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Abstract

Numerical modeling of free convection in porous enclosures is investigated in order

to determine the best approaches to solve the problem in two and three dimensions

considering their accuracy and computing time. Two case studies are considered:

sloping homogeneous porous enclosures and layered porous enclosures due to their

relevance in the context of geothermal energy. The governing equations are based on

Darcy’s law and the Boussinesq approximation. The mathematical problem of free

convection in 2D homogeneous porous enclosures is solved following the well known

stream function approach and also in terms of primitive variables.

The numerical schemes are based on the Finite Volume numerical method and im-

plemented in Fortran 90. Steady-state solutions are obtained solving the transient

problem for long simulation times. The case study of a sloping porous enclosure is

used for comparison of the results of the two models and for validation against results

reported in the literature. The two modeling approaches generate consistent results

in terms of the Nusselt number, the stream function approach however, turns out a

faster computational algorithm.

A parametric study is conducted to evaluate the Nusselt number in a 2D porous

enclosure as a function of the slope angle, Rayleigh number and aspect ratio. Te

convective modes can be divided into two classes: multicellular convection for small

slope angles and single cell convection for large angles. The transition angle between

these convective modes is dependent on both the Rayleigh number and the aspect

ratio. High Rayleigh numbers allow multicellular convection to remain in a larger

interval of angles.

This study is extended to the three-dimensional case in order to establish the range

of validity of the 2D assumptions. As in the 2D modeling, two different approaches to

solve the problem are compared: primitive variables and vector potential. Similarly,

both approaches lead to equivalent results in terms of the Nusselt number and con-

vective modes, the vector potential model however, proved to be less mesh-dependent

and also a faster algorithm. A parametric study of the problem considering Rayleigh

number, slope angle and aspect ratio showed that convective modes with irregular

3D geometries can develop in a wide variety of situations, including horizontal porous
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enclosure at relatively low Rayleigh numbers. The convective modes obtained in the

2D analysis (multicellular and single cell) are also present in the 3D case. Nonethe-

less the 3D results show that the transition between these convective modes follows a

complex 3D convective mode characterized by the interaction of transverse and lon-

gitudinal coils. As a consequence of this, the transition angles between multicellular

and single cell convection as well as the location of maxima Nusselt numbers do not

match between the 2D and 3D models.

Finally in this research, three-dimensional numerical simulations are carried out for

the study of free convection in a layered porous enclosure heated from below and

cooled from the top. The system is defined as a cubic porous enclosure comprising

three layers, of which the external ones share constant physical properties and the

internal layer is allowed to vary in both permeability and thermal conductivity. A

parametric study to evaluate the sensitivity of the Nusselt number to a decrease in

the permeability of the internal layer shows that strong permeability contrasts are

required to observe an appreciable drop in the Nusselt number. If additionally the

thickness of the internal layer is increased, a further decrease in the Nusselt number

is observed as long as the convective modes remain the same, if the convective modes

change the Nusselt number may increase. Decreasing the thermal conductivity of the

middle layer causes first a slight increment in the Nusselt number and then a drop.

On the other hand, the Nusselt number decreases in an approximately linear trend

when the thermal conductivity of the layer is increased.
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Peloni, Helen Robinson, Linwei Wang, Aaron Williams, and Anggoro Wisaksono.

I express my most sincere gratitude to my family for their support and love.





Declarations

Part of the work presented in this thesis has been published in the following articles:

• Three-dimensional numerical simulations of free convection in a layered porous

enclosure. Fernando J. Guerrero-Mart́ınez, Paul L. Younger, Nader Karimi and

Sotirios Kyriakis. International Journal of Heat and Mass Transfer, 2017, vol.

106.

• Three-dimensional numerical modeling of free convection in sloping porous en-

closures. Fernando J. Guerrero-Mart́ınez, Paul L. Younger and Nader Karimi.

International Journal of Heat and Mass Transfer, 2016, vol. 98.

• Three-dimensional numerical modeling of free convection in a layered porous

medium. Fernando J. Guerrero-Mart́ınez, Paul L. Younger and Nader Karimi.

7th European Geothermal PhD Day, Bari, Italy, 2016.

• Geothermal systems simulation: a case study. Fernando J. Guerrero-Mart́ınez,

Paul L. Younger and Manosh C. Paul. Proceedings World Geothermal Congress,

Melbourne, Australia, 2015.

• Geothermal Reservoir Simulation. Fernando J. Guerrero-Mart́ınez. Interna-

tional workshop on geomechanics and energy, the ground as energy source and

storage. EPFL, Lausanne, Switzerland, 2013.

I declare that, except when explicit reference is made to the contribution of others,

this thesis is my own work and it has not been submitted for any other degree at the

University of Glasgow or any other institution.

Fernando Javier Guerrero-Mart́ınez

Mexico City, January 2017



Nomenclature

Greek symbols

α Slope angle

β Thermal expansion coefficient

ψ Vector potential

η Overall thermal diffusivity

γ Specific weight

κ Thermal conductivity

Ω Surface boundary

σ Ratio of heat capacities

θ Dimensionless temperature

ϕ Porosity

Other symbols

− Overbar denotes dimensional variable

Roman letters

Â Amplitude

A Area

B Characteristic length

c Specific heat

D Aspect ratio

g Gravitational constant

h Height or piezometric head
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J Hydraulic gradient

K Hydraulic conductivity

k Permeability

L Characteristic length

L∞ Infinity norm

n Number of cells

Nu Nusselt number

P Pressure

Q Volumetric flow rate

q,u Darcy’s velocity

Ra Darcy-Rayleigh number

T Temperature

t Time

x, y, z Cartesian coordinates

Subscripts

0 Reference quantity

c Critical quantity

cpu Computing

f Fluid phase

l Local value

m Overall value

s Solid phase

ss Steady state
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Chapter 1

Introduction

The problem of free convection in porous media has been of great interest in research

due to the widespread presence of this mode of heat transfer in both nature and

engineering processes. In recent decades, the need for clean and renewable energy

resources as well as new environmental policies have motivated an intense research

in this topic. In the context of bioclimatic architecture, this topic is important

to model thermal isolation in buildings; CO2 sequestration, nuclear waste storage,

transport of pollutants in soil-water systems, and oil recovery treatments are some

other application fields of this topic.

Geothermal reservoir and ground water modeling are two application areas in which

free convection in porous media is particularly important. Fluid flow patterns in the

earth crust can be strongly influenced by this heat transfer mode particularly in the

ocean crust (Fisher 1998, Jupp & Schultz 2004). Thermal gradients in fractured-

porous media can drive density-driven flow (Graf & Therrien 2009) that generates

thermal anomalies of interest in geothermal applications (Gvirtzman et al. 1997,

Guillou-Frottier et al. 2013, Souche et al. 2014).

Modelling geothermal systems involves multidisciplinary work for which numerical

models are a fundamental tool of analysis. Numerical models are employed either to

evaluate conceptual models (O’Sullivan et al. 2001, Mannington et al. 2004, Noorol-

lahi & Itoi 2011, Franco & Vaccaro 2012), or to study a variety of physical and

chemical processes that take place in geothermal reservoirs with a phenomenological

approach (Ingebritsen et al. 2010, Wellmann & Regenauer-Lieb 2015). An overview

of numerical modeling of geothermal systems and the approaches to model fluid flow

and heat transfer in rocks is presented in Appendix A.1 for further details about

this topic. This thesis is concerned with the second category of models. The phe-

nomenological study presented here aims at describing the convective patterns and

heat transfer properties in three-dimensional porous enclosures.

Geothermal systems are very often confined into geological units characterized by

21
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some degree of inclination with respect to the surface level, so that gravitational

effects can affect the fluid flow in all directions of the three-dimensional (3D) space.

Likewise, the presence of layers with different physical properties, such as permeability

and thermal conductivity, is a common feature of these systems. These two aspects of

the problem of free convection in porous media will be the main interest of this work.

The modeling approach to address these problems will be based on the continuum

assumption which is commonly made in the context of geothermal systems (Appendix

A.1).

The topics of free convection in sloping and layered porous media have been widely

investigated from a theoretical perspective and numerically mainly by means of 2D

models. The scarcity of three-dimensional models is partly due to the associated high

computational demand and partly to the fact that 2D studies often provide enough

insight into the physics of the problem. Extending the conclusions of 2D analysis to

3D systems must be done with care however, since in some cases 2D models do not

allow to observe qualitative behavior only observable in 3D analysis even when the

governing parameters of the problem seem to justify the 2D assumption.

1.1 Objectives

The general objectives of this thesis are the following:

1. To develop and validate a phenomenological model for free convection in a

porous enclosure in three dimensions.

2. To carry out a parametric study of steady-state free convection in a sloping

porous enclosure and compare it with previous 2D results.

3. To carry out a parametric study of steady-state free convection in a layered

porous enclosure to obtain the qualitative behaviour of the convective modes

and heat transfer.

To achieve this, the following specific objectives have been set:

1. To carry out a literature review on free convection in porous enclosures in 2D

and 3D as well as the context of application of this problem.

2. To develop a 2D numerical model for free convection in a homogeneous porous

enclosure based on the Finite Volume numerical method and implemented in

Fortran code.



1.2. Governing equations 23

3. To carry out an investigation on the approaches to solve the problem numer-

ically in 3D. The approaches will be implemented in Fortran, validated and

compared in terms of numerical stability and accuracy.

4. To carry out parametric studies of the problem of free convection in a sloping

homogeneous porous enclosure and in a layered porous enclosure.

This thesis is structured in five chapters. The remaining sections of this chapter are

dedicated to introducing basic assumptions and the governing equations of the prob-

lem of free convection in porous media. Specific literature reviews according with

the case studies analyzed are presented in the introduction sections of Chapters 2,

3, and 4. Additionally, a more general literature review on the context of applica-

tion is presented in Appendix A.1. Two numerical models to solve the problem of

free convection in porous media in 2D will be presented in Chapter 2: the primitive

variables approach and the stream function approach. These numerical schemes will

be developed using the case study of a sloping porous enclosure. These models will

be compared and validated against results available in the literature. Additionally,

a parametric analysis will be also presented to evaluate the impact of three govern-

ing parameters on the heat transfer capacity of the porous enclosure. The models

presented in Chapter 2 will be the basis for the 3D numerical models presented in

subsequent chapters. Chapter 3 presents the three-dimensional version of the prob-

lem analized in Chapter 2, two 3D models are compared in this chapter: primitive

variables and vector potential, which can be considered the 3D counterpart of the

stream function method. A numerical model for free convection in a layered porous

medium is presented in Chapter 4 using as a case study a three-layer porous enclo-

sure. A parametric study is then presented to evaluate the effect of permeability and

thermal conductivity contrast between the layers. Finally, Chapter 5 presents the

concluding remarks of this work.

1.2 Governing equations

1.2.1 Darcy’s law

Fundamental aspects for the study of this topic rest on the experimental work pub-

lished by the French engineer Henry Darcy in 1856. Motivated by the need of a

reliable water supply system for his city of origin, Dijon, he developed a compre-

hensive study covering aspects as water sources, transport, and distribution (Freeze

1994, Simmons 2008). One of the most important contributions he made to the rising

discipline of hydraulics is the determination of an empirical law governing the wa-

ter flow through sand. Evaluating the discharge of water flowing through a vertical
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column packed with sand he stablished that the discharge is directly proportional

to the head and inversely proportional to the thickness of the layer traversed. This

statement is given by the following equation (Bear 1979),

Q = KA
h1 − h2

L
, (1.1)

where Q is the volumetric flow rate of water, A and L are the cross-section area

and height of the sand column, respectively, K is a constant of proportionality called

hydraulic conductivity that depends on the permeability of the medium, k, and prop-

erties of the fluid K = kρg
µ

. h1 and h2 represent the piezometric head measured at

the top and bottom sections of the column, respectively. Equation 1.1 is commonly

written in terms of the hydraulic gradient defined as J = h1−h2
L

and the volumetric

flow rate through a unit cross sectional area, q, known as Darcy’s velocity.

q = KJ (1.2)

The piezometric head accounts for pressure head and elevation head, h = P̄
γ

+

z̄.1Additionally, h1 − h2 represents a head loss, which is energy loss per unit weight.

This energy loss is due to the viscous resistance of the fluid as it moves through the

tortuous paths of the porous medium. An implication of Darcy’s law is that kinetic

energy changes in the fluid as it flows through the sand column are negligible. This

imposes a range of validity for Equation 1.2. Kolditz (2001) pointed out that the up-

per limit for the validity of the Darcy’s law is well before the transition from laminar

to turbulent flow (Re∼10), this condition is satisfied in most cases in groundwater

flow.

It is important to note that Darcy’s results state that flow takes place in the direction

of decreasing head, rather than the direction of decreasing pressure. The fluid moves

in the direction of decreasing pressure only in the case of a horizontal sand column

where gravity is not the driving mechanism of the flow. From this considerations

it can be stated that a difference in piezometric head represents a potential for the

flow. This potential is described mathematically by means of the gradient of h, so

that the volumetric flow rate per unit area is given by the following equation in a

more general form.

q = −K∇̄h (1.3)

The average velocity of the flow through the column is obtained from the effective

cross section area available for the flow of fluid, which is the cross section area, A,

1Overbar notation will be used to refer to dimensional variables and operators in case a dimen-

sionless counterpart is required in further sections of the thesis.
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multiplied by the porosity, ϕ. For three-dimensional flow we have that (Bear 1979)

V =
q

ϕ
(1.4)

Homogeneous and heterogeneous porous media

A porous medium is said to be homogeneous when the permeability does not vary

with the position (the same applies to the hydraulic conductivity). A homogeneous

porous medium can be isotropic or anisotropic. An isotropic porous medium is that

for which the permeability is independent of the direction. On the other hand, the

medium is anisotropic when the permeability depends on the direction of the flow,

so that it is a tensor with components kx, ky and kz.

A heterogeneous porous medium is that for which the permeability varies with the

position. Bear (1979) distinguishes two types of heterogeneity depending on the way

the permeability varies. In the first type the permeability is a continuous function of

the spatial coordinates. The second type involves discontinuities (abrupt changes) in

the permeability distribution. The main interests of this research are homogeneous

isotropic porous media as well as layered porous media, so that the permeability is

allowed to vary in the direction of z-axis parallel to gravity. Likewise, the heterogene-

ity considered in the present work will be of the first type so that only continuous

changes in the physical properties will be considered, nonetheless this approach is

capable of representing layers with enough accuracy.

1.2.2 Momentum equation

For the purposes of this work q and ū = (ū, v̄, w̄) will be used as equivalent notation

to refer to Darcy’s velocity. Considering the definitions of hydraulic conductivity and

piezometric head the components of Equation 1.3 for a homogeneous porous medium

the momentum equation can be written as follows

ū = −k
µ

∂P̄

∂x̄
, (1.5)

v̄ = −k
µ

∂P̄

∂ȳ
, (1.6)

w̄ = −k
µ

(
∂P̄

∂z̄
+ ρg

)
. (1.7)

The driving forces of motion in this equation are classified as external and body forces.

External forces are those associated with pressure gradients, whereas body forces are
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associated with gravitational effects, which are only important for the component z̄

of the system.

1.2.3 Heat transfer equation

The energy transport throughout a porous medium saturated with fluid is derived un-

der the assumptions that there exists local thermal equilibrium between the porous

matrix and the fluid and that viscous dissipation is negligible. This corresponds

to the simplest case to model convection in porous media. These assumptions re-

quire that there are no drastic temperature changes in the system. The condition

βT (gβ/cPf )L << 1 has also to be satisfied in order to neglect viscous dissipation,

where cPf is the specific heat of the fluid at constant pressure. These conditions are

usually satisfied in free convection in porous media (Nield & Bejan 2013). Further-

more, it is assumed that density and specific heat do not vary with time nor position.

The thermal conductivity however, will be in general considered a function of the

spatial coordinates. Some of these assumptions are contained within the Boussinesq

approximation, defined in Section 1.2.5. Additionally, it is assumed that there are

no heat sources in the porous medium. Under these assumptions, the energy balance

is made up of conductive and convective heat transfer in the medium and takes the

form (Nield & Bejan 2013):

(1− ϕ)(ρc)s + ϕ(ρcP )f
∂T̄

∂t̄
+ (ρcP )f ū · ∇̄T̄ = ∇̄ · ((1− ϕ)κs + ϕκf∇̄T̄ ), (1.8)

this equation can be rewritten using the subscript m that denotes overall value and

f , fluid phase:

(ρc)m
∂T̄

∂t̄
+ (ρc)f ū · ∇̄T̄ = ∇̄ · (κm∇̄T̄ ), (1.9)

finally, the heat transfer equation can be simplified as follows:

σ
∂T̄

∂t̄
+ ū · ∇̄T̄ = ∇̄ · (ηT̄ ), (1.10)

where σ is the scaling factor σ = (ρc)m/(ρcP )f , and η represents the overall thermal

diffusivity.

1.2.4 Mass conservation

A mass balance in a control volume in a porous medium saturated with fluid is the

result of quantifying inputs and outputs of fluid in the control volume plus density
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variations with time. The result is the continuity equation:

∂ρ

∂t̄
+ ∇̄ · (ρū) = 0 (1.11)

Keeping the assumption of constant density as regards the position and time the

mass balance takes the form of the continuity equation for an incompressible fluid:

∇̄ · ū = 0 (1.12)

1.2.5 The Boussinesq approximation

Free (or natural) convection is a heat transfer process induced by density-driven flow

as a result of thermal expansion in a fluid. Density gradients due to thermal expansion

in a fluid give rise to buoyancy, a body force that produces motion. In order to define

such body force it is necessary to find a relation between density and temperature.

The simplest equation is:

ρ(T̄ ) = ρ0 − ρ0β0(T̄ − T̄0), (1.13)

which is derived from a Taylor series for ρ as a function of T̄ , considering the pressure

P to be constant, and keeping only the first two terms of the series (Bird et al. 2002).

The subindex 0 refers to values calculated at the mean temperature between the

highest and the lowest temperatures of the system T̄0 = 1
2
(T̄H + T̄C).

The Boussinesq approximation states that density variations are only significant in

the buoyancy term, and can be neglected elsewhere. This definition is commonly

extended to other properties (Nield & Bejan 2013), so that all the physical prop-

erties of the medium are set constant except the density involved in the buoyancy

term (Eq. 1.7). Density variations in free convection are normally small enough to

justify the assumption of incompressible flow. For large density gradients however,

the Boussinesq approximation cannot be applied, Ingebritsen et al. (2010) describes

some examples of geological systems in which this assumption is not justified. Trit-

ton (1988) presents a theoretical examination of the conditions for the Boussinesq

approximation to be a good approximation. An alternative approach to incorporate

density gradients can be referred to Evans & Raffensperger (1992).

Writing the body force in Equation 1.7 in terms of Equation 1.13, the momentum

equation turns out



1.2. Governing equations 28

ū = −k
µ

∂P̄

∂x̄
, (1.14)

v̄ = −k
µ

∂P̄

∂ȳ
, (1.15)

w̄ = −k
µ

(
∂P̄

∂z̄
+ ρ0g(1− β0(T̄ − T̄0)

)
. (1.16)

The equation can be simplified redefining the vertical pressure gradient so it is taken

relative to a reference hydrostatic pressure gradient ρ0g. This leads to the most

common version of the momentum equation based on Darcy’s law and the Boussinesq

approximation. In vectorial form this equation is

ū = −k
µ

(
∇̄P̄ − ρ0β0(T̄ − T̄0)g

)
. (1.17)

Once the governing equations have been stated, the problem of free convection in a

porous enclosure can be formulated in mathematical terms. The numerical solution

of this mathematical problem and case studies will be presented in the following

chapters.



Chapter 2

2D free convection in a

homogeneous porous enclosure

2.1 Introduction

Several studies of free convection in porous media in 2D have been carried out in the

past. Fundamental aspects of the problem are given by the solution of the Horton-

Rogers-Lapwood problem (Nield & Bejan 2013). The solution to this problem estab-

lishes the conditions for the onset of convection in a horizontal porous layer heated

from below. The early works by Horton & Rogers (1945) and Lapwood (1948) deter-

mined a critical Rayleigh number (Rac = 4π2) for the onset of convection in such a

system. Elder (1967) presented one of the first numerical and experimental studies

of steady state convection in a two-dimensional (2D) porous enclosure. He described

the steady state cellular motion of the fluid, incorporating edge-effects of the porous

enclosure. Straus (1974) carried out stability analysis of 2D convection in a horizon-

tal porous layer, he showed that as the Rayleigh number increases the wavenumber

increases, and for Ra ≥380 there are no stable 2D solutions. In the same context,

De La Torre Juárez & Busse (1995) showed that the maximum Nusselt number of

steady-state convection shifts towards higher wavenumbers as Ra increases.

Kaneko et al. (1974) extended the experimental study by Elder (1967) to an inclined

porous enclosure. They pointed out that there is an angle at which the system reaches

the maximum level of convective motion, characterized by multiple convective cells,

they reported that above this angle the system evolves towards single cell convection.

Moya et al. (1987) studied numerically steady state convection in inclined porous

enclosures and the transition between multicellular convective pattern and single cell

as the slope angle and Rayleigh number were varied, as well as the existence of multi-

plicity of steady state solutions. Their model successfully reproduced the appearance

of a single cell convective regime when Ra cosα < 4π2 and 15 < α < 80, which was

29
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experimentally obtained by Bories & Combarnous (1973). Sen et al. (1987) studied

multiplicity of solutions of this kind of system following an analytical and numeri-

cal approach. They found that only one steady state solution exists for sub-critical

Rayleigh numbers. For higher Rayleigh numbers however, when the inclinations with

respect to the heated wall are small enough, multiple steady states exist and some of

them are unstable. Riley & Winters (1990) described the mechanisms through which

multiplicity of solutions characteristic of small slope angles reduces to leave an appar-

ently unique solution for large slope angles. Rees & Bassom (2000) presented a linear

stability analysis for the onset of convection in a sloping porous layer heated from

below. They found the maximum inclination angle at which transverse convective

modes can become unstable, which is α = 31.49◦ corresponding to a critical Rayleigh

number of 104.30. More recently, Báez & Nicolás (2006) studied the problem con-

sidering a wide parameter space. They analyzed how the transition angle between

multicellular and single-cell convection is affected by the Rayleigh number. They

pointed out that a coarse numerical discretization can affect the number of convec-

tive cells of multicellular convection, which is again an expression of multiplicity of

solutions. This problem has been further extended to the analysis of oblique porous

enclosures (Baytaş & Pop 1999) and entropy generation (Baytaş 2000), and also to

turbulence (Carvalho & de Lemos 2013) and non-Darcian effects (Khanafer 2013).

Two numerical schemes of free convection in a homogeneous porous enclosure are

presented in this chapter: the stream function approach and primitive variables ap-

proach. These numerical schemes will be the basis for the presentation of the 3D

models in the following chapters. Steady-state solutions are obtained from the simu-

lation of the transient problem for long simulation time using a convergence criterion.

The steady-state solutions obtained with the models presented here will be validated

agains results available in the literature (Baytaş 2000, Báez & Nicolás 2006).

2.2 Problem formulation

The problem consists of a rectangular porous enclosure of height B and length C with

impermeable walls, heated from below, and inclined an angle α with respect to the

horizontal position (Figure 2.1). The basic assumptions presented in Section 1.2 are

kept for this problem: local thermal equilibrium, fluid flow is described by Darcy’s

law, and the Boussinesq approximation is invoked. From these considerations the

momentum equation can be stated as follows (the bar notation denotes dimensional

variables and operators):

ū = −k
µ

(
∇̄P̄ − ρ0gβ0(T̄ − T̄0)e

)
(2.1)
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Figure 2.1: Schematic model of a rectangular porous enclosure tilted an angle α.

where the vector e = (sinα, cosα) gives account of the components of the buoyancy

term in the system. The continuity equation for an incompressible fluid is also recalled

∇̄ · ū = 0. (2.2)

Likewise, the heat transfer equation is as follows:

σ
∂T̄

∂t̄
+ ū · ∇̄T̄ = ∇̄ · (η∇̄T̄ ). (2.3)

The problem is nondimensionalized using the following dimensionless variables:

x =
x̄

B
, y =

ȳ

B
, z =

z̄

B
, P =

k

µη
P̄ ,

u =
B

η
(ū, v̄, w̄), θ =

T̄ − T̄0

T̄0 − T̄c
, t =

t̄η

σB2
,

Ra =
Bkgβρ0

ηµ
(T̄0 − T̄c),

with Ra the Darcy-Rayleigh number (or simply the Rayleigh number). The dimen-

sionless problem can be given as follows:

u +∇P = Raθe, (2.4)

∂θ

∂t
−∇2θ + u · ∇θ = 0, (2.5)

∇ · u = 0. (2.6)
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2.2.1 Boundary and initial conditions

It is assumed that the system rests at thermal and mechanical equilibrium as the

initial condition. The initial dimensionless temperature is set to zero:

θ = 0, for t = 0,

the boundary conditions for the heat transfer equation are as follows

∂θ

∂x
= 0, for x = 0 and x = D,

where D is the aspect ratio C/B, and

θ = 1, for y = 0 and t > 0,

θ = 0, for y = 1 and t > 0.

As regards the momentum equation, since the walls of the enclosure are imperme-

able, the perpendicular component of the velocity to the walls is set to zero. No

restriction is imposed on the tangential velocity however, since the porous medium

allows tangential motion at the boundaries. This is due to the fact that the Darcy

model is based on a macroscopic view of the system, in which the fluid in the porous

matrix is viewed as a unconfined continuum:

u = 0, for x = 0 and x = D,

v = 0, for y = 0 and y = 1.

The implementation of these boundary conditions as well as the initialization of the

pressure will be described in the following sections according with two approaches

that will be used to solve the mathematical problem, primitive variables and stream

function methods.

2.3 Primitive variables approach

The primitive variables approach has been particularly associated with the solution of

the Navier-Stokes equations in the context of splitting (or projection) methods (Davis

& Jones 1983, Orszag et al. 1986, Karniadakis et al. 1991, Báez & Nicolás 2013). This

method permits a non iterative solution of the system given by Equations 2.4 to 2.6

in each time step, which makes it easy to implement in a computational code. To

describe this algorithm, let us recall the dimensionless momentum equation (Eq. 2.4):

u +∇P = Raθe
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the divergence of this equation considering the incompressibility condition ∇ · u = 0

leads to a Poisson equation

∇2P = Ra∇ · θe (2.7)

On the other hand, the dimensionless heat transfer equation remains the same as

Equation 2.5. So that the problem can be summarized as follows:

∂θ

∂t
−∇2θ + u · ∇θ = 0, (2.8)

Γ∇2P =

(
∂θ

∂x
sinα +

∂θ

∂y
cosα

)
, (2.9)

with Γ = 1/Ra.

The algorithm for each time step can be summarized as a three-step process (Fig.

2.2): The heat transfer equation is solved first (Eq. 2.8); once the temperature is

known, the Poisson equation for the pressure is solved (Eq. 2.9); finally, the velocity

field is obtained explicitly from the momentum equation (Eq. 2.4). The first two

steps of this algorithm are the computationally expensive steps, they require the

definition of matrices for the temperature and the pressure and the iterative solution

of these matrices.

Boundary conditions

The boundary conditions for the heat transfer equation were described in Section

2.2.1. As regards the Poisson equation (Eq. 2.7), Neumann boundary conditions for

the pressure are obtained from the momentum equation (Eq. 2.4) as follows, if the

boundary of the porous enclosure is defined by a surface Ω, the pressure gradient

normal to the surface must satisfy the following condition:

∂P

∂n

∣∣∣
Ω

= n · (Raθe− u)|Ω (2.10)

This condition ensures mass conservation (Orszag et al. 1986, Báez & Nicolás 2013)

which permits a non iterative algorithm to solve the system of differential equations.

Considering the no flow condition through the walls, the velocity normal to the

surfaces is zero. There is no restriction however, for the tangential velocity since

the porous medium does not restrict the tangential motion at the boundary.

2.3.1 Discrete problem

The problem given by Equations 2.8 and 2.9 can be discretized by means of Finite

Differences, Finite Element, and Finite Volume numerical methods. Of these meth-

ods the Finite Volume and Finite Differences are similar in the sense that equivalent
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Figure 2.2: Flow diagram of the primitive variables algorithm to solve free convection

in porous media.

meshes and time steps would lead to an equivalent set of algebraic equations. In this

work the Finite Volume numerical method was chosen to carry out the discretiza-

tion of the system. The equations were discretized using a structured and uniform

mesh with mesh elements of aspect ratio 1. The notation presented by Versteeg &

Malalasekera (1995) is used here: lowercase subscripts denote positions at the faces

of the control volumes and capital subscripts denote positions at the centers of the

control volumes. Both pressure and temperature can be calculated in cell centers

(Fig. 2.3). This is possible because the velocities are given in terms of the pressure

gradient in the direction of the flow (Darcy’s law), this makes the approximation of

velocities at cell faces straightforward, applying central differencing approximations

for the pressure gradient from cell centers.
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Figure 2.3: Finite volume mesh for the estimation of ue, uw, vn, vs, θe and θw. Both

scalar variables, temperature and pressure are calculated at cell centers.

Discrete heat transfer equation

The integration of the heat transfer equation in a control volume was carried out

using the central differencing scheme for the convective term, which is second order,

and a first order fully implicit scheme was applied for the temporal discretization.

This leads to the following discrete equation:

aP θP = aEθE + aW θW + aNθN + aSθS + sP , (2.11)

with

aE =
Ae
δx
− ueAe

2
, aW =

Aw
δx

+
uwAw

2
,

aN =
An
δy
− vnAn

2
, aS =

As
δy

+
vsAs

2
,

and

aP = aE + aW + aN + aS +
∆V

∆t
, sP = θ0 ∆V

∆t
.

Boundary control volumes

West boundary: Neumann condition, adiabatic wall with impermeable boundary.

aW = 0

East boundary: Neumann condition, adiabatic wall with impermeable boundary.

aE = 0
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South boundary: Dirichlet condition, θ = θH .

aP θP = aEθE + aW θW + aNθN + 2aSθH + sP ,

aP = aE + aW + aN + 2aS +
∆V

∆t
.

North boundary: Dirichlet condition, θ = θC .

aP θP = aEθE + aW θW + aSθS + 2aNθC + sP ,

aP = aE + aW + 2aN + aS +
∆V

∆t
.

Discrete Poisson equation for the pressure

The integration of Equation 2.9 in a control volume turns out (Appendix B)

aPPP = aEPE + aWPW + aNPN + aSPS − sP , (2.12)

with

aE =
ΓeAe
δx

, aW =
ΓwAw
δx

, aN =
ΓnAn
δy

, aS =
ΓsAs
δy

,

and

aP = aE + aW + aN + aS.

These coefficients are written in the general form, however we can drop the subindexes

of Γ = 1/Ra since it is a constant. The source term sP (buoyancy term) is obtained

as follows:

sP =

∫ n

s

∫ e

w

(
∂θ

∂x
sinα +

∂θ

∂y
cosα

)
dxdy =

∫ n

s

sinα(θe − θw)dy +

∫ e

w

cosα(θn − θs)dx

= sinα(θe − θw)δy + cosα(θn − θs)δx.

Boundary control volumes

West boundary: Neumann condition, impermeable wall.

Considering the boundary condition for the momentum equation (Eq. 2.10) we have

that the pressure gradient at the west boundary (WB) is the following:

∂P

∂n

∣∣∣
WB
' PP − PW

δx
= RaθWB sinα,
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this is equivalent to

Γ
PP − PW

δx
= θWB sinα.

Since the west wall is adiabatic we have that θWB = θP , with θP the temperature

of the adjacent control volume, which is always known. When the term ΓPP−PW

δx

is substituted by θWB sinα in the integrated form of Equation 2.7 it can be seen

that the coefficient aW no longer appears and there is an additional source term

(the integration of a Poisson equation is presented in more detail in Appendix B).

Therefore, the corrections for the discrete momentum equation (Eq. 2.12) are as

follows:

aW = 0, sP = sinα(θe − θw)δy + cosα(θn − θs)δx+ θWB sinαδy.

East boundary: Neumann condition, impermeable wall.

Similarly, for the east boundary (EB) we have that

∂P

∂n

∣∣∣
EB
' PE − PP

δx
= RaθEB sinα,

or

Γ
PE − PP

δx
= θEB sinα.

The east wall is also adiabatic, so that θEB = θP , with θP the temperature of the

adjacent control volume. This leads to the following corrections:

aE = 0, sP = sinα(θe − θw)δy + cosα(θn − θs)δx− θEB sinαδy.

The change of sign in the additional source term is related with the sign of the

derivatives in the integrated Poisson equation (Equation B.2).

South boundary: Neumann condition, impermeable wall.

∂P

∂n

∣∣∣
South

' PP − PS
δy

= RaθH cosα,

or

Γ
PP − PS

δy
= θH cosα.

The south wall has specified temperature θH . The corrections for the south control

volumes are as follows:

aS = 0, sP = cosα(θe − θw)δy − sinα(θn − θs)δx+ θH cosαδx.
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North boundary: Neumann condition, impermeable wall.

∂P

∂n

∣∣∣
North

' PN − PP
δy

= RaθC cosα,

or

Γ
PN − PP

δy
= θC cosα.

The north wall has specified temperature θC . The corrections for the north control

volumes are as follows:

aN = 0, sP = cosα(θe − θw)δy − sinα(θn − θs)δx− θC cosαδx.

Discrete momentum equation for the velocity field

To calculate the velocity field u, second order approximations for the pressure gradient

are applied to Equation 2.4:

ue = Raθe sinα
PE − PP

δx
,

uw = Raθw sinα
PP − PW

δx
,

vn = Raθn cosα
PN − PP

δy
,

vs = Raθs cosα
PP − PS

δy
.

Equations 2.11 and 2.12 with the corresponding corrections for the boundary control

volumes, as well as the discrete momentum equation constitute the discrete primitive

variables problem. Both Equations 2.11 and 2.12 are pentadiagonal matrices that

will be solved using the Gauss-Seidel iteration.

2.4 Stream function approach

This approach has been widely applied for the solution of free convection in both

porous media and homogeneous fluids (Evans & Raffensperger 1992). A review of

early works on free convection in homogeneous fluids is referred to Davis & Jones
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(1983). The velocity is given in terms of the stream function, which satisfies mass

conservation by definition (Eq. 2.6):

u =

(
∂ψ

∂y
,−∂ψ

∂x

)
. (2.13)

Using this definition the Laplacian of ψ can be written as:

∇2ψ = −∂v
∂x

+
∂u

∂y
.

Combining with the momentum equation (Eq. 2.4) the pressure term is eliminated

Γ∇2ψ =

(
∂θ

∂x
cosα− ∂θ

∂y
sinα

)
, (2.14)

where Γ = −1/Ra. The mathematical problem is now described by Equations 2.5

and 2.14. The problem can be summarized as follows

Γ∇2ψ =
(
∂θ
∂x

cosα− ∂θ
∂y

sinα
)
,

∂θ
∂t
−∇2θ + u · ∇θ = 0.

(2.15)

Considering that ψ = 0 at the boundaries satisfies the condition of impermeable

walls, the boundary conditions are

∂θ

∂x
= 0, for x = 0 and x = D,

θ = 1, for y = 0 and t > 0,

θ = 0, for y = 1 and t > 0,

ψ = 0, for x = 0 and x = D,

ψ = 0, for y = 0 and y = 1.

2.4.1 Fixed point iteration

The time-dependent problem given by the system of Equations 2.15 consists of a

Poisson equation for the stream function, ψ, and the advection-diffusion equation for

the temperature, θ. This system can be solved iteratively by means of the method of

over-relaxation (see for instance Wilkes & Churchill (1966) and Moya et al. (1987)).

An alternative approach is the fixed point method, the implementation of this method

for the problem of free convection in porous media was reported by Báez & Nicolás

(2006) and it was chosen for the numerical model presented here.
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Time discretization

In order to implement the fixed point algorithm the heat transfer equation is dis-

cretized in time. Here we follow a fully implicit approach, which is a first order

approximation and unconditionally stable. This approach has been recommended for

general purpose CFD simulations in view of its stability (Versteeg & Malalasekera

1995), small time steps are required however, to avoid high numerical approxima-

tion error. Second order approximations such as the Crank-Nicolson scheme involve

a considerably more intricate implementation in the fixed point algorithm, with an

associated computational cost. For the purposes of obtaining steady-state solutions

the fully implicit approach was considered suitable for the model.

It is important to mention that the solution of the steady-state equations, instead

of the transient problem, requires a computing time that is comparable to the time-

stepping solution. This observation was made after simulation tests developed in

this study. A simulation was carried out for the transient problem for only five

small time steps, and then the time step was increased taking it as very large, which

implies solving the steady-state problem. It was observed that the computing time

was comparable to that required to obtain the steady state from a full time-stepping

solution. Additionally, the primitive variables approach that was presented in the

previous section is a method conceived for time-dependent problems. From these

considerations the time-stepping solution was also chosen for the stream function

approach.

Applying the integral
∫ t+∆t

t
dt to the heat transfer equation turns out

θt+∆t − θt −
∫ t+∆t

t

∇2θdt+

∫ t+∆t

t

(u · ∇θ)dt = 0,

and then applying the fully implicit criterion the variables in the diffusive and con-

vective terms are taken at the new time step t+ ∆t so that we can approximate the

integrals as follows

θt+∆t − θt −∇2θt+∆t∆t+ (ut+∆t · ∇θt+∆t)∆t = 0.

Renaming the subscripts as θ = θt+∆t for the new time step and θ0 = θt for the old

time step and dividing by ∆t, the heat transfer equation discretized in time can be

written as
θ − θ0

∆t
−∇2θ + u · ∇θ = 0.

We can call this equation Υ (θ, ψ) and rewrite in the following form

Υ (θ, ψ) =
1

∆t
θ −∇2θ + u · ∇θ − 1

∆t
θ0. (2.16)
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Boundary and 
initial conditions, max_iter, 

time steps, tolerance.

Solve Equation  2.17

Solve Equation  2.18

|!m+1-!m |< tolerance
or

m+1>max_iter

No

Yes

No
Time steps completed

Yes

End

!m = !m+1

!0 = !t

!t = !m+1

!m+1

Figure 2.4: Fixed point iterative algorithm to solve the system of Equations 2.17-2.18

with the corresponding boundary conditions.

The fixed point iteration assumes that the linear terms of this equation 1
∆t
θ−∇2θ at

an iteration m+ 1 are equal to the linear terms at the iteration m minus a correction

λΥ (θm, ψm), with 0 < λ < 1. Defining an operator L = ( 1
∆t
−∇2) to simplify notation,

the system of Equations 2.15 subject to the boundary and initial conditions referred

above can be written as follows

Lθm+1 = Lθm − λΥ (θm, ψm), (2.17)

Γ∇2ψm+1 =

(
∂θm+1

∂x
cosα− ∂θm+1

∂y
sinα

)
. (2.18)

This system can be solved iteratively and it converges when the term λΥ (θm, ψm)

tends to zero. In this form we have a system of linear differential equations since
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the right-hand side of Equation 2.17 containing the convective term is known and

becomes a source term in this equation. Figure 2.4 shows a flow chart of the iterative

process.

2.4.2 Discrete problem

The mathematical problem given by Equations 2.17 and 2.18 was also discretized

following the Finite Volume numerical method. A staggered grid was defined to

calculate the scalars θ and ψ as shown in Figure 2.5, the velocities are calculated on

the faces of the temperature control volume, whereas ψ is calculated on the corners

of the temperature control volume, uniform mesh is assumed in what follows.

P ueuw

vn

vs

P

P

P
w e

n

s

N

E

E

N

Figure 2.5: Staggered grid for the estimation of ue, uw, vn, vs, θe, θw, θn, and θs. The

continuous line represents temperature control volume and dashed line represents

stream function control volume.

Discrete heat transfer equation: integration of the terms Lθm+1 and Lθm

The integration of the heat transfer equation (Eq. 2.17) in the temperature con-

trol volume was carried out using a central differencing scheme for the convective

term, which is a second order approximation. The integration of the term Lθm+1 of

Equation 2.17 excluding boundary control volumes turns out

∫
CV

Lθm+1dV ' aP θ
m+1
P − aEθm+1

E − aW θm+1
W − aNθm+1

N − aSθm+1
S , (2.19)

with

aE =
Ae
δx
, aW =

Aw
δx
, aN =

An
δy
, aS =

As
δy
,



2.4. Stream function approach 43

and

aP = aE + aW + aN + aS +
∆V

∆t
,

with ∆V = δxδy. Additionally, since we are dealing with uniform meshes, the areas

of the faces are constants Ae = Aw = An = As = δx = δy. Likewise, the integration

of the term Lθm of the equation is∫
CV

LθmdV ' aP θ
m
P − aEθmE − aW θmW − aNθmN − aSθmS , (2.20)

with the same values for the coefficients aE, aW , aN , aS, and aP as those for Equation

2.19.

Boundary control volumes

The following considerations are made for boundary control volumes (BCV) (Ver-

steeg & Malalasekera 1995). Equivalent corrections to the coefficients apply for both∫
BCV

LθmdV and
∫
BCV

Lθm+1dV :

West boundary: Neumann condition, adiabatic wall.

aW = 0

East boundary: Neumann condition, adiabatic wall.

aE = 0

South boundary: Dirichlet condition, θ = θH .∫
BCV

Lθm+1dV ' aP θ
m+1
P − aEθm+1

E − aW θm+1
W − aNθm+1

N − 2aSθH ,

aP = aE + aW + aN + 2aS +
∆V

∆t
.

North boundary: Dirichlet condition, θ = θC .∫
BCV

Lθm+1dV ' aP θ
m+1
P − aEθm+1

E − aW θm+1
W − aSθm+1

S − 2aNθC ,

aP = aE + aW + 2aN + aS +
∆V

∆t
.

Discrete heat transfer equation: Integration of the term Υ (θm, ψm)

Finally, the integration of the term Υ (θm, ψm) turns out

∫
CV

Υ (θm, ψm)dV ' bP θ
m
P − bEθmE − bW θmW − bNθmN − bSθmS + sP , (2.21)
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with

bE =
Ae
δx
− ume Ae

2
, bW =

Aw
δx

+
umwAw

2
,

bN =
An
δy
− vmn An

2
, bS =

As
δy

+
vms As

2
,

bP = bE + bW + bN + bS +
∆V

∆t
, sP = −θ0 ∆V

∆t
,

and

ume =

(
∂ψm

∂y

)
e

, umw =

(
∂ψm

∂y

)
w

, vmn =

(
−∂ψ

m

∂x

)
n

, vms =

(
−∂ψ

m

∂x

)
s

.

These expressions for the velocity justify the choice of a staggered grid to discretize

the equations. As shown in Figure 2.5 the velocities are required on the faces of

the temperature control volume so that having the stream function on the corners

permits a straightforward approximation of the derivatives of ψ at the location of ue,

uw, vn, and vs, this can be done with a second order approximation.

Boundary control volumes

West boundary: Neumann condition, adiabatic wall with impermeable boundary

(ψbound. = 0).

bW = 0

East boundary: Neumann condition, adiabatic wall with impermeable boundary

(ψbound. = 0).

bE = 0

South boundary: Dirichlet condition, θ = θH .∫
BCV

Υ (θm, ψm)dV ' bP θ
m
P − bEθmE − bW θmW − bNθmN − 2bSθH + sP ,

bP = bE + bW + bN + 2bS +
∆V

∆t
.

North boundary: Dirichlet condition, θ = θC .∫
BCV

Υ (θm, ψm)dV ' bP θ
m+1
P − bEθm+1

E − bW θm+1
W − bSθm+1

S − 2bNθC ,

bP = bE + bW + 2bN + bS +
∆V

∆t
.
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Gathering Equations 2.19, 2.20, and 2.21 and taking into account the corrections to

the boundary control volumes a pentadiagonal system of equations is obtained of the

form:

aP θ
m+1
P − aEθm+1

E − aW θm+1
W − aNθm+1

N − aSθm+1
S = (2.22)

aP θ
m
P − aEθmE − aW θmW − aNθmN − aSθmS

− λ(bP θ
m
P − bEθmE − bW θmW − bNθmN − bSθmS + sP ).

Momentum equation

The discretized form of the momentum equation at the iteration m+ 1 (Eq. 2.18) is

aPψ
m+1
P = aEψ

m+1
E + aWψ

m+1
W + aNψ

m+1
N + aSψ

m+1
S − sP , (2.23)

with

aE =
ΓeAe
δx

, aW =
ΓwAw
δx

, aN =
ΓnAn
δy

, aS =
ΓsAs
δy

,

again, the terms Γe = Γw = Γn = Γs = Γ = −1/Ra

aP = aE + aW + aN + aS.

The source term sP (buoyancy term) is obtained as follows

sP =

∫ n

s

∫ e

w

(
∂θm+1

∂x
cosα− ∂θm+1

∂y
sinα

)
dxdy =∫ n

s

cosα(θm+1
e − θm+1

w )dy −
∫ e

w

sinα(θm+1
n − θm+1

s )dx

= cosα(θm+1
e − θm+1

w )δy − sinα(θm+1
n − θm+1

s )δx,

with θm+1
e , θm+1

w , θm+1
n , and θm+1

s calculated at the positions shown in Figure 2.5.

Boundary control volumes

For the momentum equation all the boundary conditions are of type Dirichlet ψbound =

0.

West boundary:

aW = 0

East boundary:

aE = 0

South boundary:

aS = 0
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North boundary:

aN = 0

Equations 2.22 and 2.23 represent the discretized energy and momentum equations,

respectively. These are pentadiagonal algebraic systems that can be solved by itera-

tive methods.

2.5 Numerical results

2.5.1 Validation

Both the primitive variables and the stream function algorithms were implemented

in Fortran 90 and the simulations were carried out on a PC based on Ubuntu 14.04

with a processor Intel Core i7. A comparison between the Three-diagonal Matrix

Algorithm with alternating directions and the Gauss-Seidel iteration was carried out.

The latter method proved to be a faster solution, for this reason all the simulations

were based on this method. There are other available algorithms such as SOR, Multi-

grid, and Minimal Residual Methods (GMRES). A comparison of these algorithms

with the Gauss-Seidel iteration was not considered necessary in this study, since this

method permitted to obtain solutions in computing times short enough to justify the

implementation and comparison of other methods. Nevertheless, these alternative al-

gorithms can potentially speed up the numerical solutions, which would be important

when handling high resolution grids.

Steady-state solutions were obtained from the evaluation of the convergence of the

temperature matrix. The infinity norm of the difference L∞ = |θt − θt−1|∞ was

calculated for successive time steps over a long time interval that proved to be long

enough after several tests (2.2×104 time steps in this case). The convergence criterion

was defined according to the condition 〈L∞〉tint
< 5 × 10−7, where 〈L∞〉tint

is the

average infinity norm over the time interval tint.

A local Nusselt number (Nul) was defined (Eq. 2.24) to quantify the convective heat

transfer throughout the porous enclosure. It is important to notice that given the

boundary conditions for the heat transfer equation (Section 2.2.1), a purely conduc-

tive steady-state solution in the cavity leads to a linear thermal profile of the form

θ(x, y) = y − 1, that has a derivative with respect to y equal 1. This implies that a

in convective steady-state solution Nu > 1.

Nul =

∣∣∣∣∂θ∂y
∣∣∣∣
y=0

. (2.24)
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Fig. 2 shows streamlines, isotherms and local Nusselt
number on the bottom wall, for Rap = 102, D = 3, and
three angles. When / = 40! the streamlines show that the
hot fluid on the bottom rises near the right wall until the
top cold wall and turns to fall on the left side forming a
counterclockwise rotating cell; on the other hand, different
isotherms lie closer each other in the left corner than in
other part on the hot wall, which indicates more vertical
variation of the temperature and therefore the local Nusselt
number on the bottom hot wall has only one maximum
near the left corner and one minimum in the right one.
When the angle diminishes to / = 25!, secondary cells
appear. When / = 10! three cells rotating in opposite
directions each other are obtained; different isothermals
on the bottom wall are close each other in the left corner
but near the center also, that is, in the limit between cells
where the fluid comes from the cold to the hot wall, hence
there are two places on the bottom where exist more heat
transfer, and then, the local Nusselt number has two max-
ima and two minima.

Something similar occurs with D = 10 but the number
of convective cells for small angles is 13 which shows that
heat transfer has been increased in more places than for
D = 3 implying that the local Nusselt number has now
seven maxima and equal number of minima. However,
from Table 1 it is observed that the global Nusselt number
Nu decreases when the aspect ratio increases, regardless of
the angle. Results with D = 3 are in agreement with those
reported by Moya et al. [1] but for D = 10 they report only
nine cells and hence less than seven maxima and seven min-
ima for the local Nusselt number while in this work various
meshes and time step sizes showed that different quantity of
cells can be obtained depending on the size of the mesh:
nine cells with a square mesh 1

30 !
1
30 until 15 with a finer

horizontal mesh 1
400 !

1
40.

Denoting by /s the transition angle, with 0! 6 / < /s, to
pass from multiple cells to a single cell, analysis for
Rap = 102 with various mesh sizes, time steps, and other
aspect ratios was made to figure it out /s, Table 2. It is
observed that with D = 4, D = 8, and D = 10 the angles

differ among them by little while with D = 3, and mainly
with D = 2, there is a noticeable difference. These angles
are the same of those in Moya et al. [1] except for aspect
ratios 2 and 3 where the discrepancies are of 1! only.

Going further than in Moya et al. [1], experiments for
the higher Rayleigh number Rap = 103 with the same
aspect ratios are studied, to the best of our knowledge this
is the first time they are reported. To validate these new
flows with D = 3, computations were made for three mesh
sizes and three time steps, considering / = 0!:

(1) time step fixed Dt = 10"5 and (hx,hy) = (1/150,1/50),
(1/225,1/75), (1/300,1/100);

(2) mesh size fixed (hx,hy) = (1/225,1/75) and Dt = 10"5,

5 ! 10"6, 2.5 ! 10"6.

The discrepancies for each set of computations are:

(1) at most 4.4% (4.4% for stream function and 1.5% for
temperature);

(2) at most 1.1% (1.1% for stream function and less than
0.3% for temperature).

The correspondent max/min values of stream function w
in each case are:

(1) max/min = 11.6464/"16.9201, 11.7949/"16.6909,
11.8455/"16.6041, respectively;

(2) max/min = 11.7949/"16.6909, 11.8391/"16.6627,
11.9054/"16.6190, respectively.

Therefore, due to the above discrepancies and since
there are no changes with finer meshes, the result shown
in Fig. 3 is taken as the correct one.

It is observed in Fig. 3 that qualitatively for Rap = 103

occurs something similar for Rap = 102: multiple cells
are obtained in the streamlines for the smallest angle
/ = 10!; with / = 25! one main cell and two secondary
cells appear; for / = 40! only one main cell appears as in
Rap = 102. However, some differences can be observed;
the isotherms and the cells of the streamlines appear dis-
torted with small angles and more than three convective
cells are obtained with / = 10!, and with / = 25! the sec-
ondary cells are larger and each one fills almost half of
the cavity, the respective local Nusselt numbers show that
although the majority of the heat transfer occurs in the left
corner, when / = 10! there exists other maximum near the

Streamlines Isotherms

Local Nusselt number

40o

40o

10o

10o

o25

25o

Fig. 2. Rap = 102, D = 3, Dt = 2 ! 10"3 and hx ! hy ¼ 1
60 !

1
40.

Table 2
Angles of transition for Rap = 102 and various aspect ratios

D /s (transition)

2 11!
3 24!
4 29!
8 32!
10 30!
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Figure 2.6: Comparison of the local Nusselt number between the simulation results
obtained with the models presented in this work (left) and the results reported by
Báez & Nicolás (2006) (right), which are based on the stream function approach. The
x axis was normalized dividing by 3, so that x ∈ (0, 1). This figure shows a good
agreement between the three numerical models.

A model of aspect ratio D = 3 was considered for the validation of the model with

a constant Rayleigh number Ra = 100. Three slope angles were analyzed: 10◦, 25◦

and 40◦. After a calibration process a time step ∆t = 2.0 × 10−4 was chosen for

the simulations. Likewise, a uniform mesh consisting of ∆x = ∆y = 100−1 was

employed for the spatial discretization. A mesh dependency study showed that a

mesh consisting of ∆x = ∆y = 25−1 leads to equivalent results with a difference of

0.48% in the global Nusselt number (Section 2.5.2).

The local Nusselt number for the three angles studied here are shown in Figure

2.6. This figure shows that the two numerical models developed in this work are in

good agreement with each other. Particularly, the local Nusselt number for α = 10◦

presents a perfect match between the two models. The Nusselt number for α = 25◦

and α = 40◦ displays very small differences between the stream function and primitive

variables models. Similarly, the models show a good agreement with the results

reported by Báez & Nicolás (2006), which are based on the stream function approach.

Figure 2.7 shows the temperature and velocity fields of the three angles analyzed.

Figure 2.8 shows the streamlines and isotherms calculated from the results of the

primitive variables model. The streamlines were calculated invoking the vorticity

and stream function definition: ω = ∇× u and ∇2ψ = −ω, so that another Poisson

equation was solved numerically assuming that the stream function is zero at the

boundary of the porous enclosure ψ|Ω = 0. The transition from multiple convective

cells to a single cell is shown as the angle of inclination is increased.
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The highest Nusselt number occurs close to x = 0 in the three cases analyzed. This

is due to the cold fluid that comes from the upper part of the cavity and flows down

at this point absorbing heat. Two maxima and two minima can be observed for

α = 10◦. The convective mode at this angle comprises three convective cells (Figs.

2.7 and 2.8), which implies that there are two downwellings and two upwellings.

The temperature distribution for α = 10◦ shows clearly the presence of two thermal

plumes that correspond with the two maxima in the local Nusselt number (Fig. 2.6).

Figure 2.7: Steady-state temperature and velocity fields of free convection in a sloping
porous enclosure obtained from the primitive variables model for three slope angles.

As the inclination is increased the component of the gravity on the x-axis becomes

more important, increasing buoyancy forces in this direction. This causes a transition

from multiple cell regime to single cell convection. At α = 25◦ the steady-state

solution is characterized by a single cell with two internal secondary cells (Fig. 2.8).
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Figure 2.8: Isotherms and streamlines for three slope angles. Three convective modes
can be identified: multicellular, for α = 10◦; single cell with two internal cells, for
α = 25◦; and single cell, for α = 40◦.

Table 2.1: Global Nusselt numbers and computing time for the steady-state solution

of free convection in a 2D sloping porous enclosure. The two numerical models

proposed in this work show good agreement with the results reported by Báez &

Nicolás (2006).

Stream function Primitive variables Báez & Nicolás (2006)

α Nu tcpu (sec) Nu tcpu (sec) Nu

10◦ 8.37 5.0 8.38 14.0 8.60

25◦ 6.37 2.8 6.38 14.0 6.75

40◦ 7.33 1.66 7.34 12.0 7.65
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A further increase in α leads to a single cell convection.

In order to compare the overall convective heat transfer in the enclosures a global

Nusselt number is defined as follows:

Nu =

∫ ∣∣∣∣∂θ∂y
∣∣∣∣
y=0

dx. (2.25)

Table 2.1 shows a comparison of the global Nusselt number between the models

developed here and the results reported by Báez & Nicolás (2006). The results are

in general in agreement. The small difference in Nu between our results and those

reported by the authors can be associated with the different mesh size and time step

employed. The referred authors employed a mesh defined by ∆x = 60−1, ∆y = 40−1

and a larger time step ∆t = 2 × 10−3, so that the convergence criterion might not

lead to exactly the same result. A systematic underestimation can be observed in

the comparison in Table 2.1, the highest difference (5.8%) being associated with

α = 25◦. The table also shows the computing time tcpu required for the simulations,

the stream function approach despite being based on an iterative solution proved

faster simulations than the primitive variables model.

An additional comparison of the primitive variables model presented here was carried

out with the results reported by Baytaş (2000), who studied the problem with a model

based on the stream function approach. This author analyzed an analogous problem

to that described in Section 2.2. In this case however, the aspect ratio was defined

as a square porous cavity and the boundary conditions were defined as illustrated in

Figure 2.9.

g

Adiabatic

Adiabatic

y

x

Figure 2.9: Schematic model of a porous enclosure heated from one of its sides and
cooled from the opposite side and adiabatic boundaries as presented by Baytaş (2000).

The numerical results turned out in good agreement with those reported in the re-

ferred work. Figure 2.10 shows the local Nusselt number calculated at several angles



2.5. Numerical results 51

!"#$%!& %'(!)*'" !!+, -#!*" )./*& '0/&!%% 1/.!0*'$& *2
!%3'2) 2*3*%!& )' ).!) '4 556 !"7 !8 *" 5*#, 9: !"7
!%2' ;<6 .!2 ! 3*"*3$3 !) =>! 4'& "# " ?>@: A.*%/ *)
.!2 ! 3*"*3$3 !) B>! 4'& "# " ?>C !"7 ?>D,

6" 5*#, =: )./ %'(!% E$22/%) "$31/& 0!&*!)*'" *2
2.'A" #&!F.*(!%%G 4'& .') A!%%, 6" (!2/ '4 !"#$%!& F'2H
*)*'"2 '4 >!: C>!: @>! !"7 DD>!: )./ %'(!% E$22/%) "$3H
1/& *2 .*#./2) !) )./ 1'))'3 '4 )./ (!0*)G A.*%/ *) *2
%'A/2) !) )./ )'F, ;'A/0/&: )./ )&/"7 *2 &/0/&2/7 A./"
! " ?D>! !"7 CC>!, <.*2 *2 7$/ )' &/0/&2!% '4 1$'G!"(G
/I/(), <./&/ *2 ! &/3!&J!1%/ 7*I/&/"(/ 4'& ! " B>!
4&'3 !%% ')./& 0!%$/2 '4 ! 4'& "# " ?>D !"7 ?>@,

6" 5*#, B: )./ 0!&*!)*'" '4 K/L!" "$31/& M$% +
0/&2$2 *"(%*"!)*'" !"#%/ !!# *2 2.'A" !2 !" !%)/&"!H
)*0/ *&&/0/&2*1*%*)G 7*2)&*1$)*'" F!&!3/)/& !2 7/2(&*1/7
*" NO, M?C+, -2 7/P"/7 *" Q/4, R?9S: $% " ?!> *2 )./
%*3*) !) A.*(. !%% )./ *&&/0/&2*1*%*)G *2 7$/ )' ./!)
)&!"24/&: $% " > *2 )./ 'FF'2*)/ %*3*) !) A.*(. !%%
)./ *&&/0/&2*1*%*)G *2 7$/ )' T$*7 4&*()*'": !"7 $% "
?"C *2 )./ (!2/ *" A.*(. )./ ./!) )&!"24/& !"7 T$*7
4&*()*'" /")&'FG #/"/&!)*'" &!)/2 !&/ /O$!%, $% $
?"C *2 )./ (!2/ A./&/ )./ *&&/0/&2*1*%*)G 7$/ )' ./!)
)&!"24/& 7'3*"!)/2: A.*%/ $% % ?"C *2 )./ (!2/
A./&/ )./ *&&/0/&2*1*%*)G 7$/ )' T$*7 4&*()*'" 7'3*H
"!)/2, -2 2//" *" 5*#, B: $% " ?!> !) ! " CU>! *2
)./ %*3*) !) A.*(. )./ ./!) )&!"24/& *&&/0/&2*1*%*)G
7'3*"!)/2, -2 Q!G%/*#. "$31/& 7/(&/!2/2: ./!)
)&!"24/& *&&/0/&2*1*%*)G *2 7'3*"!") !&'$"7 ! " CU>!!
5'& .*#. Q!G%/*#. "$31/&: T$*7 4&*()*'" *&&/0/&2*1*%H
*)G 7'3*"!)/2 4'& F'&'$2 (!0*)G /V(/F) !&'$"7 ! "
CU>! !2 *2 (%/!& 4&'3 5*#, B, -2 2.'A" *" 5*#, B:
K/L!" "$31/& (.!"#/2 3'&/ &!F*7%G A./" "# !"7
! *"(&/!2/ !4)/& *"(%*"/7 !"#%/ ! " ?=>!!

<./ K/L!" "$31/& *2 (%/!&%G ! 3/!2$&/ '4 )./ &/%!H
)*0/ 3!#"*)$7/ '4 )./ ./!) )&!"24/& !"7 T$*7 4&*()*'"
*&&/0/&2*1*%*)*/2, <./ K/L!" "$31/& .!2 23!%% 0!%$/2 4'&
)./ *"(%*"!)*'" !"#%/2 1/)A//" D>! )' 9>! !"7 ?C>! )'
?U>! *" 5*#, B, 6) 2.'A2 ).!) )./ ./!) )&!"24/& !"7 T$*7
4&*()*'" ('")&*1$)*'" )' )./ *&&/0/&2*1%/ %'22/2 !&/ "')
('3F!&!1%/ *" )./2/ T'A (!2/2, 6) 2.'A2 /0*7/")%G ).!)
*" )./2/ *"(%*"!)*'" !"#%/2: ('"0/()*0/ ./!) )&!"24/& *2
7'3*"!)/7 !2 2//" !&! *" 5*#, U !"7 !%2' T$*7 4&*()*'"
*&&/0/&2*1*%*)G *2 7'3*"!)/7,

!" #$%&'()*$%)

<./ 7*2)&*1$)*'" '4 /")&'FG #/"/&!)*'" *" CW %!3*H
"!& "!)$&!% ('"0/()*0/ T'A2 4'& 2!)$&!)/7 )*%)/7 F'&'$2
(!0*)G .!2 1//" 2)$7*/7 "$3/&*(!%%G 1G $2*"# -W6:

5*#, =, X'(!% E$22/%) "$31/& !%'"# )./ .') A!%% 4'& 0!&*'$2
*"(%*"/7 !"#%/Y M!+ "# " ?>C: M1+ "# " ?>D !"7 M(+ "# " ?>@!

'()( $#*+#,! - ./+( 0( 1%#+ 2#,, 34#/,5%4 67 89:::; 9:<=>9:== C>BU

0

2

4

6

8

10

12

14

16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Nul

x

0◦

20◦

40◦

90◦

130◦

220◦

330◦

Figure 2.10: Comparison of Nul between the results obtained with the primitive
variables model (left) and the results reported by Baytaş (2000) (right).

α. For α = 90◦ the resulting local Nusselt number curve was inverted which means

that the direction of rotation of the convective cell was the opposite. This behavior

can be attributed to the fact that α = 90◦ is equivalent to the horizontal porous

layer heated from below and multiplicity of solutions can happen, nonetheless the

magnitude of Nul was consistent.

2.5.2 Parametric study

A parametric study was carried out to determine the relation between the Nusselt

number and the slope angle of the enclosure. All the simulations were carried out

with the stream function model on the basis that it is a faster computational solution.

A mesh study was conducted to determine the sensitivity of the result to the mesh

size. The model of reference was that presented in Table 2.1 for D = 3, Ra = 100 and

α = 10◦ for which Nu = 8.37 was obtained. From these model parameters a Nusselt

number Nu = 8.36 was obtained from a uniform mesh ∆x = ∆y = 50−1, which is very

close (0.12% difference) to the result obtained with a fine mesh. Likewise, a Nusselt

number Nu = 8.33 was obtained using a coarse mesh ∆x = ∆y = 25−1 representing

a difference of 0.48%. From these results, a mesh ∆x = ∆y = 50−1 was employed

for the aspect ratio D = 3, ∆x = ∆y = 40−1 for D = 5, and ∆x = ∆y = 25−1 for

D = 10. The time step was kept as in the validation presented before, ∆t = 2.0×10−4.

The parametric study presented here aims to provide the followings. First, it gives

an overall view of the Nusselt number as a function of the governing parameters

of the system. Second, it puts forward a high-resolution view of the evolution of

the convective modes that are possible in 2D. The former study was conceived for

comparison with 3D analysis, and the latter to provide a wider background on the
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problem of free convection in a sloping porous enclosure.

The results in this section are presented as follows. Firstly, the overall view of the

Nusselt number as a function of the slope angle is analyzed for five Rayleigh numbers

considering the initial condition defined in the problem formulation (Section 2.2).

Subsequently, a high-resolution parametric study is presented for Ra = 70 and Ra =

100 using suitable initial conditions. This is to determine the number of convective

cells that can constitute a multicellular steady-state solution, as well as the slope

angles at which they appear. This high-resolution parametric study cannot be carried

out in 3D with the available computational facilities in a reasonable time. Therefore,

these results serve as a background to interpret more accurately the 3D studies of

the problem.
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Figure 2.11: Steady state Nusselt number vs slope angle for a 2D porous enclosure
with aspect ratio D = 3.

Overall behavior for aspect ratio D = 3

Moderate Rayleigh numbers were considered between 50 and 100 and ten slope angles

between 0 and 90◦. Figure 2.11 shows the Nusselt number as a function of the slope

angle α. Two trends can be distinguished, the first one between 0 and 30◦, and the

second one from 30◦ onwards. As shown in Figure 2.12 the convective modes between

0 and 20◦ are multicellular. There is in general a drop in Nu between 20 and 30◦

(the exception is Ra = 50 that presents a slight increase) where the system transits

to a single cell regime. Table 2.2 shows the local Nusselt maxima, two local maxima

can be identified in the two intervals referred above. For the multicellular regime
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Figure 2.12: Streamlines for a porous enclosure with D = 3, for Ra = 50 and
Ra = 100 showing the transition from multicellular flow to single cell convection.

the local maximum is located at 10◦ for low Ra and 20◦ for higher Ra, on the other

hand, for the single cell regime the local maximum is located at α = 70◦ for all the

Rayleigh numbers analyzed. We can observe that for low Rayleigh numbers (up to

Ra = 70), the absolute maximum corresponds to the single cell convection, and from

Ra = 80 the maximum corresponds to multicellular convection. This means that

the multiplication of upwellings enhances the heat transfer as long as the Rayleigh

number is high.

As it has been reported before (Moya et al. 1987, Báez & Nicolás 2006), a horizontal

porous enclosure heated from below (α = 0) displays multicellular convection. In

the results presented here this convective mode comprised between three and five
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Table 2.2: Local Nusselt maxima for a 2D porous enclosure with aspect ratio D = 3.

The angle α at which the maximum is located is given beside each local maximum.

Local Nu maximum

Ra 0◦ ≤ α ≤ 30◦ 30◦ < α ≤ 90◦

50 4.66 (α = 10◦) 5.40 (α = 70◦)

60 5.64 (α = 10◦) 5.97 (α = 70◦)

70 6.50 (α = 20◦) 6.52 (α = 70◦)

80 7.30 (α = 20◦) 7.04 (α = 70◦)

90 7.99 (α = 20◦) 7.54 (α = 70◦)

100 8.60 (α = 20◦) 8.01 (α = 70◦)

convective cells, with an increasing number of cells as Ra increases, as predicted by

Straus (1974). It can be seen that for the horizontal cavity (α = 0) the Nusselt number

for Ra = 100 turned out slightly higher than that for Ra =90. These solutions are

characterized by five and four convective cells, respectively. In order to confirm this

result, a new simulation was carried out for Ra =100 using a very long simulation

time instead of the convergence criterion, the result was confirmed. This behavior

is consistent with the results presented by De La Torre Juárez & Busse (1995) who

showed that increasing the Rayleigh number in the horizontal cavity and the number

of cells of the system does not necessarily imply an increase in Nu.
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Figure 2.13: Steady state Nusselt number vs slope angle for a 2D porous enclosure
with aspect ratio D = 5.
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Figure 2.14: Streamlines for a porous enclosure with D = 5, for Ra = 50 and
Ra = 100 showing the transition from multicellular flow to single cell convection.

Overall behavior for aspect ratios D = 5 and D = 10

Figure 2.13 shows the Nusselt number as a function of the slope angle for a porous

enclosure of aspect ratio D = 5. Figure 2.14 shows streamlines for the first five

slope angles and two Rayleigh numbers. The relation between Nu and α shows again

Table 2.3: Local Nusselt maxima for a 2D porous enclosure with aspect ratio D = 5.

The angle α at which the maximum is located is given beside each local maximum.

Local Nu maximum

Ra 0◦ ≤ α ≤ 30◦ 30◦ < α ≤ 90◦

50 7.47 (α = 10◦) 7.49 (α = 80◦)

60 9.13 (α = 10◦) 8.13 (α = 80◦)

70 10.50 (α = 10◦) 8.75 (α = 80◦)

80 11.68 (α = 20◦) 9.37 (α = 80◦)

90 12.79 (α = 20◦) 9.96 (α = 80◦)

100 13.76 (α = 20◦) 10.54 (α = 80◦)
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two trends or curves corresponding to multicelluar and single cell convection. The

angle of transition between these two curves is α = 30◦ for Ra = 50 and Ra = 60

and α = 40◦ for higher Rayleigh number. This is consistent with the fact that the

multicellular convection is favored by high Rayleigh numbers so that the transition

to single cell convection occurs for higher α. For the horizontal case α = 0 the

multicellular convection comprised between 6 and 8 convective cells. Table 2.3 shows

the local maxima for this aspect ratio, which are located at α = 10◦ and α = 20◦ for

the multicellular regime and at α = 80◦ for the single cell regime.
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Figure 2.15: Steady state Nusselt number vs slope angle for a 2D porous enclosure
with aspect ratio D = 10.

Table 2.4: Local Nusselt maxima for a 2D porous enclosure with aspect ratio D = 10.

The angle α at which the maximum is located is given beside each local maximum.

Local Nu maximum

Ra 0◦ ≤ α ≤ 30◦ 30◦ < α ≤ 90◦

50 14.36 (α = 0) 12.50 (α = 80◦)

60 17.68 (α = 10◦) 13.15 (α = 80◦)

70 20.54 (α = 10◦) 13.80 (α = 80◦)

80 22.41 (α = 20◦) 14.44 (α = 80◦)

90 24.73 (α = 20◦) 15.09 (α = 80◦)

100 26.73 (α = 20◦) 15.73 (α = 80◦)

Similarly, the porous enclosure with aspect ratio D = 10 displays transition angles

at α = 30◦ and α = 40◦ (Figure 2.15). For this aspect ratio, the difference in the

Nusselt number between multicellular and single cell convection becomes larger due
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Figure 2.16: Streamlines for a porous enclosure with D = 10 and for Ra = 50 showing
the transition from multicellular flow to single cell convection.

to the fact that multicellular convection considerably enhances the heat transfer in

the cavity. The transition from multicellular and single cell convection is shown in

Figures 2.16 and 2.17 for Ra = 50 and Ra = 100, respectively. It can be observed

that the number of cells in the multicellular convection depends on Ra. For α = 0

for instance, 16 cells are observed at Ra = 100, and 11 cells at Ra = 50. The local

Nusselt maxima are presented in Table 2.4.
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Figure 2.17: Streamlines for a porous enclosure with D = 10 and for Ra = 100
showing the transition from multicellular flow to single cell convection.

High-resolution parametric study for Ra = 70 and Ra = 100.

The number of convective cells comprising a multicellular convective mode is studied

here numerically for three aspect ratios of the cavity and two Rayleigh numbers.

Likewise, more accurate transition angles from multicellular to single-cell convetion

are obtained. Suitable initial conditions can be defined to give rise to a specific

number of convective cells in a horizontal 2D porous enclosure of aspect ratio D.

Such initial condition can be given by the following function:

θ(x, y) = (1− y) + Â sin(πy) cos
(nπx
D

)
, (2.26)
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this equation defines a temperature field that is characteristic of multicellular con-

vection at α = 0, with n the number of cells, and Â the amplitude of the sinusoidal

perturbation. In general the amplitude is defined as 0 < |Â| < 1, which is a moderate

perturbation of the linear temperature profile (1 − y). In this study, an amplitude

|Â| = 0.3 was suitable to give rise to multicellular convection at α = 0 for a wide

number con convective cells, n, and the three aspect ratios analyzed. Additionally,

it is important to note that for a given aspect ratio D and number of cells n, the

sign of the perturbation, whether it is positive or negative, permits to give rise to

equivalent convective modes as regards n but with opposite direction of rotation of

the convective cells.

Figure 2.18: Temperature fields obtained from Equation 2.26 for Â=-0.3 and Â=0.3.
These can be used as initial conditions to generate multicellular convection consisting
of three cells, n = 3, in a porous cavity of aspect ratio D = 3 (the steady-state
solutions obtained form these initial conditions are shown in Figure 2.19).

For D = 3 and n = 3 for instance, two initial temperature distributions can be

calculated according with either a positive or a negative sign of Â, this is shown in

Figure 2.18. The corresponding steady-state solutions obtained from these initial

conditions are shown in Figure 2.19 for Ra = 100 and α = 0. This figure shows

that two steady-state solutions comprising three cells can be obtained from the same

model parameters characterized by opposite vorticity signs. This is a manifestation

of multiplicity of solutions of the system. As a consequence of this property, it is

pertinent to analyze the existence of the three-cell multicellular convection for α 6= 0

considering the two forms of the solution.

The existence of these three-cell solutions (Figure 2.19) in the range α > 0 was ex-

amined here as follows. The slope angle α was increased in steps of 0.1◦ up to 40◦.

For the case α1 = 0.1◦, simulations were carried out using the steady-state temper-

atures obtained for α0 = 0 (Figure 2.19) as the initial conditions. Subsequently, the

steady-state temperature fields obtained for α1 were used as the initial condition for

α2 = 0.2◦, and so on. This process was continued up to 180◦, in steps of 1◦ in the

interval 40◦ < α < 90◦, and 5◦ in the interval 90◦ < α < 180◦. The Nusselt number

was then analyzed as a function of the slope angle. The relation Nu vs α permitted

to identify the evolution of the three-cell solution and the transition to a single cell
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Figure 2.19: Streamlines and temperature fields of three-cell multicellular convection
for Ra = 100 and α = 0 obtained from the initial conditions shown in Figure 2.18.

convective mode.

Figure 2.20 shows the result of the analysis for the three-cell solutions shown in

Figure 2.19 along with the four and one-cell solutions (n = 1 and n = 4). The

four-cell solution, n = 4, was calculated in the same way as n = 3. The one-cell

solution however, was obtained from simulations starting at α = 40◦ with the initial

condition given by Equation 2.26 with n = 1, D = 3, and Â=-0.3.1 Then the

remaining angles were analyzed moving backwards up to α = 0 in steps of 0.1◦, these

simulations allowed the identification of the minimum angle at which the one-cell

solution appears.

The figure shows (Fig. 2.20) that the two forms of the three-cell solution evolve

in different ways, on the one hand the Nusselt number increases with α for the

configuration shown in Figure 2.19-a (Â=-0.3). This result is consistent with that

presented in the overall parametric study (Fig. 2.11). The convection in this case

consists of two cells rotating anti-clockwise, that can be called natural cells, since the

fluid next to the hot wall flows upwards, whereas there is one clockwise rotating cell,

or anti-natural cell. This multicellular configuration will be denoted as n = 3+. On

the other hand, the configuration shown in Figure 2.19-b leads to a quick decrease

in the Nusselt until 11.1◦, where the rotation of the cells is switched to adopt the

configuration n = 3+. This decreasing branch of the three-cell solution contains only

one natural cell and two anti-natural cells, this explains why the Nusselt number

associated with this configuration is low, and why it exists only in relatively small

slope angles. Similarly, this configuration will be denoted as n = 3−.

1For convenience the starting angle was increased to 60◦ for D = 5 and D = 10 at Ra = 100.
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Figure 2.20: Nu vs α for three, four-cell, and one-cell convection. The solid blue line
corresponds to the case Â=-0.3, whereas the dashed blue line in the same interval
corresponds to Â=0.3 (Figure 2.19). The black dashed line shows the transition
between number of cells.

Similar to the three-cell case for α = 0, two steady-state solutions were obtained

for the four-cell configuration with opposite signs of vorticity, each of the solutions

associated with a sign of the perturbation (Eq. 2.26). Despite having opposite sign

of vorticity, the Nusselt number as a function of α turned out to be the same in both

cases: the Nusselt number decreased up to 10◦ where the convection became n = 3+

(Figure 2.20). This behavior is explained by the fact that both four-cell solutions

have two natural and two anti-natural cells, the only difference is the position of

them, so that both cases are equivalent in terms of the heat transfer in the porous

enclosure. It can also be observed a zero-slope curve at α = 0, unlike the curves for

the three cell configurations.

It is important to observe what happens at the end of the curves, which is the tran-

sition to a different configuration. The Nusselt number for n = 3+ has a maximum

at α = 24◦ and then decreases until the slope tends to infinite. It is expected that

the three-cell configuration starts vanishing at this high slope region. Figure 2.21-a

shows the streamlines for this configuration at the transition angle α = 32◦, the in-

ternal cell has almost disappeared which resembles a two-cell configuration, yet the

two cells have the same direction of rotation characteristic of the three-cell convec-

tion. An increase up to α = 32.1◦ leads to single-cell convection. On the other hand,

the transition from n = 3− to n = 3+ shows a deformation of the external cells

at α = 11.1◦ (Figure 2.21-b), and then for α = 11.2◦ the configuration changes to
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Figure 2.21: Streamlines of the convective modes n = 1, n = 3+, n = 3−, and n = 4
at their transition angles to a different configuration.

n = 3+. Likewise, for n = 4 the external anti-natural cell vanishes (Figure 2.21-c)

and then the configuration changes to n = 3+. Finally, n = 1 was observed until

α = 24◦ which is single cell with two internal cells (Figure 2.21-d).

In summary, each of the convection configuration starts becoming unstable at the end

of the curves, so that a further increase in α gives rise to a transition to a different

convective mode. The transition angles presented here are by no means definitive,

steady-state simulations would be required to confirm whether these configurations

exist beyond the transition angles presented here, nonetheless these results provide

the order of magnitude of the transition angles, the strength of the different config-

urations as α varies, and their relative importance as regards the Nusselt number in

the cavity.

The behavior observed for the three and four-cell solutions can be generalized for

all the odd and even number of cells at any aspect ratio. Additionally, considering

the property of symmetry regarding the rotation of the cavity, the results can be

extrapolated to the range α < 0. From these considerations, the cases n = 1, 2, ...,

5 were analyzed for D = 3, the cases n = 1, 3, 4, ..., 11 for D = 5, and the cases

n = 1, 7, 8, ..., 19 for D = 10. The presence of these multicellular convective modes

was analyzed considering two Rayleigh numbers Ra = 70 and Ra = 100.

Figure 2.22 shows the results for D = 3 and Ra = 70, it can be observed that the

configuration n = 3+ is dominant as regards the Nusselt number and the range α.

The configuration n = 3− on the other hand, displays a high-rate decrease in Nu,

yet the Nusselt number is higher than the that related with n = 2, 4, and 5. It can

be observed that the one-cell solution presents a bend upwards before the transition,
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Figure 2.22: Nusselt number vs slope angle for n = 1, 2, ..., 5 convective cells in a
2D porous cavity of aspect ratio D = 3 and Ra = 70 (for n odd, the dotted line
represents the configuration n− and the continuous line represents n+).

unlike the one-cell curve for Ra = 100 (Fig. 2.20), nevertheless it was confirmed that

the convective mode at the end of this curve is also once-cell with internal secondary

cells, similar to that presented in Figure 2.21-d. The transition angles for this case are

presented in Table 2.5. Additionally, the curve n = 1 evolves in a sinusoidal way up

to 180◦ reaching a minimum equal to the aspect ratio D = 3 at α = 180◦. Since this

case is equivalent to a cavity heated form above there is no convection contributing

to the heat transfer throughout the cavity but only conduction, therefore the Nusselt
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Figure 2.23: Nusselt number vs slope angle for n = 1, 2, ..., 5 convective cells in a
2D porous cavity of aspect ratio D = 3 and Ra = 100 (for n odd, the dotted line
represents the configuration n− and the continuous line represents n+).
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number is equal to the steady-state conductive solution of a cavity with a linear

temperature profile θ(x, y) = 1− y.

Figure 2.23 shows the results for Ra = 100 that was partly described above (Fig.

2.20). Unlike Ra = 70 the maximum Nu at α = 0 in this case is associated with an

even number of cells n = 4, which is slightly higher than that for n = 3. Likewise,

at this Rayleigh number the multicellular configurations remain in wider range α

with the exception of n = 3−. The transition angles of the different configurations

observed are presented in Table 2.5. There is consistency regarding the configuration

to which each case n becomes, being n = 3+ the preferred convective mode that is

adopted. It can be observed that there is an increase in the maximum transition

angle to single cell, being 25.7◦ for Ra = 70 and 32◦ for Ra = 100.

Table 2.5: Transition angles of the multicellular configurations observed in D = 3

for Ra = 70 and Ra = 100 (the transition to odd number of cells is always to the

positive branch n+).

D = 3

Ra = 70 Ra = 100

n Transition to αt n Transition to αt

1 3 25.4 1 3 24.0

2 3 2.2 2 3 3.4

3+ 1 25.7 3+ 1 32.0

3− 3 13.5 3− 3 11.1

4 3 5.2 4 3 10.0

5+ 3 4.0 5+ 3 13.2

5− 4 0.8 5− 4 6.6

Regarding the transition angles, Rees & Bassom (2000) presented a linear stability

analysis for the onset of convection in an infinitely long sloping porous layer heated

from below. They found the maximum inclination angle at which transverse convec-

tive modes can become unstable, which is α = 31.49032◦. This condition is satisfied

by Ra = 70, where n = 3+ is destabilized at α = 25.7◦, for Ra = 100 however, the

transition for n = 3+ occurs at a slightly higher angle α = 32◦ (Table 2.5).

A test simulation was carried out in order to confirm this result. The case n = 3+ for

Ra = 100 at α = 32◦ was simulated again with no convergence criterion, using instead

a total simulation time t = 100. The resulting Nusselt number was Nu = 8.147451,

whereas the Nusselt with convergence criterion was Nu = 8.152843 referred to a

simulation time for steady state tss = 4.83. This accounts for a difference in Nu of

about 0.066%. Likewise, no appreciable change was observed in the streamlines for

the new result in comparison with those presented in Figure 2.21-a. It is important

to mention that even larger transition angles were observed (up to 45◦) when higher
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aspect ratios were analyzed (Tables 2.6 and 2.7). All these cases were associated with

odd number of cells.
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Figure 2.24: Nusselt number vs slope angle for n = 1, 3, 4, ..., 8 convective cells in
a 2D porous cavity of aspect ratio D = 5 and Ra = 70 (for n odd, the dotted line
represents the configuration n− and the continuous line represents n+).

9

10

11

12

13

14

-40 -20 0 20 40

Nu

α

D = 5, Ra = 100

n = 1
n = 3
n = 4
n = 5
n = 6
n = 7
n = 8
n = 9

n = 10

9

10

11

12

13

14

-40 -20 0 20 40

Nu

α

D = 5, Ra = 100

n = 1
n = 3
n = 4
n = 5
n = 6
n = 7
n = 8
n = 9

n = 10

5

6

7

8

9

10

11

60 80 100 120 140 160 180

Nu

α

D = 5, Ra = 100

1 cell

Figure 2.25: Nusselt number vs slope angle for n = 1, 3, 4, ..., 11 convective cells in
a 2D porous cavity of aspect ratio D = 5 and Ra = 100 (for n odd, the dotted line
represents the configuration n− and the continuous line represents n+).

Figure 2.24 presents the Nusselt number as a function of α for D = 5 and Ra = 70

and Figure 2.25 for Ra = 100. In both Rayleigh numbers, the cases n = 1, 3, 4, ..., 11

were examined however, for Ra = 70, n = 8 was the maximum number of cells that

constituted steady-state. When comparing these two Figures, it can be observed that

increasing the Rayleigh number favors the formation of more multicellular configura-
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tions (Straus 1974). Likewise there is in general an increase in the transition angles

(Table 2.6). As regards Ra = 70 (Fig. 2.24), n = 5+ is the dominant configuration

which terminates at α = 27.8◦. There is an interesting feature in this graph, n = 3+

is interrupted at α = 1.2◦ where it becomes n = 5+, and then it appears again at

α = 27.8◦, it finally changes to n = 1 at α = 34.7◦. Since the Nusselt number for this

case is too low at small α it is possible that in cannot remain as steady state at small

inclination angles, more refined steady-state modelling would be required however to

confirm whether it cannot be steady-state in the range 1.2◦ < α < 27.8◦.

Table 2.6: Transition angles of the multicellular configurations observed in D = 5

for Ra = 70 and Ra = 100 (the transition to odd number of cells is always to the

positive branch n+).

D = 5

Ra = 70 Ra = 100

n Transition to αt n Transition to αt

1 3 31.4 1 3 33.3

3+ 5 1.2 3+ 1 45.0

3− 4 0.1 3− 5 1.9

4 5 8.5 4 5 6.4

5+ 3 27.8 5+ 3 34.9

5− 5 13.1 5− 7 11.4

6 5 7.4 6 5 12.0

7+ 5 13.6 7+ 5 22.3

7− 5 4.7 7− 5 9.9

8 7 0.8 8 7 5.6

— — — 9+ 7 10.7

— — — 9− 7 3.6

— — — 10 9 0.9

It can also be observed in these Figures that the maximum Nusselt number for α = 0

corresponds to n = 5 at Ra = 70 and n = 6 at Ra = 100, this increase in the

number of cells is consistent with the predictions presented by De La Torre Juárez &

Busse (1995) (a similar behavior can be observed for D = 3 and D = 10). Regarding

Ra = 100, as α is increased n = 5+ becomes the dominant configuration remaining up

to α = 34.9◦ where it becomes three-cell convection (Table 2.6). It can be observed

that as the number of cells increases the corresponding Nusselt number decreases as

well as the range α in which the particular configuration exists, such is the case of

n = 10 that appears in a range of inclinations less than 1◦. The highest transition

angle observed for Ra = 100 is 45◦ corresponding to n = 3+, at this angle the

gravitational effects are equally distributed between the x and y axes of the cavity.

Finally, the Figures for the aspect ratio D = 5 at 180◦ show a Nusselt number equal

to 5. Similar to case D = 3, this Nusselt number is equivalent to that obtained from
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a purely conductive solution θ(x, y) = 1 − y, since the cavity is being heated from

the top and cooled from below.
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Figure 2.26: Nusselt number vs slope angle for n = 1, 7, 8, ..., 15 convective cells in
a 2D porous cavity of aspect ratio D = 10 and Ra = 70 (for n odd, the dotted line
represents the configuration n− and the continuous line represents n+).
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Figure 2.27: Nusselt number vs slope angle for n = 1, 7, 8, ..., 19 convective cells in
a 2D porous cavity of aspect ratio D = 10 and Ra = 70 (for n odd, the dotted line
represents the configuration n− and the continuous line represents n+).

The fact that multicellular convective modes with odd number of cells prevail be-

yond the critical angle predicted by Rees & Bassom (2000) is an evidence for the

strong convection of those modes. It can be expected that there are some forms of

multicellular convection in the range 31.49 < α < 45◦ since the component of the

external force due to gravity is larger on the y-axis than on the x-axis, which favors
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flow in the y direction. This means that multiple upwellings and downwellings are

possible in the y-direction as long as α < 45◦. An increase of this angle destabilize

any multicellular convection to give rise to single-cell convection, in response to a

larger component of the external force on the x-axis. The presence of these convec-

tive modes in the range 31.49 < α < 45◦ can be justified by the fact that single-cell

convection consists of a flow of the form sin(πx/D), but since the flow is non-linear

it can self-interact to cause components of the form sin(3πx/D), sin(5πx/D), etc.,

allowing strong convection of theses modes.

Table 2.7: Transition angles of the multicellular configurations observed in D = 10

for Ra = 70 and Ra = 100 (the transition to odd number of cells is always to the

positive branch n+).

D = 10

Ra = 70 Ra = 100

n Transition to αt n Transition to αt

1 7 30.6 1 7 32.4

7+ 1 34.4 7+ 1 45.0

7− 9 3.2 7− 15 4.1

8 9 8.5 8 9 6.4

9+ 1 31.4 9+ 1 40.0

9− 7 13.3 9− 13 8.8

10 9 11.0 10 9 15.5

11+ 7 26.4 11+ 7 33.7

11− 9 9.8 11− 9 14.4

12 7 7.2 12 11 11.7

13+ 11 19.9 13+ 9 25.9

13− 11 5.8 13− 11 10.6

14 13 3.6 14 13 8.4

15+ 13 11.6 15+ 11 20.9

15− 13 2.3 15− 12 7.4

— — — 16 15 5.6

— — — 17+ 13 15.2

— — — 17− 15 4.5

— — — 18 17 3.0

— — — 19+ 15 9.2

— — — 19− 17 2.0

The parametric analysis for D = 10 is shown in Figures 2.26 and 2.27, the cases

from n = 7 up to n = 21 were examined. Between 7 and 15 cells were observed for

Ra = 70, and between 7 and 21 cells for Ra = 100, the cases n = 20 and n = 21 were

marginal though (lying in the range 0 ≤ α ≤ 1◦) and are not shown in Figure 2.27.

For Ra = 70 it can be observed that n = 9+ and n = 11+ are dominant regarding

Nu, but n = 7+ prevails in a wider range of inclination angles, with an angle of

transition α = 34.4◦.
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Likewise, for Ra = 100 (Figure 2.27), the dominant convective modes are n = 9+ and

n = 11+ regarding Nu, and n = 7+ is the dominant mode regarding the transition

angle being α = 45◦. It can be clearly seen in this Figure for α = 0 that a large

number of convective cells does not necessarily mean a high Nusselt number. It

can be seen that from about 13 cells the Nusselt number of the n-odd cases starts

decreasing. On the other hand, for n even, n = 12 has the highest Nusselt number

and form n = 14 Nu decreases.

A common characteristic of the two Figures is that there is a large decrease in Nu as

the convective modes evolve towards single-cell convection. As it was mentioned in

the overall study this due to the large difference in the number of upwellings between

multicellular and single-cell convection that can be hosted in large aspect ratio. Ad-

ditionally, it can be seen that as n increases the convective modes are destabilized

at successively smaller angles, for Ra = 70 for instance, the highest transition angle

corresponds to n = 7+ and then the transition angle decreases monotonically as n

increases, the same happens for the n-even cases, being n = 12 the convective mode

with the highest transition angle.

2.6 Conclusion

Two numerical models for free convection in a 2D porous enclosure were developed

and validated. The models were based on the primitive variables approach and the

stream function approach for which the solution algorithms and numerical discretiza-

tion were described. The primitive variables approach led to a non-iterative algorithm

per time step, which makes it easy to implement in a computational code, whereas

the stream function approach requires an iterative algorithm. Despite this fact, the

primitive variables model turned out computationally slower than the stream func-

tion model. A comparison of the models was carried out using the case study of a

sloping porous enclosure. The numerical results were in agreement as regards the

local Nusselt number with small differences. Likewise, the numerical results were in

agreement with those reported by Báez & Nicolás (2006) and Baytaş (2000). In this

validation, multiplicity of solutions was observed in the case of the horizontal square

porous cavity reported by Baytaş (2000).

Parametric studies were carried out to provide an overall view of the Nusselt number

as a function of the governing parameters of the system. Additionally, the study

determined most of the steady-state solutions that are possible in 2D along with their

transition angles to other convective modes. The steady-state convection was grouped

into two modes: multicellular convection for moderate slope angles, and single cell

for large angles. Multiple multicellular solutions were obtained for the horizontal
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cavity (α = 0) based on the property of multiplicity. Each of these multicellular

configurations was characterized by a given number of cells and by either of two

possible distributions of signs of the vorticity of the cells. Some of these configurations

proved to be more stable than others and prevailed in different extent as α was varied.

The configurations consisting of odd number of cells displayed a common behavior

regarding the trend of the Nusselt number as α was varied. On the one hand, when

the predominant sign of vorticity of the cells matched with the sign of vorticity of

the single-cell convection for α→ 90◦, Nu increases until a maximum is reached and

then decreases to adopt either a different number of cells or the single-cell configu-

ration. Otherwise, if the predominant rotation of the cells is against the single-cell

natural convection, the Nusselt number decreases monotonically as α varies and be-

comes unstable quickly. The n-even solutions also displayed a common behavior.

Since in this case both distributions of signs of vorticity contain the same number of

clockwise and anti-clockwise rotation cells, the Nusselt number of both forms of the

solution behaved in the same way as α was varied unlike the n-odd case; Nu decreased

monotonically with α forming a zero-slope curve as α → 0. These solutions became

unstable relatively quickly as α increased in comparison with the n-odd solutions.

Transition angles for all these solutions were also obtained. The results showed that

multicellular convection can become unstable at angles larger than the critical angle

predicted by Rees & Bassom (2000) (α = 31.49◦). Some of the multicellular con-

vective modes were destabilized and became single-cell at angles as large as α = 45◦

which represents the physical limit for multicellular convection. The explanation to

this behavior can be associated with the fact that below this angle (45◦) gravitational

effects have a larger component in the y-direction favoring the formation of multiple

upwellings in this direction. Likewise, in relation with the stability analysis presented

by Rees & Bassom (2000) it can be argued that the single-cell solution self interacts

due to nonlinearities to create n-odd solutions in the range 31.49◦ < α < 45◦.



Chapter 3

3D numerical modeling of free

convection in a sloping porous

enclosure

3.1 Introduction

As it was presented in the previous chapter, the problem of free convection in sloping

porous enclosures has been widely investigated. The interest in this problem arises

from several application contexts. Porous layers that are inclined with respect to the

horizontal level are frequently found in nature and engineering systems. Geothermal

energy and ground water modeling are examples of this. Permeable horizons in

hydrothermal systems can have this characteristic so that gravitational effects are

present in all the coordinate axes.

Steady-state solutions of free convection in sloping porous enclosures in three dimen-

sions are presented in this chapter for a range of governing parameters (aspect ratio,

slope angle and Rayleigh number). The 3D convective modes observed in the param-

eter space will be compared with the 2D results presented in the previous chapter.

The theoretical basis of the analysis presented in this chapter lies on the early works

by Horton & Rogers (1945) and Lapwood (1948) introduced previously. After an

early numerical model by Elder (1967), who studied steady-state convection in a 2D

porous enclosure, Bories & Combarnous (1973) extended the analysis to a sloping

porous enclosure in 3D following an experimental and theoretical approach. They

observed three different kinds of convective regimes, dependent on the parameters

of the model: polyhedral cells similar to the Bénard-Rayleigh cells for small slope

angles (∼ 15◦), longitudinal coils (with axis parallel to the longest side of the box)

and unicellular flow (which is a 2D velocity distribution) for nearly vertical positions.

Regarding the possible convective modes in a horizontal porous enclosure, Holst &

71
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Aziz (1972) presented one of the earliest numerical models to study this problem in

3D. Considering a set of aspect ratios of a horizontal porous enclosure they deter-

mined the possible convective modes for several Rayleigh numbers. They pointed

out that as the 2D motion always satisfies the governing equations, when 3D steady

state is possible, then the problem is characterized by a multiplicity of solutions. In

a later 3D study by Schubert & Straus (1979) the Rayleigh numbers at which 2D

and 3D solutions can be steady were examined for the case of a cubic porous enclo-

sure. Horne (1979) emphasized that steady flows do not necessarily maximize the

energy transfer. When multiple solutions are possible, these early studies agree on

the dependence of the resulting steady flow on the initial conditions of the problem.

Caltagirone & Bories (1985) presented a theoretical and numerical study for a sloping

porous box, their results were consistent with the experimental results by Bories &

Combarnous (1973). However they also predicted convective regimes characterized

by the interaction of longitudinal coils and transverse rolls. More recent research has

been carried out by Barletta & Storesletten (2011) to study the stability of trans-

verse and longitudinal convective rolls in an inclined porous channel. These authors

described the discontinuous nature of the critical Rayleigh number as a function of

the inclination angle.

The aim of the analysis presented in this chapter is to illustrate the complexity of the

steady-sate convective modes that can be present in 3D porous enclosures even at

low Rayleigh numbers, and to highlight the importance of 3D modeling for a better

understanding of this problem in real three-dimensional systems.

3.2 Problem formulation

g

xy
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_
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Figure 3.1: Schematic model of a sloping porous enclosure heated from below and

cooled from the top with adiabatic lateral boundaries.

The problem consists of a rectangular porous cavity, tilted at an angle α with re-

spect to the horizontal axis (Figure 3.1). The porous medium is assumed to be

homogeneous and fully saturated. The problem was stated assuming local thermal
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equilibrium. Fluid flow is described by Darcy’s law and buoyancy effects by the

Boussinesq approximation. Viscous heat generation is assumed negligible. From

these considerations the momentum equation can be stated as follows:

ū = −k
µ

(
∇̄P̄ − ρ0gβ(T̄ − T̄0)e

)
, (3.1)

where k, µ, ρ0, β, and g are permeability, viscosity, density of reference, ther-

mal expansion coefficient and gravitational constant, respectively. Likewise e =

(sinα, 0, cosα) gives account of the components of the gravity in the system. We

recall the heat transfer equation

σ
∂T̄

∂t̄
+ ū · ∇̄T̄ = ∇̄ · (η∇̄T̄ ), (3.2)

where η is the thermal diffusivity. The condition of incompressibility of the fluid is

also invoked:

∇̄ · ū = 0. (3.3)

Dimensionless variables are defined as follows:

x =
x̄

B
, y =

ȳ

B
, z =

z̄

B
, P =

k

µη
P̄ ,

u =
B

η
(ū, v̄, w̄), θ =

T̄ − T̄0

T̄0 − T̄c
, t =

t̄η

σB2
,

Ra =
Bkgβρ0

ηµ
(T̄0 − T̄c),

where Ra is the Darcy-Rayleigh number and B the characteristic length. The dimen-

sionless equations are then as follows, heat transfer equation:

∂θ

∂t
−∇2θ + u · ∇θ = 0. (3.4)

The dimensionless momentum equation reads:

u +∇P = Raθe. (3.5)

In this case the domain is given by 0 ≤ x ≤ D, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1, with D = C/B,

the aspect ratio. Additionally, a global Nusselt number is defined to quantify the

heat transfer through the upper surface z = 1:

Nu =

∫ ∣∣∣∣∂θ∂z
∣∣∣∣
z=1

dA. (3.6)



3.3. Numerical solution 74

3.2.1 Boundary conditions and initial conditions

It is assumed that the system rests at mechanical and thermal equilibrium as the

initial condition. Additionally, the initial dimensionless temperature is set to zero.

Assuming that the lateral walls of the cavity are adiabatic (x = 0, x = D, y = 0,

y = 1) and the bottom and top boundaries have specified temperatures, the boundary

conditions for the heat transfer equation can be written as

∂θ

∂x
= 0, for x = 0 and x = D,

∂θ

∂y
= 0, for y = 0 and y = 1,

θ = 1, for z = 0 and θ = 0, for z = 1 for t > 0.

Regarding the momentum equation impermeable boundary conditions are assumed.

The implementation of these boundary conditions is described in the following section.

3.3 Numerical solution

As the two-dimensional problem described in the previous chapter there are two

numerical approaches to solve the problem given above: primitive variables and vector

potential. The vector potential approach is analogous to the stream function approach

in the sense that pressure is eliminated from the equations. This approach has been

historically preferred (Holst & Aziz 1972, Horne 1979, Hewitt et al. 2014a, Harfash

2014), since it has proven to be a faster computational algorithm. A comparison of

these two methods has not been presented before in the literature however.

3.3.1 Primitive variables approach

As it was mentioned in the previous chapter, taking the divergence of Equation 3.5

and considering the incompressibility condition, it is obtained a Poisson equation for

the pressure:

∇2P = Ra

(
∂θ

∂x
sinα +

∂θ

∂z
cosα

)
. (3.7)

As it was done in the previous chapter, Neumann boundary conditions for this Poisson

equation are obtained from the momentum equation (Eq. 3.5). Again, let us define
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the boundary of the enclosure as a surface Ω . Then the pressure gradient normal to

the surface must satisfy the following condition (Báez & Nicolás 2013).

∂P

∂n

∣∣∣
Ω

= n · (Raθe− u)|Ω (3.8)

The velocity component normal to the boundary is zero in this equation. No restric-

tion is required regarding the tangential velocity (further details of this approach can

be referred to Orszag et al. (1986) and Karniadakis et al. (1991)). As it was men-

tioned in the previous chapter, this boundary condition ensures mass conservation

and leads to a non-iterative solution algorithm for the problem given by Equations

3.4 and 3.7 with the corresponding boundary and initial conditions. The algorithm

was described previously (Figure 2.2), it consists of a three-step procedure per each

time step: 1) the heat transfer equation is solved to obtain the temperature field; 2)

the Poisson equation is solved; 3) Finally, the velocity field is obtained from Equa-

tion 3.5, for which a second order approximation is applied to calculate the pressure

gradient.

The mathematical problem was also discretized using the finite volume numerical

method (Versteeg & Malalasekera 1995). A first order fully implicit scheme was used

for temporal discretization which is unconditionally stable. Likewise a central differ-

encing scheme was applied to approximate the convective term in the heat transfer

equation.

Discrete problem

The discretized equations for this mathematical problem are very similar to that

for the 2D case. The integration of the heat transfer equation in a control volume

PP (Figure 3.2) using central differencing for the convective term and fully implicit

discretization in time leads to the following algebraic equation:

aP θP = aEθE + aW θW + aNθN + aSθS + aSθF + aSθB + sP , (3.9)

with

aE =
Ae
δx
− ueAe

2
, aW =

Aw
δx

+
uwAw

2
,

aN =
An
δy
− vnAn

2
, aS =

As
δy

+
vsAs

2
,

aF =
Af
δz
− wfAf

2
, aB =

Ab
δz

+
wbAb

2
,
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and

aP = aE + aW + aN + aS + aF + aB +
∆V

∆t
, sP = θ0 ∆V

∆t
.

P
PP

P
PP

ue
e

uw
w vs

s
wb
b

wf
f

vn
n

S
PS

E
PE

F
PF

Figure 3.2: Three-dimensional mesh for the discrete primitive variables problem.

Pressure and temperature are both calculated in the centers of the control volume.

The velocities and temperatures of the coefficients of Equation 3.9 are calculated on

the faces e, w, n, s, f , and b as shown on the right of the figure.

As in the 2D problem, the areas of the faces are constant in a uniform mesh: Ae =

Aw = An = As = Af = Ab = δxδy = δxδz = δyδz. The corrections to the coefficients

of Equation 3.9 will be omitted here to avoid redundancy. The correction must be

done as it was shown for the 2D problem considering whether the boundaries are

Dirichlet or Neumann (Versteeg & Malalasekera 1995). In this case the Dirichlet

boundaries are the top (F ) and bottom (B) boundaries, whereas the east (E), west

(W ), north (N), and south (S) boundaries are adiabatic.

As regards the momentum equation, the integration of Equation 3.7 in the control

volume PP turns out to be

aPPP = aEPE + aWPW + aNPN + aSPS + aFPF + aBPB − sP , (3.10)

with

aE =
ΓeAe
δx

, aW =
ΓwAw
δx

, aN =
ΓnAn
δy

, aS =
ΓsAs
δy

,

aF =
ΓfAf
δz

, aB =
ΓbAb
δz

,
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Γ =
1

Ra
,

aP = aE + aW + aN + aS + aF + aB.

It is important to notice that since Γ = 1
Ra

is a constant then Γ calculated at each face

of the control volume is simply 1
Ra

. The source term sP (buoyancy term) is obtained

as follows

sP =

∫
CV

(
∂θ

∂x
sinα +

∂θ

∂y
cosα

)
dV =

∫ n

s

∫ f

b

sinα(θe − θw)dzdy

+

∫ n

s

∫ e

w

cosα(θn − θs)dxdy

= sinα(θe − θw)δzδy + cosα(θn − θs)δxδy.

The implementation of the boundary control volumes can be obtained referring to

the 2D case in Section 2.3.1.

3.3.2 Vector potential

The vector potential approach is the counterpart of the stream function approach

implemented in the 2D problem. The solution algorithm is also based on the fixed

point iteration. Pressure is eliminated from the momentum equation (Equation 3.5)

by taking the curl. It is then assumed that there exists a vector potential, ψ, such

that u = ∇× ψ and with the property ∇ · ψ = 0. So that the curl of Equation 3.5

leads to:

∇× (∇×ψ) = Ra∇× θe. (3.11)

Owing to the divergence-free property of ψ, it can be simplified as

∇2ψ = −Ra∇× θe. (3.12)

The components of this equation are the following:


∇2ψ1 = −Ra ∂θ

∂y
cosα,

∇2ψ2 = Ra
(
∂θ
∂x

cosα− ∂θ
∂z

sinα
)
,

∇2ψ3 = Ra ∂θ
∂y

sinα.

(3.13)

The corresponding boundary conditions are:

∂ψ1

∂x
= ψ2 = ψ3 = 0, for x = 0 and x = D,
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∂ψ2

∂y
= ψ1 = ψ3 = 0, for y = 0 and y = 1,

∂ψ3

∂z
= ψ1 = ψ2 = 0, for z = 0 and z = 1.

The problem given by Equations 3.4 and 3.13 and their boundary conditions is dis-

cretized using the Finite Volume numerical method. A central differencing scheme

was also applied for the convective term of the heat transfer equation and a first-order

fully implicit scheme was used for the temporal term.

Discrete problem

The discretization of the problem is carried out on a staggered grid for convenience

(Figure 3.3). The starting point to discretize the problem are the equations in the

form of the fixed point iteration (Section 2.4.1) as follows:

P P

S

E

F

1P

2P

3P
AeAw

Af

Ab

Figure 3.3: Three-dimensional staggered grid for the discrete vector potential prob-

lem. The main mesh, represented on the left hand side hosts the temperature control

volumes calculated at the centers. The vector potential components are calculated

on the edges of the temperature control volumes leading to three staggered grids as

shown on the right of the figure.
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Lθm+1 = Lθm − λΥ (θm, ψm), (3.14)

∇2ψm+1
1 = −Ra∂θ

m+1

∂y
cosα, (3.15)

∇2ψm+1
2 = Ra

(
∂θm+1

∂x
cosα− ∂θm+1

∂z
sinα

)
, (3.16)

∇2ψm+1
3 = Ra

∂θm+1

∂y
sinα. (3.17)

These equations are solved following the algorithm shown in Figure 2.4 replacing

accordingly the 3D form of the heat transfer equation and considering the three

components of the vector potential. The integration of the heat transfer equation

(Eq. 3.14) on a control volume θP turns out

aP θ
m+1
P − aEθm+1

E − aW θm+1
W − aNθm+1

N − aSθm+1
S − aF θm+1

N − aBθm+1
S = (3.18)

aP θ
m
P − aEθmE − aW θmW − aNθmN − aSθmS − aF θmN − aBθmB

− λ(bP θ
m
P − bEθmE − bW θmW − bNθmN − bSθmS − bF θmF − bBθmB + sP ).

with

aE =
Ae
δx
, aW =

Aw
δx
, aN =

An
δy
, aS =

As
δy
, aF =

Af
δz
, aB =

Ab
δz
,

aP = aE + aW + aN + aS + aF + aB +
∆V

∆t
,

bE =
Ae
δx
− ume Ae

2
, bW =

Aw
δx

+
umwAw

2
,

bN =
An
δy
− vmn An

2
, bS =

As
δy

+
vms As

2
,

bF =
Af
δz
−
wmf Af

2
, bB =

Ab
δz

+
wmb Ab

2
,

bP = bE + bW + bN + bS + bF + bB +
∆V

∆t
, sP = −θ0 ∆V

∆t
.

And from the definition of the vector potential u = ∇×ψ

u =

(
∂ψ2

∂y
− ∂ψ3

∂z

)
,
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v =

(
∂ψ1

∂z
− ∂ψ2

∂x

)
,

w =

(
∂ψ3

∂x
− ∂ψ1

∂y

)
.

The correction of the coefficients for the boundary control volumes are made following

the criterion that was discussed in Chapter 2. The momentum equation consists of

a Poisson equation for each component of the vector potential, differing only in the

source term. Each equation is integrated in its corresponding control volume ψ1P ,

ψ2P , and ψ3P (Fig. 3.3). The discrete form of these equations for internal control

volumes has the general form (boundary control volumes are treated as shown in the

previous chapter):

aPψ
m+1
P = aEψ

m+1
E +aWψ

m+1
W +aNψ

m+1
N +aSψ

m+1
S +aFψ

m+1
F +aBψ

m+1
B −sP , (3.19)

with

aE =
Ae
δx
, aW =

Aw
δx
, aN =

An
δy
, aS =

As
δy
, aF =

Af
δz
, aB =

Ab
δz
,

aP = aE + aW + aN + aS + aB + aF .

The source term (sP1) for ψ1 is

sP1 =

∫
CV

(
−Ra∂θ

m+1

∂y
cosα

)
dV = −Ra cosα(θm+1

n − θm+1
s )δxδz.

The source term for ψ2 is

sP2 =

∫
CV

Ra

(
∂θm+1

∂x
cosα− ∂θm+1

∂z
sinα

)
dV =∫ f

b

∫ n

s

cosα(θm+1
e − θm+1

w )dydz −
∫ n

s

∫ e

w

sinα(θm+1
f − θm+1

b )dxdy

= cosα(θm+1
e − θm+1

w )δyδz − sinα(θm+1
f − θm+1

b )δxδy.

Finally, the discrete source term for ψ3 is

sP3 =

∫
CV

(
Ra

∂θm+1

∂y
sinα

)
dV = Ra sinα(θm+1

n − θm+1
s )δxδz.
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3.4 Numerical results and discussion

The determination of the steady state was carried out as in the 2D case, by means

of the evaluation of the convergence of the temperature matrix. The infinity norm

of the difference L∞ = |θt − θt−1|∞ was calculated for successive time steps over

a long time interval that proved to be long enough after several tests (tint = 4.4).

The convergence criterion was defined according to the condition 〈L∞〉tint
< 5×10−7,

where 〈L∞〉tint
is the average infinity norm over the time interval tint. Both algorithms

were implemented in Fortran 90 and a Gauss-Seidel iteration was employed for the

solution of the resulting system of algebraic equations.

3.4.1 Validation

The numerical models were validated considering a horizontal cubic cavity (D = 1

and α = 0). The models were tested just above the critical Rayleigh number (Rac =

39.48); for this particular test no convergence criterion was used. Instead, a long

simulation time was applied (t = 60) until significant evidence of convection was

detected. Table 3.1 shows the steady-state Nusselt number, both models presented

convection at Ra = 41 using a coarse mesh defined as ∆x = ∆y = ∆z = 25−1.

With a finer mesh however (∆x = ∆y = ∆z = 50−1.) the primitive variables model

remained conductive (Nu ' 1). The steady-state convective modes in all these cases

were characterized by a single 2D convective cells.

As regards the time step of these simulations, the optimum time step for the prim-

itive variables model using fine mesh was smaller (10 times) than the other cases

studied. The fine mesh primitive variables model required ∆t = 2× 10−5 to generate

numerically stable results, whereas a time step ∆t = 2 × 10−4 was suitable in the

other cases.

Table 3.1: Nusselt number for a cubic porous enclosure considering two mesh sizes.

Nu

Mesh size Ra Primitive variables Vector potential

∆x = 25−1 40 0.999 0.999

41 1.070 1.058

∆x = 50−1 40 1.000 1.000

41 1.000 1.061

∆x = 25−1 60 1.773 1.773

120 2.934 2.934

∆x = 50−1 60 1.778 1.778

120 2.945 2.945
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Figure 3.4: Nusselt number as a function of time for primitive variables and vector
potential models using two different mesh sizes (∆x = 25−1 and ∆x = 50−1).

The steady-state Nusselt number was more consistent between the two models when

higher Rayleigh numbers were examined. Table 3.1 shows that identical results were

obtained with both models. However, the evolution towards the steady state was

different. As shown in Figure 3.4, primitive variables reaches the steady state sooner

than vector potential. This fast-convergence effect is increased when using a fine mesh

in primitive variables (with the associated smaller time step ∆t = 2 × 10−5). It is

important to note that the fast convergence of the primitive variables in comparison

with vector potential is observed even when the same time-step is used, such is the

case of the coarse-mesh results. So that the reason why primitive variables converges

faster than vector potential is probably due to a different way in which round-off

errors are propagated in the numerical solution rather than time-step effects.

Due to the non-iterative solution of the momentum equation in primitive variables,

the divergence-free condition of the velocity field is satisfied more weakly than in

vector potential. In most cases observed in this study for primitive variables, the

maximum value of the divergence of the velocity field (∇ · u) in each time step

was order 10−3 whereas for vector potential was closer to zero, with values order

10−7. This difference in the way the divergence-free condition is satisfied might

explain the difference in the speed of convergence of the two methods. In support

of this observation, it is important to mention that the finest mesh for primitive

variables (the fastest convergence) was also the case study with the highest numerical

approximation error in the divergence-free condition (∼ 10−3 in each time step). This

case was not numerically stable for a higher time step (∆t = 2× 10−4) which led to

errors in the divergence-free condition order 10−1 and higher.

Although the models proved a good match with the steady-state results for moderate
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Figure 3.5: Steady state Nusselt number vs slope angle for an aspect ratio D = 3.

Rayleigh numbers, the vector potential algorithm was chosen for further 3D modeling

on the basis that the primitive variables approach displays a higher dependency on

the mesh size and demands a longer computing time when dealing with fine meshes,

since the time step required is an order of magnitude smaller.

Ra=60, !=0º

Figure 3.6: Longitudinal coil characteristic of α = 0 and D = 3 with Ra ≤ 60.

3.4.2 Sloping porous enclosure with aspect ratio D = 3

Figure 3.5 shows the global Nusselt number as a function of the slope angle for a set of

Rayleigh numbers and an aspect ratio D = 3, local Nusselt maxima are shown in Ta-

ble 3.2. Regarding the horizontal case (α = 0), three different convective regimes were

observed: a longitudinal coil (Figure 3.6) for moderate Rayleigh numbers (Ra ≤ 60),
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transverse rolls for Ra ≥ 63 (Figure 3.7), and the transition between these convective

modes for Ra = 61 to 62. The transverse rolls regime was characterized either by

three or four cells depending on the Rayleigh number, three cells were observed up

to Ra = 65 and four cells for higher Ra. The transition between longitudinal coil

and transverse rolls for the horizontal box is characterized by an interaction of these

convective modes as shown in Figure 3.8. For this particular case the simulation time

required to reach the steady state was tss = 9.1. An additional simulation was car-

ried out for further confirmation of this result using a long simulation time (t = 60)

without a convergence criterion. The result was the same with a negligible differ-

ence in the Nusselt number (∼ 0.02%), this supports the selection of the convergence

criterion used to define the steady convection of the system.

Table 3.2: Local Nusselt maxima for a 3D porous enclosure with aspect ratio D = 3.

The angle α at which the maximum is located is given beside each local maximum.

Local Nu maximum

Ra 0◦ ≤ α ≤ 30◦ 30◦ < α ≤ 90◦

50 4.66 (α = 10◦) 5.39 (α = 70◦)

60 5.63 (α = 10◦) 5.97 (α = 70◦)

70 6.45 (α = 10◦) 6.51 (α = 70◦)

80 7.16 (α = 10◦) 7.03 (α = 70◦)

90 7.78 (α = 10◦) 7.52 (α = 70◦)

100 8.34 (α = 10◦) 7.99 (α = 70◦)

As regards the sloping porous enclosure (α 6= 0), a local maximum can be identified

at α = 10◦ (Figure 3.5), which is absolute for Ra = 80 and higher (Table 3.2). At this

angle the convective flow is characterized by three transverse rolls for every Rayleigh

number from 50 to 100 (Figure 3.9). A summary of results is presented in Table 3.3.

As the angle is increased there is a transition to a single cell regime. Initially, at

Ra=63, !=0º

Figure 3.7: Transverse rolls convective mode for D = 3 and α = 0. As presented in
Table 3.3, up to 4 cells were observed at higher Rayleigh numbers.
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Ra=62, !=0º

Figure 3.8: Convective mode characteristic of the transition between the longitudinal
coil and transverse rolls for D = 3 and α = 0.

Ra=100, !=10º

Figure 3.9: transverse rolls convective mode for D = 3, Ra = 100, and α = 10◦.
This convective mode provides the maximum heat transfer rate (Nu = 8.344) for the
parameters considered (Figure 3.5).

Ra=100, !=20º

Figure 3.10: 3D velocity field distribution characteristic of the transition between
transverse rolls and single cell convective modes for an aspect ratio D = 3.

α = 20◦, all the cases analyzed undergo a complex 3D velocity distribution (Figure

3.10) characterized by the interaction of two transverse rolls with a longitudinal coil

located in the center of the box. This convective mode is accompanied by a decrease
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Table 3.3: Convective modes and transition angles for the selected cases.

D Ra α Convective mode Nu tss

3 50 0 longitudinal coil 4.345 9.06

1 3 transverse rolls 4.399 5.29

17 transverse rolls with a longitudinal coil 4.507 13.11

22 external cell with 2 internal secondary cells 4.392 5.16

100 0 4 transverse rolls 7.936 8.02

1 5 transverse rolls 7.438 5.39

6 3 transverse rolls 8.194 19.73

11 transverse rolls with a longitudinal coil 8.090 14.51

32 external cell with 2 internal secondary cells 6.871 4.86

5 50 0 longitudinal coil 7.242 9.03

1 5 transverse rolls 7.295 6.04

14 transverse rolls with a longitudinal coil 7.264 15.32

30 external cell with 2 internal secondary cells 6.600 5.09

100 0 7 transverse rolls 13.119 12.93

9 partial rotation of transverse rolls 12.905 19.92

11 transverse rolls with a longitudinal coil 13.263 11.09

50 single cell 9.846 4.88

10 50 0 transverse rolls with a longitudinal coil 14.336 11.89

1 11 transverse rolls 14.379 8.50

10 transverse rolls with a longitudinal coil 14.353 30.76

30 external cell with 2 internal secondary cells 11.602 4.62

100 0 14 transverse rolls 26.196 32.78

1 15 transverse rolls 25.775 8.62

7 13 transverse rolls 26.656 14.45

10 partial rotation of transverse rolls 25.493 22.34

14 transverse rolls with a longitudinal coil 26.092 15.46

in the Nusselt number and is consistent with the observations by Caltagirone & Bories

(1985) who reported an interaction of transverse and longitudinal coils for relatively

Ra=70, !=30º

Figure 3.11: 2D convective mode characteristic of the transition to single-cell con-
vection. The minimum Nusselt number was associated with this convective mode for
Ra = 60 and higher.
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small slope angles. When the angle is further increased, the convective regime reaches

a 2D velocity distribution composed by an external cell with two internal secondary

cells (Figure 3.11). This convective mode was obtained in our 2D study and it has

also been described by Báez & Nicolás (2006), however, the 3D modeling presented

in this chapter shows that the transition to this convective mode occurs for a higher

α, due to the irregular 3D convective mode that is preceding (α = 20◦). Furthermore

the associated Nu to this irregular convective mode is lower than that for the the

multicellular flow (α = 10◦), so that the local maxima in the interval 0◦ ≤ α ≤ 30◦

in the 3D model is located at α = 10◦ for all Ra unlike the 2D model (Table 2.2).

Finally, at α = 50◦ the convective modes become single cell (Figure 3.12) with a

maximum Nusselt located at α = 70◦ in agreement with the 2D results.

Ra=100, !=70º

Figure 3.12: Single cell convective mode for D = 3 characteristic of high slope angles.
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Figure 3.13: Steady state Nusselt number vs slope angle for an aspect ratio D = 5.
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Figure 3.14: Steady state Nusselt number vs slope angle for an aspect ratio D = 10.

Table 3.4: Local Nusselt maxima for a 3D porous enclosure with aspect ratio D = 5.

The angle α at which the maximum is located is given beside each local maximum.

Local Nu maximum

Ra 0◦ ≤ α ≤ 30◦ 30◦ < α ≤ 90◦

50 7.46 (α = 10◦) 7.49 (α = 80◦)

60 9.12 (α = 10◦) 8.13 (α = 80◦)

70 10.49 (α = 10◦) 8.75 (α = 80◦)

80 11.33 (α = 0) 9.36 (α = 80◦)

90 12.31 (α = 10◦) 9.95 (α = 80◦)

100 13.11 (α = 0) 10.53 (α = 80◦)

Table 3.5: Local Nusselt maxima for a 3D porous enclosure with aspect ratio D = 10.

The angle α at which the maximum is located is given beside each local maximum.

Local Nu maximum

Ra 0◦ ≤ α ≤ 30◦ 30◦ < α ≤ 90◦

50 14.35 (α = 10◦) 12.49 (α = 80◦)

60 17.64 (α = 10◦) 13.14 (α = 80◦)

70 20.26 (α = 0) 13.79 (α = 80◦)

80 22.49 (α = 0) 14.43 (α = 80◦)

90 24.28 (α = 0) 15.07 (α = 80◦)

100 26.63 (α = 0) 15.71 (α = 80◦)



3.4. Numerical results and discussion 89

Ra=62, !=0º

Ra=70, !=0º

Ra=100, !=0º

Figure 3.15: Convective modes characteristic of a horizontal porous enclosure with
D = 5. As the Rayleigh number is increased the longitudinal coil regime becomes
multicellular.

3.4.3 High aspect ratio porous enclosures D = 5 and D = 10

The parametric study for the aspect ratios D = 5 and 10 is shown in Figures 3.13

and 3.14, respectively. These figures show that the difference in the Nusselt number

at small and large angles increases with the aspect ratio. This is due to the fact

that a larger number of convective cells can be hosted in the transverse rolls regime

characteristic of small slope angles, the multiplication of upwellings and downwellings

enhances the heat transfer rate throughout the cavity. Firstly, let us discuss the

horizontal case (α = 0) for D = 5. A longitudinal coil was observed at this aspect

ratio for Ra ≤ 62 (Figure 3.15), which is characterized by a high up-flow and down-

flow areas in comparison with the single cell regime characteristic of high α; for this

reason the Nusselt number turns out to be higher even for moderate Ra (see for

instance Ra = 60, Figure 3.13). The transition to transverse rolls in the horizontal

case starts at Ra = 63 with an interaction of a longitudinal coil and transverse rolls.

Unlike D = 3 this convective mode proved to be steady for a wider range of Rayleigh
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Ra=50, !=0º

Ra=90, !=0º

Ra=100, !=0º

Figure 3.16: Convective modes characteristic of a horizontal porous enclosure with
D = 10. A purely longitudinal coil was not attained for this aspect ratio for the
Rayleigh numbers considered.

Ra=50, !=14º

Ra=50, !=30º

Figure 3.17: Steady state convective modes for D = 5 and Ra = 50. α = 14◦ and
α = 30◦ represent transition angles (Table 3.3).

numbers, Ra = 70 was characterized by the same convective mode and transverse

rolls were only observed at Ra = 80 and higher (Figure 3.15). On the other hand,

as regards the horizontal case for the aspect ratio D = 10, the steady state was
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Ra=100, !=9º

Ra=100, !=11º

Figure 3.18: Steady state convective modes for D = 5 and Ra = 100. α = 9◦ and
α = 11◦ are transition angles for Ra = 100 (Table 3.3).

Ra=50, !=10º

Ra=50, !=30º

Ra=50, !=1º

Figure 3.19: Steady state convective modes for D = 10 and Ra = 50 at the transition
angles (Table 3.3).

characterized either by the interaction of longitudinal coil and transverse rolls or by

a fully transverse rolls regime (Figure 3.16). Similar arguments apply to explain the

high Nusselt number of these cases. It is interesting to observe that some of the local

Nusselt maxima were located at α = 0 (Tables 3.4 and 3.5) and for Rayleigh numbers
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Ra=50, !=1ºRa=100, !=1º

Ra=100, !=10º

Ra=100, !=14º

Figure 3.20: Steady state convective modes for D = 10 and Ra = 100 at the transition
angles (Table 3.3).

as high as Ra = 100, which was not observed in out 2D results.

Considering the sloping case for D = 5 at Ra = 50, three transition angles were

identified: α = 1◦, α = 14◦, and α = 30◦ (Figure 3.17, Table 3.3). The transition in

the convective mode was characterized by a gentle variation in the Nusselt number

with the maximum at α = 80◦ (Table 3.4) in response to the low Rayleigh number

of the system. At Ra = 100, on the other hand, the maximum Nusselt number

corresponds to α = 0, which is transverse rolls convection. The transition to single-

cell convection starts at α = 9◦, with a partial rotation of the cells located in the

center of the cavity (Figure 3.18-upper), this rotation leads to the coalescence of these

cells giving rise to a longitudinal coil that interacts with transverse rolls (α = 11◦).

Single-cell convection is finally attained at α = 50◦ after a steep decrease in the

Nusselt number.

Similarly, three transition angles were identified for D = 10 and Ra = 50: α = 1◦,

α = 10◦, and α = 30◦, that correspond to transverse rolls, mixed transverse rolls with

a longitudinal coil, and single cell with secondary cells, respectively (Figure 3.19). At

Ra = 100 the convective mode remains multicellular until α = 10◦ (Figure 3.20).

At this angle the transition to single cell starts in the same manner as D = 5, the

innermost cells coalesce to give rise to a longitudinal coil that interacts with two

remaining 2D rolls. For the space of parameters analyzed, the steady-state velocity

field is no longer two-dimensional until α = 70◦, where the flow is single cell.
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3.5 Conclusion

Three dimensional numerical simulations were carried out for the study of free con-

vention in sloping porous enclosures in three dimensions. Two different approaches

to solve the problem were compared: primitive variables and vector potential. In

general terms, both models are suitable to study this problem. However, some limi-

tations were identified in the primitive variables approach. Regarding the sensitivity

of the model to the critical Rayleigh number for the onset of convection, it appeared

that both models were equally sensitive to the Rac when using coarse meshes. When

fine meshes were used however, the primitive variables model remained mainly con-

ductive for Ra = 41, which is above the critical limit, whereas the vector potential

solution was clearly convective. Furthermore, the time step required by primitive

variables with a fine mesh was considerably smaller than the time step needed for

vector potential, which results in a longer computing time for equivalent simulations.

It was also observed that the primitive variables model produced mesh-dependent

results, whereas vector potential was mesh independent.

A parametric study for moderate Rayleigh numbers (between 50 and 100) in a sloping

porous enclosure permitted us to identify steady-state convective modes overlooked

by 2D analysis, such as longitudinal coils in the horizontal case and mixed longitudinal

coils with transverse rolls, which was observed at Rayleigh numbers as low as 50. As

consequence of the presence of this irregular convective mode, the angles at which

the local maximum Nusselt number is located for moderate α are not necessarily the

same for 2D and 3D modeling. A purely longitudinal coil flow was observed only in

the horizontal porous enclosure for low Ra and moderately high aspect ratios, D = 3

and D = 5. This convective flow was steady in both cases up to a Rayleigh number

Ra ∼ 62, above which occurs a transition to a multicellular regime. The stability of

this solution is however affected for higher aspect ratios, since D = 10 did not attain

a purely longitudinal coil regime.

Regarding the case of the sloping enclosure, there is a general tendency to maximize

the heat flux with the transverse rolls regime due to the multiplication of upwellings

and downwellings. For low D and Ra however, the Nusselt number associated with

the single cell regime, characteristic of high slope angles, can be comparable or higher.

On the other hand, the transition between transverse rolls and single-cell convection

mode was characterized by a mixed multicellular and longitudinal coil convection

accompanied by a decrease in the Nusselt number. An accurate analysis of transition

angle to single cell convection as that presented for the 2D case is not achievable in

3D with the available computational facilities, therefore only an overall description

can be done at this stage. At Ra = 50 the transition angle was clearly dependent

on the aspect ratio, in agreement with the 2D study: α = 17◦, α = 13◦, and α =
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9◦ were the transition angles for D = 3, D = 5, and D = 10, respectively. It

can be stated, however, based on the 2D results, that transverse rolls might prevail

beyond those angles, this can be tested using suitable initial conditions. On the

other hand, for Ra = 100, the relation between the transition angle and the aspect

ratio is not present, being the transition angle between 9◦ and 11◦ for the three

aspect ratios analyzed. A more detailed study of the parameter space would be

necessary to describe more accurately the transition between the different convective

modes observed, for which faster simulations would be convenient. As a final remark,

the results show that convective modes in 3D can be of considerable complexity,

which impacts not only on the heat transfer properties of the system but also on

other aspects not covered in this work such as mass transport properties and entropy

generation.



Chapter 4

3D free convection in a layered

porous enclosure

4.1 Introduction

Early work on the onset of convection in layered porous media is that by McKibbin &

O’Sullivan (1980, 1981). They studied two and three-layer systems considering con-

stant thermal conductivity in a two-dimensional cell. They defined a Rayleigh number

referred to the physical properties of the bottom layer and the total thickness and

temperature drop of the enclosure. From linear stability analysis they calculated criti-

cal values (Rac) as a function of the permeability ratio. They found that considerably

high permeability ratios between outer and internal layers (∼ 20) are required to ob-

serve convective modes different from those for a homogeneous porous medium, these

convective modes are characterized by some degree of confinement of convection in

the high-permeability layers. Richard & Gounot (1981) studied the onset of convec-

tion in a layered porous medium considering both anisotropic and isotropic layers as

regards the permeability and thermal conductivity. As a particular case study, they

calculated numerically Rac for the onset of convection for a two-layer porous medium

with isotropic layers and showed that the stability of the system increases when the

permeability of the upper layer is decreased, their definition of Ra was based on a

weighted average of permeability and thermal conductivity on the thickness of the

layers. The magnitude of the increase was in turn dependent on the relative thickness

of the layers. In a similar two-layer model Rosenberg & Spera (1990) reported an

asymptotic increase in the Nusselt number as the permeability ratio of the top to the

bottom layers was increased, they observed confinement of convection for a perme-

ability ratio of the top to the bottom layers of 10 and Ra = 35, which was defined

with respect to the bottom layer of the system. Rees & Riley (1990) investigated

three-dimensional stability of convection in a layered porous medium. They found

95
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the conditions under which the preferred flow patterns have a 3D distribution for a

two and three-layer porous medium. They also described the relative importance of

the different forms of instability in a wide parametric space for those cases. McKibbin

& Tyvand (1982) investigated the conditions under which thermal convection in a

layered porous medium can be comparable to that for an anisotropic porous medium.

They pointed out that a multilayer system can be modelled by an analog anisotropic

system when there is no confinement of convection in the layered system.

The problem of porous layers separated by conductive impermeable interfaces has

also been investigated. Jang & Tsai (1988) studied the onset of convection in a two-

layer system separated by a conductive interface. They defined an overall Rayleigh

number considering the total thickness of the arrangement of layers and found that

the presence of the impermeable layer increases considerably the stability of the

system, the most stable cases being those with the impermeable layer located in the

middle. More recently Rees & Genç (2011) studied multilayer systems separated

by impermeable interfaces of negligible thickness and observed that the critical Ra,

defined locally in each layer, tends asymptotically to 12 as the number of sublayers

is increased. Patil & Rees (2014) extended the study to consider finite thickness of

the conductive interfaces so that the conductivity had an impact on the behavior

of the system. They reported that Rac and the associated wave number decreased

when the thermal conductivity of the solid interfaces was decreased. Hewitt et al.

(2014b) determined statistical steady state convection at high Ra in a 2D periodic

porous enclosure. Their model consists of a thin low permeability layer sandwiched

by two high permeability layers. Regarding the convective modes they found that for

a given Ra and permeability ratio, an increase in the thickness leads to an ordered

array of cells with stratification of the flow. On the other hand, they noted that the

Nusselt number as a function of thickness of the low permeability layer experiences

first a small increase for small thickness and then it decreases for larger thickness.

Although the scope of the analysis presented in this chapter is layered porous media, it

is important to mention the work by Nield & Kuznetsov (2007, 2008) who investigated

the effect of weak and moderate vertical and horizontal heterogeneities. They defined

a Rayleigh number based on the mean properties of the porous enclosure and found

that these heterogeneities lead to a reduction in Rac for all combinations of horizontal

and vertical heterogeneities and all combinations of permeability and conductivity

heterogeneities. Regarding this observation they pointed out that there is a higher

relative importance of the vertical heterogeneity than the horizontal one. Capone

et al. (2012) found that an increase in the permeability in the upward direction

is destabilizing whereas an increase in the downward direction is stabilizing Nield

& Kuznetsov (2013) reported that horizontal variations in both permeability and

thermal diffusivity lead to slight destabilization in comparison with vertical variations.
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The main purpose of the study presented here is to obtain 3D steady-state numerical

solutions of free convection in a three-layer porous enclosure. As it was done in the

previous case studies, the steady-state solutions are obtained from the simulation

of the transient problem applying a convergence criterion. A parametric study is

carried out to evaluate the Nusselt number as a function of the permeability, thermal

conductivity, and thickness of the internal layer of the system.

4.2 Problem formulation

TC
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g
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_
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L/2 PM2
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Figure 4.1: Schematic model of a layered porous enclosure heated from below and

cooled from the top with adiabatic lateral boundaries. The external layers (PM1)

have constant properties, whereas the properties of PM2 are allowed to vary.

The porous enclosure consists of a three-layer system, of which the external layers

have the same and constant physical properties and the internal may differ as regards

the permeability and thermal conductivity (Figure 4.1). It is assumed that the porous

medium is isotropic within each layer. Fluid flow is governed by Darcy’s law and

the Boussinesq approximation is invoked. Local thermal equilibrium and negligible

viscous heat generation are additional assumptions in this problem. From these

considerations the momentum equation can be written in the following form:

ū = −k(z)

µ

(
∇̄P̄ − ρ0gβ(T̄ − T̄0)k̂

)
, (4.1)

where the permeability is defined as k(z) = f(z)k1, with k1 the permeability referred

to that for the top and bottom layers, and f(z) is a dimensionless smooth function,

which in this case will be defined as a hyperbolic tangent function to represent layers.
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The heat transfer equation is as follows

σ
∂T̄

∂t̄
+ ū · ∇̄T̄ = ∇̄ · (η(z)∇̄T̄ ). (4.2)

Likewise, the overall thermal diffusivity is defined as η(z) = g(z)η1, with η1 referred

to PM1 and g(z) a smooth function to represent layers. The condition of incom-

pressibility of the fluid is also invoked:

∇̄ · ū = 0. (4.3)

Dimensionless variables are defined as follows:

x =
x̄

L
, y =

ȳ

L
, z =

z̄

L
, P =

k1

µη1

P̄ ,

u =
L

η1

(ū, v̄, w̄), θ =
T̄ − T̄0

T̄0 − T̄c
, t =

t̄η1

σL2
,

Ra =
Lk1gβρ0

η1µ
(T̄0 − T̄c),

where Ra is the Darcy-Rayleigh number and L the characteristic length. The dimen-

sionless problem is then as follows. The momentum equation reads:

1

f(z)
u +∇P = Raθk̂. (4.4)

The dimensionless heat transfer equation reduces to:

∂θ

∂t
+ u · ∇θ = ∇ · (g(z)∇θ). (4.5)

That can be written as

∂θ

∂t
+ u · ∇θ = g(z)∇2θ + g′(z)

∂θ

∂z
. (4.6)

A global Nusselt number is defined to quantify the heat transfer through the upper

surface z = 1:

Nu =

∫ ∣∣∣∣∂θ∂z
∣∣∣∣
z=1

dA. (4.7)
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4.2.1 Boundary conditions and initial conditions

As initial condition both dimensionless temperature and velocity are set to zero. The

lateral walls of the enclosure are adiabatic and the bottom and top boundaries have

specified temperatures, so that the boundary conditions for the heat transfer equation

can be written as

∂θ

∂x
= 0, for x = 0 and x = 1,

∂θ

∂y
= 0, for y = 0 and y = 1,

θ = 1, for z = 0 and θ = 0, for z = 1 for t > 0.

Regarding the momentum equation, impermeable boundary conditions are assumed.

The implementation of these boundary conditions is described in the following section.

4.3 Numerical solution

Considering the results obtained in the previous chapter, the numerical implementa-

tion was carried out following the vector potential approach. Pressure is eliminated

from the momentum equation (Eq. 4.4) by taking the curl:

∇×
(

1

f(z)
u

)
= Ra∇× θk̂. (4.8)

This equation is then written in terms of the vector potential ψ, such that u = ∇×ψ
and ∇ ·ψ = 0 . The components of the momentum equation turn out:


Γ∇2ψ1 = −Ra ∂θ

∂y
− f ′(z)

f2(z)
v,

Γ∇2ψ2 = Ra ∂θ
∂x

+ f ′(z)
f2(z)

u,

Γ∇2ψ3 = 0,

(4.9)

with Γ = 1
f(z)

. The corresponding boundary conditions are:

∂ψ1

∂x
= ψ2 = ψ3 = 0, for x = 0 and x = 1,

∂ψ2

∂y
= ψ1 = ψ3 = 0, for y = 0 and y = 1,

∂ψ3

∂z
= ψ1 = ψ2 = 0, for z = 0 and z = 1.
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The system can be further simplified noticing that ψ3 = 0. The problem given by

Equations 4.6 and 4.9 with the corresponding boundary conditions was discretized

following the Finite Volume numerical method. As mentioned in the previous chapter

the solution algorithm is based on the fixed point iteration.

The functions f(z) and g(z) to model layers

The layers are modelled by means of the continuous functions f(z) and g(z). Hyper-

bolic tangent functions were employed in this model to represent layers in a continuous

way. Since the Rayleigh number is referred to the external layers (PM1) both f(z)

and g(z) must be equal one in these layers. On the other hand, f(z) = k2/k1 and

g(z) = η2/η1 in the internal layer (PM2). Taking for example the case of f(z), if it is

assumed that the medium consists of three layers of equal thickness and permeability

ratio k2/k1, with PM1 at the bottom of the porous enclosure, a hyperbolic tangent

function that approaches the condition of layering is

f(z) =
1

2

(
1− k2

k1

)
(tanh[c(z − 1/3)] + 1), (4.10)

with c a negative constant that measures the rate of change in f(z) at the interface

of the layers. This function defines the layering in the range 0 < z < 0.5, and the

symmetric part would define the interface in the interval 0.5 < z < 1. Likewise, the

derivative of f(z) would be

f ′(z) =
c

2

(
1− k2

k1

)
sech[c(z − 1/3)]2. (4.11)
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Figure 4.2: Function f(z) and its derivative (Equations 4.10 and 4.11) to model two

layers in a porous enclosure with k2/k1 = 0.1.
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Figure 4.2 shows an example of the functions f(z) and f ′(z) for k2/k1 = 0.1. It can be

observed that as c increases the function approaches more closely to the discontinuous

case that would be given by a step function. The associated cost however, is a very

large source term f ′(z), which may become numerically difficult to handle. For the

simulations presented here a constant c = −100 was employed to define both f(z)

and g(z).

Discrete problem

The discretization was carried out on the mesh shown in Figure 3.3. The problem is

written in the form of the fixed point iteration:

Lθm+1 = Lθm − λΥ (θm, ψm), (4.12)

Γ∇2ψm+1
1 = −Ra∂θ

m+1

∂y
− f ′(z)

f 2(z)
vm+1, (4.13)

Γ∇2ψm+1
2 = Ra

∂θm+1

∂x
+
f ′(z)

f 2(z)
um+1. (4.14)

In this case however, the heat transfer equation integrated in time (Υ ) takes the form:

Υ (θ, ψ) =
1

∆t
θ − g(z)∇2θ − g′(z)

∂θ

∂z
+ u · ∇θ − 1

∆t
θ0.

And the operator L is defined as L = ( 1
∆t
− g(z)∇2). Integrating Equation 4.12 on a

control volume θP (Fig. 3.3) turns out

aP θ
m+1
P − aEθm+1

E − aW θm+1
W − aNθm+1

N − aSθm+1
S − aF θm+1

N − aBθm+1
S = (4.15)

aP θ
m
P − aEθmE − aW θmW − aNθmN − aSθmS − aF θmN − aBθmB

− λ(bP θ
m
P − bEθmE − bW θmW − bNθmN − bSθmS − bF θmF − bBθmB + sP ).

with

aE =
g(P )Ae
δx

, aW =
g(P )Aw
δx

, aN =
g(P )An
δy

,

aS =
g(P )As
δy

, aF =
g(f)Af
δz

, aB =
g(b)Ab
δz

.

Since the function g only varies with z the value of the function on the faces e, w, n,

and s is simply the value of the function at the node P .

aP = aE + aW + aN + aS + aF + aB +
∆V

∆t
,
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bE =
g(P )Ae
δx

− ume Ae
2

, bW =
g(P )Aw
δx

+
umwAw

2
,

bN =
g(P )An
δy

− vmn An
2

, bS =
g(P )As
δy

+
vms As

2
,

bF =
g(f)Af
δz

−
wmf Af

2
, bB =

g(b)Ab
δz

+
wmb Ab

2
,

bP = bE + bW + bN + bS + bF + bB +
∆V

∆t
,

sP = −θ0 ∆V

∆t
− g′(P )(θf − θb)δxδy.

The integration of the vector potential equations (Eqs. 4.13 and 4.13) in their corre-

sponding node ψP (Figure 3.3) has the general of

aPψ
m+1
P = aEψ

m+1
E +aWψ

m+1
W +aNψ

m+1
N +aSψ

m+1
S +aFψ

m+1
F +aBψ

m+1
B −sP , (4.16)

with

aE =
ΓeAe
δx

, aW =
ΓwAw
δx

, aN =
ΓnAn
δy

, aS =
ΓsAs
δy

, aF =
ΓfAf
δz

, aB =
ΓbAb
δz

,

aP = aE + aW + aN + aS + aB + aF .

The source term for Equation 4.13 is

sP1 =

∫
CV

(
−Ra∂θ

m+1

∂y
− f ′(z)

f 2(z)
vm+1

)
dV = −Ra(θm+1

n −θm+1
s )δxδz− f

′(P )

f 2(P )
vm+1
P ∆V.

Likewise, for Equation 4.14 the source term is given by

sP2 =

∫
CV

(
Ra

∂θm+1

∂x
+
f ′(z)

f 2(z)
um+1

)
dV = Ra(θm+1

e − θm+1
w )δyδz +

f ′(P )

f 2(P )
um+1
P ∆V.

The discrete problem was implemented in Fortran with parallel computing in OpenMP.

The parallelisation was applied to the definition of the matrices given by Equation

4.15 and the two components of the vector potential, each of them given by a discrete

equation of the form of Equation 4.16, with the corresponding source term sP1 or sP2.

The matrices were defined by means of do cycles that move through the nx×ny×nz
nodes in each iteration of the fixed point algorithm. The matrix for the temperature

θ was defined in two steps; for convenience the discrete term λΥ (θm, ψm) was defined
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first in a do cycle and subsequently, in a second do cycle, all the terms of the discrete

heat transfer equation were gathered. On the other hand, the matrices of the com-

ponents of the vector potential were each of them defined in a do cycle. This means

that four do cycles were necessary to define the matrices in each fixed point iteration.

The definition of these matrices comprises a large amount of the computational cost

of the simulations. Therefore, the parallelisation of those cycles was the priority in

the parallel implementation.

Standard OpenMP parallel do directives were applied to the four cycles required

to define the matrices. A test model was simulated for purposes of comparison of

the computing time between serial and parallel simulations. The model consisted

of a homogeneous porous enclosure as that described in Section 3.4.1. In this case

however, the Rayleigh number was Ra = 200 and the uniform mesh was defined as

∆x = ∆y = ∆z = 80−1. At these conditions the computing time required to reach

steady state was 13.1 hours for a single thread (serial) simulation, whereas 8.1 hours

were required in a two-thread simulation. This implies a decrease of around 38% of

computing time.

Once the parallel version of the algorithm was tested, steady-state solutions were

obtained from long simulation times using a convergence criterion. The convergence

was based on the evaluation of the change in the temperature field during the last

2.2 × 103 successive iterations, which proved to be long enough. Convergence was

defined when the average maximum change in the matrix of temperature was less than

5×10−7. A time step ∆t = 2×10−5 and a uniform mesh size ∆x = ∆y = ∆z = 100−1

were employed in all the simulations. With these numerical parameters the computing

times spanned between 20 and 30 hours for the cases considered in the parametric

study.

4.4 Numerical results and discussion

4.4.1 Validation

The validation of our model for the homogeneous case was presented in the previous

chapter. A validation for the layered model is presented here using as a reference

a three-layer porous enclosure with a thickness of the middle layer h = 0.2 and

a permeability contrast k2/k1 = 0.01. For these conditions Rees & Riley (1990)

reported a critical Rayleigh number Rac ' 270. McKibbin & O’Sullivan (1980)

reported simulation results for these model parameters at Ra = 300, they showed a

convective mode consisting of four convective rolls confined in the top and bottom

layers. A simulation was carried out with our 3D model for the same thickness,
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Rayleigh number and permeability ratio. The result was consistent with that reported

by McKibbin & O’Sullivan (1980). The steady-state temperature and velocity fields

are shown in Figure 4.3 and the streamlines of a 2D section in Figure 4.4.

Figure 4.3: Steady-state temperature and velocity fields for k2/k1 = 0.01, h = 0.2,

and Ra = 300. The corresponding Nusselt number for this result was Nu = 1.43.
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Figure 4.4: Streamlines calculated at the section x = 0.5 of Figure 4.3.

4.4.2 Nu vs permeability ratio and internal layer thickness

Let us discuss first the effect of the permeability ratio and internal layer thickness

on the Nusselt number. All the simulations were carried out considering a constant

Ra = 200 and three thicknesses were evaluated, h = 0.1, h = 0.15 and h = 0.2.

Jang & Tsai (1988) reported critical Rayleigh numbers between 141 and 213 in this

range of thicknesses and considering impermeable internal layer, so that Ra = 200 was
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considered to be large enough to observe convection in the cases analyzed here. Figure

4.5 shows the steady-state Nusselt number for the three thicknesses analyzed. It can

be observed that for relatively low permeability ratio there is a very small change

in the Nusselt number, significant differences are observed only around k2/k1 = 0.6.

Furthermore, there is first a slight increase in Nu when the permeability ratio is

decreased from 1. Secondly, for high permeability contrast Nu is not necessarily

inversely proportional to h as it can be seen at k2/k1 = 0.2, a similar behavior was

reported by Hewitt et al. (2014b) in the context of thin layers and high Ra. In this

study however, the reason for this behavior is that the convective modes attained in

each thickness is not necessarily the same.
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Figure 4.5: Nusselt number vs permeability ratio for three different internal layer

thicknesses.

All the convective modes observed in these simulations were characterized by 2D cells.

Figure 4.6 shows streamlines calculated at different cross sections perpendicular to the

axis of the convective cells. For k2/k1 = 0.01 it is observed confinement of convection

for h = 0.1 and h = 0.15. When the thickness is increased to h = 0.2 however, the

system becomes conductive, as shown by the Nusselt number Nu = 1.0 (Figure 4.5).

k2/k1 = 0.1 shows that h = 0.1 remains essentially as confined convection, whereas

h = 0.15 and h = 0.2 present convection throughout the entire enclosure (Figure 4.7),

this convective mode enhances the heat transfer as shown by a larger Nusselt number

of these cases in comparison with h = 0.1. The same is true for k2/k1 = 0.2, although

in this case there is no confinement, h = 0.1 presents a four-cell convective mode that

reduces the convective heat transfer in the system in comparison with h = 0.15 and
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h = 0.2, both characterized by two cells partially confined in the top and bottom

layers. For the case k2/k1 = 0.3, the Nusselt number was almost the same (Figure

4.5), despite the convective mode, Figure 4.8 shows the convective modes for h = 0.1

and h = 0.2. For this permeability ratio, the orientation of the convective cells was

not coincident as shown in the case h = 0.15, which convective cell was oriented in the

y-axis direction. In summary, a strong permeability contrast is required (k2/k1 < 0.5)

to notice a considerable impact on the Nusselt number of the enclosure. Likewise,

both thickness and convective mode are important to determine how the Nusselt

number is affected.
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y Tecnoloǵıa (CONACyT) and Cluff Geothermal Ltd.141

8

1

1.5

2

2.5

3

3.5

4

4.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Nu

k2/k1

h = 0.10
h = 0.15
h = 0.20

Figure 2: Nusselt number vs permeability ratio for three different internal layer thicknesses.

h = 0.10 h = 0.15 h = 0.20136

k2

k1
= 0.01 k2

k1
= 0.1 k2

k1
= 0.2 k2

k1
= 0.3137

5. Conclusion138

Acknowledgements139

The work was developed under the auspices of Consejo Nacional de Ciencia140
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Figure 4.6: Streamlines at the cross section x = 0.5 and y = 0.5 for high permeability

contrast at Ra = 200. The corresponding Nusselt numbers are shown in Figure 4.5.
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a) b)

Figure 4.7: Steady-state solutions for k2/k1 = 0.1 and a) h = 0.1 and b) h = 0.2.

4.4.3 Nu vs conductivity ratio

The evaluation of the conductivity ratio was carried out considering a constant thick-

ness h = 0.1 and Ra = 200 for two permeability ratios. No attempt is made here

to follow a model for the relation between thermal conductivity and permeability,

a presentation of such models can be referred to Bear (1979). Steady state Nusselt

numbers of the studied cases are presented in Figure 4.9.

Internal layer with low thermal conductivity (η2/η1 < 1)

Let us discuss first the case η2/η1 < 1, in which the internal layer acts as a low

thermal conductivity layer. In this case, in both permeability ratios, a slight increase

in Nu was observed first as the thermal conductivity of the layer was decreased

and subsequently Nu decreases. This behavior can be understood as a destabilizing

effect of decreasing the thermal conductivity, a further reduction in η2 leads to a

a) b)

Figure 4.8: Steady state solutions for k2/k1 = 0.3 and a) h = 0.1 and b) h = 0.2.
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Figure 4.9: Nusselt number vs conductivity ratio for a constant thickness h = 0.1

and Ra = 200.

drop in Nu as the isolating effect of the layer becomes more important. Regarding

the permeability ratio k2/k1 = 0.5, a high sensitivity to the thermal diffusivity ratio

was observed for η2/η1 < 0.5, for these values the layer behaves more effectively as

a barrier for the heat flux. The convective modes for this permeability ratio were

characterized by two main convective cells with secondary internal cells separated

by the middle layer. Streamlines are shown in Figure 4.10 and the corresponding

temperature and velocity fields in Figure 4.11.

On the contrary, for a weak permeability contrast (k2/k1 = 0.9) there was in general

a low sensitivity to η2/η1. Since the system is close to the homogeneous case with
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Figure 4.10: Streamlines for k2/k1 = 0.5 and a) η2/η1 = 0.2, b) η2/η1 = 1.0.
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a) b)

Figure 4.11: Steady-state solutions for k2/k1 = 0.5 and a) η2/η1 = 0.2, b) η2/η1 = 1.0.

Ra = 200 the convective effects dominate the system and consequently decreasing

the thermal conductivity of the layer has little impact. The convective modes of this

series were also characterized by 2D velocity distributions consisting of two convective

cells. Streamlines of two examples are shown in Figure 4.12 and 3D temperature field

in Figure 4.13, respectively.

Internal layer with high thermal conductivity (η2/η1 > 1)

On the other hand, the overall effect of increasing the thermal conductivity of the in-

ternal layer (η2/η1 > 1) was the attenuation of convection in the system. A constant

decrease in Nu was observed in both permeability ratios that followed an approxi-

mately linear trend (Figure 4.9). Additionally, the correlation between Nu and η2/η1

displayed a weak dependence on the permeability ratio for the values analyzed. Two
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Figure 4.12: Streamlines for k2/k1 = 0.9 and a) η2/η1 = 0.3, b) η2/η1 = 1.0.
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convective modes were observed in both permeability ratios, for k2/k1 = 0.5 the

multiple cell convective mode shown in Figure 4.10 remains until η2/η1 = 1.5. Like-

wise, for k2/k1 = 0.9 the two cell regime remains until η2/η1 = 1.8, at these thermal

diffusivity ratios the convection becomes single cell as shown in Figures 4.14 and 4.15.

4.5 Conclusion

Three-dimensional numerical simulations of free convection were carried out in a

porous enclosure consisting of three layers of which the internal one was allowed to

vary in permeability, thickness and thermal conductivity. The parametric study to

evaluate the effect of decreasing the permeability of the internal layer on the Nusselt

number showed that permeability ratios lower than 0.6 are required to observe an

appreciable drop in Nu. In agreement with this behavior increasing the thickness

of the middle layer had little impact on Nu in the range 0.6 & k2/k1 < 1. The

steady-state convective modes attained in this parametric study were all characterized

by two-dimensional velocity distributions. The three thicknesses analyzed displayed

the same convective modes until k2/k1 = 0.4, in this range of permeability ratios

the Nusselt number was, as expected, inversely proportional to h. For permeability

ratios between 0.1 and 0.3 the convective modes attained by h = 0.1 were different to

those for h = 0.15 and h = 0.2. The thickness h = 0.1 developed four convective rolls

partially of fully confined in the top and bottom layers, whereas h = 0.15 and h = 0.2

were characterized by a single cell with two secondary internal cells, this convective

mode turned out to enhance the convective heat transfer of the porous enclosure and

consequently the Nusselt number was higher in these cases than that for the thinest

layer h = 0.1. The inverse proportionality relation of Nu with h was recovered at

the highest permeability contrast k2/k1 = 0.01 for which the convection of h = 0.1

and h = 0.15 was confined convective rolls and h = 0.2 led to a conductive solution.

a) b)

Figure 4.13: Steady-state solutions for k2/k1 = 0.9 and a) η2/η1 = 0.3, b) η2/η1 = 1.0.
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Figure 4.14: Streamlines for a) k2/k1 = 0.5 and η2/η1 = 1.6 and b) k2/k1 = 0.9 and

η2/η1 = 1.8.

A slight enhancement of the heat transfer in the enclosure was produced when the

thermal diffusivity of the middle layer was decreased up to moderate values. The

porous enclosure with a weak permeability contrast k2/k1 = 0.9 presented a low

sensitivity to the decrease, which indicates the dominance of convection in the sys-

tem. Regarding the permeability ratio k2/k1 = 0.5, after the slight increase in Nu

referred above, the system experienced a monotonic decrease in Nu as the thermal

diffusivity of the middle layer was further decreased. At this permeability ratio the

layer acted more effectively as a barrier for the heat flux. On the other hand, in-

creasing the thermal diffusivity of the middle layer had a more consistent effect in

the two permeability ratios analyzed, which was an approximately linear decrease in

a) b)

Figure 4.15: Steady-state solutions for a) k2/k1 = 0.5 and η2/η1 = 1.6 and b) k2/k1 =

0.9 and η2/η1 = 1.8.
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Nu. Two different convective modes were observed in this case: a dual-cell regime at

moderate thermal diffusivity ratios and a single-cell regime at high ratios. However,

the transition between these convective modes also appeared to be dependent on the

permeability contrast.

The study presented in this chapter permits to qualitatively characterize important

features of 3D convection in a layered porous medium. Extension of such an approach

to real systems, such as geothermal reservoirs, would require definition of a parameter

space reflecting robust models of the relation between thermal conductivity and per-

meability. No unique model of such relation exists however, as thermal conductivity

is largely controlled by mineralogical composition, whereas permeability is princi-

pally controlled by independent physical phenomena. Case-specific parameterization

would therefore be required in all instances for real natural domains.



Chapter 5

Conclusions

5.1 Achievement of aim and objectives

A comprehensive study of numerical modeling of free convection in porous media

was presented in this thesis from which a phenomenological numerical model was

developed in three dimensions. Firstly, the problem was solved in two dimensions

following two different approaches: primitive variables and stream function, which

required different solution algorithms. These numerical schemes were the basis for

the solution of the problem in three dimensions. The 2D models were validated

considering the case study of a sloping porous enclosure. The models were consistent

in terms of the convective modes predicted and the Nusselt number, and were also

in agreement with the results available in the literature. The comparison of the

computing time associated with the models showed that the stream function is a

computationally faster algorithm than the primitive variables approach. A parametric

study of the 2D problem of free convection in a sloping porous enclosure showed that

two convective modes are possible: multicellular and single cell. When multicellular

convection is possible there is in general a wide variety of forms this convective mode

can occur. Each of them is characterized by a number of cells (n), and by the

way clockwise and anti-clockwise rotation cells are distributed. These configurations

displayed different stability as the slope angle was varied. n-odd cases containing

more cells rotating as the single-cell configuration for large inclination turned out to

be the predominant convective modes. This means that they were the preferred modes

to adopt when other configurations were destabilized and also that they prevailed in

the largest range α before becoming single cell. Regarding the transition to single-

cell convection it was observed that n-odd multicellular configurations can remain as

steady state at angles larger than the critical (31.49◦), becoming unstable at angles

as large as 45◦. This angle represents the physical limit for multicellular convection.

Prior to the development of a 3D model, a literature review was carried out and the
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vector potential approach was identified as the preferred method to solve the problem

in three dimensions. However a comparison between this method and the primitive

variables approach was not available in the literature. For this reason, two numerical

models based on these approaches were developed. The vector potential approach can

be considered as the 3D counterpart of the stream function approach and the solution

algorithm was the same as that for the 2D stream function model. The models were

compared and validated considering a cubic porous enclosure. The results showed

that both models are equivalent in terms of the convective modes and the Nusselt

number. The model based on the primitive variables approach however, was found

to be less sensitive to the critical Rayleigh number than the vector potential model.

Likewise, primitive variables turned out highly sensitive to the mesh size, and finally,

as in the 2D analysis, the vector potential model turned out a faster algorithm. Based

on these results, the 3D vector potential numerical model was employed to carry out

a parametric study of free convection in a sloping porous enclosure in 3D.

A comparison between 2D and 3D results of the parametric study of free convection

in a sloping porous enclosure with adiabatic lateral boundaries showed that often

the 2D assumptions of the problem are not met even when at low Rayleigh num-

bers, which seem to justify the assumption. The convective modes present in the

3D analysis comprised longitudinal coil, interaction between longitudinal coil and

transverse rolls, and single cell convection. The presence of 3D velocity distributions

implies a difference in the transition angles in comparison with the 2D study, as well

as the angles associated with the local maxima, particularly at small slope angles.

This comparison emphasized the importance of three-dimensional numerical models

for the understanding of the phenomenon in real systems in contrast with the 2D

idealization.

The third objective of this research was pursued once the best model to simulate

free convection in 3D was identified. A porous enclosure comprising three layers was

defined, of which the external ones shared the same physical properties and the in-

ternal one was allowed to vary permeability and thermal conductivity. The model of

layers was defined using continuos hyperbolic trigonometric functions for which high

resolution meshes were required. The associated increase in the computational cost

was handled implementing parallel computing techniques based on OpenMP libraries

available in Fortran 90. The model was validated against 2D results available in the

literature and afterwards a parametric study was carried out to analyze the relation

between the Nusselt number and the permeability and thermal conductivity contrast

keeping the Rayleigh number constant. The main findings of this parametric study

are the following: 1) High permeability contrasts (higher than 50%) are required to

observe convective modes different from those for a homogeneous porous enclosure,

these convective modes are characterized by some degree of confinement of the con-
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vection in the high permeability layers. This result is in agreement with previous

2D studies of this problem. 2) For a given permeability ratio, the Nusselt number

is proportional to the thickness of the internal layer as long as the convective mode

does not change. If an increase in the thickness produces a change in the convective

mode the Nusselt number may increase. On the other hand, regarding the relation

between the Nusselt number and the thermal conductivity ratio, it was observed that

decreasing the thermal conductivity of the internal layer has little impact on the Nus-

selt number when the porous enclosure is close to the homogeneous case (when the

permeability contrast between the layers is low). A permeability ratio k2/k1 = 0.5

was required to observe an appreciable drop in the Nusselt number as the thermal

conductivity was decreased. Interestingly, regardless of the permeability ratio, as the

thermal conductivity was decreased it was observed first a slight increase in Nu and

then a decrease, which indicates that a slight decrease in the thermal conductivity

of the internal layer has a slight positive effect in the convective heat transfer. As

regards the increase in the thermal conductivity of the internal layer, the effect is al-

ways a decrease in Nu following an approximately linear trend with the conductivity

ratio.

5.2 Some contributions of this thesis

The main contributions of the research presented in this thesis are given in the fol-

lowing list:

• Two numerical models to solve free convection in an homogeneous sloping

porous enclosure in 2D were proposed and validated. A comparison between

these models was not available in the literature.

• A parametric study was presented to analyze the impact on the Nusselt number

of the slope angle, aspect ratio, and Rayleigh number, as well as all the pos-

sible forms multicellular convection can take and their transition angles. The

paramertic space studied here was not available in the literature.

• Likewise, the three dimensional counterparts of the 2D models were proposed.

Two 3D models were compared and the choice of the best model was justified

in terms of the numerical accuracy and computing time. Although the vector

potential approach is often chosen as the most suitable model, a comparison

with the primitive variables approach had not been presented before in the

literature.

• An equivalent parametric study to that developed for the 2D model was carried

out in 3D and visualizations of the convective modes were presented. The
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result obtained in this work are also a contribution to this field of research and

stresses the importance of 3D phenomenological studies for the understanding

of the problem of free convection in real geological systems.

• A numerical model for free convection in a layered porous enclosure was also

proposed. A parametric study was carried out to evaluate the impact of the

permeability, internal layer thickness, and thermal conductivity ratio on the

Nusselt number. This parametric analysis complements previous 2D studies

of this problem and also presents high quality visualizations of the convective

modes in 3D which are not available in the literature.

• In the parametric study that was carried out for the layered model, it was

pointed out that the Nusselt number may increase when the thickness of the

internal low-permeability layer of the enclosure is increased. Although this

phenomenon has been reported by Hewitt et al. (2014b), their 2D analysis was

in the context of thin layers at high Rayleigh numbers, whereas in the case

analyzed here the conditions of the problem were different and the explanation

was related with a change in the convective mode in the system when the

thickness is varied.

5.3 Recommendations for future research

As regards the parametric study that was carried out for the sloping porous enclosure

three areas of future work were identified: 1) carrying out a high-resolution parametric

study similar to that presented for the 2D case in order to identify transition angles

and multiple solutions in 3D. Due to the high computational capacity this would

require, solution algorithms faster than Gauss-TDMA in combination with parallel

computing would be necessary in the numerical model. 2) Incorporating layers to the

sloping porous enclosure would be a new research line since this problem has not been

investigated according with the available literature for the development of this thesis.

3) Incorporating mass transport models for the study of combined density-driven flow

due to thermal and concentration gradients. An alternative model independent of the

Boussinesq assumption would be required however and incorporated to the numerical

model. 4) Entropy generation would be another research line of interest to identify

whether there is a relation between entropy generation in the system and the steady

states obtained in a 3D porous enclosure.

The parametric study of the layered porous enclosure proposed here offers the follow-

ing research lines for future work: 1) It would be important to incorporate models

of the relation between permeability and thermal conductivity to define a parameter

space that approaches real geological systems of interest. As it was mentioned in
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the conclusions of Chapter 4, there is not a unique model for that relationship, so

that it would be necessary to choose case studies of geological formations and layers

commonly found in engineering contexts and to investigate if the models for the re-

lation permeability-thermal conductivity exist for those geological systems. 2) The

case of free convection in a vertically layered porous enclosure is equally important

in the context of geothermal systems since fault zones constitute high permeability

structures that very often can be modeled using the continuum assumption (when

the number of fractures per unit volume and orientation make possible the determi-

nation of a representative elementary volume. See Appendix A.1.). Likewise, low

permeability intrusions such as volcanic dikes located in permeable horizons can act

as barriers for the flow with different thermal properties. Research in this case study

has been less profuse than that for the horizontally layered porous medium (Nield &

Bejan 2013) and therefore it is an opportunity for future development of the numerical

model presented in this thesis.



Appendix A

Overview of numerical modeling of

geothermal systems

A.1 Introduction

The aim of this literature review is to provide a context of application of the pro-

cesses of fluid flow and heat transfer in porous media, as well as to present the most

common assumptions that are made when modeling theses systems. The first part

of this review is dedicated to present basic concepts and assumptions for geothermal

modeling. The second part is dedicated to describe common approaches to model

fluid flow in discontinuous media.

Geothermal energy is a renewable energy resource currently used around the world

for electricity production, district heating, and other direct uses of heat. As regards

power generation, around 27 countries generate electricity from geothermal resources

and the total installed capacity worldwide is 12,729 MW (Bertani 2016). This energy

resource is located in the earth crust and consists essentially of a heat source (in

most cases of volcanic origin), an overlaying reservoir in which high-temperature

geothermal water is stored, and an impermeable cover (seal cap) that reduces thermal

contact between the reservoir water and shallower low temperature groundwater.

Modeling geothermal reservoirs involves solving mathematical models based on par-

tial, non-linear and coupled differential equations that make necessary the use of

numerical methods and computational simulation techniques to obtain approximate

solutions. The increasing power of computational facilities have made possible the

development of these techniques in recent decades, giving rise to the important re-

search field of Geothermal Reservoir Simulation. Reviews on this area of research

have been presented recently (O’Sullivan et al. 2001, Ingebritsen et al. 2010, Sanyal

et al. 2000a). The reviews by O’Sullivan et al. (2001) and Ingebritsen et al. (2010)

are focused on conventional hydrothermal systems, whereas Sanyal et al. (2000a) is
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focused on enhanced geothermal systems (EGS).

Specific areas of application of geothermal reservoir modeling are the following (Pruess

1990):

• Pressure decline in the depletion of boiling reservoirs

• Evaluation of boiling and condensation zones

• Reservoir exploitation strategies

• Liquid-vapour counterflow systems (vapour-dominated and liquid-dominated

heat pipes)

• Transition to vapour-dominated from liquid-dominated conditions

• Natural evolution of hydrothermal convection systems

• Fluid and heat transfer in fractured porous media

Ingebritsen et al. (2010) present the most common assumptions in geothermal reser-

voir modeling:

Representative elementary volume: An elementary volume exists across which

properties such as permeability, thermal conductivity and porosity can be treated as

being constant. Some fractured systems do not attain this condition.

Darcian flow: laminar flow assumptions led to multiphase versions of Darcy’s law. If

turbulence is present, Darcian flow assumption will overestimate the flow rate. There

is an upper limit for Darcy’s law based on Reynolds number. Its application to flow

in porous or fractured media is somewhat problematic, particularly in the context of

variable density, multiphase systems. Flow rates sufficient to violate Darcy’s law are

not common in the subsurface but can occur in geyser conduits, near MOR vents,

during phreatic eruptions, and, more generally, in open and well-connected fracture

systems.

Local thermal equilibrium: This assumption is generally justified by the generally

low rates of subsurface fluid flow and the relative efficiency of heat conduction in

geologic media which acts to homogenize the local temperature field. The assumption

of thermal equilibrium may not be suitable at the pore scale or in highly fractured

media, given sufficiently high, transient flow rates.

Thermal conduction and radiative heat transfer: The thermal conductivity

of most common rocks decreases nonlinearly with increasing temperature to at least

250 C. Above 600 C radiative heat transfer becomes significant and can be approxi-

mated by a radiative thermal conductivity, which increases with increasing temper-

ature. Both the temperature dependence of thermal conductivity and radiative heat
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transfer are usually neglected in hydrothermal modeling. A medium thermal con-

ductivity is typically approximated by a single bulk conductivity of the fluid and

rock. Temperature-dependent thermal conductivity is straightforward to implement

in numerical solutions and is not computationally expensive considering present com-

putational facilities.

Relative permeabilities: The concept is invoked in multiphase flow problems to

express the reduction in mobility of one fluid phase due to the interfering presence

of one or other phases. It is treated as a scalar function of volumetric fluid satu-

ration varying from 0 to 1. Relative permeabilities are essentially “fudge factors”

that allow Darcy’s law to be applied to various empirical data on multiphase flow.

Realistic relative permeabilities should vary with porous and fracture geometry, and

therefore with scale, and should presumably include hysteresis (between, for exam-

ple, gas imbibition and gas drainage in water saturated media). However, hysteresis

is often ignored in simulations of non-isothermal, multiphase flow, and for modeling

purposes, a single global relative permeability is global relative permeability function

is commonly invoked. The choice of relative permeability functions can have a large

influence on the results of simulations. They are also the largest potential source

of nonlinearity in equations greatly complicating numerical solution of any problem

invoking extensive multiphase flow.

Capillary pressures: Like relative permeability, capillary pressures are usually

computed as functions of saturation using empirical relations and do not account

for dynamic effects such as hysteresis. Capillary pressures are often neglected in

simulations of hydrothermal flow. This omission is perhaps justified by the limited

empirical data on steam-liquid water capillary behavior; the fact that relative perme-

ability functions can incorporate some capillary effects, for instance, through residual

liquid saturation; and the fact that surface tension of water decreases with temper-

ature and vanishes at the critical point, where the properties of steam and liquid

water merge. However, simulations using plausible functional relations for capillary

pressure have shown that capillary forces can increase the efficiency of the heat trans-

fer via countercurrent flow (Udell 1985) and that in rocks with porous matrix and

network fractures, typical of hydrothermal systems, capillary pressure tends to keep

the vapor phase in the fractures and the liquid in the matrix (Urmeneta et al. 1998).

Boussinesq Approximation: This approximation allows straightforward solution,

using a stream function approach, which is particularly useful to resolve boundary

layers in convective hydrothermal systems. However it is inappropriate in the general

hydrothermal case even if mass based stream function is used because 1) the effects

of fluid expansion and pressurization due to in situ heating are neglected, 2) the

compressibility of multiphase hydrothermal fluids can be considerably high, 3) the

stream function approach can not describe the hydrodynamics of phase separation
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and two phase flow. Another deficiency of the Boussinesq approximation is that it

assumes that ∂ρ
∂t

= 0 and this is not strictly valid for transient flow simulations.

Stream function solution of governing equations is no longer necessary but remains

quite common.

Nonreactive fluid flow: The rock-water interactions that lead to precipitation

and dissolution of minerals are commonly referred to as “reactive transport”, that is

normally ignored in reservoir models. Laboratory experiments and field observations

show that circulating hydrothermal fluids are highly reactive and that hydrothermal

reactions have a strong feedback effect on the fluid flow field because they significantly

affect rock and fluid properties. However many laboratory experiments involve a

strong chemical disequilibrium that may not be representative of natural systems.

Simplified descriptions of permeability: For practical purposes, it is commonly

assumed that a REV exists over which fracture permeability can be described by an

equivalent porous medium approximation. Transient variations in permeability are

commonly ignored. Only a few numerical models have considered variable permeabil-

ity. (Hurwitz et al. 2002), for example, presented a 2-D numerical model to simulate

thermal evolution below Kilauea summit, they considered permeability decrease to

represent basalt alteration.

The following section presents a review of the most common approaches to model

fluid flow in rocks which is particularly important for the topic addressed in this

thesis.

A.2 Fluid flow in rock masses

The presence of fluid flow is a common phenomenon in earth systems, particularly in

geothermal systems. Due to its ubiquity and importance in defining other physical

phenomena such as heat and mass transport, and mechanical deformation, the best

way of modeling fluid flow in rocks has been of interest to many researchers. A

detailed study of the subject was presented by Lee & Farmer (1993).

Fluid flow in rock masses is fundamentally different from fluid flow in conventional

porous media. A rock mass can be described as a series of blocks of intact rock

separated by discontinuities. Fluid flow through a rock mass is determined both by

the properties of the intact rock and of the discontinuities, it differs from conventional

Darcian flow, which assumes a homogeneous porous continuum with flow through

interconnected pore space. In the earth crust, especially in crystalline rocks, the

intact rock usually has such low permeability that discontinuities are dominant and

fluid flow occurs mainly through discontinuities. In these cases the hydraulic behavior

of the rock mass is determined by the geometry of the fracture or discontinuity system.
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The study of fluid flow in rock masses consists of several areas, for example: rock

and rock mass permeability, geometric characterization of single fractures and frac-

ture networks, fracture statistics and scaling properties, network connectivity and

percolation theory. Berkowitz (2002) presented a review and identified several open

questions in this area of research, which gives an idea of its current development.

With respect to flow models, there are essentially two schemes: discrete fracture

models and continuum models. As pointed out by Berkowitz (2002), these terms

can be confusing because in most cases discrete fracture models employ continuum

approaches to treat flow within each fracture. The difference consists on whether the

model explicitly represents fractures or not, irrespective of the physical assumptions

for modeling flow within the fractures.

A.2.1 Continuum models

Continuum models are based on a simplified representation of hydraulic properties of

the medium by means of a spacial averaging approach. A discontinuous medium is as-

sumed to have a sufficient number of randomly oriented and interconnected fractures

to make it possible to define its average properties statistically and meaningfully.

This assumption implies that a representative elementary volume (REV) exists over

which fracture permeability can be described by an equivalent porous media (EPM)

approximation. The concept of REV is an extension from the study of homogeneity

in porous media. In this context, it is assumed that a macroscopic scale may be found

for which a porous medium is seen as a continuum (Figure A.1). On this scale the

medium is said to be homogeneous. However, there is no guarantee that such a REV

exists for every permeable system (Long et al. 1982).

REV
Volume

Permeability

Figure A.1: Statistical definition of a representative elementary volume (REV) for
which a porous medium is seen as a continuum (after Long et al. (1982))

In general, a REV approximation can be justified if a formation contains of a dense

network of highly interconnected fractures. If a REV can only be defined at a scale
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similar to the problem of interest (as is the case for poorly connected networks), or

if a network clearly consists of fractures with no characteristic size limit, then the

REV approach is inappropriate (Berkowitz 2002). In the presence of heat transfer,

it is also necessary that the rock matrix and fractures remain in approximate local

thermal equilibrium at all times (Pruess 1990).

Continuum models consists of single continuum (or effective continuum), double con-

tinuum (or double porosity) and multiple interacting continua (MINC).

Single continuum

Single continuum models consist of an equivalent porous media formulation. The

problem is reduced to Darcian flow and there is no explicit representation of fractures

at all. In this method it is assumed that a REV may be found for the fractured

rock mass. At this respect, Long et al. (1982) presented a 2-D numerical study

of fracture networks based on statistical considerations of geometric parameters of

fractures (size, orientation, aperture) as well as the density of the fracture network

(number of fractures per unit volume).

Long et al. (1982) pointed out that it only makes sense to look for REV’s in fractured

rocks in presence of flow systems, which would produce a constant gradient and linear

flow lines in a truly homogeneous anisotropic medium. This implies that every part

within the test volume receives the same emphasis from the hydraulic gradient. In

addition, the following conditions must be met in order to replace a heterogeneous

system of given dimensions with an equivalent homogeneous system for the purposes

of analysis: 1) There is an insignificant change in the value of the equivalent per-

meability with a small addition or subtraction to the test volume; 2) An equivalent

symmetric permeability exists, which predicts the correct flux when the direction of

gradient in a REV is changed.

More recent 2-D studies for the estimation of permeability tensor and REV are at-

tributed to Min et al. (2004) and Chen et al. (2008). These studies were based on

the concept of Discrete Fracture Network (DFN). DFN analysis is a widely applied

modeling approach, where the fluid flow is dominated by the fractures and the matrix

permeability is negligible (Müller et al. 2010). Both studies are based on stochastic

generation of DFN’s and presented the corresponding algorithms. Min et al. (2004)

presented a detailed methodological framework to calculate the REV, however they

assumed uniform aperture of fractures that omits the rough nature of fracture planes.

Chen et al. (2008) generated a series of fractured rock samples (DFN’s) by means of

Monte Carlo method. Geometric parameters of the fractures were defined considering

probability models. They analyzed the seepage characteristics of the rock samples

changing their sizes and orientations to evaluate the variation of the permeability
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components and to determine the existence of the permeability tensor and the rep-

resentative elementary volume. They presented a detailed algorithm to optimize the

stochastic analysis and processing of a large amount of samples.

More recently, Li & Zhang (2010) presented a field study on a compacted, cracked

soil ground to determine REV. Although the formation of cracks in soils has a dif-

ferent nature from the formation of fractures in crystalline rocks, the methodology

to determine REV and to establish the equivalent continuum approximation is es-

sentially the same. They presented a statistical analysis of geometric parameters of

cracks (location, length, aperture, and orientation) and found that the locations and

orientations of the cracks followed a uniform distribution, differing from the distri-

bution of fracture sets often observed in fractured rocks. In contrast, they reported

that crack length and aperture followed a lognormal distribution, which is consistent

with those of rock fractures.

Müller et al. (2010) evaluated the existence of a REV in a fractured geothermal

sandstone using DFN model approach. They obtained a quantitative description

of their DFN model from field measurements of outcrop reservoir analogues (with

exception of fracture aperture that was assumed to be constant). They observed

that DFN geometry is largely influenced by lithological layering. Subsequently, 2-

D fracture networks were generated and numerical simulations were performed to

determine effective hydraulic conductivity tensor and REV. They pointed out that

joint spacing in sedimentary rocks tends to be regular, unlike intrusive igneous rocks,

and that fracture spacing is roughly proportional to the thickness of the layer.

Some of the first 3-D studies on single continuum are attributed to Long et al. (1985)

and Cacas et al. (1990). These authors generated several DFN’s by stochastic tech-

niques and further statistical analysis was carried out to evaluate global hydraulic

properties (equivalent continuum). Parallel plates representation of fractures was

common in early analysis as well as steady flow condition. More details of these

methods will be presented in Section A.2.2.

Care must be taken to the presence of coupled processes in order to make a correct

application of the equivalent continuum approach. Müller et al. (2010) emphasized

that permeability of a fractured reservoir is not only dependent of the geometry of the

fracture system but also depends on the stress state of the reservoir. In the same sense,

Lee & Farmer (1993) pointed out that flow-related changes in effective stress and

fracture surface properties may affect flow patterns, this results in changes in fracture

aperture that affect hydraulic behavior. They pointed out that it is also important

to evaluate the degree of inter-connectivity of fractures, and superconnection with

faults, as well as the presence of chemical changes of dissolution and precipitation. A

continuum model involving conventional tensor analysis of an anisotropic rock mass
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may not be enough to evaluate flow within a rock mass.

Double porosity and double permeability

In many problems of practical interest the single continuum approach can not be used

because the hydraulic equilibrium is not locally established between rock matrix and

fractures, so that different average properties for two equivalent continua in the same

test volume must be considered.

Dual porosity model has been developed to study these systems in which flow through

both rock matrix and discontinuities occur simultaneously, as it is the case of high-

porosity rocks. This method has been of particular interest in petroleum reservoir

modeling. The proportions of fracture flow and matrix flow can be determined by

solution of two sets of flow equations using coupling parameters to represent flow

between the matrix and fractures.1 The head and flux should be balanced in these

two flow domains (Berkowitz 2002).

As Berkowitz (2002) pointed out, there is a distinction between double porosity and

double permeability models. In the former, it is assumed that the host rock only acts

as a storage for fluid that is released to the fractures in presence of pressure drop,

while in double permeability models fluid can advance through host rocks so that

they form an active part in the flow system.

Double porosity model was first presented by Barenblatt et al. (1960). They studied

the problem of seepage (infiltration) considering fissuring as a natural characteristic

of the medium. They introduced the conceptualization of two liquid pressures at each

point in the space: liquid pressure in the pores and liquid pressure in the fissures,

and they take into consideration the transfer of liquid between fissures and pores.

The rock mass is conceptualized as the superposition of two porous media, one is

observed at a macroscopic scales (fissures) and the other is observed at a microscopic

scale (pores). Fluid flow in is governed by Darcy’s law in both media.

The pressure related to fissures at each point is the average pressure of the liquid

in the fissures in the neighborhood of the given point, while the pressure related to

pores is the average pressure in the pores in the neighborhood of the given point.

In order to obtain reliable averages, the scale of averaging should include sufficiently

large number of blocks.2 The method of analysis of infinitesimals is then applied to

derive the equations of seepage.

1These coupling parameters are known in the literature as exchange coefficients or transfer coef-

ficients and are connected to the so-called shape factor introduced in petroleum engineering (Lan-

dereau et al. 2001)
2Due to the averaging method of analysis, it is frequent to find the concept of REV in the context

of double porosity methods.
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Warren & Root (1963) also presented this method. In order to describe reservoir

rocks they used the definitions of primary porosity as that controlled by deposition

and lithification, and secondary porosity as that controlled by fracturing, jointing or

solution in circulating water. The medium is idealized as discrete volumetric ele-

ments with primary porosity that are anisotropically coupled by secondary voids. An

important physical assumption in their model is that flow can only occur between

primary and secondary porosities; but flow through primary-porosity elements can

not occur. They also assumed quasi-steady state in the primary porosity elements

at all times. For the mathematical formulation they treat the reservoir as if it were

homogeneous so that can define two averaged pressures at each point. Most of the

material properties in their mathematical model are determined from statistical in-

formation of previous field work and well tests. The secondary porosity and the shape

factor that describes the communication between primary and secondary porosity are

not known in advance and must be obtained from the analysis of pressure build-up

well tests.

Gerke & Genuchten (1993) derived a general expression for the exchange coefficient

that accounts for the transfer of fluid between the macropore (or fracture) and soil

(or rock matrix). The coefficient is related to the shape and size of matrix blocks

and to hydraulic conductivity of the matrix at the matrix-fracture interface. They

considered 1-D analysis and assumed that fluid transfer is proportional to the differ-

ence in pressure head between the two pore systems. They suggested further work

considering more complex geometries to obtain physical insight on realistic problems.

Alternatively, their model may be extended to more realistic geometries considering

empirical factors which must be calibrated to observed field data.

Quintard & Whitaker (1996) derived governing equations for a double porosity flow

system consisting of a slightly compressible fluid in a slightly deformable porous ma-

trix. They used an up-scale approach in their derivation: the description of flow was

made first in a pore-scale, subsequently in a Darcy-scale and finally in large-scale.

The large-scale analysis was developed using a two-equation scheme corresponding to

double porosity approach. They subsequently developed the volume-averaged equa-

tions for large-scale description of flow and obtained relationships between the local

scale description and effective properties. They also identified the domain of validity

of their model in terms of a series of time and length scales constraints. The authors

emphasized that their results are based on the assumption that Darcy’s law is valid

to describe flow in both media.

Landereau et al. (2001) presented a 2-D numerical model of a double porosity flow sys-

tem to study the general behavior of the large-scale coefficients based on the results of

Quintard & Whitaker (1996). They studied the relation between the large-scale per-

meability tensor and fracture connectivity and matrix diffusion, as well as the relation
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between exchange coefficient and matrix blocks geometry. For this, they generated

a 200× 200 m2 stochastic fracture system using a realistic statistical distribution of

fracture parameters, however the numerical implementation was made using average

fracture thickness. They reported that there is a double dependence of the large scale

hydraulic behaviour, on the geometric parameters of the fracture network, on the one

hand, and on the local-scale ratio of fracture conductivity to matrix permeability

by the other hand. This double dependence resulted particularly important for the

large-scale fracture permeability tensor. Their study also included a comparison of

their model with previous ones and they found that for infinite fracture to matrix

permeability ratio their results are comparable to other approaches.

More recently, Moutsopoulos & Tsihrintzis (2009) presented a 1-D analytical study

of unsteady flow in an infinite double permeability aquifer and compared their model

with that obtained from the single continuum approach. Despite the simplifications

made by the authors, some basic results were obtained. For sufficiently long times

hydraulic equilibrium is obtained, and the piezometric head of both media (fractures

and matrix) can be approximated in leading order by the single continuum. They

obtained consistent results with Landereau et al. (2001) in the sense that once me-

chanical equilibrium has been reached, the value of the exchange coefficient has no

impact.

Multiple interacting continua

The multiple interacting continua method (MINC) is an extension the early double

porosity method of Warren & Root (1963), however it was conceived for numerical

applications unlike the more analytical conception of double porosity scheme. This

characteristic makes them different in practice. This approach to model flow in

fractured media is incorporated to the TOUGH family codes (Pruess (1991)) that

has been widely used in geothermal reservoir simulation.

The MINC method was proposed by Pruess & Narasimhan (1985) to take into ac-

count the persistent non-equilibrium conditions between matrix blocks and transient

effects within the blocks which are conceptualized as nested continua (Figure A.2).

These conceptualization is at the same time the computational grid for the numerical

implementation, with the outer continuum corresponding to the fractures (area 1,

Figure A.2). The latest version of this method includes global flow through matrix

blocks.

A limitation of this method arises from the continuum representation of the frac-

ture network. This approximation leads to fracture spacings considerably larger than

those typically found. It is also assumed that the equipotential surfaces, as pressure

or temperature, have constant distance to the nearest fracture (due to the nested con-
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Figure A.2: Nested discretization of the domain to represent matrix blocks and frac-
tures as multiple interacting continua MINC (after Pruess (1990)).

centric cells of the grid blocks), this is not true in reality, however this approximation

could be acceptable in some conditions.

A.2.2 Discrete fracture models

Discrete fracture models consist of explicit representation of fractures in the flow

domain. The explicit representation of discontinuities permits a more realistic mod-

eling of the flow systems commonly found in engineering. This modeling scheme has

been developing into two main research areas: one of them is the study of funda-

mental processes of flow and transport, some of these studies serve as a feedback to

continuum models in addition to provide understanding of transport phenomena in

discontinuous rocks. The other area is related to engineering applications in which the

geological model of the system of study provides explicit information on the presence

of discontinuities and they must be incorporated to transport models.

Shapiro & Andersson (1983) presented one of the first explicit fracture models that

aim at predicting the behavior of systems in which the location and nature of fractures

is partially known. They proposed to couple the conceptualizations of double porosity

and discrete fracture and apply each in the regions where they are most applicable.

A problem arises since the scale associated with the discrete fracture and continuum

representation are significantly different.

Long & Witherspoon (1985) investigated the effect of the degree of interconnec-

tion of fractures on the magnitude and nature of the permeability of the fractured

medium. Their study was based on finite element numerical simulations. They gen-

erated randomly-oriented fracture networks in 2-D (considering constant apertures
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and lengths) and assumed that the matrix rock is impermeable. Flux in the elements

is calculated using the cubic law under the assumption that the fractures behave as

parallel plates. Steady-state flow through the network was then calculated by solv-

ing a series of equations which guarantee that mass balance is maintained. Their

work provided feedback to single and double porosity schemes since they analyzed

conditions under which a fractured system behaves as an equivalent porous medium.

However, it has been shown that the classical view of a rock fracture as a pair of

smooth, parallel plates is not an adequate description of flow (Brown 1987, Oron &

Berkowitz 1998). It is possible to accurately characterize and incorporate fracture

roughness into models.

Andersson & Dverstorp (1987) developed a 3-D numerical model capable of generat-

ing a fracture network from stochastic models and solving for the steady state flow.

Fractures are modeled as discs of arbitrary size, orientation, transmissivity and loca-

tion in an impervious matrix. On each fracture disc the flow equations, expressed in

terms of hydraulic head, are discretized with the boundary element method. They

pointed out that the main problem of using discrete fracture models is to measure

and estimate the fracture network statistics from a realistic amount of field data,

rather than the complexity of solving the flow through them. They also presented a

method for estimating the distribution parameters of the network model from field

measurements. Only fracture size, orientation, and density were analyzed since frac-

ture transmissivities were consider to have a log-normal distribution from the previous

results by Snow (1970). They used field observations for conditioning the fracture

network by requiring that all realizations of the model reproduce the observed traces

and only those. The flow problem is expressed in terms of the hydraulic head, for

which boundary conditions of specified head or no flow were given. They obtained

qualitatively consistent results with previous 2-D works (such as Long & Wither-

spoon (1985)). They pointed out that one of the most important assumptions of

their model is to consider constant transmissivity in the fracture planes, further work

was suggested to consider variable transmissivity and channeling phenomenon.

Channel-based interpretation of flow in fractured media

The conceptualization of fractures as parallel plates has been considered unsuitable

to capture the complex flow regime in fractures. Tsang & Neretnieks (1998) de-

scribed several laboratory experiments and field tests at different scales that confirm

the strongly heterogeneous flow paths in fractured media for which channeling con-

ceptualization results more suitable.

Brown (1987) presented one of the earliest numerical models for the analysis of flow

in a rough-wall fracture. He studied the magnitude and nature of the disagree-
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ment between the predictions of the parallel plate model and the actual flow through

rough-walled fractures from a series of two-dimensional simulations. His flow model

was based on the Reynolds equation and fractal model for the surface topography.

The Reynolds equation is commonly used in lubrication problems and is suitable in

conditions of low speed flows when inertial effects can be neglected (see for example

Karniadakis et al. (2005)). The disagreement between the cubic law and flow through

rough-wall fracture was measured by comparing the flow rates obtained by the two

approaches. He showed that largest disagreements, up to a factor of two, are obtained

for the smallest apertures that were tested.

Tsang & Tsang (1987) proposed to consider channels, rather than single fractures,

as the basic unit for modeling a fractured medium. They hypothesized that fluid

flow and solute transport through a tight rock medium is by means of a limited

number of tortuous and intersecting channels (Figure A.3). The parameters that

characterize the channels are 1) the aperture density distribution, which gives the

relative probability of occurrence of a given aperture value, 2) the effective channel

length and 3) the spatial correlation length of the aperture, which gives the spatial

range within which the aperture values are similar.

Figure A.3: Conceptual model of flow channel in a fractured medium (after Tsang &
Tsang (1987)).

They proposed a model to analyze the expected steady-state pressure distribution

in a fractured medium under constant pressure boundary conditions and the tracer

concentration as a function of time in tracer transport measurements. Despite of

simplifications, such as considering constant channel width or neglecting the matrix

diffusion on the tracer transport, their work presented the conceptual basis to have

a more realistic flow regime in fractured media.

Further development of this model was presented by Tsang et al. (1991). They

presented a variable aperture channel model to evaluate tracer transport field data

from the Stripa mine, Sweden, that lies in granitic rock. The experiment consisted of

a system of tracer injection boreholes drilled above two mine drifts in the form of a

cross, the longer drift was 75m long and the shorter was 25m long. Tracer collectors
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were placed uniformly over the ceiling of the drift to measure tracer flow rates and

to analyze flow paths.

The Stripa 3D data were analyzed based on the hypothesis that the dispersion is

advection dominated. In their conceptual model they emphasized that the channels

are not physical pipes in the fracture plane, but they arise directly from the wide

range of apertures distributed over each fracture. They considered that the injected

tracer may be transported through the medium along several tortuous channels in

a three-dimensional space as a result of the fracture network heterogeneity. Each of

these flow channels consists of a number of flow paths of comparable but not identical

mean velocities, thus giving rise to some kind of dispersion within each flow channel.

Each flow path that makes up the channel has variable aperture along its length. They

assumed that matrix diffusion and chemical retardation processes are not important.

From the time dependence of the tracer collection, they identified channels or groups

of flow paths which have comparable residence times. They assumed homogeneous

one-dimensional porous medium to model flow in channels. Their analysis of the

experimental data confirmed the existence of preferential flow paths.

Cacas et al. (1990) also considered channeling. The purpose of their study was to

develop a method to estimate the permeability of a hypothetical REV in rocks charac-

terized in the context of nuclear waste repository applications. They generated DFN’s

whose geometry is statistically similar to the observed in the field. Hydraulic simu-

lations were carried out in an intermediate scale: larger than the mean fracture size

but smaller than the hypothetical REV, and each simulation on a different fracture

configuration provided a “punctual” value of the global permeability of the fractured

network. Flow is governed by the hydraulic gradient and hydraulic conductivity of

the fractures.

From statistical analysis of a series of DFN models they calculated global permeability

based on a result from Gutjahr et al. (1978), that relates the global permeability

with the geometric mean of the punctual permeabilities. Validation was carried out

from estimations of “global” hydraulic permeability and taking into account diverse

field measurements such as piezometric head monitoring, injection tests, and tracer

tests. From their results, they estimated that a 10 m-edge cubic block seems to be

reasonably representative of the punctual scale of the equivalent continuum.

To simulate channelling, they assumed that flow occurs through bonds joining the

center of each disc to the center of adjacent discs (Figure A.4), provided that the

fractures are connected, so that the circular shape of the fractures is not of great

consequence in their modeling technique. Since the representation of channels was

not realistic, calibration of bonds conductivity from injection test data was necessary.

A recent report by Black & Barker (2007) summarizes the most important experimen-



A.2. Fluid flow in rock masses 132

Figure A.4: Conceptual model of flow channeling through bonds joining the center
of connected fractures (After Cacas et al. (1990)).

tal observations and theoretical results regarding the channel-based interpretation:

• Groundwater flows within sparse network of channels just above the percolation

limit.

• The frequency of intersections is low in that individual channels extend consid-

erable distances between significant junctions.

• Individual channels often extend over many fracture surfaces and the resulting

flow system is only weakly related to the density or size of mappable fractures.

• The sparseness of the systems compared to the size of drifts and tunnels means

that very few “flow channels” are intersected by drifts and tunnels. Highly

convergent flow is required to connect to the rest of the network and this is

misinterpreted by a skin of low hydraulic conductivity.

• Systems are so sparse that they are controlled by a few “chokes” that give rise

to compartments of head, and probably, of groundwater chemistry.

• The actively flowing sparse channel network, occurring within any particular

rock, is a naturally selected, small subset of the available channels. Hence,

there are many conductive channels that do not participate within the active

network but are connected to it, however tortuously.

According to Lee & Farmer (1993) from early studies on discrete fracture models

was concluded that, whether a rock mass behaves like a continuum or a discrete

fracture model, the discontinuity size and frequency are important factors. Thus,

the estimation of flow behaviour in rock masses requires a detailed description of

discontinuity geometry.

More recently de Dreuzy et al. (2012) presented a 3D numerical study of DFN’s

embedded in impervious matrices to analyze the combined effect of fracture-scale
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heterogeneities and network-scale topology on the equivalent permeability of the frac-

tured medium. Their analysis was based on 2×106 DFN simulations that accounted

for an extensive sampling of parameter space. They investigated different types of

network structures, including networks with a power law size distributions of the

fracture sizes. They also varied density from configurations far above the percolation

threshold to the vicinity of the percolation threshold. Fractures were modeled as

parallel plates, however they used a Gaussian law distribution to define fracture local

apertures. Channeling effects were considered.

For the flow model they considered creeping flow (no inertial effects) and a gradient

of the aperture field topography much smaller than 1, from which they assumed that

pressure field only depends on the two dimensional position along the mean fracture

plane and that the local flux field is related at each point of the mean fracture plane

to the local pressure gradient according to a local cubic law. They pointed out that

this model is valid for Reynolds numbers lower than 1 in all fractures of the network.

As a general result, they pointed out that fracture heterogeneities led to a reduction

of the equivalent fracture transmissivity up to a factor of 6 as compared to the

parallel plate of identical mean aperture. Permeability is enhanced by the highly

transmissive zones within the fractures that can bridge fracture intersections within

a fracture plane, and it is reduced by the closed and low transmissive areas that break

up connectivity and flow paths. Further studies were proposed to understand how

anisotropic mechanical load impacts on the permeability.

Graf & Therrien (2008) presented a three-dimensional model of a variable-density flow

and solute transport in discretely fractured porous media. Unlike previous discrete

fracture models, in which fractures are modeled as parallel plates in space, they mod-

eled flow in a non-planar fracture, permitting the definition of more complex geometry

of the fracture. They used the computational program HydroGeoSphere, a numerical

3D variable-density, variably-saturated groundwater flow and multi-component solute

transport model for fractured porous media based on a control volume finite element

method (CVFE). The program had to be modified to include triangular fracture ele-

ments. The flow model in the fracture is Darcian and they did not considered variable

aperture so that channeling effects were disregarded. Their work presented fundamen-

tal processes of solute transport and density-gradient driven flow in fractures, such as

fingering of solute concentration and coalescence. Further improvements to represent

non-planar fractures embedded in porous media were presented by Mustapha et al.

(2010), they proposed optimized algorithms to generate non-structured finite element

meshes using Delaunay criterium (Shewchuk 2002).
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Inertial effects in flow in fractured media (non-Darcian flow)

Kolditz (2001) studied fluid flow in fractured rock in which convective acceleration is

important, giving rise to non-linear flow, i.e., a flow regime deviated from the conven-

tional linear relationship between pressure gradient and seepage velocity described

by Darcy’s law. He pointed out that fracture roughness as well as fracture inter-

sections in networks may be causes of non-linear (non-Darcian) flow phenomena in

fractured media. Phenomena as no parallel motion (i.e. velocity components normal

to the fracture plane arise from asperities) and channeling effects in fracture planes

are commonly associated to non-linear flow. His work is focused on modeling effects

of high flow rates and fracture roughness.

The author presented first the most important theoretical considerations to describe

non-linear flow and to derive governing equations, from which the pressure-gradient

dependence of the hydraulic permeability was highlighted. Subsequently, finite-

element numerical simulations were carried out using the program Rockflow in a

plane single fracture and in a fracture network generated from field data. The frac-

ture network was composed by seven fractures corresponding to those identified in

the crystalline-rock reservoir of the Soultz site, France.

He pointed out that in ordinary porous media the order of critical Reynolds numbers

for which non-linear effects become evident, determined in experiments, is about 1-

10 (Barenblatt et al. 1990). The corresponding velocities are only in the range of

millimeters or centimeters per second. There is a transition between the flow regimes

because of the range of pore radii. For flow in fractures, however, critical Reynolds

numbers are in the same order of those for tube flows (about two orders of magnitude

larger than those for flow in a porous medium).

For the case of a smooth single fracture, critical Reynolds numbers for onset of non-

linear flow behaviour were found in agreement with those known from experiments.

But on the other hand, fracture roughness as well as non-linear flow phenomena lead

to reduction of effective permeabilities. For the fracture network, pumping test data

of the field were well reproduced by applying the non-linear flow model. Further

work was suggested on critical Reynolds numbers for natural (rough) fractures and

for more complex flow conditions, as well as storativity of fracture systems.
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Finite volume integration of a

Poisson equation

In this appendix we present the general form of discrete Poisson equation in the Finite

volume numerical method. Lets assume that a variable φ is described by a Poisson

equation with a source term q as follows

Γ∇2φ = q (B.1)

The integration of this equation in a 3D control volume with central node P (Figure

B.1) is as then

∫
CV
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Integrating term by term and doing the control volume approximation it turns out
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Applying central differencing to approximate the derivatives and renaming the areas
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Figure B.1: Three-diemensional control volume for the integration of Equation B.1.

of the faces δyδz, δxδz, and δxδy
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(B.2)

This can be written as

aPφP = aEφE + aWφW + aNφN + aSφS + aFφF + aBφB − sP (B.3)

with

aE =
ΓeAe
δx

, aW =
ΓwAw
δx

, aN =
ΓnAn
δy

, aS =
ΓsAs
δy

, aF =
ΓfAf
δz

, aB =
ΓbAb
δz

Γe =
ΓP + ΓE

2
, Γw =

ΓW + ΓP
2

, Γn =
ΓN + ΓP

2

Γs =
ΓS + ΓP

2
, Γf =

ΓF + ΓP
2

, Γb =
ΓB + ΓP

2

aP = aE + aW + aN + aS + aB + aF

and

sP = qP δV
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Dirichlet boundary conditions

Let us take the x-axis as a example on the integration of the equation at the bound-

aries. As regards the lower boundary, the Dirichlet condition establishes a constant

value for φW , that we can call φWB, a node that would be lying at the boundary.

Additionally, since the distance between P and the boundary is δx/2 the discrete

form of Equation B.1 takes the form

[
ΓeAe

φE − φP
δx

− 2ΓwAw
φP − φWB

δx

]
+

[
ΓnAn

φN − φP
δy
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φP − φS
δy

]
+

[
ΓfAf

φF − φP
δz

− ΓbAb
φP − φB

δz

]
= qP δV

Simplifying this expression it can be seen that the coefficients and source term of

Equation B.3 are

aE =
ΓeAe
δx

, aW =
2ΓwAw
δx

, aN =
ΓnAn
δy

, aS =
ΓsAs
δy

, aF =
ΓfAf
δz

, aB =
ΓbAb
δz

aP = aE + aW + aN + aS + aB + aF

and

sP = qP δV −
2ΓwAw
δx

φWB

Similarly for the upper boundary, given φEB the coefficients are

aE =
2ΓeAe
δx

, aW =
ΓwAw
δx

, aN =
ΓnAn
δy

, aS =
ΓsAs
δy

, aF =
ΓfAf
δz

, aB =
ΓbAb
δz

aP = aE + aW + aN + aS + aB + aF

and

sP = qP δV −
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δx
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Neuman boundary conditions

On the other hand, taking again the x-axis as an example, if the gradient is given

at the boundaries we have that φP−φW
δx

= φ′WB and φE−φP
δx

= φ′EB, are known values.

For the lower boundary, Equation B.2 takes the form
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[
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Considering this, it can be seen that the coefficients of Equation B.3 are

aE =
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δx
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δy
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δy
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ΓfAf
δz
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and
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Similarly for the upper boundary, given φ′EB the coefficients are

aE = 0, aW =
ΓwAw
δx

, aN =
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δy

, aS =
ΓsAs
δy

, aF =
ΓfAf
δz

, aB =
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δz

aP = aW + aN + aS + aB + aF

and

sP = qP δV − ΓeAeφ
′
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Further details on the integration of the differential equation in Finite Volume can

be referred to Versteeg & Malalasekera (1995).
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