

background signal from the cytosol (Mattheyses et al., 2010). Examples are 

vesicle trafficking along the cytoskeleton (Schmoranzer & Simon, 2003) and 

clathrin-mediated endocytosis (Rappoport, 2008). The intensity decay of the 

evanescent wave also allows improved axial resolution; fluorescence is more 

intense closer to the membrane, which has thus allowed the characterisation of 

exocytotic events (Schmoranzer et al., 2000), paving the way for the analysis of 

GSVs, which has been discussed in detail in section 1.7. 

3.1.3 The Built In-House TIRFM System 

The TIRF microscope used in this work was the one built by Dr Niall Geoghegan 

in the context of his PhD Thesis (Geoghegan, 2015). A 481 nm pulsed laser diode 

was used for illumination, which was attached to a TIRF condenser. This 

instrument allowed the alignment of the laser and manipulation of the TIR 

angle. The laser beam was directed to a mask in the condenser that consisted of 

two side slits and a pinhole in the middle, as shown in Figure 3.4. Alignment of 

the laser was achieved by directing the laser beam through the central pinhole. 

A micrometre at the bottom of the condenser enabled the manipulation of the 

angle at which the laser beam met the substrate, and therefore TIR. With this 

set-up, a penetration depth of as little as 118 nm could be achieved 

(Geoghegan, 2015) 

 

Figure 3.4 TIR Alignment Mask 
The laser beam is directed through the central pinhole for alignment of the laser. When focused 
through the slits, the TIR angle can be manipulated. 
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It is important to emphasize that this is a home-built set-up that comes with 

certain limitations. Most importantly, the TIR angle had to be adjusted manually 

by turning the micrometre, which was located in the back of instrument, while 

simultaneously observing the sample through the eyepiece at the front of the 

instrument. This was not only physically challenging, but also meant that 

settings from previous experiments could not be adopted. Consequently, the TIR 

angle was not precisely the same for each experiment. Another limitation was 

the lack of a suitable stage-top incubator, which made imaging of live cells more 

challenging. 

3.1.4 Hypothesis and Aims 

TIRFM has been a valuable tool and 3T3 L1 adipocytes are a well characterised 

model cell line to study GLUT4 trafficking (Bai et al., 2007; S. Huang et al., 

2007; Jiang et al., 2008; C. H. Li et al., 2004; Y. Xu et al., 2011). 3T3 L1 cells 

are a murine fibroblasts line that can differentiate into adipocytes in vitro by 

differentiation (Green & Kehinde, 1974; Green & Meuth, 1974). Compared to 

primary cells, they are much easier and cheaper to use, differentiation into 

adipocytes is relatively simple and experiments are relatively robust (Ruiz-Ojeda 

et al., 2016). A major shortcoming of the cell line is that it is very difficult to 

transfect (Carlotti et al., 2004; Ross et al., 2003) and although the cell line is 

not too difficult to maintain, differentiation into adipocytes is time-consuming 

(see section 2.2.1.3) and requires a certain level of expertise to avoid 

contamination of the culture when being grown over such a long period. 

The HeLa cell line is the oldest and most frequently used human cell line (Lucey 

et al., 2009). The cells are very easy to culture and to genetically modify. The 

cell line does not express endogenous GLUT4, but when transfected with HA-

GLUT4-GFP, cells show the characteristic intracellular retention of GLUT4 in the 

absence of insulin and translocation to the cell membrane after insulin 

stimulation (Haga et al., 2011; Kioumourtzoglou et al., 2015). This observation 

raises the question whether HA-GLUT4-GFP HeLa cells could be a valid model for 

GLUT4 trafficking. Another advantage of HeLa is that this is a human cell line, 

whereas 3T3 L1 is of murine origin. A human model cell line may be a more valid 

model for the study of a disease that is common in humans. In a recent study, 
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Camus et al. (2020) have indeed found that the formation of the GSC differs in 

human cells compared to rodents (see Chapter 6). 

The aim of this chapter was to compare HeLa cells to 3T3 L1 adipocytes with 

regards to GSV translocation to the plasma membrane in response to insulin. For 

this, we used the built in-house TIRFM system described in section 3.1.3. 

3.2 Results 

3.2.1 HA-GLUT4-GFP Expression in HeLa Cells and 3T3 L1 
Adipocytes 

The cell lines that were used in this study were HeLa cells and 3T3 L1 adipocytes 

stably expressing HA-GLUT4-GFP. Expression of the glucose transporter as HA-

GLUT4-GFP allows imagining of the molecule via green fluorescence in both, live 

and fixed cells. Translocation in response to insulin stimulation can be visualised 

by surface HA-staining in fixed cells as outlined in 1.7 and 2.2.2. This is shown in 

Figure 3.5 for HeLa cells and in Figure 3.6 for 3T3 L1 adipocytes. 

The two figures outline the differences and similarities between the two cell 

lines. In the basal state, GLUT4 is located intracellularly mostly near the 

nucleus, and there is only a weak HA signal on the cell surface. In response to 

insulin, the GFP signal is more dispersed in the cytoplasm and the characteristic 

blue HA-ring can be seen, which signifies GLUT4 translocation and subsequent 

exocytosis. This is also reflected in the HA/GLUT4 ratio, which significantly 

increases after insulin stimulation in both cell types. 

HeLa cells clearly respond to insulin, even though they require longer 

stimulation (60 min vs 20 min in 3T3 L1). The translocation of GLUT4 is, 

however, visually not as clear as in 3T3 L1 adipocytes. 
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Figure 3.5 HA Surface Staining of HA-GLUT4-GFP HeLa Cells in Response to Insulin 
HA-GLUT4-GFP HeLa cells were incubated in serum-free medium for 2 h prior to the experiment 
and stimulated with 100 nM insulin for 60 min or left untreated. Cells were then fixed and stained 
for surface HA as described in section 2.2.2. The HA/G4 ratio was determined as described in 
2.2.8.1 A: Representative image of basal cells B: Representative image of cells after stimulation 
with insulin C: HA/G4 ratio, Basal: 0.57 ± 0.07 (n = 14) Insulin: 0.81 ± 0.08 (n = 14). Mean ± SE. 
Unpaired two-tailed t-test 95 % confidence intervals p = 0.0329 
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Figure 3.6 HA Surface Staining of HA-GLUT4-GFP 3T3 L1 Adipocytes in Response to Insulin 
HA-GLUT4-GFP 3T3 L1 adipocytes were incubated in serum-free medium for 2 h prior to the 
experiment and stimulated with 100 nM insulin for 20 min or left untreated. Cells were then fixed 
and stained for surface HA as described in section 2.2.2. The HA/G4 ratio was determined as 
described in 2.2.8.1 A: Representative image of basal cells B: Representative image of cells after 
stimulation with insulin C: HA/G4 ratio, Basal: 0.71 ± 0.14 (n = 11) Insulin: 1.21 ± 0.09 (n = 19). 
Mean ± SE. Unpaired two-tailed t-test 95 % confidence intervals p = 0.0037 

3.2.2 Fluorescence Intensity in the TIRF Zone 

Building up on the results from section 3.2.1, we studied the translocation of 

HA-GLUT4-GFP upon insulin stimulation in the TIRF zone via the GFP tag of the 

protein. For this, cells were grown and differentiated if applicable on Ibidi 

μ-dishes and imaged live. As imaging took place over a period of at least 30 min, 

appropriate cell culture conditions had to be maintained. Cell culture medium 

was therefore supplemented with 25 mM HEPES to avoid pH dropping and the 

dish was placed in a heated microscope stage insert to sustain a temperature of 

37 °C within the culture dish. Figure 3.7 shows representative images of a single 

HeLa cell just before insulin administration (t = 0 min) and at different time 

points thereafter. The rise in fluorescence intensity in the TIRF zone over time is 

evident, which suggests that HeLa cells indeed respond to an insulin stimulus 

with the translocation of exogenous HA-GUT4-GFP. This was quantified by 
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measuring the fluorescence intensity within the footprint of the cell and 

normalising the result to the intensity at t = 0 min. The result of this experiment 

is depicted in Figure 3.8. 

 
Figure 3.7 Time Course of Insulin Stimulated HeLa Cells in TIRFM 
HeLa cells were grown on Ibidi μ-dishes and imaged live in TIRFM after stimulation with 100 nM 
insulin. Images were acquired in 5 min intervals with an exposure time of 500 ms and a frame rate 
of 2 Hz. Shown are representative images of a single HeLa cell at t = 0 min (immediately before 
insulin administration), t = 5min, t = 15min, t = 20min, t = 25min, and t = 30min. Scalebar: 50 μm. 

 
Figure 3.8 Normalised Fluorescence Intensity in HeLa Cells in TIRFM 
HeLa cells were grown on Ibidi μ-dishes and imaged live in TIRFM after stimulation with 100 nM 
insulin (blue) or remained in the basal state (red). Images were acquired in 5 min intervals for 
insulin stimulated cells and 10 min intervals for control cells with an exposure time of 500 ms and a 
frame rate of 2 Hz. Fluorescence intensity of the cell footprint was measured in each image and 
normalised to the value at t = 0 min, immediately before insulin stimulation. Blue line: Insulin 
stimulated (n = 7). Red line: Basal (n = 1). Data points are Mean ± SE. Black dashed line: 
mathematical modelling of the fluorescence intensity increase according to equation (3-4) with 
Fmax = 1.25 and r = 0.1. 
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Insulin stimulation lead to an increase of fluorescence intensity due to GSV 

translocation to the plasma membrane by about 25 % after 30 min. 

Mathematically, this increase appears to obey a logistic function (see equation 

(3-4)), which means, there is a steep increase at first, then it slows down and 

converges to a maximum. In this case 1.25, which is the maximal normalised 

fluorescence intensity after stimulation with 100 nm insulin in this cell type. In 

F(t0) is the fluorescence intensity at t = 0 min, which is 1 for normalised values, 

and Fmax is the maximal fluorescence intensity, in this case 1.25. The growth 

rate r corresponds to the initial steepness of the curve and is the only parameter 

in this equation that remains to be determined. When r is assumed to be 0.1, the 

graph follows the black dashed line in Figure 3.8. 

A control experiment was carried out, in which cell culture medium instead of 

insulin was added to the cells. As expected, the fluorescence intensity did not 

increase in the basal state, which means that the increase in insulin stimulated 

cells was solely due to insulin-induced HA-GLUT4-GFP translocation. In fact, the 

fluorescence intensity in the basal control decreased by approximately 13 %, 

which was probably a result of photobleaching. 

The same experiment was carried out in 3T3 L1 adipocytes. Representative 

images of a single cell over the course of 30 min are shown in Figure 3.9. After 

the administration of insulin, the fluorescence intensity increased considerably, 

which was unmistakably obvious by eye. Immediately before insulin stimulation, 

clearly defined green fluorescent spots were visible in the TIRF zone. These 

were likely GSVs near the plasma membrane. With the addition of insulin, more 

spots emerged in the TIRF zone and those already present seemed to increase in 

size, until an almost ‘cauliflower-like’ appearance was achieved. This 

phenomenon was likely due to the limited resolution of the system, when the 

number of GSVs got so high that single vesicles could not be resolved anymore. 

This is likely also a result of increased dispersal of GLUT4 in the plasma 

membrane. 

 
F(t) =

Fmax

1 + (
Fmax − F(t0)

F(t0)
) e−rt

 
(3-4) 
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Figure 3.9 Time Course of Insulin Stimulated 3T3 L1 Adipocytes in TIRFM 
3T3 L1 fibroblasts were grown and differentiated into adipocytes as described in 2.2.1.3 on Ibidi 
μ-dishes and imaged live in TIRFM after stimulation with 100 nM insulin. Images were acquired in 
5 min intervals with an exposure time of 500 ms and a frame rate of 2 Hz. Shown are 
representative images of a single cell at t = 0 min (immediately before insulin administration), 
t = 5 min, t = 15 min, t = 20 min, t = 25 min, and t = 30 min. Scalebar: 50 μm. 

 
Figure 3.10 Normalised Fluorescence Intensity in 3T3 L1 Adipocytes in TIRFM 
3T3 L1 fibroblasts were grown and differentiated into adipocytes as described in 2.2.1.3 on Ibidi 
μ-dishes and imaged live in TIRFM after stimulation with 100 nM insulin (blue) or remained in the 
basal state (red). Images were acquired in 5 min intervals with an exposure time of 500 ms and a 
frame rate of 2 Hz. Fluorescence intensity of the cell footprint was measured in each image and 
normalised to the value at t = 0 min, immediately before insulin stimulation. Blue line: Insulin 
stimulated (n = 12). Red line: Basal (n = 8). Data points are Mean ± SE. Black dashed line: 
mathematical modelling of the fluorescence intensity increase according to equation (3-4) with 
Fmax = 2.1 and r = 0.1. Black dotted line: Linear regression. 

As for HeLa cells, the fluorescence intensity was quantified within the footprint 

of the cell and normalised to the fluorescence intensity immediately prior to 

insulin administration. In control experiments, cell culture medium without 

insulin was added to the cell culture dish. This is shown in Figure 3.10. 
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As expected, the fluorescence intensity increased over time during insulin 

stimulation and more than doubled after 30 min of stimulation with 100 nM 

insulin. However, it is not clear whether the maximum had been reached at the 

end of the experiment, since images were only taken for 30 min. Interestingly, 

the fluorescence intensity decreased by less than 1 % in the control experiment. 

Different from the time course depicted in Figure 3.8, the data cannot be 

approximated by a logistic function with the same parameters (dashed line), in 

fact, a linear regression (dotted line) fits the data set almost perfectly. This is 

contradictory to the fluorescence intensity time courses in 3T3 L1 adipocytes 

reported by others, where the curve indeed follows a logistic function and the 

fluorescence intensity increases by 2-3 fold after 20-30 minutes of insulin 

stimulation (Dawicki-McKenna et al., 2012; S. Huang et al., 2007). Furthermore, 

the time courses for both cell lines are slower than that of 3T3 L1 adipocytes 

reported by others (Holman et al., 1994; Muretta et al., 2008) These differences 

are likely due to the home-built microscope set-up that did not allow for exact 

regulation of parameters such as temperature or CO2 content. 

3.2.3 Mobile and Static Vesicles in the TIRF Zone 

The results presented in this section were generated in collaboration with Dr 

Niall Geoghegan in the context of his PhD Thesis (Geoghegan, 2015). 

In time-lapse images of the TIRF experiments conducted during this study, single 

vesicles were clearly visible in the TIRF zone. The majority of them appeared 

static, while a smaller portion were moving around the field of vision, either 

approaching the cell surface, or moving along the xy plane. We were interested 

in the fraction of static and mobile GSVs and whether this changed in a time-

dependent manner in the presence of insulin. Further, we used this data as 

another reference point in the comparison of 3T3 L1 adipocytes and the 

potential cell model HeLa. 

GSVs were identified using algorithms of the ImageJ/Fiji platform. First, 

background fluorescence was removed by applying a rolling ball algorithm: for 

each pixel, the signal intensity of the pixels surrounding it was averaged and 

subtracted from the signal, which results in a smoother background (Sternberg, 

1983). The ball radius we used was 5 pixels. The image was processed further by 
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removing single pixel noise with the plugin “despeckle”. GSVs were defined by 

three criteria: (1) the particle contained a local intensity maximum (2) 75 % of 

the signal was contained within a radius of 5 pixels (3) the minimum size of the 

particle was 2 pixels. Particles that did not belong in these categories were 

treated as outliers and were excluded from the analysis with the help of the 

FindFoci algorithm (A. D. Herbert et al., 2014). Static and mobile GSVs were 

then identified in time lapse image stacks, where each frame had been treated 

as described. Stationary signals were filtered out from the image stack by 

subtracting an average projection of the stack pixel by pixel. The resulting stack 

contained only moving vesicles. This secondary stack was subtracted from the 

original image stack frame by frame, which yielded images of only stationary 

vesicles. GSVs could then be counted in different regions of interest (ROIs) in 

single images of each stack. The results are shown for three individual cells and 

ten 100 μm2 ROIs in Figure 3.11 for 3T3 L1 adipocytes and in Figure 3.12 for HeLa 

cells. Images were recorded for 2 min before and 15 min after stimulation with 

100 nM insulin. Addition of insulin occurred at t = 0 min. 

Figure 3.11 demonstrates impressively the translocation of GLUT4 vesicles to the 

cell surface in response to insulin in 3T3 L1 adipocytes. With the addition of 

insulin to the cell culture medium, the number of mobile vesicles increased 

dramatically within the first minute and stayed elevated for about 5 minutes. 

During this time, the majority of GSV translocation appeared to be taking place, 

before the number of mobile vesicles dropped back down to levels from the 

basal state (t < 0 min). The number of static vesicles on the other hand was 

steadily increasing, reflecting the arrival of new GSVs in the TIRF zone and 

tethering to the membrane. This data is consistent with observations by Stenkula 

et al. (2010), who found a sharp increase in fusion events within the first five 

minutes of insulin stimulation. 

Figure 3.12 shows the same experiment in HeLa cells. Similar to the data 

collected for 3T3 L1 adipocytes, the number of mobile vesicles increased 

considerably immediately after the addition of insulin. However, the increased 

activity lasted closer to 8 minutes in this cell type. Interestingly, the number of 

both, static and mobile GSVs then dropped to levels below those prior to insulin 
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stimulation. This may be the reason for the reduced increase in fluorescence 

intensity after addition of insulin compared to 3T3 L1 adipocytes. 

 

Figure 3.11 Static and Mobile GLUT4 Vesicles in 3T3 L1 Adipocytes 
3T3 L1 fibroblasts were grown and differentiated into adipocytes as described in 2.2.1.3 on ibidi 
μ-dishes and imaged live in TIRFM before and after stimulation with 100 nM insulin at t = 0 min. 
Images were acquired in 1 min intervals with an exposure time of 500 ms and a frame rate of 2 Hz. 
Counts of mobile and static vesicles were determined as described. Static vesicles are shown in 

red, mobile vesicles in black. N = 3 cells, 10 ROIs (100 μm2) per cell were analysed. Data points 

are Mean ± SD. 
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Figure 3.12 Static and Mobile GLUT4 Vesicles in HeLa Cells 
HeLa cells were grown on Ibidi μ-dishes and imaged live in TIRFM before and after stimulation with 
100 nM insulin at t = 0 min. Images were acquired in 1 min intervals with an exposure time of 
500 ms and a frame rate of 2 Hz. Counts of mobile and static vesicles were determined as 
described. Static vesicles are shown in red, mobile vesicles in black. N = 3 cells, 10 ROIs 
(100 μm2) per cell were analysed. Data points are Mean ± SD. 

3.3 Discussion 

The aim of this chapter was the characterisation of HeLa cells with respect to 

their ability to translocate HA-GLUT4-GFP in response to insulin and compare the 

cell line to the frequently used model cell line 3T3 L1.  

Overall, HA-GLUT4-GFP HeLa cells responded to an insulin stimulus in a similar 

manner as HA-GLUT4-GFP 3T3 adipocytes with respect to their ability to 

translocate the protein to the TIRF zone. In adipocytes the membrane associated 

fluorescence more than doubled, in HeLa cells, the increase was less prominent 

and averaged out at about 25 %. In unstimulated HeLa cells, fluorescence 

decreased strongly over time due to photobleaching. This appeared to be less of 
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an issue in 3T3 L1 adipocyte, where fluorescence intensity remained constant 

This may be due to a combination of higher expression levels of HA-GLUT4-GFP, 

higher levels of the protein in the vicinity of the membrane, and higher recycling 

rates, meaning that photobleached molecules are cleared from the cell surface 

more rapidly than in HeLa cells. One or a combination of these factors may have 

resulted in the fluorescence intensity remaining almost constant in the absence 

of insulin. An important aspect to consider in this observation is that there was 

only one successful HeLa control experiment, making it difficult to draw 

conclusions with regards to photobleaching, as another cell may have behaved 

differently. Similarly, it is important to mention that out of the 3T3 L1 control 

experiments, some single cells exhibited a fluorescence decrease of about 20 % 

in the absence of insulin, while others remained unchanged.  

One significant problem we came across when working with HeLa cells was that 

these cells were more prone to detaching off the culture dish during imaging 

than adipocytes, resulting in more failed experiments, which is also the reason 

for the lower number of data points for this cell line.  

Our TIRFM setup was not powerful enough to give more insight into the dynamics 

of GLUT4 in the plasma membrane. Single fusion events could occasionally be 

observed but the majority of time-lapse images showed GSVs that appeared 

mostly static. After 15 – 20 min of insulin stimulation in 3T3 L1 adipocytes the 

signal increased to an extent where single vesicles could not be identified 

anymore. In HeLa cells single vesicles were even less frequently observed. This 

may be due to differences in the GSV translocation machinery in this cell type. 

HeLa cells do not express endogenous GLUT4 or the insulin receptor and other, 

crucial components of the insulin signalling pathway may be missing too, 

resulting in different composition and structure of GSVs. The consequence may 

well be smaller vesicles that are below the detection limit of our TIRFM setup. 

Fusion of GSVs with the plasma membrane appeared unaffected, as HA-surface 

staining delivered results comparable to those of 3T3 L1 adipocytes. HeLa cells 

clearly respond to insulin stimulation with the translocation of HA-GLUT4-GFP 

containing vesicles to the surface and insertion of the protein in the plasma 

membrane as shown in section 3.2.1. 
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Image manipulation in ImageJ allowed a clearer display of single vesicles and the 

comparison of mobile versus static GSVs. This analysis showed again that HeLa 

cells were reacting in a similar way to an insulin stimulus with regards to their 

GSVs dynamics in the TIRF zone. The number of mobile GSVs near the membrane 

increased noticeably with insulin stimulation for a similar length of time and 

then dropped again. 

Overall, the results suggest that HeLa cells are indeed comparable to 3T3 L1 

adipocytes to some extend and may be a suitable model for preliminary screens 

in the study of GSV translocation. HeLa cells are easy to maintain, and genetic 

manipulation is straightforward and reproducible. Indeed, other groups have 

used the cell line in published studies (Camus et al., 2020; Haga et al., 2011; 

Sadler et al., 2013; Trefely et al., 2015). In addition, it is known that HeLa cells 

react to insulin stimulation with the phosphorylation of Akt and AS160 (Bogan, 

2012) and that they express sortilin (Camus et al., 2020). 

Overall, the comparison of HeLa cells and 3T3 L1 adipocytes could be expanded 

by an almost infinitive amount of experiments. Recycling kinetics of GLUT4 in 

HeLa cells, as carried out by Muretta et al. (2008) in 3T3 L1 adipocytes, would 

be particularly interesting. In a similar experiment, FACS analysis has been 

carried out by our group after completion of this work and added further 

evidence towards the comparability of the two cell lines. (S. Morris et al., 2020). 

The cell line can be used to deliver preliminary results. However, too little is 

known about the insulin signalling pathway and whether or not its components 

are present in HeLa cells to consider them a suitable substitute for adipocytes.  

A limitation of TIRFM itself is that despite its improved background elimination, 

it still does not differentiate between a fluorescent signal inside and outside the 

plasma membrane. The evanescent wave illuminates a region that is over 

100 nm deep. The thickness of the plasma membrane itself, however, is only 

about 10 nm (Freedman, 2012). This means that the vast majority of the 

illuminated field contains fluorescence that originates from molecules outside 

the plasma membrane. This complicates our experiments significantly, since 

insulin stimulation of HA-GLUT4-GFP 3T3 L1 adipocytes and HeLa cells leads to 

translocation of the fluorescent fusion protein to the plasma membrane. The 
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signal in the TIRF zone increased dramatically, but it is unclear which portion 

was derived from GSVs approaching the membrane and which from actually 

fused vesicles. Events in the plasma membrane are therefore still overlaid with a 

substantial amount of background fluorescence, even though TIRF eliminates 

signals from fluorescent molecules deeper inside the cell. This problem can be 

circumvented by using a different probe, such as IRAP-pHluorin (Jiang et al., 

2008; Stenkula et al., 2010) or VAMP2-pHluorin (Y. Xu et al., 2011). As described 

in section 1.7.3, pHluorin is a pH-sensitive fluorophore and only emits light when 

exposed to the neutral pH of the cell culture medium, but not in the acidic 

environment inside the GSVs. We have indeed developed a construct expressing 

IRAP-pHluorin that also translocated to the cell surface in response to insulin in 

HeLa cells. However, this probe was not used for TIRFM experiments, as it could 

not be expressed in high enough levels in 3T3 L1 adipocytes. 

Another way to overcome the issues surrounding background fluorescence is to 

label the HA-tag of HA-GLUT4-GFP on the surface of cells, as demonstrated in 

section 3.2.1. This excludes proteins that are not integrated in the plasma 

membrane and is an experiment that is routinely carried out in our laboratory to 

visualise and quantify GLUT4 exocytosis. Using surface labelling in TIRFM could 

lead to a better resolution of membrane integrated GLUT4, however this 

technique can only be used for fixed cells and does not allow for live imaging. In 

addition, this technique cannot be applied to the existing TIRFM setup, since the 

instrument only has a 481 nm laser available, but a different wavelength would 

be needed to excite the surface labelling. 

In conclusion, the TIRFM setup used in this work had some shortcomings that 

prevented us from carrying out further experiments concerning the dynamics of 

plasma membrane GLUT4. To find out more about the organisation of the 

transporter in the plasma membrane, we employed two different fluorescence 

microscopy-based techniques (see Chapter 4 and Chapter 5). In terms of the 

comparability of HeLa cells and 3T3 L1 adipocytes, we used these results as a 

basis for a study of SNARE proteins that affect intracellular GLUT4 trafficking, 

which is presented and discussed in Chapter 6.  
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Chapter 4 The Oligomeric State of GLUT4 in the 
Plasma Membrane 

4.1 Introduction 

4.1.1 Oligomerisation of Proteins 

Cell signalling pathways are largely depending on protein-protein interactions. In 

many cases, the same proteins interact with each other, forming dimers, 

trimers, tetramers or oligomers of even higher order (Cornish-Bowden & 

Koshland Jr, 1971). So called homooligomers are involved in different processes 

including gene expression, control of receptor, enzyme, or ion channel activity, 

and cell-cell interactions (Hashimoto & Panchenko, 2010). There are cases 

where the oligomeric state of a protein has a profound influence on its function. 

For example, the regulatory protein 14-3-3ζ binds to phosphoserine motifs in its 

dimeric form and phosphorylation of a serine residue domain prevents 

oligomerisation and subsequently the binding of its substrate (Woodcock et al., 

2003). G-protein coupled receptors (GPCRs) are another family of proteins that 

exist in different oligomeric states, which affects their function and in some 

cases even their location within the cell (Fotiadis et al., 2006; Gurevich & 

Gurevich, 2008). 

According to protein structure databases, most proteins can form oligomers with 

themselves (Henrick & Thornton, 1998), but experimental investigation of the 

oligomeric state of proteins has been challenging. Energy transfer methods like 

fluorescence resonance energy transfer (FRET) or bioluminescence resonance 

energy transfer (BRET) have been employed to argue that proteins are in very 

close proximity to each other (Floyd et al., 2003; Issafras et al., 2002). However, 

these methods are limited as they cannot differentiate between true oligomers 

and molecules that are only very close to each other (Gurevich & Gurevich, 

2008). Other microscopy based techniques, determine the oligomeric state of a 

protein by analysing the temporal fluctuation of fluorescence intensity of a 

fluorescent protein of interest (Yan Chen et al., 1999; Kask et al., 1999). These 

methods, however, are time-dependent and can only be carried out in live 

samples. 
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Disulphide trapping by chemical crosslinking has been used to investigate the 

oligomeric state of GPCRs (Klco et al., 2003), but this method has the 

disadvantage that temporary interactions as opposed to true oligomerisations 

are crosslinked as well. BN-PAGE is a gel electrophoresis method that separates 

proteins and protein complexes in their native state, allowing the analysis of 

protein complexes and oligomers (Schägger et al., 1994). This method has been 

used for instance to determine the native oligomeric state of the plasma 

membrane based enzymes NTPDase1 and 2 (Failer et al., 2003) but it is an 

intricate and complicated technique that requires a lot of expertise. 

4.1.2 Spatial Intensity Distribution Analysis 

Spatial Intensity Distribution Analysis (SpIDA) was designed by Godin et al. to 

overcome the shortcomings of the aforementioned techniques. The protein of 

interest is expressed as a chimera with a fluorescent protein. Images are 

acquired using standard confocal laser scanning microscopy (CLSM) in either live 

cells or fixed samples and the fluorescence intensity is measured. On CLSMs this 

is usually done with an analogue photomultiplier tube that counts the number of 

collected photoelectrons (Paddock, 1999).The intensity of all pixels in an ROI is 

then plotted in an intensity histogram over which a Poissonian distribution is 

fitted. This distribution will look different for monomeric, oligomeric, or mixed 

populations and is used to calculate the quantal brightness ε of the fluorophore 

(Godin et al., 2011). ε is defined as the mean intensity in the point spread 

function (see Chapter 5.1) of a fluorescent unit (Godin et al., 2015). For SpIDA 

to work, it is crucial that the used fluorescent protein cannot form oligomers 

with itself, as regular GFP does. This is the case for monomeric eGFP, which has 

an Ala206Lys point mutation (von Stetten et al., 2012). If this is fused to the 

protein of interest, the intensity histogram and therefore ε will reflect the 

oligomeric state of the protein. First, it is therefore necessary to acquire images 

of monomeric eGFP and determine the monomeric quantal brightness ε0 (Godin 

et al., 2011). This in turn is dependent on the laser power of the instrumental 

setup (Marsango et al., 2017). The oligomeric state of the protein of interest is 

determined by the measured quantal brightness, which will be a multimer of ε0 

as demonstrated in Figure 4.1. 
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Figure 4.1 The Quantal Brightness ε Depends on the Oligomeric State of the Protein. 
The quantal brightness ε of a population of monomeric eGFP-tagged proteins is a multimer of the 
quantal brightness of the monomeric eGFP ε0. 

The quantal brightness ε of a primarily monomeric population will be equal to ε0, 

a dimeric population will be 2·ε0, a trimeric population 3·ε0 and so on. 

Since the development of SpIDA by Godin et al. the technique has been used in a 

number of published studies by the Milligan group in our institute to determine 

the quaternary structure of different GPCRs (Marsango et al., 2017; Pediani et 

al., 2016; Ward et al., 2015; Zakrys et al., 2014). In one study investigating M1 

muscarinic acetylcholine receptors it was found that about 75 % of these 

receptors in the plasma membrane are monomers in the basal state. Upon 

treatment with the antagonist pirenzepine the receptor oligomerises and the 

majority of receptors now exist as dimers or higher order oligomeric complexes 

(Pediani et al., 2016). Using simulated data, Godin et al. (2011) showed that the 

technique delivers reliable results for densities of up to 10,000 fluorophores per 

laser beam area. This means, SpIDA can be employed for the analysis of high-

density populations, as would be expected to be the case for GLUT4 in the 

plasma membrane. 

4.1.3 Hypothesis and Aims 

It has been shown that some GPCRs are delivered to their place in the plasma 

membrane in the form of oligomers (Prinster et al., 2006). We hypothesised that 

this may be the case for GLUT4 in GSVs and the clusters reported by Lizunov et 

al. and Gao et al. are in fact GLUT4 oligomers that break up into monomers 

upon insulin stimulation. 
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We used SpIDA to determine the oligomeric state of GLUT4 in HeLa cells and 3T3 

L1 adipocytes in the basal state and after insulin stimulation. For this, we 

transfected HeLa cells with a HA-GLUT4-eGFP construct and established a 3T3 L1 

cell line stably expressing HA-GLUT4-eGFP. Since SpIDA is still a relatively new 

method and not widely used, we validated the method by repeating the 

published work by Pediani et al. who investigated the change in oligomeric state 

of the M1 muscarinic receptor in response to the antagonist drug pirenzepine 

(Pediani et al., 2016). To confirm our results acquired by SpIDA, we carried out 

BN-PAGE of lysates from wild type 3T3 L1 adipocytes. 

4.2 Results 

4.2.1 Construction of a HA-GLUT4-eGFP Lentiviral Plasmid 

Our laboratory routinely uses HeLa and 3T3 L1 cell lines expressing HA-GLUT4-

GFP. However, the construct expressed in these cells contains standard GFP 

which is capable of forming oligomers with itself (von Stetten et al., 2012) and is 

therefore unsuitable for SpIDA. Hence, the first step was to construct a plasmid 

that contains HA-GLUT4 tagged with the monomeric eGFP described by von 

Stetten et al. However, 3T3 L1 cells are known to be difficult to transfect by 

traditional means (Ross et al., 2003) and introduction of DNA via a viral vector 

has been more successful (Carlotti et al., 2004).  

 

Figure 4.2 Maps of pCDH-CMV-MCS-EF1-Puro and pcDNA3.1 HA-GLUT4-eGFP 
Schematic map of the vector and insert plasmids with positions of used restriction sites (BamHI 
and NotI), antibiotic resistances and promoter) 
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For this reason, we decided to construct a lentiviral plasmid containing HA-

GLUT4-eGFP. As shown in Figure 4.2, we used the lentiviral vector pCDH with 

the CMV promoter and a puromycin resistance gene. In its multiple cloning site, 

this plasmid contains both a BamHI and a NotI restriction site. HA-GLUT4-eGFP 

was generated synthetically and introduced into the pcDNA3.1 vector flanked by 

the same restriction sites BamHI and NotI. Figure 4.3 and Figure 4.4 show the 

digested pCDH-CMV-MCS-EF1-Puro and the pcDNA3.1 HA-GLUT4-eGFP plasmid 

respectively. The negative control sample did not contain any endonucleases in 

the reaction mix and shows the typical band pattern of uncut, supercoiled 

plasmids, which run lower in the gel than their size would suggest. The single 

digests with BamHI and NotI lead to a single band the size of the linear plasmid 

at around 7 kb, demonstrating that the restriction sites were unique in both 

plasmids. When digested with both restriction endonucleases, pcDNA3.1 dropped 

out the HA-GLUT4-eGFP insert, which has a size of 2313 bp. The drop out in the 

pCDH plasmid is only 7 bp, which cannot be resolved in a 1 % agarose gel. This is 

why the double digested pCDH plasmid shows only a single band at around 7 kb. 

 

 
Figure 4.3 pCDH-CMV-MCS-EF1-Puro Digested with BamHI and NotI 
Representative restriction digests of pCDH-CMV-MCS-EF1-Puro using the enzymes shown on the 
figure performed as described in 2.2.4.4. Samples were analysed on 1 % agarose gels as 
described in section 2.2.4.3. The marker used was a 1 kb DNA ladder and the negative control was 
the reaction mix minus enzymes. 
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Figure 4.4 pcDNA3.1 HA-GLUT4-eGFP Digested with BamHI and NotI 
Representative restriction digests of pcDNA3.1 HA-GLUT4-eGFP using the enzymes shown on the 
figure performed as described in 2.2.4.4. Samples were analysed on 1 % agarose gels as 
described in section 2.2.4.3. The marker used was a 1 kb DNA ladder and the negative control was 
the reaction mix minus enzymes. Double digestion was expected to release the 2.3 kb GLUT4-GFP 
cDNA insert, as indicated by the arrow.  

The digested pCDH vector was combined with the HA-GLUT4-eGFP insert by 

molecular cloning as described in 2.2.4.5 and ten clones were picked for further 

analysis. The plasmid DNA was purified by Miniprep and digested with BamHI and 

NotI. Successful cloning should yield two bands: One at about 7 kb, which is the 

linearised pCDH vector, and the 2.3 kb HA-GLUT4-eGFP insert. Figure 4.5 shows 

the outcome of this experiment. Only sample 1 showed the desired band 

pattern. Sample 6 and 8 only showed one band at 7 kb, which is probably the 

empty pCDH vector, the single band in sample 7 is likely an empty pcDNA3.1 

plasmid. Samples 2-5, 9, and 10 have the band at 2.3 kb, but the vector only has 

a size of about 5 kb, which corresponds to an empty pcDNA3.1 plasmid. Sample 1 

was used for the generation of lentivirus. 
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Figure 4.5 pCDH HA-GLUT4-eGFP Clones 
Restriction digests of 10 Miniprep purified clones. Plasmids were digested with BamHI and NotI as 
described in 2.2.4.4 and analysed on a 1 % agarose gel as described in section 2.2.4.3. successful 
clones were expected to release the 2.3 kb GLUT4-GFP cDNA insert as indicated by the arrow and 
show the linearised pCDH plasmid at 7 kb. 

4.2.2 Production and Testing of Lentivirus 

Lentivirus was produced as described in 2.2.3. The presence of lentiviral 

particles in the packaging cell supernatants was confirmed using the Lenti-X 

GoStix tests. However, these tests only recognise the capsid protein p24 which 

would also be present in unfunctional viruses that do not contain the genetic 

information for HA-GLUT4-eGFP. In order to determine the functionality of the 

virus, HeLa cells were infected with the packaging cell supernatant, HA-surface 

stained and examined by confocal microscopy in the basal state and after insulin 

stimulation. Representative images of the infected cells are shown in Figure 4.6. 

Transfection efficiency was low and ranged between 5 % and 20 %, this was 

determined by microscopy as western blotting did not yield any results, 

suggesting that levels of HA-GLUT4-eGFP were too low for immunoblotting. Cells 

expressing the construct were usually found in clusters as seen in Figure 4.6, 

which are probably derived from single cells that were successfully transfected. 

The cells showed the typical perinuclear distribution of GLUT4 in the basal state 

and a more dispersed pattern with a bright blue HA-ring after insulin stimulation 

and the HA/G4 ratio in the basal state vs insulin stimulation confirms effective 

GLUT4 translocation in response to insulin. 
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Figure 4.6 HeLa Cells Infected with HA-GLUT4-eGFP Lentivirus 
HeLa cells were infected with lentiviral supernatant as described in 2.2.3.2. Cells were incubated in 
serum-free medium for 2 h prior to the experiment and stimulated with 100 nM insulin for 60 min or 
left untreated. Cells were then fixed and stained for surface HA as described in section 2.2.2.2. A: 
Representative image of basal cells B: Representative image of cells after stimulation with insulin 
C: HA/G4 ratio, Basal: 0.51 ± 0.12 (n = 30) Insulin: 1.00 ± 0.09 (n = 21). Mean ± SE. Unpaired two-
tailed t-test 95 % confidence intervals p = 0.0037 

Infection of 3T3 L1 cells could not be achieved with this lentivirus. Because the 

transfection efficiency was also very low in HeLa cells, we hypothesised that this 

may be due to a low virus titer. Attempts to increase this by ultracentrifugation 

or PEGylation failed, which is why we purchased a highly concentrated lentivirus 

from VectorBuilder made from the here described HA-GLUT4-eGFP construct. 

This custom-made lentivirus achieved a transfection efficiency of about 50 % in 

differentiated 3T3 L1 adipocytes at MOI = 200 (not shown) and we used this for 

the generation of a 3T3 L1 cell line stably expressing HA-GLUT4-eGFP, which was 

then used for SpIDA experiments. 
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4.2.3 Generation of a 3T3 L1 Cell Line Expressing HA-GLUT4-
eGFP 

The lentiviral HA-GLUT4-eGFP construct contains a puromycin resistance gene, 

which was used to apply selection pressure on the infected cells. The 

appropriate concentration of puromycin was determined by creating a kill curve. 

Varying concentrations of puromycin were added to confluent cultures of 

undifferentiated 3T3 L1 cells and cell viability was estimated by evaluating the 

cultures under a conventional light microscope after 3, 5, and 7 days of culture 

in the presence of the drug. The resulting kill curve is shown in Figure 4.7. 

Puromycin concentrations higher than 3 μg·ml-1 resulted in complete cell death 

after 3 days of culture. 2 μg·ml-1 puromycin killed the entire culture after 7 days 

and with 1 μg·ml-1 puromycin about 5 % of the culture survived after 7 days. The 

ideal concentration for applied selection pressure was therefore decided to be 

1.5 μg·ml-1 puromycin. 

  

Figure 4.7 Kill Curve of 3T3 L1 Cells Treated with Puromycin 
3T3 L1 fibroblasts were seeded in a 24 well plate and cultured until confluent. Confluent 3T3 L1 
cells were then treated with 0 - 6 μg·ml-1 puromycin, 3 wells for each concentration and cell viability 
was estimated by examination under a light microscope after 3, 5, and 7 days of culture. Puromycin 
containing medium was changed every other day. Puromycin concentrations higher than 3 μg·ml-1 
resulted in complete cell death after 3 days, these data points are therefore not shown. The 
experiment was only carried out once. 
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The 3T3 L1 cell line stably expressing HA-GLUT4-eGFP was generated as 

described in 2.2.3.3 and analysed by confocal microscopy as previously described 

in 4.2.2. Results are shown in Figure 4.8. Expression levels were very low and 

could only be picked up by confocal microscopy but not by immunoblotting. 

Single cells that expressed higher levels of HA-GLUT4-eGFP showed the typical 

perinuclear distribution and the blue HA ring after insulin stimulation. These 

cells were used for SpIDA. 

  

 

 

Figure 4.8 3T3 L1 Adipocytes Stably Expressing HA-GLUT4-eGFP 
The cell line was generated as previously described in this section. Cells were incubated in serum-
free medium for 2 h prior to the experiment and treated with 100 nM insulin for 20 min or left 
untreated. Cells were then fixed and stained for surface HA as described in section 2.2.2.2. A: 
Representative image of basal cells B: Representative image of cells after stimulation with insulin 
C: HA/G4 ratio, Basal: 0.27 ± 0.04 (n = 12) Insulin: 0.60 ± 0.10 (n = 4). Mean ± SE. Unpaired two-
tailed t-test 95 % confidence intervals p = 0.0053 
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4.2.4 Validation of the Method – Oligomeric State of the M1 
Muscarinic Receptor 

Pediani et al. used SpIDA to study the oligomeric state of the M1 muscarinic 

receptor. They generated a Flp-In T-REx 293 cell line stably expressing eGFP-

tagged human M1 after induction with doxycycline and performed SpIDA. They 

found that the majority of the receptor (69.1 %) in the basolateral membrane is 

monomeric and the remaining 30.9 % either dimeric or of higher oligomeric 

organisation. Treatment with the antagonistic M1 ligand pirenzepine then 

reversed this distribution and only 26.5 % of the receptor was monomeric 

(Pediani et al., 2016). We repeated this experiment with the same cell line that 

was used in this study, kindly provided by Dr Richard Ward and we found similar 

results that are shown in Figure 4.9. 

The quantal brightness of monomeric eGFP in this experimental setup with the 

laser power at 6 % had previously been determined and was ε0 = 25.24 (Pediani 

et al., 2016). By normalising the values of the single ε measurements of 

monomeric eGFP to ε0, the monomeric equivalent unit (MEU) of each 

measurement was obtained. Pediani et al. found that 75 % of all monomeric 

eGFP MEUs were below 1.274. Populations were therefore considered to be 

monomeric if their ε was less than 1.274·ε0. After induction of M1-eGFP 

expression with doxycycline, green fluorescent cells could be observed under the 

confocal microscope. The mean quantal brightness ε of these untreated cells 

was 28.24 ± 1.21 (Mean ± SE, n = 26). This value is very close to the quantal 

brightness of monomeric eGFP. The monomeric M1 population in untreated cells 

was 77 %. After treatment with the M1 antagonist pirenzepine, this decreased to 

40 % and the mean ε was 39.03 ± 2.88 (Mean ± SE, n = 25), significantly greater 

than in untreated cells as seen in Figure 4.9.  

With these results mirroring the published study by Pediani et al. we felt 

confident that the SpIDA experiments were carried out correctly. 
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Figure 4.9 Oligomeric State of the M1 Muscarinic Receptor 
Flp-In T-REx 293 cell line stably expressing eGFP-tagged human M1 were induced with 100 ng·ml-1 
doxycycline for 24 h and treated with 10 μM pirenzepine for 24 h or left untreated. Cells were 
imaged live. SpIDA was carried out as described in 2.2.8.2 A: Representative image of basolateral 
membrane of treated cells. B: Quantal brightness and mean fluorescence intensity of single ROIs. 
Filled symbols: untreated, open symbols: treated with 10 μM pirenzepine C: Distribution of 
monomeric (< 1.274) and higher oligomeric state (> 1.274) M1 in untreated cells. D: Distribution of 
monomeric (< 1.274) and higher oligomeric state (> 1.274) M1 in cells treated with 10 μM 
pirenzepine. E: Mean quantal brightness of untreated cells and cells treated with 10 μM 
pirenzepine. Untreated: 28.24 ± 1.21 (n = 26) Treated: 39.03 ± 2.88 (n = 25). Mean ± SE. Unpaired 
two-tailed t-test, 95 % confidence intervals p = 0.0011. 
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4.2.5 Oligomeric State of GLUT4 as by SpIDA 

SpIDA was carried out in both HeLa and 3T3 L1 cells to add to the comparison of 

the two cell types in Chapter 3. HeLa cells were infected with the lentivirus, and 

the previously described HA-GLUT4-eGFP 3T3 L1 cell line was used for SpIDA in 

adipocytes. The quantal brightness of monomeric eGFP in this experimental 

setup with the laser power at 2 % had previously been determined and was 

ε0 = 12.56 (Zakrys et al., 2014). 

  

 
 

Figure 4.10 Oligomeric State of GLUT4 in HeLa Cells 
HeLa cells were infected with lentiviral supernatant as described in 2.2.3.2. Cells were incubated in 
serum-free medium for 2 h prior to the experiment and treated with 100 nM insulin for 60 min or left 
untreated. Cells were imaged live. SpIDA was carried out as described in 2.2.8.2 A: Representative 
image of basolateral membrane of HeLa cells expressing HA-GLUT4-eGFP in the basal state. 
B: Representative image of basolateral membrane of HeLa cells expressing HA-GLUT4-eGFP after 
insulin stimulation. C: Mean quantal brightness in the basal state and after insulin stimulation. 
Basal: 67.50 ± 3.47 (n = 30) Insulin: 60.36 ± 3.40 (n = 30). Mean ± SE. Unpaired two-tailed t-test, 
95 % confidence intervals p = 0.1463. D: Quantal Brightness and mean fluorescence intensity of 
single ROIs. Filled symbols: Basal, open symbols: Insulin  
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Figure 4.10 shows the basolateral membrane of HeLa cells expressing the 

construct in the basal state (A) and after insulin stimulation (B). It is difficult to 

judge the effect of insulin on this cell type as these cells are less insulin 

sensitive, which has been discussed in Chapter 3. The mean fluorescence 

intensity in the analysed ROIs was not affected in this experiment (Figure 

4.10 D, x-axis) but HA-GLUT4-eGFP translocated to the cell surface in response 

to insulin in these cells as has been shown in Figure 4.6. 

The mean quantal brightness of HA-GLUT4-eGFP in this cell type was 67.50 in 

the basal state and 60.36 after insulin stimulation, which is not a significant 

difference. It is however substantially higher than ε0 and most ROIs indeed had 

values for ε that suggest that GLUT4 is expressed in complexes of high 

oligomeric order. According to Figure 4.10 D, complexes consisted of at least 

two and up to eight GLUT4 molecules and there was no difference between 

basal cells and cells that had been stimulated with insulin. 

HeLa cells do not express endogenous GLUT4 (Sadler et al., 2013) and it is 

conceivable that they lack other proteins that are part of the insulin signalling 

pathways. It is possible that our hypothesis that the oligomeric state of GLUT4 is 

influenced by insulin is still valid in adipocytes, but not in HeLa cells if the 

oligomerisation or de-oligomerisation requires other proteins that are not 

present in this cell type. We therefore conducted the same experiment in 3T3 L1 

adipocytes. The results are shown in Figure 4.11. 

Successful translocation of HA-GLUT4-eGFP in 3T3 L1 adipocytes was 

demonstrated in Figure 4.8 and the fluorescence intensity increased more visibly 

in this cell type than in HeLa cells. The mean quantal brightness was higher than 

in HeLa cells, with 84.99 in basal cells, but also remained the same after insulin 

stimulation, when the mean quantal brightness was 81.56. Similar to HeLa cells, 

the data suggests that GLUT4 is not monomeric in the cell membrane of 

adipocytes but exists as an oligomer. The size ranges from trimers to nonamers, 

which is larger than that observed in HeLa cells. The majority of ROIs measured 

a quantal brightness that corresponds to the size of a Heptamer, which is 

reflected in the data’s median shown in Figure 4.11 E. 
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Figure 4.11 Oligomeric State of GLUT4 in 3T3 L1 Adipocytes 
The 3T3 L1 cell line described in section 4.2.3 was used for this experiment. Cells were incubated 
in serum-free medium for 2 h prior to the experiment and treated with 100 nM insulin for 20 min or 
left untreated. Cells were imaged live. SpIDA was carried out as described in 2.2.8.2. 
A: Representative image of basolateral membrane of 3T3 L1 adipocytes expressing HA-GLUT4-
eGFP in the basal state. B: Representative image of basolateral membrane of 3T3 L1 adipocytes 
expressing HA-GLUT4-eGFP after insulin stimulation (100 nM, 20 min). C: Mean quantal 
brightness in the basal state and after insulin stimulation. Basal: 84.99 ± 4.65 (n = 17) Insulin: 
81.56 ± 3.84 (n = 15). Mean ± SE. Unpaired two-tailed t-test, 95 % confidence intervals p = 0.5800. 
D: Quantal Brightness and mean fluorescence intensity of single ROIs. Filled symbols: Basal, open 
symbols: Insulin. E: Comparison of oligomeric states in HeLa cells and in 3T3 L1 adipocytes. 
Shown are single data points as the oligomeric state, as well as the median. HeLa Basal: 5.69 
(n = 30) HeLa Insulin: 4.63 (n = 30) 3T3 L1 Basal: 7.16 (n = 17) 3T3 L1 Insulin: 6.90 (n = 15) 
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4.2.6 Oligomeric State of GLUT4 as by BN-PAGE 

Proteins subjected to BN-PAGE maintain their native conformation and stay in 

complexes. BN-PAGE does not allow the use of SDS as this would denature the 

proteins and protein complexes. However, GLUT4 is a membrane protein and 

therefore has to be solubilised by adding a mild detergent. For successful BN-

PAGE the choice of an appropriate detergent is crucial. This is particularly true 

for membrane proteins. The detergent has to be powerful enough to solubilise 

the membrane, but at the same time it has to be mild enough to leave the 

protein or protein complex of interest intact. The non-ionic detergents digitonin, 

Triton X-100, and n-dodecyl-β-D-maltoside are the most frequently used 

detergents for the separation of membrane proteins by BN-PAGE (Reisinger & 

Eichacker, 2008). We therefore decided to test two of these detergents, Triton 

X-100 (subsequently referred to as Triton) and digitonin, for the solubilisation of 

GLUT4 and following BN-PAGE. 

 

Figure 4.12 BN-PAGE of 3T3 L1 Lysates 
Lysates of 3T3 L1 adipocytes were prepared from cells in the basal state (B) and after stimulation 
with insulin (100 nM, 20min) (I) and incubated with 0.1 %, 0.2 %, 0.5 %, and 0 % Triton on ice as 
outlined in 2.2.6.1. Equal volumes of samples were run on a blue native gel (see section 2.2.6.2) 
alongside the BN-PAGE Marker (see 2.1.1) and immunoblotted for GLUT4 (see section 2.2.6.3). 
Protein concentrations in the samples were considered equal due to identical sample preparation. 
The marker was not visible on the x-ray film and was denoted manually after comparison with the 
nitrocellulose membrane. The immunoblot shown is a representative image from 3 repeats. 
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Samples were incubated with either digitonin or Triton at concentrations ranging 

from 0 % to 0.5 %. BN-PAGE and western blotting was carried out as described in 

2.2.6. Figure 4.12 shows a representative blot for Triton incubated samples, 

incubation with digitonin did not lead to a clean blot and is therefore not shown. 

The negative control sample with 0 % Triton did not show a signal, indicating 

that solubilisation with the detergent was successful. With increasing Triton 

concentration, a band of about 300-350 kDa became visible, indicating that this 

band was indeed a GLUT4 complex consisting of 6 to 7 monomers, since 

monomeric GLUT4 has a size of about 54 kDa (Fukumoto et al., 1989). 

4.3 Discussion 

SpIDA requires the expression of the protein of interest as a chimera with a 

fluorescent protein that does not form oligomers with itself, such as eGFP (von 

Stetten et al., 2012). Part of this project was therefore to generate an HA-

GLUT4-eGFP construct that can be expressed in HeLa cells and 3T3 L1 

adipocytes. This was complicated by the fact that 3T3 L1 adipocytes are 

notoriously difficult to transfect (Ross et al., 2003), which is why the construct 

had to be delivered by a lentivirus (Carlotti et al., 2004). We generated such a 

virus and successfully transfected both HeLa cells and 3T3 L1 cells with HA-

GLUT4-eGFP, however, expression levels in adipocytes were very low, which 

made carrying out SpIDA difficult. The reason for this appears to be the 

promoter in the host plasmid. Differentiated 3T3 L1 adipocytes suppress the CMV 

promoter, which makes it very difficult to obtain good expression levels (Brewer 

et al., 2014). While low expression levels complicate the detection of the 

protein by immunoblotting or even by microscopy, it also means that the cell 

trafficking systems are unlikely to be saturated with the HA-GLUT4-eGFP fusion 

protein. This means that the protein is more likely to be folded and undergo 

posttranslational modifications correctly, which makes experimental artefacts 

less probable (Tate, 2001). This is particularly advantageous in a study such as 

this one, as oligomerisation could be influenced by an altered quaternary 

structure of GLUT4, thus possibly leading to oligomerisation of the protein, when 

this would not be the case in correctly folded and glycosylated GLUT4 or vice 

versa. 
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Results from SpIDA and BN-PAGE both suggest that GLUT4 exists as a complex of 

high oligomeric order in the basolateral membrane of 3T3 L1 adipocytes and 

HeLa cells. Adipocytes contain predominantly hexamers, heptamers, and 

octamers, while most complexes in HeLa cells are slightly smaller, with more 

tetramers and pentamers being detected in this cell type. With regards to the 

comparison of the two cell types in the previous chapter, the data adds more 

depth. The HeLa cell line behaves similarly to 3T3 L1 adipocytes with respect to 

GLUT4 translocation as previously discussed. In addition, the protein also 

oligomerises, although to a lesser extent than in adipocytes. This may be due to 

other GLUT4 translocation machinery being missing in this cell type, which 

makes it tempting to assume that the oligomeric state of GLUT4 does play a role 

in GLUT4 trafficking.  

The results obtained by SpIDA are to be considered carefully, as the technique is 

not without limitations. For one, cells were imaged on a confocal microscope 

with the focal plane focused on what we considered to be the plasma 

membrane. As discussed in 3.1.1, the axial resolution in confocal microscopy is 

severely limited, which means that the obtained signal is not only from HA-

GLUT4-eGFP molecules located in the plasma membrane, but there will be a 

considerable amount of background fluorescence from GSVs approaching the 

membrane. This background signal may mask the dispersal of monomers in the 

plasma membrane. For this reason, a TIRF microscope may be more suitable for 

the analysis. However, this would have meant that we could not use the 

monomeric quantal brightness value ε0 previously obtained by Zakrys et al. who 

used the same instrument and experimental parameters for their study. The 

experiments necessary to determine all these parameters for a different 

experimental set-up would have gone beyond the scope of this study. In past 

publications, SpIDA has mostly been used to investigate monomers or dimers 

(Barbeau, Godin, et al., 2013; Pediani et al., 2016; Ward et al., 2015; Zakrys et 

al., 2014). Although the method is theoretically capable of dissolving higher 

oligomeric structures, it is limited in that respect (Barbeau, Swift, et al., 2013). 

Especially when the cell line is expressing the protein endogenously as is the 

case for 3T3 L1 adipocytes and GLUT4, oligomers could be made up of eGFP-

tagged GLUT4 and endogenous GLUT4, but only the fluorescently labelled 

molecules are taken into consideration. Heterooligomers pose a similar problem, 
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as non-labelled complex components are not detected. With regards to our 

findings that GLUT4 forms greater complexes in 3T3 L1 adipocytes than in HeLa 

cells this could mean that the complexes are actually even bigger in reality, 

either due to additional untagged GLUT4 or other proteins that are part of the 

complex. 

For the BN-PAGE experiments we used whole cell lysates instead of membrane 

fractions for practical reasons; protein complexes are often very sensitive and 

must be handled carefully. This experiment had to be carried out exclusively in 

the cold room at 4 °C and without stopping points, as freeze/thawing or sample 

preparation at room temperature led to breakup of the complexes and no signal 

was obtained on the resulting immunoblot. The fact that we used whole cell 

lysates essentially means that BN-PAGE has the same limitation as SpIDA on the 

CLSM, namely that the analysis is not restricted to the plasma membrane and 

potential dispersal effects may be masked. However, a subcellular fractionation 

in addition to the already very extensive process was considered too impractical. 

The sensitive nature of many protein complexes is what limits the technique the 

most. Proteins and protein complexes are very prone to denaturation. We 

experienced this problem when carrying out steps of the sample preparation 

outside the cold room at more than 4 °C. In this case we could not detect any 

bands in the immunoblot, suggesting that the GLUT4 complex is extremely 

unstable at higher temperatures. Another important parameter is the detergent 

that is used to solubilise membrane proteins. Often, a mild detergent such as 

digitonin is used to avoid protein denaturation. At the same time, the detergent 

has to be potent enough to sufficiently solubilise the hydrophobic membrane 

proteins. In the case of ATP synthase for example, the apparent oligomeric state 

depends on the concentration of Triton (Wittig et al., 2006). 

We have experienced all of these issues during our BN-PAGE experiments and 

even when finally successful, the resulting immunoblots only showed smeared, 

blotchy bands different from conventional SDS-PAGE immunoblots (as seen in 

Figure 4.12). Another shortcoming of this experiment is that we could not run a 

suitable control sample. We can therefore only assume that the observed bands 

are indeed GLUT4 complexes. The fact that the SpIDA experiments yielded the 
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same result makes this more plausible and SpIDA was carried out correctly as the 

method had been validated by duplicating the experiment from Pediani et al. 

The question remains why GLUT4 forms an oligomer of such high order. It is not 

a very surprising discovery, since about 35 % of cellular proteins are thought to 

be oligomeric with the average oligomeric state being tetrameric (Ali & 

Imperiali, 2005). Little research has been undertaken in the investigation of the 

quaternary structure of GLUT4, but homology modelling based on the crystal 

structure of GLUT1 has shown that GLUT4 is likely to form a pore through which 

glucose can travel, furthermore ATP- and cytochalasin B binding sites were 

identified (Mohan et al., 2009). This makes it unlikely that oligomerisation is 

needed for the functionality of the transporter. It is however plausible that 

GLUT4 molecules have a tendency to attract each other based on their tertiary 

structure and that the conditions in the membrane thermodynamically favour 

the association to oligomers. This would also explain the broad range of oligomer 

sizes and the oligomers may be smaller in HeLa cells due to the different 

membrane phospholipid composition. 

Indeed, GLUT1 has long been known to exist as an oligomer and its function is 

controlled by its oligomeric state (D. N. Herbert & Carruthers, 1991, 1992). 

Performing size exclusion chromatography, Herbert and Carruthers found that 

purified GLUT1 from erythrocytes exists as a mixture of homodimers and 

homotetramers. The native structure in vivo is understood to be tetrameric, 

stabilised by intramolecular, extracellular disulphide bonds (Zottola et al., 

1995), while purification in the presence of an alkaline reductant produces 

dimers. The ability of GLUT1 to transport glucose is indeed dependent on its 

oligomeric structure. While the GLUT1 dimer only exhibits one glucose binding 

site, the tetramer presents multiple binding sites. Interestingly, the dimer also 

presents more binding sites for the glucose transport inhibitor cytochalasin B 

then the tetrameric form (D. N. Herbert & Carruthers, 1992). Based on the fact 

that GLUT4 is structurally very similar to GLUT1, it is conceivable that it forms 

oligomers in a similar manner. 

This discovery in itself is interesting; however, insulin does not appear to have 

any influence on the size of the oligomers, which contradicts our hypothesis that 

GLUT4 clusters are in fact highly oligomerised GLUT4 complexes that break up 
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into monomers under the influence of insulin. Based on the limitations of SpIDA 

and BN-PAGE, it is important to note that the hypothesis cannot be rejected 

entirely. It is possible that particularly SpIDA is simply not powerful enough to 

detect the dispersal of GLUT4 complexes into monomers and monomeric GLUT4 

is too small to be detected by BN-PAGE, so this technique cannot be used as a 

dispersal assay and only served in this section as validation of the GLUT4 

oligomer size. 

Either way, SpIDA could not be used as a tool to visualise and quantify GLUT4 

dispersal. We therefore decided to attempt to do this with a much more potent 

microscopy technique and ventured into the for us unknown territories of super-

resolution microscopy.  
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Chapter 5 Clustering and Dispersal of GLUT4 in 
the Plasma Membrane 

5.1 Introduction 

5.1.1 Super Resolution Microscopy 

Chapter 3.1 has introduced the principles of fluorescence microscopy. 

Instruments such as confocal or TIRF microscopes enable advanced image 

acquisition with a small signal to noise ratio and little background fluorescence. 

However, the resolution is limited even in state-of-the-art light microscopes. 

Resolution is defined as the smallest distance between two points that can be 

resolved, which is illustrated in Figure 5.1. This is known as the diffraction limit. 

The signal coming from a fluorophore is visible as a blur around the source. 

Translated into the image plane, this is known as the point spread function 

(PSF). When the signal intensity is plotted along the xy plane, the PSF is 

visualised as a three-dimensional peak (Rottenfusser et al., 2019). Two points 

can be distinguished from each other if their PSFs are clearly distinguishable. 

When the peaks merge, it is not clear anymore whether the signal comes from 

one or more sources. 

 

Figure 5.1 Principle of Resolution 
Point sources emit light as circular intensity profiles. When the signal is plotted over the xy plane, 
this is visualised as peaks. The resolution is defined as the smallest distance d between two point 
sources that still results in separate peaks in the signal plot. 
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The diffraction limit is dependent on the wavelength λ of the light used as well 

as the numerical aperture (NA) of the objective. It was defined by Ernst Karl 

Abbe in 1873 (Abbe, 1873). According to the diffraction limit, the smallest 

resolvable distance d between two points is 

 

The value for NA typically lies between 1.4 and 1.6, the wavelength of the laser 

depends on the fluorophore that is excited. The excitation maximum for GFP for 

example is 488 nm (Patterson et al., 2001). For this example and a NA of 1.6. 

the resolution would be approximately 150 nm according to equation (5-1). 

However, this theoretical value does not take into consideration slight 

imperfections in the instrumental setup and background fluorescence. 

180 - 200 nm is a much more realistic value for most applications (Heintzmann & 

Ficz, 2006). Even with a perfect instrument and a high signal to noise ratio, the 

diffraction limit is a physical boundary that cannot be breached. The only way to 

accurately image structures that are below the resolution limit by light 

microscopy is therefore to circumvent the Abbe diffraction limit. This is done in 

super resolution microscopy. 

Super resolution microscopy techniques can be divided into two categories, 

depending on how the diffraction limit is evaded (B. Huang et al., 2010). In the 

first category, fluorescent properties are modulated by means of patterned 

illumination, which results in not all fluorophores emitting at the same time. 

Structured Illumination Microscopy (SIM) and Stimulated Emission Depletion 

(STED) Microscopy belong in this category. In SIM a grid pattern is superposed on 

the sample, which results in the interference of the signals and subsequently the 

occurrence of Moiré fringes. By rotating the grid pattern, a series of images is 

recorded, which can be reconstructed to an image with a resolution of about 

half the diffraction limit (Gustafsson, 2000). In STED, a depletion laser is used in 

addition to the excitation laser. This depletion laser is donut shaped and 

negatively interferes with the signal outside the focal point of the excitation 

laser, which effectively narrows the PSF (Hell & Wichmann, 1994). The second 

category of super resolution microscopy is also known as single molecule 

 d =
λ

2NA
 (5-1) 
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localisation microscopy (SMLM), which has been briefly mentioned in section 

1.7.5. SMLM avoids the Abbe diffraction limit altogether by focusing on 

localisation of single molecules whose PSFs do not overlap with those of 

neighbouring molecules. Once light is emitted by isolated molecules, the 

resolution is only limited by the localisation precision, which can be in the 

nanometre scale (Ober et al., 2004). The key difference is that the obtained 

data is not a true image of the sample but only a set of coordinates of detected 

localisations. Stochastic Optical Reconstruction Microscopy (STORM) (Rust et al., 

2006) and Fluorescence Photoactivation Localisation Microscopy (FPALM) (Betzig 

et al., 2006) belong in this category. 

5.1.2 Stochastic Optical Reconstruction Microscopy 

The position of a fluorophore could be determined at very high precision for a 

long time by fitting a Gaussian function over its PSF (Gelles et al., 1988). The 

localisation precision Δx can be approximated by 

 

with σ being the standard deviation of the PSF and n being the number of 

photons collected (Thompson et al., 2002). 

The localisation accuracy, however, does not directly translate to a high 

resolution, since the density of fluorophores in stained biological samples is 

usually too high and PSFs overlap, making it impossible to localise single 

molecules. SMLM techniques such as STORM circumvent this problem by using 

fluorophores that can switch on and off, which appears as blinking during 

imaging. Figure 5.2 illustrates the principle of the technique. When imaging the 

specimen over a long time, only a fraction of fluorophores is switched on in each 

frame, which can be localised with high precision. Stochastically, each frame 

contains a different subset of fluorophores. Combining the localisations of all 

frames allows reconstruction of the image with a resolution of up to 20 nm (Rust 

et al., 2006). The resolution is not restricted by the diffraction limit of light 

anymore, but only by how accurately the position of a single fluorophore can be 

determined (B. Huang et al., 2010). 

 ∆x =
σ

√n
 (5-2) 
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Figure 5.2 Principle of STORM and other SMLM Techniques 
A: High density of fluorophores means that their PSFs overlap and the resolution is limited by the 
Abbe diffraction limit. B-E: Selective activation of isolated fluorophores over a number of frames F: 
Localisations of single molecules represented in a scatterplot 

STORM was first described by Rust et al. in 2006. The group employed a pair of 

cyanine dyes, Cy5 and Cy3 that can act as a photoswitch (Bates et al., 2005; 

Heilemann et al., 2005). Cy5 fluoresces in response to 633 nm red laser light and 

can also be transferred to a stable dark state at high laser power. In the 

presence of Cy3, 532 nm green laser light brings Cy5 back into the excited state, 

but at much lower density, allowing the localisation of isolated molecules. The 

photoswitch can cycle between the dark and the excited state several hundred 

times before photobleaching and a resolution of up to 20 nm could be achieved 

(Rust et al., 2006). 

Albeit a remarkable discovery, the technique could not be applied easily to 

biological samples due to the necessity of both dyes being in close proximity to 

each other, making labelling complicated (Bates et al., 2007). The group around 

Markus Sauer found that conventional cyanine dyes, such as Alexa Fluor 647, had 

in fact the ability to switch between the dark and the excited state in the 

absence of an activator fluorophore, provided the laser light that returns the 

fluorophore to the excited state is sufficiently powerful, namely about 200 times 

higher than that reported by Rust et al. They termed their improved technique 

A B C 

D E F 
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direct STORM (dSTORM) (Heilemann et al., 2008). In fact, most publications that 

refer to STORM in their experimental section, have in fact carried out dSTORM 

experiments.  

The cycling between the fluorescent light state and the dark state is enabled by 

the principle of electrons being transferred between what is called the ground, 

the singlet and the triplet state. The principle is illustrated in Figure 5.3. When 

an electron is excited by taking up energy, it leaves the ground state and enters 

the singlet state. During de-excitation, when the electron returns to the ground 

state, the energy is released by fluorescence. Alternatively, if the laser power is 

high enough, the electron can undergo intersystem crossing (ISC) and enter the 

so-called triplet state. Returning from the triplet to the ground state results in 

phosphorescence, which is also visible as emitted light and cannot be 

distinguished from fluorescence by eye (Jameson, 2014; Noomnarm & Clegg, 

2009). Heilemann et al. found that adding a reducing agent with thiol groups, 

such as MEA, quenches the triplet state and therefore phosphorescence, which 

retains the electron in the dark state. Subsequent oxidation relocates the 

electron into the ground state, from where the cycle starts again (Heilemann et 

al., 2009; van de Linde, Krstić, et al., 2011). 

 

Figure 5.3 Principle of Photoswitching 
Excitation of the fluorophore promotes an electron from the singlet ground state S0 into the excited 
singlet state S1. From there, it can either return to the ground state, resulting in fluorescence, or 
undergo intersystem crossing (ISC) into the triplet state T. A thiol group reduces the fluorophore to 
a radical anion T·-, which quenches phosphorescence. Molecular oxygen oxidises the anion and it 
can return to the ground singlet state S0, from where it can be excited again (Heilemann et al., 
2009). 
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The optimal blinking rate, at which the activated fluorophores in each frame are 

further apart than the diffraction limit was found by varying the laser intensity, 

thiol, and oxygen concentration (van de Linde, Löschberger, et al., 2011). 

Compared with FPALM and other super resolution microscopy techniques, 

dSTORM offers many advantages. The instrumental setup is relatively simple and 

cheap, requiring only a standard fluorescence microscope with lasers of 

sufficient power (5 – 30 kW cm-2). The execution of the experiment itself is very 

straightforward as well, as illustrated in 2.2.2.3 and 2.2.7.3 (van de Linde, 

Löschberger, et al., 2011). Antibodies tagged with conventional fluorescent dyes 

such as Alexa Fluor 647, can be used for the staining of virtually any intracellular 

target, whereas FPALM requires the expression of a photoswitchable fusion 

protein (Hess et al., 2006). This is an immense advantage for cells such as 3T3 L1 

adipocytes, which are very difficult to genetically manipulate (Ross et al., 2003). 

Furthermore, photoswitchable fluorophores used for dSTORM are brighter than 

fluorescent proteins and can cycle between the dark and the light state 

hundreds of times, while photoswitchable proteins bleach quickly (Jensen & 

Crossmann, 2014). 

Since the development of SMLM, and more specifically, STORM and dSTORM, the 

technique has allowed exciting insights into cellular processes that have not 

been possible to image by light microscopy before. The imaging of nuclear pore 

complexes (Löschberger et al., 2014), HIV-1 envelope proteins at the plasma 

membrane of infected T-cells (Muranyi et al., 2013), and chromatin structures at 

different stages of mitosis (J. Xu et al., 2018) are only a few examples of the 

successful implementation of dSTORM. Furthermore, the method has been used 

to gain insights into the clustering of the glucose transporters GLUT1 (Yan et al., 

2018) and GLUT4 (Gao et al., 2017), which has been described in more detail in 

section 1.7.5. 

5.1.3 Cluster Analysis 

Super resolution microscopy, particularly SMLM has allowed visualisation of 

cluster-forming proteins, of which some were previously unknown to exhibit this 

characteristic (Lang & Rizzoli, 2010). While large clusters are often apparent in 

the reconstructed images, small clusters can be difficult to distinguish from 
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randomly distributed points. It is therefore necessary to mathematically analyse 

and quantify the spatial point pattern that is obtained in SMLM. In this study, 

this was achieved using two different methods: Ripley’s K function analysis and 

Bayesian cluster analysis. 

5.1.3.1 Ripley’s K Function Analysis 

Ripley’s K function analysis was first published by Brian Ripley in 1976 (Ripley, 

1976) and is described as  

n is the number of points, NPi is the number of points within a distance r of 

another point and A is the area. When a number of points n is distributed in an 

area A, it can be determined with the help of equation (5-3) whether these 

points are either randomly distributed, or comparatively scattered or clustered 

(Kiskowski et al., 2009). A circle with the radius r is drawn around each point 

and the points that lie within this circle are counted. The K values are plotted 

against r and the resulting graph indicates the type of distribution. For a random 

distribution, this graph is a parabola, for more clustered points it becomes 

steeper and for more scattered points it becomes flatter. The L value is the 

normalised K value and is derived from equation (5-3) by 

The L value plotted over r produces a straight line if the points follow a random 

distribution. In case of clustering, the graph is bent (Kiskowski et al., 2009). 

Ripley’s K function analysis is very easy to realise, and data can be obtained 

rapidly. It is the method of choice when it comes to cluster analysis and is very 

commonly used in many fields of biology (Gao et al., 2017; Hess et al., 2005; 

Prior et al., 2003). 

 K(r) =
1

n
∑Npi(r)/A

n

i=1

 (5-3) 

 L(r) = √K(r)/π (5-4) 
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5.1.3.2 Bayesian Cluster Analysis 

SMLM data points come with a value that describes their precision, which is 

called uncertainty (Ovesný et al., 2014; Thompson et al., 2002). This value is not 

considered for Ripley’s and other popular types of cluster analysis. The group of 

Dylan Owen therefore developed an approach based on Bayesian cluster analysis 

to analyse SMLM data (Griffié et al., 2016). Based on the K function, their 

program generates several thousand of cluster proposals, which are evaluated 

against the original data set. The cluster model that approximates the data best 

is chosen to represent it (Rubin-Delanchy et al., 2015). While this approach 

delivers more precise results than Ripley’s K function analysis, it is also very 

time consuming and requires much more computing power. 

5.1.4 Hypothesis and Aims 

One key aim of this work was to find an assay that allows light microscopic 

visualisation and quantification of GLUT4 clusters in basal 3T3 L1 adipocytes and 

dispersal of the transporter in response to insulin. Conventional TIRFM was not 

powerful enough to resolve the clusters in the membrane and SpIDA showed that 

the clustering is not dependant on the oligomeric state of GLUT4. By going 

beyond the diffraction limit using STORM, we hoped to achieve a resolution low 

enough to resolve GLUT4 clusters in the plasma membrane and use this as an 

assay for the quantification of their dispersal. Subsequently, we made further 

inquiries into the molecular mechanisms behind the dispersal. For this, we 

investigated the role of EFR3 in the clustering mechanism as outlined in sections 

1.7.7 and 1.8. Once STORM was established as a suitable assay, we knocked 

down EFR3 in 3T3 L1 adipocytes and analysed the altered clustering 

characteristics of the transporter. We also carried out experiments with the 

lectin Galectin-3. It has been shown that this protein directly binds to the insulin 

receptor and causes insulin resistance in mice as well as in cell models (P. Li et 

al., 2016). With the help of STORM, we investigated, whether Galectin-3 also has 

an influence on the clustering behaviour, which would give further insights into 

the nature of GLUT4 clustering. 
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5.2 Results 

5.2.1 Insulin Regulates GLUT4 Dispersal 

The cell line used in this chapter was the same HA-GLUT4-GFP 3T3 L1 cell line 

that was used in Chapter 3. In section 3.2.1, specifically Figure 3.6 the cells’ 

response to insulin was outlined. HA-GLUT4-GFP translocated to the cell surface 

and integrated itself in the plasma membrane as expected. This could be 

visualised by HA surface staining and quantified by measuring the fluorescence 

intensity of the blue HA ring around the cells. 

  

 

  

Figure 5.4 STORM Images of Surface GLUT4 in Basal and Insulin Stimulated 3T3 L1 
Adipocytes 
HA-GLUT4-GFP 3T3s were incubated in serum-free medium for 2 h prior to the experiment and 
stimulated with 100 nM insulin for 20 min or left untreated. Cells were then fixed and stained for 
surface HA as described in section 2.2.2.3. dSTORM image acquisition and analysis was carried 
out as described in section 2.2.7.3. Raw datasets were processed using the ImageJ plugin 
ThunderSTORM (see 2.2.8.4) to obtain scatterplots showing single molecules. A: Representative 
scatterplot of a basal cell. Scalebar: 5 μm. B: Magnified section of image A. C: Representative 
scatterplot of an insulin stimulated cell. Scalebar: 5 μm D: Magnified section of image C. 

A B 

C D 
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Figure 5.5 STORM Localisation Density in Basal and Insulin Stimulated 3T3 L1 Adipocytes 
HA-GLUT4-GFP 3T3s were incubated in serum-free medium for 2 h prior to the experiment and 
stimulated with 100 nM insulin for 20 min or left untreated. Cells were then fixed and stained for 
surface HA as described in section 2.2.2.3. dSTORM image acquisition and analysis was carried 
out as described in section 2.2.7.3. Raw datasets were processed using the ImageJ plugin 
ThunderSTORM and the localisation density was determined using the ImageJ plugin 
LocFileVisualizer (see 2.2.8.4). 10 ROIs where the localisations appeared homogenous were 
chosen per cell to carry out this analysis. Basal: 1158 ± 70 (n = 80) Insulin: 2283 ± 120 (n = 80). 
Mean ± SE. Unpaired two-tailed t-test 95 % confidence intervals p < 0.0001. This experiment was 
repeated four times with similar results. 

Essentially the same experiment was carried out for STORM and the obtained 

data was subjected to cluster analysis. Under STORM conditions, the footprint of 

the cells was well defined and initial background blinking could be mostly 

eliminated by simultaneously turning on the 405 nm laser at low power together 

with the 640 nm excitation laser. Figure 5.4 shows the spatial pattern of a HA-

GLUT4-GFP 3T3 L1 adipocyte in the basal state and another cell after insulin 

stimulation as well as a zoomed in image of each cell. The reconstructed images 

show single molecules as well as clusters of HA-GLUT4-GFP. Under basal 

conditions, there were notably more clusters and denser clusters, whereas the 

insulin stimulated cells showed a more dispersed pattern and more single 

molecules.  

As insulin stimulation leads to GLUT4 translocation in adipocytes, the signal 

density was expected to be higher in stimulated cells. This was confirmed by 

determination of the localisation density in μm-2 and the result is shown in 

Figure 5.5. The localisation density almost doubled from 1158 localisations per 

μm2 in the basal state to 2283 per μm2 after insulin stimulation. It is important 

to note that the localisation density is not an accurate measurement of antigen 

concentration, which is explained in more detail in section 5.3. 
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The STORM data underwent Bayesian cluster analysis. For this, 3 x 3 μm sized 

ROIs of STORM images were analysed to determine the percentage of molecules 

in clusters, the number of clusters per ROI, the mean number of molecules per 

cluster, and the mean radius of clusters in nm. The frequency distributions of 

the obtained results are shown in Figure 5.6. In the vast majority of ROIs in basal 

cells, 50 % of molecules were found in clusters, with fewer ROIs showing 25 % 

and 75 % of molecules in clusters. After insulin stimulation, only slightly more 

than half of the ROIs showed 50 % of molecules in clusters and some ROIs did not 

include any clusters at all, indicating that more molecules were dispersed in the 

insulin stimulated state. Similarly, the frequency distribution for the number of 

clusters per ROI shifted towards the right after insulin stimulation, which shows 

that more ROIs contained indeed fewer clusters in the insulin stimulated state 

than under basal conditions. The clusters themselves exhibited less molecules 

per cluster after insulin treatment, indicating that they decreased in size. A 

result which was also reflected in the frequency distribution of the mean cluster 

radius. More clusters were smaller than 50 nm after insulin stimulation than in 

the basal state. A few ROIs showed large clusters, some of them of more than 

350 nm radius. These clusters could either be artefacts of the Bayesian 

approach, or signify dispersing clusters, which would be less compact and 

therefore appear larger. 

Bayesian cluster analysis such as that shown in Figure 5.6 delivered interesting 

results and compelling evidence that insulin stimulation indeed leads to dispersal 

of GLUT4 out of clusters in the plasma membrane. However, the approach based 

on the protocol provided by Griffié et al. (2016) was immensely time-consuming 

and not practicable for large data sets. For this reason, we decided to rely on 

Ripley’s K function analysis for further investigations.  
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Figure 5.6 Bayesian Cluster Analysis of Basal and Insulin Stimulated 3T3 L1 Adipocytes  
HA-GLUT4-GFP 3T3s were incubated in serum-free medium for 2 h prior to the experiment and 
stimulated with 100 nM insulin for 20 min or left untreated. Cells were then fixed and stained for 
surface HA as described in section 2.2.2.3. dSTORM image acquisition and analysis was carried 
out as described in section 2.2.7.3. Raw datasets were processed using the ImageJ plugin 
ThunderSTORM (see 2.2.8.4) and the raw data was subjected to Bayesian cluster analysis. 
Basal cells: Black, left, n = 8; Insulin stimulated: White, right, n = 9. 4 ROIs of 3x3 µm size per 
cell were analysed. The bar graphs shown here are frequency distributions, the values shown on 
the x-axes are the bin centres of these frequency distributions. Chi Square tests with 95 % 
confidence intervals were carried out to determine whether differences between the distributions 
were significant A: Percentage of molecules in clusters, bin width: 25 %, p = 0.002. B: Number of 
clusters per ROI, bin width: 10, p < 0.0001. C: Mean number of molecules per cluster, bin width: 
20, p = 0.0001. D: Mean radius of clusters in nm, bin width: 50 nm, p < 0.0001. This experiment 
was repeated twice with similar results. 
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Figure 5.7 Ripley's K-Function Analysis of Basal and Insulin Stimulated 3T3 L1 Adipocytes 
HA-GLUT4-GFP 3T3s were incubated in serum-free medium for 2 h prior to the experiment and 
stimulated with 100 nM insulin for 20 min or left untreated. Cells were then fixed and stained for 
surface HA as described in section 2.2.2.3. dSTORM image acquisition and analysis was carried 
out as described in section 2.2.7.3. Raw datasets were processed using the ImageJ plugin 
ThunderSTORM (see 2.2.8.4) and the obtained data was subjected to Ripley’s K-function analysis 
with the minimum radius 10 nm, step radius 10 nm, and maximum radius 200 nm. Displayed is the 
L value Basal cells: Blue, n = 8; Insulin stimulated: Red, n = 9. Data Points are Mean ± SE. This 
experiment was repeated four times with similar results. A: L values. The curves were compared by 
an unpaired two-tailed t-test with 95 % confidence intervals p = 0.0011 B: L values with linear 
trendline and corresponding R2. 

The results obtained by Ripley’s K function analysis for basal and insulin 

stimulated 3T3 L1 adipocytes are summarised in Figure 5.7. As described in 

section 5.1.3.1, the obtained L value plotted over the radius results in a straight 

line for randomly distributed points. A clustered distribution, on the other hand, 

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250

L 
va

lu
e 

[-
]

Radius [nm]

**

R² = 0.66

R² = 0.85

0

50

100

150

200

250

300

350

400

450

0 50 100 150 200 250

L 
va

lu
e 

[-
]

Radius [nm]

A 

B 

Basal 
Insulin 



Chapter 5 134 
 
delivers a curved graph. For simplicity, the degree of curvature of the two 

graphs was approximated by calculating a linear trendline and its R2 value. R2 is 

an indicator of how well a trendline fits the data set: The closer R2 is to 1, the 

better the fit. In our case, this means that the curvature of the graph is stronger 

when R2<<1. The blue graph in Figure 5.7 represents the L value obtained from 

basal cells and is strongly curved, with R2 = 0.66 suggesting a clustered 

distribution of GLUT4 in the cell membrane. Results for insulin stimulated cells 

are shown in red. This graph is also curved, however, less so than the basal 

(blue) one, signified by its greater R2 = 0.85, indicating a less clustered 

distribution of molecules. The curves were compared by an unpaired two-tailed 

t-test and showed a significant difference, confirming this observation. As the K 

value, and therefore the L value, is a function of the reciprocal number of points 

(see equation (5-3)), the apparent maximum of the plotted L value is higher for 

a smaller number of localisations. The difference in maxima in Figure 5.7 is 

therefore due to the increased number of HA-GLUT4-GFP molecules and 

subsequently the increased number of localisations. 

5.2.2 Galectin-3 Inhibits GLUT4 Clustering 

Lectins are proteins that bind to specific carbohydrates, in the case of Galectins, 

these are β-galactoside sugars. Galectins are expressed by many tissues, but 

even though there are many glycoconjugates containing a β-galactoside sugar, in 

vitro binding assays have shown that the interactions of galectins with their 

targets are more specific (Barondes et al., 1994). Galectin-3 is highly expressed 

in and secreted by macrophages, which are known to be elevated in adipose 

tissue of obese and insulin resistant individuals (Weisberg et al., 2003). The 

presence of macrophages in this tissue is linked to inflammation, which is 

related to obesity-induced insulin resistance (Patsouris et al., 2008). 

Based on these findings, Galectin-3 was investigated with regards to its ability to 

bind the insulin receptor and it was found that this interaction can induce 

insulin-resistance in 3T3 L1 adipocytes (P. Li et al., 2016). Quantification of this 

data is shown in Figure 5.8 E. Although a reduction in basal HA-staining is 

apparent from this graph, it is important to note that the very low HA-staining 

intensity in the absence of insulin means the HA/GFP ratio is skewed by small 

alterations in a small signal. Nevertheless, our data confirms that Galectin-3 
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reduces the magnitude of insulin-stimulated GLUT4 translocation, consistent 

with an effect on glucose transport published by others (P. Li et al., 2016).We 

therefore investigated whether Galectin-3 also has an influence on the clustering 

of GLUT4 in the plasma membrane. From section 5.2.1, it is known that GLUT4 

dispersal in the membrane is controlled by insulin. Galectin-3 may reduce this 

dispersal, which could result in re-endocytosis of the clustered transporter. This 

would explain the results in Figure 5.8. We carried out STORM, followed by 

ThunderSTORM image processing and Ripley’s K function analysis. The result is 

depicted in Figure 5.9. Similar to Figure 5.7, the L values for the control basal 

cells show the typical curvature of clustered points, whereas the graph for 

insulin stimulated cells is less curved and approximates more a straight line, 

which indicates dispersal. Again, this was verified by R2 values, which was much 

larger for the insulin stimulated cells than for the basal data set.  

The graphs for Galectin-3 treated cells both show a similar progression. Both 

data sets have a similar number of localisations, which is reflected in the 

maxima and both show a similar dispersal pattern, which is related to the 

curvature of the graphs and hence the R2 value of the linear regression. Carrying 

out t-test on the curves confirmed this observation. According to these graphs, 

Galectin-3 treatment lead to inhibited GLUT4 translocation, which was already 

apparent from Figure 5.8. In addition, the dispersal in the plasma membrane 

appeared to be disrupted. Galectin was found to inhibit insulin-stimulated 

glucose uptake in 3T3 L1 adipocytes (P. Li et al., 2016). To confirm this result, 

we focused on the effect of Galectin-3 on the translocation of HA-GLUT4-GFP to 

the plasma membrane of 3T3 L1 adipocytes. Figure 5.8 A-D shows confocal 

images of HA-surface stained 3T3 L1 adipocytes in the basal and insulin 

stimulated state with and without Galectin-3 treatment. Comparing the 

HA/GLUT4 ratios clearly shows that Galectin-3 treated adipocytes exhibited 

reduced insulin-stimulated HA-GLUT4-GFP translocation.  
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Figure 5.8 HA-Surface Staining in Galectin-3 Treated 3T3 L1 Adipocytes 
HA-GLUT4-GFP 3T3 L1 adipocytes were serum starved in the presence of 1.25 μg·ml-1 Galectin-3 
for 4 h or without Galectin-3 (control) and then stimulated with 100 nM insulin for 20 min or left 
untreated. Cells were then fixed and stained for surface HA as described in section 2.2.2.2. A: 
Representative image of control basal cells B: Representative image of control cells stimulated with 
insulin C: Representative image of Galectin-3 treated basal cells D: Representative image of 
Galecin-3 and insulin treated cells E: HA/G4 ratio, Basal: 0.10 ± 0.02 (n = 15) Insulin: 0.52 ± 0.03 
(n = 15). Gal3 Basal: 0.04 ± 0.02 (n = 15) Gal3 Insulin: 0.36 ± 0.03 (n = 15) Mean ± SE. Unpaired 
two-tailed t-test 95 % confidence intervals: Basal vs Insulin p < 0.0001, Gal3 Basal vs Gal3 Insulin 
p < 0.0001, Basal vs Gal3 Basal p = 0.0413, Insulin vs Gal3 Insulin p = 0.0006. 
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Figure 5.9 Ripley's K-Function Analysis of Galectin-3 Treated Basal and Insulin Stimulated 
3T3 L1 Adipocytes 
HA-GLUT4-GFP 3T3 L1 adipocytes were serum starved in the presence of 1.25 μg·ml-1 Galectin-3 
for 4 h or without Galectin-3 (control) and then stimulated with 100 nM insulin for 20 min or left 
untreated. Cells were then fixed and stained for surface HA as described in section 2.2.2.3. 
dSTORM image acquisition and analysis was carried out as described in section 2.2.7.3. Raw 
datasets were processed using the ImageJ plugin ThunderSTORM (see 2.2.8.4) and the data was 
subjected to Ripley’s K-function analysis with the minimum radius 10 nm, step radius 10 nm, and 
maximum radius 200 nm. Displayed is the L value. Basal: Blue, Insulin stimulated: Red, Control: 
Solid line, Galectin-3 treated: Dashed line, n = 8. Data Points are Mean ± SE. This experiment was 
repeated twice with similar results. A: L values. The curves were compared by unpaired two-tailed 
t-tests with 95 % confidence intervals. Basal control vs Insulin control: p = 0.0004, Basal Galectin-3 
vs Insulin Galectin-3: p = 0.4022 (not significant).B: L values with linear trendline and 
corresponding R2.  
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5.2.3 EFR3a Knock-Down in 3T3 L1 Adipocytes 

Previously, a robust electroporation method had been established in our group, 

with which EFR3a could be efficiently knocked down in differentiated 3T3 L1 

adipocytes (Laidlaw, 2018). The protocol was used in this section. The knock-

down efficiency and a potential effect on levels of other GSV components 

GLUT4, Syntaxin16 (Stx16), and SNAP23 were determined via immunoblotting. In 

a negative control experiment, electroporation was carried out with water 

instead of siRNA to account for possible effects of the procedure on protein 

concentrations. A representative immunoblot as well as levels of the proteins of 

interest normalised to the level of the housekeeping protein GAPDH are shown in 

Figure 5.10. 

Consistent with Laidlaw (2018) a 50 % knock-down of EFR3a could be achieved by 

electroporation. As expected, levels of GAPDH remained constant, so this 

protein could be used to normalise and quantify levels of the GSV proteins and 

EFR3a. GLUT4, Stx16, and SNAP23 did not change and levels of these proteins 

remained constant. 
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Figure 5.10 EFR3a Knock-Down in 3T3 L1 Adipocytes 
EFR3a knock-down was carried out as described in section 2.2.1.7 in HA-GLUT4-GFP 3T3 L1 
adipocytes. In a control experiment water was used instead of siRNA. 72 h later, knock-down 
efficiency was determined by immunoblotting for EFR3a as described in 2.2.5. Immunoblots for 
Stx16, SNAP23, and GLUT4 were carried out to examine the effect of EFR3a knock-down on other 
GSV components. GAPDH was used as a housekeeping protein. A: Representative Immunoblots. 
Marker, three replicates of the control sample, three replicates of EFR3a knock-down. Complete 
immunoblots can be found in the Appendix B: Signal ratio of each protein of interest to the 
housekeeping protein GAPDH and normalised to the negative control experiment. The experiment 
was carried out four times with similar results. Signal GAPDH ratio: EFR3a: 0.58 ± 0.03 p < 0.0001, 
GLUT4: 0.75 ± 0.20 p = 0.2506, Stx16: 1.01 ± 0.06 p = 0.8021, SNAP23: 0.97 ± 0.09 p = 0.7429. 
Unpaired two-tailed t-test 95 % confidence intervals. 
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5.2.4 EFR3a Controls Insulin Regulated GLUT4 Dispersal 

The clustering behaviour of GLUT4 in EFR3a knock-down cells was investigated 

via STORM. Electroporation is a very aggressive transfection technique that kills 

a fraction of the cells and can have other adverse effects. For example, 

electroporated cells are often smaller than untreated cells, whether this is due 

to electroporation or if electroporation kills predominantly big cells, is unknown. 

To rule out possible effects of electroporation on the dispersal behaviour, the 

negative control cells in this experiment also underwent electroporation. In this 

case, purified water was added instead of siRNA and the rest of the treatment 

was unaltered. 

The result of the cluster analysis is summarised in Figure 5.11. The control cells 

behaved as expected from Figure 5.7. The L value for basal cells was strongly 

curved which is reflected in the low R2 value, indicating a clustered distribution. 

Insulin stimulated cells on the other hand, showed a more linear graph with a 

lower maximum, which is the result of a more dispersed distribution of a higher 

number of points. 

Knock-down of EFR3a did not affect the basal L values, which still curved 

strongly. Interestingly, L values for insulin stimulated cells showed an almost 

identical distribution, suggesting that insulin stimulated dispersal of GLUT4 was 

completely inhibited by EFR3a knock-down. Statistical analysis of the curves via 

t-tests confirmed the observation.  
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Figure 5.11 Ripley's K-Function Analysis of EFR3a Knock-Down Basal and Insulin 
Stimulated 3T3 L1 Adipocytes 
EFR3a knock-down was carried out as described in section 2.2.1.7 in HA-GLUT4-GFP 3T3 L1 
adipocytes. In a control experiment water was used instead of siRNA. After 72 h, cells were 
incubated in serum-free medium for 2 h prior to the experiment and stimulated with 100 nM insulin 
for 20 min or left untreated. Cells were then fixed and stained for surface HA as described in 
section 2.2.2.3. dSTORM image acquisition and analysis was carried out as described in section 
2.2.7.3. Raw datasets were processed using the ImageJ plugin ThunderSTORM (see 2.2.8.4) and 
the data was subjected to Ripley’s K-function analysis with the minimum radius 10 nm, step radius 
10 nm, and maximum radius 200 nm. Displayed is the L value. Basal: Blue, Insulin stimulated: Red, 
Control: Solid line, EFR3a knock-down: Dashed line, n = 10. Data Points are Mean ± SE. This 
experiment was repeated three times with similar results. A: L values. The curves were compared 
by unpaired two-tailed t-test with 95 % confidence intervals. Basal control vs Insulin control: 
p = 0.0061, Basal Efr3a kd vs Insulin Efr3a kd: p = 0.7955 (not significant). B: L values with linear 
trendline and corresponding R2.  
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5.3 Discussion 

Using STORM to go beyond the diffraction limit allowed us to visualise and 

analyse clusters of GLUT4 in the plasma membrane of 3T3 L1 adipocytes for the 

first time in our laboratory. With the techniques discussed in 2.2.2.3, 2.2.7.3, 

and 2.2.8.4, a robust assay was established in our group that offers the 

possibility to assay the dispersal of GLUT4 in the membrane in response to 

insulin. 

The method, however, is not without flaws and artefacts are common in STORM 

imaging. Depending on the sample preparation, different clustering behaviours 

can be witnessed (Whelan & Bell, 2015), which is why careful and consistent 

sample preparation was especially important during this work. The quantified 

results reported in this chapter, especially cluster sizes obtained by Bayesian 

cluster analysis and localisation densities, are to be viewed critically.  

The nature of antibody staining provides another basis for false clustering. More 

than one antibody can bind to a protein, in addition, each antibody can be 

tagged with more than one fluorophore, which is often desirable in conventional 

fluorescence microscopy, as it amplifies the signal. When primary and secondary 

antibodies are used as in conventional fluorescence microscopy, the clustering 

effect of the antibody binding is magnified immensely. An additional problem is 

faced when the structures of interest are very dense and large antibodies 

sterically hinder themselves, so that labelling cannot be carried out efficiently 

(Kamiyama & Huang, 2012). These issues can be partially circumvented by using 

fab fragments or nanobodies for labelling (Ries et al., 2012), but these smaller 

probes are only available for a small number of targets at the moment, HA not 

being one of them. Another source of clustering artefacts is the blinking 

behaviour of the fluorophores as this allows for multiple localisations of one and 

the same fluorophore (Annibale et al., 2011). The localisation density is also 

subject to imaging parameters, such as laser power and number of frames. 

However, all these parameters were kept consistent throughout each data set. 

Since this work focused on the changing clustering behaviour between two 

states, basal and insulin stimulated, issues around clustering artefacts were less 

critical as long as sample preparation was carried out simultaneously for all 
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samples of each data set. It is, however, important to note that the reported 

results of this work are always considered in a comparative manner and never as 

absolute values. This is particularly vital for localisation densities and cluster 

sizes. 

Confirming the published results from Gao et al. (2017), we found that GLUT4 is 

predominantly located in clusters in the plasma membrane of 3T3 L1 adipocytes, 

which disperse upon insulin stimulation. By applying the technique to Galectin-3 

treated and EFR3a knock-down cells, we hoped to gain further insights into the 

molecular mechanisms behind the dispersal. 

With their discovery that Galectin-3 causes insulin resistance in mice and also in 

cell models such as 3T3 L1 adipocytes, Li et al. (2016) provided a link between 

inflammatory diseases and insulin resistance. They showed that Galectin-3 

knockout in mice led to decreased levels of inflammation as well as improved 

insulin sensitivity. In 3T3 L1 adipocytes and L6 myocytes, they found that insulin 

stimulated glucose uptake is significantly diminished after Galectin-3 treatment 

in a dose-dependent manner. Our results indicate that this is due to both 

corrupted GLUT4 translocation and impaired dispersal in the membrane, since 

both mechanisms are disrupted following Galectin-3 treatment. Galectin-3 binds 

directly to the insulin receptor and thus inhibits its autophosphorylation as well 

as the stimulation and phosphorylation of the downstream targets PDK1 and Akt 

respectively (P. Li et al., 2016). Our findings substantiate the hypothesis that 

insulin regulates glucose uptake by dispersal of GLUT4 in the membrane and 

dispersal appears to be directly enabled by the signalling cascade initiated by 

insulin binding to its receptor. 

EFR3 is a protein that has been characterised in adipocytes and extensively 

studied in our laboratory in the context of insulin mediated glucose uptake by 

Laidlaw (2018). There are two homologues, EFR3a and b (Bojjireddy et al., 

2014), and 3T3 L1 adipocytes express predominantly EFR3a (Laidlaw, 2018). 

Laidlaw found the protein localised in the plasma membrane of this cell type 

and there was no redistribution following insulin stimulation, indicating that 

whatever role EFR3a plays in GLUT4 trafficking, is limited to the plasma 

membrane and EFR3a does not translocate to the plasma membrane as GSV or 

other vesicle cargo. Overexpression of EFR3a lead to increased GLUT4 
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translocation in HeLa cells and 3T3 L1 adipocytes, overexpression of a dominant 

negative mutant, on the other hand, inhibited insulin-stimulated GLUT4 

translocation. In addition, the knock-down of EFR3a in 3T3 L1 adipocytes lead to 

significantly diminished glucose uptake in response to insulin. 

The work discussed in this chapter adds to these results. EFR3a knock-down by 

electroporation delivered a similar extend of knock-down as reported by Laidlaw 

(50 – 60 %, Laidlaw 2018). In addition, levels of the GSV proteins GLUT4, 

Syntaxin16, IRAP, and SNAP23 after EFR3a knock-down were determined in order 

to study the effect EFR3a has on the expression of these proteins and by 

inference GSV formation. EFR3a knock-down did not have a significant effect on 

the levels of either of these proteins in whole cell lysates. This suggests that 

EFR3a acts independently from the GSV machinery and that none of these 

proteins compensate for the lack of EFR3a. It is important to note that the level 

of the plasma membrane SNARE SNAP23, known to be important for fusion of 

GSVs with the plasma membrane was also unaffected by EFR3a knock-down, 

indicating that a generalised defect in the plasma membrane is unlikely to be in 

evidence. However, to exclude a role for any of these proteins entirely, further 

tests would be necessary. Subcellular fractionation and visualisation of the 

protein distribution by microscopy are two experiments that would add more 

depth to this result. 

We investigated the dispersal behaviour of GLUT4 in EFR3a knock-down cells and 

found that there was virtually no difference between basal and insulin 

stimulated cells. This was an exciting result, showing that EFR3a plays an 

important role in the clustering of GLUT4 in the cell membrane. Control 

experiments in which electroporation was carried out without the addition of 

siRNA had the same outcome as untreated cells, demonstrating that 

electroporation alone did not have an effect on GLUT4 clustering and dispersal 

in the membrane. The inhibition of dispersal is therefore very likely to be an 

effect of the EFR3a knock-down and it makes sense that the clustering is 

controlled by a membrane localised protein such as EFR3a. The fact that EFR3a 

knock-down also leads to inhibited glucose uptake makes it tempting to suggest 

that insulin sensitivity and therefore glucose uptake are controlled by clustering 

of GLUT4 in the plasma membrane of adipocytes. It appears as if the ability of 
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GLUT4 to transport glucose into the cell is diminished when the transporter is 

located in clusters, this may be due to a sterical hindrance of clustered GLUT4 

preventing the inward-outward conformational changes known to accompany 

transport (Barrett et al., 1999), but it could also be simply the fact that 

clustered GLUT4 is less evenly distributed, which allows for less contact with 

extracellular glucose molecules. Further experiments are necessary to answer 

these questions. The results presented in this chapter support our working 

hypothesis outlined in section 1.8: Knock-down of EFR3a inhibits GLUT4 

dispersal. This suggests that EFR3a is in fact the key component in the 

machinery involved in PI4P production, allowing PI4KIIIα to be active at the 

plasma membrane.  
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Chapter 6 SNARE Proteins Regulating 
Intracellular GLUT4 Trafficking 

6.1 Introduction 

6.1.1 The ERGIC is Involved in the GSC formation in Human Cells 

Chapter 1.4 described the cycling of GLUT4 between the GSC, the Golgi and 

endosomes, which is well characterised. Less is known about the initial 

formation of the GSC, which has been the subject of a recent study from this 

group, the Bryant group and the group of Frances Brodsky (Camus et al., 2020). 

Camus et al. found a link between GLUT4 cycling, GSC formation, and different 

clathrin isoforms. The isoform CHC17 is known to be involved in the re-

endocytosis of GLUT4 and protein sorting at the TGN in all mammals (Brodsky, 

2012). The clathrin isoform CHC22, however, is not as universally expressed. It is 

found at high levels in human myocytes and at lower levels in adipocytes, but it 

is not expressed in mouse cells, including 3T3 L1 adipocytes, a widely-used cell 

model for studying GLUT4 trafficking (Wakeham et al., 2005). Brodsky and 

colleagues showed that CHC22 colocalises with GLUT4 and other GSV proteins, 

such as GGA, VAMP2, and IRAP in HeLa cells. Furthermore, knock-down of CHC22 

in human myocytes results in reduced GLUT4 levels, a lower insulin-response, 

and apparent loss of the GSC (Vassilopoulos et al., 2009). These findings lead to 

the proposal that CHC22 plays a role in GLUT4 trafficking towards the GSC in 

human, but not in rodent, cells. In a recent study, Brodsky’s group found that 

CHC22 also interacts and/or colocalises with markers of the ERGIC, specifically 

p115, but there is no interaction or colocalisation with the Golgi marker GM130. 

Furthermore, CHC22 colocalised with newly synthesised GLUT4 in the 

perinuclear region, but was not observed in the GSC (Camus et al., 2020). These 

studies revealed that trafficking of GLUT4 requires CHC22 acting early in the 

secretory pathway at the ERGIC to deliver newly synthesised GLUT4 into GSVs. In 

these studies, it was observed that ERGIC membranes containing CHC22 were in 

close proximity to internalised GLUT4 after insulin-mediated release and 

compartments marked by Syntaxin 6. Hence, we believe that the pathway for 

delivery of newly synthesised GLUT4 (involving the ERGIC and CHC22) connects 

with GLUT4 re-internalised from endosomes in close proximity within the cell. 
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Figure 6.1 Model of Intracellular GLUT4 Trafficking in Human Cells 
1: GLUT4 is synthesised in the ER and traffics to the ERGIC. 2: Direct trafficking of GLUT4 into 
GSVs bypassing the Golgi and utilising CHC22, p115, and IRAP (orange box). 3: Endocytosis of 
GLUT4 4: intracellular GLUT4 recycling (see Figure 1.3), with multiple proteins being involved 
including IRAP, GGA etc, see orange box 5: GSVs translocate to the plasma membrane upon 
insulin stimulation. Figure provided by Gwyn Gould. 

Based on biochemical analysis, Camus et al. developed the model schematised in 

Figure 6.1: GLUT4 is newly synthesised in the ER and traffics together with IRAP 

and sortilin to the ERGIC. CHC22 then mediates the formation of the GSC, from 

where GSVs can translocate to the plasma membrane upon insulin stimulation. 

Re-endocytosis is then facilitated by the clathrin isoform CHC17 and GLUT4 

cycles between endosomes, the Golgi, the GSC, and the plasma membrane as 

previously discussed, involving a range of molecules including GGA, sortilin, IRAP 

and tankyrase (Sadler et al., 2019). 

6.1.2 SNAREs Involved in Intracellular Trafficking 

GLUT4 synthesis begins with the transcription of its gene, SLC2A4, to mRNA, 

which is then translated into an amino acid sequence by ribosomes bound to the 

ER. Subsequently, the protein is folded and glycosylated at its highly conserved 

exofacial glycosylation site in the ER and undergoes further post-translational 

modifications in the Golgi, which affect its function and trafficking in response 

to insulin (Sadler et al., 2013). In their recent study, Camus et al. (2020) have 

introduced the ERGIC as another organelle that is involved in GLUT4 synthesis. 
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SNARE proteins are employed when trafficking between these three organelles, 

the ER, the Golgi, and the ERGIC. Section 1.6.2 introduced SNARE proteins as key 

regulators of membrane fusion. SNARE proteins involved in the fusion of GSVs 

with the plasma membrane are clearly a crucial component of insulin signalling. 

However, SNARE proteins facilitating intracellular fusion of vesicle and target 

membranes must not be underestimated. Syntaxin 6 and 16 have been identified 

to play a critical role in intracellular GLUT4 trafficking. By overexpressing a 

dominant negative inhibitor of endogenous Syntaxin 6, it could be shown that 

this SNARE is involved in a step that sequesters GLUT4 away from the recycling 

pool with the plasma membrane (Perera et al., 2003). A similar study found that 

GLUT4 travels through a domain of the TGN enriched with Syntaxin 6 and 

Syntaxin 16, suggesting that these two SNAREs are involved in an intracellular 

sorting step of the glucose transporter (Shewan et al., 2003). Other SNAREs that 

are involved in these processes remain to be discovered. 

 

Figure 6.2 Intracellular Localisation of ERGIC-related SNARE proteins 
The SNARE proteins Bet1, Bet1L, GOSR1, GOSR2, SEC22A, SEC22B, SEC22C, Stx5, and 
Ykt6 and their intracellular localisation with regards to the ER, ERGIC, and Golgi. 

 

  



Chapter 6 149 
 
The SNARE proteins BET1, BET1L, GOSR1, GOSR2, SEC22A, SEC22B, SEC22C, Stx5, 

and Ykt6 are known to be involved in ERGIC trafficking (Adnan et al., 2019; 

Appenzeller-Herzog & Hauri, 2006; Inoue et al., 2016; Linders et al., 2019; 

Zhang & Hong, 2001). Their intracellular location is outlined in Figure 6.2. 

6.1.3 Hypothesis and Aims 

This chapter seeks to evaluate the possible role of the previously mentioned 

SNARE proteins in GLUT4 sorting, extending the study of Camus et al. (2020) The 

involvement of the syntaxins Stx6 and Stx16 in GLUT4 trafficking is well 

characterised (Bryant & Gould, 2011; Hamilton, 2011; Perera et al., 2003; 

Shewan et al., 2003) hence they are also included in this analysis by way of 

comparison. 

Since GSC formation appears to be different in murine and human cells, this 

investigation could not be carried out in 3T3 L1 adipocytes but rather was 

undertaken in a human cell line. Additionally, 3T3 L1 adipocytes or other models 

for GLUT4 trafficking are difficult to genetically manipulate and were therefore 

deemed unsuitable for a larger scale screening as carried out in this study. Based 

on the results in Chapter 3 and the study by Camus et al., we used a stably 

expressing HA-GLUT4-GFP HeLa cell line for our investigations. Knock-down of 

aforementioned SNARE proteins was performed via lipofectamine transfection of 

siRNA duplexes and the degree of colocalisation of the GFP tagged GLUT4 with 

markers of the ER, the Golgi, and the ERGIC was determined using microscopy. 

In addition, the total GLUT4 content and intracellular dispersal patterns were 

compared. We used siRNA duplexes provided by Jeremy Simpson; the Simpson 

group have employed and validated this siRNA library for a genome-wide 

screening to identify proteins of the early secretory pathway (J. C. Simpson et 

al., 2012). 

  



Chapter 6 150 
 

6.2 Results 

6.2.1 GLUT4 Colocalisation 

Knock-down of a SNARE protein that is involved in intracellular GLUT4 trafficking 

might be expected to result in an altered distribution of GLUT4 between the 

intracellular organelles. The following sections concentrate on the colocalisation 

of GFP-tagged GLUT4 with markers of the ERGIC (ERGIC-53), the ER (ID3), and 

the Golgi (GM130). These experiments were carried out employing conventional 

CLSM. 

6.2.1.1 GLUT4 Colocalisation with the ERGIC 

Using the ImageJ plugin JaCoP (Bolte & Cordelières, 2006), colocalisation 

between GLUT4 and the ERGIC marker ERGIC-53 was determined. For each 

experiment, 5 to 10 images were recorded that contained approximately 10 to 

20 cells each. Each experiment was carried out in 4 biological replicates. 

Representative images for ERGIC staining in the negative control experiment and 

the block control are shown in Figure 6.3. 

 

 

 

Figure 6.3 ERGIC and DAPI Staining of HA-GLUT4-GFP HeLa Cells (negative control) 
HA-GLUT4-GFP HeLa cells were cultured on a 96 well plate with glass bottom as outlined in 
section 2.2.1.1. siRNA knock-down was carried out as described in 2.2.1.6, shown here is an 
image of the negative control cells, where siRNA was replaced by water. Cells were fixed and 
stained with an antibody for the ERGIC marker ERGIC-53 and the nucleus was stained with DAPI 
as described in 2.2.2.1. Images were acquired on a confocal microscope and show GLUT4-GFP, 
the ERGIC staining, the nucleus staining (DAPI) and a merge of all three channels. 
A: Representative image of ERGIC staining B: Zoomed in image from A to show colocalisation C: 
Representative image of block control without primary antibody.  

GLUT4-GFP ERGIC-53 

DAPI Merge 

ERGIC-53 

Merge 

A C 

B 
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Figure 6.3 A shows the ERGIC-53 staining we typically observed in HeLa cells. 

DAPI was used for the staining of the nuclei. Similar to the ER, the ERGIC is 

broadly distributed within the entire cell. This is in fact atypical; typically, the 

ERGIC staining is more prominent in the perinuclear region. The atypical staining 

here may be attributed to lower antibody concentrations. The green channel 

shows the distribution of GFP-tagged GLUT4, which is also present throughout 

the cell and predominantly expressed in the perinuclear region. Figure 6.3 B 

shows a representative control experiment, in which the cells were not 

incubated with the primary antibody. This experiment was carried out to control 

that blocking of the sample was sufficient to prevent any staining derived from 

non-specific binding of the secondary antibody.  

The data from all four separate experiments were pooled and normalised to the 

average of the negative control and 2-way ANOVA was carried out to determine 

statistical significance. The result is summarised in Figure 6.4. If values are 

significantly higher than the negative control after SNARE knock-down, this 

indicates an accumulation of GLUT4 in the ERGIC possibly due to the respective 

SNARE enabling downstream trafficking of GLUT4.  

 

Figure 6.4 GLUT4/ERGIC Colocalisation 
HA-GLUT4-GFP HeLa cells were cultured on a 96 well plate with glass bottom as outlined in 
section 2.2.1.1. siRNA knock-down was carried out as described in 2.2.1.6. Cells were fixed and 
stained with an antibody for the ERGIC marker ERGIC-53 and two consecutive images were 
acquired by confocal microscopy. Colocalisation of GLUT4-GFP and ERGIC-53 was determined 
using the ImageJ plugin JaCoP (see 2.2.8.3). Between 5 and 10 sets of images were analysed per 
knock-down and each experiment was carried out in four biological replicates. The data of all four 
experiments was pooled and normalised to the average value of the negative control experiment 
and 2-way ANOVA with 95 % confidence intervals was carried out for statistical analysis. GOSR1: 
p = 0.0115 
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Similarly, lower colocalisation values suggest that GLUT4 is accumulating 

upstream of the ERGIC with the respective SNARE protein being involved in this 

part of GLUT4 trafficking. According to Figure 6.4, only the knock-down of 

GOSR1 lead to significant decrease of colocalisation of GLUT4 and ERGIC-53, 

suggesting that this SNARE protein is involved in GLUT4 trafficking upstream of 

the ERGIC. The knock-down of Stx6 also lead to a notable decrease in 

colocalisation, however, with p = 0.07, this did not reach statistical significance. 

6.2.1.2 GLUT4 Colocalisation with the ER 

Similar to the ERGIC staining, Figure 6.5 A shows HA-GLUT4-GFP HeLa cells 

stained with the ER marker ID3. As expected, the staining is broadly dispersed 

within the cells and the control experiment in panel B shows that there is no 

non-specific binding of the secondary antibody. 

Similar to the experiment shown in Figure 6.4, colocalisation of GLUT4 with the 

ER was determined. The results are summarised in Figure 6.6. Decreased 

colocalisation values, compared to the negative control, would suggest that the 

respective SNARE is involved in GLUT4 trafficking upstream of the ER, whereas 

increased colocalisation is an indicator for a role downstream between the ER 

and the ERGIC. The raw data of all four experiments were pooled and depicted 

as fold change compared to the negative control experiment. Statistical analysis 

using 2-way ANOVA did not show any significant changes of the colocalisation of 

GLUT4 and the ER-marker ID3 after knock-down of the investigated SNAREs. 
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Figure 6.5 ER and DAPI Staining of HA-GLUT4-GFP HeLa Cells (negative control)  
HA-GLUT4-GFP HeLa cells were cultured on a 96 well plate with glass bottom as outlined in 
section 2.2.1.1. siRNA knock-down was carried out as described in 2.2.1.6, shown here is an 
image of the negative control cells, where siRNA was replaced by water. Cells were fixed and 
stained with an antibody for the ER marker ID3 and the nucleus was stained with DAPI as 
described in 2.2.2.1. Images were acquired on a confocal microscope and show GLUT4-GFP, the 
ER staining, the nucleus staining (DAPI) and a merge of all three channels. A: Representative 
image of ER staining B: Zoomed in image from A to show colocalisation C: Representative image 
of block control without primary antibody.  
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Figure 6.6 GLUT4/ER Colocalisation 
HA-GLUT4-GFP HeLa cells were cultured on a 96 well plate with glass bottom as outlined in 
section 2.2.1.1. siRNA knock-down was carried out as described in 2.2.1.6. Cells were fixed and 
stained with an antibody for the ER marker ID3 and two consecutive images were acquired by 
confocal microscopy. Colocalisation of GLUT4-GFP and ID3 was determined using the ImageJ 
plugin JaCoP (see 2.2.8.3). Between 5 and 10 sets of images were analysed per knock-down and 
each experiment was carried out in four biological replicates. The data of all four experiments was 
pooled and normalised to the average value of the negative control experiment and 2-way ANOVA 
with 95 % confidence intervals was carried out for statistical analysis. There were no significant 
changes compared to the negative control. 
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6.2.1.3 GLUT4 Colocalisation with the Golgi 

Finally, colocalisation of GFP-tagged GLUT4 with GM130, a marker of the Golgi, 

was investigated in a third set of experiments. Figure 6.7 shows the Golgi 

staining, which is notably different from the ERGIC and ER staining in Figure 6.3 

and Figure 6.5, respectively. As expected, the Golgi is localised in a perinuclear 

region and is not as widely distributed as other organelles. The control 

experiment in panel B showed once again that there was very limited non-

specific binding of the secondary antibody. Colocalisation data was obtained as 

previously described and is summarised in Figure 6.8. Decreased colocalisation 

compared to the negative control after knock-down would argue for an 

accumulation of GLUT4 upstream of the Golgi, while an increase would signify an 

involvement of the respective SNARE downstream of the Golgi. The experiment 

was carried out in four biological replicates and the data was pooled and 

normalised to the average colocalisation value of the negative control. 

Statistical analysis was conducted by 2-way ANOVA and the result is depicted in 

Figure 6.8. According to this data, the knock-down of Ykt6 lead to a significant 

increase in colocalisation of GLUT4 and the Golgi, indicating that the SNARE 

protein is involved in GLUT4 trafficking downstream of the Golgi. 

 

 

 

Figure 6.7 Golgi and DAPI Staining of HA-GLUT4-GFP HeLa Cells (negative control) 
HA-GLUT4-GFP HeLa cells were cultured on a 96 well plate with glass bottom as outlined in 
section 2.2.1.1. siRNA knock-down was carried out as described in 2.2.1.6, shown here is an 
image of the negative control cells, where siRNA was replaced by water. Cells were fixed and 
stained with an antibody for the Golgi marker GM130 and the nucleus was stained with DAPI as 
described in 2.2.2.1. Images were acquired on a confocal microscope and show GLUT4-GFP, the 
Golgi staining, the nucleus staining (DAPI) and a merge of all three channels. A: Representative 
image of Golgi staining B: Zoomed in image from A to show colocalisation C:  Representative 
image of block control without primary antibody.  
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Figure 6.8 GLUT4/Golgi Colocalisation 
HA-GLUT4-GFP HeLa cells were cultured on a 96 well plate with glass bottom as outlined in 
section 2.2.1.1. siRNA knock-down was carried out as described in 2.2.1.6. Cells were fixed and 
stained with an antibody for the Golgi marker GM130 and two consecutive images were acquired 
by confocal microscopy. Colocalisation of GLUT4-GFP and GM130 was determined using the 
ImageJ plugin JaCoP (see 2.2.8.3). Between 5 and 10 sets of images were analysed per knock-
down and each experiment was carried out in four biological replicates. The data of all four 
experiments was pooled and normalised to the average value of the negative control experiment 
and 2-way ANOVA with 95 % confidence intervals was carried out for statistical analysis. Ykt6: 
p = 0.0036. 

6.2.2 Total GLUT4 Levels after SNARE Knock-Down 

We were interested in the total levels of GLUT4 after the knock-down of the 

aforementioned SNAREs. Traditionally, levels would be determined via western 

blot analysis. However, we chose to remain true to the central microscopy 

theme of this thesis and calculated the total GLUT4 levels as a ratio of the 

GLUT4-GFP fluorescence over DAPI signal (nucleus staining). The results of four 

separate experiments are shown in Figure 6.9. An augmented GLUT4/DAPI ratio 

signify increased GLUT4 expression, possibly as a compensation mechanism for 

disturbed intracellular GLUT4 trafficking. Reduced values on the other hand, 

indicate diminished GLUT4 levels, which could be due to impaired GLUT4 

synthesis. 
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Figure 6.9 Total GLUT4 Levels after siRNA Knock-Down 
HA-GLUT4-GFP HeLa cells were cultured on a 96 well plate with glass bottom as outlined in 
section 2.2.1.1. siRNA knock-down was carried out as described in 2.2.1.6. Cells were fixed and 
the nucleus stained with DAPI. Total GLUT4 levels were compared by determining the ratio of 
DAPI signal over GLUT4-GFP signal. Between 5 and 10 sets of images were analysed per knock-
down. Data of all four experiments was pooled and normalised to the average value of the negative 
control experiment. 2-way ANOVA with 95 % confidence intervals was carried out for statistical 
analysis. GOSR1: p = 0.0115. 

The experiment was repeated four times and the data points were normalised to 

the average negative control GLUT4/DAPI ratio, which is shown in Figure 6.9. 

Statistical analysis by 2-way ANOVA revealed a significant increase of 

GLUT4/DAPI ratio, and hence an increase in GLUT4 expression, after knock-down 

of GOSR1. 

6.2.3 Intracellular GLUT4 Distribution After SNARE Knock-Down 

The intracellular distribution of GLUT4 was examined visually after knock-down 

of those SNARE proteins that had been identified in 6.2.1 and 6.2.2, namely 

GOSR1 and Ykt6. Images of negative control cells as well as knock-down cells are 

depicted in Figure 6.10. Additionally, single cells were selected from each 

knock-down as well as from the negative control and an intensity profile of the 

GLUT4-GFP signal of each cell was generated in ImageJ, which is also shown. 
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Figure 6.10 Intracellular GLUT4 Distribution 
HA-GLUT4-GFP HeLa cells were cultured on a 96 well plate with glass bottom as outlined in 
section 2.2.1.1. siRNA knock-down and staining was carried out as described in 2.2.1.6 and 
2.2.2.1. Images show GLUT4-GFP, the ERGIC or Golgi staining, the nucleus staining (DAPI) and a 
merge of all three channels. Perinuclear GLUT4 concentration is highlighted by white arrows. 
Single cells were randomly selected and intensity profiles of the GLUT4 signal was generated 
along the white arrow using ImageJ. A: negative control B: GOSR1 knock-down C: Ykt6 knock-
down.  
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Figure 6.10 A1 shows the typical intracellular distribution of GLUT4 in the basal 

state. A large fraction of the protein is located in the perinuclear region, which 

is depicted by white arrows. The fluorescence intensity profile through the cross 

section of a single cell shows the same, with a strong intensity peak in the 

perinuclear region and smaller peaks closer to the plasma membrane. Consistent 

with studies in other cell types, including adipocytes (Dawson et al., 2001; O. J. 

Martin et al., 2006; Powell et al., 1999), GLUT4 is also widely dispersed 

throughout the cell in punctae, likely corresponding to small vesicles. 

Knock-down of involved SNARE proteins was suspected to have an effect on 

GLUT4 distribution within the cell. Representative images of cells after knock-

down of GOSR1 and Ykt6 are shown in panels B and C. The knock-down of 

GOSR1, which was characterised by decreased colocalisation of GLUT4 and the 

ERGIC appeared to have little visual effect on the intracellular distribution of 

GLUT4, although it could be argued that the perinuclear GLUT4 cluster is 

somewhat denser than in the negative control. An impression that is deepened 

by the intensity profile that shows a much wider perinuclear region GLUT4-GFP 

intensity peak. GOSR1 knock-down also resulted in increased total GLUT4 levels, 

which is also evident in Figure 6.10 B, where the GFP signal is visibly more 

pronounced than in the negative control image in panel A, even though 

acquisition parameters were not changed between the two data sets. 

Knock-down of Ykt6 had a similar effect and GLUT4 appears to be more 

concentrated in the periphery of the nucleus than in the control. This 

observation is in accordance with the finding that GLUT4/Golgi colocalisation is 

increased after Ykt6 knock-down.  

6.3 Discussion 

In Chapter 3, the suitability of HeLa cells as a cell model for GLUT4 trafficking 

was investigated. Here, the cell line was used as a model for an initial screen of 

SNARE proteins potentially affecting intracellular GLUT4 trafficking. 

Out of the eleven SNARE proteins that were investigated, knock-down of GOSR1 

and Ykt6 showed altered characteristics in HeLa cells. Knocking down GOSR1 

resulted in decreased colocalisation of GLUT4 with the ERGIC and increased 
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levels of total GLUT4, Stx6 also showed lower colocalisation, although this did 

not reach statistical significance. Ykt6 knock-down lead to increased GLUT4 

colocalisation with the Golgi. 

Total GLUT4 levels were measured as GLUT4-GFP signal in relation to the DAPI-

nucleus staining, which was presumed to be unaffected by siRNA knock-down. 

This was also the reason why we did not carry out HA staining, as this requires 

the same channel as needed for DAPI staining. It has to be kept in mind that this 

type of analysis method for measuring total GLUT4 levels is at best semi-

quantitative and for more reliable results western blotting of whole cell lysates 

or qPCR should be carried out, which could also be employed to verify the result 

presented here. Alternatively, FACS analysis would likely be more accurate by 

analysing larger numbers of cells in each experiment. These caveats 

notwithstanding, the data presented here, is a good primary indication of which 

SNARE proteins might affect the expression levels of GLUT4 and could direct 

future research endeavours. 

The colocalisation experiments highlighted GOSR1, Stx6 and Ykt6 as potential 

participants in intracellular GLUT4 trafficking. After knock-down of GOSR1 and 

Stx6, GLUT4 content is reduced in the ERGIC. Images of GOSR1 knock-down cells 

suggest that GLUT4 is more concentrated in the perinuclear region. However, 

there is no increased colocalisation with the Golgi, which is located in the same 

position. These results suggest that GOSR1 is involved in the trafficking upstream 

of the ERGIC, however, since the Golgi colocalisation is not affected, this would 

imply that GOSR1 is not part of the GSC Golgi recycling pathway. GOSR1 is 

located in the cis-Golgi and involved in ER to Golgi trafficking (Subramaniam et 

al., 1996; Zhang & Hong, 2001), which we now know includes the ERGIC. It is 

plausible that GLUT4 traffics between the ER and the ERGIC with the help of a 

SNARE complex including GOSR1. Our results are in accordance with the findings 

presented by Camus et al., which suggest a role of the ERGIC in the formation of 

the GSC in human cells. Since GSC formation is not affected by depletion of 

GM130, Camus et al. also suggest a bypass of the Golgi in line with our 

observations, and hypothesise that this may be due to a delayed maturation of 

carbohydrate side chains, which had previously been observed (Camus et al., 

2020; Hudson et al., 1992). Knock-down of the SNARE protein not only leads to 
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an accumulation of GLUT4 in the ERGIC, but also results in increased levels of 

total GLUT4. This may be a compensation mechanism of the cells to increase 

GLUT4 expression when trafficking between the ER and the ERGIC and therefore 

translocation of the transporter to the GSC is impaired. However, there are 

other possible explanations for the increased GLUT4-GFP fluorescence intensity. 

GLUT4 may be accumulating in a different compartment as a result of the GOSR1 

knock-down, leading to an accumulated fluorescence signal that is falsely 

interpreted. Alternatively, it is possible that degradation of GLUT4 is decreased 

due to reduced de-novo synthesis of GLUT4. 

Our data, albeit not statistically significant, support the role of Stx6 in 

intracellular GLUT4 trafficking proposed by previous studies from our group, 

consistent with Stx6 localisation to the TGN region (Perera et al., 2003). 

The knock-down of Ykt6 demonstrated an increase in Golgi colocalisation. This 

suggests an involvement of the SNARE protein in GLUT4 trafficking downstream 

of the Golgi. Previous studies have shown that Ykt6 is associated with the Golgi. 

Zhang and Hong (2001) found Ykt6 predominantly in the cis-Golgi, where they 

attributed a role in ER-Golgi trafficking to the protein, and found it forming a 

SNARE complex with Stx5, GOSR1, and BET1. Tai et al. (2004) on the other hand, 

argued its involvement in transport between the TGN and early/recycling 

endosomes, where they suggested Ykt6 forms part of a SNARE complex consisting 

of Stx5, GOSR1 and GS15. Our data supports Tai et al.’s findings and it is 

possible that GLUT4 is trafficked between the TGN and the endosomal system 

with the help of Ykt6. 

The results reported in this chapter must be viewed critically. Only initial 

experiments could be carried out due to time constraints. For the future, 

however it is important to repeat these experiments using stricter controls. For 

one, knock-down of the proteins of interest should be verified by means of 

western blotting. Lack of reliable respective antibodies lead to the decision to 

forgo this important test. However, the oligonucleotide pairs used for siRNA 

knock-down were the same used by Simpson et al. (2012) and we strictly 

followed their protocol for knock-down experiments. 



Chapter 6 161 
 
For siRNA knock-down, short oligonucleotide sequences are used to induce 

interference with the target mRNA, this is often associated with off-target 

effects, in which parts of the relatively short sequences bind to other, irrelevant 

mRNA. Such off-target effects are called microRNA-like off-target effects and 

were first described when a screening of siRNAs that meant to interfere with one 

certain mRNA lead to multiple different phenotypes because of unspecific 

binding to other sequences (Jackson & Linsley, 2010). To avoid this type of off-

target effects, it is important to carry out the knock-down with more than one 

siRNA sequence. In this study, two sequences were used for each knock-down, 

but a higher number is advantageous. Further important control experiments 

include rescue experiment controls, in which the knocked-down SNARE is 

reintroduced by transfection. 

With regards to the colocalisation data, it is important to note that there cannot 

be “true colocalisation”, as this would mean that two proteins are located in the 

same position at the same time, which is impossible. When two signals 

colocalise, it is in fact their PSFs that are overlapping. Colocalisation therefore 

depends on spatial resolution of the microscope. For LSM, this means two 

“colocalised” molecules are within ~200 nm of each other, which is in biological 

terms a significant distance. 

The data collected for this chapter is by no means conclusive for GLUT4 

trafficking, because HeLa cells do not express endogenous GLUT4 and may 

exhibit distinct subtle differences to muscle and adipocytes, the normal sites of 

GLUT4 expression. However, since the genetically modified HA-GLUT4-GFP HeLa 

cell line behaves similarly to the preferred cell model 3T3 L1 and also in light of 

the findings by Camus et al., who argue for distinct trafficking mechanisms in 

human cells, it can be used as a tool for pre-screening of an siRNA library as 

reported here. Narrowing down the siRNA library previously consisting of eleven 

SNARE proteins potentially involved in intracellular GLUT4 trafficking to a 

smaller number provides a significant advantage for subsequent studies in more 

relevant models, which can focus on a smaller number of targets and thus save 

resources and time. With regards to the findings reported in this chapter, the 

SNARE proteins GOSR1, Stx6, and Ykt6 are suggested to be investigated further. 

Knock-down or knock-out of those three, as opposed to eleven, proteins can be 
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carried out preferably in a human adipocyte or myocyte cell line and effects on 

GLUT4 trafficking, translocation and total levels can be investigated by means of 

microscopy or more traditional biochemistry techniques. 
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Chapter 7 Discussion 

7.1 Summary of Results 

The objective of this work can be split into two main branches. Firstly, the 

dynamics of GLUT4 in the plasma membrane upon insulin stimulation were 

investigated by means of different microscopy approaches. The second aim of 

this work was to compare the human HeLa cell line with 3T3 L1 adipocytes and 

determine whether this could be used as a suitable model for GLUT4 trafficking. 

With regards to plasma membrane dynamics, we had established the working 

hypothesis that GLUT4 clusters in the plasma membrane are maintained by 

unphosphorylated PI. Insulin stimulation leads to activation of PI4KIIIα through 

mobilisation of EFR3a and subsequent phosphorylation of PI to PI4P, which 

releases GLUT4 from the clusters (see Figure 1.9). To test this hypothesis, we 

sought to develop a microscopy-based assay that would allow us to quantify the 

clustering and dispersal of GLUT4 in the plasma membrane. Using SpIDA and BN-

PAGE, we tested whether the clustering behaviour is related to the oligomeric 

state of the transporter. We found that GLUT4 is indeed highly oligomeric, 

however, the degree of oligomerisation did not change upon insulin stimulation. 

TIRFM offered exciting insights into the dynamics of GLUT4 in the vicinity of the 

plasma membrane but the method was not powerful enough to resolve single 

clusters of GLUT4 after insulin stimulation. 

Using dSTORM, we managed to visualise clusters of GLUT4 and quantification by 

Bayesian cluster analysis and Ripley’s K function analysis indeed showed that 

insulin stimulation induces dispersal of GLUT4 from clusters. The hypothesis that 

EFR3 is involved in the dynamics of GLUT4 in the plasma membrane was first 

derived from the finding that Δhxt fgy1-1 fgy4X mutant strains of Saccharomyces 

cerevisiae depleted of all endogenous GLUTs could translocate GLUT4 to the cell 

surface and grow on glucose medium (Wieczorke et al., 2003). The mammalian 

homologue to fgy1-1 is EFR3 and this protein had been investigated extensively 

by Laidlaw (2018) in the context of insulin stimulated glucose uptake and GLUT4 

translocation to the plasma membrane. Laidlaw found that EFR3a knock-down 

has an inhibitory effect on glucose uptake in 3T3 L1 adipocytes and 

overexpression of the protein leads to increased plasma membrane located 
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GLUT4. We built on this research by knocking down EFR3a in 3T3 L1 adipocytes 

and subjected these modified cells to dSTORM. The exciting result was that 

EFR3a knock-down indeed resulted in disturbed GLUT4 dispersal, suggesting that 

our hypothesis that EFR3a facilitates GLUT4 dispersal in response to insulin (see 

section 1.8) was correct. In addition to this, we found that Galectin-3 inhibits 

not only GLUT4 translocation but also dispersal in the plasma membrane. 

Finally, we investigated the suitability of HeLa cells as a model for GLUT4 

trafficking by means of confocal and TIRF microscopy and found that the cell 

line does behave similarly to the commonly used cell line 3T3 L1 with regards to 

insulin induced GLUT4 translocation to the plasma membrane. The results 

presented in Chapter 4 add to these findings, since GLUT4 forms highly 

oligomerised complexes in both cell types. Based on these findings, we carried 

out a preliminary screening of SNARE proteins that may be involved in 

intracellular GLUT4 trafficking between the ER, the ERGIC, and the Golgi in HeLa 

cells and found a potential role for the SNAREs GOSR1 and Ykt6 as knock-down of 

these proteins affected intracellular distribution of GLUT4. 

For this work, a number of different microscopes were used. CLSM was employed 

to carry out SpIDA and for acquiring HA surface stained images of HA-GLUT4-GFP 

expressing cells. With the help of TIRFM we investigated the dynamics of GLUT4 

in the vicinity of the plasma membrane. dSTORM, a powerful SMLM technique, 

finally allowed us to visualise single GLUT4 molecules in the plasma membrane 

of 3T3 L1 adipocytes and characterise the clustering behaviour of the 

transporter. Each technique came with its own advantages and disadvantages. 

CLSM is a standard microscopy technique that is easy to carry out and most 

laboratories (including ours) have access to such an instrument. Its resolution is 

diffraction limited, which means it cannot resolve GLUT4 clusters and even 

though its resolution in the z plane is improved compared to standard 

epifluorescence microscopy, there is still a significant amount of background 

signal, which makes it difficult to focus on the plasma membrane. This issue is 

improved in TIRFM, where only a thin layer adjacent to the coverslip is 

illuminated by the evanescent wave created by TIR. This allows elimination of 

background fluorescence but does not limit the signal to the plasma membrane. 

Our homebuilt TIRFM setup came with its own unique challenges that were 
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mostly of an engineering nature, e.g. the manipulation of the critical angle was 

difficult due to the position of the screw gauge. dSTORM was clearly the method 

of choice to resolve single molecules of plasma membrane GLUT4. Sample 

preparation and the technique itself was relatively straightforward, however, it 

did require travelling to an external imaging facility. As opposed to CLSM and 

TIRFM, dSTORM had to be carried out in fixed cells, which meant that the 

dynamics of cluster dispersal in response to insulin eluded us. 

7.2 Results in the Context of Existing Literature 

Type 2 Diabetes belongs to the world’s most common diseases and its prevalence 

is on the rise (Tareque et al., 2016). Current medication for type 2 diabetes 

treats the main symptom of the illness, which is to lower blood glucose levels, 

often by increasing insulin sensitivity, or failing that, insulin has to be 

administered externally (Maruthur et al., 2016). There is no cure and since the 

molecular reasons for the outbreak of the disease are still unknown, there is no 

medication to treat the cause of type 2 diabetes. 

Intracellular GLUT4 trafficking as well as insulin induced GLUT4 translocation are 

well characterised (Bryant et al., 2002; S. Huang & Czech, 2007; Leto & Saltiel, 

2012; Saltiel & Kahn, 2001; Tavaré et al., 2001) but only few studies shed light 

on the dynamics of GLUT4 in the plasma membrane itself (Bai et al., 2007; Gao 

et al., 2017; S. Huang et al., 2007; Jiang et al., 2008; C. H. Li et al., 2004; 

Lizunov et al., 2005; Lizunov, Lee, et al., 2013; Lizunov, Stenkula, et al., 2013; 

Stenkula et al., 2010; Y. Xu et al., 2011). Lizunov et al. (2013) were the first to 

propose clustering of the transporter in the membrane and dispersal upon insulin 

stimulation. Using dSTORM, we confirmed these findings and while this work was 

carried out, Gao et al. (2017) published similar findings, also using dSTORM.  

A lot of basic research is still to be conducted to unravel the complexities of 

GLUT4 trafficking and basic research is the foundation of drug development. 

Without understanding the molecular mechanisms of a disease, it is not possible 

to develop a directed approach to alleviate it. In this work, HA-GLUT4-GFP 

expressing HeLa cells were studied as a potential cell model and deemed 

suitable to carry out preliminary screening tests. Using a cell line that is as easy 
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to maintain and genetically manipulate as HeLa cells has the great advantage 

that a substantial number of experiments can be carried out relatively easily. 

Previously, VAMP2 and VAMP4 have been found to play important roles in the 

delivery of GSVs to the plasma membrane and to the GSC, respectively, in 3T3 

L1 adipocytes (Sadler, 2014). Knocking down VAMP2 in HeLa cells results in 

significantly reduced GLUT4 translocation to the plasma membrane, while 

VAMP4 knock-down also leads to impairment, albeit not significantly (S. Morris et 

al., 2020). This example shows that knock-down experiments in HeLa cells can 

give conclusive results with regards to GLUT4 trafficking. Screening of HA-

GLUT4-GFP HeLa cells that are depleted of different VAMP isoforms would have 

focussed on VAMP2 and VAMP4 in simple experiments quickly and without the 

difficulties that come with genetic manipulation of cell lines such as 3T3 L1.  

7.3 Future Directions 

7.3.1 GLUT4 Clustering and EFR3a 

Our hypothesis is that the insulin-induced dispersal of GLUT4 in the plasma 

membrane of adipocytes is defective in individuals with type 2 diabetes and we 

propose this mechanism as a potential new drug target. The finding that knock-

down of EFR3a inhibits GLUT4 dispersal is the first step in this direction. We 

showed that dSTORM can be used as an effective and reproducible tool to 

visualise the clustering of GLUT4 in the plasma membrane and quantify its 

dispersal upon insulin stimulation with the means of cluster analysis. This assay 

opens up an immense variety of possible research approaches. Gao et al. (2017) 

used it to carry out a number of interesting experiments. They investigated 

GLUT4 clustering in insulin resistant 3T3 L1 adipocytes and found that clustering 

is enhanced in those cells. They found the same for F5QQI mutated cells. In 

order to investigate whether GLUT4 clusters are related to lipid rafts, they 

treated basal F5QQA-GLUT4 mutant 3T3 L1 adipocytes with methyl-β-

cyclodextrin and found that this led to a reduction of clustering to levels similar 

to those in wild-type adipocytes. 

To define the role of EFR3a further, it would be of great interest to investigate 

the effect of EFR3a overexpression, which would be expected to result in 



Chapter 7 167 
 
decreased clustering. Another obvious experiment is the knock-down or 

overexpression of PI4KIIIα and its effect on GLUT4 clusters. Our hypothesis 

suggested that GLUT4 clusters are maintained by pools of PI. This offers another 

interesting approach. As part of her work, Laidlaw implemented a pseudojanin 

system, which allows the targeted manipulation of PI, by dephosphorylating the 

4’ and/or 5’ phosphate. The proteins FKBP (FK506 Binding Protein 12) and FRB 

(FKBP rapamycin binding protein) can bind to each other in the presence of 

rapamycin. In the system, the FKBP component is fused to the pseudojanin 

phosphatase, which can dephosphorylate the 4’ and/or 5’ phosphate of PI. By 

fusing the second component, FRB, with a membrane anchor, such as LYN11, the 

pseudojanin is directed to the plasma membrane after induction with 

rapamycin, allowing the direct manipulation of PI patches (Hammond et al., 

2014; Laidlaw, 2018). In combination with the dSTORM assay presented here, 

this could be an interesting experiment to further test our hypothesis. 4’ 

phosphorylation of PI should result in dispersal of GLUT4 even in the absence of 

insulin or after knock-down of PI4KIIIα. 

We showed that the knock-down of EFR3a in 3T3 L1 adipocytes results in 

impaired GLUT4 dispersal after insulin stimulation and Gao et al (2017) showed 

that insulin resistance is related to deficient GLUT4 dispersal. It would be 

interesting to explore GLUT4 dispersal and the role of EFR3a in other cell types. 

An obvious one would be muscle cells, such as C2C12, where GLUT4 is also 

expressed. Interestingly this myocyte cell line lacks an insulin-responsive GSC 

(Tortorella & Pilch, 2002) and muscle cells respond with GLUT4 translocation to 

exercise (Z. Li et al., 2018). It would be interesting to investigate whether 

GLUT4 also clusters in the plasma membrane of C2C12 myotubes and whether it 

disperses in response to exercise. This could be investigated in combination with 

optoelectric stimulation. For this approach, C2C12 cells are transfected with a 

light-sensitive variant of channelrhodopsin, which allows induction of 

contractility by stimulation with light pulses (Ambrosi et al., 2014; Asano et al., 

2015). 

Other obvious models are primary cells and tissue samples of healthy humans 

and type 2 diabetics. Is GLUT4 dispersal defective in diabetics? Is EFR3a 

expressed in adipose tissue of diabetics at lower levels than in healthy test 



Chapter 7 168 
 
subjects? If the answer to both these questions is yes, EFR3a could be 

investigated as a potential new drug target. An active component that rescues 

the phenotype of impaired GLUT4 dispersal would need to be investigated in 

terms of its ability to rescue insulin stimulated glucose uptake for example in 

EFR3a knock-down 3T3 L1 adipocytes. 

7.3.2 HeLa Cells as Model for GLUT4 Trafficking 

In Chapter 6 a preliminary screening was carried out to find SNARE proteins 

involved in intracellular GLUT4 trafficking. GOSR1 and Ykt6 were found to be 

involved in the trafficking between the ER, the ERGIC, and the Golgi. These 

results can build the basis for more detailed research that concentrates on the 

exact role of GOSR1 and Ykt6. As discussed in section 6.3, the results have to be 

verified in larger-scale screenings, e.g. FACS or plate reader analysis and a 

similar study in a more relevant cell model, such as 3T3 L1 adipocytes, would be 

advisable too, to confirm the involvement of these SNAREs in GLUT4 trafficking. 

Yeasts offer another interesting platform, GOSR1 and Ykt6 can be knocked out 

and effects on cell growth (is knock-out lethal?) and glucose metabolism can be 

investigated. Furthermore, it would be interesting to study which other SNAREs 

are associated with GOSR1 and Ykt6 in SNARE complexes and what effect the 

disturbance of these complexes has on intracellular GLUT4 trafficking as well as 

GLUT4 translocation to and dispersal in the plasma membrane in response to 

insulin. 

GSV kinetics near the plasma membrane may not be completely comparable in 

HeLa cells and 3T3 L1 adipocytes, but insulin stimulation clearly leads to 

translocation of GLUT4 in both cell types, which makes them a valuable model 

for screenings such as the one carried out in this work. Recent findings suggest 

that GLUT4 trafficking indeed differs in human and in murine cells (Camus et al., 

2020), arguing that a human cell line such as HeLa may be even more suitable 

for some investigations. 

As a next step, and to bring the two strands of this work together, dSTORM 

experiments should be carried out in HA-GLUT4-GFP HeLa cells to determine 

whether GLUT4 clusters and disperses in the same way as in 3T3 L1 adipocytes. 

Laidlaw (2018) found that HeLa cells express EFR3a, so this is indeed plausible. 
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It would be easy to establish a stable EFR3a knock-out HeLa cell line, on which 

potential active ingredients could be tested as discussed previously. 

7.4 Conclusions 

The main objective of this work was to develop a microscopy-based assay to 

visualise and quantify the clustering and dispersal of GLUT4 in the plasma 

membrane. Using dSTORM, this aim has been met. Additionally, advances have 

been made in uncovering the molecular mechanisms behind these dynamics and 

EFR3a was identified as potential key component.  

The second aim of this work was to establish a HeLa cells expressing HA-GLUT4-

GFP as a model cell line to study GLUT4. HA-GLUT4-GFP HeLa cells have been 

characterised with regards GLUT4 dynamics near the plasma membrane and 

deemed suitable as a model cell line for preliminary screenings, of which we 

carried out one to identify SNARE proteins involved in intracellular GLUT4 

trafficking. 
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Chapter 8 Appendices 
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Figure 8.1 Full GAPDH Blot from Figure 5.10 

 

Figure 8.2 Full EFR3a Blot from Figure 5.10 

 

Figure 8.3 Full GLUT4 Blot from Figure 5.10 
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Figure 8.4 Full Stx16 Blot from Figure 5.10 

 

Figure 8.5 Full SNAP23 Blot from Figure 5.10 

 

 



173 
 

List of References 

Abbe, E. (1873). Beiträge zur Theorie des Mikroskops und der mikroskopischen 

Wahrnehmung. Archiv Für Mikroskopische Anatomie, 9, 413–418. 

Abel, E. D., Peroni, O., Kim, J. K. K. Y., Boss, O., Hadro, E., Minnemann, T., et 

al. (2001). Adipose-selective targeting of the GLUT4 gene impairs insulin 

action in muscle and liver. Nature, 409(6821), 729–733. 

Adnan, M., Islam, W., Zhang, J., Zheng, W., & Lu, G.-D. (2019). Diverse Role of 

SNARE Protein Sec22 in Vesicle Trafficking, Membrane Fusion, and 

Autophagy. Cells, 8(337), 1–15. https://doi.org/10.3390/cells8040337 

Al-hasani, H., Sanders Hinck, C., & Cushman, S. W. (1998). Endocytosis of the 

Glucose Transporter GLUT4 Is Mediated by the GTPase Dynamin. The Journal 

of Biological Chemistry, 273(28), 17504–17510. 

Albiston, A. L., McDowall, S. G., Matsacos, D., Sim, P., Clune, E., Mustafa, T., et 

al. (2001). Evidence That the Angiotensin IV (AT 4) Receptor Is the Enzyme 

Insulin-regulated Aminopeptidase. The Journal of Biological Chemistry, 

276(52), 48623–48626. https://doi.org/10.1074/jbc.C100512200 

Ali, M. H., & Imperiali, B. (2005). Protein oligomerization : How and why. 

Bioorganic and Meicinal Chemistry, 13, 5013–5020. 

https://doi.org/10.1016/j.bmc.2005.05.037 

Ambrose, E. J. (1961). The Movements of Fibrocytes. Experimental Cell 

Research, Suppl 8, 54–73. 

Ambrose, W. P., Goodwin, P. M., & Nolan, J. P. (1999). Single-Molecule 

Detection With Total Internal Reflection Excitation: Comparing Signal-to-

Background and Total Signals in Different Geometries. Cytometry, 36, 224–

231. 

Ambrosi, C. M., Klimas, A., Yu, J., & Entcheva, E. (2014). Cardiac applications of 

optogenetics. Progress in Biophysics and Molecular Biology, 115(2–3), 294–



174 
 

304. https://doi.org/10.1016/j.pbiomolbio.2014.07.001 

Annibale, P., Vanni, S., Scarselli, M., Rothlisberger, U., & Radenovic, A. (2011). 

Identification of clustering artifacts in photoactivated localization 

microscopy. Nature, 8(7), 527–528. https://doi.org/10.1038/nmeth.1627 

Appenzeller-Herzog, C., & Hauri, H.-P. (2006). The ER-Golgi intermediate 

compartment (ERGIC): in search of its identity and function. Journal of Cell 

Science, 119(11), 2173–2183. https://doi.org/10.1242/jcs.03019 

Asano, T., Ishizuka, T., Morishima, K., & Yawo, H. (2015). Optogenetic induction 

of contractile ability in immature C2C12 myotubes. Scientific Reports, 5, 

8317. https://doi.org/10.1038/srep08317 

Ashby, M. C., Ibaraki, K., & Henley, J. M. (2004). It’s green outside: tracking cell 

surface proteins with pH-sensitive GFP. TRENDS in Neurosciences, 27(5), 

257–261. https://doi.org/10.1016/j.tins.2004.03.010 

Atkinson, M. A., Eisenbarth, G. S., & Michels, A. W. (2014). Type 1 diabetes. The 

Lancet, 383(9911), 69–82. https://doi.org/10.1016/S0140-6736(13)60591-7 

Axelrod, D. (1981). Cell-Substrate Contacts Illuminated by Total Internal 

Reflection Fluorescence. The Journal of Cell Biology, 89, 141–145. 

Axelrod, D. (2001a). Total Internal Reflection Fluorescence Microscopy in Cell 

Biology. Traffic, 2, 764–774. 

Axelrod, D. (2001b). Total Internal Reflection Fluorescence Microscopy in Cell 

Biology. In Methods in enzymology (Vol. 361). 

Bai, L., Wang, Y., Fan, J., Chen, Y., Ji, W., Qu, A., et al. (2007). Dissecting 

Multiple Steps of GLUT4 Trafficking and Identifying the Sites of Insulin 

Action. Cell Metabolism, 5(1), 47–57. 

https://doi.org/10.1016/j.cmet.2006.11.013 

Baird, D., Stefan, C., Audhya, A., Weys, S., & Emr, S. D. (2008). Assembly of the 

PtdIns 4-kinase Stt4 copmlex at the plasma membrane requires Ypp1 and 



175 
 

Efr3. The Journal of Cell Biology, 183(6), 1061–1074. 

https://doi.org/10.1083/jcb.200804003 

Barbeau, A., Godin, A. G., Swift, J. L., De Koninck, Y., Wiseman, P. W., & 

Beaulieu, J. M. (2013). Quantification of receptor tyrosine kinase activation 

and transactivation by G-protein-coupled receptors using spatial intensity 

distribution analysis (SpIDA). Methods in Enzymology (1st ed., Vol. 522). 

Elsevier Inc. https://doi.org/10.1016/B978-0-12-407865-9.00007-8 

Barbeau, A., Swift, J. L., Godin, A. G., Koninck, Y. De, Wiseman, P. W., & 

Beaulieu, J.-M. (2013). Spatial Intensity Distribution Analysis (SpIDA): A 

New Tool for Receptor Tyrosine Kinase Activation and Transactivation 

Quantification. Methods in Cell Biology (1st ed., Vol. 117). Elsevier Inc. 

https://doi.org/10.1016/B978-0-12-408143-7.00001-3 

Barondes, S. H., Cooper, D. N. W., Gitt, M. A., & Leffler, H. (1994). Galectins. 

The Journal of Biological Chemistry, 269(33), 20807–20810. 

Barrett, M. P., Walmsley, A. R., & Gould, G. W. (1999). Structure and function 

of facilitative sugar transporters. Current Opinion in Cell Biology, 11(4), 

496–502. 

Baskin, J. M., Wu, X., Christiano, R., Oh, M. S., Schauder, M., Gazzerro, E., et 

al. (2016). The leukodystrophy protein FAM126A/Hyccin regulates PI4P 

synthesis at the plasma membrane. Nat Cell Biol, 18(5), 132–138. 

https://doi.org/10.1038/ncb3271.The 

Bates, M., Blosser, T. R., & Zhuang, X. (2005). Short-Range Spectroscopic Ruler 

Based on a Single-Molecule Optical Switch. Physical Review Letters, 94(10), 

108101-1-108101–4. https://doi.org/10.1103/PhysRevLett.94.108101 

Bates, M., Huang, B., Dempsey, G. T., & Zhuang, X. (2007). Multicolor Super-

Resolution Imging with Photo-Switchable Fluorescent Probes. Science, 317, 

1749–1753. https://doi.org/10.1126/science.1146598 

Bellve, K. D., Leonard, D., Standley, C., Lifshitz, L. M., Tuft, R. A., Hayakawa, 



176 
 

A., et al. (2006). Plasma Membrane Domains Specialized for Clathrin- 

mediated Endocytosis in Primary Cells. The Journal of Biological Chemistry, 

281(23), 16139–16146. https://doi.org/10.1074/jbc.M511370200 

Bernhardt, U., Carlotti, F., Hoeben, R. C., Joost, H.-G., & Al-hasani, H. (2009). 

A dual role of the N-terminal FQQI motif in GLUT4 trafficking. Biological 

Chemistry, 390(9), 883–892. https://doi.org/10.1515/BC.2009.095 

Betzig, E., Patterson, G. H., Sougrat, R., Lindwasser, O. W., Olenych, S., 

Bonifacino, J. S., et al. (2006). Imaging Intracellular Fluorescent Proteins at 

Nanometer Resolution. Science, 313(September), 1642–1646. 

Blot, V., & McGraw, T. E. (2006). GLUT4 is internalized by a cholesterol-

dependent nystatin-sensitive mechanism inhibited by insulin. The EMBO 

Journal, 25, 5648–5658. https://doi.org/10.1038/sj.emboj.7601462 

Bogan, J. S. (2012). Regulation of Glucose Transporter Translocation in Health 

and Diabetes. Annual Review of Biochemistry, 81(March), 507–532. 

https://doi.org/10.1146/annurev-biochem-060109-094246 

Bojjireddy, N., Guzman-Hernandez, M. L., Reinhard, N. R., Jovic, M., & Balla, T. 

(2014). EFR3s are palmitoylated plasma membrane proteins that control 

responsiveness to G protein-coupled receptors. Journal of Cell Science, 

128(1), 118–128. 

Bolte, S., & Cordelières, F. P. (2006). A guided tour into subcellular 

colocalization analysis in light microscopy. Journal of Microscopy, 

224(April), 213–232. 

Bracher, A., & Weissenhorn, W. (2002). Structural basis for the Golgi membrane 

recruitment of Sly1p by Sed5p. The EMBO Journal, 21(22), 6114–6124. 

Brewer, P. D., Habtemichael, E. N., Romenskaia, I., Mastick, C. C., & Coster, A. 

C. F. (2014). Insulin-regulated Glut4 translocation: Membrane protein 

trafficking with six distinctive steps. Journal of Biological Chemistry, 

289(25), 17280–17298. https://doi.org/10.1074/jbc.M114.555714 



177 
 
Brodsky, F. M. (2012). Diversity of Clathrin Function: New Tricks for an Old 

Protein. Annual Review of Cell and Developmental Biology, 28(1), 17.1-

17.28. https://doi.org/10.1146/annurev-cellbio-101011-155716 

Bryant, N. J., & Gould, G. W. (2011). SNARE Proteins Underpin Insulin-Regulated 

GLUT4 Traffic. Traffic, 12(6), 657–664. https://doi.org/10.1111/j.1600-

0854.2011.01163.x 

Bryant, N. J., Govers, R., & James, D. E. (2002). Regulated transport of the 

glucose transporter GLUT4. Nature Reviews Molecular Cell Biology, 3(4), 

267–277. https://doi.org/10.1038/nrm782 

Campbell, N. A., & Reece, J. B. (2006). Biologie. Pearson Studium. 

Camus, S. M., Camus, M. D., Figueras-Novoa, G. B., Sadacca, L. A., Esk, C., 

Bigot, A., et al. (2020). CHC22 Clathrin Mediates Traffic from Early 

Secretory Compartments for Human GLUT4 Pathway Biogenesis. Journal of 

Cell Biology, 219(1), 1–21. 

Carlotti, F., Bazuine, M., Kekarainen, T., Seppen, J., Pognonec, P., Maassen, J. 

A., & Hoeben, R. C. (2004). Lentiviral vectors efficiently transduce 

quiescent mature 3T3-L1 adipocytes. Molecular Therapy, 9(2), 209–217. 

https://doi.org/10.1016/j.ymthe.2003.11.021 

Chakrabarti, R., Buxton, J., Joly, M., & Corvera, S. (1994). Insulin-sensitive 

Association of GLUT-4 with Endocytic Clathrin-coated Vesicles Revealed with 

the Use of Brefeldin A. The Journal of Biological Chemistry, 269(11), 7926–

7933. 

Chang, L., Adams, R. D., & Saltiel, A. R. (2002). The TC10-interacting protein 

CIP4/2 is required for insulin-stimulated Glut4 translocation in 3T3L1 

adipocytes. Proceedings of the National Academy of Sciences of the United 

States of America, 99(20), 12835–12840. 

Charron, M. J., Brosius III, F. C., Alper, S. L., & Lodish, H. F. (1989). A glucose 

transport protein expressed predominately in insulin-responsive tissues. 



178 
 

Proceedings of the National Academy of Sciences of the United States of 

America, 86(April), 2535–2539. 

Chatterjee, S., Khunti, K., & Davies, M. J. (2017). Type 2 diabetes. The Lancet, 

389(10085), 2239–2251. https://doi.org/10.1016/S0140-6736(17)30058-2 

Cheatham, B., Volchuk, A., Kahn, C. R., Wang, L., Rhodes, C., & Klip, A. (1996). 

Insulin-stimulated translocation of GLUT4 glucose transporters requires 

SNARE-complex proteins. Proceedings of the National Academy of Sciences 

of the United States of America, 93(December), 15169–15173. 

Chen, Y. A., & Scheller, R. H. (2001). SNARE-Mediated Membrane Fusion. Nature 

Reviews Molecular Cell Biology, 2(February), 98–106. 

Chen, Yan, Müller, J. D., So, P. T. C., & Gratton, E. (1999). The Photon Counting 

Histogram in Fluorescence Fluctuation Spectroscopy. Biophysical Journal, 

77(July), 553–567. 

Chen, Yu, & Lippincott-Schwartz, J. (2015). Selective Visualization of GLUT4 

Storage Vesicles and Associated Rab Proteins Using IRAP-pHlourin. In Rab 

GTPases: Methods and Protocols (Vol. 1298, pp. 181–186). 

https://doi.org/10.1007/978-1-4939-2569-8 

Chen, Yu, Wang, Y., Zhang, J., Deng, Y., Jiang, L., Song, E., et al. (2012). Rab10 

and myosin-va mediate insulin-stimulated GLUT4 storage vesicle 

translocation in adipocytes. Journal of Cell Biology, 198(4), 545–560. 

https://doi.org/10.1083/jcb.201111091 

Coling, D., & Kachar, B. (1997). Theory and Application of Fluorescence. Current 

Protocols in Neuroscience, 00(1), 2.1.1-2.1.11. 

Combs, C. (2010). Fluorescence Microscopy: A Concise Guide to Current Imaging 

Methods. Current Protocols in Neuroscience Author Manuscript, 1–19. 

https://doi.org/10.1002/0471142301.ns0201s50.Fluorescence 

Cormack, B. P., Valdivia, R. H., & Falkow, S. (1996). FACS-optimized mutants of 



179 
 

the green fluorescent protein (GFP). Gene, 173(1), 33–38. 

Cornish-Bowden, A. J., & Koshland Jr, D. E. (1971). The Quaternary Structure of 

Proteins Composed of Identical Subunits. The Journal of Biological 

Chemistry, 246(10), 3092–3102. 

Corvera, S., Graver, D. F., & Smith, R. M. (1989). Insulin Increases the Cell 

Surface Concentration of α2-Macroglobulin Receptors in 3T3-L1 Adipocytes. 

The Journal of Biological Chemistry, 264(June), 10133–10138. 

Corvera, S., Chawla, A., Chakrabarti, R., Joly, M., Buxton, J., & Czech, M. P. 

(1994). A Double Leucine within the GLUT4 Glucose Transporter COOH-

Terminal Domain Functions as an Endocytosis Signal. Journal of Cell Biology, 

126(4), 979–989. 

Coster, A. C. F., Govers, R., & James, D. E. (2004). Insulin Stimulates the Entry 

of GLUT4 into the Endosomal Recycling Pathway by a Quantal Mechanism. 

Traffic, 5, 763–771. https://doi.org/10.1111/j.1600-0854.2004.00218.x 

Cushman, S. W., & Wardzala, L. J. (1980). Potential Mechanism of Insulin Action 

on Glucose Transport in the Isolated Rat Adipose Cell. The Journal of 

Biological Chemistry, 255(10), 4758–4762. 

Davis, R. J., Corvera, S., & Czech, M. P. (1986). Insulin Stimulates Cellular Iron 

Uptake and Causes the Redistribution of Intracellular Transferrin Receptors 

to the Plasma Membrane. The Journal of Biological Chemistry, 261(19), 

8708–8711. 

Dawicki-McKenna, J. M., Goldman, Y. E., & Ostap, E. M. (2012). Sites of glucose 

transporter-4 vesicle fusion with the plasma membrane correlate spatially 

with microtubules. PLoS ONE, 7(8), 1–12. 

https://doi.org/10.1371/journal.pone.0043662 

Dawson, K., Aviles-Hernandez, A., Cushman, S. W., & Malide, D. (2001). Insulin-

regulated trafficking of dual-labeled glucose transporter 4 in primary rat 

adipose cells. Biochemical and Biophysical Research Communications, 



180 
 

287(2), 445–454. https://doi.org/10.1006/bbrc.2001.5620 

DelVecchio, R. L., & Pilch, F. (1991). Phosphatidylinositol 4-Kinase Is a 

Component of Glucose Transporter (GLUT 4)-containing Vesicles. The 

Journal of Biological Chemistry, 266(20), 13278–13283. 

Diabetes UK. (2016). Diabetes UK Facts and Stats. 

https://doi.org/10.1007/s11245-009-9073-4 

Dobson, S. P., Livingstone, C., Gould, G. W., & Tavaré, J. M. (1996). Dynamics 

of insulin-stimulated translocation of GLUT4 in single living cells visualised 

using green fluorescent protein. FEBS Letters, 393(2–3), 179–184. 

https://doi.org/10.1016/0014-5793(96)00879-4 

Duelli, R., & Kuschinsky, W. (2001). Brain Glucose Transporters: Relationship to 

Local Energy Demand. American Physiological Society, 16(April 2001), 71–76. 

Ehtisham, S., Barrett, T., & Shaw, N. (2000). Type 2 diabetes mellitus in UK 

children - an emerging problem. Diabetic Medicine, 17(12), 867–871. 

El-Jack, A. K., Kandror, K. V, & Pilch, P. F. (1999). The formation of an insulin-

responsive vesicular cargo compartment is an early event in 3T3-L1 

adipocyte differentiation. Molecular Biology of the Cell, 10(5), 1581–1594. 

Failer, B. U., Aschrafi, A., Schmalzing, G., & Zimmermann, H. (2003). 

Determination of native oligomeric state and substrate specificity of rat 

NTPDase1 and NTPDase2 after heterologous expression in Xenopus oocytes. 

European Journal of Biochemistry, 270, 1802–1809. 

https://doi.org/10.1046/j.1432-1033.2003.03542.x 

Falkenburger, B. H., Jensen, J. B., Dickson, E. J., Suh, B., & Hille, B. (2010). 

Phosphoinositides: lipid regulators of membrane proteins. Journal of 

Physiology, 588(17), 3179–3185. 

https://doi.org/10.1113/jphysiol.2010.192153 

Floyd, D. H., Geva, A., Bruinsma, S. P., Overton, M. C., Blumer, K. J., & 



181 
 

Baranski, T. J. (2003). C5a Receptor Oligomerization. The Journal of 

Biological Chemistry, 278(37), 35354–35361. 

https://doi.org/10.1074/jbc.M305607200 

Fotiadis, D., Jastrzebska, B., Philippsen, A., Müller, D. J., Palczewski, K., & 

Engel, A. (2006). Structure of the rhodopsin dimer: a working model for G-

protein-coupled receptors. Current Opinion in Structural Biology, 16, 252–

259. https://doi.org/10.1016/j.sbi.2006.03.013 

Freedman, J. C. (2012). Cell Membranes. In Cell Physiology Sourcebook (Fourth 

Edi, pp. 49–59). Elsevier Inc. https://doi.org/10.1016/B978-0-12-387738-

3.00003-2 

Fujita, H., Hatakeyama, H., Watanabe, T. M., Sato, M., Higuchi, H., & Kanzaki, 

M. (2010). Identification of Three Distinct Functional Sites of Insulin-

mediated GLUT4 Trafficking in Adipocytes Using Quantitative Single 

Molecule Imaging. Molecular Biology of the Cell, 21(August 1), 2721–2731. 

https://doi.org/10.1091/mbc.E10 

Fujiwara, T., Ritchie, K., Murakoshi, H., Jacobson, K., & Kusumi, A. (2002). 

Phospholipids undergo hop diffusion in compartmentalized cell membrane. 

The Journal of Cell Biology, 157(6), 1071–1081. 

https://doi.org/10.1083/jcb.200202050 

Fukumoto, H., Kayano, T., Buse, J. B., Edwards, Y., Pilch, P. F., Bell, G. I., & 

Seino, S. (1989). Cloning and Characterization of the Major Insulin-

responsive Glucose Transporter Expressed in Human Skeletal Muscle and 

Other Insulin-responsive Tissues. The Journal of Biological Chemistry, 

264(14), 7776–7779. 

Funaki, M., Randhawa, P., & Janmey, P. A. (2004). Separation of Insulin 

Signaling into Distinct GLUT4 Translocation and Activation Steps. Molecular 

and Cellular Biology, 24(17), 7567–7577. 

https://doi.org/10.1128/MCB.24.17.7567 

Gao, L., Chen, J., Gao, J., Wang, H., & Xiong, W. (2017). Super-resolution 



182 
 

microscopy reveals the insulin-resistance-regulated reorganization of GLUT4 

on plasma membranes. Journal of Cell Science, 130(November), 396–405. 

https://doi.org/10.1242/jcs.192450 

Garvey, W. T., Matthaei, S., & Olefsky, J. M. (1988). Role of glucose transporters 

in the cellular insulin resistance of type II non-insulin- dependent diabetes 

mellitus. Journal of Clinical Investigation, 81(5), 1528–1536. 

Gelles, J., Schnapp, B. J., & Sheetz, M. P. (1988). Tracking kinesin-driven 

movements with nanometre-scale precision. Nature, 331(4), 450–453. 

Geoghegan, N. D. (2015). Advanced Fluorescence Methods for the Investigation 

of Biological Membranes. University of Glasgow. 

Gerich, J. E. (1981). Somatostatin and Diabetes. The American Journal of 

Medicine, 70(3), 619–626. 

Godin, A. G., Costantino, S., Lorenzo, L.-E., Swift, J. L., Sergeev, M., Ribeiro-

da-Silva, A., et al. (2011). Revealing protein oligomerization and densities in 

situ using spatial intensity distribution analysis. Proceedings of the National 

Academy of Sciences of the United States of America, 108(17), 7010–7015. 

https://doi.org/10.1073/pnas.1018658108 

Godin, A. G., Rappaz, B., Potvin-Trottier, L., Kennedy, T. E., De Koninck, Y., & 

Wiseman, P. W. (2015). Spatial Intensity Distribution Analysis Reveals 

Abnormal Oligomerization of Proteins in Single Cells. Biophysical Journal, 

109, 710–721. https://doi.org/10.1016/j.bpj.2015.06.068 

Gould, G. W., Thomas, H. M., Jess, T. J., & Belli, G. I. (1991). Expression of 

Human Glucose Transporters in Xenopus Oocytes: Kinetic Characterization 

and Substrate Specificities of the Erythrocyte , Liver , and Brain Isoforms. 

Biochemistry, 30, 5139–5145. 

Govers, R., Coster, A. C. F., & James, D. E. (2004). Insulin increases cell surface 

GLUT4 levels by dose dependently discharging GLUT4 into a cell surface 

recycling pathway. Molecular and Cellular Biology, 24(14), 6456–66. 



183 
 

https://doi.org/10.1128/MCB.24.14.6456-6466.2004 

Green, H., & Kehinde, O. (1974). Sublines of Mouse 3T3 Cells That Sublines of 

Mouse 3T3 Cells That Accumulate Lipid. Cell, 1(3), 113–116. 

Green, H., & Meuth, M. (1974). An Established Pre-Adipose Cell Line and its 

Differentiation in Culture. Cell, 3, 127–133. 

Griffié, J., Shannon, M., Bromley, C. L., Boelen, L., Burn, G. L., Williamson, D. 

J., et al. (2016). A Bayesian cluster analysis method for single-molecule 

localization microscopy data. Nature Protocols, 11(12), 2499–2514. 

https://doi.org/10.1038/nprot.2016.149 

Gurevich, V. V, & Gurevich, E. V. (2008). GPCR monomers and oligomers: it 

takes all kinds. TRENDS in Neurosciences, 31(2), 74–81. 

https://doi.org/10.1016/j.tins.2007.11.007.GPCR 

Gustafsson, M. G. L. (2000). Surpassing the lateral resolution limit by a factor of 

two using structured illumination microscopy. Journal of Microscopy, 

198(May 2000), 82–87. 

Haga, Y., Ishii, K., & Suzuki, T. (2011). N-Glycosylation Is Critical for the 

Stability and Intracellular Trafficking of Glucose Transporter GLUT4. The 

Journal of Biological Chemistry, 286(36), 31320–31327. 

https://doi.org/10.1074/jbc.M111.253955 

Hamilton, N. S. (2011). An investigation into the role of syntaxin 16 in GLUT4 

trafficking. 

Hammond, G. R. V, Machner, M. P., & Balla, T. (2014). A novel probe for 

phosphatidylinositol 4-phosphate reveals multiple pools beyond the Golgi. 

The Journal of Cell Biology, 205(1), 113–126. 

https://doi.org/10.1083/jcb.201312072 

Haney, P. M., Slot, J. W., Piper, R. C., James, D. E., & Mueckler, M. (1991). 

Intracellular Targeting of the Insulin-regulatable Glucose Transporter 



184 
 

(GLUT4) Is Isoform Specific and Independent of Cell Type. The Journal of 

Cell Biology, 114(4), 689–699. 

Hashimoto, K., & Panchenko, A. R. (2010). Mechanisms of protein 

oligomerization, the critical role of insertions and deletions in maintaining 

different oligomeric states. Proceedings of the National Academy of 

Sciences of the United States of America, 107(47), 20352–20357. 

https://doi.org/10.1073/pnas.1012999107/-

/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1012999107 

Hashiramoto, M., & James, D. E. (2000). Characterization of Insulin-Responsive 

GLUT4 Storage Vesicles Isolated from 3T3-L1 Adipocytes. Molecular and 

Cellular Biology, 20(1), 416–427. 

Hatakeyama, H., & Kanzaki, M. (2011). Molecular Basis of Insulin-Responsive 

GLUT4 Trafficking Systems Revealed by Single Molecule Imaging. Traffic, 

1805–1820. https://doi.org/10.1111/j.1600-0854.2011.01279.x 

Heilemann, M., Margeat, E., Kasper, R., Sauer, M., & Tinnefeld, P. (2005). 

Carbocyanine Dyes as Efficient Reversible Single-Molecule Optical Switch. 

Journal of the American Chemical Society, 127(12), 3801–3806. 

Heilemann, M., van de Linde, S., Schüttpelz, M., Kasper, R., Seefeldt, B., 

Mukherjee, A., et al. (2008). Subdiffraction-Resolution Fluorescence Imaging 

with Conventional Fluorescent Probes. Angewandte Chemie, 47, 6172–6176. 

https://doi.org/10.1002/anie.200802376 

Heilemann, M., van de Linde, S., Mukherjee, A., & Sauer, M. (2009). Super-

Resolution Imaging with Small Organic Fluorophores. Angewandte Chemie, 

48, 6903–6908. https://doi.org/10.1002/anie.200902073 

Heintzmann, R., & Ficz, G. (2006). Breaking the resolution limit in light 

microscopy. Briefings in Functional Genomoics and Proteomics, 5(4), 289–

301. https://doi.org/10.1093/bfgp/ell036 

Hell, S. W., & Wichmann, J. (1994). Breaking the diffraction resolution limit by 



185 
 

stimulated emission: stimulated-emission-depletion fluorescence 

microscopy. Optics Letters, 19(11), 780–782. 

Henrick, K., & Thornton, J. M. (1998). PQS : a protein quaternary structure file 

server. Trends in Biochemical Sciences, 23(9), 358–361. 

Herbert, A. D., Carr, A. M., & Hoffmann, E. (2014). FindFoci: A Focus Detection 

Algorithm with Automated Parameter Training That Closely Matches Human 

Assignments, Reduces Human Inconsistencies and Increases Speed of 

Analysis. PLoS ONE, 9(12), 1–33. 

https://doi.org/10.1371/journal.pone.0114749 

Herbert, D. N., & Carruthers, A. (1991). Cholate-solubilized erythrocyte glucose 

transporters exist as a mixture of homodimers and homotetramers. 

Biochemistry, 30(19), 4654–4658. 

Herbert, D. N., & Carruthers, A. (1992). Glucose Transporter Oligomeric 

Structure Determines Transporter Function. The Journal of Biological 

Chemistry, 267(33), 23829–23838. 

Herman, G. A., Bonzelius, F., Cieutat, A., & Kelly, R. B. (1994). A distinct class 

of intracellular storage vesicles , identified by expression of the glucose 

transporter GLUT4. Proceedings of the National Academy of Sciences of the 

United States of America, 91(December), 12750–12754. 

de Herreros, A. G., & Birnbaum, M. J. (1989). The Acquisition of Increased 

Insulin-responsive Hexose Transport in 3T3-L1 Adipocytes Correlates with 

Expression of a Novel Transporter Gene. The Journal of Biological 

Chemistry, 264(33), 19994–19999. 

Hess, S. T., Kumar, M., Verma, A., Farrington, J., Kenworthy, A., & Zimmerberg, 

J. (2005). Quantitative electron microscopy and fluorescence spectrocopy of 

the membrane distribution of influenza hemagglutinin. Journal of Cell 

Biology, 169(6), 965–976. https://doi.org/10.1083/jcb.200412058 

Hess, S. T., Girirajan, T. P. K., & Mason, M. D. (2006). Ultra-High Resolution 



186 
 

Imaging by Fluorescence Photoactivation Localization Microscopy. 

Biophysical Journal, 91(11), 4258–4272. 

https://doi.org/10.1529/biophysj.106.091116 

Hex, N., Bartlett, C., Wright, D., Taylor, M., & Varley, D. (2012). Estimating the 

current and future costs of Type1 and Type2 diabetes in the UK, including 

direct health costs and indirect societal and productivity costs. Diabetic 

Medicine, 29(7), 855–862. https://doi.org/10.1111/j.1464-

5491.2012.03698.x 

Holman, G. D., Leggio, L. Lo, & Cushman, S. W. (1994). Insulin-stimulated 

GLUT4 Glucose Transporter Recycling. The Journal of Biological Chemistry, 

269(26), 17516–17524. 

Huang, B., Babcock, H., & Zhuang, X. (2010). Breaking the Diffraction Barrier: 

Super-Resolution Imaging of Cells. Cell, 143(7), 1047–1058. 

https://doi.org/10.1016/j.cell.2010.12.002 

Huang, J., Imamura, T., Babendure, J. L., Lu, J., & Olefsky, J. M. (2005). 

Disruption of Microtubules Ablates the Specificity of Insulin Signaling to 

GLUT4 Translocation in 3T3-L1 Adipocytes. The Journal of Biological 

Chemistry, 280(51), 42300–42306. https://doi.org/10.1074/jbc.M510920200 

Huang, S., & Czech, M. P. (2007). The GLUT4 Glucose Transporter. Cell 

Metabolism, 5(4), 237–252. https://doi.org/10.1016/j.cmet.2007.03.006 

Huang, S., Lifshitz, L. M., Jones, C., Bellve, K. D., Standley, C., Fonseca, S., et 

al. (2007). Insulin stimulates membrane fusion and GLUT4 accumulation in 

clathrin coats on adipocyte plasma membranes. Molecular and Cellular 

Biology, 27(9), 3456–3469. https://doi.org/10.1128/MCB.01719-06 

Hudson, A. W., Ruiz, M. L., & Birnbaum, M. J. (1992). Isoform-specific 

subcellular targeting of glucose transporters in mouse fibroblasts. Journal of 

Cell Biology, 116(3), 785–797. 

https://doi.org/https://doi.org/10.1083/jcb.116.3.785 



187 
 
Inoue, H., Tani, K., & Tagaya, M. (2016). SNARE-associated proteins and 

receptor trafficking. Receptors & Clinical Investigation, 3, 1–11. 

https://doi.org/10.14800/rci.1377 

Issafras, H., Angers, S., Bulenger, S., Blanpain, C., Parmentier, M., Labbé-Jullié, 

C., et al. (2002). Constitutive Agonist-independent CCR5 Oligomerization 

and Antibody-mediated Clustering Occurring at Physiological Levels. The 

Journal of Biological Chemistry, 277(38), 34666–34673. 

https://doi.org/10.1074/jbc.M202386200 

Jackson, A. L., & Linsley, P. S. (2010). Recognizing and avoiding siRNA off-target 

effects for target identification and therapeutic application. Nature Reviews 

Drug Discovery, 9(1), 57–67. https://doi.org/10.1038/nrd3010 

James, D. E., Brown, R., Navarro, J., & Pilch, P. F. (1988). Insulin-regulatable 

tissues express a unique insulin-sensitive glucose transport protein. Nature, 

333(5), 183–185. 

James, D. E., Strube, M., & Mueckler, M. (1989). Molecular Cloning and 

Characterization of an Insulin-Regulatable Glucose Transporter. Letters To 

Nature, 338(6210), 83–87. 

Jameson, D. M. (2014). Introduction to Fluorescence. 

Jedrychowski, M. P., Gartner, C. A., Gygi, S. P., Zhou, L., Herz, J., Kandror, K. 

V, & Pilch, P. F. (2010). Proteomic Analysis of GLUT4 Storage Vesicles 

Reveals LRP1 to Be an Important Vesicle Component and Target of Insulin 

Signaling. The Journal of Biological Chemistry, 285(1), 104–114. 

https://doi.org/10.1074/jbc.M109.040428 

Jensen, E., & Crossmann, D. J. (2014). Technical Review: Types of Imaging — 

Direct STORM. The Anatomical Record, 297, 2227–2231. 

Jewell, J. L., Oh, E., Ramalingam, L., Kalwat, M. A., Tagliabracci, V. S., 

Tackett, L., et al. (2011). Munc18c phosphorylation by the insulin receptor 

links cell signaling directly to SNARE exocytosis. Journal of Cell Biology, 



188 
 

193(1), 185–199. https://doi.org/10.1083/jcb.201007176 

Jiang, L., Fan, J., Bai, L., Wang, Y., Chen, Y., Yang, L., et al. (2008). Direct 

quantification of fusion rate reveals a distal role for AS160 in insulin-

stimulated fusion of GLUT4 storage vesicles. Journal of Biological 

Chemistry, 283(13), 8508–8516. https://doi.org/10.1074/jbc.M708688200 

Johnson, A. O., Subtil, A., Petrush, R., Kobylarz, K., Keller, S. R., & Mcgraw, T. 

E. (1998). Identification of an Insulin-responsive , Slow Endocytic Recycling 

Mechanism in Chinese Hamster Ovary Cells. The Journal of Biological 

Chemistry, 273(28), 17968–17977. 

Jordens, I., Molle, D., Xiong, W., Keller, S. R., & McGraw, T. E. (2010). Insulin-

regulated Aminopeptidase Is a Key Regulator of GLUT4 Trafficking by 

Controlling the Sorting of GLUT4 from Endosomes to Specialized Insulin-

regulated Vesicles. Molecular Biology of the Cell, 21(24), 4325–4337. 

https://doi.org/10.1091/mbc.E10 

Kaestner, K. H., Christy, R. J., McLenithan, J. C., Braiterman, L. T., Cornelius, 

P., Pekala, P. H., & Lane, M. D. (1989). Sequence, tissue distribution, and 

differential expression of mRNA for a putative insulin-responsive glucose 

transporter in mouse 3T3-L1 adipocytes. Proceedings of the National 

Academy of Sciences of the United States of America, 86(May), 3150–3154. 

Kahn, B. B. (1992). Facilitative Glucose Transporters: Regulatory Mechanisms 

and Dysregulation in Diabetes. Journal of Clinical Investigation, 89(May), 

1367–1374. 

Kamiyama, D., & Huang, B. (2012). Development in the STORM. Cell, 23(6), 

1103–1110. https://doi.org/10.1016/j.devcel.2012.10.003 

Kandror, K. V. (2018). The role of sortilin in the “Glut4 Pathway”. 

Communicative & Integrative Biology, 11(1), 1–3. 

https://doi.org/10.1080/19420889.2017.1393592 

Kandror, K. V, & Pilch, P. F. (1994). gpl60, a tissue-specific marker for insulin-



189 
 

activated glucose transport. Proceedings of the National Academy of 

Sciences of the United States of America, 91(August), 8017–8021. 

Kandror, K. V, & Pilch, P. F. (1996). Compartmentalization of protein traffic in 

insulin-sensitive cells. The American Physiological Society, 271, E1–E14. 

Kandror, K. V, & Pilch, P. F. (2011). The Sugar Is sIRVed : Sorting Glut4 and Its 

Fellow Travelers. Traffic, 12(6), 665–671. https://doi.org/10.1111/j.1600-

0854.2011.01175.x 

Kane, S., Sano, H., Liu, S. C. H., Asara, J. M., Lane, W. S., Garner, C. C., & 

Lienhard, G. E. (2002). A method to identify serine kinase substrates. Akt 

phosphorylates a novel adipocyte protein with a Rab GTPase-activating 

protein (GAP) domain. Journal of Biological Chemistry, 277(25), 22115–

22118. https://doi.org/10.1074/jbc.C200198200 

Karylowski, O., Zeigerer, A., Cohen, A., & McGraw, T. E. (2004). GLUT4 Is 

Retained by an Intracellular Cycle of Vesicle Formation and Fusion with 

Endosomes. Molecular Biology of the Cell, 15(February), 870–882. 

https://doi.org/10.1091/mbc.E03 

Kask, P., Palo, K., Ullmann, D., & Gall, K. (1999). Fluorescence-intensity 

distribution analysis and its application in biomolecular detection 

technology. Proceedings of the National Academy of Sciences of the United 

States of America, 96(24), 13756–13761. 

Kasuga, M., Karlsson, F. A., & Kahn, C. R. (1982). Insulin Stimulates the 

Phosphorylation of the 95,000-Dalton Subunit of Its Own Receptor. Science, 

215(4529), 185–216. 

Kawaguchi, T., Tamori, Y., Kanda, H., Yoshikawa, M., Tateya, S., Nishino, N., & 

Kasuga, M. (2010). The t-SNAREs syntaxin4 and SNAP23 but not v-SNARE 

VAMP2 are indispensable to tether GLUT4 vesicles at the plasma membrane 

in adipocyte. Biochemical and Biophysical Research Communications, 

391(3), 1336–1341. https://doi.org/10.1016/j.bbrc.2009.12.045 



190 
 
Kayano, T., Fukumoto, H., Eddy, R. L., Fan, Y., Byers, M. G., Shows, T. B., & 

Bell, G. I. (1988). Evidence for a Family of Human Glucose Transporter-like 

Proteins. The Journal of Biological Chemistry, 263(25), 15245–15248. 

Keller, S. R. (2003). The insulin-regulated aminopeptidase: a companion and 

regulator of GLUT4. Frontiers in Bioscience, 8, 410–420. 

Keller, S. R., Scott, H. M., Mastick, C. C., Aebersold, R., & Lienhard, G. E. 

(1995). Cloning and Characterization of a Novel Insulin-regulated Membrane 

Aminopeptidase from Glut4 Vesicles. The Journal of Biological Chemistry, 

270(40), 23612–23618. 

Kioumourtzoglou, D., Gould, G. W., & Bryant, N. J. (2014). Insulin Stimulates 

Syntaxin4 SNARE Complex Assembly via a Novel Regulatory Mechanism. 

Molecular and Cellular Biology, 34(7), 1271–1279. 

https://doi.org/10.1128/MCB.01203-13 

Kioumourtzoglou, D., Sadler, J. B. A., Black, H. L., Berends, R., Wellburn, C., 

Bryant, N. J., & Gould, G. W. (2014). Studies of the regulated assembly of 

SNARE complexes in adipocytes. Biochemical Society Transactions, 42(5), 

1396–1400. https://doi.org/10.1042/BST20140114 

Kioumourtzoglou, D., Pryor, P. R., Gould, G. W., & Bryant, N. J. (2015). 

Alternative routes to the cell surface underpin insulin-regulated membrane 

trafficking of GLUT4. Journal of Cell Science, 128, 2423–2429. 

https://doi.org/10.1242/jcs.166561 

Kiskowski, M. A., Hancock, J. F., & Kenworthy, A. K. (2009). On the Use of 

Ripley’s K-Function and Its Derivatives to Analyze Domain Size. Biophysical 

Journal, 97, 1095–1103. https://doi.org/10.1016/j.bpj.2009.05.039 

Klco, J. M., Lassere, T. B., & Baranski, T. J. (2003). C5a Receptor 

Oligomerization. The Journal of Biological Chemistry, 278(37), 35345–35353. 

https://doi.org/10.1074/jbc.M305606200 

Knip, M., Veijola, R., Virtanen, S. M., Hyöty, H., Vaarala, O., & Åkerblom, H. K. 



191 
 

(2005). Environmental Triggers and Determinants of Type 1 Diabetes. 

Diabetes, 54(11), S125–S136. 

Kohn, A. D., Summers, S. A., Birnbaum, M. J., & Roth, R. A. (1996). Expression 

of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates 

glucose uptake and glucose transporter 4 translocation. Journal of Biological 

Chemistry, 271(49), 31372–31378. 

https://doi.org/10.1074/jbc.271.49.31372 

Koumanov, F., Pereira, V. J., Richardson, J. D., Sargent, S. L., Fazakerley, D. J., 

& Holman, G. D. (2015). Insulin regulates Rab3-Noc2 complex dissociation to 

promote GLUT4 translocation in rat adipocytes. Diabetologia, 58(8), 1877–

1886. https://doi.org/10.1007/s00125-015-3627-3 

Kraegen, E. W., James, D. E., Jenkins, A. B., & Chisholm, D. J. (1985). Dose-

response curves for in vivo insulin sensitivity in individual tissues in rats. The 

American Journal of Physiology, 248(3 Pt 1), E353–E362. 

Kupriyanova, T. A., Kandror, V., & Kandror, K. V. (2002). Isolation and 

characterization of the two major intracellular Glut4 storage compartments. 

Journal of Biological Chemistry, 277(11), 9133–9138. 

https://doi.org/10.1074/jbc.M106999200 

Laidlaw, K. M. E. (2018). A role for EFR3A during insulin stimulated dispersal of 

GLUT4 at the plasma membrane. 

Laidlaw, K. M. E., Livingstone, R., Al-Tobi, M., Bryant, N. J., & Gould, G. W. 

(2017). SNARE phosphorylation : a control mechanism for insulin-stimulated 

glucose transport and other regulated exocytic events. Biochemical Society 

Transactions, 45(6), 1271–1277. 

Lampson, M. A., Racz, A., Cushman, S. W., & Mcgraw, T. E. (2000). 

Demonstration of insulin-responsive trafficking of GLUT4 and vpTR in 

fibroblasts. Journal of Cell Science, 113, 4065–4076. 

Lang, T., & Rizzoli, S. O. (2010). Membrane Protein Clusters at Nanoscale 



192 
 

Resolution: More Than Pretty Pictures. Physiology, 25, 116–124. 

https://doi.org/10.1152/physiol.00044.2009 

Larance, M., Ramm, G., Stöckli, J., Van Dam, E. M., Winata, S., Wasinger, V., et 

al. (2005). Characterization of the role of the Rab GTPase-activating protein 

AS160 in insulin-regulated GLUT4 trafficking. Journal of Biological 

Chemistry, 280(45), 37803–37813. https://doi.org/10.1074/jbc.M503897200 

Leevers, S. J., Vanhaesebroeck, B., & Waterfield, M. D. (1999). Signalling 

through phosphoinositide 3-kinases: the lipids take centre stage. Current 

Opinion in Cell Biology, 11, 219–225. 

Leto, D., & Saltiel, A. R. (2012). Regulation of glucose transport by insulin : 

traffic control of GLUT4. Nature Reviews Molecular Cell Biology, 13(6), 383–

396. https://doi.org/10.1038/nrm3351 

Levet, F., Hosy, E., Kechkar, A., Butler, C., Beghin, A., Choquet, D., & Sibarita, 

J. (2015). SR-Tesseler : a method to segment and quantify localization-based 

super-resolution microscopy data. Nature Methods, 12(11), 1065–1071. 

https://doi.org/10.1038/nmeth.3579 

Li, C. H., Bai, L., Li, D. D., Xia, S., & Xu, T. (2004). Dynamic tracking and 

mobility analysis of single GLUT4 storage vesicle in live 3T3-L1 cells. Cell 

Research, 14(6), 480–6. https://doi.org/10.1038/sj.cr.7290251 

Li, P., Liu, S., Lu, M., Bandyopadhyay, G., Oh, D., Imamura, T., et al. (2016). 

Hematopoietic-Derived Galectin-3 Causes Cellular and Systemic Insulin 

Resistance. Cell, 167(4), 973-984.e12. 

https://doi.org/10.1016/j.cell.2016.10.025 

Li, Z., Yue, Y., Hu, F., Zhang, C., Ma, X., Li, N., et al. (2018). Electrical pulse 

stimulation induces GLUT4 translocation in C2C12 myotubes that depends on 

Rab8A , Rab13 , and Rab14. American Journal of Physiology, 314(5), 478–

493. https://doi.org/10.1152/ajpendo.00103.2017 

Lin, B.-Z., Pilch, P. F., & Kandror, K. V. (1997). Sortilin Is a Major Protein 



193 
 

Component of Glut4-containing Vesicles. The Journal of Biological 

Chemistry, 272(39), 24145–24148. 

van de Linde, S. (2019). Single-molecule localization microscopy analysis with 

ImageJ. Journal of Physics D: Applied Physics, 52, 1–12. 

https://doi.org/10.1088/1361-6463/ab092f 

van de Linde, S., Löschberger, A., Klein, T., Heidbreder, M., Wolter, S., 

Heilemann, M., & Sauer, M. (2011). Direct stochastic optical reconstruction 

microscopy with standard fluorescent probes. Nature Protocols Protoc, 6(7), 

991–1009. https://doi.org/10.1038/nprot.2011.336 

van de Linde, S., Krstić, I., Prisner, T., Doose, S., Heilemann, M., & Sauer, M. 

(2011). Photoinduced formation of reversible dye radicals and their impact 

on super-resolution imaging. Photochemical & Photobiological Sciences, 10, 

499–506. https://doi.org/10.1039/c0pp00317d 

Linders, P. T. A., van der Horst, C., ter Beest, M., & van den Bogaart, G. (2019). 

Stx5-Mediated ER-Golgi Transport in Mammals and Yeast. Cells, 8(780), 1–

16. https://doi.org/10.3390/cells8080780 

Liu, J., Kimura, A., Baumann, C. A., & Saltiel, A. R. (2002). APS Facilitates c-Cbl 

Tyrosine Phosphorylation and GLUT4 Translocation in Response to Insulin in 

3T3-L1 Adipocytes. Molecular and Cellular Biology, 22(11), 3599–3609. 

https://doi.org/10.1128/MCB.22.11.3599 

Livingstone, C., James, D. E., Rice, J. E., Hanpeter, D., & Gould, G. W. (1996). 

Compartment ablation analysis of the insulin-responsive glucose transporter 

(GLUT4) in 3T3-L1 adipocytes. Biochemical Journal, 315, 487–495. 

Lizunov, V. A., Matsumoto, H., Zimmerberg, J., Cushman, S. W., & Frolov, V. A. 

(2005). Insulin stimulates the halting, tethering, and fusion of mobile GLUT4 

vesicles in rat adipose cells. Journal of Cell Biology, 169(3), 481–489. 

https://doi.org/10.1083/jcb.200412069 

Lizunov, V. A., Lee, J.-P., Skarulis, M. C., Zimmerberg, J., Cushman, S. W., & 



194 
 

Stenkula, K. G. (2013). Impaired Tethering and Fusion of GLUT4 Vesicles in 

Insulin-Resistant Human Adipose Cells. Diabetes, 62(September), 3114–3119. 

https://doi.org/10.2337/db12-1741 

Lizunov, V. A., Stenkula, K., Troy, A., Cushman, S. W., & Zimmerberg, J. (2013). 

Insulin Regulates Glut4 Confinement in Plasma Membrane Clusters in 

Adipose Cells. PLoS ONE, 8(3). 

https://doi.org/10.1371/journal.pone.0057559 

Löschberger, A., Franke, C., Krohne, G., van de Linde, S., & Sauer, M. (2014). 

Correlative super-resolution fluorescence and electron microscopy of the 

nuclear pore complex with molecular resolution. Journal of Cell Science, 

(August 2014), 1–14. 

Lucey, B. P., Nelson-Rees, W. A., & Hutchins, G. M. (2009). Henrietta Lacks, 

HeLa Cells, and Cell Culture Contamination. Archives of Pathology & 

Laboratory Medicine, 133(9), 1463–1467. 

Maianu, L., Keller, S. R., & Garvey, W. T. (2001). Adipocytes Exhibit Abnormal 

Subcellular Distribution and Translocation of Vesicles Containing Glucose 

Transporter 4 and Insulin-Regulated Aminopeptidase in Type 2 Diabetes 

Mellitus: Implications Regarding Defects in Vesicle Trafficking. The Journal 

of Clinical Endocrinology & Metabolism, 86(11), 5450–5456. 

Malsam, J., Kreye, S., & Söllner, T. H. (2008). Membrane fusion: SNAREs and 

regulation. Cellular and Molecular Life Sciences, 65, 2814–2815. 

https://doi.org/10.1007/s00018-008-8352-3 

Manning, B. D., & Toker, A. (2007). AKT/PKB Signaling: Navigating the Network. 

Cell, 169(3), 381–405. https://doi.org/10.1016/j.cell.2017.04.001 

Marsango, S., Caltabiano, G., Jiménez-Rosés, M., Millan, M. J., Pediani, J. D., 

Ward, R. J., & Milligan, G. (2017). A Molecular Basis for Selective Antagonist 

Destabilization of Dopamine D3 Receptor Quaternary Organization. Nature 

Scientific Reports, 7, 1–17. https://doi.org/10.1038/s41598-017-02249-3 



195 
 
Martin-Fernandez, M. L., Tynan, C. J., & Webb, S. E. D. (2013). A ‘pocket guide’ 

to total internal reflection fluorescence. Journal of Microcsopy, 252(1), 16–

22. https://doi.org/10.1111/jmi.12070 

Martin, C., Tu, Y., Euskirchen, G., Ward, W. W., & Prasher, D. C. (1994). Green 

fluorescent protein as a marker for gene expression. Science, 263(1988), 

802–805. 

Martin, L. B., Shewan, A., Millar, C. A., Gould, G. W., & James, D. E. (1998). 

Vesicle-associated membrane protein 2 plays a specific role in the insulin-

dependent trafficking of the facilitative glucose transporter GLUT4 in 3T3-

L1 adipocytes. Journal of Biological Chemistry, 273, 1444–1452. 

https://doi.org/10.1074/jbc.273.3.1444 

Martin, O. J., Lee, A., & McGraw, T. E. (2006). GLUT4 distribution between the 

plasma membrane and the intracellular compartments is maintained by an 

insulin-modulated bipartite dynamic mechanism. Journal of Biological 

Chemistry, 281(1), 484–490. https://doi.org/10.1074/jbc.M505944200 

Martin, S., Tellam, J., Livingstone, C., Slot, J. W., Gould, G. W., & James, D. E. 

(1996). The glucose transporter (GLUT-4) and vesicle-associated membrane 

protein-2 (VAMP-2) are segregated from recycling endosomes in insulin- 

sensitive cells. Journal of Cell Biology, 134(3), 625–635. 

https://doi.org/10.1083/jcb.134.3.625 

Maruthur, N. M., Tseng, E., Hutfless, S., Wilson, L. M., Suarez-Cuervo, C., 

Berger, Z., et al. (2016). Diabetes Medications as Monotherapy or 

Metformin-Based Combination Therapy for Type 2 Diabetes. Annals of 

Internal Medicine, 164(11), 740–751. https://doi.org/10.7326/M15-2650 

Mastick, C. C., Aebersold, R., & Lienhard, G. E. (1994). Characterization of a 

Major Protein in GLUT4 Vesicles. The Journal of Biological Chemistry, 

269(8), 6089–6092. 

Mathers, C. D., & Loncar, D. (2006). Projections of Global Mortality and Burden 

of Disease from 2002 to 2030. PLOS Medicine, 3(11), 2011–2030. 



196 
 

https://doi.org/10.1371/journal.pmed.0030442 

Mattheyses, A. L., Simon, S. M., & Rappoport, J. Z. (2010). Imaging with total 

internal reflection fluorescence microscopy for the cell biologist. Journal of 

Cell Science, 123(Pt 21), 3621–8. https://doi.org/10.1242/jcs.056218 

Mîinea, C. P., Sano, H., Kane, S., Sano, E., Fukuda, M., Peränen, J., et al. 

(2005). AS160 , the Akt substrate regulating GLUT4 translocation, has a 

functional Rab GTPase-activating protein domain. Biochemical Journal, 391, 

87–93. https://doi.org/10.1042/BJ20050887 

Miller, S. (2006). The Role of Synaptotagmins in insulin-stimulated glucose 

uptake in the 3T3-L1 Adipocyte. University of Glasgow. 

Mohan, S. S., Perry, J. J. P., Pouluse, N., Nair, B. G., & Anilkumar, G. (2009). 

Homology Modeling of GLUT4, an Insulin Regulated Facilitated Glucose 

Transporter and Docking Studies with ATP and its Inhibitors. Journal of 

Biomolecular Structure and Dynamics, 26(4), 455–464. 

Molero, J. C., Whitehead, J. P., Meerloo, T., & James, D. E. (2001). Nocodazole 

Inhibits Insulin-stimulated Glucose Transport in 3T3-L1 Adipocytes via a 

Microtubule-independent Mechanism. The Journal of Biological Chemistry, 

276(47), 43829–43835. https://doi.org/10.1074/jbc.M105452200 

Morris, N. J., Ross, S. A., Lane, W. S., Moestrup, S. K., Petersen, C. M., Keller, 

S. R., & Lienhard, G. E. (1998). Sortilin Is the Major 110-kDa Protein in 

GLUT4 Vesicles from Adipocytes. The Journal of Biological Chemistry, 

273(6), 3582–3587. 

Morris, S., Geoghegan, N. D., Sadler, J. B. A., Koester, A. M., Black, H. L., Laub, 

M., et al. (2020). Characterisation of GLUT4 Trafficking in HeLa Cells: 

Comparable Kinetics and Orthologous Trafficking Mechanisms to 3T3-L1 

Adipocytes. PeerJ, 8:e8751. 

https://doi.org/https://doi.org/10.7717/peerj.8751 

Mueckler, M., Caruso, C., Baldwin, S. A., Panico, M., Blench, I., Morris, H. R., et 



197 
 

al. (1985). Sequence and Structure of a Human Glucose Transporter. 

Science, 229(4717), 941–945. 

Muranyi, W., Malkusch, S., Müller, B., Heilemann, M., & Kräusslich, H.-G. (2013). 

Super-Resolution Microscopy Reveals Specific Recruitment of HIV-1 Envelope 

Proteins to Viral Assembly Sites Dependent on the Envelope C-Terminal Tail. 

PLOS Pathogens, 9(2), 1–13. https://doi.org/10.1371/journal.ppat.1003198 

Muretta, J. M., Romenskaia, I., & Mastick, C. C. (2008). Insulin releases Glut4 

from static storage compartments into cycling endosomes and increases the 

rate constant for Glut4 exocytosis. Journal of Biological Chemistry, 283(1), 

311–323. https://doi.org/10.1074/jbc.M705756200 

Nakatsu, F., Baskin, J. M., Chung, J., Tanner, L. B., Shui, G., Lee, S. Y., et al. 

(2012). PtdIns4P synthesis by PI4KIIIα at the plasma membrane and its 

impact on plasma membrane identity. Journal of Cell Biology, 199(6), 1003–

1016. https://doi.org/10.1083/jcb.201206095 

Nelson, D. L., & Cox, M. M. (2017). Principles of Biochemistry. In Principles of 

Biochemistry (7th ed.). Lehninger. 

Nikolaou, A., Stijlemans, B., Laoui, D., Schouppe, E., Tran, H. T. T., Tourwé, D., 

et al. (2014). Presence and regulation of insulin-regulated aminopeptidase 

in mouse macrophages. Journal of the Renin-Angiotensin-Aldosterone 

System, 15(4), 466–479. https://doi.org/10.1177/1470320313507621 

Noomnarm, U., & Clegg, R. M. (2009). Fluorescence lifetimes : fundamentals and 

interpretations. Photosynthesis Research, 101, 181–194. 

https://doi.org/10.1007/s11120-009-9457-8 

Ober, R. J., Ram, S., & Ward, E. S. (2004). Localization Accuracy in Single-

Molecule Microscopy. Biophysical Journal, 86(2), 1185–1200. 

https://doi.org/10.1016/S0006-3495(04)74193-4 

Oka, Y., Mottola, C., Oppenheimer, C. L., & Czech, M. P. (1984). Insulin 

activates the appearance of insulin-like growth factor II receptors on the 



198 
 

adipocyte cell surface. Proceedings of the National Academy of Sciences of 

the United States of America, 81(July), 4028–4032. 

Ovesný, M., Křížek, P., Borkovec, J., Švindrych, Z., & Hagen, G. M. (2014). 

ThunderSTORM : a comprehensive ImageJ plug-in for PALM and STORM data 

analysis and super-resolution imaging. Bioimage Informatics, 30(16), 2389–

2390. https://doi.org/10.1093/bioinformatics/btu202 

Paddock, S. W. (1999). Confocal Laser Scanning Microscopy. BioTechniques, 27, 

992–1004. 

Pan, X., Zaarur, N., Singh, M., Morin, P., & Kandror, K. V. (2017). Sortilin and 

retromer mediate retrograde transport of Glut4 in 3T3-L1 adipocytes. 

Molecular Biology of the Cell, 28, 1667–1675. 

https://doi.org/10.1091/mbc.E16-11-0777 

Patki, V., Buxton, J., Chawla, A., Lifshitz, L., Fogarty, K., Carrington, W., et al. 

(2001). Insulin action on GLUT4 traffic visualized in single 3T3-L1 adipocytes 

by using ultra-fast microscopy. Molecular Biology of the Cell, 12(1), 129–

141. https://doi.org/10.1091/MBC.12.1.129 

Patsouris, D., Li, P.-P., Thapar, D., Chapman, J., Olefsky, J. M., & Neels, J. G. 

(2008). Ablation of CD11c-positive cells normalizes insulin sensitivity in 

obese insulin resistant animals. Cell Metabolism, 8(4), 301–309. 

https://doi.org/10.1016/j.cmet.2008.08.015 

Patterson, G., Day, R. N., & Piston, D. (2001). Fluorescent Protein Spectra. 

Journal of Cell Science, 114(5), 837–838. 

Pearse, B. M. F. (1976). Clathrin : A unique protein associated with intracellular 

transfer of membrane by coated vesicles. Proceedings of the National 

Academy of Sciences of the United States of America, 73(4), 1255–1259. 

Pediani, J. D., Ward, R. J., Godin, A. G., Marsango, S., & Milligan, G. (2016). 

Dynamic regulation of quaternary organization of the M1 muscarinic 

receptor by subtype-selective antagonist drugs. Journal of Biological 



199 
 

Chemistry, 291(25), 13132–13146. https://doi.org/10.1074/jbc.M115.712562 

Perera, H. K. I., Clarke, M., Morris, N. J., Hong, W., Chamberlain, L. H., & 

Gould, G. W. (2003). Syntaxin 6 Regulates Glut4 Trafficking in 3T3-L1 

Adipocytes. Molecular Biology of the Cell, 14(July), 2946–2958. 

https://doi.org/10.1091/mbc.E02 

Perley, M. J., & Kipnis, D. M. (1967). Plasma Insulin Responses to Oral and 

Intravenous Glucose : Studies in Normal and Diabetic Subjects. The Journal 

of Clinical Investigation, 46(12), 1954–1962. 

Piper, R. C., Hess, L. J., & James, D. E. (1991). Differential sorting of two 

glucose transporters expressed in insulin-sensitive cells. American Journal 

of Physiology, 260(3), C570–C580. 

Piper, R. C., Tai, C., Kulesza, P., Pang, S., Warnock, D., Baenziger, J., et al. 

(1993). GLUT-4 NH2 Terminus Contains a Phenylalanine-Based Targeting 

Motif that Regulates Intracellular Sequestration. The Journal of Cell 

Biology, 121(6), 1221–1232. 

Powell, K. A., Campbell, L. C., Tavare, J. M., Leader, D. P., A, W. J., & Gould, 

G. W. (1999). Trafficking of Glut4-Green Fluorescent Protein chimaeras in 

3T3-L1 adipocytes suggests distinct internalization mechanisms regulating 

cell surface Glut4 levels. Biochemical Journal, 344, 535–543. 

Prinster, S. C., Holmqvist, T. G., & Hall, R. A. (2006). α2C -Adrenergic Receptors 

Exhibit Enhanced Surface Expression and Signaling upon Association with β2 

-Adrenergic Receptors. The Journal of Pharmacology and Experimental 

Therapeutics, 318(3), 974–981. 

https://doi.org/10.1124/jpet.106.106526.surface 

Prior, I. A., Muncke, C., Parton, R. G., & Hancock, J. F. (2003). Direct 

visualization of Ras proteins in spatially distinct cell surface microdomains. 

Journal of Cell Biology, 160(2), 165–170. 

https://doi.org/10.1083/jcb.200209091 



200 
 
Proctor, K. M., Miller, S. C. M., Bryant, N. J., & Gould, G. W. (2006). Syntaxin 16 

controls the intracellular sequestration of GLUT4 in 3T3-L1 adipocytes. 

Biochemical and Biophysical Research Communications, 347, 433–438. 

https://doi.org/10.1016/j.bbrc.2006.06.135 

Rappoport, J. Z. (2008). Focusing on clathrin-mediated endocytosis. Biochemical 

Journal, 412, 415–423. https://doi.org/10.1042/BJ20080474 

Rea, S., & James, D. E. (1997). Moving GLUT4 The Biogenesis and Trafficking of 

GLUT4 Storage Vesicles. Diabetes, 46(11), 1667–1677. 

Reisinger, V., & Eichacker, L. A. (2008). Solubilization of Membrane Protein 

Complexes for Blue Native PAGE. Journal of Proteomics, 71(31), 277–283. 

https://doi.org/https://doi.org/10.1016/j.jprot.2008.05.004 

Ribon, V., Hubbell, S., Herrera, R., & Saltiel, A. R. (1996). The Product of the 

cbl Oncogene Forms Stable Complexes In Vivo with Endogenous Crk in a 

Tyrosine Phosphorylation-Dependent Manner. Molecular and Cellular 

Biology, 16(1), 45–52. 

Richter, E. A., & Hargreaves, M. (2013). Exercise, GLUT4, and Skeletal Muscle 

Glucose Uptake. Physiology Reviews, 93, 993–1017. 

https://doi.org/10.1152/physrev.00038.2012 

Ries, J., Kaplan, C., Platonova, E., Eghlidi, H., & Ewers, H. (2012). A simple, 

versatile method for GFP-based super-resolution microscopy via nanobodies. 

Nature Methods, 9(6), 1–6. https://doi.org/10.1038/nmeth.1991 

Ripley, B. D. (1976). The second-order analysis of stationary point processes. 

Journal of Applied Probability, 13, 255–266. 

https://doi.org/https://doi.org/10.2307%2F3212829 

Robinson, L. J., & James, D. E. (1992). Insulin-regulated sorting in 3T3-LI 

adipocytes of glucose transporters. The American Physiological Society, 

263(2), 383–393. 



201 
 
Robinson, L. J., Pang, S., Harris, D. S., Heuser, J., & James, D. E. (1992). 

Translocation of the Glucose Transporter (GLUT4) to the Cell Surface in 

Permeabilized 3T3-L1 Adipocytes: Effects of ATP, Insulin, and GTPγS and 

Localization of GLUT4 to Clathrin Lattices. The Journal of Cell Biology, 

117(6), 1181–1196. 

Rogi, R., Tsujimoto, M., Nakazato, H., Mizutani, S., & Tomoda, Y. (1996). 

Human Placental Leucine Aminopeptidase / Oxytocinase. The Journal of 

Biological Chemistry, 271(1), 56–61. 

Ross, S. A., Song, X., Burney, M. W., Kasai, Y., & Orlicky, D. J. (2003). Efficient 

adenovirus transduction of 3T3-L1 adipocytes stably expressing coxsackie-

adenovirus receptor. Biochemical and Biophysical Research 

Communications, 302, 354–358. https://doi.org/10.1016/S0006-

291X(03)00180-3 

Rottenfusser, R., Wilson, E. E., & Davidson, M. W. (2019). The Point Spread 

Function. 

Rubin-Delanchy, P., Burn, G. L., Griffié, J., Williamson, D. J., Heard, N. A., 

Cope, A. P., & Owen, D. M. (2015). Bayesian cluster identification in single-

molecule localization microscopy data. Nature Methods, 12(11), 1072–1076. 

https://doi.org/10.1038/nmeth.3612 

Ruiz-Ojeda, F. J., Rupérez, A. I., Gomez-llorente, C., Gil, A., & Aguilera, C. M. 

(2016). Cell Models and Their Application for Studying Adipogenic 

Differentiation in Relation to Obesity: A Review. International Journal of 

Molecular Sciences, 17(7), 1–26. https://doi.org/10.3390/ijms17071040 

Rust, M. J., Bates, M., & Zhuang, X. (2006). Sub-diffraction-limit imaging by 

stochastic optical reconstruction microscopy (STORM). Nature Methods, 

3(10), 793–795. https://doi.org/10.1038/NMETH929 

Sadacca, L. A., Bruno, J., Wen, J., Xiong, W., & McGraw, T. E. (2013). 

Specialized sorting of GLUT4 and its recruitment to the cell surface are 

independently regulated by distinct Rabs. Molecular Biology of the Cell, 



202 
 

24(16), 2544–2557. https://doi.org/10.1091/mbc.E13-02-0103 

Sadler, J. B. A. (2014). Analysis of VAMP levels and function in 3T3 L1 

adipocytes. 

Sadler, J. B. A., Bryant, N. J., Gould, G. W., & Welburn, C. R. (2013). 

Posttranslational Modifications of GLUT4 Affect Its Subcellular Localization 

and Translocation. International Journal of Molecular Sciences, 14, 9963–

9978. https://doi.org/10.3390/ijms14059963 

Sadler, J. B. A., Bryant, N. J., & Gould, G. W. (2014). Characterisation of VAMP 

isoforms in 3T3-L1 adipocytes: Implications for GLUT4 trafficking. Molecular 

Biology of the Cell, 26(3), 530–536. 

Sadler, J. B. A., Lamb, C. A., Welburn, C. R., Adamson, I. S., Kioumourtzoglou, 

D., Chi, N.-W., et al. (2019). The deubiquitinating enzyme USP25 binds 

tankyrase and regulates trafficking of the facilitative glucose transporter 

GLUT4 in adipocytes. Scientific Reports, 9(1), 1–7. 

https://doi.org/10.1038/s41598-019-40596-5 

Saltiel, A. R., & Kahn, C. R. (2001). Insulin Signalling and The Regulation of 

Glucose and Lipid Metabolism. Nature, 414(December), 799–806. 

https://doi.org/10.1038/414799a 

Sano, H., Kane, S., Sano, E., Mîinea, C. P., Asara, J. M., Lane, W. S., et al. 

(2003). Insulin-stimulated Phosphorylation of a Rab GTPase-activating 

Protein Regulates GLUT4 Translocation. The Journal of Biological 

Chemistry, 278(17), 14599–14603. https://doi.org/10.1074/jbc.C300063200 

Sano, H., Eguez, L., Teruel, M. N., Fukuda, M., Chuang, T. D., Chavez, J. A., et 

al. (2007). Rab10, a Target of the AS160 Rab GAP, Is Required for Insulin-

Stimulated Translocation of GLUT4 to the Adipocyte Plasma Membrane. Cell 

Metabolism, 5(April), 293–303. https://doi.org/10.1016/j.cmet.2007.03.001 

Sano, H., Peck, G. R., Blachon, S., & Lienhard, G. E. (2015). A potential link 

between insulin signaling and GLUT4 translocation : Association of Rab10-



203 
 

GTP with the exocyst subunit Exoc6 / 6b. Biochemical and Biophysical 

Research Communications, 465(3), 601–605. 

https://doi.org/10.1016/j.bbrc.2015.08.069 

Schägger, H., Cramer, W., & Jagow, G. von. (1994). Analysis of Molecular Masses 

and Oligomeric States of Protein Complexes by Blue Native Electrophoresis 

and Isolation of membrane Protein Complexes by Two-Dimensional Native 

Electrophoresis. Analytical Biochemistry, 217, 220–230. 

Schmelzle, K., Kane, S., Gridley, S., Lienhard, G. E., & White, F. M. (2006). 

Temporal Dynamics of Tyrosine Phosphorylation in Insulin Signaling. 

Diabetes, 55(August), 2171–2179. https://doi.org/10.2337/db06-0148 

Schmoranzer, J., & Simon, S. M. (2003). Role of Microtubules in Fusion of Post-

Golgi Vesicles to the Plasma Membrane. Molecular Biology of the Cell, 

14(April), 1558–1569. https://doi.org/10.1091/mbc.E02 

Schmoranzer, J., Goulian, M., Axelrod, D., & Simon, S. M. (2000). Imaging 

Constitutive Exocytosis with Total Internal Reflection Fluorescence 

Microscopy. The Journal of Cell Biology, 149(1), 23–31. 

Seuring, T., Archangelidi, O., & Suhrcke, M. (2015). The Economic Costs of Type 

2 Diabetes : A Global Systematic Review. PharmacoEconomics, 811–831. 

https://doi.org/10.1007/s40273-015-0268-9 

Shaw, A. S. (2006). Lipid rafts: now you see them, now you don’t. Nature 

Immunology, 7(11), 1139–1142. https://doi.org/10.1038/ni1405 

Shepherd, P. R., & Kahn, B. B. (1999). Glucose Transporters and Insulin Action. 

The New England Journal of Medicine, 341, 248–257. 

https://doi.org/10.1056/NEJM199907223410406 

Shewan, A. M., Marsh, B. J., Melvin, D. R., Martin, S., Gould, G. W., & James, D. 

E. (2000). The cytosolic C-terminus of the glucose transporter GLUT4 

contains an acidic cluster endosomal targeting motif distal to the dileucine 

signal. Biochemical Journal, 350, 99–107. 



204 
 
Shewan, A. M., van Dam, E. M., Martin, S., Luen, T. B., Hong, W., Bryant, N. J., 

& James, D. E. (2003). GLUT4 Recycles via a trans -Golgi Network (TGN) 

Subdomain Enriched in Syntaxins 6 and 16 But Not TGN38: Involvement of an 

Acidic Targeting Motif. Molecular Biology of the Cell, 14, 973–986. 

https://doi.org/10.1091/mbc.E02 

Shi, J., & Kandror, K. V. (2005). Sortilin is essential and sufficient for the 

formation of glut4 storage vesicles in 3T3-L1 adipocytes. Developmental 

Cell, 9(1), 99–108. https://doi.org/10.1016/j.devcel.2005.04.004 

Shi, J., Huang, G., & Kandror, K. V. (2008). Self-assembly of Glut4 Storage 

Vesicles during Differentiation of 3T3-L1 Adipocytes. The Journal of 

Biological Chemistry, 283(44), 30311–30321. 

https://doi.org/10.1074/jbc.M805182200 

Shia, M. A., & Pilch, P. F. (1983). The β Subunit of the Insulin Receptor Is an 

Insulin- Activated Protein Kinase. Biochemistry, 22(4), 717–721. 

Shimomura, O., Johnson, F. H., & Saiga, Y. (1962). Extraction, Purification and 

Properties of Aequorin, a Bioluminescent Protein from the Luminous 

Hydromedusan,Aequorea. Journal of Cellular and Comparative Physiology, 

59(3), 223–239. https://doi.org/10.1002/jcp.1030590302 

Simpson, I. A., Yver, D. R., Hissin, P. J., Wardzala, L. J., Karnieli, E., Salans, L. 

B., & Cushman, S. W. (1983). Insulin-Stimulated Translocation of Glucose 

Transporters in the Isolated Rat Adipose Cells: Characterization of 

Subcellular Fractions. Biochimica et Biophysica Acta, 763, 393–407. 

Simpson, J. C., Joggerst, B., Laketa, V., Verissimo, F., Cetin, C., Erfle, H., et al. 

(2012). Genome-wide RNAi screening identifies human proteins with a 

regulatory function in the early secretory pathway. Nature Cell Biology, 

14(7), 764–774. https://doi.org/10.1038/ncb2510 

Sinha, M. K., Raineri-Maldonado, C., Buchanan, C., Pories, W. J., Carter-Su, C., 

Pilch, P. F., & Caro, J. F. (1991). Adipose Tissue Glucose Transporters in 

NIDDM Decreased Levels of Muscle / Fat Isoform. Diabetes, 40(October), 



205 
 

472–477. 

Slot, J. W., Geuze, H. J., Gigengack, S., Lienhard, G. E., & James, D. E. (1991). 

Immuno-localization of the insulin regulatable glucose transporter in brown 

adipose tissue of the rat. Journal of Cell Biology, 113(1), 123–135. 

https://doi.org/10.1083/jcb.113.1.123 

Söllner, T., Bennett, M. K., Whiteheart, S. W., Scheller, R. H., & Rothman, J. E. 

(1993). A Protein Assembly-Disassembly Pathway In Vitro That May 

Correspond to Sequential Steps of Synaptic Vesicle Docking , Activation , 

and Fusion. Cell, 75, 409–418. 

Söllner, T., Whiteheart, S. W., Brunner, M., Erdjument-Bromage, H., 

Geromanos, S., Tempst, P., & Rothman, J. F. (1993). SNAP receptors 

implicated in vesicle targeting an fusion. Nature, 362, 318–362. 

Stenkula, K. G., Lizunov, V. A., Cushman, S. W., & Zimmerberg, J. (2010). 

Insulin controls the spatial distribution of GLUT4 on the cell surface through 

regulation of its postfusion dispersal. Cell Metabolism, 12(3), 250–259. 

https://doi.org/10.1016/j.cmet.2010.08.005 

Stephens, L., Anderson, K., Stokoe, D., Erdjument-Bromage, H., Painter, G. F., 

Holmes, A. B., et al. (1998). Protein Kinase B Kinases That Mediate 

Phosphatidylinositol 3,4,5-Trisphosphate-Dependent Activation of Protein 

Kinase B. Science, 279, 710–714. 

Sternberg, S. R. (1983). Biomedical Image Processing. IEEE Computer, 16(1), 22–

34. 

von Stetten, D., Noirclerc-Savoye, M., Goedhart, J., Gadella Jr, T. W. J., & 

Royant, A. (2012). Structure of a fluorescent protein from Aequorea victoria 

bearing the obligate-monomer mutation A206K. Acta Crystallographica, F68, 

878–882. https://doi.org/10.1107/S1744309112028667 

Subramaniam, V. N., Peter, F., Philp, R., Wong, S. H., & Hong, W. (1996). GS28, 

a 28-Kilodalton Golgi SNARE That Participates in ER-Golgi Transport. 



206 
 

Science, 272(5265), 1161–1163. 

Sun, X. J., Rothenberg, P., Kahn, C. R., Backer, J. M., Araki, E., Wilden, P. A., 

et al. (1991). Structure of the insulin receptor substrate IRS-1 defines a 

unique signal transduction protein. Nature, 352, 73–77. 

Sutton, R. B., Fasshauer, D., Jahn, R., & Brunger, A. T. (1998). Crystal structure 

of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. 

Nature, 395(September), 347–353. 

Suzuki, K., & Kono, T. (1980). Evidence that insulin causes translocation of 

glucose transport activity to the plasma membrane from an intracellular 

storage site. Proceedings of the National Academy of Sciences of the United 

States of America, 77(5), 2542–2545. 

Tan, J., & Brill, J. A. (2014). Cinderella story: PI4P goes from precursor to key 

signaling molecule. Critical Reviews in Biochemistry and Molecular Biology, 

49(1), 33–58. https://doi.org/10.3109/10409238.2013.853024 

Tareque, M. I., Koshio, A., Tiedt, A. D., Hasegawa, T., Obirikorang, Y., 

Obirikorang, C., et al. (2016). WHO - Global Report on Diabetes (Vol. 56). 

https://doi.org/10.1371/journal.pone.0127954 

Tate, C. G. (2001). Overexpression of mammalian integral membrane proteins 

for structural studies. FEBS Letters, 504, 94–98. 

Tavaré, J. M., Fletcher, L. M., Oatey, P. B., Tyas, L., Wakefield, J. G., & Welsh, 

G. I. (2001). Lighting up insulin action. Diabetic Medicine, 18, 253–260. 

Tellam, J. T., McIntosh, S., & James, D. E. (1995). Molecular Identification of 

Two Novel Munc-18 Isoforms Expressed in Non-neuronal Tissues. Journal of 

Biological Chemistry, 270, 5857–5863. 

https://doi.org/10.1074/jcb.270.11.5857 

Tellam, J. T., Macaulay, S. L., McIntosh, S., Hewish, D. R., Ward, C. W., & 

James, D. E. (1997). Characterization of Munc-18c and Syntaxin-4 in 3T3-L1 



207 
 

Adipocytes. Journal of Biological Chemistry, 272(10), 6179–6186. 

Thompson, R. E., Larson, D. R., & Webb, W. W. (2002). Precise Nanometer 

Localization Analysis for Individual Fluorescent Probes. Biophysical Journal, 

82(5), 2775–2783. https://doi.org/10.1016/S0006-3495(02)75618-X 

Toonen, R. F. G., & Verhage, M. (2003). Vesicle trafficking: pleasure and pain 

from SM genes. Trends in Cell Biology, 13(4), 177–186. 

https://doi.org/10.1016/S0962-8924(03)00031-X 

Tortorella, L. L., & Pilch, P. F. (2002). C2C12 myocytes lack an insulin-

responsive vesicular compartment despite dexamethasone-induced GLUT4 

expression. American Journal of Physiology, 283(3), 514–524. 

Trefely, S., Khoo, P.-S., Krycer, J. R., Chaudhuri, R., Fazakerley, D. J., Parker, 

B. L., et al. (2015). Kinome Screen Identifies PFKFB3 and Glucose 

Metabolism as Important Regulators of the Insulin/Insulin-like Growth Factor 

(IGF)-1 Signaling Pathway. The Journal of Biological Chemistry, 290(43), 

25834–25846. https://doi.org/10.1074/jbc.M115.658815 

Vassilopoulos, S., Esk, C., Hoshino, S., Funke, B. H., Chen, C.-Y., Plocik, A. M., 

et al. (2009). A Role for the CHC22 Clathrin Heavy-Chain Isoform in Human 

Glucose Metabolism. Science, 324(May), 1192–1197. 

Volchuk, A., Sargeant, R., Sumitani, S., Liu, Z., He, L., & Klip, A. (1995). 

Cellubrevin Is a Resident Protein of Insulin-sensitive GLUT4 Glucose 

Transporter Vesicles in 3T3-L1 Adipocytes. The Journal of Biological 

Chemistry, 270(14), 8233–8240. 

Wakeham, D. E., Abi-Rached, L., Towler, M. C., Wilbur, J. D., Parham, P., & 

Brodsky, F. M. (2005). Clathrin heavy and light chain isoforms originated by 

independent mechanisms of gene duplication during chordate evolution. 

Proceedings of the National Academy of Sciences of the United States of 

America, 102(20), 7209–7214. 

Ward, R. J., Pediani, J. D., Godin, A. G., & Milligan, G. (2015). Regulation of 



208 
 

oligomeric organization of the serotonin 5-hydroxytryptamine 2C (5-HT2C) 

receptor observed by spatial intensity distribution analysis. Journal of 

Biological Chemistry, 290(20), 12844–12857. 

https://doi.org/10.1074/jbc.M115.644724 

Webb, D. J., & Brown, C. M. (2013). Epi-Fluorescence Microscopy. Methods in 

Molecular Biology, 931, 29–59. https://doi.org/10.1007/978-1-62703-056-4 

Weber, T., Zemelman, B. V, McNew, J. A., Westermann, B., Gmachl, M., Parlati, 

F., et al. (1998). SNAREpins : Minimal Machinery for Membrane Fusion. Cell, 

92, 759–772. 

Weisberg, S. P., McCann, D., Desai, M., Rosenbaum, M., Leibel, R. L., & 

Ferrante, A. W. (2003). Obesity is associated with macrophage accumulation 

in adipose tissue. The Journal of Clinical Investigation, 112(12), 1796–1808. 

https://doi.org/10.1172/JCI200319246.Introduction 

Whelan, D. R., & Bell, T. D. M. (2015). Image artifacts in Single Molecule 

Localization Microscopy: why optimization of sample preparation protocols 

matters. Scientific Reports, 5(7924), 1–10. 

https://doi.org/10.1038/srep07924 

White, M. F. (2002). IRS proteins and the common path to diabetes. American 

Journal of Physiology, 283(3), E413–E422. 

Wieczorke, R., Dlugai, S., Krampe, S., & Boles, E. (2003). Characterisation of 

mammalian GLUT glucose transporters in a heterologous yeast expression 

system. Cellular Physiology and Biochemistry, 13(3), 123–134. 

https://doi.org/10.1159/000071863 

Wittig, I., Braun, H.-P., & Schägger, H. (2006). Blue native PAGE. Nature 

Protocols, 1(1), 418–428. https://doi.org/10.1038/nprot.2006.62 

Wood, I. S., & Trayhurn, P. (2003). Horizons in Nutritional Science Glucose 

transporters ( GLUT and SGLT ): expanded families of sugar transport 

proteins. British Journal of Nutrition, (89), 3–9. 



209 
 

https://doi.org/10.1079/BJN2002763 

Woodcock, J. M., Murphy, J., Stomski, F. C., Berndt, M. C., & Lopez, A. F. 

(2003). The Dimeric Versus Monomeric Status of 14-3-3ζ Is Controlled by 

Phosphorylation of Ser 58 at the Dimer Interface. The Journal of Biological 

Chemistry, 278(38), 36323–36327. https://doi.org/10.1074/jbc.M304689200 

Wu, X., Chi, R. J., Baskin, J. M., Lucast, L., Burd, C. G., Camilli, P. De, & 

Reinisch, K. M. (2014). Structural Insights into Assembly and Regulation of 

the Plasma Membrane Phosphatidylinositol 4-Kinase Complex. 

Developmental CellCell, 28(1), 19–29. 

https://doi.org/10.1016/j.devcel.2013.11.012 

Xu, J., Ma, H., Jin, J., Uttam, S., Fu, R., Huang, Y., & Liu, Y. (2018). Super-

Resolution Imaging of Higher-Order Chromatin Structures at Different 

Epigenomic States in Single Mammalian Cells. Cell Reports, 24, 873–882. 

https://doi.org/10.1016/j.celrep.2018.06.085 

Xu, Y., Rubin, B. R., Orme, C. M., Karpikov, A., Yu, C., Bogan, J. S., & Toomre, 

D. K. (2011). Dual-mode of insulin action controls GLUT4 vesicle exocytosis. 

Journal of Cell Biology, 193(4), 643–653. 

https://doi.org/10.1083/jcb.201008135 

Yan, Q., Lu, Y., Zhou, L., Chen, J., Xu, H., Cai, M., et al. (2018). Mechanistic 

insights into GLUT1 activation and clustering revealed by super-resolution 

imaging. PNAS, 115(27), 7033–7038. 

https://doi.org/10.1073/pnas.1803859115 

Yang, J., & Holman, G. D. (1993). Comparison of GLUT4 and GLUT 1 Subcellular 

Trafficking in Basal and Insulin-stimulated 3T3-Ll Cells. The Journal of 

Biological Chemistry, 268(7), 4600–4603. 

Yang, Z., Hong, L. K., Follett, J., Wabitsch, M., Hamilton, N. A., Collins, B. M., 

et al. (2016). Functional characterization of retromer in GLUT4 storage 

vesicle formation and adipocyte differentiation. The FASEB Journal, 30, 

1037–1050. https://doi.org/10.1096/fj.15-274704 



210 
 
Zakrys, L., Ward, R. J., Pediani, J. D., Godin, A. G., Graham, G. J., & Milligan, 

G. (2014). Roundabout 1 exists predominantly as a basal dimeric complex 

and this is unaffected by binding of the ligand Slit2. The Biochemical 

Journal, 461(1), 61–73. https://doi.org/10.1042/BJ20140190 

Zeigerer, A., Lampson, M. A., Karylowski, O., David, D., Adesnik, M., Ren, M., & 

Mcgraw, T. E. (2002). GLUT4 Retention in Adipocytes Requires Two 

Intracellular Insulin-regulated Transport Steps. Molecular and Cellular 

Biology, 13(July), 2421–2435. https://doi.org/10.1091/mbc.E02 

Zerial, M., & McBride, H. (2001). Rab Proteins as Membrane Organizers. Nature 

Reviews Molecular Cell Biology, 2(February), 107–119. 

Zhang, T., & Hong, W. (2001). Ykt6 Forms a SNARE Complex with Syntaxin 5, 

GS28 , and Bet1 and Participates in a Late Stage in Endoplasmic Reticulum-

Golgi Transport. The Journal of Biological Chemistry, 276(29), 27480–27487. 

https://doi.org/10.1074/jbc.M102786200 

Zhao, P., Yang, L., Lopez, J. A., Fan, J., Burchfield, J. G., Bai, L., et al. (2009). 

Variations in the requirement for v-SNAREs in GLUT4 trafficking in 

adipocytes. Journal of Cell Science, 122, 3472–3480. 

https://doi.org/10.1242/jcs.047449 

Zottola, R. J., Cloherty, E. K., Coderre, P. E., Hansen, A., Herbert, D. N., & 

Carruthers, A. (1995). Glucose Transporter Function is Controlled by 

Transporter Oligomeric Structure. A Single, Intramolecular Disulfide 

Promotes GLUT1 Tetramerization. Biochemistry, 34, 9734–9747. 

 


