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Abstract 

Hypertension is the major risk factor for coronary disease worldwide. Primary 

hypertension is idiopathic in origin but is thought to arise from multiple risk 

factors including genetic, lifestyle and environmental influences. Secondary 

hypertension has a more definite aetiology; its major single cause is primary 

aldosteronism (PA), the greatest proportion of which is caused by aldosterone-

producing adenoma (APA), where aldosterone is synthesized at high levels by an 

adenoma of the adrenal gland. There is strong evidence to show that high 

aldosterone levels cause adverse effects on cardiovascular, cerebrovascular, 

renal and other systems. Extensive studies have been conducted to analyse the 

role that regulation of CYP11B2, the gene encoding the aldosterone synthase 

enzyme plays in determining aldosterone production and the development of 

hypertension. One significant regulatory factor that has only recently emerged is 

microRNA (miRNA). miRNAs are small non-coding RNAs, synthesized by a series of 

enzymatic processes, that negatively regulate gene expression at the post-

transcriptional level. Detection and manipulation of miRNA is now known to be a 

viable method in the treatment, prevention and prognosis of certain diseases. 

The aim of the present study was to identify miRNAs likely to have a role in the 

regulation of corticosteroid biosynthesis. To achieve this, the miRNA profile of 

APA and normal human adrenal tissue was compared, as was the H295R 

adrenocortical cell line model of adrenocortical function, under both basal 

conditions and following stimulation of aldosterone production. Key 

differentially-expressed miRNAs were then identified and bioinformatic tools 

used to identify likely mRNA targets and pathways for these miRNAs, several of 

which were investigated and validated using in vitro methods. The background to 

this study is set out in Chapter 1 of this thesis, followed by a description of the 

major technical methods employed in Chapter 2.  

Chapter 3 presents the first of the study results, analysing differences in miRNA 

profile between APA and normal human adrenal tissue. Microarray was 

implemented to detect the expression of miRNAs in these two tissue types and 

several miRNAs were found to vary significantly and consistently between them. 

Furthermore, members of several miRNA clusters exhibited similar changes in 

expression pattern between the two tissues e.g. members of cluster miR-29b-1 
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(miR-29a-3p and miR-29b-3p) and of cluster miR-29b-2 (miR-29b-3p and miR-29c-

3p) are downregulated in APA, while members of cluster let-7a-1 (let-7a-5p and 

let-7d-5p), cluster let-7a-3 (let-7a-5p and let-7b-5p) and cluster miR-134 (miR-

134 and miR-382) are upregulated. Further bioinformatic analysis explored the 

possible biological function of these miRNAs using Ingenuity® Systems Pathway 

Analysis software. This led to the identification of validated mRNAs already 

known to be targeted by these miRNAs, as well as the prediction of other mRNAs 

that are likely targets and which are involved in processes relevant to APA 

pathology including cholesterol synthesis (HMGCR) and corticosteroidogenesis 

(CYP11B2). It was therefore hypothesised that increases in miR-125a-5p or miR-

335-5p would reduce HMGCR and CYP11B2 expression.  

Chapter 4 describes the characterisation of H295R cells of different strains and 

sources (H295R Strain 1, 2, 3 and HAC 15). Expression of CYP11B2 was assessed 

following application of 3 different stimulants: Angio II, dbcAMP and KCl. The 

most responsive strain to stimulation was Strain 1 at lower passage numbers. 

Furthermore, H295R proliferation increased following Angio II stimulation. 

In Chapter 5, the hypothesis that increases in miR-125a-5p or miR-335-5p 

reduces HMGCR and CYP11B2 expression was tested using realtime quantitative 

RT-PCR and transfection of miRNA mimics and inhibitors into the H295R cell line 

model of adrenocortical function. In this way, miR-125a-5p and miR-335-5p were 

shown to downregulate CYP11B2 and HMGCR expression, thereby validating 

certain of the bioinformatic predictions generated in Chapter 3.  

The study of miRNA profile in the H295R cell lines was conducted in Chapter 6, 

analysing how it changes under conditions that increase aldosterone secretion, 

including stimulation Angiotensin II, potassium chloride or dibutyryl cAMP (as a 

substitute for adrenocorticotropic hormone). miRNA profiling identified 7 

miRNAs that are consistently downregulated by all three stimuli relative to basal 

cells:  miR-106a-5p, miR-154-3p, miR-17-5p, miR-196b-5p, miR-19a-3p, miR-20b-

5p and miR-766-3p. These miRNAs include those derived from cluster miR-106a-

5p/miR-20b-5p and cluster miR-17-5p/miR-19a-3p, each producing a single 

polycistronic transcript. IPA bioinformatic analysis was again applied to identify 

experimentally validated and predicted mRNA targets of these miRNAs and the 

key biological pathways likely to be affected. This predicted several interactions 
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between miRNAs derived from cluster miR-17-5p/miR-19a-3p and important 

mRNAs involved in cholesterol biosynthesis: LDLR and ABCA1. These predictions 

were investigated by in vitro experiment. miR-17-5p/miR-106a-p and miR-20b-5p 

were found to be consistently downregulated by stimulation of aldosterone 

biosynthesis. Moreover, miR-766-3p was upregulation throughout. Furthermore, I 

was able to validate the downregulation of LDLR by miR-17 transfection, as 

predicted by IPA. 

In summary, this study identified key miRNAs that are differentially-expressed in 

vivo in cases of APA or in vitro following stimulation of aldosterone biosynthesis. 

The many possible biological actions these miRNAs could have were filtered by 

bioinformatic analysis and selected interactions validated in vitro. While direct 

actions of these miRNAs on steroidogenic enzymes were identified, cholesterol 

handling also emerged as an important target and may represent a useful point 

of intervention in future therapies designed to modulate aldosterone 

biosynthesis and reduce its harmful effects. 
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Definitions/Abbreviations 

11β-HSD2  11β-hydroxysteroid dehydrogenase type 2 
17βHSD1/3   17β-hydroxysteroid dehydrogenase type 1/3 
17-OH-P   17-hydroxyprogesterone 
17-OH-PREG   17-hydroxypregnenlone 
18-OH-B   18-hydroxycorticosterone 
21C   21 carbons 
3β-HSD   3β-hydroxysteroid dehydrogenase 
3β-HSD2   3β-hydroxysteroid dehydrogenase type 2 
3'UTR    3 prime untranslated region 
5'UTR    5 prime untranslated region 
A    Adenosine 
AB   Amyloid β  
ABCA1   ATP-Binding Cassette, Sub-Family A (ABC1), Member 1 gene 
ACA    Adrenocortical adenoma 
ACAT   Acyl-CoA: cholesterol acyltransferase 
ACC    Adrenocortical carcinoma 
ACE    Angiotensin Converting Enzyme 
ACTH    Adrenocorticotropic Hormone 
AD   Alzheimer disease 
Adx    Adrenodoxin 
A'dione   Androstenedione 
Adr    Adrenodoxin 
AETIO    Aetiocholanolone 
AF-1   Activation function-1 
AGO1-4   Argonaute Protein 1-4 
AGT    Angiotensinogen gene 
AKT   V-Akt Murine Thymoma Viral Oncogene 
Aldo    Aldosterone 
ANDRO   Androsterone 
Angio II   Angiotensin II 
APA    Aldosterone-producing adenoma 
APAF1   Apoptotic peptidase-activating factor 1 gene 
ARE   AU-rich elements 
AT1    Angiotensin type 1 receptor 
AT2    Angiotensin type 2 receptor 
ATP1A1  ATPase, Na+/K+ Transporting, Alpha 1 Polypeptide 
ATP2B1   Plasma membrane calcium-transporting ATPase 1 gene 
ATP2B3  Plasma membrane calcium-transporting ATPase 3 gene 
AU    Arbitrary units 
AVP   Arginine vasopressin 
AVS   Adrenal venous sampling 
BAH   Bilateral adrenal hyperplasia 
BCL2   B-Cell CLL/Lymphoma 2 gene 
BCL2L12  BCL2-Like 12 (Proline Rich) gene 
BMI    Body mass index 
BMP             Bone morphogenetic protein  
BP    Blood pressure 
bp    Base pairs 
BRCA1   Breast Cancer 1, Early Onset gene 
BrdU   Bromodeoxyuridine 
BRIGHT   British Genetics of Hypertension 
C    Cytosine 
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C17    Carbon 17 
C19    Carbon 19 
C20    Carbon 20 
C21    Carbon 21 
CAH    Congenital adrenal hyperplasia 
cAMK    Ca2+/ calmodulin-dependent protein kinase 
cAMP    Cyclic adenosine monophosphate 
CASP2/7  Caspase 2/7, Apoptosis-Related Cysteine Peptidase 
CCF   Cosmic Calf Serum 
CCND1   Cyclin D1 gene 
CDK4/ 6  Cyclin-Dependent Kinase 4/ 6 gene    
cDNA    Complementary DNA 
CDS   Protein coding sequence 
CE   Cholesteryl ester 
CHD   Coronary heart disease 
CK1   Casein Kinase 1 
CpG   Cytosine guanine nucleotides site 
CRE   cAMP-response element 
CREB   cAMP-response element binding protein 
CRH    Corticotrophin-releasing hormone 
CT   Computerised tomography 
Ct    Cycle threshold 
CTNNB1  Catenin (Cadherin-Associated Protein), Beta 1 gene 
CVD   Cardiovascular disease 
CYB5A   Cytochrome b5 gene 
CYP11A1   Cytochrome P450, Family 11, Subfamily A, Polypeptide 1 gene 
CYP11B1   11β-hydroxylase gene 
CYP11B2   Aldosterone synthase gene 
CYP17A1   17α-hydroxylase/17,20 lyase gene 
CYP19A1   Aromatase gene 
CYP21A1   21-hydroxylase gene 
CYP450   Cytochrome P450 enzymes 
DAG   Diacyglycerol 
DASH    Dietary approaches to stop hypertension 
dbcAMP   Dibutyryl cAMP 
DBD   DNA binding domain 
DBP    Diastolic blood pressure 
DCP1/ 2   Decapping enzyme 1/ 2 
DDX6    DEAD (Asp-Glu-Ala-Asp) Box Helicase 6 
DGCR8   DiGeorge Syndrome Critical Region in Gene 8 
DHA    Dehydroepiandrosterone 
DHEA    Dehydroepiandrosterone 
DHEAS   Dehydroepiandrosterone sulphate 
DMSO    Dimethyl sulphoxide 
DNA    Deoxyribonucleic acid 
dNTPs   Deoxynucleotide triphosphates 
DOC    11-deoxycorticosterone 
DPBS   Dulbecco's Phosphate-Buffered Saline 
dsDNA   Double-stranded deoxyribonucleic acid 
DUF   Domain of unknown function 
EDC4    Enhancer of MRNA decapping 4 
EDTA    Ethylenediamine tetra-acetic acid 
EGFR   Epithelial growth factor receptor 
eIF    Eukaryotic initiation factor 
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ELAVL1   ELAV-like RNA binding protein 1 gene 
ENac   Enhance epithelial sodium channel 
ERK1/2  Extracellular signal regulated kinase 1/ 2 
EH   Essential hypertension 
Exp5   Exportin 5 
F2   Fusion protein 
FAD    Flavin adenine dinucleotide 
FDR   False discovery rate 
FDX1    Adrenodoxin 
FDXR    Adrenodoxin reductase 
FFPE   Formalin-fixed paraffin-embedded 
FH   Familial hypercholesterolemia 
FHHt   Familial hyperkalaemic hyprtension 
FHA   Familial hypoalphalipoproteinemia 
FMN    Flavin monoluceotide 
G    Guanine 
g    G-force (relative centrifugal force) 
G1   Gap 1 phase in cell cycle 
GAPDH  Glyceraldehyde-3-Phosphate Dehydrogenase gene 
GC   Glucocorticoid  
GJA1/ CX43  Gap Junction Protein, Alpha 1 
GRA    Glucocorticoid Remediable Aldosteronism 
GR   Glucocorticoid receptor 
GRE   Glucocorticoid response elements 
GSC    Goosecoid homeobox gene 
GW182   Glycine-tryptophan protein of 182 kD 
GWAS    Genome-wide association study 
HCC   Hepatocellular carcinoma cell 
HCV   Hepatitis C virus 
HDL   High density lipoprotein 
HIF1A    Hypoxia inducible factor 1, alpha subunit gene 
HMGCoA  3-hydroxy-3-methylglutaryl-CoA 
HMGCR  3-hydroxy-3-methylglutaryl-CoA reductase gene 
HSL   Hormone-sensitive lipase 
HSP   Heat-shock protein 
HRE   Hormone responsive element 
HSDIIβ2   11β-hydroxysteroid dehydrogenase 
ICAM1   Intracellular adhesion molecule 1 
ICMT    Isoprenylcysteine carboxyl methyltransferase gene 
IGF-1/ 2  Insulin-Like Growth Factor 1/ 2 
IGF1R    Insulin-like growth factor 1 receptor 
IMM   Inner mitochondrial membrane 
IL3/ 6   Interleukin 3/ 6 
ITS    Insulin-transferrin-selenium 
IUPAC    International Union of Pure and Applied Chemistry 
IPA   Ingenuity Pathway Analysis 
IP3   Inositol trisphosphate 
JNC 6/ 7/ 8  Sixth/ Seventh/ Eighth Joint National Committee Report 
K+    Potassium ions 
kb    Kilobases 
KCNJ5 Potassium Channel, Inwardly Rectifying Subfamily J, Member 5 

gene 
kD  KiloDaltons 
KLHL3   Kelch-Like Family Member 3 
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KRAS    Kirsten rat sarcoma viral oncogene homolog gene 
LBD   Ligand binding domain 
LC:MS/MS   Liquid chromotography tandem mass spectrometry 
LD    Linkage disequilibrium 
LDL   Low-density lipoprotein 
LDLR   Low-density lipoprotein receptor gene 
LNA   Locked nucleic acid 
LOD    Logarithm of the odds 
LXR   Liver X receptor 
MAP3K  Mitogen-Activated Protein Kinase Kinase Kinase  
MARK2/PAR-1 Microtubule affinity-regulating kinase 2 
Mb    Megabases 
mCCD   Mouse cortical collecting duct 
MCL1   Myeloid Cell Leukaemia 1 gene 
MCP1   Monocyte chemoattractant protein 1 
MDR/ TAP  Transporter, ATP-Binding Cassette, Sub-Family B 
miRISC   miRNA-induced silencing complex 
miRNA   Micro ribonucleic acid (microRNA) 
ml   Mililitre 
mM   Milimolar 
MP   Membrane potential 
MR    Mineralocorticoid receptor 
mRNA    Messenger ribonucleic acid 
MRX34  miR-34a mimic 
MTDH   Metadherin 
mTOR    Mechanistic Target of Rapamycin (Serine/Threonine Kinase) 
MVE   Multivesicular endosomes 
MYLIP    Myosin regulatory light chain interacting protein (IDOL) 
Na+    Sodium ions 
NAD    Nicotinamide adenine dinucleotide 
NADPH   Nicotinamide adenine dinucleotide phosphate 
NBRE   NGFI-B response element 
ncRNA   Non-coding RNA 
NE   Nuclear envelope 
NF-1    Nuclear-factor 1 
NGF   Nerve growth factor  
NGFI-B  Neuronal growth factor-induced clone B 
NLS   Nuclear localisation signal 
nM   NanoMolar 
nm   Nanometer 
NOR-1   Neuron-derived orphan receptor 1 
NPC   Nuclear pore complex 
NR3C2   Nuclear receptor subfamily 3 gene (MR gene) 
NR3C1   Nuclear receptor subfamily 1 gene (GR gene) 
NR4A2/ 3   Nuclear Receptor Subfamily 4, Group A, Member 2/ 3 
NURR-1  Nur-related factor 1 
OncomiR  Oncogenic miRNA 
OMM   Outer mitochondrial membrane 
PA   Primary aldosteronism 
PABP    Poly A binding protein 
PAI1   Plasminogen activator inhibitor type 1 
PBS   Phosphate buffered saline 
PCR    Polymerase chain reaction 
pEZX    Reporter construct 
pGL3    Reporter construct 
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PH   Primary hypertension 
PI3K   Phosphoinositide 3-Kinase 
PIP2   Phosphatidylinositol 4,5-bisphosphate 
PKA    Protein kinase A 
PKC   Protein kinase C 
PLC   Phospholipase C 
PMEPA1/ TMEPAI  Prostate transmembrane protein, androgen induced 1 gene 
Pol II    RNA polymerase II 
POR   P450 oxidoreductase gene 
PPARD   Peroxisome proliferator-activated receptor delta  
PREG    Pregnenolone 
Pre-miRNA   Precursor miRNA 
Pri-miRNA   Primary miRNA 
PTK2B   Protein tyrosine kinase 2 beta gene 
qRT PCR   Quantitative reverse transcription polymerase chain reaction 
QTL    Quantitative Trait Locus 
RAAS    Renin-angiotensin-aldosterone system 
RAF1    Raf-1 proto-oncogene, serine/threonine kinase 
Ran-GTP   Ras-related nuclear protein-guanosine-5'-triphosphate 
RAS    Renin-angiotensin system 
RISC    RNA-induced silencing complex 
RLC    RNA-induced silencing complex (RISC) loading complex 
RNA    Ribonucleic acid 
RNAi    RNA interference 
RNF111   Ring finger protein 111 gene 
ROS   Reactive oxygen species 
rpm    Revolutions per minute 
RQ    Relative quantification 
RRM   RNA recognition motif 
rRNA   Ribosomal RNA 
RT    Reverse transcription 
RU-486  Glucocorticoid antagonist 
RUNX3  Runx-related transcription factor 3 gene 
RXR   Retinoid X Receptor 
S    Synthesis phase of cell cycle 
S1P/ S2P   SREBP-specific proteases 
SBP    Systolic blood pressure 
SCC   Cholesterol side-chain cleavage enzyme (Desmolase,   
   CYP11A1) 
SEM    Standard error of the mean 
SERPINE1/ PAI1  Serpin peptidase inhibitor, clade E (nexin, plasminogen 

activator inhibitor type 1), member 1 gene 
SF-1  Steroidogenic factor 1 
SGK1    Serum/glucocorticoid regulated kinase 1 gene 
SH   Secondary hypertension 
siRNA    Short interfering ribonucleic acid 
SKI   SKI Proto-Oncogene gene 
SLC9A1 Solute Carrier Family 9, Subfamily A (NHE1, Cation Proton 

Antiporter 1), Member 1 gene 
SNP  Single nucleotide polymorphism 
snRNA   Small nuclear RNA 
SMAD4   SMAD family member 4 gene 
SMURF1   SMAD specific E3 ubiquitin protein ligase 1 gene 
srRNA   Small regulatory RNA 
SRB1   Scavenger receptor B1 
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SRE   Sterol regulatory response element 
SREBP-1   Sterol regulatory element binding protein 1 
StAR   Steroidogenic acute regulatory protein 
STAT   Signal transduction and activator of transcription protein 
T    Thymine 
TASK-1  Potassium channel subfamily K member 3 (KCNK3) 
TBE    Tris/Borate/EDTA 
TBP    TATA-binding protein 
TCF4   Transcription Factor 4 gene 
TCF   T cell factor protein 
TE    Tris/EDTA 
TF   Transcription factor 
TGIF1    TGFB-induced factor homeobox 1 gene 
TGF-β   Transforming growth factor-beta 
THA    Tetrahydro-11-dehydrocorticosterone 
THAldo   Tetrahydroaldosterone 
THB    Tetrahydrocorticosterone 
THDOC   Tetrahydrodeoxycorticosterone 
THE    Tetrahydrocortisone 
THF    Tetrahydrocortisol 
THS   Tetrahydrodeoxycortisol 
Tm    Melting temperature 
TNF    Tumour necrosis factor gene 
tPA   Tissue plasminogen activator 
TRBP    Tar RNA binding protein 
tRNA   Transfer RNA 
U    Uracil 
UPL    Universal ProbeLibrary 
UV    Ultraviolet 
VCL    Vinculin 
VEGF   Vascular endothelial growth factor 
VLDLR   Very low density lipoprotein receptor 
WHO   World Health Organization 
WGS   Whole genome sequencing 
WNT1/ 3/ 4 Wingless-Type MMTV Integration Site Family, Member 1/ 3/ 4 

gene 
WRE   WNT response element 
XRN-1/2   5'-3' exoribonuclease 1/2 
ZF    Zona fasciculata 
ZFYVE9   Zinc finger, FYVE domain containing 9 gene 
ZG    Zona glomerulosa 
ZR    Zona reticularis 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 Introduction 
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1.1 Hypertension 

The blood circulates through the vascular system under an oscillating pressure 

generated principally by the beating action of the heart and the tone of the 

resistance artery smooth muscle walls. At diastole, blood pressure is at its 

lowest (diastolic blood pressure: DBP) and at systole, it is at its highest (systolic 

blood pressure: SBP). Both DBP and SBP vary between individuals and both tend 

to increase with age. The higher the blood pressure, the greater the risk of 

cardiovascular, cerebrovascular and renal damage. Blood pressure high enough 

to present such a risk is called hypertension. The World Health Organisation 

reports that hypertension is accountable for up to 60% of cerebrovascular 

disease and up to 50% of ischaemic heart disease (IHD) and is the number one 

risk factor for mortality worldwide (WHO 2002). In the United States, the 

lifetime risk of hypertension is estimated to be 90% in people aged 55–56 years 

(Chobanian AV 2003).  

It is important to emphasise that, within the general population, DBP and SBP 

are normally distributed. The distinction between normal blood pressure and 

hypertension is therefore arbitrary. The hypertension classification from the 

2014 Evidence-Based Guidelines (Chobanian AV 2003) for the Eighth Joint 

National Committee Report (JNC 8) (James, Oparil et al. 2014) is shown in Table 

1-1. 

Table 1-1: Classification of hypertension based on the JNC 8. JNC 8 is based on previous 
classification under JNC6 and JNC7. 

JNC 6 SBP/DBP JNC 7 
 

Optimal < 120/80 Normal 
 

Normal 
Borderline 

120-129/80-84 
130-139/85-89 

Pre-hypertension 
 
 

Hypertension ≥ 140/90 Hypertension 
 

Stage 1 
Stage 2 
Stage 3 

140-159/90-99 
160-179/100-109 
180/110 

Stage 1 
 
Stage 2 

 

While hypertension, the so-called silent killer, is thus readily diagnosed and 

treated and there now exists a battery of relatively side effect-free treatments 
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that delay and reduce its destructive effects, only in a very small minority of 

cases can it be cured due to the identification of a single cause. In the remaining 

majority, no unequivocal fundamental cause can be found and these are grouped 

into the category of essential or primary hypertension. However, it is certain 

that there is a spectrum of contributing causes: partly aspects of lifestyle and 

partly inherited factors, which interact with each other. 

A number of lifestyle factors contribute to increased blood pressure and amplify 

its effect. One study assessed the impact of diet and macronutrient intake on 

SBP and DBP (Eckel, Jakicic et al. 2014). The dietary patterns were 

characterized by a combination of daily food intake with, in particular, high 

sodium and potassium content (Eckel, Jakicic et al. 2014). Numerous 

experimental and epidemiological data confirm the advantages of salt restriction 

on blood pressure (Batuman 2013). The Dietary Approaches to Stop Hypertension 

(DASH) trial found that decreasing salt intake from 8 g per day to 6 g 

(intermediate reduction) and 4 g (low reduction) reduced SBP by an average of 

11.5 mmHg in hypertensive and 7.1 mmHg in normotensive people (Sacks, 

Svetkey et al. 2001). A meta-analysis reported that sodium intake of ≤2g/day 

versus ≥2g/day significantly reduced SBP by 3.4 mmHg and DBP by 1.5 mm Hg in 

adults and suggested that most people are likely to benefit from reducing their 

sodium intake (Aburto, Ziolkovska et al. 2013). 

There is good evidence linking physical activity and hypertension (Kokkinos, 

Manolis et al. 2009, Cornelissen and Smart 2013), cardiovascular disease (CVD) 

(Myers 2003), type II diabetes mellitus (Kokkinos, Myers et al. 2009) and blood 

lipids (Krotkiewski, Mandroukas et al. 1979). Overweight women who performed 

one-hour exercise sessions 3 times per week for 6 months decreased BP 

(Krotkiewski, Mandroukas et al. 1979). Fitness status and exercise aptitude 

inversely correlate with mortality risk in healthy people (Kokkinos, Myers et al. 

2008) and in subjects with pre-hypertension (Kokkinos, Myers et al. 2009) and 

hypertension (Kokkinos, Manolis et al. 2009). A moderate increase in exercise 

capacity may prevent the progression of pre-hypertension to hypertension 

(Faselis, Doumas et al. 2012). 

Obesity associates with elevated blood pressure (Sánchez-Castillo, Velásquez-

Monroy et al. 2005, Jensen, Ryan et al. 2014). A 5% weight loss causes reduction 
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of 3 mmHg in SBP and 2 mmHg in DBP (Jensen, Ryan et al. 2014). Aucott et al 

reported that a 10 kg weight loss decreases DBP by 4.6 mmHg and SBP by 6 

mmHg. However, huge weight loss as a result of surgical intervention makes 

little difference to blood pressure (Aucott, Poobalan et al. 2005). 

A significant proportion of increased blood pressure in essential hypertension is 

heritable. Data from family and twin studies indicate a heritable component of 

between 30% and 50% (Miall and Oldham 1963). The search for responsible genes 

has been intense and a variety of biological systems have been implicated, 

including those involved in corticosteroid biosynthesis. These will be reviewed in 

Section 1.4. Several methods, including candidate gene analysis, linkage analysis 

and genome-wide association study (GWAS) have been employed in the search. 

These are discussed further in Sections 1.6.2 to 1.6.4. 

The adrenal cortex has been convincingly identified as a contributor to the 

genetic component of essential hypertension. The following sections explain the 

structure, biosynthesis, control of secretion and mechanism of action of its 

products with particular reference to aldosterone. The importance of cholesterol 

metabolism in biosynthesis is emphasised. The implication of corticosteroids in 

the aetiology of hypertension and heart disease is then reviewed. This includes 

their role in essential hypertension but also information on the growth and 

effects of the various types of adrenocortical neoplasms. A major experimental 

goal is assessment of the importance of miRNA species in the normal function of 

the gland and in the growth and function of tumours. Finally, it is asked, ‘Do 

miRNAs offer an additional means of therapy for adrenal disorders?’. 

1.2 The adrenal cortex 

1.2.1 Structure of the adrenal gland 

 
The adrenal glands are paired glands located at the apex of each kidney as 

shown in Figure 1-1a. Each gland is comprised of an inner medulla – the source 

of catecholamine hormones – and a cortex, which synthesises and secretes the 

corticosteroids. Each gland is surrounded by a fibrous capsule, is supplied with 

blood by three arteries; superior suprarenal artery (branching from the inferior 
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phrenic artery), middle suprarenal artery (branching from the abdominal aorta) 

and inferior suprarenal artery (branching from the renal artery) and is drained by 

the suprarenal vein; the right suprarenal vein drains into the inferior vena cava 

and the left suprarenal vein drains into the left renal vein or the left inferior 

phrenic vein. The cortex consists of three layers of variable width (Figure 1-1b); 

they produce different hormones and their activities are controlled 

independently (see sections 1.4.2). The outermost layer is the zona glomerulosa 

and its principal product is aldosterone. In man, this zone may not always form a 

continuous layer; glomerulosa cells are small. Beneath this is the widest zone, 

the zona fasciculata, the principal product of which is cortisol. Fasciculata cells 

are typically large and contain lipid vacuoles rich in cholesterol. Innermost, 

adjacent to the medulla, is the zona reticularis which secretes largely adrenal 

androgens. Importantly, the adrenocortical blood flow is centripetal so that the 

zona glomerulosa has no direct humoral contact with the inner zones.  

 

Figure 1-1: The anatomy of the adrenal gland. 
(a) The macroscopic anatomy of the adrenal gland. (b) cross sectional diagram and microscopic 
section of the adrenal cortex. Adapted from (Droual 2015). 

 

1.2.2 The corticosteroids 

The corticosteroids are 21C compounds, consisting of a cyclopenteno-

perhydrothrenanthrene base, which is approximately planar, with a β-

orientated, 2-carbon side chain, the first carbon of which bears a ketone group,   
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and two angular methyl groups at C18 and C19. The numbering of the rings and 

the carbon atoms is shown in Figure 1-2. From this basic planar structure, 

substituents such as hydroxyl groups of specific location and orientation 

determine the biological properties of the individual compounds. For example, 

aldosterone in Figure 1-3 is able to perform its function by virtue of its 

hemiacetal substituent, formed from its 11β-hydroxyl group and its unique 18-

aldehyde group. Cortisol, in contrast, is hydroxylated at carbons 11, 17 and 21 

(Figure 1-3). Corticosteroid systematic names are listed in Table 1-1. 

 

Figure 1-2: The basic carbon structure present in all steroid hormones.  
The carbon rings are identified by the letters A to D, universally recognised by the International 
Union of Pure and Applied Chemistry (IUPAC). 

 

 

 

 

 

Figure 1-3: The chemical structures of aldosterone and cortisol. 
Structures of aldosterone (left) and cortisol (right) based on the basic 4 rings of carbon; the 
numbering of the carbon atoms is determined by the International Union of Pure and Applied 
Chemistry (IUPAC). 

 

Aldosterone structure Cortisol structure 
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Table 1-1: Adrenal steroid products, their systematic names and their abbreviations. 

Steroid Product Systematic name Abbreviation 

11-Deoxy-Corticosterone 
 

21-dihydroxypregn-4-ene-3,20-dione DOC 

11-Deoxy-Cortisol 
 

17α,21-dihydroxypregn-4-ene-3,20-dione S 

17-Hydroxy-Pregnenolone 
 

3β,17α-dihydroxypregn-5-ene-20-one 17-OH-PREG 

17-Hydroxy-Progesterone 
 

17α-hydroxypregn-4-ene-3,20-dione 17-OH-P 

18-Hydroxycorticosterone 
 

11β,18,21-trihydroxypregn-4-ene-3,20-dione 18-OH-B 

Aldosterone 
 

11β-21-dihydroxypregn-4-ene-3,20-dione-18-al Aldo 

Androstenedione 
 

androst-4-ene-3,17-dione A’dione 

Corticosterone 
 

11β,21-dihydroxypregn-4-ene-3,20-dione B 

Cortisol 
 

11β,17α,21-trihydroxyprepn-4-ene-3,20-dione F 

Dehydroepiandrosterone 
 

3β-hydroxyandrost-5-ene-17-one DHEA 

Pregnenolone 
 

3β-hydroxypregn-5-ene-20-one PREG 

Progesterone 
 

pregn-4-ene-3,20-dione P 
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The substrate for steroidogenesis is cholesterol. The structure of this important 

sterol is shown in Figure 1-4. Its central role in steroid metabolism is discussed 

further in section 1.3.  

 

Figure 1-4: Chemical structure of cholesterol. 
Cholesterol structure based on the basic 4 rings of carbon; the numbering of the carbon atoms is 
determined by the International Union of Pure and Applied Chemistry (IUPAC). 

 

1.2.3 Corticosteroid effects and mechanism of action 

1.2.3.1 The steroid receptors: structure function and distribution 

1.2.3.1.1 Cortisol action through the glucocorticoid receptor 
 
Cortisol is mainly synthesized in the zona fasciculata, with a small amount from the 

zona reticularis. Its secretion is regulated by adrenocorticotropic hormone (ACTH) 

from the anterior pituitary which, in turn, is controlled by corticotropin-releasing 

hormone (CRH) and arginine vasopressin (AVP) from the hypothalamus. Cortisol exerts 

negative feedback inhibition on the anterior pituitary and the hypothalamus. The 

main function of cortisol is to control blood glucose level. Cortisol stimulates 
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conversion of non-glucose molecules into glucose (gluconeogenesis), glycogenolysis, 

catabolism of protein in muscle and lipolysis in adipocytes. Cortisol is also involved in 

the inflammatory response, where it inhibits the synthesis and action of histamine, 

prostaglandins and leukotrienes. Cortisol also decreases the effectiveness of T and B 

lymphocytes. 

Cortisol acts by binding to glucocorticoid receptor (GR), a member of the nuclear 

receptor superfamily (Griekspoor, Zwart et al. 2007). There are 2 known GR isoforms, 

GRα and GRβ, encoded by a single gene – NR3C1 located on chromosome 5 (5q31) – by 

means of alternative splicing (Smoak and Cidlowski 2007). GRα binds cortisol, while 

GRβ – which differs from GRα at its C-terminus – does not bind to cortisol but does 

bind the glucocorticoid antagonist, RU-486 (Lewis-Tuffin, Jewell et al. 2007). GR can 

be found in almost cells in the body.  

GRα consists of 4 main domains: the N-terminal domain, DNA binding domain (DBD), 

ligand binding domain (LBD) and C-terminal domain. The N-terminal domain itself 

contains the transcription-enhancing activation-function-1 region (AF-1), which 

upregulates gene expression, as well as a site for SUMOylation (modification regulated 

by ubiquitin-related proteins at the post-translation level), ubiquitination 

(modification regulated by ubiquitin) and important basal transcription machinery 

(BTM). The DBD is highly conserved and comprises two α-helices that coordinate two 

zinc fingers essential for dimerization of the hormone-receptor complex and its 

binding to glucocorticoid response elements (GRE), nuclear translocation and 

transactivation. The LBD function is to conserve competency of GR for hormone 

binding (Meijsing, Elbi et al. 2007). The C-terminal domain carries binding sites for 

heat-shock proteins (hsp) and the nuclear localisation signal (NLS) (Smoak and 

Cidlowski 2007, McMaster and Ray 2008).  

Cortisol is lipophilic and can therefore diffuse through the plasma membrane passively 

to binds to GRα in the cytoplasm. Prior to binding, the GR is enveloped in a complex 

of chaperones, including heat shock proteins (hsp90, hsp70, hsp56, hsp40) (Dittmar, 
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Banach et al. 1998) and immunophilins (i.e FKBP59, cylclophilin 40) (Renoir, Mercier-

Bodard et al. 1995), which protect it from degradation and maintain binding affinity. 

A cortisol molecule binds to the GR complex causing dissociation of GRα from the rest 

of the complex (hsps and immunophilins) and migration to the nucleus. The ligand-

receptor complex then binds to GRE as homo- or hetero-dimers, either increasing 

transcription of certain genes through stabilisation of the pre-initiation complex, or 

inhibiting transcription of others (Zennaro 1998). See Figure 1-5.  
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Figure 1-5: Intracellular action of glucocorticoid from cytoplasm to nucleus.  
Glucocorticoid (GC) enters the cell membrane by diffusion. Glucocorticoid receptor (GR) usually form complexes with multiple proteins in the cytoplasm and remain inactivated. Once 
GC bind to GR complexes, GR dissociates from the attached protein and forms a dimer with another GR that bind to GC. GC-GR dimers translocate into the nucleus. Then, target 
gene transcription is initiated. Binding of activated GR homodimer to GREs (glucocorticoid response elements) promoter region activates gene transcription that encode anti-
inflammatory mediators (i.e lipocortin-1, interleukin-10 and inhibitor of nuclear factor KB). RNA poly (RNA polymerase). Modified from (Holgate and Polosa 2008)). 
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For example, the GRE located in the lipocortin gene activates transcription of this 

anti-inflammatory gene. Protein-protein interactions also occur; the ligand-receptor 

complex protein interacts with signal transduction and activator of transcription 

proteins (STATs).  The ligand-receptor complex can also interact simultaneously with 

DNA and protein. For example, interaction of GRα complex with GREs and STATs in 

the Toll-like receptor 2 (TLR-2) gene (Smoak and Cidlowski 2007) is important in 

pathogen recognition and the activation of innate immunity (Takeda and Akira 2005). 

1.2.3.1.2 Aldosterone action through the mineralocorticoid receptor (MR) 
 
Aldosterone acts mainly on epithelial cells of the renal collecting duct where 

transport of Na+, K+ and water occur (Muto 1995). The epithelial cell reabsorbs Na+ 

and water via a specific epithelial sodium channel, ENaC, located at the apical 

membrane. At the basolateral membrane, transport is driven by the Na+/K+-ATPase 

pump, which exchanges sodium ions for potassium and hydrogen ions. Aldosterone 

acts to increase the opening time of existing ion channels or to increase the total 

number of channels at the membrane (Connell and Davies 2005). By stimulating the 

opening of sodium and potassium channels in the luminal membrane and increasing 

the activity of the Na+/K+-ATPase pump at the basolateral membrane (Kobori, 

Nangaku et al. 2007), aldosterone will increase sodium chloride reabsorption and 

potassium secretion in the collecting duct of the nephron (Kobori, Nangaku et al. 

2007). 

Aldosterone acts through the mineralocorticoid receptor (MR) or corticosteroid Type I 

binding site (Baxter, Schambelan et al. 1976). MR is expressed in a variety of 

epithelial cells – including renal, lung and colon tissue (Funder 2005, Viengchareun, Le 

Menuet et al. 2007). 

The genes encoding MR (NC3C2) and GR (NC3C1) lie on human chromosomes 4 and 5, 

respectively, but are closely related. They share 90% amino acid homology (Laudet, 

Hänni et al. 1992) and are 94% identical in their DNA-binding domain (Connell and 

Davies 2005).  The MR has equal affinity for cortisol and aldosterone, and plasma   
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concentration of cortisol is a hundred-fold higher than that of aldosterone 

(Funder 2005). This would lead to almost total exclusion of aldosterone from 

MR binding due to cortisol. However, the 11β-hydroxysteroid dehydrogenase 

type 2 enzyme (11β-HSD2), which co-localises with MR in certain key target 

tissues, converts cortisol to the non-MR-binding cortisone in humans (and also 

the major rodent glucocorticoid corticosterone to 11-dehydrocorticosterone in 

rats and mice) (Funder, Pearce et al. 1988). Furthermore, 11β-HSD2 converts 

NAD to NADH, which inactivates glucocorticoid-MR complexes (Funder 2004). 

The ability of cortisol to bind MR is also reduced because most of it is bound to 

globulin in the plasma (Shigehiro and Tohru 1982). MRs are also present in non-

epithelial tissues such as in cardiovascular and central nervous system where it 

promotes fibrosis, cardiac hypertrophy, impaired vascular function, regulates 

blood pressure and influences salt appetite (Connell and Davies 2005). 

Like the GR, the MR is cytoplasmic in the absence of ligand (Binart, Lombes et 

al. 1991). Aldosterone is, again, a lipid-soluble hormone that can easily diffuse 

into the cytoplasm through the cellular membrane. Once aldosterone enters 

cells to bind and activate MR in the cytosol, the aldosterone-MR complex 

translocates to the nuclear compartment to bind the specific hormone 

responsive element (HRE) (So, Chaivorapol et al. 2007). This step is followed by 

recruitment of chromatin remodelling complexes to activate the transcriptional 

machinery and modulate the expression of aldosterone target genes 

(Viengchareun, Le Menuet et al. 2007). See Figure 1-6. 
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Figure 1-6: Intracellular action of mineralocorticoid (aldosterone) from membrane to cytoplasm into nucleus. 
MR is stimulated by MC (mineralocorticoid; aldosterone) and this will lead to chaperone dissociation. The MR:MC complex is translocated into the nucleus and activates the hormone 
response element in the promoter region of target genes. The Na+ absorption action of aldosterone depends on SGK1, which de-represses the activity of ENac. Aldosterone also 
stimulates the expression of TGF-β and PAI1, ROS. Through the non-genomic pathway, aldosterone activates the EGFR and phosphorylates ERK1/2 to upregulate the pro-
inflammatory transcription factors i.e. ICAM1, MCP1 and IL6. All of these will lead to renal fibrosis and scarring. Mineralocorticoid (MC), mineralocorticoid receptor (MR), epithelial Na+ 
channel (ENaC), transforming growth factor-beta (TGF-beta), plasminogen activator inhibitor, type 1 (PAI1), reactive oxygen species (ROS), epithelial growth-factor receptor (EGFR), 
extracellular-signal-regulated kinase 1 (ERK1)/ERK2, intracellular adhesion molecule 1 (ICAM1), interleukin 6 (IL6), monocyte chemoattractant protein 1 (MCP1). Modified from 

(Perico, Benigni et al. 2008).



38 
 

1.3 Cholesterol: origin and transport 

All steroid hormones are synthesized from cholesterol, most of which is imported 

from circulating lipoproteins (Carr and Simpson 1981) as low-density lipoprotein 

(LDL). Each LDL complex contains approximately 1500 cholesteryl ester (CE) particles 

coated with phospholipid, unesterified cholesterol and B-100 apoprotein (MS Brown 

1986). Adrenal cells can also synthesise cholesterol de novo from acetyl CoA through 

the mevalonate pathway (Borkowski, Levin et al. 1967, Azhar and Reaven 2002) See 

Figure 1-7. Cholesterol is stored as cholesteryl ester in cytoplasmic lipid droplets 

(Gwynne and Strauss 1982). 

 

Figure 1-7: Cholesterol synthesis pathway.  
HMGCR (3-hydroxy-3-methylglutaryl-CoA reductase) is the rate-limiting enzyme for cholesterol 
production, also known as statin target for treatment of hypercholesterolemia. 
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Human steroidogenic cells employ receptor-mediated-endocytosis via the low density 

lipoprotein receptor (LDLR), which translocates LDL from the circulation into the cell. 

LDLR is a glycoprotein receptor located at the cell membrane, encoded by the LDLR 

gene on chromosome 19p13.1-13.3 (Francke, Brown et al. 1984). After formation of 

the LDL-LDLR complex, it passes into the cell, fusing with lysosomes into which free 

cholesterol is released. This can be transported to mitochondria for steroidogenesis or 

re-esterified and stored in lipid droplets (Azhar and Reaven 2002). LDLR dissociates 

and is recycled to the cell surface to repeat endocytosis. 

The level of cholesterol in the cell is controlled by sterol response element binding 

proteins (SREBPs) (Kim, Miyazaki et al. 2002). In cholesterol-deficient cells, the 

SREBP-specific proteases (S1P and S2P) cleave SREBPs to release the activated N-

terminal from the membrane. This enables the binding protein to enter the nucleus 

and bind to sterol regulatory response elements (SREs) and activate the genes 

involved in cholesterol, fatty acid and triglyceride synthesis (Kim, Miyazaki et al. 

2002). 

A recent study showed that acyl-CoA:cholesterol acyltransferase (ACAT) esterifies 

free cholesterol for storage in lipid droplets and that this process is modulated by 

hormone-sensitive lipase (HSL) (Miller and Auchus 2011). HSL is stimulated by ACTH to 

increase the availability of free cholesterol. ACTH also can inhibit ACAT action, 

increasing intracellular cholesterol homeostasis by pumping intracellular cholesterol 

out to the circulation, thus reducing the level of cholesterol in the cell (Oram and 

Lawn 2001).  

A major part of steroidogenesis is intra-mitochondrial. Cholesterol is translocated 

from the outer mitochondrial membrane (free cholesterol availability for 

steroidogenesis (Miller and Auchus 2011). The ATP-binding cassette transporter 

subfamily A member 1 (ABCA1), a membrane protein, contributes to intracellular 

transport of cholesterol from the outer mitochondrial membrane (OMM) to the inner 

mitochondrial membrane (IMM) by steroidogenic acute regulatory protein (StAR). At 
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the IMM, cholesterol side-chain cleavage enzyme, (P450scc, also known as CYP11A) 

converts insoluble cholesterol to soluble pregnenolone by removing all but C20 and 

C21 of the side chain. See Figure 1-8 (Miller 1988). 
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Figure 1-8: Pathway of cholesterol biosynthesis and its relation with LDLR, HMGCR and CYP11B2.  
LDL binds to LDLR for LDL:LDL complex internalization. In the endosome, LDLR will be recycled back to the membrane while LDL will be processed in the lysosome to produce free 
cholesterol. Cholesterol movement into the mitochondrion is strictly controlled by StAR. In the mitochondrion, cholesterol will be synthesized to aldosterone via multiple enzymatic 
processes. The intracellular cholesterol is exported via ABCA1, an ATP-binding transporter. RABCA1: ATP-binding cassette A1 transporters; DOC: Deoxycorticosterone; HMGCR: 3-
Hydroxy-3-Methylglutaryl-CoA Reductase; LDL: low density lipoprotein; LDLR: low density lipoprotein receptor; StAR: steroidogenic acute regulatory protein; SRE: Sterol Response 
Elements; SREB: sterol-response element–binding protein. Modified from (Qiagen , Singh, Yadav et al. 2015).
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1.3.1 StAR 

StAR protein possesses a hydrophobic cholesterol-binding pocket that enables transfer 

of cholesterol from OMM to IMM (Mathieu, Fleury et al. 2002). It is a 30 kDa 

mitochondrial peptide synthesized from a 37 kDa precursor (Miller 2007) and is 

expressed in all steroidogenic tissues. It belongs to the StAR-related lipid transfer 

(START) family of proteins (Soccio and Breslow 2003). There are multiple START 

domains mediating lipid transfer intracellularly. StarD4 and D5 are thought to be 

responsible for cholesterol movement from cytoplasmic lipid droplets to OMM 

(Riegelhaupt, Waase et al. 2010). StarD4 and D5 have StAR-like activity in COS-1 cell 

transfected with P450scc enzymes (Soccio, Adams et al. 2005). It is estimated that 

approximately 400 cholesterol molecules per minute are translocated into 

mitochondria by each newly-synthesized molecule of StAR (Ikonen 2008).  

StAR gene transcription is modulated by many transcription factors, including 

steroidogenic factor-1 (SF-1), cAMP response element mediator, dosage-sensitive sex 

reversal-adrenal hyperplasia congenital critical region on the X-chromosome (DAX-1), 

GATA-4, CCAAT-enhancer-binding protein-β (C/EBPβ) and activator protein-1 (AP-1) 

(Reinhart, Williams et al. 1999). SF-1 null mice do not express StAR mRNA, 

demonstrating that StAR is dependent on SF-1 for its transcription (Caron, Ikeda et al. 

1997). SF-1 activates the StAR promoter region at six binding sites (Reinhart, Williams 

et al. 1999). Its transcription is also activated by cAMP signalling through the cAMP-

response element (CRE)-binding protein (CREB) and CRE (Manna and Stocco 2007). In 

lipoid congenital adrenal hyperplasia (CAH), steroidogenesis activity is severely 

impaired and cholesterol accumulates within the cytoplasm due to inactivating 

mutations of StAR. In rodents, where steroidogenic cells derive cholesterol from HDL 

through the scavenger receptor B1 (SRB1) (Johnson, Svensson et al. 1998), absence of 

adrenal StAR leads to increased SRB1 expression (Cao, Zhao et al. 1999). However, 

steroidogenesis is not fully StAR-dependent; COS-1 cells (non-steroidogenic) 

transfected with F2 (a fusion protein with H2N–P450scc–Ferredoxin Reductase–
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Ferredoxin–COOH) are steroidogenic despite the absence of StAR (Black, Harikrishna 

et al. 1994).  

1.3.2 SF-1 

The orphan nuclear receptor Steroidogenic factor-1 (SF-1) is known to have a vital 

role in steroidogenic tissue development and differentiation. It is encoded by the 

NR5A1 gene (nuclear receptor subfamily 5, group A, member 1). Mutation of NR5A1 

can lead to infertility and absence of puberty.  SF-1 is involved in the expression of all 

steroidogenic enzymes in adrenocortical and gonads. SF-1 activates the promoter 

region of steroidogenic enzymes including CYP11B1, P450cc, StAR and CYP21. 

Responsiveness to cAMP can be altered due to overlapping of a cAMP-sensitive 

promoter region with SF-1 (Val, Lefrançois-Martinez et al. 2003). In in vivo studies, 

disruption of the SF-1 gene leads to failure of adrenal and gonad development (Luo, 

Ikeda et al. 1994). The activation function-2 (AF-2) domain located in the ligand-

binding domain (LBD) of SF-1 has a significant effect on SF-1 function and is important 

to transactivation of target genes. It is reported that even a single point mutation in 

the AF-2 domain of SF-1 significantly affects SF-1 transactivation, transforming it into 

a negative mutant with regards to PKA-C-dependent activation (Jacob and Lund 

1998). 

1.3.3 HMGCR 

3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) represents the rate-

limiting step for cholesterol biosynthesis. It catalyses the conversion of 3-

hydroxy-3-methylglutaryl coenzyme A (HMGCoA) to mevalonic acid ((Bochar DA 

1999) and Figure 1-8). 

HMGCR is a target for statins, drugs used to treat high cholesterol levels. Statin as a 

cholesterol-lowering agent has been widely used as effective therapy for 

hypercholesterolaemia for more than 30 years (Goldstein and Brown 1990). Initially, 

the Framingham study found that there was strong correlation between high plasma 
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cholesterol and coronary heart disease (CHD) mortality and later specified this was 

due to LDL (Tobert 2003). However, this remains controversial, with strong evidence 

to show that that inhibiting HMGCR lowers the progression of atherosclerotic 

development (Blankenhorn, Azen et al. 1993, Jukema, Bruschke et al. 1995, Salonen, 

Nyyssönen et al. 1995). Over the 5 years of the 4s trial (Scandinavian Simvastatin 

Survival Study), 4000 patients received either simvastatin or placebo, the former 

significantly reducing mortality due to a decreased number of coronary deaths. This 

support and confirms that lowering cholesterol effectively reduces CHD morbidity and 

mortality (Pedersen, Berg et al. 1996). 

HMGCR is also expressed in glial cells of the brain, controlling de novo synthesis of 

cholesterol assisted by ABCA1 importation of extracellular cholesterol. Overexpression 

of HMGCR along with underexpression of ABCA1 leads to accumulation of cholesterol 

intracellularly, resulting in increased amyloid beta (Aβ) synthesis and greater risk of 

Alzheimer’s disease (AD) (Rodríguez-Rodríguez, Mateo et al. 2009). 

Apart from cholesterol synthesis, HMGCR also contributes to stimulated migration of 

primordial germ cells to mesoderm from the embryonic endoderm. HMGCR mutants 

fail to show this migration, affecting the development of gonadal mesoderm and 

terminating embryogenesis (Van Doren, Broihier et al. 1998). 

1.3.4 LDLR 

LDLR is a glycoprotein receptor at the cell membrane (Figure 1-8) that binds and 

internalizes ligands (i.e cholesterol-containing lipoprotein LDL), enzyme complexes 

(i.e protease or protease inhibitor), vitamins and much else from the extracellular 

area (Willnow, Nykjaer et al. 1999, Gent and Braakman 2004). In humans, LDLR is 

encoded by the LDLR gene located on chromosome 19p13.1-13.3 (Francke, Brown et 

al. 1984). 

The mammalian LDLR family can be divided into several groups including the most 

important, the very-low density lipoprotein receptor (VLDLR) and apolipoprotein E 
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receptor 2 (Gent and Braakman 2004). Some of the family members play essential role 

neuronal migration, embryonic development and synaptic transmission (May, Bock et 

al. 2003, Schneider and Nimpf 2003). 

Once the internalization of LDL occurs, it reduces expression of HMGCR to decrease 

cholesterol production and stimulate the Acyl-CoA cholesteryl acyl transferase (ACAT) 

to form CE from cholesterol, thus reducing cholesterol toxicity intracellularly 

(Shimomura, Bashmakov et al. 1997, Tamura and Shimomura 2005). 

LDLR-impaired mice given high cholesterol diet present with hyperlipidaemia, and 

increased reactive oxygen species (ROS) cause vascular structure alterations (Kypreos 

and Zannis 2006, Lauzier, Delemasure et al. 2011). Another study delivered restored 

LDLR gene expression through intravenous injection of  adenovirus in LDLR-null mice, 

thereby reducing LDL and VLDL in the circulation (Ishibashi, Brown et al. 1993).  

LDLR defects are the most common cause of familial hypercholesterolemia (FH) and 

increase the risk of coronary artery disease due to severe elevation of serum LDL (Go 

and Mani 2012). In FH, 1 in 500 cases are due to heterozygote mutations and 1 in a 

million to homozygote mutation (Helen H. Hobbs 1992). In homozygotic FH, serum LDL 

levels are up to 800 mg/dL (normal is <100 mg/dL) with significant severe 

accumulation of atherosclerotic plaques at the cardiac arteries and valve. In 

heterozygotic cases, patients typically present with double the normal plasma LDL 

concentration and a 2-fold risk of coronary artery disease relative to the general 

population (Go and Mani 2012). 

1.3.5 ABCA1 

ATP-binding cassette transporter subfamily A member 1 (ABCA1) is a membrane 

protein essential to intracellular cholesterol homeostasis (Oram and Lawn 2001). The 

main function of ABCA1 is to pump out intracellular cholesterol to the circulation thus 

reducing the level of cholesterol in the cell (Figure 1-8). Defects of ABCA1 (i.e in 

familial hypoalphalipoproteinemia,or FHA, or in Tangier Disease) result in severely 
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defective cholesterol efflux and accumulation of intracellular cholesterol ester 

(Bodzioch, Orso et al. 1999). During reverse cholesterol transport, ABCA1 mediates 

the cholesterol and phospholipid transfer onto Apo-A1, an anti-atherosclerotic 

property of HDL. ABCA1 transcription is known to be stimulated by cAMP and LXR-RXR 

pathways in macrophages (Abe-Dohmae, Suzuki et al. 2000, Schwartz, Lawn et al. 

2000), so it is suggested that the alteration of ABCA1 expression may decrease the 

transition to foam cell and reduce progression of atherosclerotic plaques.  

In severe accumulation of cholesterol in the cell, one study proposed that it will lead 

to β-cell apoptosis and impaired insulin secretion (Unger 1995). This was further 

supported by a study with ABCA1-null mice, which have impaired glucose tolerance 

despite normal insulin sensitivity, suggesting that β-cell function is impaired 

(Brunham, Kruit et al. 2007). Mice lacking LXR-β, a transcription factor that activates 

ABCA1, have accumulation of lipid in the islets of β-cells, impaired glucose tolerance 

and reduced β-cell function (Gerin, Dolinsky et al. 2005). 

Lipid-rich diets stimulate mesangial cell proliferation and increase glomerulosclerosis 

due to deposition of lipid and accumulation of foam cells in the mesangial areas 

(Song, Li et al. 2000). ABCA1-deficient mice develop kidney glomerulonephritis, 

severe placental malformation and HDL deficiency (Christiansen-Weber, Voland et al. 

2000). 

1.4 Biosynthesis of corticosteroids 

1.4.1 Enzymes  

1.4.1.1 The hydoxysteroid dehydrogenases 

Hydroxysteroid dehydrogenases catalyse the oxidation of steroid hydroxyl substituents 

to ketone (oxo) groups. Their actions are locus- and orientation-specific. Enzymes 

include: 
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1. 3β-Hydroxysteroid dehydrogenase: converts pregnenolone to progesterone, 

17α-hydroxypregnenolone to 17α-hydroxyprogesterone and 

dehydroepiandrosterone to androsterone 

2. 11β-Hydroxysteroid dehydrogenase: converts cortisol to cortisone 

3. 17-Hydroxysteroid dehydrogenase: converts androstenedione to testosterone 

4. 20α-Hydroxysteroid dehydrogenase: converts progesterone to 20-α-

dihydroprogesterone 

1.4.1.2 The mixed function oxidases 

Mixed-function oxidases create hydroxyl groups (‘hydroxylation’) using a molecule of 

oxygen, the second atom of which is reduced to water. They are haem-containing 

enzymes specific for locus and orientation. Cytochrome P450 (CYP450) enzymes 

participate in steroidogenesis and the synthesis of bile acids, prostaglandins and fatty 

acids as well as the metabolism of drugs and natural products. They contain haem and 

are capable of catalysing numerous reactions including hydroxylation, peroxidation, 

sulfoxidation, N-oxidation, epoxidation, deamination and desulfuration (Lisurek and 

Bernhardt 2004, Hille, Hu et al. 2009). There are six cytochrome P450 enzymes 

involved in steroidogenesis:  

1. cholesterol side-chain cleavage enzyme, SCC, desmolase (CYP11A1) 

2. 11β-hydroxylase (CYP11B1) 

3. aldosterone synthase (CYP11B2) 

4. 17α-hydroxylase/17,20-lyase (CYP17A) 

5. aromatase (CYP19) 

6. 21-hydroxylase (CYP21). 

Cytochrome P450s act as monooxygenases, using reduced nicotinamide adenine 

dinucleotide phosphate (NADPH) as an electron donor for molecular oxygen reduction: 

RH+NAD(P)H+O2→ROH+NAD(P)+H2O 
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Ferredoxin proteins mediate electron transfer. Adrenodoxin (also called ferredoxin 1 

or FDX-1) is the human adrenal ferredoxin that helps transfer electrons from NADPH 

to CYP450 enzymes, mediating ferredoxin function, as shown in Figure 1-9 (Imamichi, 

Mizutani et al. 2014).  

 

Figure 1-9: Mitochondrial and microsomal P450 redox partners.  
FAD (flavin adenine dinucleotide), FMN (flavin mononucleotide), NADPH (nicotin-amide adenine 
dinucleotide phosphate). Modified from (Cederbaum 2015). 

 

The steroidogenic pathways within the adrenal cortex are illustrated in Figure 

1-10 and Figure 1-11. In the zona glomerulosa, there is a single linear pathway 

to aldosterone, whereby cholesterol undergoes side-chain cleavage to 

pregnenolone by CYP11A1, and is then oxidised to progesterone by 3βHSD2. A 

series of hydroxylation reactions then convert progesterone to aldosterone. The 

unique final reaction, catalysed by CYP11B2 (aldosterone synthase), involves 

three consecutive modifications, each utilising one NADPH molecule, one 

oxygen molecule and a mitochondrial electron transfer (Payne and Hales 2004):  

1) 11β-hydroxylation of DOC to produce corticosterone  

2) 18-hydroxylation to 18-hydroxy corticosterone 

3) 18-methyloxidation to formaldosterone 
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Corticosterone is also synthesised in the zona fasciculata but, in the absence of 

aldosterone synthase, is not processed further. However, the human zona fasciculata, 

unlike the zona glomerulosa, does express 17α-hydroxylase (CYP17A1). This 

microsomal enzyme acts on either pregnenolone or progesterone; their 17α-

derivatives are then subject to further conversions to form cortisol. 11β-Hydroxylase 

(CYP11B1), which catalyses the final step from 11-deoxycortisol to cortisol, has 

considerable homology with aldosterone synthase. These two enzymes are discussed 

in more detail in Section 1.4.2.3. 
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Figure 1-10: Chemical structure of steroid hormones in aldosterone and cortisol biosynthesis. Red indicates CYP11B2- and CYP11B1-mediated conversions. 
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Figure 1-11: Steroid hormone biosynthesis pathway. Reactions within the yellow dotted line occur in the zona glomerulosa. 
The conversion of cholesterol to pregnenolone is catalysed by P450scc (CYP11A1). Pregnenolone is converted to progesterone by 3βHSD. Progesterone undergoes 21-hydroxylation 
by CYP21A1 to produce DOC (11-Deoxycorticosterone). The conversion of DOC to aldosterone involves 3 reactions: 11β-hydroxylation of DOC to produce corticosterone, 18-

hydroxylation to yield 18-hydroxycorticosterone and 18-methyloxidation to form aldosterone.
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1.4.2 Control of corticosteroid biosynthesis and secretion 

1.4.2.1 Cortisol 

1.4.2.1.1 Hypothalamo-pituitary-adrenocortical (HPA) Axis 
 
The production of cortisol is primarily regulated by ACTH via the hypothalamo-

pituitary-adrenocortical (HPA) axis (Figure 1-7). Stimulation of the HPA axis occurs 

through stressors such as anxiety, pain, fear, arousal, aversive reaction and many 

others (Jeansok J. Kim 2001, Heinrichs and Koob 2004). This activates release of 

corticotropin-relasing hormone (CRH) and arginine vasopressin (AVP) from the 

hypothalamus into the hypothalamo-pituitary portal system. CRH increases cAMP and 

Ca2+ levels in corticotropic cells. Both cAMP and Ca2+ are known to increase pro-

opiomelanocortin (POMC) mRNA levels. Aside from these second messengers, POMC 

gene transcription is also regulated by a variety of hormones and neuropeptides. 

POMC is a precursor polypeptide (241 amino acid residues) that is cleaved to form 

multiple peptide hormones including ACTH, melanotropins and opioid peptides of the 

β-endorphin family (Boutillier, Monnier et al. 1995). These initiate ACTH release by 

the corticotropic cells (Vedder 2007). ACTH activates transmembrane heterotrimetric 

G protein ACTH receptors (MCR2) to generate cAMP as a second messenger (Côté, 

Payet et al. 1999). cAMP then activates cAMP-dependent protein kinase A (PKA), 

which phosphorylates target proteins. Increased cortisol exerts negative feedback 

inhibition on CRH and ACTH at the transcriptional and secretion levels (Kellendonk, 

Tronche et al. 2002). Other stimulants of the HPA include interleukin-3 (IL-3) and 

interleukin-6 (IL-6) (Weber, Michl et al. 1997).  
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Figure 1-12: The Hypothalamic-Pituitary-Adrenocortical (HPA) Axis. 
CRH in the hypothalamus stimulates ACTH at the anterior pituitary. By activating ACTH receptors in 
the adrenal gland, this will lead to cortisol secretion in the adrenal zona fasciculata. High levels of 
cortisol will inhibit the production of ACTH and CRH via a negative feedback-loop. Corticotropin-
releasing hormone (CRH); ACTH: Adrenocorticotropic hormone. 

 

1.4.2.2 Aldosterone 

1.4.2.2.1 The Renin-angiotensin-aldosterone system (RAAS) 
 
The RAAS is summarised in Figure 1-13. Its active product is angiotensin II (Angio II), a 

pressor octapeptide which is released in response to sodium deprivation or falls in 

intravascular volume. It stimulates the zona glomerulosa to produce aldosterone, 

principally through the Angiotensin Type 1 receptor (AT1), which will lead to 

aldosterone secretion (Guo, Sun et al. 2001). Binding of Angio II to the AT1 receptor 

activates the phosphoinositide-specific phospholipase C (PLC) to hydrolyse 

phosphatidylinositol 4,5-biphosphate (PIP2) and generate two second messengers, 

DAG and inositol 1,4,5-triphosphate (IP3). Diacyglycerol (DAG) has been shown to 

stimulate PKC (Bollag, Barrett et al. 1990) and selective PKC inhibitors reduce Angio 
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II-induced aldosterone synthesis (Kapas, Purbrick et al. 1995). IP3 stimulates 

aldosterone production by activating the calcium/calmodulin-dependent protein 

kinases (CaMK) and increasing calcium concentration in the cytoplasm (Hattangady, 

Olala et al. 2012); again , their inhibition decreases Angio II-induced aldosterone 

synthesis (Ganguly, Chiou et al. 1990). 
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Figure 1-13: Regulation of aldosterone biosynthesis under the Renin-Angiotensin-Aldosterone System (RAAS). 
Low intravascular blood volume (and therefore pressure) activates renin activity (secreted from renal juxtaglomerular kidney cells) and conversion of angiotensinogen to Angio I. ACE 
secretion from lungs and renal cells convert the Angio I to Angio II. Angio II binds to AT1-receptor and activates PLC. PLC then hydrolyses PIP2 and generates IP3 and DAG. 
Subsequently DAG activates PKC for vasoconstriction at the afferent arteriole of kidney and reduces aldosterone synthesis. IP3 activates the calmodulin/Ca2+-dependent protein 
kinase (CaMK), increases intracellular calcium and activates CREB. Another cascade involved in increasing aldosterone secretion involves potassium. Increased extracellular 
potassium leads to cell membrane depolarisation and opening of the voltage-dependent Ca2+ channel, activating cAMP and CREB. ACTH also stimulates aldosterone by binding of the 
ACTH receptor. This leads to dephosphorylation of ATP by adenyl cyclase to generate cAMP. cAMP then activates the PKA and leads to CREB phosphorylation; through several 
enzymatic processes it will increase aldosterone production.  ACTH: Adrenocorticotropic hormone, AT1-receptor: Angiotensin type 1 receptor, CaMK: Calmodulin kinase, IP3: Inositol 
triphosphate; MP: Membrane potential; PKC: Protein kinase C; PKA: Protein kinase A; PLC: Phospholipase C; PIP: Phosphatidyl inositol diphosphate, SF-1: Steroidogenic factor 1. 
Modified from (Delcayre and Silvestre 1999) 
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1.4.2.2.2 Potassium ions (K+) 
 
Zona glomerulosa cells are highly sensitive to changes in potassium level. An increase 

in serum potassium of 0.1mEq/l increases serum aldosterone by 25% (Himathongkam, 

Dluhy et al. 1975). Increased extracellular K+ concentration depolarises the cell 

membrane, opening voltage-dependent L- and T-type Ca2+ channels. The consequent 

influx of Ca2+ again activates CaMK, which phosphorylate transcription factors 

required for CYP11B2 expression (Connell and Davies 2005). Further Ca2+ is released 

from intracellular stores (Spät and Hunyady 2004). 

1.4.2.2.3 Adrenocorticotrophic hormone (ACTH) 
 
In humans and experimental animals, acute infusion of ACTH stimulates aldosterone 

production through the cAMP pathway (Connell and Davies 2005). However, chronic 

stimulation of ACTH suppresses plasma aldosterone (Hattangady, Olala et al. 2012). 

Chronically, ACTH may convert the phenotype of glomerulosa cells into cortisol-

producing fasciculata cells or divert precursors from the mineralocorticoid to the 

glucocorticoid pathway (Hornsby, O′Hare et al. 1974). 

1.4.2.2.4 Endothelin, serotonin and adipose tissue 
 
Endothelin is a potent vasoconstrictor and may stimulate zona glomerulosa cells to 

secrete aldosterone (Pecci, Cozza et al. 1994, Zhang, Azhar et al. 2012). Although the 

number of endothelin receptors is equal to those of AT1, endothelin is a weak 

aldosterone secretagogue compared to Angio II, K+ and ACTH (Williams 2005). 

Serotonin is also a weak stimulator of aldosterone synthesis; the serotonin precursor, 

5-hydroxytryptophan increases plasma aldosterone while serotonin antagonist reduces 

it (Shenker, Gross et al. 1985). 

Adipose cells secrete several products of linoleic acid oxidation and other 

secretagogues that stimulate aldosterone production (Goodfriend, Ball et al. 2002, 

Ehrhart-Bornstein, Lamounier-Zepter et al. 2003). Plasma aldosterone levels and body 
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mass index correlate positively and there is an increased prevalence of 

hyperaldosteronism in obese patients (Calhoun and Sharma 2010). Recently, a study 

utilising human adrenal and H295R cells reported that obesity (endogenous leptin) and 

infusion (exogenous leptin) increased CYP11B2 expression and aldosterone in dose-

dependent manner (Huby, Antonova et al. 2015). 

1.4.2.3 CYP11B1 and CYP11B2 

Aldosterone synthase (also known as CYP11B2 or P450c11b2) has a molecular mass of 

48.5 kDa and is expressed in the zona glomerulosa, where it is located on the inner 

mitochondrial membrane (Curnow, Tusie-Luna et al. 1991). CYP11B2 gene 

transcription can be stimulated by Angio II, cAMP and K+ (Clyne, Zhang et al. 1997). In 

gene transfection studies, CYP11B2 promoter activity is directly activated by Nur-

related factor 1 (NURR-1 or NR4A2) and neuron-derived orphan receptor 1(NOR-1 or 

NR4A3) (Nogueira, Xing et al. 2009); both can be upregulated in the zona glomerulosa 

by Angio II (Bassett, Suzuki et al. 2004). 

The 11β-hydroxylase enzyme (P450c11b1) is encoded by the CYP11B1 gene, which is 

highly homologous with CYP11B2; they exhibit 95% similarity in the coding sequence 

and 90% similarity in intronic regions (Payne and Hales 2004). CYP11B1 and CYP11B2 

are located in tandem, 40 kb apart, on chromosome 8q21; each consists of 9 exons. 

See Figure Figure 1-14. The greatest difference between the genes lies in their 5’ 

untranslated regions, accounting for the differences in their expression (Mornet, 

Dupont et al. 1989), while minor differences in their coding regions result in their 

differing enzymatic functions. 
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Figure 1-14: Genomic tandem structure of CYP11B2 and CYP11B1 and the Ideogram of 
human chromosome 8.  
CYP11B2 and CYP11B1 located at 8q24.3. Red indicates the centromere. Modified from (Portrat, 
Mulatero et al. 2001, NCBI 2014). 

 

1.4.2.3.1 Polymorphisms of CYP11B2 and CYP11B1 
 
The CYP11B2 and CYP11B1 genes are highly polymorphic. The most commonly-studied 

CYP11B2 polymorphism is a C/T variant located at position ‑344, relative to the 

coding region (rs1799998). This polymorphism has been significantly associated with 

altered blood pressure and aldosterone levels (White and Slutsker 1995). Davies et al 

(1999) reported that the T-allele at -344 occurs more frequently in hypertensive 

patients and associates with significantly higher levels of aldosterone metabolite 

(tetrahydroaldosterone) in the urine compared to -344C groups (Davies, Holloway et 

al. 1999). This site corresponds to a steroidogenic factor-1 (SF-1) binding site,  

although in vitro analysis showed the polymorphism had no significant effect on SF-1 

binding (Bassett, Zhang et al. 2002). More recently, analysis suggests that rs1799998 is 
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not itself a functional polymorphism (Niu, Guo et al. 2010), it may be in linkage 

disequilibrium with one. 

1.4.2.3.2 Transcription Factors and miRNA influencing CYP11B2 and CYP11B1 expression 
 
Transcription factors (TFs) bind specific sites in the promoter/ 5’UTR region of a gene 

to inhibit or stimulate gene expression. TFs, such as neuronal growth factor-induced 

clone B (NGFI-B), regulate aldosterone synthase, 11β-hydroxylase, 3β-hydroxysteroid 

dehydrogenase, 17α-hydroxylase, and 21-hydroxylase in the adrenal gland (Nogueira 

and Rainey 2010, Romero, Gomez-Sanchez et al. 2010). The members of the NGFI-B 

nuclear orphan receptor superfamily include NR4A1 (Nur77, NGFI-B), NR4A2 (Nurr1) 

and NR4A3 (Nor1), and are abundantly expressed in the adrenal cortex (Romero, 

Gomez-Sanchez et al. 2010). NGFI-B is upregulated in the presence of Angio II in the 

H295R adrenocortical cell line (Romero, Gomez-Sanchez et al. 2010)  and a NGFI-B 

response element (NBRE) has been identified within the CYP11B2 promoter that 

regulates transcription (Nogueira and Rainey 2010). Other important transcription 

factors for CYP11B2 and CYP11B1 are cAMP-responsive element binding proteins 

(CREBs), which are shown to be subject to Angio II-regulated phosphorylation in 

several tissues. NURR1 can act synergistically with members of the CREB family to 

increase CYP11B2 expression (Nogueira and Rainey 2010). 

Transcription of CYP11B1 is also modulated by SF-1 (Wang, Bassett et al. 2000). In a 

luciferase reporter construct study, co-transfection of vectors encoding SF-1 up-

regulated expression of CYP11B1 but not CYP11B2; also,  mutation of SF-1 inhibited 

CYP11B1 transcription (Bassett, Zhang et al. 2002). According to Bassett et al, the 

exception of CYP11B2 from being downregulated by SF-1 is probably due to the 

concentration of SF-1 plasmid used in the study. Other study showed that SF-1 has a 

repressor domain, therefore this enable the SF-1 to downregulate CYP11B2 and not 

vice versa (Ou, Mouillet et al. 2001). 
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In addition to the transcription factors modulating CYP11B2 and CYP11B1, another 

factor of importance has emerged: microRNA (miRNA). This will be further discussed 

in Section 1.7.1. 

1.5 The adrenal cortex and disease 

Disruption of corticosteroidogenesis has profoundly negative health implications. 

Adrenal failure (Addison’s disease) disrupts both electrolyte and energy metabolism 

and, without treatment, is fatal. The effects of excess cortisol or aldosterone have 

already been described and are similarly debilitating. These extreme conditions are 

rare, comprising principally adrenocortical neoplasia and monogenic disorders of 

specific enzymes’ gene expression. These are briefly summarised below. Recent 

studies, however, suggest that small deviations from normal gene expression, when 

sustained over a lifetime as the result of, for example, polymorphic variation or 

changes in regulatory factors, may be important and common determinants of health. 

1.5.1 Adrenal tumours 

1.5.1.1 Aldosterone-producing adenoma (APA) 

Primary aldosteronism (PA) is the most common cause of secondary hypertension 

(Scholl and Lifton 2013) and is characterized by high blood pressure, increased 

aldosterone secretion, hypokalaemia and low renin level. It may be associated with 

increased risk of renal (Rossi, Bernini et al. 2006) and cardiac disease (Anand, Mooss 

et al. 2006). In 30-40% of patients, PA is due to a unilateral aldosterone-producing 

adenoma (APA) (Ye, Mariniello et al. 2007, Sahay and Sahay 2012)  and more than 60% 

of PA is due to bilateral adrenal hyperplasia (BAH) (Freel and Connell 2005). Adrenal 

carcinoma is much less frequent. According to the Endocrine Society’s diagnostic 

guidelines (2008), the initial step differentiating APA from BAH is a computerised 

tomography (CT) scan, which will also exclude adrenal carcinoma where the lesion is 

usually more than 4 cm. APAs are usually less than 3 cm. BAH shows abnormality of 
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both adrenal glands. Confirmation is by adrenal venous sampling (Sahay and Sahay 

2012). Differences between APA and BH are summarized in the Table 1-2. 

Table 1-2: Major differences between Aldosterone Producing Adenoma (APA) and Bilateral 
Adrenal Hyperplasia (BAH). ACTH: Adrenocorticotrophic Hormone; AVS: A drenal Venous 
Sampling; PA: Primary Aldosteronism; ZF: Zona Fasciculata; ZG: Zona Reticularis. 
Modified from (Freel and Connell 2005). 

  

Feature Aldosterone-Producing 

Adenoma 

Bilateral adrenal 

hyperplasia 

Approximate 

proportion of all PA 

1/3 2/3 

Imaging common 

finding 

Unilateral solitary Normal or bulky 

adrenal 

Common pathologic 

findings 

Predominantly ZF cells Multiple nodules in the 

ZF or diffuse 

hyperplasia of ZG 

Postural response  Variable (many adenomas 

are ACTH responsive) 

Maintained 

Finding on AVS Increased aldosterone to 

cortisol ratio in affected 

adrenal side 

No difference in 

aldosterone to cortisol 

ratio between adrenal 

veins 

Treatment Laparoscopic surgery Medication 

(Aldosterone 

antagonists) 
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1.5.1.2 Gene mutations in APA 

1.5.1.2.1 KCNJ5 
 
In APA, about 30–60% of cases have somatic mutation of the G-protein-activated 

inward rectifying potassium channel Kir3.4, which is encoded by the KCNJ5 gene 

(Gomez-Sanchez and Oki 2013). The Kir3.4 channel is a tetrameric complex with an 

extracellular pore-forming region that binds with other K+ channels (e.g. Kir3.1) to 

form heterotetrameric or homotetrameric complexes (Ishihara, Yamamoto et al. 

2009, Zennaro and Jeunemaitre 2011). Mutation of K+ channels can alter the 

selectivity filters to K+, making them non-selective channels (Heginbotham, Lu et al. 

1994, Dibb, Rose et al. 2003).  

In the resting state, zona glomerulosa cells have negative resting potentials and 

steroidogenesis remains inactive (Guagliardo, Yao et al. 2012); K+ channels, including 

Kir3.4, TASK-1 to TASK-5 and Twik-Related Potassium Channel 1, are all intact and 

intracellular K+ is released to extracellular compartments. Angio II decreases K+ 

transport through the channel and also decreases the expression of Kir3.4 channel. 

This causes membrane depolarization and voltage-dependent Ca2+ channels to open, 

increasing Ca2+ influx and stimulating the calcium-calmodulin pathway. These events 

increase the expression of CYP11B2 and therefore aldosterone production. In the case 

of a somatic mutation of KCNJ5, there is a loss of selectivity of the Kir3.4 channel, 

allowing the influx of Na+ that leads to membrane depolarization, calcium influx and 

subsequent increase in CYP11B2 gene expression (Choi, Scholl et al. 2011). 

1.5.1.2.2 ATP1A1 and ATP2B3 
 
In a study of 112 APA patients, 6.3% had a somatic mutation of ATP1A1 together with 

increased CYP11B2 gene expression (Williams, Monticone et al. 2014). In an earlier 

study of a European cohort, the prevalence of the somatic mutation of ATP1A1 was 

5.2% of 308 APA patients (F. Beuschlein 2013). ATP1A1 exchanges three Na+ in the 

cytoplasm for two K+ from the extracellular compartment, each time an ATP is 

hydrolysed (Kaplan 2002). The ATP1A1 gene encodes the Na+/K+-ATPase 1 that 
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responsible for maintaining the electrochemical gradient of Na+ and K+ across the 

plasma membrane. Blockade of the Na+/K+-ATPase pump by ouabain increases 

aldosterone synthesis in a dose-dependent manner (Yingst, Davis et al. 1999). The 

ATP1A1 knockout mouse has been shown to have higher plasma aldosterone compared 

to its wild-type counterpart (Moseley, Huddleson et al. 2005).  

ATP2B3 encodes the plasma membrane Ca2+ ATPase 3 (known as PMCA3), important 

for exporting Ca2+ from the cytoplasm to extracellular compartments (Di Leva, Domi 

et al. 2008). The mutation of this gene is predicted to increase intracellular Ca2+ 

concentration and increase aldosterone synthesis (F. Beuschlein 2013). This is 

supported by the finding that almost 1% of APA have an ATP2B3 mutation and high 

levels of CYP11B2 gene expression (Williams, Monticone et al. 2014). 

1.5.1.2.3 WNT β-catenin Pathway in APA 
 
Alteration of WNT/β-catenin signalling was detected in 70% of APA (Berthon, Drelon 

et al. 2014). The Wnt/β-catenin is important in embryonic development and cell 

renewal (Berthon, Sahut-Barnola et al. 2010) and has been associated with the 

development of numerous cancers (Anastas and Moon 2013).  

Initially, WNT (previously called Int-1) was shown to induce breast tumours in the 

mouse (Nusse and Varmus 1982). WNT1 stands for Wingless-type MMTV integration site 

family, member 1. In the absence of WNT ligands, β-catenin (encoded by CTNNB1 

gene) is phosphorylated by a complex consisting of casein kinase I (CKI), GSK3β, AXIN 

and APC at N-terminal serine/ threonine residues. The phosphorylated β-catenin is 

ubiquitinylated and degraded by proteasomes. However, in the present of WNT 

ligands, it binds to Frizzled/LRP receptor which inhibits the complex destruction and 

therefore stabilizes β-catenin. β-Catenin is translocated to the nucleus and co-

operates with transcription factors of the LEF/TCF family (Berthon, Sahut-Barnola et 

al. 2010). The lymphoid enhancer factor (LEF)/T cell factor protein (TCF) recruits β-

catenin along with its co-activators to the WNT response element (WREs) to stimulate 

the transcription of target genes (Arce, Yokoyama et al. 2006). β-Catenin mutation 
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has been observed in ACA and ACC tissue (Tissier, Cavard et al. 2005). Furthermore, 

mutation at the third exon of CTNNB1 causes abnormal accumulation of β-catenin 

leading to various pathological adrenal conditions such as the primary pigmented 

nodular adrenocortical disease  and sporadic secreting adrenocortical adenomas 

(Tadjine, Lampron et al. 2008). There is abundant evidence that alteration of WNT/β-

catenin can modulate adrenocortical tumours: the β-catenin blocker PKF115-584 

inhibits adrenocortical carcinoma cell proliferation (Doghman, Cazareth et al. 2008). 

Therefore, WNT/β-catenin pathway might be a potential therapeutic target. 
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1.5.1.2.4 Steroidogenic Enzymes Mutation Causing Congenital Adrenal Hyperplasia 
(CAH). 

 

In rare cases, mutation of gene can cause severe abnormalities and lead to 

hypertension. There are common clinical signs that relate to genetic 

abnormalities as shown Table 1-3. 

 

Table 1-3: Steroidogenic Enzymes that contribute to CAH. 

Enzyme Aldosterone  
synthase 

3-β 
hydroxysteroid 
dehydrogenase 

11-β 
hydroxylase 

17-α 
hydroxylase 

21- 
hydroxylase 

Encoding gene CYP11B2 HSD3B2 CYP11B1 CYP17 CYP21A 

Incidence Rare Rare 1 in 10000 Rare 1 in 14000 

Ambiguous 
genitalia  

Nil  Males 
Mild in females 

Females Males 
Failure of 
pubertal 
development 
in females 

Females 

Glucocorticoids Normal Low Low Low Low 

Mineralocorticoids Low Low High High Low 

Androgens Normal Low in males 
High in females 

High low High 

Blood pressure Low Low High High Low 

Sodium level Low Low High High Low 

Potassium level High High Low Low High 
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1.6 Hypertension studies 

1.6.1  Monogenic disorders 

Numerous monogenic disorders leading to hypertension have been identified. The 

majority affect electrolyte transport at the distal tubule, directly or indirectly, by 

altering mineralocorticoid secretion. Monogenic disorders share several common final 

mechanisms: they escalate sodium and chloride reabsorption at the distal nephron, 

cause plasma volume expansion and decrease plasma renin activity (Garovic, Hilliard 

et al. 2006, Simonetti, Mohaupt et al. 2012). Although such disorders are rare, they 

illustrate the clear genetic influence on BP and haemodynamic, and are of great 

research interest. Monogenic hypertension can present with severe hypertension, 

early onset (although not always) and often with a positive family history. Low-renin 

activity and metabolic acidosis with hyperkalaemia or metabolic alkalosis with 

hypokalaemia are characteristic but plasma aldosterone concentration may be low as 

that of the minor mineralocorticoid, DOC, is often markedly increased (Simonetti, 

Mohaupt et al. 2012). Examples of monogenic disorders are shown in Table 1-4.  

Smaller but still significant variations in the activity of these systems may exist to a 

wide extent in the general population. These have been sought using various different 

techniques. 
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Table 1-4: Summary of Monogenic Loci Associated with BP (Modified from Padmanabhan, 
Caulfield et al. 2015). 

  

Locus Gene Monogenic Syndrome  Inheritance Blood 
pressure 

1p36.13 CLCNKB Bartter syndrome, type 3 Autosomal 
recessive 

Low 

1p31.1 ATP1A1 Sporadic aldosterone 
producing adenoma 

 High 

2q36.2 CUL3 Pseudohypoaldosteronism, 
type IIE 

Autosomal 
dominant 

High 

3p25.3 VHL von Hippel–Lindau 
syndrome 

Autosomal 
dominant 

High 

3p21.3 CACNA1D Sporadic aldosterone 
producing adenoma 

 High 

4q31.2 NR3C2 Hypertension exacerbation 
in pregnancy, 
Pseudohypoaldosteronism 
type I 

Autosomal 
dominant 

Low 

8q24.3 CYP11B1, 
CYP11B2 

Familial hyperaldosteronism 
type 1 glucocorticoid 
remediable aldosteronism, 
 

Autosomal 
dominant 

High 

  Corticosterone 
methyloxidase II deficiency 

Autosomal 
recessive 

High 

  Steroid 11β-hydroxylase 
deficiency 

Autosomal 
recessive 

High 

10q11.2 RET Multiple endocrine 
neoplasia, type IIA 

Autosomal 
dominant 

High 

10q24.3 CYP17A1 17-alpha-hydroxylase 
deficiency 

Autosomal 
recessive 

High 

11q24.3 KCNJ5 Familial Hyperaldosteronism 
type III 

Autosomal 
dominant 

High 

12p12.3 WNK1 Pseudohypoaldosteronism 
type IIC Gordon syndrome 

Autosomal 
dominant 

High 

16p12.2 SCNN1B, 
SCNN1G 

Liddle Syndrome Autosomal 
dominant 

High 

16q13 SLC12A3 Gitelman syndrome Autosomal 
recessive 

Low 

16q22.1 HSD11B2 Apparent Mineralocorticoid 
Excess 

 High 

Xq28 ATP2B3 Sporadic 
aldosteroneproducing 
adenoma 

 High 
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1.6.2 Candidate gene analysis 

 
Candidate gene analysis predicts from clinical and physiological research over many 

years those genes affecting blood pressure and tests their importance in study 

populations. This is illustrated by studies of CYP11B1 and CYP11B2 and other genes 

that affect their expression. Angiotensinogen, which is encoded by the AGT gene, a 

constituent of the renin-angiotensin-aldosterone system, cleaves product of 

angiotensin I, angiotensin II and angiotensin III which are regulators of BP via water 

and sodium homeostasis (Padmanabhan, Caulfield et al. 2015). Many SNPs have been 

identified in the coding and non-coding regions of the AGT gene. Although AGT SNPs 

have been reported to associate with hypertension, results have been inconsistent.  

The SNPs -217AA and -6GG associated with increased risk of hypertension, and a weak 

linkage was also found for the G-217A and A-6G polymorphisms (Wu, Chiang et al. 

2004). 

Choi et al identified a KCNJ5 gene mutation in APA and in hereditary hypertension 

(Choi, Scholl et al. 2011). To date, 5 different types of KCNJ5 mutation have been 

identified and most of them cause depletion in membrane selectivity, causing sodium 

leakage that leads to membrane depolarization and opening of voltage-gated Ca2+ 

channels, as described above (Williams, Monticone et al. 2014). 

1.6.3 Linkage analysis 

 
The aim of linkage analysis is to identify genomic loci that influence specific 

characteristics, known as quantitative trait loci (QTL). The best example of linkage 

studies in hypertension is probably the British Genetic of Hypertension (BRIGHT) study 

(Caulfield, Munroe et al. 2003). The increased use of genome-wide association studies 

(GWAS) (see below) has reduced linkage analysis use, but the recent availability of 

whole-genome sequencing (WGS) may cause it to increase again (Ott, Wang et al. 

2015). Linkage is assessed by a specific score called logarithm of the odds (LOD), the 
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standard score for linkage mapping of major genes, based on disease related 

phenotypes; positive LOD scores indicate the presence of linkage (Morton 1996).  

Identification of specific regions of the chromosome linked to a monogenic trait in 

hypertension can be performed using linkage analysis by genotyping (Padmanabhan, 

Caulfield et al. 2015). Louis-Dit-Picard et al combined linkage analysis with whole 

exome sequencing to identify KLHL3 gene mutations in familial hyperkalemic 

hypertension (FHHt) (Louis-Dit-Picard, Barc et al. 2012). A list of linkage studies is 

provided in Table 1-5. 

Table 1-5: Selected linkage studies in hypertension 

Study Chromosomal 
Region 

Participant 

(Pan, Chen et al. 
2000) 

17q 
 

59 Han Chinese families in Taiwan 
 
 

(Rao, Province et al. 
2003) 

2p HyperGEN network; 
650 African American sibling pairs 
915 white sibling pairs 
 

(Province, Kardia et 
al. 2003) 

2p GenNet, GENOA, HyperGEN, SAPPHIRE 
network; 
6245 participant 
 

(Shmulewitz, Heath 
et al. 2006) 

20p12 2188 participant from Pacific Island of 
Kosraen, Federated States of Micronesia 
 

(Caulfield, Munroe et 

al. 2003) 

6q British Genetics of Hypertension (BRIGHT) 
study; 
2010 sibling pairs from 1599 severely 
hypertensive family  
 

(Koivukoski, Fisher 

et al. 2004) 

2p12-q22.1 
3p14.1-q12.3 

Metaanalysis in Caucasians 
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1.6.4 Genome-wide association studies 

 
The genome-wide association study (GWAS) identifies genomic variation associated 

with a specific trait – in particular disease – across the human genome. The method is 

currently being used to look for association between BP and SNPs distributed 

throughout the entire genome by linear regression for continuous phenotypes or by 

logistic regression for dichotomous phenotypes (Ehret and Caulfield 2013). High-

throughput genotyping using microarray chips enables the researcher to detect up to 

a million SNPs in thousands of subjects. GWAS is connected to linkage disequilibrium 

(LD) for functional variants (Padmanabhan, Newton-Cheh et al. 2012). For example, a 

study by Padmanabhan et al. showed that rs13333226 associates with hypertension 

and chronic kidney disease (Padmanabhan, Melander et al. 2010). 

Several GWAS have recognised the CYP17A1 locus as associated with hypertension 

(Levy, Ehret et al. 2009, Newton-Cheh, Johnson et al. 2009). 17α-Hydroxylase 

deficiency is an autosomal recessive defect of the CYP17A1 gene causing depletion of 

glucocorticoid and sex steroids with simultaneous mineralocorticoid (DOC) excess 

(Goldsmith, Solomon et al. 1967, MM Grumbach 2003). Patients present with 

hypertension and hypokalaemia (Yanase, Simpson et al. 1991, Miller and Auchus 

2011). Recently, the focus GWAS has brought to bear on the CYP17A1 locus has 

resulted in the identification of common SNPs with functional effects that may 

explain its association with blood pressure (Diver, MacKenzie et al. 2016). 
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1.7 The nature, synthesis and regulatory role of 
microRNA. 

1.7.1 microRNA 

MicroRNA (miRNA) are small single-stranded non-coding RNAs (ncRNA), 18–22 

nucleotides (nt) long, which regulate target messenger RNA (mRNA) levels post-

transcriptionally through cleavage or translational repression (Bartel 2004). miRNA 

bind to a specific 3’untranslated region (3’UTR) located on the target mRNA or, less 

commonly, to a protein-coding (CDS) or 5’UTR sequence. They are estimated to 

regulate the transcription of approximately 30% of the human protein-coding genome. 

The first miRNA to be recognized was the nematode Caenorhabditis elegans small 

non-coding RNA (ncRNA), lin-4, in 1993. This was shown to be an important agent in 

its its development.  Many more have since been discovered in many species and they 

were officially named miRNAs in 2001 by Ruvkun (Ruvkun 2001, Jeffrey 2008). By 

2014, 2469 novel human miRNAs had been identified and 1098 of these had been 

validated experimentally (Friedlander, Lizano et al. 2014). The discovery of miRNA 

regulation of mRNA transcription has been a huge breakthrough. Over the last 20 

years, the number of miRNA studies has grown exponentially, studying mechanisms, 

function and relevance to disease. The following sections outline the structure, 

synthesis and action of miRNAs, mainly in the human and with particular reference to 

adrenocortical function. 

1.7.2 miRNA structure. 

The biogenesis of miRNAs differs from that of other RNAs since they derive from 

transcripts that fold back on themselves to form a distinctive hairpin structure 

due to sequence complementary (Bartel 2004). See Figure 1-15. 

1.7.3 miRNA biogenesis. 

miRNA biogenesis is summarised in Figure 1-16 and in the following sections. 
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1.7.3.1 In the nucleus.  

miRNAs are encoded by DNA which may be situated in introns or exons, or else be 

scattered among intergenic sequences (Jeffrey 2008). miRNAs are transcribed from 

the genome by RNA polymerase II or RNA polymerase III to form a primary-miRNA (pri-

miRNA) transcript (Lee, Kim et al. 2004, Borchert, Lanier et al. 2006). Pri-miRNA is 

several kilobases long and contains at least one hairpin-like structure, or often several 

stem-loop structures (a polycystronic pri-miR). Polycystronic pri-miRNAs are called 

clusters; they will be discussed later. A pri-miRNA contains one stem structure 

consisting of a polyadenylated tail (poly(A)) at the 3’ end and a 7-methyl-guanylate 

cap at the 5’ end (Cai, Hagedorn et al. 2004).  

Regulation of pri-miRNA transcription involves adenosine deaminase action on RNA 

(ADAR). This deaminase catalyses conversion of adenosine nucleotides to inosine in an 

editing process known as A-to-I (Luciano, Mirsky et al. 2004). The editing process can 

affect miRNA processing by preventing dsRNA from being recognized and cleaved by 

Dicer (Scadden 2005), which would impair miRNA maturation (Kawahara, Megraw et 

al. 2008). pri-miRNA processing in mammalian cells requires heme. Unprocessed pri-

miRNAs  are quickly degraded via an as-yet unknown pathway so that they do not 

accumulate in the nucleus (Weitz, Gong et al. 2014). 
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Figure 1-15 : miRNA stem-loop structure. 
miRNA consists of a miRNA duplex (red & grey), lower and upper stems (green & blue) and a terminal loop (blue colour). The miRNA duplex is 
further processed to form two separate mature miRNAs. The miRNA structure shown is based on the miR-17 stem-loop sequence.
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Figure 1-16: miRNA biogenesis from genomic DNA illustration.  
The biogenesis starts with pri-miRNA transcription from genomic DNA. The stem-loop sequence of the pri-miRNA is cleaved by Drosha with DGCR8 to form pre-miRNA. The pre-
miRNA is then exported to the cytoplasm by Exportin-5 through nucleoporin. It is further processed to a mature miRNA sequence by Dicer-2 with AGO2 and TRBP assistance. The 
mature miRNA is incorporated by the RISC complex and binds mRNA targets to cause translational repression or mRNA degradation. Modified from (Sethi, Kulkarni et al. 2013).
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The stem-loop sequence of pri-miRNA is cleaved at the stem junction with the 

hairpin structure by RNAse III Drosha to form precursor-miRNA (pre-miRNA). 

Drosha requires the DiGeorge syndrome critical region in gene 8 (DGCR8) which 

is a double-stranded RNA-binding protein in Homo sapiens. (This function is 

served by Pasha in Drosophila melanogaster and C. elegans (Denli, Tops et al. 

2004, Han, Lee et al. 2004, Lee, Kim et al. 2004).) Drosha and DGCR8, which are 

highly conserved in animals, form the large microprocessor complex. The C-

terminal domain of DGCR8 interacts with the middle domain of Drosha to 

stabilize the complex (Yeom, Lee et al. 2006). There are 3 alternative models 

describing how Drosha identifies a pri-miRNA: 

(a) Drosha identifies its cleavage site on the 5’ end of pri-miRNA due to 

significant enrichment of 2–4 nt symmetrical internal loops near the 

cleavage site (Warf, Johnson et al. 2011).  

(b) Drosha recognizes the cleavage site by its position: ~11 bps from the 

stem-loop junction of the miRNA. DGCR8 may act as a molecular anchor that 

measures the distance (Han, Lee et al. 2006).  

(c) Drosha crops by reference to the start of the terminal loop of the pri-

miRNA. Even a slight variation in the structure of the terminal loop will 

impair miRNA processing in the nucleus (Zhang and Zeng 2010). 

Apart from Drosha/DGCR8, there are other proteins included in the 

microprocessor complex such as SMAD proteins (Blahna and Hata 2012), the 

DEAD-box helicases p68 (known as DD5X) and p72 (DDX17) (Fukuda, Yamagata et 

al. 2007), heterogeneous nuclear ribonucleoproteins and the Ewing's sarcoma 

family of proteins which contains a RNA recognition motif (RRM) and a zinc-

finger domain (Gregory, Yan et al. 2004). This microprocessor complex then 

cleaves the pri-miRNA to a shorter 60–70nt hairpin known as precursor-miRNA 

(pre-miRNA), a double-stranded RNA hairpin molecule, consisting of a 2-

nucleotide 3’ overhang with an hydroxyl group and a 5’ phosphate group with a 

region of imperfect base-pairing (Cullen 2004). The pre-miRNA is exported to the 

cytoplasm for further processing. 
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1.7.3.2 Nucleus-cytoplasm transportation 

The nuclear envelope (NE) separates the nucleus from the cytoplasm. Pre-

miRNAs are exported from the nucleus into the cytoplasm through the central 

channel of nuclear pore complexes (NPCs), termed nucleoporins, in the nuclear 

envelope. Pre-miR transport depends on Exportin 5 (Exp5) or importin β, a 

specific receptor that recognizes NPCs and interacts with the small Ran GTPase, 

a co-factor that controls the direction of miRNA transport. Exp5 belongs to the 

karyopherin family whose members play a significant general role in the nuclear 

export of noncoding RNAs including tRNAs, snRNAs and rRNAs (Lei and Silver 

2002). Exportin-5 recognizes RNAs containing a minihelix structure, a cis-acting 

export element that consists of a double-stranded stem which has more than 14 

nucleotides and bears a base-paired 5’ end and an approximate 3–8 nucleotide 

protruding 3’ end (Gwizdek, Ossareh-Nazari et al. 2004). The exportin-5-Ran 

GTPase complex exports the pre-miRNA to cytoplasm through the nucleoporins. 

1.7.3.3 Cytoplasmic processing 

Once in the cytoplasm, pre-miRNA is further processed by RNase III Dicer to 

mature miRNA, approximately 22 nucleotides long. Dicer is a highly conserved 

RNase which acts on specific double-stranded RNA (dsRNA) to generate small 

regulatory RNAs (srRNAs), which include miRNAs. Dicer has 2 main domains, C-

terminal and N-terminal, which each have specific properties and functions 

(Figure 1-17). The C-terminal domain comprises a large helicase domain which 

can differentiate between a perfect duplex and a hairpin structure in RNA 

(Doyle, Badertscher et al. 2013), and acts as an autoinhibitor, needed for 

production of small RNAs. This is followed by a small domain of unknown 

function (DUF283). Plant studies suggest that DUF may mediate protein-protein 

interaction with Dicer cofactors and may be involved in dsRBD folding and the 

PAZ domain, a conserved nucleic acid binding structure that plays a vital role in 

the docking of the 2nt 3’overhang dsRNA into the Dicer.(Sawh and Duchaine 

2012). The N-terminal consists of RNAse IIIa and IIIb together with the double-  
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stranded RNA binding domain (dsRBD) which differentiates between pre-miRNA 

and dsRNA substrate (Wostenberg, Lary et al. 2012); this may stabilize the 

interaction between Dicer and its substrate RNA (Zhang, Kolb et al. 2004). 

Deletion of human dsRBD significantly reduces Dicer’s ability to cleave RNAs (Ma, 

MacRae et al. 2008). The distance between the PAZ and RNase III domains is a 

‘molecular ruler’ which Dicer uses to generate RNAs of an exact length (Figure 

1-17) (Sawh and Duchaine 2012).  

miRNA interacts with TRBP and Argonaute 2 (AGO2), one of the components of 

the RNA-inducing silencing complex (RISC) to cleave pre-miRNA and form mature 

miRNA. TAR RNA-binding protein (TRBP) consists of three-double stranded RNAs, 

and is an important component of the Dicer-containing complex. TRBP associates 

with Dicer and AGO2 to form a complex catalysing the cleavage process of pre-

miRNA. A study has shown that TRBP knockdown lead to destabilization of Dicer 

and represses miRNA synthesis (Chendrimada, Gregory et al. 2005). 

 

Figure 1-17: Dicer structure. Adapted from (Sawh and Duchaine 2012).   

 

1.7.3.4 Argonaute Loading  

The process of Argonaute loading of small RNAs differs between species 

(Hutvagner and Simard 2008). The main function of Argonaute is miRNA 

maturation. It is a highly conserved protein complex consisting in mammals of 

four components: AGO1, -2, -3 and -4. However, only AGO2 has a cleavage 

function and is relevant to siRNA regulation (Liu 2004). It consists of four 

domains: the N- terminal, PAZ, Mid and PIWI. The PAZ domain binds to the 3’ 

end of miRNAs  and can distinguish small regulatory RNAs such as miRNA from 

degraded RNAs by their characteristic 3’-overhang (Hutvagner and Simard 2008). 

The PIWI domain acts as a binding pocket for the 5’ end of miRNA (Pillai, 

Bhattacharyya et al. 2007). Argonaute forms a complex with the RISC-loading 

complex (RLC) through an interaction between Dicer-2 and AGO2. It cleaves the 
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passenger strand of the small-interference RNA (siRNA) (Hutvagner and Simard 

2008) leaving the guide strand to form the active complex referred to as the 

miRNA-containing ribonucleoprotein particle (miRNP) (Ender and Meister 2010). 

The selection of RNA strand depends on the thermodynamic stability of the 5’ 

end of the small RNA. This is known as the ‘asymmetry rule’. The less stable 5’-

end will be incorporated into the miRNP and the opposite strand, referred to as 

miRNA* (miRNA star) or the passenger strand, is degraded (Hutvagner and Simard 

2008, Ender and Meister 2010). There are many databases available which 

predict the probability and strength of miRNA:mRNA interaction on the basis of 

thermodynamic properties, including Ingenuity Pathway Analysis. 

1.7.3.5 miRNA Target Repression or Destruction 

Mature miRNAs can either induce the degradation of specific mRNAs or repress 

their translation (Wang, Liang et al. 2008). They achieve this as part of an RNA-

induced silencing complex (RISC), which binds partially to a complementary site 

located within the 3’UTR of its mRNA target. Although most of metazoan miRNA 

targets the  3’UTRs of mRNA (Bartel 2009), targeting can also occur at the 5’UTR 

and open reading frames (ORFs) (Kloosterman, Wienholds et al. 2004). The most 

important factor determining mRNA destabilization or repression is the strength 

of complementarity between the miRNA and the mRNA target. Perfect 

complementarity leads to endonucleolytic cleavage, mediated by AGO2, whereas 

a mismatched bond in the central region of the miRNA leads to translational 

repression (Ender and Meister 2010).  

1.7.3.5.1 Translational Repression 
 
miRNA can repress translation at the initiation step or at the post-initiation 

phase (Petersen, Bordeleau et al. 2006). Several mechanisms have been 

suggested to explain how miRNA regulates mRNA translation, including the 

dissociation of eIF4 from the 5’terminal m7G cap of mRNA, blocking of the 60S 

ribosome subunit, interference of the eIF4 complex’s function and repression of 

the elongation step (Petersen, Bordeleau et al. 2006, Filipowicz, Bhattacharyya 

et al. 2008, Carthew and Sontheimer 2009). Another study reported that AGO 

proteins compete with eIF4E to binding the 5’cap and repress translation 

(Kiriakidou, Tan et al. 2007). 
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1.7.3.5.2  mRNA Degradation 
 
Disruption of the binding of GW182 to e IF4G (Eukaryotic Translation Initiation 

Factor 4 Gamma) and the PABP (poly-A binding protein) can inhibit translation 

initiation and preventing circularisation (Gu and Kay 2010). At the 3’UTR of 

target mRNA, miRNA recruits Argonaute to interact with GW182 which mediates 

deadenylation and shortens the poly(A) tail. GW182 and the AGO1 complex 

recruit deadenylase, which is necessary for the removal of the m7G cap to 

disrupt translation. This is further illustrated by a study showing GW182 

depletion improves mRNA stability (Pillai, Bhattacharyya et al. 2007). Other in 

vivo and in vitro studies report that miRSC recruits NOT, (CAF1 Chromatin 

Assembly Factor 1) and CCR4 (Chemokine (C-C Motif) Receptor 4) to remove the 

3’ poly(A) tail from target mRNA (deadenylation) (Behm-Ansmant, Rehwinkel et 

al. 2006, Wu, Fan et al. 2006). This is followed by a decapping process 

performed by DCP1 (Decapping MRNA 1), DCP2 (Decapping MRNA 2) along with 

EDC4 (Enhancer of MRNA decapping 4) and DDX6 (DEAD (Asp-Glu-Ala-Asp) Box 

Helicase 6) (Figure 1-16). Decapped mRNAs are then removed by XRN1 

(exonuclease) in the cytoplasm (Behm-Ansmant, Rehwinkel et al. 2006, Wu, Fan 

et al. 2006). 

1.7.4 miRNA Clusters 

miRNA clusters are derived from capped and polyadenylated pri-miRNA 

prescursors (Cai, Hagedorn et al. 2004). The majority of miRNAs are encoded 

within intergenic regions but some are encoded within mRNA introns or in ncRNA 

genes (Rodriguez, Griffiths-Jones et al. 2004). There is much evidence to suggest 

that clustered miRNAs are transcribed as polycistrons from long primary 

transcript miRNAs, producing one or more hairpin precursors that show great 

sequence similarity. (Tanzer and Stadler 2004, Altuvia, Landgraf et al. 2005). 

One study showed that if 3000nt is used as a distance threshold, 37% of human 

miRNAs are in such clusters. The percentage increases to almost 50% if the 

distance threshold is set at 10000 nt. The miRNA clusters have a highly 

conserved pattern, suggesting that the expression of the constituent miRNAs is 

co-regulated (Altuvia, Landgraf et al. 2005). miRNA are more clustered than 

other non-coding RNA like snoRNA and tRNA (Altuvia, Landgraf et al. 2005). 
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A microarray profiling study showed that proximal pairs of miRNAs in clusters are 

usually co-expressed. miRNAs encoded less than 50kb apart are usually derived 

from the same transcript. The correlation of expression is reduced significantly 

if this distance exceeds 50 kb. However, there are some miRNAs clusters 

spanning distances of more than 50 kb that can still be highly correlated; these 

include miR-7-miR-9 (>750 kb) and miR-128-miR-138 (8 Mb) (Baskerville and 

Bartel 2005). Another study, using the expressed sequence tag method, also 

showed that distant miRNAs such as miR-100, let-7 and miR-125 may reside on 

the same transcript (Altuvia, Landgraf et al. 2005).  

miRNAs within a cluster may exert a concerted action. The polycistronic miRNA 

cluster, miR-17-92, has a strong correlation with a variety of tumours in humans 

and animals, including Burkitt’s lymphoma (Woods, Thomson et al. 2007), 

colorectal carcinoma (Tsuchida, Ohno et al. 2011), lung carcinoma (Hayashita, 

Osada et al. 2005) and ovarian cancer (Fan, Liu et al. 2010) and contributes to 

the regulation of angiogenesis. Here, VEGF, an angiogenic chemokine, induces 

cluster expression and leads to a reduction in the levels of the angiogenic 

molecule, thrombospondin-1 levels (Suárez, Fernández-Hernando et al. 2008). In 

Drosophila melanogaster, miRNA clusters tend to target the same genes (Grün, 

Wang et al. 2005). Interestingly, one study reported that TFs regulating a 

particular miRNA gene tend also to regulate its mRNA target (Wang, Li et al. 

2011). Thus, clustered miRNAs might regulate a common pathway by targeting 

the same individual gene or by targeting several genes in the same pathway.   
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1.7.5 miRNA in the Circulation 

miRNA is transcribed and regulated within in the cell. However, it can also be 

detected extracellularly, particularly in the blood (Valadi 2007, Pegtel, 

Cosmopoulos et al. 2010, Diehl, Fricke et al. 2012, Raposo and Stoorvogel 2013, 

Eldh, Olofsson Bagge et al. 2014, Huang and Chen 2014, Melo, Sugimoto et al. 

2014). miRNA can be transported into the circulation in a heterogeneous group 

of cell-released microvesicles, including exosomes, microparticles and apoptotic 

membranes (Figure 1-18). Exosomes are lipid bilayers that transport protein, 

lipids or nucleic acids, including miRNA and mRNA, from the cell cytosol into the 

extracellular compartment (Valadi 2007). They are small, ranging from 50–90 

nm, endocytic in origin and arise from the fusion of multivesicular endosomes 

(MVE) with plasma membrane (Harding, Heuser et al. 1984). Almost all cell types 

produce exosomes through the fusion of MVE with cell membranes from a variety 

of sources, including B cells, T cells, mast cells, platelet, oligodendrocytes, 

Schwann cells, intestinal cells and tumour cells (Raposo, Nijman et al. 1996, 

Raposo, Tenza et al. 1997, Blanchard, Lankar et al. 2002, Valadi 2007, Raposo 

and Stoorvogel 2013, Sluijter and van Rooij 2015). Pre-miRNAs in a complex with 

Dicer, AGO2 and TRBP are present in exosomes of cancer cells and mediate 

silencing of mRNA in the specific target cell transcriptome (Melo, Sugimoto et al. 

2014). miRNAs are protected by exosomes from degradation by RNAse which is 

abundant in the blood (Pegtel, Cosmopoulos et al. 2010). miRNAs within 

exosomes are therefore stable in the circulation and might provide a convenient 

biomarker in clinical diagnosis. 
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Figure 1-18:  Cell death through apoptosis or necrosis processes.  
These processes release long DNA strands, RNA transcripts and the miRNA-AGO complex within apoptotic bodies.  miRNA also can be excreted from viable cells 
through exosomes. Adapted from (Schwarzenbach, Nishida et al. 2014).
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1.7.6 miRNA in Adrenal Tumours 

Most adrenal tumours are clinically silent and therefore diagnosis and treatment 

are frequently delivered at a later stage of the disease when effective treatment 

is likely to have a poorer outcome. At present, there is no reliable method of 

differentiating benign from malignant tumours except the identification of 

distant metastases (Gimm, DeMicco et al. 2012). The principal treatment for 

unilateral APA is laparoscopic adrenalectomy. Most patients are diagnosed 

through extensive investigation, including computed tomography (CT) imaging, 

adrenal venous sampling (AVS) and histological examination of excised tissue, all 

of which require expensive specialist medical expertise. A simple screening 

method facilitating early diagnosis would be valuable. miRNA might provide the 

basis for such a method (Igaz, Igaz et al. 2015). 

1.7.6.1 miRNA in adrenocortical carcinoma 

Differential expression of miRNAs has been reported between normal adrenal 

tissue and both benign and malignant adrenocortical tumours, as shown in Table 

1-6 and Table 1-7 (Soon, Tacon et al. 2009, Özata, Caramuta et al. 2011, 

Patterson, Holloway et al. 2011, Schmitz, Helwig et al. 2011, Chabre, Libé et al. 

2013, Patel, Boufraqech et al. 2013, Szabo, Luconi et al. 2014). It is reasonable 

to surmise that these differentially-expressed miRNAs may be involved in 

tumourigenesis and/or tumour function. In adrenocortical carcinoma (ACC), miR-

483-3p and miR-483-5p which are overexpressed have been proposed as 

oncogenic miRNAs (oncomiRs) (Soon, Tacon et al. 2009, Patterson, Holloway et 

al. 2011, Chabre, Libé et al. 2013). Inhibition of both miRNAs in vitro decreased 

cell proliferation (Özata, Caramuta et al. 2011). The miR-483 gene is located on 

chromosome 11, within the second intron of the IGF2 gene, which is highly 

expressed in ACC (Bertherat and Bertagna 2009). Increased expression of IGF-2 

could possibly stimulate cellular proliferation rate and tumour development 

(Veronese, Lupini et al. 2010). This hypothesis is supported by the results of an 

in vitro study that showed IGF-2 inhibition by IGF-1 receptor blockade reduces 

cell proliferation (Barlaskar, Spalding et al. 2009). However, miR-483 

overexpression is not exclusive to adrenocortical tumours and is also 

overexpressed, for example, in colon, breast and liver carcinomas and in Wilms’ 

tumours (Veronese, Lupini et al. 2010). 
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In addition to miR-483 upregulation, miR-503 (Soon, Tacon et al. 2009, Özata, 

Caramuta et al. 2011), miR-210 (Özata, Caramuta et al. 2011, Szabo, Luconi et 

al. 2014, Velázquez-Fernández, Caramuta et al. 2014), miR-675 (Schmitz, Helwig 

et al. 2011) and miR-21 (Özata, Caramuta et al. 2011) are all overexpressed in 

ACC. High expression of miR-503 is significantly associated with shorter survival 

in ACC patients (Özata, Caramuta et al. 2011), parathyroid carcinoma (Corbetta, 

Vaira et al. 2010) and retinoblastoma (Zhao, Yang et al. 2009). miR-210 plays a 

vital role in angiogenesis (Zeng, He et al. 2014), cell proliferation (Zuo, Wen et 

al. 2015) and is associated with poor cancer survival (Hong, Yang et al. 2012). 

miR-21 is highly expressed in most human tumours, including ACC (Özata, 

Caramuta et al. 2011). A pharmacological miR-21 antagonist might therefore 

benefit sufferers from many cancers, especially those for which there is as yet 

no specific treatment (Sicard, Gayral et al. 2013). 

In contrast, miR-195 (Soon, Tacon et al. 2009, Özata, Caramuta et al. 2011, 

Patterson, Holloway et al. 2011, Chabre, Libé et al. 2013, Velázquez-Fernández, 

Caramuta et al. 2014), miR-335 (Soon, Tacon et al. 2009, Schmitz, Helwig et al. 

2011, Chabre, Libé et al. 2013) and miR-497 (Özata, Caramuta et al. 2011, 

Chabre, Libé et al. 2013, Velázquez-Fernández, Caramuta et al. 2014) are all 

downregulated in ACC compared to NA and ACA. miR-195 induces cell cycle 

arrest by targeting the cell cycle genes, Cdc25I and Ccnd, in skeletal muscle 

stem cells (Sato, Yamamoto et al. 2014) and acts as a tumour suppressor in 

hepatocellular carcinoma cells (HCC) by blocking the G1/S transition through 

several targets, including CCND1, CDK6 and E2F3, thereby suppressing the Rb-

E2F signalling pathway(Xu, Zhu et al. 2009). miR-335 is downregulated in human 

HCC and inhibits HCC proliferation and migration through ROCK1 regulation(Liu, 

Li et al. 2015). miR-497 also suppresses cell proliferation by decreasing the S 

phase of cell cycle and inhibiting cell migration and tissue invasion in pancreatic 

malignancy (Xu, Wang et al. 2014).  
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Table 1-6: Previous studies analysing miRNA expression in ACC and ACA. 
(ACC: adrenocortical carcinoma, ACC: adrenocortical adenoma). 

Author miRNA expression 

(ACC vs ACA) 

Up-regulated Down-regulated 

Szabo et al 2014 miR-100 

miR-181b 

miR-184 

miR-210  

miR-483-5p 

 

Patel et al 2013 miR-34a 

miR-483-5p 

 

Chabre et al 2013 miR-139-5p  

miR-148b  

miR-376a  

miR-483-5p  

miR-503  

miR-508-3p  

miR-509-3p 

miR-513a-5p  

miR-514  

miR-93 

miR-195  

miR-199a-3p  

miR-199a-5p 

miR-335  

miR-376a  

miR-497 

Patel et al 2013 miR-34a 

miR-483-5p 

 

Patterson et al 2011 miR-1246 

miR-1308 

miR-483-5p 

miR-642 

miR-665 

let-7a 

let-7d 

let-7f 

let-7g 

miR-100 

miR-125a-5p 

miR-125b 

miR-126 

miR-1290 

miR-193b 

miR-195 

miR-214 

miR-26a 

miR-26b 

miR-29a 

miR-34a 

miR-600 

miR-768-5p 

Schmitz et al 2011  miR-139-3p 

miR-335 

miR-675 
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Table 1-7: Previous studies analysing miRNA expression in ACC and ACA. 

(ACC: adrenocortical carcinoma, ACC: adrenocortical adenoma). 

Author miRNA expression 

(ACC vs ACA) 

Up-regulated Down-regulated 

Deniz M özata et al 

2011 

let-7a 
let-7d 
let-7e 
let-7f 
let-7g 
let-7i 

miR-106b 
miR-10b 
miR-1202 

miR-125a-5p 
miR-127-3p 
miR-1275 
miR-136 

miR-140-5p 
miR-15b 
miR-1975 
miR-21 
miR-210 
miR-29a 
miR-29b 
miR-320b 
miR-320c 
miR-320d 

miR-331-3p 
miR-361-5p 
miR-376c 
miR-410 
miR-424 
miR-432 

miR-483-3p 
miR-483-5p 
miR-487b 
miR-503 
miR-506 

miR-513a-5p 
miR-513b 
miR-513c 
miR-514 
miR-720 

miR-886-3p 

miR-101 
miR-151-3p 

miR-195 
miR-1974 
miR-1977 

miR-199a-3p 
miR-199a-5p 

miR-202 
miR-214 
miR-29c* 
miR-30a 
miR-494 
miR-497 
miR-557 
miR-572 
miR-877* 
miR-99a 

 

Soon et al 2009 miR-339-5p 

miR-130b 

miR-483-5p 

miR-106b 

miR-148b 

miR-93 

miR-135a 

miR-320a 

miR-503 

miR-450a 

miR-542-3p 

miR-143 

miR-181b 

miR-542-5p 

miR-335 

miR-195 

miR-557 

miR-708 

miR-29* 

miR-617 

miR-647 

let-7c 

miR-202 

Tombol et al 2009 miR-184 
miR-503 
miR-210 

miR-511 

miR-214 
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1.7.6.2 miRNA in aldosterone regulation and adrenocortical adenoma (ACA) 

In primary aldosteronism (PA), the adrenal gland secretes inappropriately high 

levels of aldosterone. Aldosterone excess increases cardiovascular morbidity and 

mortality independent of elevated blood pressure.  

Aldosterone-regulating miRNAs have already been identified in several studies. 

Romero et al showed that miR-21 increases aldosterone secretion (Romero, 

Plonczynski et al. 2008) suggesting it may be repressing the expression of genes 

that themselves inhibit aldosterone biosynthesis (As miRNA is only capable of 

repression, miR-21 cannot directly stimulate CYP11B2 mRNA synthesis). 

However, Robertson et al. demonstrated that miRNA-24 directly inhibits 

CYP11B2 (and CYP11B1) mRNA expression, thereby significantly altering 

aldosterone production in vitro (Robertson, MacKenzie et al. 2013). 

Several microarray studies, have been validated by subsequent qPCR studies, 

showing differences in miRNA expression between normal adrenal (NA) and 

adrenocortical adenoma (ACA) tissue, as shown in Table 1-8 (Soon, Tacon et al. 

2009, Tömböl, Szabó et al. 2009, Özata, Caramuta et al. 2011, Patterson, 

Holloway et al. 2011, Robertson, MacKenzie et al. 2013, Velázquez-Fernández, 

Caramuta et al. 2014, He, Cao et al. 2015). In qPCR studies, mir-139-5p is more 

highly expressed in APA than in NA and has been proposed as a marker to 

differentiate APA from non-functioning adenomas (NFA) (Velázquez-Fernández, 

Caramuta et al. 2014). mir-210 was significantly more highly expressed in ACA 

than in NA in two independent studies (Özata, Caramuta et al. 2011, Velázquez-

Fernández, Caramuta et al. 2014). miR-210 has been shown to be important in  

other carcinoma such as laryngocarcinoma (Zuo, Wen et al. 2015) and has been 

proposed as potential biomarker in glioma prognosis and diagnosis (Shang, Hong 

et al. 2014).  

Significant downregulation of miR-375 and miR- 7 in ACA compared to NA has 

been reported in 3 validated independent studies (Soon, Tacon et al. 2009, 

Tömböl, Szabó et al. 2009, He, Cao et al. 2015). miR-375 targets metadherin 

(MTDH), also known as Astrocyte Elevated Gene-1, which is involved in the 

tumorigenesis of various tumours, including those of breast (Li, Zhang et al. 
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2008), prostate, kidney, bladder (Wang, Wei et al. 2014) and thyroid (Li, Wang 

et al. 2014). MTDH protein is upregulated in APA while endogenous 

downregulation of the MTDH gene by mir-375 suppresses Akt-Ser473 

phosphorylation (He, Cao et al. 2015), a reaction which is implicated in cell 

growth, proliferation and survival (Bayascas and Alessi).   

Aldosterone downregulates miR-335-5p, miR-290-5p and miR-1983 and also 

enhances epithelial sodium channel (ENaC) transport in mouse cortical collecting 

duct (mCCD) epithelial cells (Edinger, Coronnello et al. 2014); aldosterone’s 

effect may be partially accomplished by this mechanism.   

There is now strong evidence that aldosterone production is at least partly 

controlled by miRNAs. The full extent of microRNA involvement merits further 

study. 
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Table 1-8: Previous studies analysing miRNA expression in ACA vs NA. 

(ACA: adrenocortical adenoma, NA: Normal Adrenal). 

Author miRNA expression 

(ACA vs NA) 

Up-regulated Down-regulated 

He, Juan et al 2015 miR-29b 
miR-29c 

miR-7 
miR-375 

 

Velázquez-Fernández et al 

2014 

miR-10b 

miR-139-5p 

miR-186 

miR-195 

miR-21 

miR-210 

miR-30e 

mir-34a 

miR-497 

miR-520d-3p 

 

Robertson et al 2013 miR-34c-3p miR-10b 
miR-24 

Patterson et al 2011 

 

miR-100 

Deniz M özata et al 2011 miR-195 

miR-21 

miR-210 

miR-497 

 

Soon et al 2009  miR-7 

Tombol et al 2009  miR-375 
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1.7.7 miRNA in clinical trials 

1.7.7.1 Miravirsen (miR-122 antagonist) in hepatitis C 

miR-122 is highly expressed in hepatocellular cells and plays a critical role in 

hepatitis C virus (HCV) RNA stability by binding to two specific target sites at the 

5’ UTR of the HCV genome (Henke, Goergen et al. 2008). This generates an 

oligomeric miR-122-HCV complex that protects the HCV genome from 

degradation and increases its affinity for its target (Janssen, Reesink et al. 

2013). The binding sites for miR-122 are conserved across HCV subtype and 

genotypes (Janssen, Reesink et al. 2013). 

In 2010, Miravirsen, a specific mir-122 blocker, was introduced by Santaris 

Pharma for phase II clinical trials for hepatitis C treatment via a subcutaneous 

route. Miravirsen is a construct of locked nucleic acid (LNA) ribonucleotides that 

is complementary to miR-122. It is the first miRNA antagonist to be used in a 

clinical trial. The complementary binding of Miravirsen and miR-122 reduces HCV 

replication in chimpanzees (Lanford, Hildebrandt-Eriksen et al. 2010) and 

humans (Janssen, Reesink et al. 2013). Miravirsen targets the stem structure of 

miR-122 precursors and disrupts the processing of pri-122 and pre-miR-122 by 

inhibiting Drosha and Dicer (Gebert, Rebhan et al. 2014). In the phase 2 clinical 

study, commenced at several international centres, Miravirsen decreased the 

HCV load in the majority of patients and no adverse events were reported during 

the 18-week trial (Janssen, Reesink et al. 2013). However, a recent study 

reported that the mir-122 antagonist’s ability to inhibit HCV replication is 

severely reduced in the presence of any HCV mutation at the 5’UTR, even 

alteration of a single nucleotide (Israelow, Mullokandov et al. 2014). Therefore, 

future Miravirsen and miR-122-based medication for HCV may need to be 

customized according to the HCV sequence. 

1.7.7.2 MRX-34 (miR-34a mimic) in liver cancer and liver metastases  

miR-34a is a tumour suppressor. It is either lost or downregulated  in many 

malignancies (Bouchie 2013). It stimulates G1 cell cycle arrest, senescence, 

apoptosis and acts as a tumour silencer because of the irregular CpG methylation 
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of its promoter (Lodygin, Tarasov et al. 2008). miR-34 regulates many cancer-

related genes, including BCL2, CDK4/6, WNT 1/3, NOTCH-1 and β-catenin, and 

plays an important role in the p53 tumour suppressor pathway (Beg, Borad et al. 

2014).  

In 2013, Mirna Therapeutics, a biotechnology company in Texas, pioneered the 

Phase 1 clinical study of the first miR-34a mimic (MRX34) in patients with 

unresectable primary liver cancer or metastases with liver involvement 

(Christoph 2013). MRX-34, a miR-122 mimic, is a double-stranded RNA that can 

be given by the intravenous route. It is delivered within the special licensed 

liposome, Smarticles (Bouchie 2013) to avoid degradation by RNase in 

bloodstream. The study followed the standard protocol for oncology study design 

with two phases: dose-escalation and enrichment (Christoph 2013). The aim was 

to restore normal endogenous mir-122 tumour suppressor function (Bouchie 

2013). MRX34 prescription showed a manageable safety profile in these patients.  

1.8 Conclusion 

Corticosteroid hormones are important in blood pressure regulation and there is 

evidence that their biosynthesis is regulated in part by microRNA. Now, in order 

to clarify which miRNAs regulate this system, I will analyse the microRNA 

profiles of normal adrenal (NA) and aldosterone-producing adenoma (APA) 

tissue, and also of adrenocortical cells stimulated to produce aldosterone in 

order to identify key changes. By investigating such differences in vivo and in 

vitro, in combination with bioinformatic analysis, I intend to identify microRNAs 

that affect systems relevant to APA pathology, including steroidogenesis and 

cholesterol biosynthesis. 
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1.9 Aims 

1. To analyse changes to the microRNA profile when aldosterone production 

is altered in APA tissue and in stimulated H295R adrenocortical cells. 

2. To use bioinformatic analysis to predict those miRNAs most likely to affect 

and regulate the system. 

3. To experimentally validate these bioinformatic findings. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2 Materials and Methods 
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2.1 Cell Culture 

2.1.1 H295R 

H295R cells were originally derived from a 48-year-old woman who presented 

with malignant adrenocortical carcinoma (Gazdar, Oie et al. 1990). Three 

separate strains (H295R strain 1, 2 and 3) and the monoclonal HAC15 cell line 

were later derived from this original line and were provided to us courtesy of 

Professor William Rainey (Medical College of Georgia, GA, U.S.A). Each has its 

own distinctive culture conditions and slight variations in their characteristics 

(Wang and Rainey 2012). 

2.1.2 Culturing Technique 

Cell culture was performed in monolayer under sterile conditions in tissue 

culture flasks, with specific medium and supplement at 37oC in a humidified 

chamber (5% CO2, 95% air). The cells were cultured until approximately 70-80% 

confluent, then the medium was removed and the cells washed with phosphate 

buffered saline (PBS) solution. To detach cells from the flask surface, Trypsin-

EDTA 0.25% (Ambion ®, Life Technologies, Paisley) was added for 5 minutes. 5 

ml DMEM-F12 medium was then added to inactivate the trypsin and the cells 

were centrifuged at 1500g for 5 minutes. The supernatant was removed and the 

cell pellet was re-suspended in new complete growth medium and aliquoted into 

a new flask (T150). Cells were fed every 3-4 days. 

Cells were maintained in Dulbecco’s modified Eagle medium (DMEM) with F12 

supplement (Invitrogen, Paisley, U.K). Specific medium for each strain is 

specified in Table 2-1: 
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Table 2-1: H295R Strains, HAC 15 and their medium specification. 

Cell Type Medium Serum/ Serum Replacement 

Agent 

Antibiotics 

 

H295R Strain 1 DMEM-F12 containing HEPES  

buffer, L-Glutamine and 

pyridoxine HCl medium 

(Life Technologies, Paisley, U.K) 

5% NuSerum (VWR Jenscon, 

Leicestershire, U.K) 

1% of 1 IU penicillin, 100 μg/ml Streptomycin 

(Invitrogen, Paisley, U.K) 

0.5 ml Gentamicin (Life Technologies, Paisley, U.K) 

H295R Strain 2 DMEM-F12 containing HEPES  

buffer, L-Glutamine and 

pyridoxine HCl medium 

(Life Technologies, Paisley, U.K) 

1% insulin-transferrin –selenium 

(ITS) (BD Biosciences, Paisley, U.K) 

2.5% Ultroser G (Corning, France) 

1% of 1 IU penicillin, 100 μg/ml Streptomycin 

(Invitrogen, Paisley, U.K) 

0.5 ml Gentamicin (Life Technologies, Paisley, U.K) 

H295R Strain 3 DMEM-F12 containing HEPES  

buffer, L-Glutamine and 

pyridoxine HCl medium 

(Life Technologies, Paisley, U.K) 

10% Cosmic Calf Serum (Thermo 

Fisher Scientific, Erembodegem, 

Belgium) 

1% of 1 IU penicillin, 100 μg/ml Streptomycin 

(Invitrogen, Paisley, U.K) 

0.5 ml Gentamicin (Life Technologies, Paisley, U.K) 

HAC 15 DMEM-F12 containing HEPES  

buffer, L-Glutamine and 

pyridoxine HCl medium 

(Life Technologies, Paisley, U.K) 

1% insulin-transferrin –selenium 

(ITS) (BD Biosciences, Paisley, U.K) 

2.5% Ultroser G (Corning, France) 

1% of 1 IU penicillin, 100 μg/ml Streptomycin 

(Invitrogen, Paisley, U.K) 

0.5 ml Gentamicin (Life Technologies, Paisley, U.K) 
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2.1.3 Cryopreservation 

The cells could be cryopreserved for long-term storage by pelleting, as in section 

2.1.2, then resuspending the cells in complete growth medium supplemented 

with 10% dimethyl sulphoxide (DMSO) (Thermo Fisher Scientific, Loughborough, 

U.K) to prevent ice crystal formation. Cell suspensions were then aliquoted and 

transferred to cryovials and frozen at -80oC using isopropanol and Nalgene Cryo-

Container (Thermo Fisher Scientific, Loughborough, U.K) before being placed in 

liquid nitrogen for long-term storage. 

2.1.4 Cell Resuscitation  

Cells from liquid nitrogen were thawed on ice and slowly brought to room 

temperature before transfer to a 37oC water bath. The cell suspension in the vial 

was aliquoted to a universal container with 10 ml fresh growth medium. This was 

centrifuged at 1500 g for 5 minutes and the medium containing DMSO removed. 

The cell pellet was then resuspended with 5 ml fresh medium and transferred to 

a T25 flask (Corning) and cultured as described in section 1.2. 

2.1.5 Cell Counting 

Cell suspension, as prepared in 2.1.2, was used for cell counting with a Bright 

Line Haemocytometer (Sigma Aldrich, Poole, U.K). The cell pellet was 

resuspended with 10 ml medium and 20 μl of this cell suspension placed on the 

haemocytometer under a coverslip, applied by capillary action across the 

chamber. The number of cells was assessed under a light microscope by counting 

and averaging the number of cells in each 1mm square. Each small square of the 

haemocytometer represents a total volume of 1 mm3. 

1 mm3 = 0.001 cm3 

1 mm3 x 1000 = 0.001 x 1000 cm3 = 1 cm3 = 1 ml  

As 1 cm3 is equivalent to 1 ml, the following calculation is adapted to calculate 

the cells concentration per ml: 

Cell number/ ml = average cell count per square x 103   x original volume 
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On the basis of this count, a set number of cells was used to seed new plates. 

For a 6-well plate, 5 x 105 cells were added to each well, while for 24-well 

plates, 8 x 104 cells were added. 96-well plates had 2 x 104 cells pipetted into 

each well. 

2.2 Stimulation of Cells 

2.2.1 Angiotensin II (Angio II), 100 nM, Dibutyryl-cyclic adenosine 
monophosphate(dbcAMP), 1 mM and Potassium Chloride 
(KCl), 20 mM 

As part of the studies, it was necessary to stimulate cells with various factors 

known to influence steroidogenesis. To prepare cells for stimulation, they were 

seeded to plate wells, as above, and incubated at 37°C (5% CO2) for 24 hours. 

Later, medium was removed and replaced with complete growth medium also 

containing the relevant factor and incubated at 37°C for a further 0, 6, 12 or 24 

hours, as required. The factors used were: 

- Angiotensin II (Angio II) (Tocris Bioscience, Bristol, U.K): 100 nM 

- Dibutyryl-cyclic adenosine monophosphate (dbcAMP) (Sigma-Aldrich, 

Dorset, England): 1 mM 

- Potassium chloride (KCl) (BDH AnalaR®, Poole, England): 20 mM 

2.3 Pre-miRTM and Anti-miRTM Transfection of Cells 

2.3.1 Lipofectamine Transfection 

Transfection of attached H295R cells with specific pre-miRTM and anti-miRTM 

(Ambion ® Life Technologies, Paisley, U.K) was performed using Lipofectamine 

reagent.  Cells were trypsinised and diluted to 16.67 x 104 cells/ml in a 6-well 

plate in normal medium and incubated at 37°C incubation for 24 hours. Later, 

transfection reagent master mix was prepared by mixing 8 μl of Lipofectamine 

2000 transfection agent (Ambion ® Life Technologies, Paisley, U.K) with 192 μl 

of OptiMEM® (Ambion ® Life Technologies, Paisley, U.K) for 10 minutes. 

Separately, the pre-miRTM or anti-miRTM were prepared by adding 24 μl of each 

of the miRNA to 176 μl OptiMEM® medium. 200 μl of the miRNA/ OptiMEM® was 

then added to 200 μl of the Lipofectamine 2000/OptiMEM® and incubated for 

another 20 minutes. 400 μl of this mixture was added to each well plate, 
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followed by 2600 μl of fresh cell medium. This was rocked gently to mix reagent 

then incubated at 37°C for 3 hours. The transfected cells were washed with 1 ml 

DPBS and prepared for cell lysis and RNA extraction. 

2.3.2 siPORTTM NeoFX Transfection 

Transfection of H295R cells in suspension was conducted using siPORTTM NeoFX 

(Applied Bioscience, Warrington, U.K). The cells were trypsinised as in section 

2.1.2 and counted as in section 2.1.5. Using 6-well plates, the cells were diluted 

to a concentration of 2 x 105/ ml using fresh medium and the suspension was 

incubated at 37°C until required. The master mix of transfection reagent was 

prepared by adding 9 μl siPORTTM NeoFX to 291 μl OptiMEM®. Separately, 24 μl 

of specific pre-miRTM or anti-miRTM was added to 276 μl OptiMEM® for 10 

minutes. 300 μl of miRNA/ OptiMEM® was then added to 300 μl of the 

Lipofectamine 2000/OptiMEM and incubated for another 20 minutes. 600 µl of 

this mixture was added to each well plate, followed by 2400 μl cell fresh 

medium. This was rocked gently to mix reagent then incubated at 37°C for 24 

hours. The transfected cells were washed with 1 ml DPBS prior to cell lysis and 

RNA extraction. 

2.4 Proliferation Assay 

2.4.1 CellTiter 96® Aqueous Non-Radioactive Proliferation Assay 
Using MTS Promega Assay 

The CellTiter 96® AQueous Non-Radioactive Cell Proliferation Assay (Promega, 

Madison, U.S.A) is used to assess cell proliferation, using a colorimetric method 

to determine the number of proliferating viable cells. The assay is composed of 

a solution of a novel tetrazolium compound [3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt; MTS(a)] 

and an electron-coupling reagent (phenazine methosulfate; PMS). In tissue 

culture medium, the MTS is bioreduced by cells into formazan rendering it 

soluble. Using 96-well plates, the absorbance of the formazan can be measured 

directly at 490 nm. 

Following cell stimulation (Section 1.6), medium was removed completely and 

100 μl of fresh culture media was added to each well of the 96-well plate 
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followed by 20 μl of MTS assay. The plate was incubated at 37°C for 1 to 4 

hours, with the colorimetric reaction progress being measured after 1, 2 ,3 and 4 

hours of incubation on the plate reader. 

2.4.2 Bromodeoxyuridine Cell Proliferation Assay (BrdU) 

Bromodeoxyuridine (BrdU) is used to detect and assess cell population that are 

actively synthesizing new DNA. BrdU is a thymidine analogue that is incorporated 

into newly synthesized DNA in the Synthesis (S) phase of the cell cycle. 

Subsequently, an anti-BrdU antibody binds incorporated BrdU and is conjugated 

with Goat Anti Mouse IgG HRPantibody, which catalyses the conversion of 

chromogenic substrate tetramethylbenzidine (TMB) from a colourless to blue or 

yellow solution.  

After 2-24 hours of BrdU incubation, fixative/denature solution was added to 

cells. Cells were seeded in 24-well plates at 8 x 104 cells per well. 400μl of 

culture medium, with cells, was added to each well and incubated for 24 hours. 

Cells were then washed with DPBS and serum-starved medium was added.C ells 

were incubated for a further 48 hours before addition of 10 nM Angio II or 100nM 

Angio II with 1 mM of BrdU for 48 hours. 

BrdU Label dilution was prepared by adding the label to culture medium in 

1:2000 ratio. 80 μl of BrdU Label dilution was then pipetted into each well and 

incubated for 24 hours. The BrdU Label was then removed and 800 μl Fixative/ 

Denaturing Solution added to each well and left for 30 minutes at room 

temperature. All liquid was removed from the well and 100 x Anti-BrdU Antibody 

1:100 in Antibody Dilution Buffer solution was prepared. 400 μl of the Anti-BrdU 

Antibody was added to each well and incubated at room temperature for one 

hour. 1x Wash Buffer was prepared by adding 25 ml of 20X concentration 

solution to 475 ml deionized water and each well washed three times. Conjugate 

was prepared by diluting reconstituted (in 1x PBS) Peroxidase Goat Anti-Mouse 

IgG HRP Conjugate in Conjugate Diluent, which was passed through a 0.2-micron 

filter. 400 μl of conjugate solution was pipetted into each well and incubated for 

30 minutes at room temperature. Wells were washed with 1x Wash buffer, then 

the entire plate was flooded with dH2O, which was removed by inversion. In the 

dark, 400 μl of Substrate Solution was added to each well and left at room 
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temperature for 15 minutes. 400 μl of Stop Solution was then added to each well 

(without removing the Substrate Solution) and its absorbance measured within 

30 minutes using the Spectrophotometric Plate Reader at 450 nm. 

2.5 Lysing Cells with Qiazol 

Qiazol Lysis Agent is a monophasic solution of phenol and guanidine thiocyanate 

that disrupts cells through lysis of fatty tissues and releases RNA; lysis reagent 

also inhibits RNases. Prior to lysis, cell medium was removed from wells and 

cells washed with DPBS before adding 700 μl of Qiazol Lysis Reagent. 

2.6 RNA Extraction and DNase Treatment Using 
miRNeasy Mini Kit (QIAGEN, Crawley, UK) 

The miRNeasy Mini Kit (QIAGEN, Crawley, UK) was used to isolate total RNA, 

including the microRNA fraction, from cells. The standard kit protocol was 

followed, including the optional DNase treatment, as follows. After cell lysis 

with Qiazol Lysis Agent, the cell culture plate was placed at -80°C overnight to 

complete homogenization (cell lysate can be stored at -80°C for several 

months). Subsequently, the homogenate was thawed at room temperature for 5 

minutes to promote dissociation of nucleoprotein complexes then transferred to 

1.5 ml RNase-free tubes. 140 μl chloroform was added to the homogenate, which 

was shaken vigorously for 15 seconds, then left at room temperature for 2 

minutes. Centrifugation for 15 minutes at 12000 x g at 4°C separated the 

samples into 3 phases. The upper colourless aqueous phase contains RNA; the 

interphase contains DNA and the lower, red organic phase contains proteins and 

lipid. The upper phase was pipetted into a new 1.5 ml RNase-free tube. 525 μl of 

100% ethanol was added and mixed thoroughly. 700 μl of the sample was then 

loaded on to an RNeasy mini spin column and centrifuged for 15 second at 8000 x 

g at room temperature; the flow-through was discarded and the step repeated 

for the remainder of the sample.  

DNase treatment was then performed. 350 μl of RWT Buffer was pipetted on to 

the RNeasy Mini spin column and centrifuged for 15 seconds at 8000 x g; the 

flow-through was discarded. 10 μl DNase I stock solution was mixed with 70 μl 

Buffer RDD and gently mixed by inversion. 80 μl of this DNase I incubation mix 
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was pipetted directly on to the RNeasy Mini spin column membrane and left at 

room temperature for 15 minutes. 350 μl Buffer RWT was pipetted on to the 

RNeasy Mini spin column and centrifuged for 15 seconds at 8000 x g. 

After on-column DNase digestion, 500 μl RPE Buffer was added to the RNeasy 

Mini spin column and centrifuged at 8000 x g for 15 seconds; flow-through was 

discarded. This step was repeated with a longer centrifugation for 2 minutes to 

dry the spin column and ensure no carry over of ethanol. The RNeasy Mini spin 

column was placed in a new 2 ml collection tube and centrifuged at full speed 

for 1 minute then transferred again to a new 1.5 ml RNase-free tube. Finally, 30-

50 μl RNase-free water was added directly to the RNeasy Mini spin column 

membrane and centrifuged for 1 minute at 8000 x g to elute the RNA. 

2.7 Nucleic Acid Quantification 

To determine the quantity and purity of nucleic acid, a Nanodrop ND-100 

spectrophotometer with ND-1000 v3.10 software (Labtech International LTD, 

Lewes, East Sussex, UK) was used. Initially the Nanodrop setting was set up to 

measure RNA. 2 μl of RNase free water was loaded to the Nanodrop base 

pedestal and the arm was lowered. It was blanked prior to sample measurement 

using Rnase-free water. The nucleic acid concentration is calculated as following 

using the Beer-Lambert Law of absorption: 

RNA concentration (µg/ ml) = (A260 reading – A320 reading) x 40 

The ratio of absorption at 260 nm and 280 nm (A260/280) is an indicator of RNA 

purity; ratios of 1.8 to 2 indicates high RNA purity.  

2.8 Agarose Gel Electrophoresis 

Agarose gels (1%) were prepared to analyse PCR product. 1 g Ultrapure agarose 

(Invitrogen, Paisley, U.K) was added to 100 ml of 1 x TBE buffer. The mixture 

was heated to dissolve the powder in a microwave oven at full power for 1–2 

minutes then allowed to cool slightly before addition of 1 μl of ethidium bromide 

solution (10 mg/ml; Sigma-Aldrich, Poole, U.K) in a fume hood. This was then 

poured into a tray with a 20-well comb (Teflon comb) and left to set. The 
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resulting gel was immersed in 1 X TBE buffer in an electrophoresis tank and the 

comb removed. 5 μl dye (0.02 % bromophenol blue, 0.02 % xylene cyanol and 2.5 

% glycerol) was added to 5 μl sample before loading the sample into a well. 5 μl 

of 1 kb DNA size ladder (Promega, Madison, WI, USA) was added to assess the 

resolution of molecular size. Gels were run for 50 minutes at 90 volts. The DNA 

fragments were visualised under UV light on a transilluminator machine (Bio-Rad 

Laboratories, Hemel Hampstead, U.K) and analysed by Multi-Analyst software v 

1.1 (Bio-Rad) at 302 nm. 

2.9 Reverse Transcription 

Reverse Transcription (RT) of single-stranded RNA to complementary DNA (cDNA) 

was achieved using the miScript II Reverse Transcription Kit (QIAGEN, Crawley, 

U.K). The supplied 10x miScript Nucleics Mix contain dNTPs, rATP, oligo-dT 

primers and internal synthetic RNA control (miRNA reverse transcription control 

(miRTC)). The 5x miScript HiFlex Buffer promotes conversion of miRNA or mRNA 

into cDNA for realtime PCR quantification (Sections 2.10 and 2.11). 

For each sample 150-200 ng of DNase-treated RNA was mixed with 2 μl of 

Reverse Transcriptase Mix, 4 μl of 5x miScript HiFlex Buffer and 2 μl of 10x 

miScript Nucleics. The total volume of 20 μl was made up with RNase-free water 

in a 96-well PCR plate. A negative reverse transcriptase (-RT) control was 

included for each sample as control to assess the specificity of qRT-PCR reaction 

to detect genomic DNA. The plate was sealed with clear polyolefin StarSeal (PCR 

seal) and centrifuged prior to reaction run. 
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The reaction was run on Multi Block System Satellite 0.2 Thermo Cooler (Thermo 

Fisher Scientific, U.K), see Table Table 2-2.   

Table 2-2: Reaction cycle of miScript Reverse-trasncription. 

Step Time (minutes) Temperature 

Reverse Transcription 120 37oC 

Inactivation of RT mix 5 95oC 

 Hold 10oC 

 

After the samples were run, 80 μl of RNase-free water was added to each and 

they were stored at -20oC until required. 

2.10 Quantitative Real-Time Polymerase Chain Reaction 
(Universal Probe Library) 

Detection of messenger RNA (mRNA) was performed by quantitative realtime 

PCR (realtime qPCR) in a 384-well PCR plate (Thermo Fisher Scientific, U.K) 

using TaqMan® Gene Expression Master Mix containing AmpliTaq Gold® DNA 

Polymerase, Uracil-DNA Glycosylase (UDG), UP (Ultra Pure), deoxyribonucleotide 

triphosphates (dNTPs) with deoxyuridine triphosphate (dUTP), ROX Passive 

Reference dye and buffer. The Universal Probe Library (UPL) probe system 

(Roche Applied Science, Indianapolis, USA) was used, consisting of 165 pre-

validated probes. These Locked Nucleic Acid (LNA) PCR probes are labelled with 

fluorescein (FAM) at the 5’end and a dark quencher dye at the 3’ end and offer 

greater specificity than SYBR-green-based assays. Each assay consists of a UPL 

probe combined with a specially-designed primer pair (Eurofins MWG Operon, 

Ebersberg, Germany), as shown in Table 2-7. 
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The realtime PCR reaction mix is prepared as shown in Table Table 2-3. 

Table 2-3: Taqman reaction components. 

Reagent Volume/ Reaction 

TaqMan® Gene Expression Master Mix 5.0µl 

UPL Probe 0.1µl 

Primer (Forward) 0.4µl 

Primer (Reverse) 0.4µl 

Nuclease-Free Water 2.1µl 

cDNA (template RNA) 2.0µl 

 

8 μl of Taqman master mix was added to 2 μl cDNA in the well of a 384-well 

plate. 3 technical replicates were set up for each RT positive (RT+) cDNA 

samples and 3 technical replicates for the RT negative sample. cDNA was 

prepared as described in Section 1.9. Negative water blank for control reactions 

were also included. The plate was sealed, centrifuged (1000g, 1 minute at room 

temperature) and run on QuantStudio™ 7 Flex Real-Time PCR Systems (Applied 

Biosystem by Life Technologies, Carlsbad, CA, USA) using SDS software 

QuantStudio™ 7 Flex Real-Time PCR System Software (Applied Biosystem by Life 

Technologies, Carlsbad, CA, USA). The cycling protocol is shown in Table 2-4. 

Table 2-4: Reaction cycle of Taqman qRT PCR. 

Step Time  Temperature Cycles 

Enzyme activation 10 minutes 95oC 1 

Denaturation 15 seconds 95oC 40 

Annealing and extension 1 minute 60oC 40 

 

2.11 SYBR Green Quantitative Real-Time Polymerase 
Chain Reaction  

The detection of mature miRNA was analysed using miScript SYBR Green PCR Kit 

(QIAGEN, Crawley, U.K.) and 10X miScript Primer Assays (see Table 2-8). 

Supplied lyophilised primer Assay was mixed with 550 µl of TE buffer (pH 8) and 

stored at -20oC. Reactions were prepared as shown in Table 2-5.  
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Table 2-5: SYBR Green reaction components.  

Reagent Volume/Reaction 

QuantiTect SYBR Green PCR Master Mix (2X) 10µl 

10X miScript Universal Primer 2.0µl 

10X miScript Primer Assay 2.0µl 

Nuclease-Free Water 4.0µl 

cDNA (template RNA) 2.0µl 

 

8μl of SYBR Green master mix was added to 2 µl of cDNA in each well. 3 

technical replicates were set up for RT positive (RT+) cDNA samples and 3 

technical replicates for the RT negative sample. cDNA was prepared as described 

in Section 1.9. The mixture was centrifudged for 1000 g, 1 minute at room 

temperature. It was run on QuantStudio™ 7 Flex Real-Time PCR Systems (Applied 

Biosystem by Life Technologies, Carlsbad, CA, USA) using SDS software 

QuantStudio™ 7 Flex Real-Time PCR System Software (Applied Biosystem by Life 

Technologies, Carlsbad, CA, USA) with cycle as mentioned below: 

Table 2-6: Reaction cycle of SYBR Green qRT PCR. 

Step Time  Temperature (oc) Cycles 

Enzyme activation 15 minutes 95 1 

Denaturation 

Annealing 

Extension 

15 seconds 

30 seconds 

30 seconds 

94 

55 

70 

 

40 

 

Melt curve 

15 seconds 

15 seconds 

15 seconds 

95 

60 

95 

 

1 

 

2.12 Analysis of qPCR Results 

Amplification of PCR product increases fluorescence from PCR probe or SYBR 

Green dye, as measured by the QuantStudio™ 7 Flex Real-Time PCR cycler.  The 

Ct (cycle threshold) is the PCR cycle number at which a predetermined level of 

fluorescence is achieved. The Ct is inversely proportional to the starting amount 

of target template and this is used for qPCR analysis. For these studies, the ΔΔCt 
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system of quantitative analysis was used. This employs a ‘housekeeping’ gene as 

a constant benchmark, measured alongside the gene/miRNA of interest. 

Therefore,  

ΔCt = Ct sample – Ct housekeeper 

GAPDH (for Taqman) and RNU-48 (for SBR Green) were used as ‘housekeeping 

genes’, acting as normalising controls for RNA concentration and correcting for 

minor discrepancies during pipetting. Both housekeepers were validated for 

consistent expression and reproducibility. 

The ΔΔCt can then be calculated from these as follows: 

ΔΔCt = ΔCt sample – ΔCt reference 

And the fold change (RQ) in mRNA or miRNA calculated as: 

Fold change = 2-(ΔΔCt) 

2.13 Microarray Analysis  

For miRNA profile studies of adrenal tissues (normal adrenal and APA tissues) 

and H295R cells (basal and stimulated H295R), the total RNA was prepared by Dr 

Stacy Robertson (adrenal tissues) and Dr Louise Diver (H295R cells). The group 

size for the adrenal tissue study was dictated by the availability of suitable 

clinical samples. We initially received 4 control samples (normal adrenal) and 

were able to subsequently match these with 4 aldosterone-producing adenoma 

samples. The four non-diseased control samples were more difficult to obtain 

and determined our sample size.  

The RNAs were sent for microarray analysis by LC Sciences (Houston, Texas, 

U.S.A.) using miRNA μParaflo® technology microarray (version 10.1). Briefly, 

RNA was labelled with fluorescent dye and hybridised overnight on a specific 

microfluidic chip containing probes for 723 human miRNAs and control RNA. The 

chip was scanned using a GenePiz 4000B laser scanner and analysed using Array-

Pro image software. The raw data were subtracted to background and 
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underwent data adjustment including data filtering, log2 transformation, gene 

centering and normalisation. The manufacturers recommend a signal cut-off of 

500 AU as the optimal threshold below which any miRNA should be regarded as 

absent; we employed this threshold for our studies. The need for such a 

threshold arises from the non-specific, background fluorescence, which is an 

unavoidable feature of this method, and requires the imposition of an arbitrary 

cut-off point for all measurements. 

2.14 miRBase Database Release 19: August 2012 

The mirBase Database is the primary online repository for all known miRNAs and 

provides comprehensive miRNA nomenclature, sequence data, annotation and 

predicted gene target information. The most recent version is Release 21: June 

2014 that contains 28645 entries of hairpin precursor miRNAs, 35828 mature 

miRNAs from 223 species (miRBase 2014), including 2588 mature human miRNAs 

(Kozomara A 2014). miRBase is accessible online at http://www.mirbase.org/.  

miRBase started from an initial 218 entries of miRNA and has been developed to 

almost 30000 entries 12 years later. The miRNA names use the prefix “miR” 

followed by unique and specific identifying number that are assigned 

sequentially regardless organism. The similar identifying numbers are given to 

identical or almost identical miRNA sequence. Almost all miRNAs precursor 

produced mature miRNA from either the 5’ end or 3’ hair-pin strand, the 

annotation of mature miRNA will be added ‘5p’ or ‘3p’, based on the origin they 

are cleaved from (Ambros, Bartel et al. 2003). 

2.15 Ingenuity Pathway Analysis (IPA) 

Ingenuity Pathway Analysis (IPA) software provides predicted target genes for 

miRNAs using miRNA Target Filter database. The database is derived from peer-

reviewed scientific literature (Ingenuity Expert Finding, Ingenuity ExpertAssist 

Finding), miRecords, Tarbase and TargetScan Human. The miRNA target filter 

can be filtered through several mechanism including disease type, organ type, 

pathway affected and confidence level as described in the following:  

  

http://www.mirbase.org/
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The filter system is based on 3 confidence levels;  

1) Experimentally observed miRNA-mRNA interaction (result based on 

validated experiment). 

2) Highly predicted miRNA-mRNA interaction. 

3) Moderately predicted miRNA-mRNA interaction. 

2.16 Statistical Analysis 

The reason we did the microarray is to screen for changes in miRNAs expression. 

All the unadjusted p-value data from LC Sciences were analysed using False 

Discovery Rate (FDR) Calculator to adjust the p-value. Ideally, the miRNAs with 

significant adjusted p-value would be taken forward for further analysis. 

However, if the FDR value is not significant, there are 2 options. Firstly, 

terminate any further investigation or secondly choose the most significant hits 

from the microarray analysis. In my thesis, the analysis of FDR values was done 

by Dr John McClure. Based on FDR calculation, the p-values provided by LC 

Sciences were not significant. As advised by Dr John McClure, I have chosen to 

analyse the most significant miRNAs based on the p-value and the miRNAs that 

have relevant biological input (with p < 0.05). In addition, I have done further 

experiment to validate these screening results by qRT PCR. 

Unless specified otherwise, the data shown are presented as mean ± standard 

error of the mean (SEM), with qRT PCR data expressed as RQ ± SEM or 1/dCt ± 

SEM. For in vitro experiments, at least 3 biological samples were performed with 

a minimum of 3 technical replicate were performed, unless stated otherwise. 

We are not just using a simple T-test here because we have adjusted the p-value 

for multiple testing using FDR. None of the results were significant, so we 

proceeded to analyse the most significant hits of the microarray results using 

unadjusted p-value. Differences with a p value < 0.05 were regarded as 

statistically significant. Statistical calculations were performed using GraphPad 

Prism Version 5 (GraphPad Software, Inc, San Diego, CA).  
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2.17 Ethical Board 

The four normal adrenal tissue samples were obtained from patients (adult) 

undergoing nephrectomy with local ethical approval from the University of 

Birmingham. The other four samples of APA tissues (FFPE) were acquired from 

the Biobank of University of Glasgow and were held in accordance of Human 

Tissue Act with the local ethical review board permission. The samples were 

then handled by Dr Stacy Robertson for RNA extraction and other related 

protocols. We were unable to access to the clinical data for these samples for 

reasons of ethics and privacy.
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Table 2-7: List of TaqMan Gene Expression Assay 

Gene Primer (Forward) Primer (Reverse) UPL Probe # 

GAPDH GCTCTCTGCTCCTCCTGTTC ACGACCAAATCCGTTGACTC 60 
CYP11B1 ACTAGGGCCCATTTTCAGGT GGCAGCATCACACACACC 68 
CYP11B2 GCACCTGCACCTGGAGATG CACACACCATGCGTGGTCC 57 
CYP17A1 CTATGCTCATCCCCCACAG TTGTCCACAGCAAACTCACC 67 
HMGCR GACGCAACCTTTATATCCGTTT TTGAAAGTGCTTTCTCTGTACCC 85 
HTR4 AATGGATCCACACATGTACTAAGG GGTGACACTGACTCTCCCACT 86 
FDX1 CTTTATAGGTCACCCGGAAGG CTGGAGTGGCGGAGAGAC 11 
KCNJ5 GGAAGCTCCGATCTCAACAA CCTGGTTCATGGCATTCCTA 33 
WNT4 GCAGAGCCCTCATGAACC CACCCGCATGTGTGTCAG 74 
LDLR CCACGGTGGAGATAGTGACA CTCACGCTACTGGGCTTCTT 53 

 

Table 2-8: List of SYBRGreen miRNA Assay used 

miRNA Assay miRNA Sequence Assay Product Code 

hsa-miR-24-3p 5'UGGCUCAGUUCAGCAGGAACAG 3’ MS00006552 
hsa-miR-21-5p 5'UAGCUUAUCAGACUGAUGUUGA 3’ MS00006552 
hsa-miR-125a-5p 5' UCCCUGAGACCCUUUAACCUGUGA MS00003423 
hsa-miR-335 5' UCAAGAGCAAUAACGAAAAAUGU 3’ MS00003976 
hsa-miR-106a-5p/ miR-17-5p 5' CAAAGUGCUUACAGUGCAGGUAG 3’ MS00029274 
hsa-miR-154-3p 5' AAUCAUACACGGUUGACCUAUU 3’ MS00031479 
hsa-miR-19a-3p 5' UGUGCAAAUCUAUGCAAAACUGA 3’ MS00003192 
hsa-miR-20b-5p 5' CAAAGUGCUCAUAGUGCAGGUAG 3’ MS00003206 
hsa-miR-766-3p 5' ACUCCAGCCCCACAGCCUCAGC 3’ MS00005439 
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3 Microarray Analysis of microRNA in Normal 
Human Adrenal (NA) and Aldosterone-Producing 
Adenoma (APA) Tissues 
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3.1 Introduction 

Microarray analysis is one of the techniques that can be implemented to detect 

the expression of miRNAs. Microarray allows the analysis of thousands of genes 

simultaneously in one experiment: a time- and cost-efficient investigation. 

Microarray can be classified (Abdullah-Sayani, Bueno-de-Mesquita et al. 2006) 

into the following types : 

1. Expression profiling 

2. Comparative genomic hybridization (CGH) 

3. Single nucleotide polymorphism analysis (SNP) 

4. Resequencing arrays (RA) 

Expression profiling and CGH are used to compare gene expression in normal vs 

disease states for tumour classification and prognostic purposes. SNP analysis is 

used to detect specific polymorphisms or mutations, helping to determine 

genetic predisposition to certain diseases and the discovery of DNA-based drug 

candidates. RA is utilised to sequence the genome for somatic mutation 

identification in cancer. In addition to the numerous ‘wet’ laboratory 

experimental analyses available for miRNA investigation (e.g microarray, qRT 

PCR, deep-sequencing and others), in silico analysis can also be utilised to 

facilitate the prediction of genes targeted by miRNA relatively quickly and cost-

effectively, before commencing the more expensive and time-consuming other 

techniques.  

In this chapter, the miRNA Target Filter in IPA was employed to determine 

putative targets for miRNAs of interest. miRNA Target Filter combines several 

bioinformatic miRNA tools: TargetScan, TarBase, miRecords and Ingenuity® 

Knowledge Base (IPA 2016). The ‘seed’ site refers to the second to seventh 

nucleotides of the miRNA from the 5’ end. Bartel et al reported that seed site 

base-pairing is one of the robust measure for many target miRNA target 

database, where it increases the reliability and reducing the false positive 

prediction (Bartel 2009). Tarbase and miRecords identify the experimentally 

validated miRNA-mRNA interaction from miRBase and published articles while 

Ingenuity ® Knowledge Base demonstrates thousands of miRNA-related finding 
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from published articles which are manually curated by Ingenuity Scientific 

experts (IPA 2016). 

The mRNA targets predicted by the TargetScan algorithm refers to the conserved 

7mer and 8mer seed match site of each miRNA (IPA 2016). 7-8mer (7mer-A1, 

7mer-m8 and 8mer) seed matches associate with the strongest targeting 

efficiency (Figure 3-1) and are used to predict  metazoan conserved miRNA 

targets (Friedman, Farh et al. 2009). In order of increasing strength of base-

pairing, a 7mer-A1 site has a seed match with an adenosine base in the mRNA 

sequence complementary to miRNA nucleotide 1 (Figure 3-1). Next strongest is a 

7mer-m8 site, composed of a seed match supplemented by a Watson-Crick 

match at miRNA nucleotide 8. The most stable bonding between mRNA and 

miRNA results from an 8mer comprising a seed match at both miRNA nucleotide 

8 and an A at nucleotide 1.  

 

Figure 3-1: miRNA-mRNA site base-pairing. Each nucleotide (N) is numbered as 1 to 8 from 
the 5’ end of the miRNA.  
Blue nucleotides are the core seed site of the miRNA and black nucleotides mark the start (N1) and 
end (N8) of the site. Green nucleotides are the complementary sites in the mRNA sequence. Red A 
denotes adenosine and the purple nucleotide at position 8 increase the recognition strength of the 
target by miRNA. Modified from (Friedman, Farh et al. 2009). 
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3.2 Aims 

1) To establish and identify significant differences between the miRNA 

profiles of normal adrenal (NA) and aldosterone-producing adenoma (APA) tissue 

using microarray analysis methods. 

2) To utilise bioinformatic analysis methods (Ingenuity Pathway Analysis; 

miRNA target Filter) to identify experimentally validated or predicted mRNA 

targets of miRNAs differentially-expressed between NA and APA tissue, which 

are likely to be relevant to adrenal function and APA pathology. 

3.3 Result 

3.3.1 miRNA expression in microarray 

Total RNA was extracted from 4 different samples of normal human 

adrenocortical (NA) tissue and 4 different samples of human aldosterone-

producing adenoma (APA). The RNA quantity was determined using the Nanodrop 

(Section 2.7) and the quality assessed by Agilent Bioanalyser chip. RNA samples 

were then sent for miRNA profile analysis by microarray microfluidic chip (LC 

Sciences, Houston, Texas). LC Sciences also conducted their own quality control 

procedures on the RNA samples. 

The large dataset from LC Sciences is further selected based on the 

manufacturer recommendation. According to the recommendations of the 

microarray manufacturer (LC Sciences, Houston, Texas), a 500 arbitrary unit 

(AU) cut-off point was applied as the detection threshold for individual miRNAs. 

The microarray analysis generated a list of miRNAs present in one or both tissue 

types (i.e. miRNAs >500 AU) and also of miRNAs differentially expressed between 

tissue types (i.e. miRNAs present in only one tissue type at >500 AU, or miRNAs 

present in both tissue types at >500AU but at significantly different levels 

(p<0.05). Figure 3-2 shows positive correlation of mean fluorescence intensity of 

miRNA expression between normalised NA and APA, suggesting the majority of 

miRNA levels remain highly consistent between the two tissues.  

Of the 723 screened miRNAs, 77 were detected at levels >500 AU in NA and/or 

APA. Of these, 50 were expressed in both NA and APA, 12 were present in NA 
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only and 15 in APA only (Figure 3-3). Of the 50 miRNAs present in both tissues, 

20 were differentially expressed (p<0.05; Figure 3-4). Of the total 47 miRNAs 

differentially expressed (i.e. present in only one tissue or present in both and 

differentially expressed (p<0.05)), 23 were more highly expressed in NA tissues 

(Figure 3-5) and 24 miRNAs were more highly expressed in APA (Figure 3-6). 

 

Figure 3-2: Scatter plot showing levels of individual miRNAs in stimulated normal adrenal 
(NA) vs aldosterone-producing adenoma (APA), as analysed by microarray. R2=0.8706.  
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3.3.2 miRNA expression more than 500 Arbitrary Units (AU) 

 

Figure 3-3: Venn diagram showing the number of expressed miRNAs present (>500 AU) in 
NA and/or APA. 

 

Figure 3-4: Venn diagram of differentially-expressed miRNAs i.e. those detected in only one 
tissue type (AU>500 in NA or APA) or present in both at significantly different levels 
(AU>500 in APA and NA; p<0.05).  
Note that fewer miRNAs are listed compared to Figure 3-3; this is because this figure contains only 
miRNAs of AU >500 and with p<0.05 between both tissues.
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More highly expressed miRNAs in NA
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Figure 3-5: Microarray data showing the 23 miRNAs consistently expressed at high levels in NA samples relative to APA. 
*miRNAs >500AU in NA but not APA; †miRNAs present in both tissues but at significantly different levels (p<0.05).
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More highly expressed miRNAs in APA
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Figure 3-6: Microarray data showing the 24 miRNAs consistently expressed at high levels in APA samples relative to NA. 
*miRNAs >500AU in APA but not NA; †miRNAs present in both tissues but at significantly different levels (p<0.05). 
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3.3.3 miRBase analysis of the differentially-expressed miRNAs in 
NA and APA. 

miRBase is the main online repository providing standardised nomenclature for 

miRNAs, sequences, annotation and mRNA target prediction. Starting from an 

initial 218 miRNA entries in 2002, it has developed to include almost 30,000 

entries as of 2014. The latest version is miRBase Release 21: June 2014. It 

contains 28,645 entries of hairpin precursor miRNAs, including 35,828 mature 

miRNAs from 223 species (miRBase 2014). The miRNA naming convention uses 

the prefix ‘miR’ followed by a unique and specific identifying number (e.g. miR-

768) that is assigned sequentially regardless of organism. Similar identifying 

numbers are given to identical or almost identical miRNA sequences (e.g. miR-

125a and miR-125b). Almost all miRNA precursors produce mature miRNA from 

either the 5’ end or the 3’ hair-pin strand; mature miRNA are annotated as ‘5p’ 

or ‘3p’ on the basis of this (e.g. miR-768-5p) (Ambros, Bartel et al. 2003). Each 

species has a specific prefix designation (for example, in humans ‘hsa’ is added 

prior to the miRNA name i.e hsa-miR-17). 

The microarray data were analysed using the current miRBase release (Release 

21: June 2014). Of the differentially-expressed miRNAs, two (miR-768-3p and 

miR-768-5p) were excluded from further analysis as these had been reclassified 

by miRBase as ‘dead miRNA’ entries due to their overlap with the annotated 

snoRNA, HBII-239 (miRBase 2014), meaning they are unlikely to be real 

functional miRNAs.  

According to microarray, the most abundantly expressed miRNAs are the let-7 

miRNAs: let-7a-5p (average fluorescence intensity 23866, p=0.0019), let-7b-5p 

(average fluorescence intensity 19235, p =0.0082), let-7c (average fluorescence 

intensity 20486, p =0.0089) and let-7d-5p (average fluorescence intensity 14091, 

p =0.029). These miRNAs are uniformly up-regulated in APA tissue (Figure 3-6). 

The most significant difference in miRNA expression between tissues is that of 

miR-29c-3p (p=0.000043), which is upregulated in NA relative to APA (Figure 

3-5). 
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3.3.4 miRNA Clusters Expression in NA and APA Tissues 

As classified by miRBase Release 21, a group of miRNAs located on the same 

chromosome and within 10 kb of one another are termed a miRNA cluster 

(Zhang, Azhar et al. 2012, miRBase 2014). There is evidence that the miRNAs 

derived from clusters tend to have similar function and associate with similar 

disease states (Lu, Zhang et al. 2008). In my study, members of 27 different 

miRNAs clusters were identified in NA or APA tissue (Figure 3-7 to Figure 3-14). 

Expression levels of different members of the same miRNA cluster often follow 

similar patterns. For example, Cluster let-7a-1, located on chromosome 9 

(Figure 3-11 A), contains let-7a-5p and let-7d-5p, which were both significantly 

upregulated in APA samples, as shown in Figure 3-11 and Figure 3-15. A further 

member of this cluster, let-7f-5p, shows a similar pattern of expression 

(upregulated in APA), but it is not differentially significant. Even though let-7d-

3p was judged significantly different between the two phenotypes (high in APA), 

the expression level in both tissues was <500 AU, so it is technically not 

expressed in either tissue (Figure 3-11). Similarly, no expression of the 

remaining cluster members, let-7a-3p and let-7f-1-3p, was detected from the 

microarray. In Cluster let-7a-3 (Figure 3-16), two miRNAs show consistent 

expression: let-7a-5p and let-7b-5p.  

Furthermore, two miRNAs from Cluster miR-134 (miR-134 and miR-382) are 

consistently upregulated in APA (Figure 3-17). These miRNAs are located at 

chromosome 14.  

Two members of Cluster miR-29b-1 (miR-29a-3p, miR-29b-3p; both p<0.05, >500 

AU) (Figure 3-18) are highly expressed in NA. The other 2 miRNAs in the cluster 

(miR-29a-5p and miR-29b-1-5p) show a consistent pattern of expression (the 

mean fluorescence intensity of the miRNAs are higher in NA), but the p-value is 

>0.05 (Figure 3-8). Cluster miR-29a/ 29b-1 is located on chromosome 7. 

Cluster miR-29b-2 (consists of miR-29b-3p, miR-29c-3p both p<0.05, >500 AU) 

(Figure 3-19) is down-regulated in APA tissues. Mature miR-29b-3p originates 

from 2 distinct miRNA precursors: stem-loop mir-29b-2 which is located at 
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chromosome 1 and stem-loop mir-29b-1 which is located at chromosome 7. The 

sequence of mature miR-29b-3p remains the same 

(UAGCACCAUUUGAAAUCAGUGUU) despite differences in miRNA precursor loops 

(miRBase 2014). 

Another cluster that shows a similar expression pattern is Cluster miR-15a 

(Figure 3-7), where miR-15a-5p and miR-16-5p show a similar trend towards 

upregulation in NA tissues, although this is not significant. 

Cluster miR-24-1 and Cluster miR-24-2 each feature members that are 

overexpressed in NA and in APA (Figure 3-8). The mature form of miR-24-3p is 

synthesized from two different primary miRNAs; miR-24-1 in chromosome 9 and 

miR-24-2 from chromosome 19. 
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Cluster miR-195
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Figure 3-7: miRNA Clusters (NA>APA) detected from microarray analysis. Cluster miR-125a 
(A), cluster miR-15a (B) and cluster miR-195 (C)).  
Blue bars indicate miRNAs that are expressed in NA and red bars indicate APA (*p<0.05).

A B 

C 
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Figure 3-8: miRNA Clusters (NA>APA) detected from microarray analysis (Cluster miR-24-1 
(A), Cluster miR-24-2 (B), Cluster miR-29b-1 (C) and miR-29b-2 (D)).  
Blue bar indicates miRNAs that are expressed in NA and red bars indicate APA (*p<0.05). 

A B 
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Figure 3-9: miRNA Clusters (NA>APA) detected from microarray analysis (Cluster miR-30b 
(A), Cluster miR-30c (B), Cluster miR-376c (C) and miR-379 (D)).  
Blue bars indicate miRNAs that are expressed in NA and red bars indicate APA (*p<0.05).
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Figure 3-10: miRNA Clusters (NA>APA) detected from microarray analysis (Cluster miR-
424).  
Blue bars indicate miRNAs that are expressed in NA and red bar indicates APA (*p<0.05).
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Cluster let-7a-1
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Figure 3-11: miRNA Clusters (APA>NA) detected from microarray analysis (Cluster let-7a-1 
(A), Cluster let-7a-2 (B), Cluster let-7a-3 (C) and Cluster let-7c (D)).  
Blue bars indicate miRNAs that are expressed in NA and red bars indicate APA (*p<0.05).
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Cluster miR-103a-2/ miR-103b-2
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Cluster miR-134/ miR-382
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Figure 3-12: miRNA Clusters (APA>NA) detected from microarray analysis (Cluster miR-
103ab-1 (A), Cluster miR-103ab-2 (B), Cluster miR-122 and (C) Cluster miR-134 (D)).  
Blue bars indicate miRNAs that are expressed in NA and red bars indicate APA (*p<0.05).
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Cluster miR-34b/ miR-34c
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Figure 3-13: miRNA Clusters (APA>NA) detected from microarray analysis (Cluster miR-34c 
(A), Cluster miR-451 (B) and Cluster miR-432 (C)).  
Blue bars indicate miRNAs that are expressed in NA and red bars indicate APA (*p<0.05).
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Cluster miR-509-1
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Cluster miR-509-2/ miR-509-3
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Cluster miR-92a-1
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Cluster miR-92a-2
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Figure 3-14: miRNA Clusters (APA>NA) detected from microarray analysis (Cluster miR-509-
1 (A), Cluster miR-509-2 (B), Cluster miR-92a-1 (C) and Cluster miR-92a-2 (D)).  
Blue bars indicate miRNAs that are expressed in NA and red bars indicate APA (*p<0.05).
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Figure 3-15: Cluster let-7a-1 consists of 6 miRNAs; 2 of the miRNAs are above 500 AU and 
differentially expressed.  
The blue bars represent normal adrenal (NA) and the red bars represent adrenal producing 
adenoma (APA). The dotted line indicates the 500 AU cut-off point, *p-value <0.05. 
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Figure 3-16: Cluster let-7a-3 consists of 6 miRNAs; 2 of the miRNAs are above 500 AU and 
differentially expressed.  
The blue bars represent normal adrenal (NA) and the red bars represent adrenal producing 
adenoma (APA). The dotted line indicates the 500 AU cut-off point, *p-value <0.05. 
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Figure 3-17: Cluster miR-134 consists of 16 miRNAs. Only 2 miRNAs (miR-134 and miR-382) 
showed similar pattern of expression and they are above 500 AU in APA.  
The others are mostly not expressed in microarray (<500 AU). The blue bars represent normal 
adrenal (NA) and the red bars represent adrenal producing adenoma (APA). The dotted line 
indicates the 500 AU cut-off point, *p-value <0.05. 
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Cluster miR-29b-1
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Figure 3-18: Cluster miR-29b-1 consists of 4 miRNAs; 2 of the miRNAs are above 500 AU.  
2 of the miRNAs are above 500 AU and differentially expressed. The blue bars represent normal 
adrenal (NA) and the red bars represent adrenal producing adenoma (APA). The dotted line 
indicates the 500 AU cut-off point. *p-value <0.05. 
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Figure 3-19: Cluster miR-29c/29b-2 consists of 4 miRNAs; 2 of the miRNAs are above 500 
AU and differentially expressed.  
The blue bars represent normal adrenal (NA) and the red bars represent adrenal producing 
adenoma (APA). The dotted line indicates the 500 AU cut-off point, *p-value <0.05. 
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3.3.5 Ingenuity® Systems Pathway Analysis (microRNA target 
Filter) 

Having analysed the presence and differential expression levels of miRNAs 

between tissue types, further analysis of possible biological function was 

conducted using Ingenuity® Systems Pathway Analysis software (IPA; Ingenuity 

Systems, Redwood City, CA USA; http://www.ingenuity.com). This enables 

plausible messenger RNA targets of the differentially-expressed miRNAs to be 

determined in order to assess their possible molecular and cellular functions. 

47 Differentially-expressed miRNAs (p<0.05, >500 AU), as identified from the 

microarray data, were uploaded to the IPA system. Subsequently, using miRNA 

Target Filters, 34 miRNAs were automatically selected (Figure 3-20) while 13 

miRNAs are not included in the IPA analysis. The 13 miRNAs were excluded 

either due to no interaction being detected between the miRNA and mRNA or 

because the miRNAs were not listed in the database. These 34 miRNAs included 

those that share the same seed sequences (as shown in Table 3-1 and Table 3-2), 

which are termed ‘synonymous miRNA’.  These filtered miRNAs were then 

analysed using various software resources such as Ingenuity Expert Finding, 

Ingenuity Expert Assist Finding, miRecords, Tarbase and TargetScan Human. 

When predicting possible targets for miRNAs, different levels of rigour can be 

applied to the results. For example, it can be requested that only 

experimentally validated miRNA-mRNA interactions demonstrated in a previously 

published study be included in the results. Alternatively, highly and/or 

moderately predicted mRNA targets can also be included; although less rigorous, 

these predictions produce a greater number of ‘hits’ than the obviously more 

limited list of validated interactions.  

Data may also be filtered by specific disease type (e.g. endocrine, 

cardiovascular and cancer), by specific pathway (e.g. hormone/ sterol 

biosynthesis, apoptosis, cell growth, proliferation and development) and by 

organ system (e.g. adrenal gland). When all these filters are applied, the 

number of mRNA targets predicted for the 34 miRNAs under investigation reduce 

dramatically from 11,933 to 116 (Figure 3-20).  

http://www.ingenuity.com)/
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The next sections will focus on particular genes (i.e CYP11B2, HMGCR and 

others) and the pathways relevant to APA pathogenesis that are identified by IPA 

as being apparently targeted by multiple miRNAs. 
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Figure 3-20: Summary of differentially-expressed miRNA analysis in NA vs APA, conducted using Ingenuity Pathway Analysis (IPA).  
Using the IPA miRNA Target Filter, the number of miRNAs under investigation was reduced from 47 to 34. Applications of further filters then reduced the predicted 
number of target mRNAs for these 34 miRNAs from 11,933 to 116.
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Table 3-1: Synonymous miRNAs expressed in NA (>500 AU) i.e. miRNAs having similar seed sequence and therefore sharing similar mRNA targets (IPA). 
miRNA (miRBase Acession) Synonym miRNAs/ Overlapped 

miRNAs (miRBase Acession) 

Seed Sequence Number of targeted mRNA from 

different genes 

hsa-miR-10a-5p  ACCCUGU 780 

hsa-miR-125a-5p hsa-miR-125b-5p CCCUGAG 1531 

hsa-miR-126a-3p  CGUACCG 111 

hsa-miR-139-5p  CUACAGU 690 

hsa-miR-148a-3p  CAGUGCA 1197 

hsa-miR-15a-5p hsa-miR-16-5p AGCAGCA 2020 

 hsa-miR-195   

 hsa-miR-424   

hsa-miR-21-5p  AGCUUAU 615 

hsa-miR-24-3p  GGCUCAG 1394 

hsa-miR-26b-5p hsa-miR-26a-5p UCAAGUA 1095 

hsa-miR-27a-3p hsa-miR-27b-3p UCACAGU 1654 

hsa-miR-29b-3p hsa-miR-29a-3p AGCACCA 1492 

 hsa-miR-29c-3p   

hsa-miR-30c-5p hsa-miR-30a-5p GUAAACA 1592 

 hsa-miR-30b-5p   

hsa-miR-335-5p  CAAGAGC 637 

hsa-miR-376c-3p  ACAUAGA 667 

hsa-miR-379-5p  GGUAGAC 448 
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Table 3-2: Synonymous miRNAs expressed in APA (>500 AU) i.e. miRNAs having similar seed sequence and therefore sharing similar mRNA targets (IPA). 
miRNA (miRBase Acession) Synonym miRNAs/ Overlapped 

miRNAs (miRBase Acession) 

Seed Sequence Number of targeted mRNA from 

different genes 

hsa-let-7a-5p hsa-let-7b/c/d-5p GAGGUAG 1396 

hsa-miR-103-3p hsa-miR-107 GCAGCAU 1255 

hsa-miR-140-3p  ACCACAG 792 

hsa-miR-149-3p  GGGAGGG 2606 

hsa-miR-320a hsa-miR-320b AAAGCUG 1073 

hsa-miR-34a-5p  GGCAGUG 1477 

hsa-miR-34c-3p  AUCACUA 302 

hsa-miR-361-5p  UAUCAGA 561 

hsa-miR-375-3p  UUGUUCG 263 

hsa-miR-382-5p  AAGUUGU 447 

hsa-miR-432  CUUGGAG 491 

hsa-miR-451a  AACCGUU 190 

hsa-miR-483-5p  AGACGGG 461 

hsa-miR-509-3p  GAUUGGU 346 

hsa-miR-574-3p  ACGCUCA 199 

hsa-miR-574-5p  GAGUGUG 564 

hsa-miR-92a-3p hsa-miR-92b-3p AUUGCAC 1139 



137 
 

3.3.5.1 Experimentally Validated Targets of clustered differentially-
expressed miRNAs. 

IPA analysis identified 3 miRNAs clusters containing differentially-expressed 

constituents to be of particular interest. 

The first is cluster let-7a-1 which contains, among others, the differentially 

expressed miRNAs let-7a-5p and let-7d-5p (Figure 3-11). Both of these miRNAs 

are significantly downregulated in NA compared to APA. let-7f-5p also shows a 

similar downregulation pattern in NA, but it is not significant. IPA analysis lists 

132 experimentally-validated mRNA targets for members of this cluster, 131 of 

them human. Interestingly, these validated targets include DICER1, which 

expresses the key component of miRNA processing. Overexpression of let-7 

significantly reduces expression of DICER1 at the mRNA and protein levels; 

furthermore, downregulation of DICER1 itself reduces let-7 expression 

(Tokumaru, Suzuki et al. 2008). let-7a and let-7c have also been shown 

experimentally to target HMGA2 (High-mobility group A2), an early embryonic 

gene that is up-regulated in many advanced cancers and whose expression 

correlates with poor prognosis (Shell, Park et al. 2007, Peng, Laser et al. 2008). 

The other two clusters, cluster miR-29b-1 (Figure 3-18) and cluster miR-29b-2 

(Figure 3-19), both contain miRNAs that are upregulated in NA relative to APA 

and have similar seed sequences (i.e. are synonymous), as shown in Table 3-1. 

These clusters share 57 experimentally-validated targets according to the IPA 

database. Among the targeted genes are COL1A1, COL1A2, COL3A1 and COL5A3, 

which are involved in atherosclerosis signalling. These are discussed later in this 

chapter. 
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Table 3-3: Cluster let-7a and let-7b miRNAs share the same experimentally-validated mRNA targets as a result of their synonymous seed sites. 
Source: IPA database.   

Validated targets for cluster let-7a and let-7b 

1GF2BP2 

AARSD1 

ACP1 

ADGRG1 

AGO4 

AKAP8 

ANAPC1 

ATAD3B 

ATP6V1F 

ATP6VOA1 

AURKB 

BCL2L1 

BCL7A 

BMP2K 

BSG 

CALCOCO2 

CAPG 

CARHSP1 

CASP3 

CCND1 

CDC25A 

CDIPT 

CDK6 

CDKAL1 

CHMP2A 

COIL 

COL1A2 

COMMD9 

CSDE1 

CSNK1D 

DAD1 

DHX57 

DICER1 

DOCK5 

DRD3 

DSP 

DUSP12 

DUSP23 

EIF3J 

EIF4G2 

F2 

FADS2 

FAM105A 

FAM96A 

FANCD2 

FNDC3A 

GAK 

GEMIN7 

GRPEL2 

GTPBP3 

GYS1 

HMGA1 

HMGA2 

HMOX1 

HYOUT 

IFIT5 

IFRD1 

IGF2BP1 

IGF2BP3 

IPO4 

ITGB3 

KCNJ16 

KLK10 

KRAS 

KRT19 

 

LIN28A 

MARS2 

MED28 

MLLT1 

MRM1 

MRPS24 

MRPS33 

MTPN 

MTRR 

MYC 

NEDD4 

NF2 

NRAS 

NXN 

PGRMC1 

POLD2 

POLR2C 

POM121C 

PPP1R7 

PRDM1 

PRIM1 

 

PRRC2A 

PTGS2 

PXDN 

RABGAP1L 

Ras 

RBM19 

RDH10 

RHO6 

RHOB 

RPP38 

RRP8 

RTCA 

SCYL1 

SEPT3 

SIGMAR1 

SLC1A4 

SLC25A1 

SLC25A13 

SLC25A24 

SLC25A32 

SLC38A1 

 

SMC1A 

SMOX 

SNAP23 

SPCS3 

SPRYD4 

SYPL1 

TAF9B 

TAGLN 

TGFBR1 

THBS1 

TLR4 

TMEM2 

TPM2 

TRIM71 

TRMT1 

TTC9C 

TUSC2 

UGT8 

UHRF1 

VIM 

VPS39 
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Table 3-4: Clusters miR-29b-1 and miR-29b-2 miRNAs share the same experimentally-validated mRNA targets as a result of their synonymous seed sites. 
Source: IPA database. 

Validated target for cluster miR-29b-1 and miR-29b-2 

ACVR2A 
ARPC3 
BACE1 
CAV2 
CD276 
CDC42 
CDK6 
CNOT8 
COL15A1 
COL1A1 
COL1A2 
COL3A1 
COL4A1 
COL4A2 
COL5A2 
COL5A3 

DCP2 
DNMT3A 
DNMT3B 
DUSP2 
FAM3C 
FBN1 
FRAT2 
GAS7 
GMFB 
GPR37 
HDAC4 
HMGN3 
INSIG1 
KCTD3 
KLF4 
LAMC1 
LOXL2 

MAPRE2 
MCL1 
MLF1 
MYBL2 
NASP 
NAV3 
PIK3R1 
PPIC 
PPM1D 
PTEN 
PURA 
RERE 
SHROOM2 
SP1 
SPARC 
SRSF10 

TCL1A 
TDG 
TET1 
TGFB3 
Tpm1 
TRIM9 
TUBB2A 
YY1 
ZFP36L1 
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3.3.5.2 HMGCR, a potential miRNA target 

One of the most striking results of IPA analysis concerns the HMGCR gene. 

HMGCR targeting by miRNA was chosen to be one of the main focuses of 

investigation in this thesis. This is due to its function as a limiting enzyme for 

cholesterol synthesis, and the fact that cholesterol is the main substrate for 

steroidogenesis. 3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase 

(HMGCR) is a rate-limiting enzyme for cholesterol biosynthesis. It is involved in 

various canonical pathways including Retinoid-X-Receptor/ Liver-X-Receptor 

(LXR/ RXR) signalling (Figure 3-23), Adenosine Monophosphate-Activated Protein 

Kinase (AMPK) signalling (Figure 3-24) and the Mevalonate Pathway (Figure 3-25). 

Targeting of HMGCR in the mevalonate cascade may have therapeutic 

applications by inhibiting cholesterol biosynthesis. As cholesterol is the main 

substrate for steroidogenesis, there are obvious implications for APA function.  

Seven of the differentially-expressed miRNAs are predicted to target HMGCR: 

miR-125a-5p, miR-27a-3p, miR-27b-3p, miR-29a-3p, miR-29c-3p and miR-335-5p 

(Figure 3-22). Each is downregulated in APA (Figure 3-21). 

miR-27a-3p (chromosome 19) and miR-27b-3p (chromosome 9) share the seed 

sequence UCACAGU, while miR-29a-3p (chromosome 7), miR-29b-3p 

(chromosome 7 & 1) and miR-29c-3p (chromosome 1) share the seed sequence 

AGCACCA (Table 3-1).  

Two differentially-expressed clusters are involved in targeting HMGCR: Cluster 

miR-29a-3p/ miR-29b-3p and Cluster miR-29b-3p/ miR-29c-3p.  

miR-125a-5p is potentially the most interesting of these miRNAs. miR-125a-5p 

(previously miR-125a in earlier miRBase versions) is transcribed from 

chromosome 19 as part of a cluster with let-7e, miR-125a, and miR-99b (Figure 

3-7). TargetScan Human predicts mature miR-125a-5p (seed CCCUGAG) targets 

human HMGCR mRNA (aggregate PCT=0.289, total context + score= 0.211) and 

also CYP11B2 mRNA (aggregate PCT=0.06, total context + score= 0.377), 

suggesting it may be able to simultaneously target the mevalonate pathway and 

the mineralocorticoid pathway, as shown in Figure 3-25. 
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Figure 3-21: Microarray expression of miRNAs targeting HMGCR.  
All of the miRNAs were downregulated in APA compared to NA tissues (*p<0.05). 
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Figure 3-22: Seven differentially-expressed miRNAs are predicted to target HMGCR.  
Note that only 4 direct interactions are shown in this diagram, as IPA groups the three synonymous 
miRNAs together.
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Figure 3-23: miRNAs targeting HMGCR in LXR/ RXR Pathway.  
All of the miRNAs are highly upregulated in NA tissue (p<0.05, >500 AU).
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Figure 3-24: miRNAs targeting HMGCR in AMPK (Adenosine monophosphate-activated protein kinase) Signalling.  
All of the miRNAs are highly upregulated in NA tissue. 
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Figure 3-25: miR-125a-5p is targeting HMGCR in Mevalonate Pathway and targeting CYP11B2 in the Mineralocorticoid Biosynthesis Pathway. 



146 
 

3.4 Discussion 

The microarray analysis presented here shows 23 miRNAs to be expressed at 

significantly higher levels in NA relative to APA, including miR-125a-5p, miR-

27a/b-3p, miR-29a/b/c-3p and miR-30a/b/c-5p (Figure 3-5). Conversely, 24 

miRNAs were significantly upregulated in APA relative to NA (Figure 3-6). The 

summary of miRNA expression in APA vs NA is as shown in Chapter 1 (Table 1-8). 

For miRNA expression in ACC vs ACA see Table 1-6 and Table 1-7. Some of these 

results are not in agreement with the Velázquez-Fernández study where, for 

example, mir-29c-3p was found to be downregulated in NA and miR-320a was 

downregulated in APA (Velázquez-Fernández, Caramuta et al. 2014). On the 

other hand, there are areas of agreement between the two studies, including 

the finding that miR-92a and mir-361-5p are more highly expressed in APA 

relative to NA (Velázquez-Fernández, Caramuta et al. 2014). The differences of 

these results may due to non-homogenous cell populations in the APA and NA 

samples. Furthermore, the samples used in Velázquez-Fernández et al. 2014 

were obtained from snap-frozen tissues and were analysed by a different 

microarray platform i.e. Agilent Technologies’ human microarray (Velázquez-

Fernández, Caramuta et al. 2014). 

Although the 47 differentially-expressed miRNAs identified here represent just a 

small fraction of the 723 miRNAs detectable by microarray, the number and 

variety of possible mRNA targets for these 47 is so potentially large that careful 

use of bioinformatic tools is required in order to focus on the pathways most 

likely to be relevant in the development and pathogenesis of APA. Filtering of 

data by IPA led to the highlighting of miR-125a, miR-335, cluster miR-29b and 

cluster let-7a. 

miR-29c is clustered in miR-29b group. The downregulation pattern of miR-29c in 

APA is in accordance with the low expression of miR-29c in nasopharyngeal 

carcinomas (NPC). The low level of miR-29c is correlated with high levels of 

COL1A1, COL1A2 and COL3A1. miR-29c inhibits the luciferase activity at the 

3’UTR of the mentioned genes (Sengupta, den Boon et al. 2008). However in 

another study, miR-29 was found to be upregulated in aortic dilation (Boon, 

Seeger et al. 2011) and aortic aneurysms (Maegdefessel, Azuma et al. 2012). It is 

correlated with significant downregulation of many extracellular matrix 
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components (Boon, Seeger et al. 2011, Maegdefessel, Azuma et al. 2012). One 

study suggests that anti miR-29 could improve vascular integrity during aneurysm 

(Boon, Seeger et al. 2011) and markedly increase elastin expression in Williams-

Beuren syndrome (characterized with aortic stenosis) (Zhang, Huang et al. 

2012). miR-29a, miR-29b and miR29-c inhibit the expression of COL1A1, COL1A2, 

COL3A1, COL4A1 and numerous extracellular matrix protein. These genes and 

proteins can lead to cardiac, liver, renal and pulmonary fibrosis. It is suggested 

that anti miR-29 could be used as a therapeutic method for aneurysm, 

vulnerable plaque and pro-elastin/pro-collagen therapies (Van Rooij and Olson 

2012). This study is supported by another experiment where miR-29b was shown 

to suppress alpha 1 collagen (COL1A1) mRNA and protein level through 3’UTR 

binding in human stellate culture cells. COL1A1 is involved in liver fibrogenesis. 

This study proposed miR-29b as a therapeutic tool for antifibrotic therapy 

(Ogawa, Iizuka et al. 2010). In diabetic-induced rat, mir-29a, miR-29b and mir-

29c are upregulated in microarray of the Goto-Kakizaki (GK) rat compared to 

healthy controls. Validation with Northern blotting shows upregulation of the 3 

paralogs miRNA in muscle, fat and liver of diabetic rat, all of which are the 

target tissues of insulin action. Increased miR-29a/b/c might cause insulin 

resistance by repressing insulin-stimulated glucose uptake (He, Zhu et al. 2007). 

Members of the let-7 family (let-7a-5p, let-7b-5p, let-7c and let-7d-5p) were 

consistently upregulated in APA tissues (Figure 3-6). In one study, let-7a and let-

7d were downregulated in ACC compared to ACA (Patterson, Holloway et al. 

2011). However, Özata et al reported a different finding, where let-7a and let-

7d were both increased significantly in ACC compared with ACA (Özata, 

Caramuta et al. 2011). In other tumours, members of let-7 family were 

significantly suppressed in primary malignant melanoma compared to the control 

(benign melanocytic nevi). let-7b overexpression in melanoma samples via in 

vitro analysis downregulated the expression of cyclins D1, D3, A and cyclin-

dependent kinase 4 (CDK4) at 3’UTR region. let-7b inhibited cell-cycle progress 

and stopped the growth of melanoma cells (Schultz, Lorenz et al. 2008). let-7e 

directly suppresses Cyclin D1, resulting in the inhibition of G(1) cell cycle 

progress in a breast carcinoma cell line (Mitra, Das et al. 2011). let-7d is 

upregulated in transition of breast ductal carcinoma in situ (DCIS) to invasive 

ductal carcinoma (IDC) (Volinia, Galasso et al. 2012). In the chemical-induced 
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hepatocarcinogenesis rat model, several circulating miRNAs are highly elevated; 

e.g. let-7a, let-7f. Both of these miRNAs are even detected at the early stages of 

hepatocarcinogenesis, indicating that they might be useful as predictive tools to 

monitor development of carcinogenesis (Sukata, Sumida et al. 2011). 

miR-125a-5p shares the same seed sequence with miR-125b-5p shown in Table 

3-1. It is downregulated in APA compared to NA (Figure 3-5). Patterson et al, 

showed a downregulation pattern of expression of miR-125a-5p and mir-125b in 

ACC compared to ACA (Patterson, Holloway et al. 2011). Özata et al found the 

opposite, where the miR-125a-5p was upregulated in ACC compared to ACA 

(Özata, Caramuta et al. 2011). In the urinary system, the expression of miR-125b 

was significantly decreased in bladder cancer tissue and bladder cancer cell 

lines. This in vitro experiment showed that miR-125b inhibits the formation of 

cancer colonies and suppresses bladder tumour in mice. Among miR-125b targets 

are E2F3 and Cyclin A2, both essential for cell cycle transition (G1/ S phase). 

miR-125b inhibits the expression of E2F3 and Cyclin A2. This experiment 

suggested that miR-125b may be involved in cell cycle regulation via the E2F3-

Cyclin A2 signalling pathway and that downregulation of miR-125b may be a 

contributing factor to tumorigenesis (Huang, Luo et al. 2011). Furthermore, miR-

125a-5p inhibits migration and invasion of lung carcinoma. Epidermal growth 

factor receptor (EGFR) activation significantly repressed miR-125a-5p. EGFR 

regulates progression of epithelial malignancy. These data suggest that miR-

125a-5p might be a metastasis suppressor (Wang, Mao et al. 2009). In another 

study, miR-125b was significantly suppressed in malignant melanoma cell lines 

and downregulates c-Jun protein. C-Jun is the main regulator for melanoma 

progression (Kappelmann, Kuphal et al. 2013). miR-125b is located close to the 

deletion genomic region (epicentre of 11q23) in chronic lymphocytic leukaemias 

(CLLs). The aggressive and slow type of human CLL showed low expression of 

miR-125b. In in-vitro analysis, miR-125b increases the downregulation of T53 

mRNA in MEC2 cells (cell line derived from B-chronic lymphocytic leukaemia) 

(Tili, Michaille et al. 2012). On the other hand, miR-125b is abundantly 

expressed in squamous cell carcinoma (SCC). It directly repressed the MAP 

kinase gene and Vps4B (vacuolar protein-sorting 4 homolog B) that prolong the 

activation of epidermal growth factor receptor (EGFR) signalling that 

subsequently leads to cell proliferation, cell migration and adhesion (Zhang, Ge 
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et al. 2014). miR-125a is overexpressed in the hyperglycaemic hepatocyte of the 

Goto-Kakizaki (GK) rat and in adipose tissue (Herrera, Lockstone et al. 2009). 

HMGCR is a rate-limiting enzyme for cholesterol biosynthesis. HMGCR is also 

involved in the LXR/ RXR Pathway (Figure 3-23) and in AMPK (Adenosine 

monophosphate-activated protein kinase) signalling (Figure 3-24) through the 

Mevalonate Cascade (Figure 3-25). HMGCR expression is negatively mediated by 

sterols and non-sterol metabolites originating from mevalonate. The enzyme is 

suppressed by cholesterol derived from internalization of LDL via the LDLR. 

Inhibition of HMGCR induces the expression of LDLR in hepatocytes which leads 

to increased plasma LDL catabolism and subsequent decrease in plasma 

cholesterol level. This will eventually reduce the formation of atherosclerosis. 

HMGCR is targeted by statin, which lowers the cholesterol level. Statin is a 

potent cholesterol lowering drug that lowers cardiovascular mortality in 

hypercholesterolemia patients (Gould, Rossouw et al. 1998). The decrease in 

intracellular cholesterol stimulates SREBP, increasing LDLR and hence 

upregulating LDL uptake from plasma and reducing cholesterol in the circulation. 

miR-125a-5p is predicted to target HMGCR and CYP11B2 mRNAs. It is suggested 

that miR-125a-5p might be a therapeutic tool to decrease cholesterol level and 

to repress the production of aldosterone in APA. 

miR-335 has a total of 637 target mRNAs predicted by IPA analysis. Among these 

is HMGCR. Similar to miR-125a-5p, this miRNA is downregulated in APA tissues. 

In 2009, miR-335 was reported to be downregulated in ACC compared to ACA 

(Soon, Tacon et al. 2009). This study is supported by Schmitz et al. and Chabre 

et al., who found miR-335 to be low in ACC compared to ACA (Schmitz, Helwig 

et al. 2011, Chabre, Libé et al. 2013). Overexpression of miR-335 not only 

inhibits human mesenchymal stem cell (hMSCs) proliferation, migration and 

differentiation but also decreases their adipogenic and osteogenic potential 

(Tome, Lopez-Romero et al. 2011). Furthermore, in breast cancer, miR-335 

supresses tumour reinitiation and metastasis (Png, Yoshida et al. 2011).  
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3.5 Conclusion 

In conclusion, the studies in this chapter have identified from microarray 

profiling that regulation of certain miRNA clusters are consistently differentially 

regulated in similar in APA relative to normal adrenal tissue and share similar 

experimentally-validated targets. Furthermore, my analysis predicts several 

targets of these dysregulated miRNAs to be involved in corticosteroid and 

cholesterol biosynthesis pathway. In order to validate the putative targets and 

miRNAs involved, it is necessary to conduct in vitro analysis; results of this will 

be presented in Chapter 5. However, it was first necessary to optimise the 

selected in vitro cell model, and this is described in Chapter 4. 
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4 Optimisation of H295R Cells 
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4.1 Introduction 

The NCI-H295 cell line was developed from human adrenocortical carcinoma and 

is capable of corticosteroid biosynthesis (Gazdar 1990). However, this original 

strain grew very slowly and only loosely attached to surfaces. Therefore, new 

subtypes were developed by flushing out floating cells and culturing the 

remaining attached cells. The different subtypes and their culturing conditions 

are as described in Chapter 2. This chapter describes a series of studies 

conducted to characterise and compare the different cell strains in order to 

choose the most suitable model for my subsequent studies. 

This chapter also describes attempts to validate some of the microarray and 

bioinformatic result from Chapter 3 (Normal adrenal vs APA) and Chapter 6  

(Basal H295R vs Stimulated Cells; Angio II (100 nM), dbcAMP (1 mM) and KCl (20 

mM)). 

4.2 Aim 

The aim of my study is to combine bioinformatic and laboratory-based 

approaches (in vitro analysis) to investigate the role of miRNAs in the aetiology 

of APA and assess their role in the regulation of steroid production and 

cholesterol pathway. The chapter aim is therefore adrenocortical cell 

characterization  

 

 
 



153 
 

4.3 Results 

4.3.1 Adrenocortical Cell Characterization  

4.3.1.1 H295R Cell Line Morphology. 

 

Figure 4-1: Morphology of H295R Strain 1, 2, 3 and HAC 15 under compound microscope. 

 

The four strains were termed H295R-S1, H295R-S2 and H295R-S3 (Le, Liu et al. 

2013), based on the differing serum supplements used for their culture, and HAC 

15, which was developed from an isolated clonal population of H295R cell lines; 

it was thought to be a novel line but subsequent array analysis showed it to be 

derived from contaminating H295R cells (Jeniel Parmar 2008). These lines 

respond well to K+ and Angio II treatment by increasing aldosterone production 

but show a modest effect on cortisol output in response to ACTH (Le, Liu et al. 

2013) by second messenger action, dbcAMP. This due to the extremely low 

expression of ACTH receptor in H295R cell lines. 
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4.3.1.2 CYP11B2 Gene Expression in Angiotensin II-Stimulated Cells 

  

  

Figure 4-2: CYP11B2 gene expression of Strain 1 (A), Strain 2 (B), Strain 3 (C) and HAC 15 
(D) after Angio II Stimulation (n=6 in each group).  
See Table 4-1 for fold change and Ct values. * indicates p<0.05. 

 

 

CYP11B2 gene expression was assessed under basal and stimulated conditions 

(Angiotensin II, 100nM, 24 hours). Prior to Angio II stimulation, the H295R cells 

were seeded for 24 hours to allow cells to adhere to the culture wells. In order 

to optimise the experimental method, Angio II was used as a positive control. 

Angio II, via Angiotensin Type I Receptor (AT1), has been shown to stimulate cell 

growth, regulates  gene expression of growth factors, cytokines and activates 

multiple intracellular signalling cascade and transcription factors (Kim and Iwao 

2000). Under Angio II stimulation, as shown in Figure 4-2 and Table 4-1, Strain 1 

showed the highest expression of CYP11B2 (25-fold) followed by strain 2 (5-fold) 

and strain 3 (2-fold). On the other hand, HAC 15 demonstrated downregulation 

of CYP11B2 gene expression, against expectations (Figure 4-2 D). 
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4.3.1.3 Passage number effect on CYP11B2 Gene Expression 

 

Figure 4-3: CYP11B2 gene expression of H295R Strain 1 according to passage number, 10 
to 20 (n=2 in each group).  
Expression is normalised to GAPDH. See Table 4-3 for fold change and Ct values. * indicates 
p<0.05. 

 

As Strain 1 consistently showed the highest and most significant rise in CYP11B2 

expression in stimulated cells, study of the effect of passage number on its 

responsiveness was performed. Cells were stimulated with 100 nM of Angio II for 

24 hours at passages 10, 17 and 20. Figure 4-3 and Table 4-3 show that Angio II 

responsiveness decreased with passage number (CYP11B2 fold-change decreased 

from 25 to 4 from passages 10 to 20), with the stimulation of CYP11B2 more 

pronounced in younger cells. 
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4.3.1.4 CYP11B2 Gene Expression in dbcAMP-, and KCl-Stimulated Cells 

  

Figure 4-4: CYP11B2 gene expression of H295R Strain 1 after dbcAMP (A) and KCl (B) 
stimulation (n=6 in each group).  
See Table 4-2 for fold-change and Ct values. * indicates p<0.05. 

 

H295R Strain 1 was further investigated for trophic responses by stimulating the 

cells with dbcAMP (1 mM) and KCl (20 mM) for 24 hours.  Both of these 

significantly increased CYP11B2 gene expression relative to basal conditions 

(Figure 4-4 and Table 4-2).  
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Table 4-1: CYP11B2 expression in different strains of H295R cells.  
Ct=cycle threshold; ddCt= delta delta Ct; n= biological sample number; SD= standard deviation. 

Cell Strain n Basal               
Mean Ct (SD) 

CYP11B2           
Mean Ct (SD) 

ddCt Fold Change 
(Relative to basal=1) 

p-value 

H295R Strain 1 6 30.28 (0.52) 25.54 (0.31) -4.66 25.22 0.00 

H295R Strain 2 6 25.45 (0.38) 22.41 (0.22) -2.44 5.44 0.00 

H295R Strain 3 6 29.09 (0.40) 28.10 (0.22) -0.97 1.95 0.00 

HAC 15 6 25.73 (0.39) 25.97 (0.17) 0.49 0.71 0.00 

 

Table 4-2: CYP11B2 expression following stimulation (Angio II, dbcAMP and KCl) of H295R cells (Strain 1).  
Ct=cycle threshold; ddCt= delta delta Ct; n= biological sample number; SD= standard deviation. 

Stimulation n Basal               
Mean Ct (SD) 

CYP11B2           
Mean Ct (SD) 

ddCt Fold Change 
(Relative to basal=1) 

p-value 

Angio 6 30.28 (0.52) 25.54 (0.31) -4.66 25.22 0.00 

dbcAMP 6 34.32 (0.69) 29.58 (0.28) -4.33 20.08 0.00 

KCl 6 34.32 (0.69) 27.66 (0.26) -6.44 88.85 0.00 

 

Table 4-3: CYP11B2 expression by passage number in H295R cells (Strain 1).  
Ct=cycle threshold; ddCt= delta delta Ct; n= biological sample number; SD= standard deviation. 

Passage     
(H295R Strain 1) 

n Basal               
Mean Ct (SD) 

CYP11B2           
Mean Ct (SD) 

ddCt Fold Change 
(Relative to basal=1) 

p-value 

Passage 10 6 30.28 (0.52) 25.54 (0.31) -4.66 25.22 0.00 

Passage 17 6 29.45 (0.46) 26.10 (0.17) -3.30 9.87 0.00 

Passage 20 6 26.57 (1.09) 24.76 (0.58) -1.82 3.52 0.01 
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4.3.1.5 H295R Cell Proliferation in Response to Angiotensin II (100 nM) in 
MTS and BrdU 

  

Figure 4-5: H295R cell proliferation in response to Angio II stimulation (100nM) in MTS (A) 
and in BrdU (B). 
n=4 in each group. * indicates p<0.05. 

 

  

A B 
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Next, the cells were quiescent for 48 hours to arrest cell proliferation (as 

described in Chapter 2, Material & Method, Section 2.4). After 2 days without 

any serum supplement to the cells, they were stimulated with 100 nM Angio II to 

assess its effect on cell proliferation. There was a trend towards increased 

proliferation using the MTS assay for 24, 48 and 72 hours but this did not achieve 

significance (Figure 4-5 A). However, the proliferation of H295R was significant 

using the BrdU assay (Figure 4-5 B) at time points from 24 to 72 hours post-

stimulation. The optimal proliferation time point was noted as 48 hours.
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4.4 Discussion 

Gazdar et al established the human adrenocortical tumour cell line from a 

patient with invasive primary adrenocortical carcinoma patient (Gazdar, Oie et 

al. 1990). As previously noted, these NCI-H295R cells grew in floating clumps and 

had >96 hours doubling time. It was the first cell line established to produce 

steroids. However the cells were developed further for monolayer cultures 

(Rainey, Bird et al. 1994), to suit laboratory use and the doubling time shortened 

to 48 hours. This resulted in different strains, each with different serum 

supplementation required for cell growth (Wang, Rowland et al. 2012).  

In this chapter, a series of studies was conducted to characterise and compare 

the different strains in order to choose the most suitable model for subsequent 

in vitro studies. In order to optimise the experimental method, I used 

Angiotensin II (Angio II) as my positive control. Angio II, via Angiotensin Type I 

Receptor (AT1), has been shown to stimulate cell growth, regulate  gene 

expression of growth factors and cytokines, and activate multiple intracellular 

signalling cascade and transcription factors (Kim and Iwao 2000). In this study, it 

was clearly shown that Angio II stimulated CYP11B2 gene expression in Strains 1, 

2 and 3 (Figure 4-2), with the greatest stimulation being in Strain 1. This strain 

also showed upregulation of CYP11B2 following dbcAMP and KCl stimulation 

(Figure 4-4). The finding is supported by several studies indicating that the cell 

line is an effective model for steroidogenesis (Bird, Hanley et al. 1993, Xing, 

Edwards et al. 2011). H295R-Strain 1 is commercially available from the 

American Type Culture Collection (ATCC CRL-2128), grows in Nu-Serum type I 

(Wang and Rainey 2012) and is able to produce steroid under basal and 

stimulated conditions.  

The key factor in cell culture experiment is the quality of the cells. The cells 

determine the reliability and reproducibility result; if impaired, these will 

introduce great variability into the experiment. The H295R cell line showed 

reduced CYP11B2 responsiveness with increasing passage number (Figure 4-3). 

This is consistent with a de-differentiation of the cells from their steroidogenic 

phenotype as passage number increases. this is a well-recognised phenomenon; a 

previous study, using RAW 264.7 (ATCC® TIB-71™) cells, showed significant 

reduction in the quality of protein expression with high passage (Linda Jacobsen 
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2007). O’Driscoll et al compared low passage (18) and high passage (40) of MIN-6 

cells and found that there were significant differences of mRNA expression that 

involved in proliferation, adhesion and secretion (O’Driscoll L et al. Phenotypic 

and global gene espression changes in low and high passage MIN6 cells 

(O’Driscoll, Gammell et al. 2006).  

Study of selected miRNA effects on gene expression requires optimised 

transfection of the newly-characterised H295R cells. Transfection is defined as 

the process of deliberately introducing nucleic acid (e.g. RNA, miRNA) into cells. 

There are several methods of RNA delivery including microRNA injection, 

electroporation and lipid-mediated transfection, using agents such as 

LipofectamineTM 2000. LipofectamineTM 2000 had been chosen as the transfection 

agent for this model because it is effective for transfecting adhered cell, even 

though it is reported to cause cytotoxicity in some cell lines (Zhong, Wei et al. 

2008). However, many in vitro experiments report successful transfection of 

H295R cells with LipofectamineTM 2000 (Bouizar, Ragazzon et al. 2010, He, Cao 

et al. 2015, Udhane, Pandey et al. 2015). LipofectamineTM 2000 is a cationic 

liposome that forms a complex with nucleic acids, Lipofecatmine interacting 

with their negatively-charged sugar-phosphate backbones. The cationic state of 

the complex will overcome the electrostatic repulsion of the cell membrane and 

permit entry to the cell. This allows miRNA, for example, access to the cell’s 

intracellular processing mechanisms. Some studies support the ability of 

LipofectamineTM 2000 complex to penetrate the intact nuclear envelope (Dalby, 

Cates et al. 2004). 

In conclusion, my optimisation studies established H295R strain 1 at lower 

passage numbers as the best cell line to be used for validation of microarray 

data. This validation will be the focus of the next chapter. 
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5 Validation of NA vs APA Microarray Study 
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5.1 Introduction 

Microarray study has permitted the analysis of thousands of gene expression 

profiles for various diseases. In Chapter 3, we were able to determine miRNA 

profiles in NA vs APA tissue by microarray. Microarray has limited depth of 

analysis due to the relatively low amount of RNA used in this particular method. 

Normally only a small (microgram) amount of RNA is utilised for standard 

hybridisation and detection of gene expression in microarray analysis. Therefore, 

further analysis using higher concentration of RNA is needed for validation 

purposes. The optimal validation method is qRT-PCR. In this chapter, 2 key 

miRNAs were selected for further analysis: miR-125a-5p and miR-335-5p. Both of 

these were predicted to block HMGCR, a very important gene for cholesterol 

production. Interestingly, both of these miRNAs were shown to have similar 

effects to CYP11B2, despite only miR-125a-5p being a putative target for the 

aldosterone synthase gene, according to IPA. 

5.2 Aim 

To validate microarray results and IPA prediction by qRT-PCR. 

5.3 Result: Validation of the microarray and bioinformatic 
study of Normal Adrenal vs APA 

5.3.1 miR-125a-5p 

5.3.1.1 miR-125a-5p in Microarray and qRT PCR 

In microarray analysis of NA vs APA microRNA expression, miR-125a-5p was found 

to be downregulated in APA tissues (Figure 5-1 A). In order to examine whether 

this change in miR-125a-5p expression might be related to the dysregulated 

aldosterone biosynthesis of APA, aldosterone production was stimulated in vitro 

using the H295R adrenocortical cells model, incubated with dbcAMP to mimic 

the ACTH stimulation of aldosterone secretion by adrenocortical tissue in vivo 

(Saruta, Okuno et al. 1979). miR-125a-5p levels were then quantified in these 

cells by realtime SYBR Green qRT-PCR (see Chapter 2, Section 2.11). In a similar 

manner to the tissue, miR-125a-5p-5p was downregulated in the dbcAMP-

stimulated cells relative to the basal state (Figure 5-1 B; Table 5-1). This 
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suggests that changes in the expression of miR-125a-5p are a statistically 

significant phenomenon related to changes in aldosterone regulation.  

  

Figure 5-1: A: Microarray expression of miR-125a-5p (n= 3) in NA vs APA tissue. B: Similar 
reduction in miR-125a-5p observed in H295R cells stimulated with dbcAMP (n=6).  
* indicates p<0.05. 

 

Table 5-1: miR-125a-5p expression in Basal vs dbcAMP-stimulated cells (Strain 1).  
Ct= cycle threshold; ddCt= delta delta Ct; n= biological sample number; SD= standard deviation. 

miRNA n Basal               
Mean Ct (SD) 

dbcAMP            
Mean Ct (SD) 

ddCt Fold Change 
(Relative to 
basal= 1) 

p-value 

miR-125a-5p 6 19.87 (0.19) 20.35 (0.10) 0.57 0.68 <0.01 
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5.3.1.2 miR-125a-5p Expression in Transfected Cells 

To further investigate the role of miR-125a-5p, H295R Strain 1 was transfected 

with pre-miR-125a or anti-miR-125a-5p. The transfection efficiency was assessed 

by SYBR Green qRT-PCR (see Chapter 2, Section 2.11). miR-125a-5p was found to 

be highly expressed following pre-miR-125a-5p transfection (311-fold increase; 

Table 5-2; Figure 5-2 A) and significantly downregulated following anti-miR-

125a-5p transfection (Figure 5-2 B).  
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Figure 5-2: miR-125a-5p expression in H295R cells following transfection with (A) pre-miR-
125a-5p or (B) anti-miR-125a-5p transfection (n=6 in each group).  
* indicates p<0.05. 

 

Table 5-2: miR-125a-5p expression following precursor-miRNA transfection. 
 Ct= cycle threshold; ddCt= delta delta Ct; n= biological sample number; SD= standard deviation. 

miRNA n Pre-Neg   
Mean Ct 
(SD) 

Pre-miRNA      
Mean Ct (SD) 

ddCt Fold Change  
(Relative to basal= 1) 

p-
value 

miR-125a-5p 6 15.94 (0.18) 8.47 (0.62) -8.28 311.42 <0.01 

 

Table 5-3: miR-125a-5p expression following anti-miRNA transfection.  
Ct= cycle threshold; ddCt= delta delta Ct; n= biological sample number; SD= standard deviation. 

miRNA n Anti-Neg        
Mean Ct 
(SD) 

Anti-miRNA      
Mean Ct (SD) 

ddCt Fold Change  
(Relative to basal= 1) 

p-
value 

miR-125a-5p 6 15.91 (0.29) 24.28 (0.58) 8.08 0.00 <0.01 

 

The effects of these transfections on the cells’ expression of steroidogenesis-

related genes and targets predicted by IPA were then investigated. 

A B 
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5.3.1.3 CYP11B2 Gene Expression in Pre-miR-125a and Anti-miR-125a 
Transfection 

In IPA analysis, miR-125a-5p was predicted to bind CYP11B2 mRNA. This effect 

was tested in vitro by transfecting H295R cells with pre-miR-125a to significantly 

increase miR-125a-5p levels (see above). This resulted in a significant reduction 

in CYP11B2 mRNA (Figure 5-3 A and Table 5-4). Conversely, transfection with 

anti-miR-125a to reduce the miR levels significantly increased CYP11B2 mRNA 

levels (Figure 5-3 B and Table 5-5). These results are consistent with the IPA 

prediction of a direct action by miR-125a-5p on CYP11B2 mRNA. 

 
 

Figure 5-3: Effects on CYP11B2 mRNA levels in H295R Strain 1 cells following transfection 
with pre-miR-125a (A) or anti-miR-125a (B) (n= 3 in each group).  
* indicates p<0.05. 

 

Table 5-4: CYP11B2 gene expression in H295R cells (Strain 1) transfected with precursor-

negative miRNA (Pre-Neg) or precursor-miRNA-125a (Pre-miRNA-125a).  
Ct= cycle threshold; ddCt= delta delta Ct; n= biological sample number; SD= standard deviation. 

Gene n Pre-Neg  
Mean Ct (SD) 

Pre-miRNA-125a  
Mean Ct (SD) 

ddCt Fold Change 
(Relative to 
basal= 1) 

p-value 

CYP11B2 3 26.58 (0.65) 30.10 (0.34) 2.56 0.17 0.00 
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Table 5-5: CYP11B2 gene expression in H295R cells (Strain 1) transfected with CYP11B2 anti-

negative miRNA (Anti-Neg) or anti-miRNA-125a.  
Ct= cycle threshold; ddCt= delta delta Ct; n= biological sample number; SD= standard deviation. 

Gene n Anti-Neg  
Mean Ct (SD) 

Anti-miRNA-125a  
Mean Ct (SD) 

ddCt Fold Change  
(Relative to 
basal= 1) 

p-value 

CYP11B2 3 29.53 (0.19) 28.22 (0.40) -1.93 3.81 0.01 
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5.3.1.4  HMGCR Gene Expression in Pre-miR-125a and Anti-miR-125a 
Transfection 

The IPA prediction of a direct regulatory effect of miR-125a-5p on HMGCR was 

also tested in this system. Despite showing trends toward decreased HMGCR 

mRNA following pre-miR-125a transfection (Figure 5-4 A) and an increase after 

anti-miR-125a transfection (Figure 5-4 B), these effects did not achieve 

significance.  

  

Figure 5-4: HMGCR mRNA levels in H295R Strain 1 cells following (A) pre-miR-125a 
transfection or (B) anti-miR-125a transfection (n=3 in each group). 

 

Table 5-6: HMGCR expression in H295R cells (Strain 1) transfected with precursor-negative 
miRNA (Pre-Neg) or precursor-miRNA-125a (Pre-miRNA-125a).  
Ct= cycle threshold; ddCt= delta delta Ct; n= biological sample number; SD= standard deviation. 

Gene n Pre-Neg  
Mean Ct (SD) 

Pre-miRNA-125a  
Mean Ct (SD) 

ddCt Fold Change 
(Relative to 
basal= 1) 

p-value 

HMGCR 6 21.36 (0.30) 21.96 (0.55) 0.15 0.90 0.56 

 

Table 5-7: HMGCR expression in H295R cells (Strain 1) transfected with anti-negative 
miRNA (Anti-Neg) or anti-miRNA-125a.  
Ct=cycle threshold; ddCt= delta delta Ct; n= biological sample number; SD= standard deviation. 

Gene n Anti-Neg  
Mean Ct (SD) 

Anti-miRNA-125a  
Mean Ct (SD) 

ddCt Fold Change  
(Relative to 
basal= 1) 

p-value 

HMGCR 6 21.33 (0.27) 21.74 (0.18) -0.03 1.02 0.82 
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5.3.2 miR-335-5p 

5.3.2.1 miR-335-5p Expression in Transfected Cells 

Similar to miR-125a-5p, above, miR-335-5p was identified by microarray as being 

downregulated in APA relative to NA tissue, and was also predicted by IPA to 

target CYP11B2 and HMGCR expression through direct action on their respective 

mRNAs. To investigate this further, H295R Strain 1 cell was this time transfected 

with pre-miR-335 and anti-miR-335. miR-335-5p was significantly increased 1431- 

fold following pre-miR transfection (Figure 5-5 and Table 5-8) in the precursor 

transfection but no changes were noted in transfection of anti-miR-335-5p. 

  

Figure 5-5: miR-335-5p levels in H295R cells following (A) pre-miR-335 transfection or (B) 
anti-miR-335 transfection (n= 3 in each group).  
* indicates p<0.05. 

 

Table 5-8: miR-335-5p expression following precursor-miRNA transfection.  
Ct= cycle threshold; ddCt= delta delta Ct; n= biological sample number; SD= standard deviation. 

miRNA n Pre-Neg   
Mean Ct 
(SD) 

Pre-miRNA-335     
Mean Ct (SD) 

ddCt Fold Change 
(Relative to basal= 1) 

p-
value 

miR-335-5p 3 26.71 (0.37) 12.58 (0.64) -13.81 14317.20 <0.01 

 

Table 5-9: miR-335-5p expression following anti-miRNA transfection.  
Ct= cycle threshold; ddCt= delta delta Ct; n= biological sample number; SD= standard deviation. 

miRNA n Anti-Neg        
Mean Ct (SD) 

Anti-miRNA-335      
Mean Ct (SD) 

ddCt Fold Change (Relative 
to basal= 1) 

p-
value 

miR-335-5p 3 26.66 (0.70) 27.51 (0.87) 0.80 0.58 0.32 
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5.3.2.2 CYP11B2 Gene Expression in Pre-miR-335 and Anti-miR-335 
Transfection 

miR-335-5p action on CYP11B2 mRNA was investigated in the transfected cells. 

This confirmed suppression of CYP11B2 mRNA levels following pre-miR-335 

transfection (Figure 5-6 A and Table 5-10). However, the same significant effect 

was also observed following anti-miR-335 transfection (Figure 5-6 B); this result 

contradicts the hypothesis, which predicted that anti-miR-335 should upregulate 

the miR-335-5p expression. 

  

Figure 5-6: CYP11B2 mRNA levels in H295R Strain 1 cells following transfection with (A) 
pre-miR-335 or (B) anti-miR-335 (n= 3 in each group).  
* indicates p<0.05. 

 

Table 5-10: CYP11B2 mRNA levels in H295R Strain 1 cells following transfection with 
precursor-negative miRNA (Pre-Neg) and precursor-miRNA-335 (pre-miR-335).  
Ct= cycle threshold; ddCt= delta delta Ct; n= biological sample number; SD= standard deviation. 

Gene n Pre-Neg  
Mean Ct (SD) 

Pre-miRNA-125a  
Mean Ct (SD) 

ddCt Fold Change 
(Relative to 
basal= 1) 

p-value 

CYP11B2 3 24.30 (0.50) 27.46 (0.47) 3.40 0.09 <0.01 

 

Table 5-11: CYP11B2 mRNA levels in H295R Strain 1 cells following transfection with 
CYP11B2 anti-negative miRNA (Anti-Neg) and anti-miRNA-335 (anti-miR-335).  
Ct= cycle threshold; ddCt= delta delta Ct; n= biological sample number; SD= standard deviation. 

Gene n Anti-Neg  
Mean Ct (SD) 

Anti-miRNA-125a  
Mean Ct (SD) 

ddCt Fold Change  
(Relative to 
basal= 1) 

p-value 

CYP11B2 3 24.15 (0.42) 27.83 (0.36) 4.17 0.06 <0.01 
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5.3.2.3 HMGCR Gene Expression in Pre-miR-335 and Anti-miR-335 
Transfection 

In vitro analysis also confirms this predicted suppression of HMGCR mRNA levels 

following pre-miR-335 transfection (Figure 5-7 A and Table 5-12). However, again 

anti-miR-335 transfection (Figure 5-7 B) also results in suppression of the same 

mRNA. 

  

Figure 5-7: HMGCR levels in H295R Strain 1 cells following transfection with (A) pre-miR-335 
or (B) anti-miR-335 transfection (n= 3 in each group).  
* indicates p<0.05. 

 

Table 5-12: HMGCR mRNA levels in H295R Strain 1 cells following transfection with 
precursor-negative miRNA (Pre-Neg) and precursor-miRNA-335 (Pre-miR-335).  
Ct= cycle threshold; ddCt= delta delta Ct; n= biological sample number; SD= standard deviation. 

Gene n Pre-Neg  
Mean Ct (SD) 

Pre-miRNA-125a  
Mean Ct (SD) 

ddCt Fold Change 
(Relative to 
basal= 1) 

p-value 

HMGCR 3 24.37 (0.35) 25.03 (0.46) 0.89 0.54 0.03 

 

Table 5-13: HMGCR mRNA levels in H295R Strain 1 cells following transfection with HMGCR 
anti-negative miRNA (Anti-Neg) and anti-miRNA-335 (anti-miR-335).  
Ct= cycle threshold; ddCt= delta delta Ct; n= biological sample number; SD= standard deviation. 

Gene n Anti-Neg  
Mean Ct (SD) 

Anti-miRNA-125a  
Mean Ct (SD) 

ddCt Fold Change  
(Relative to 
basal= 1) 

p-value 

HMGCR 3 24.31 (0.19) 24.79 (0.06) 0.98 0.51 0.01 
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5.4 Discussion 

In this part of the study, selected miRNAs differentially expressed in NA vs APA 

and predicted to bind important steroidogenic mRNAs (see Chapter 3) were 

analysed further. miR-125a-5p levels had been reduced in APA tissue according 

to microarray analysis (Figure 5-1 A), and this finding was supported by its 

downregulation in dbcAMP-stimulated cells (Figure 5-1 B). This indirect method 

of comparison was necessary because there were no more APA or NA RNA 

samples available for direct realtime RT-PCR (qRT PCR) validation of the 

microarray results. Therefore, stimulated cells from the H295R Strain 1 

adrenocortical cell line were used instead. This is the best available model for 

these studies (see Chapter 4) but the expression of ACTH receptor is very low in 

these cells. Because of this, dbcAMP was used to mimic the stimulatory ACTH 

action on aldosterone production rather than ACTH itself. Cells stimulated with 

dbcAMP were intended to mimic the pathological condition in APA, where high 

levels of ACTH are detected. This is supported by Arnaldi et al, who observed 

overexpression of ACTH-receptor mRNA in APA but not in adrenocarcinoma 

(Arnaldi, Mancini et al. 1998). The summary of differential expression of miRNA 

in APA vs NA is shown in Chapter 1, Table 1-8. 

pre-miR-125a transfection of cells significantly reduced CYP11B2 mRNA, while 

inhibition of miR-125a-5p production increased transcript levels almost fourfold. 

This finding is supported by a previous pEZX-reporter plasmid study, where pre-

miR-125a was co-transfected into HeLa cells along with a reporter plasmid 

containing the CYP11B2 3’UTR; this significantly suppressed the reporter 

plasmid’s luciferase activity, offering further evidence of a direct interaction 

between this miRNA and CYP11B2 transcripts (Stacy Wood 2011). In another 

recent study, suppression of miR-125a-5p expression in colon cancer cell lines 

and colon cancer tissue inhibited their proliferation. This was the result of the 

microRNA targeting antiapoptotic genes (BCL2, BCL2L12 and MCL-1) (Tong, Liu 

et al. 2015). In hepatocellular carcinoma, miR-125a-5p is also reported to 

suppress the P13K/ AKT/mTOR signalling pathway that is involved in the 

migration and invasion of liver cancer cells (Tang, Li et al. 2015). 

Several miRNAs downregulated in APA, including the two studied in this chapter, 

are predicted by IPA to target HMGCR. Although there was no significant 
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evidence that miR-125a-5p targets HMGCR, pre-miR-335 did reduce levels of the 

mRNA in vitro. HMGCR is a rate-limiting gene in cholesterol production and so 

may be an important determinant of steroid biosynthesis. However, no 

validation studies have been done to evaluate whether reduction of HMGCR 

expression has a direct effect on adrenal steroidogenesis in vivo. Nevertheless, 

rat in vivo studies show that statins (especially simvastatin) result in 

downregulation of CYP17A1 expression in ovarian theca-interstitial cells 

(Sokalska, Stanley et al. 2014).  

miR-335-5p expression in cancer tissues has already received much attention. As 

reported by Schmitz et al, the significant upregulation of miR-335-5p observed in 

adrenocortical carcinoma (ACC) is proposed as a potential diagnostic tool to 

discriminate ACC from adrenocortical adenoma (ACA) (Schmitz, Helwig et al. 

2011). This is supported by Soon et al, who reported that the expression of miR-

335-5p is also suppressed in ACA relative to its ACC counterpart (Soon, Tacon et 

al. 2009). However, in breast carcinoma, overexpression of miR-335-5p positively 

correlates with expression of the tumour suppression gene BRCA1, inhibiting cell 

viability and stimulating apoptosis (Heyn, Engelmann et al. 2011). In this 

experiment, despite downregulation of CYP11B2 and HMGCR gene expression in 

the pre-miR-335 transfection, both were also supressed in anti-miR-335 

transfection. This may due to insufficient level of anti-miR-335 in the cell to 

negatively regulate miR-335-5p or may be due to an alternative pathway (or 

gene) modulating the function of anti-miR-335 and leading to decrease levels of 

CYP11B2 and HMGCR mRNA.  

However, despite the predictions of IPA, some of the targets were not validated 

by lab experiment. This may be due to incorrect prediction of the strength of 

complementary binding between miRNAs and mRNAs. IPA classifies base-pairing 

as highly-predicted (8mer) or moderately-predicted (7mer). Highly-predicted 

targets have a higher chance of forming base-pairs between miRNA and mRNA. 

Furthermore, the non-validated targets may be due to inefficiency of miRNA 

transfection, either due to poor cell line responsiveness or the efficacy of 

transfection protocol. In addition, to find the cell line that is a precise model for 

the tissue of interest is challenging. To date, the most suitable cell line used for 

steroid regulation is H295R cells, which is a human adrenocortical carcinoma cell 

line, not APA. This might lead to discrepancies in validation. 
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5.5 Conclusion 

In summary, this chapter has been able to experimentally validate some of the 

IPA predictions, in particular effects of miR-125a-5p and miR-335-5p. Both of 

these miRNAs have been predicted and validated to be involved in 

steroidogenesis and cholesterol biogenesis. This is a novel finding in steroid and 

cholesterol regulation. Further experiments are needed to extend this result so 

that it might contribute to the improvement of diagnosis and treatment of APA 

and other diseases relevant to steroid biosynthesis and cholesterol handling.  
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6 Analysis of microRNA in Basal, Angiotensin II, 
dbcAMP- and KCl-Stimulated H295R Cells. 
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6.1 Introduction 

As in Chapter 3, microarray analysis is again utilised here for miRNA expression 

analysis. I subjected H295R cells to three different types of aldosterone 

stimulation: angiotensin II (Angio II), potassium (in the form of KCl) and dibutyryl 

cAMP (dbcAMP), to mimic ACTH stimulation; non-stimulated basal cells were 

used as controls. After 24 hours, I isolated RNA and confirmed stimulation by 

qRT-PCR of CYP11B2 (aldosterone synthase) mRNA. The microRNA profile of each 

sample was then analysed by microarray and differentially-expressed miRNAs 

were identified. Finally, bioinformatic analysis was used to identify possible 

targets through which differentially-expressed miRNAs might affect steroid or 

cholesterol production. This was achieved using the Ingenuity Pathway Analysis 

(IPA) software.  

Subsequently I validated by qRT-PCR the significant changes in expression 

observed in microarray by using the more reliably quantitative method of qRT-

PCR. It was my intention to look at the consistently downregulated miRNAs that 

emerge from microarray as listed below: 

1. miR-106a-5p  

2. miR-154-3p  

3. miR-17-5p 

4. miR-196b-5p 

5. miR-19a-3p 

6. miR-20b-5p 

7. miR-766-3p 

 

 However, expression of one of these miRNAs was found to be marginal from 

microarray (i.e miR-196b-5p), so was excluded from further study. I present 

validation of the 6 remaining miRNAs under each of the 3 stimulatory conditions 

(Angio II, dbcAMP and KCl). IPA also prediscts that miR-17 will suppress the 

expression of LDLR; I investigate whether this miRNA significantly downregulates 

this predicted target. 
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6.2 Aim 

1. To identify significant differences in microRNA profile between cells 

stimulated for aldosterone production and their basal counterparts. 

2. To identify mRNA targets of key differentially-expressed microRNAs. 

3. To experimentally validate the consistently expressed miRNA from all 3 

stimulation groups – as assessed by microarray - using qRT-PCR. 

4. To experimentally validate expression of the putative target of miR-17, 

LDLR, by qRT PCR. 

6.3 Microarray results 

Total RNA was extracted from 3 biological samples (in each group) of non-

stimulated H295R cells (basal), Angiotensin II-stimulated cells (Angio II), 

dbcAMP-stimulated cells (dbcAMP) and KCl-stimulated cells (KCl). The RNA 

quantity was determined by Nanodrop (Section 2.7) and further assessed by 

Agilent Bioanalyser chip for quality analysis. The RNA samples were sent for 

miRNA profile analysis by microarray microfluidic chip (LC Sciences, Houston, 

Texas). Prior to that, all RNAs were subjected to quality control testing by the 

company. 

Similar to the data presented in Chapter 3, as recommended by the microarray 

manufacturer, a 500 arbitrary unit (AU) cut-off point was applied to the miRNA 

detection threshold. The microarray analysis identified a list of expressed 

miRNAs (i.e. miRNAs that register > 500AU in basal or stimulated cells) and 

differentially-expressed miRNAs (i.e. miRNAs expressed in both basal and 

stimulated cells at >500 AU, but at significantly different levels (p<0.05)). 2019 

miRNAs were screened in each of the cell groups. There is a strong positive 

correlation between miRNA expression in the basal group and each of the 3 

stimulated groups (Figure 6-1), suggesting the majority of miRNAs do not alter 

significantly under stimulation. 
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- Relative to basal, Angio II treatment resulted in differential expression of 

32 miRNAs, of which 12 were present in both Angio II and basal cells but 

at significantly different levels (p<0.05), 13 were present only in the basal 

group and 7 only in the Angio II group (Figure 6-5). 

- dbcAMP treatment altered 84 miRNAs, of which 53 were expressed in both 

groups at different levels (p<0.05), 19 in basal only and 12 in dbcAMP-

treated cells only (Figure 6-3).  

- KCl treatment altered 61 miRNAs, of which 45 were expressed in both 

groups at different levels (p<0.05), 5 in basal only and 11 in KCl-treated 

cells only (Figure 6-4). 
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Figure 6-1: Scatter plots showing relative miRNA levels in basal (non-treated cells) vs Angio 
II-, dbcAMP- and KCl-treated cells, as analysed by microarray. 
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Figure 6-2: Venn Diagram of the number of expressed miRNAs that were detected >500 AU 
in basal and/or Angio II-stimulated cells (H295R).  
miRNAs listed as ‘Both’ were detected in both basal and stimulated cells, but at significantly 
different levels (p<0.05). 

 

Figure 6-3: Venn Diagram of the number expressed miRNAs that were detected >500 AU in 
basal and/or dbcAMP-stimulated cells (H295R). 
miRNAs listed as ‘Both’ were detected in both basal and stimulated cells, but at significantly 
different levels (p<0.05). 

 

Figure 6-4: Venn Diagram of the number expressed miRNAs that were detected >500 AU in 
basal and/or KCl-stimulated cells (H295R).  
miRNAs listed as ‘Both’ were detected in both basal and stimulated cells, but at significantly 
different levels (p<0.05).  
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6.3.1 Differentially Expressed miRNAs in Basal vs Angiotensin II, 
dbcAMP and KCl; miRBase Annotation 

The latest miRBase Release 21: June 2014, contains 28,645 entries of hairpin 

precursor miRNAs, including 35,828 mature miRNAs from 223 species (miRBase 

2014). The miRNA names use the prefix “miR” followed by a unique and specific 

identifying number assigned sequentially regardless of organism. Similar 

identifying numbers are given to identical or almost identical miRNA sequences. 

As almost all miRNA precursors produce mature miRNA from either the 5’ or 3’ 

end of the hair-pin strand, ‘5p’ or ‘3p’ is added to the annotation (Ambros, 

Bartel et al. 2003). The microarray data were further analysed utilising the 

latest miRBase Release 21: June 2014.  

Quantitative data relating to the differentially-expressed miRs mentioned above 

are provided in Figure 6-5, Figure 6-6 and Figure 6-7, below. The most 

abundantly-expressed miRNA is miR-23b-3p. It is highly expressed in dbcAMP-

stimulated cells (average fluorescence intensity 19,005, p-value=0.0006) and is 

similarly up-regulated in both dbcAMP and KCl-stimulated cells (but not Angio II 

stimulated cells) relative to basal (Figure 6-6). 
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Figure 6-5: Microarray data showing differentially-expressed miRNAs in basal vs Angio II-treated cells (all miRNAs shown have AU>500). 
*miRNAs >500AU in APA or NA; †miRNAs present in both tissues but at significantly different levels (p<0.05). 
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Figure 6-6: Microarray data showing differentially expressed miRNAs in Basal vs dbcAMP-treated cells (all miRNAs shown have AU>500). 
*miRNAs >500AU in APA or NA; †miRNAs present in both tissues but at significantly different levels (p<0.05). 
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Basal vs KCl (H295R)

h
s

a
-l

e
t-

7
g

-5
p

h
s

a
-m

iR
-1

0
0

-5
p

h
s

a
-m

iR
-1

0
6

a
-5

p

h
s

a
-m

iR
-1

0
b

-5
p

h
s

a
-m

iR
-1

2
5

a
-5

p

h
s

a
-m

iR
-1

2
7

1
-5

p

h
s

a
-m

iR
-1

2
8

h
s

a
-m

iR
-1

3
9

-3
p

h
s

a
-m

iR
-1

5
4

-3
p

h
s

a
-m

iR
-1

5
b

-5
p

h
s

a
-m

iR
-1

6
-2

-3
p

h
s

a
-m

iR
-1

7
-5

p

h
s

a
-m

iR
-1

8
6

-5
p

h
s

a
-m

iR
-1

9
5

-5
p

h
s

a
-m

iR
-1

9
6

b
-5

p

h
s

a
-m

iR
-1

9
a

-3
p

h
s

a
-m

iR
-1

9
b

-3
p

h
s

a
-m

iR
-2

0
a

-3
p

h
s

a
-m

iR
-2

0
b

-5
p

h
s

a
-m

iR
-2

1
-5

p

h
s

a
-m

iR
-2

3
a

-3
p

h
s

a
-m

iR
-2

3
b

-3
p

h
s

a
-m

iR
-2

3
c

h
s

a
-m

iR
-2

8
-5

p

h
s

a
-m

iR
-2

9
c

-3
p

h
s

a
-m

iR
-3

0
a

-5
p

h
s

a
-m

iR
-3

0
b

-5
p

h
s

a
-m

iR
-3

0
c

-5
p

h
s

a
-m

iR
-3

0
e

-5
p

h
s

a
-m

iR
-3

1
2

0
-3

p

h
s

a
-m

iR
-3

1
7

8

h
s

a
-m

iR
-3

1
9

5

h
s

a
-m

iR
-3

2
9

h
s

a
-m

iR
-3

3
5

-3
p

h
s

a
-m

iR
-3

3
7

-3
p

h
s

a
-m

iR
-3

6
1

7
-3

p

h
s

a
-m

iR
-3

7
6

b
-3

p

h
s

a
-m

iR
-3

7
6

b
-5

p

h
s

a
-m

iR
-3

7
6

c
-5

p

h
s

a
-m

iR
-3

9
2

2
-5

p

h
s

a
-m

iR
-4

0
9

-3
p

h
s

a
-m

iR
-4

2
4

-3
p

h
s

a
-m

iR
-4

2
8

4

h
s

a
-m

iR
-4

2
8

8

h
s

a
-m

iR
-4

4
9

7

h
s

a
-m

iR
-4

5
4

-3
p

h
s

a
-m

iR
-4

7
3

0

h
s

a
-m

iR
-4

7
3

2
-5

p

h
s

a
-m

iR
-4

8
3

-3
p

h
s

a
-m

iR
-4

8
7

a

h
s

a
-m

iR
-4

8
9

h
s

a
-m

iR
-4

9
4

h
s

a
-m

iR
-5

4
2

-3
p

h
s

a
-m

iR
-5

4
3

h
s

a
-m

iR
-5

6
8

h
s

a
-m

iR
-5

7
4

-5
p

h
s

a
-m

iR
-7

-1
-3

p

h
s

a
-m

iR
-7

6
6

-3
p

h
s

a
-m

iR
-8

7
4

h
s

a
-m

iR
-9

2
a

-3
p

h
s

a
-m

iR
-9

2
b

-3
p

0

5000

10000

15000

20000
Basal

KCl

†

†

†
†

†

†

†

†

†

† †

†

†

†

†
†

†

†

†

†

†

†

†

†
†

†

†

†

†

†
†

†

†

† † †

†

† †

†

†
†

†

†

†* * * * * * * * * * * * * * * *

M
e

a
n

 F
lu

o
re

s
c
e

n
c
e

 I
n

te
n

s
it

y

 

Figure 6-7: Microarray data showing differentially expressed miRNAs in Basal vs KCl-treated cells (all miRNAs shown have AU>500). 
*miRNAs >500AU in APA or NA; †miRNAs present in both tissues but at significantly different levels (p<0.05
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6.3.2 Consistent miRNA Expression Across the 3 Stimulatory 
Treatments (Angio II, dbcAMP and KCl) & The Cluster 
Involved 

Relative to basal, the 7 miRNAs consistently differentially expressed across Angio 

II, dbcAMP and KCl-stimulated cells are:  

1) hsa-miR-106a-5p  

2) hsa-miR-154-3p  

3) hsa-miR-17-5p 

4) hsa-miR-196b-5p 

5) hsa-miR-19a-3p 

6) hsa-miR-20b-5p 

7) hsa-miR-766-3p 

These are downregulated in each of the stimulated groups (Figure 6-8 to Figure 

6-10). miR-154-3p is clustered with 22 other miRNAs (not listed here), none of 

which are consistently expressed throughout the stimulated groups. On the other 

hand, neither miR-196b-5p nor miR-766-3p belong to any cluster.  

miR-106a-5p and miR-20b-5p are found within the same cluster, which is located 

on chromosome X. They have similar seed sequences for mRNA targets 

(AAAGUGC). Other miRNAs from the same cluster are miR-106-3p, miR-18b-3p, 

miR-18b-5p, miR-19b-3p, miR-19b-5p, miR-363-3p, miR-363-5p, and miR-92a-3p. 

Furthermore, miR-106a-5p, miR-19b-3p, miR-20b-5p have similar patterns of 

expression while mir-92a-3p exhibits an opposite trend, being upregulated by 

the 3 stimulations. However, miR-106a-3p, miR-18b-3p, miR-18b-5p, miR-363-3p 

and miR-363-5p are expressed below 500 AU. 

miR-17-5p and miR-19a-3p are from the same cluster on chromosome 13. They 

are encoded by the miR-17-92 gene inside a single polycistronic transcript along 

with 4 other miRNAs (miR-18a, miR-20a, miR-19b-1 and miR-92a-1). They have 

similar pattern of expression with other miRNAs within the same cluster; miR-

20a-5p and miR-19b-3p. In contrast, miR-92a-3p shows an opposite pattern 

where the miRNA is highly upregulated in the 3 stimulated groups. miR-17-3p, 

miR-18a-5p, miR-18a-3p, miR-19a-5p, miR-19b-1-5p and miR-92a-1-5p are not 

expressed in the samples (<500 AU). 
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Figure 6-8: Consistent pattern of miRNA expression in Angio II-stimulated cells relative to 
basal.  
The dotted line indicates the detection cut-off point of 500 AU (n=3 in each group). †miRNAs 
>500AU in APA or NA; *miRNAs present in both tissues but at significantly different levels 
(p<0.05). 

h
s

a
-m

iR
-1

0
6

a
-5

p

h
s

a
-m

iR
-1

5
4

-3
p

h
s

a
-m

iR
-1

7
-5

p

h
s

a
-m

iR
-1

9
6

b
-5

p

h
s

a
-m

iR
-1

9
a

-3
p

h
s

a
-m

iR
-2

0
b

-5
p

h
s

a
-m

iR
-7

6
6

-3
p

0

1000

2000

3000

4000

5000
Basal

dbcAMP
*

*

*

*

*
*

†

M
e
a
n

 F
lu

o
re

s
c
e
n

c
e
 I
n

te
n

s
it

y

 

Figure 6-9: Consistent pattern of miRNA expression in dbcAMP-stimulated cells relative to 
basal.  
The dotted line indicates the detection cut-off point of 500 AU (n=3 in each group). †miRNAs 
>500AU in APA or NA; *miRNAs present in both tissues but at significantly different levels 
(p<0.05). 
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Figure 6-10: Consistent pattern of miRNA expression in KCl-stimulated cells relative to 
basal.  
The dotted line indicates the detection cut-off point of 500 AU (n=3 in each group). †miRNAs 
>500AU in APA or NA; *miRNAs present in both tissues but at significantly different levels 
(p<0.05). 
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Figure 6-11: miRNA Clusters detected from microarray analysis (Cluster miR-106a/ miR-20b).  
* p<0.05 relative to basal.
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Cluster miR-17/ miR-19a
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Figure 6-12: miRNA Clusters detected from microarray analysis (Cluster miR-30b, Cluster miR-17/ miR-19a).  
* p<0.05 relative to basal.



190 
 

6.4 Ingenuity® Systems Pathway Analysis (microRNA 
target filter) 

Ingenuity® Systems Pathway Analysis (IPA; Ingenuity Systems, Redwood City, CA 

USA; http://www.ingenuity.com) software was utilised to determine 

differentially-expressed miRNAs and their putative targets along with their 

molecular and cellular functions. The sources of the miRNA Target Filter are 

Ingenuity Expert Finding, Ingenuity ExpertAssist Finding, miRecords, Tarbase and 

TargetScan Human.  

The filter system is based on 3 confidence levels;  

1) Experimentally observed miRNA-mRNA interaction (result based on 

validated experiment). 

2) Highly predicted miRNA-mRNA interaction. 

3) Moderately predicted miRNA-mRNa interaction. 

 

Comparing basal vs Angio II groups, 32 differentially-expressed miRNAs (>500 AU) 

from the microarray data were uploaded into the IPA system. Subsequently, 

using miRNA Target Filter, 22 miRNAs were automatically selected. These 22 

miRNAs include overlapping miRNAs that share the same seed sequence. (This 

will be fully explained in the next section.) Initially, utilising all 3 levels of 

confidence, the 22 miRNAs were predicted to target 9517 mRNAs. However, 

applying experimentally observed confidence levels sharply reduced the number 

of miRNAs to 9 and mRNAs to 108 (Figure 6-13). 

Similarly, comparing the basal vs dbcAMP groups, with 84 differentially-

expressed miRNAs, 61 were included by the IPA miRNA Target Filter with 13683 

mRNA targets predicted. When limited to experimentally observed findings, only 

28 miRNAs targeting 696 mRNAs were included for further analysis (Figure 6-14). 

Finally, 61 differentially-expressed miRNAs from the basal vs KCl groups were 

reduced to 42 miRNAs with 12391 target mRNAs in the database. Of these, 22 

miRNAs and 706 mRNAs were identified as experimentally validated by the 

database (Figure 6-15). 
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Figure 6-13: Summary of differentially expressed miRNA analysis using Ingenuity Pathway Analysis (IPA) for basal vs Angio II-treated cells.  
Using IPA miRNA Target Filter, the number of miRNAs decreases from 32 to 9 and the number of target mRNAs from 9517 to 108. The filter is based on 3 levels of 
confidence (experimentally observed, highly predicted and moderately predicted), as shown above. 
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Figure 6-14: Summary of differentially expressed miRNA analysis using Ingenuity Pathway Analysis (IPA) for basal vs dbcAMP-treated cells.  
Using IPA miRNA Target Filter, the number of miRNAs decreases from 84 to 28 and the number of target mRNAs from 13,683 to 696. The filter is based on 3 levels of 
confidence (experimentally observed, highly predicted and moderately predicted), as shown above. 
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Figure 6-15: Summary of differentially expressed miRNA analysis using Ingenuity Pathway Analysis (IPA) for basal vs KCl-treated cells.  
Using IPA miRNA Target Filter, the number of miRNAs decreases from 61 to 22 and the number of target mRNAs from 12391 to 706. The filter is based on 3 levels of 
confidence (experimentally observed, highly predicted and moderately predicted), as shown above. 
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6.5 Synonymous miRNAs, seed sequences and the 
number of targeted mRNAs (IPA Database). 

The miRNA seed sequence is vital in determining its complementary binding to 

target mRNA. Several annotated miRNAs have identical seed sequences. These 

overlapping miRNAs are termed ‘synonymous miRNAs’. A full list of synonymous 

miRNAs differentially expressed in this study is shown in the tables presented in 

the Appendix. 

For the purposes of clarity and understanding, in this chapter synonymous 

miRNAs are presented separated by an oblique symbol (/) e.g. the synonymous 

miRNAs miR-125b-5p and miR-125a-5p will be listed as ‘miR-125b-5p/miR-125a-

5p’. 

The miRNAs hsa-miR-17-5p, hsa-miR-106a-5p, hsa-miR-106b-5p, hsa-miR-20a-5p, 

hsa-miR-20b-5p and hsa-miR-93-5p share the seed sequence, AAAGUGC, and 

therefore have the same predicted 1418 mRNA targets. However, despite their 

high homology, these miRNAs are derived from different clusters and different 

chromosomes.  

Some of these miRNAs are therefore not included in the IPA analysis using miRNA 

Target Filter. Examples are: hsa-miR-1185-1-3p, hsa-miR-136-3p, hsa-miR-139-

3p, hsa-miR-16-2-3p, hsa-miR-20a-3p, hsa-miR-218-1-3p, hsa-miR-335-3p, hsa-

miR-3617-3p, hsa-miR-376b-5p, hsa-miR-376c-5p, hsa-miR-493-5p, hsa-miR-5100, 

hsa-miR-5190, hsa-miR-539-3p, hsa-miR-6076, hsa-miR-7-1-3p, hsa-miR-937-5p. 
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6.6 IPA Target Filter Analysis: mRNA targets involved in 
steroidogenesis, cholesterol synthesis and related 
pathways 

6.6.1 CYP11B2, CYP11B1 & CYP17A1 

As shown in Figure 6-16, 4 miRNAs target the CYP11B2 gene: miR-1275, miR-

4323, miR-647 and miR-766-3p (Basal vs Angio II).  

In the basal vs dbcAMP group (Figure 6-17), 4 miRNAs are predicted to target 

CYP11B2 (miR-125a-5p, miR-1275, miR-647 and miR-766-3p). Four miRNAs – some 

different – are also predicted to target CYP11B2 from the basal vs KCl group 

(Figure 6-18); miR-125a-5p, miR-708-5p/miR-28-5p, miR-766-3p and miR-874-3p.  

Only the basal vs KCl group contains differentially-expressed miRNAs predicted 

to target the other steroidogenic genes CYP11B1 (miR-874-3p) and CYP17A1 

(miR-4730). 

6.6.2 HMGCR, ABCA1, LDLR & other related genes 

From the basal vs Angio II group (Figure 6-16), miR-548v is predicted to target 

HMGCR. Several other miRNAs (mir-140-5p, miR-17-5p, miR-106a-5p, miR-19a-

3p, miR-20b-5p and miR-19b-3p) are predicted to target ABCA1 and LDLR.  

Figure 6-17 shows miRNA-mRNA interactions in the basal vs dbcAMP groups. 

HMGCR is targeted by miR-125b-5p/miR-125a-5p, miR-145-5p, miR-29b-3p/miR-

29a-3p/miR-29c-3p, miR-365-3p/miR-365a-3p and miR-4324. ABCA1 is targeted 

by hsa-miR-130a-3p/miR-454-3p, mir-140-5p, mir-145-5p, miR-17-5p/miR-106a-

5p/miR-19a-3p/miR-20b-5p, miR-19b-3p and miR-23a-3p. LDLR has similar 

targeting miRNAs to ABCA1, plus miR-30c-5p, miR-344d-3p/miR-410, miR-4284 

and miR-4286. 

For the basal vs KCl groups (Figure 6-18), HMGCR is targeted by miR-125b-

5p/miR-125a-5p and miR-29b-3p/miR-29a-3p/miR-29c-3p. ABCA1 is targeted by 

miR-128-3p, hsa-miR-130a-3p/miR-454-3p, miR-17-5p/miR-106a-5p/miR-19a-

3p/miR-20b-5p, miR-19b-3p and miR-23a-3p. 
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Other possibly relevant mRNAs predicted to be targeted include KCNJ5, STAR, 

WNT4, WNT7B, ATP2B3, FDXR and several more, as shown in Figure 6-16 to 

Figure 6-18. 
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Figure 6-16: IPA miRNA target genes for the basal vs Angio II-treated group.  
The arrow from each miRNA indicates inhibition of the target gene.  
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Figure 6-17: IPA miRNA target genes for the basal vs dbcAMP-treated group.  
The arrow from each miRNA indicates inhibition of the target gene. 
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Figure 6-18: IPA miRNA target gene for the basal vs KCl-treated group.  
The arrow from each miRNA indicates inhibition of the target gene.  
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6.7 IPA Target Filter Analysis: experimentally-validated 
mRNA targets by cluster. 

6.7.1 Cluster miR-17-5p and miR-19a-3p (Chromosome 13). 

The miRNAs miR-17-5p and miR-19b-3p originate from a primary miRNA encoded 

at chromosome 13q31.3. Both of these miRNAs are significantly downregulated 

by all of the stimulations (Angio II, dbcAMP and KCl (Figure 6-19). However, 

despite originating from the same cluster, the seed sequences of these 2 miRNAs 

are distinct: AAAGUGC for miR-17-5p and GUGCAAA for miR-19a-3p (Figure 

6-19). miR-17-5p shares a similar seed sequence with hsa-miR-106a-5p, hsa-miR-

106b-5p, hsa-miR-20a-5p, hsa-miR-20b-5p and hsa-miR-93-5p. miR-19a-3p shares 

its seed sequence with miR-19b-3p (GUGCAAA). Based on IPA analysis, there are 

42 experimentally-validated targets for miR-17-5p and 11-experimentally 

validated targets for miR-19a-3p.  

From the Ingenuity Expert Finding literature database, human miR-17-5p has 

been shown to target CCND1 by quantitative RT-PCR, luciferase reporter gene 

assay (Yu, Wang et al. 2008) and Western blotting (Deshpande, Pastore et al. 

2009). PTEN is another mRNA targeted by miR-17-5p and miR-19a-3p (Lima, 

Busacca et al. 2011). miR-17 reduces activation-induced cell death and 

decreases inducible regulatory T-cell differentiation. The function of miR-17 is 

mediated by TGFβR2 and CREB1. The loss of miR-17-92 in CD4 T cells results in 

tumour evasion and this study suggests that regulation of miR-17 could enhance 

the effectiveness of T cell-based tumour therapy(Jiang, Li et al. 2011). miR-17-

5p is shown to directly target HBP1 (HMG-box transcription factor 1) in breast 

cancer cells (Li, Bian et al. 2011). E2F transcription factor 1 (E2F1), E2F 

transcription factor 2 (E2F2) and E2F transcription factor 3 (E2F3) are the 

validated targets for cluster miR-17-92. These are essential for cell cycle 

function, inducing the expression of genes involved in progression of G1 phase to 

S phase (Slaby, Svoboda et al. 2009). High cluster mir-17-92 level leads to 

downregulation of E2F1 protein, thus inhibiting apoptosis (Woods, Thomson et 

al. 2007). Janus kinase 1 (JAK1), is another validated target for miR-17; it plays 

a crucial role in vascular homeostasis and it is required for sprouting 

angiogenesis (Doebele, Bonauer et al. 2010).  
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miR-19a-3p targets CCDN1, as ascertained by luciferase reporter gene assay,  

Western blotting and quantitative RT-PCR (Qin, Wang et al. 2010). miR-19a has 

oncogenic activity through repression of PTEN, a tumour suppressor in the 

Emmu-myc model of mouse B-cell lymphoma (Olive, Bennett et al. 2009). miR-

19a is upregulated in human embryonic stem cells (hES) and inversely expressed 

relative to ERBB4 (erb-b2 receptor tyrosine kinase 4) mRNA; mutation of ERBB4 

has been associated with cancer(Tsai, Singh et al. 2010).  

Other experimentally-validated targets of the clustered miRNAs miR-17-5p and 

miR-19-3p are shown in Figure 6-19. 
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Figure 6-19: (Left) Microarray expression of mir-17-5p and miR-19a-3p across basal (blue), Angio II (red), dbcAMP (purple) and KCl treatments (green). All 
exhibit a consistent pattern throughout stimulation. * p<0.05 relative to basal. (Right) the primary miRNA structure of miR-17-5p and miR-19a-3p: yellow box 
indicates the seed sequence for both miRNA (AAAGUGC for miR-17-5p and GUGCAAA for miR-19a-3p). 
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Figure 6-20: miR-17-5p, miR-19a-3p and their experimentally-validated targets, derived from miRNA Target Filter Analysis (IPA). 
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6.7.2 Cluster miR-106a-5p and miR-20b-5p (Chromosome X). 

The miRNAs miR-106a-5p and miR-20b-5p originate from a primary miRNA 

located on chromosome X. Both miRNAs are significantly downregulated 

following stimulation with Angio II, dbcAMP and KCl (Figure 23). Furthermore, 

they share the same seed sequence (AAAGUGC), as does miR-17-5p. Both miRNAs 

share their seed sequence with hsa-miR-106b-5p, hsa-miR-20a-5p, hsa-miR-20b-

5p and hsa-miR-93-5p. Based on IPA analysis, there are 42 experimentally 

validated targets for miR-106a-5p and miR-20b-5p. 

In the transgenic mouse model for Alzheimer’s disease, miR-106b is shown to 

target TGFβ2 receptor (Wang, Liu et al. 2010). In chronic lymphocytic leukaemia 

(CLL), exogenous transfection with miR-106b demonstrates that ITCH is a direct 

target for this miRNA (Sampath, Calin et al. 2009). E2F1, E2F2 and E2F3 are 

modulated by the cluster members miR-106a-92 and miR-106b-25 (a miR-17-92 

cluster paralog) (Bueno, Gómez de Cedrón et al. 2010). miR-106b is upregulated 

in human gastric tumours and develops a negative-feedback loop to E2F1 gene 

expression (Petrocca, Visone et al. 2008) 

miR-20a facilitates the transition through G1 in normal diploid human cells and 

the inhibition of the miRNA leads to an accumulation of E2F1 transcription factor 

(Pickering, Stadler et al. 2008). ESR1 is targeted by miR-20b, as demonstrated by 

luciferase reporter gene assay (Akingbemi, Ge et al. 2003).  

miR-106a-5p and miR-20b-5p also share mRNA targets with miR-17-p (Figure 6-20 

and Figure 6-22). 
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Figure 6-21:(Left) Microarray expression of mir-17-5p and miR-19a-3p across basal (blue), Angio II (red), dbcAMP (purple) and KCl  treatments (green).  All 
exhibit consistent expression throughout stimulation. (Right) the primary miRNA sturucture of miR-17-5p and miR-19a-3p: the yellow box indicates the 
seed sequence for both miRNA (AAAGUGC for miR-106a-5p and mir-20b-5p, both share similar seed sequence with miR-17-5p). * p<0.05 relative to basal.
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Figure 6-22: miR-106-5p and miR-20b-5p and their experimentally-validated targets, derived from miRNA Target Filter Analysis (IPA). 
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6.7.3 IPA Canonical Signalling Involving cluster miR-17-5p/miR-
19a-3p miRNAs. 

The cluster miRNAs miR-17-5p/miR-19a-3p are predicted by IPA Canonical 

Pathways Signalling to target a few important pathways relevant to 

steroidogenesis, biosynthesis of cholesterol, apoptosis, angiogenesis and tumour 

development. 

Specifically, the IPA Canonical Pathways involved are: 

1. Aldosterone signalling in epithelial cells (Figure 6-23) 

2. LXR/ RXR activation (Figure 6-24) 

3. WNT/ β-catenin signalling (Figure 6-25) 

4. Apoptosis signalling (Figure 6-26) 

5. VEGF signalling (Figure 6-27) 

6. TGF-β signalling (Figure 6-28) 

6.7.3.1 Genes Targeted by miR-17/19 in Aldosterone Signalling in the 
Epithelial Cell Pathway 

miR-19b-3p/miR-19a-3p (and other mature microRNAs with seed GUGCAAA) 

target the Mineralocorticoid Receptor (MR). The NR3C2 (nuclear receptor 

subfamily 3, group C, member 2) gene encodes the mineralocorticoid receptor 

(MR) which facilitates aldosterone’s actions on salt and water balance. The MR 

protein acts as a ligand-dependent transcription factor that binds to 

mineralocorticoid response elements in order to stimulate target genes. 

Mutations of NR3C2 cause autosomal dominant pseudohypoaldosteronism type I, 

a disorder presenting with urinary salt wasting, early onset hypertension, 

severely exacerbated in pregnancy. MR mediates the biological action of 

aldosterone via water-salt homeostasis, stimulates inflammation, increases 

cardiovascular remodelling, causes endothelial dysfunction and impairs 

pancreatic insulin released (Ronconi, Turchi et al. 2012). 

miR-19b-3p/miR-19a-3p (and other mature microRNA with seed GUGCAAA) 

targets RAF1 (Raf-1 proto-oncogene, serine/threonine kinase). RAF1 is a cellular 



208 
 
homolog of the viral raf gene (v-raf) and encodes MAP kinase 3 (MAP3K) which 

plays an important role in the cell cycle, apoptosis, cell differentiation and cell 

migration. By targeting RAF1, these miRNAs might reduce apoptosis and increase 

cell proliferation in tumours. These miRNAs are also predicted to bind with KRAS 

(Kirsten rat sarcoma viral oncogene homolog) which encodes a protein member 

of the small GTPase superfamily.  

miR-19b-3p/miR-19a-3p (and other mature microRNA with seed GUGCAAA) also 

target SGK1 (serum/glucocorticoid regulated kinase 1) that encodes serine/ 

threonine protein kinase, involved in several cellular responses. The kinase 

activates some sodium, potassium and chloride channels (i.e renal sodium 

excretion). Upregulation of this gene may contribute to hypertension and 

diabetic nephropathy. Furthermore, it targets SLC9A1 that encodes the Na+/H+ 

antiporter from the solute carrier family 9 (plasma membrane transporter) 

expressed in kidney and intestine. The protein is essential for pH balance, cell 

migration and cell volume and tumour growth.  

miR-17-5p (and other mature microRNA with seed AAAGUGC) is predicted to 

target ICMT (isoprenylcysteine carboxyl methyltransferase), that encodes 

enzymes that modify isoprenylated C-terminal cysteine residues 

(posttranscriptionally). 
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6.7.3.2 Genes Targeted by miR-17/ 19 in the LXR/RXR Activation pathway 

Both miR-17 and miR-19 target LDLR, ABCA1 and IDOL. LDLR (low density 

lipoprotein receptor) encodes a cell surface protein receptor that is responsible 

for LDL endocytosis. LDL is then processed by lysosomes and degraded to 

produce cholesterol (under the control of HMGCR). The ABCA1 (ATP-binding 

cassette, sub-family A (ABC1), member 1) gene encodes a member of the ABC 

transporter family, that acts as a cholesterol efflux pump in the cellular lipid 

removal pathway. Mouse miR-19b-3p/miR-19a-3p (and other mature microRNAs 

with seed GUGCAAA) and mouse miR-17-5p (and other mature microRNAs with 

seed AAAGUGC) target mouse IDOL/MYLIP (myosin regulatory light chain 

interacting protein) in T-cell leukaemia (high expression of cluster miR-17-92 is 

detected in human T-cell leukaemia) (Landais, Landry et al. 2007). IDOL acts as 

an E3 ubiquitin ligase to elicit ubiquitination and degradation of LDLR. One study 

suggests that structure-based IDOL inhibitors might have therapeutic potential to 

treat cardiovascular disease by increasing LDLR abundance (Sorrentino, Scheer 

et al. 2011). IDOL increases degradation of LDLR by C-terminal domain 

ubiquitination, leading to limitation of cholesterol uptake. Cells deficient of 

IDOL exhibit high levels of LDLR protein and high rates of LDL uptake (Scotti, 

Hong et al. 2011).  

miR-19b-3p/miR-19a-3p (and other mature microRNA with seed GUGCAAA) 

target the TNF (tumour necrosis factor) gene that encodes proinflammatory 

cytokines in the TNP superfamily. It is mainly secreted by macrophages and is 

involved in cell proliferation, lipid metabolism, coagulation, apoptosis and cell 

migration. 

miR-17-5p (and other mature microRNA with seed AAAGUGC) is predicted to 

target the ABCG4 (ATP-binding cassette, sub-family G (WHITE)), member 4) 

gene, which encodes another transporter, a member of the White subfamily 

mostly expressed in liver. No specific function has been described. 
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6.7.3.3 Genes Targeted by miR-17/ 19 in the WNT/ β-catenin Signalling 
pathway 

Both miR-17 and miR-19 target Cyclin D1 (product of the CCND1 gene). Cyclin D1 

is also a validated target of miR-17-5p as shown in breast cancer experiments 

(Yu, Wang et al. 2008). miR-17-5p also significantly suppresses cyclin D1 at its 

3’UTR in mantle cell lymphoma (MCL) (Deshpande, Pastore et al. 2009). Cyclin 

D1 forms a complex with CDK4 and CDK6 that is required for cell cycle G1/ S 

transition. Mutation of the gene is frequently observed in many tumours and may 

therefore contribute to tumorigenesis. CCND1 also has been shown to be a 

validated target for miR-19a in human umbilical vein endothelial cells (Qin, 

Wang et al. 2010). The miR-17-5p cluster downregulates cyclin D1 translation in 

human breast tumour cell lines. The cluster supressed cell proliferation and 

colony formation by inversely regulating CCND1 via a conserved 3’UTR miRNA-

binding site, leading to inhibition of S-phase of cell cycle (Yu, Wang et al. 2008). 

The overexpression of cyclin D1 is significant in mantle cell lymphoma. The level 

of cyclin D1 can be significantly reduced by the miR-17-92 cluster that directly 

binds to the 3’UTR of cyclin D1 (Deshpande, Pastore et al. 2009). One study 

showed that transfection of miR-19a significantly downregulates the cyclin D1 

gene and protein in endothelial cells. This leads to cell arrest at the G1/S 

transition (Qin, Wang et al. 2010).  

miR-19b-3p/miR-19a-3p (and other mature microRNA with seed GUGCAAA) are 

predicted to target GJA1/CX43. GJA1 (gap junction protein, alpha 1, 43kDa), a 

member of the connexin family that encodes a component of the gap junction 

protein that provides a route for low molecular weight material diffusion from 

cell to cell. It is crucial in controlling heart contraction and embryonic 

development. Mutation is associated with heart malformation. The miRNA also 

targets NLK (nemo-like kinase), involved in ATP binding, kinase activity and 

transcription factor binding that are involved in hepatocellular carcinoma. It also 

targets MARK2/PAR-1. MARK2 (MAP/microtubule affinity-regulating kinase 2) 

that encode the Par-1 family of serine/threonine protein kinases. It is a vital cell 

polarity regulator in epithelial and neuronal cells and controls microtubule 

stability. 
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miR-17-5p (and other mature microRNAs with seed AAAGUGC) is predicted to 

target TCF4 (transcription factor 4) and PPARD. The PPARD (peroxisome 

proliferator-activated receptor delta) gene encodes the peroxisome proliferator-

activated receptor (PPAR). PPAR is a nuclear receptor and mediates various 

disorders, including cancer, atherosclerosis, diabetes and obesity. In a knockout 

mouse model, the protein was shown to be involved in lipid metabolism and cell 

proliferation. The TCF4 gene encodes a basic helix-hoop-helix transcription 

factor that plays an important role in the nervous system. PPAR is a nuclear 

hormone receptor that binds peroxisome proliferators and regulates the number 

and size of peroxisomes generated by cells. PPAR may be involved in diabetes, 

obesity, atherosclerosis and cancer. 

6.7.3.4 Genes Targeted by miR-17/ 19 in the Apoptosis Signalling pathway 

Both miR-17 and miR-19 target BCL2L11/BIM. The BCL2L11 gene (BCL2-like 11 

(apoptosis facilitator)) encodes a member of the BCL-2 family, which can act as 

pro- or anti-apoptotic regulators. Gene expression can be stimulated by nerve 

growth factor (NGF). It is involved in neuronal and lymphocyte apoptosis. 

miR-19b-3p/miR-19a-3p (and other mature microRNA with seed GUGCAAA) is 

predicted to target APAF1 and RAF1. APAF1 (apoptotic peptidase-activating 

factor 1) encodes a cytoplasmic protein that initiates apoptosis. RAF1 (Raf-1 

proto-oncogene, serine/threonine kinase) is a cellular homolog of the viral raf 

gene (v-raf) and encodes MAP kinase 3 (MAP3K), playing an important role in the 

regulation of genes involved in the cell cycle, apoptosis, cell differentiation and 

cell migration. 

miR-17-5p (and other mature microRNA with seed AAAGUGC) is predicted to 

target MAP3K5/ASK1, BCL2, CASP2, CASP7 and MCL1. The MAP3K5 (mitogen-

activated protein kinase 5) protein is involved in MAPK kinase and c-Jun N-

terminal kinase activation. BCL2 encodes outer mitochondrial membrane 

proteins that block the death of some cells (e.g. lymphocyte apoptosis). The 

CASP2 (caspase 2, apoptosis-related cysteine peptidase) gene encodes a member 

of the cysteine-aspartic acid protease (caspase) family, involved in stress-

induced cell death pathways, the cell cycle and tumorigenesis oppression. The 

CASP7 (caspase 7, apoptosis-related cysteine peptidase) gene encodes cysteine-
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aspartic acid protease (caspase) family. This family plays an important function 

in the completion-phase of cell apoptosis. The MCL1 (myeloid cell leukaemia 1) 

gene encodes anti-apoptotic protein (member of BCL-2 family). 

6.7.3.5 Genes Targeted by miR-17/ 19 in the VEGF Signalling pathway 

miR-19b-3p/miR-19a-3p (and other mature microRNA with seed GUGCAAA) is 

predicted to target ELAVL1/HUR, PTK2B/PYK2 and RAF1. ELAVL1 (ELAV-like RNA 

binding protein 1) encodes a member of the ELAVL family of RNA-binding 

proteins. The proteins contain multiple RNA recognition motifs and specifically 

bind to AU-rich elements (AREs) found in the 3’UTRs of miRNA. The gene is 

highly expressed in cancers. PTK2B (protein tyrosine kinase 2 beta) encodes 

tyrosine kinase in the cytoplasm that increases calcium influx and activates the 

MAPK signalling pathway. RAF1 (Raf-1 proto-oncogene, serine/threonine kinase) 

is a cellular homolog of viral raf gene (v-raf) and encodes MAP kinase 3 (MAP3K). 

It plays an important role in regulation of genes involved in the cell cycle, 

apoptosis, cell differentiation and cell migration. 

miR-17-5p (and other mature microRNA with seed AAAGUGC) is predicted to 

target BCL2, HIF1A and VCL. BCL2 encodes outer mitochondrial membrane 

proteins that block the death of some cells (e.g. lymphocyte apoptosis). The VCL 

(vinculin) gene encodes a cytoskeletal protein involved in cell-cell and cell-

matrix junctions. Impairment of VCL is the cause of dilated cardiomyopathy type 

1W. This disease is characterized by a dilated ventricle and systolic malfunction 

and lead to arrhythmias and congestive heart failure. The HIF1A (hypoxia 

inducible factor 1, alpha subunit (basic helix-loop-helix transcription factor)) 

gene encodes the transcription factor, hypoxia-inducible factor-1 (HIF-1), α-

subunit, which will bind with the β-subunit to form a heterodimer. HIF1A is 

involved in angiogenesis, increasing oxygen delivery and helping metabolic 

adaptation to hypoxia. 

6.7.3.6 Genes Targeted by miR-17/ 19 in the TGF-β Signalling pathway 

Both miR-17 and miR-19 target RUNX3, SMAD4, SMURF1 and ZFYVE9/SARA. The 

RUNX3 (runx-related transcription factor 3) gene encodes a member of the runx 

domain-containing family of transcription factors. By forming a complex with the 
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DNA sequence, 5'-PYGPYGGT-3' core (found in some promoters and enhancers), it 

can stimulate or inhibit transcription. The protein acts as a tumour suppressor 

and silencer of this gene, which is often related to cancer. The SMAD4 (SMAD 

family member 4) gene encodes a member of the SMAD family of signal 

transduction proteins. Mutations occur in pancreatic cancer and hereditary 

haemorrhagic telangiectasia syndrome. SMAD proteins are activated in response 

to TGF-Beta signalling and are subjected to post-transcriptional modification. 

The SMURF1 (SMAD specific E3 ubiquitin protein ligase 1) gene encodes a specific 

receptor-regulated SMAD protein (ubiquitin ligase) in the bone morphogenetic 

protein (BMP) pathway. This protein plays an essential role in cell motility, cell 

signalling and cell polarity. The ZFYVE9 (zinc finger, FYVE domain containing 9) 

gene encodes a double zinc finger motif-containing protein involved in the 

transforming growth factor-beta (TGFB) signalling pathway. The protein 

interacts with SMAD2 and SMAD3 and recruits SMAD2 to the TGFB receptor. The 

ZFYVE9 gene encodes a double zinc finger motif-containing protein involved in 

transforming growth factor-beta (TGFB) signalling pathway. The protein 

interacts with SMAD2 and SMAD3 and recruits SMAD2 to the TGFB receptor. 

miR-19b-3p/miR-19a-3p (and other mature microRNA with seed GUGCAAA) are 

predicted to target ARKADIA/RNF111, CRAF, GSC, PAI-1/SERPINE, 

TMEPAI/PMEPA1 and TGIF. RNF111 (ring finger protein 111) plays a critical role 

in embryonic mesoderm development; CRAF is involved in the cell cycle, 

migration, differentiation and apoptosis; GSC (goosecoid homeobox) encodes 

proteins of the bicoid subfamily of the paired (PRD) homeobox family. The 

protein acts as a TF; in mice it is involved in craniofacial and rib cage 

development during embryogenesis. SERPINE1 (serpin peptidase inhibitor, clade 

E (nexin, plasminogen activator inhibitor type 1), member 1) encodes the serine 

proteinase inhibitor (serpin) superfamily. The protein is an inhibitor of 

fibrinolysis (tissue plasminogen activator (tPA) and urokinase (uPA) inhibitor). 

High expression of the gene is associated with thrombophilia. TMEPAI/PMEPA1 

(prostate transmembrane protein, androgen induced 1) overexpression is 

involved in many types of cancer. TGIF1 (TGFB-induced factor homeobox 1) 

encodes a protein that is active as a transcriptional co-repressor of SMAD2 and 

may be involved in nuclear signal transmission. 
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miR-17-5p (and other mature microRNA with seed AAAGUGC) is predicted to 

target BCL2, SKI, SMAD6 and SMAD7. The SKI (SKI proto-oncogene) gene encodes 

the nuclear protooncogene protein. This protein represses TGF-beta signalling 

which may contribute to neural tube development and muscle differentiation. 

The SMAD6 (SMAD family member 6) gene encodes a protein that negatively 

regulates TGF-beta/activin-signalling. The SMAD7 (SMAD family member 7) gene 

encodes a nuclear protein that binds the E3 ubiquitin ligase SMURF2. It interacts 

with TGF-beta receptor type-1 (TGFBR1), leading to the receptor degradation. 

The gene is involved in colorectal cancer. BCL involves in inhibiting lymphocyte 

apoptosis. 
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Figure 6-23: Aldosterone Signalling in the Epithelial Cellular Pathway.  
miR-17-5p (and other miRNAs with seed AAAGUGC) targets ICMT while miR-19b-3p/miR-19a-3p (and other miRNAs with seed GUGCAAA) targets MR, cRaf, KRAS, 
SGK and SLC9A1 (Na+/H+ Antiporter).  
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Figure 6-24: The LXR/RXR Activation pathway.  
miR-17-5p (and other miRNAs with seed AAAGUGC) targets LDLR, ABCA1, IDOL and ABCG4 while miR-19b-3p/miR-19a-3p (and other miRNAs with seed 
GUGCAAA) targets ABCA1, LDLR, IDOL and TNF-α. 
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Figure 6-25: The WNT/ β-catenin Signalling Pathway.  
miR-17-5p (and other miRNAs with seed AAAGUGC) targets Cyclin D1, TCF4 and PPARδ while miR-19b-3p/miR-19a-3p (and other miRNAs with seed GUGCAAA) 
targets PAR-1, NLK, Cyclin D1 and CX43. 
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Figure 6-26: The Apoptosis Signalling pathway.  
miR-17-5p (and other miRNAs with seed AAAGUGC) targets ASK1, CASP2, BIM, p90RSK, BCL-2, MCL and CASP7 while miR-19b-3p/miR-19a-3p (and other 
miRNAs with seed GUGCAAA) targets c-RAF, BIM and APAF1.  
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Figure 6-27: The VEGF Signalling Pathway.  
miR-17-5p (and other miRNAs with seed AAAGUGC) targets HIF-1α (HIF1A), VCL and BCL-2 while miR-19b-3p/miR-19a-3p (and other miRNAs with seed 
GUGCAAA) targets HUR (ELAVL1), c-RAF (RAF1) and PYK2 (PTK2B). 
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Figure 6-28: The TGF-β Signalling Pathway.  
miR-17-5p (and other miRNAs with seed AAAGUGC) targets SMAD6, SKI, SARA (ZFYVE9), SMURF1, SMAD7, SMAD4, RUNX3 and BCL2 while miR-19b-3p/miR-
19a-3p (and other miRNAs with seed GUGCAAA) targets SMURF1, ARKADIA (RNF111), TMEPAI (PMEPA1), SARA (ZFYVE9), c-RAF (RAF1), TGIF (TGIF1), 
SMAD4, RUNX3, PAI-1 (SERPINE1) and GSC.  
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6.8 Result: Validation of microarray and bioinformatics 
study of miR-17-5p 

6.8.1 miR-17-5p 

6.8.1.1 miR-17-5p in Angio II-Stimulated Cells 

miR-17-5p expression was found by microarray to be significantly decreased in 

Angio II-stimulated cells (Figure 6-29 A). Quantitative validation of this effect was 

conducted by realtime qRT-PCR which, although showing a similar pattern of 

downregulation, did not achieve significance (Figure 6-29 B; Table 6-1). 

 
 

 

Figure 6-29: Levels of miR-17-5p as in basal vs. Angio II-stimulated cells, as detected by 
(A) microarray (n= 3) and (B) realtime qRT-PCR (n= 5).  
* indicates p<0.05. 

 

Table 6-1: miRNA expression in Basal vs Angio II-stimulated H295R cells (Strain 1), 
analysed by realtime qRT-PCR.  
Ct= cycle threshold; ddCt= delta delta Ct; n= biological sample number; SD= standard 
deviation. 

miRNA n Basal               
Mean Ct (SD) 

Angio II             
Mean Ct (SD) 

ddCt Fold Change 
(Relative to 
basal= 1) 

p-
value 

miR-17-5p 5 23.63 (0.01) 24.06 (0.31) 0.33 0.80 0.20 
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6.8.1.2 miR-17-5p in dbcAMP Stimulated Cells 

Similarly, in dbcAMP-stimulated cells, a significant reduction of miR-17-5p had 

been observed by microarray but was not observed using realtime qRT-PCR 

(Figure 6-30; Table 6-2). 

  

Figure 6-30: Microarray expression of miR-17-5p (A) (n= 3) in Basal vs dbcAMP and the 
validation in qRT PCR (B) (n= 5) in Basal vs dbcAMP stimulated cells.  
* indicates p<0.05. 

 

Table 6-2: miRNA expression in Basal vs dbcAMP-stimulated H295R cells (Strain 1), 
analysed by realtime qRT-PCR.  
Ct= cycle threshold; ddCt= delta delta Ct; n= biological sample number; SD= standard 
deviation. 

miRNA n Basal               
Mean Ct (SD) 

dbcAMP            
Mean Ct (SD) 

ddCt Fold Change 
(Relative to 
basal= 1) 

p-
value 

miR-17-5p 5 23.63 (0.34) 23.69 (0.23) 0.23 0.85 0.18 
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6.8.1.3 miR-17-5p in KCl Stimulated Cells 

However, the significant reduction in miR-17-5p observed by microarray in KCl-

stimulated cells was validated by realtime qRT PCR (Figure 6-31 and Table 6-3). 

  

Figure 6-31: Microarray expression of miR-17-5p (A) (n= 3) and validation by qRT PCR 
(B) (n= 5) of Basal vs KCl-stimulated cells.  
* indicates p<0.05. 

 

Table 6-3: miRNA expression in Basal vs KCl-stimulated H295R cells (Strain 1), 
analysed by realtime qRT-PCR.  
Ct= cycle threshold; ddCt= delta delta Ct; n= biological sample number; SD= standard 
deviation. 

miRNA n Basal               
Mean Ct (SD) 

KCl                      
Mean Ct (SD) 

ddCt Fold Change 
(Relative to 
basal= 1) 

p-
value 

miR-17-5p 5 23.63 (0.34) 24.02 (0.21) 0.56 0.68 0.01 
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6.8.2 miR-20b-5p 

6.8.2.1 miR-20b-5p in Angio II Stimulated Cells 

Microarray had identified significant downregulation of miR-20b-5p in Angio II-

stimulated cells (Figure 6-32 A), but realtime qRT-PCR did not identify this 

reduction as significant (Figure 6-32 B).   

  

Figure 6-32: Microarray expression of miR-20b-5p (A) (n= 3) in Basal vs Angio II-treated 
cells and its validation by qRT PCR (B) (n= 6). 
* indicates p<0.05. 

 

Table 6-4: miRNA expression in Basal vs Angio II-stimulated H295R cells (Strain 1), 
analysed by realtime qRT-PCR.  
Ct=cycle threshold; ddCt= delta delta Ct; n= biological sample number; SD= standard 
deviation. 

miRNA n Basal               
Mean Ct (SD) 

Angio II             
Mean Ct (SD) 

ddCt Fold Change 
(Relative to 
basal= 1) 

p-
value 

miR-20b-3p 6 25.88 (0.28)  26.11 (0.41)  0.22 0.86 0.25 
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6.8.2.2 miR-20b-5p in dbcAMP Stimulated Cells 

The reduction in miR-20b-5p observed by microarray in dbcAMP-stimulated cells 

(Figure 6-33 A) also was not found to be significant under realtime qRT-PCR 

(Figure 6-33 and Figure 6-34 B). 

  

Figure 6-33: Levels of miR-20b-5p in Basal vs dbcAMP-stimulated H295R cells (Strain 
1), as measured by (A) microarray (n= 3) and (B) realtime qRT-PCR (n= 5).  
* indicates p<0.05. 

 

Table 6-5: miRNA expression in Basal vs dbcAMP-stimulated H295R cells (Strain 1), 
analysed by realtime qRT-PCR.  
Ct= cycle threshold; ddCt= delta delta Ct; n= biological sample number; SD= standard 
deviation. 

miRNA n Basal               
Mean Ct (SD) 

dbcAMP            
Mean Ct (SD) 

ddCt Fold Change 
(Relative to 
basal= 1) 

p-
value 

miR-20b-3p 6 25.88 (0.28) 25.98 (0.30) 0.18 0.88 0.24 
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6.8.2.3 miR-20b-5p in KCl Stimulated Cells 

The reduction in miR-20b-5p observed by microarray following KCl stimulation 

(Figure 6-34 A) was validated by realtime qRT-PCR (Figure 6-34 B and Table 6-6). 

 

  

 

Figure 6-34: Levels of miR-20b-5p following KCl stimulation of H295R cells (Strain 1) as 
measured by (A) microarray (n= 3) and (B) qRT-PCR (n= 6).  
* indicates p<0.05. 

 

Table 6-6: miR-20b-3p levels in Basal vs KCl-stimulated H295R cells (Strain 1) , 
analysed by realtime qRT-PCR.  
Ct=cycle threshold; ddCt= delta delta Ct; n= biological sample number; SD= standard 
deviation. 

miRNA n Basal               
Mean Ct (SD) 

KCl                      
Mean Ct (SD) 

ddCt Fold Change 
(Relative to 
basal=1) 

p-
value 

miR-20b-3p 6 25.88 (0.28) 26.26 (0.24) 0.57 0.67 <0.01 
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6.8.3 miR-766-3p 

miR-766-3p was reported to be significantly upregulated in Angio II-stimulated 

cells analysed by microarray. The result was validated by realtime qRT PCR, 

which also identified significant upregulation of miR-766-3p (Figure 6-35 B and 

Table 6-7). 

6.8.3.1 miR-766-3p in Angio II Stimulated Cells 
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Figure 6-35: Levels of miR-766-3p in basal vs Angio II-stimulated H295R cells (Strain 1) 
measured by (A) microarray (n= 3) and (B) realtime qRT-PCR (n= 5).  
* indicates p<0.05. 

 

Table 6-7: miRNA levels in Basal vs Angio II-stimulated H295R cells (Strain 1), analysed 
by realtime qRT-PCR.  
Ct= cycle threshold; ddCt= delta delta Ct; n= biological sample number; SD= standard 
deviation. 

miRNA n Basal               
Mean Ct (SD) 

Angio II             
Mean Ct (SD) 

ddCt Fold Change 
(Relative to 
basal= 1) 

p-
value 

miR-766-3p 5 20.13 (0.14) 19.99 (0.26) -0.31 1.24 0.01 
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6.8.3.2 miR-766-3p in dbcAMP Stimulated Cells 

The upregulation of miR-766-3p in dbcAMP-stimulated cells could not be 

validated by realtime qRT-PCR (Figure 6-36; Table 6-8). 
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Figure 6-36: Levels of miR-766-3p in Basal vs dbcAMP-stimulated H295R cells (Strain 
1), as analysed by (A) microarray (n= 3) and (B) realtime qRT-PCR (n= 6).  
* indicates p<0.05. 

 

Table 6-8: miRNA levels in basal vs dbcAMP-stimulated H295R cells (Strain 1), analysed 
by realtime qRT-PCR.  
Ct= cycle threshold; ddCt= delta delta Ct; n= biological sample number; SD= standard 
deviation. 

miRNA n Basal               
Mean Ct (SD) 

dbcAMP            
Mean Ct (SD) 

ddCt Fold Change 
(Relative to 
basal= 1) 

p-
value 

miR-766-3p 6 20.09 (0.16) 20.08 (0.03) 0.07 0.95 0.56 
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6.8.3.3 miR-766-3p in KCl-Stimulated Cells 

Levels of miR-766-3p also saw a significant increase following KCl stimulation 

when analysed by microarray (Figure 6-37 A) but, despite a trend towards 

increased levels when analysed by realtime RT-PCR, this change could not be 

validated by this method (Figure 6-37 B; Table 6-9). 
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Figure 6-37: Levels of miR-766-3p in Basal vs KCl-stimulated H295R cells (Strain 1), as 
analysed by (A) microarray (n= 3) and (B) realtime RT-PCR (n= 6).  
* indicates p<0.05 

 

Table 6-9: miRNA levels in Basal vs KCl-stimulated H295R cells (Strain 1), as analysed 
by realtime qRT-PCR.  
Ct= cycle threshold; ddCt= delta delta Ct; n= biological sample number; SD= standard 
deviation. 

miRNA n Basal               
Mean Ct (SD) 

KCl                      
Mean Ct (SD) 

ddCt Fold Change 
(Relative to 
basal=1) 

p-
value 

miR-766-3p 6 20.09 (0.16) 20.08 (0.03) 0.07 0.95 0.56 
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6.8.3.4 Validation of other miRNAs in Stimulated H295R Cells 

miR-125a-5p as described previously, was significantly downregulated in dbcAMP-

stimulated cells (Table 6-11) but not in other groups (Table 6-10 and Table 6-12). 

Other validated expressed miRNAs in the cells are miR-154-3p and miR-19a-3p, 

however no significant difference of these miRNAs was observed in basal vs 

stimulated cells, as shown in Table 6-10 and Table 6-12. 

Table 6-10: miRNA expression in Basal vs Angio II-stimulated cells (Strain 1).  
Ct= cycle threshold; ddCt= delta delta Ct; n= biological sample number; SD= standard 
deviation. 

miRNA n Basal               
Mean Ct (SD) 

Angio II             
Mean Ct (SD) 

ddCt Fold Change 
(Relative to 
basal= 1) 

p-
value 

miR-125a-5p 6 19.87 (0.19) 20.01 (0.27) 0.06 0.96 0.62 

mir-154-3p 6 25.66 (0.39) 25.74 (0.28) -0.01 1.01 0.93 

miR-19a-3p 6 25.43 (0.61) 25.60 (0.34) 0.03 0.98 0.76 

 
 

Table 6-11: miRNA expression in Basal vs dbcAMP-stimulated cells (Strain 1).  
Ct= cycle threshold; ddCt= delta delta Ct; n= biological sample number; SD= standard 
deviation. 

miRNA n Basal               
Mean Ct (SD) 

dbcAMP            
Mean Ct (SD) 

ddCt Fold Change 
(Relative to 
basal= 1) 

p-
value 

miR-125a-5p 6 19.87 (0.19) 20.35 (0.10) 0.57 0.68 <0.01 

mir-154-3p 6 25.66 (0.39) 25.65 (0.31) 0.07 0.95 0.66 

miR-19a-3p 5 25.41 (0.64) 25.38(0.28) 0.03 0.98 0.92 

 

 

Table 6-12: miRNA expression in Basal vs KCl-stimulated cells (Strain 1).  
Ct= cycle threshold; ddCt= delta delta Ct; n= biological sample number; SD= standard 
deviation. 

miRNA n Basal               
Mean Ct (SD) 

KCl                      
Mean Ct (SD) 

ddCt Fold Change 
(Relative to 
basal= 1) 

p-
value 

miR-125a-5p 6 19.87 (0.19) 19.78 (0.18) 0.00 1.00 0.99 

mir-154-3p 6 25.66 (0.39) 25.49 (0.13) -0.09 1.07 0.62 

miR-19a-3p 5 25.41 (0.64) 25.57 (0.21) 0.34 0.79 0.08 

 

  



231 
 

6.8.3.5 LDLR expression following miR-17 Transfection 

In order to assess the effects of this significantly-altered miRNA on predicted 

target genes, H295R Strain 1 was transfected with pre-miR-17 for 24 hours, as 

described in Chapter 2, Section 2.3. A direct interaction between miR-17-5p and 

LDLR mRNA had been predicted by IPA. Following pre-miR-17 transfection, levels 

of this mRNA were found to be significantly reduced as shown in Figure 6-38 and 

Table 6-13. 

 

Figure 6-38: LDLR gene expression of H295R Strain 1 in pre-miR-17 transfection (n= 3).  
* indicates p<0.05. 

 

Table 6-13: LDLR mRNA levels following pre-miR-17 transfection of H295R cells (Strain 
1), analysed by realtime qRT-PCR.  
Ct= cycle threshold; ddCt= delta delta Ct; n= biological sample number; SD= standard 
deviation. 

Gene n Pre-Neg        
Mean Ct (SD) 

Pre-miRNA-17     
Mean Ct (SD) 

ddCt Fold Change 
(Relative to 
basal= 1) 

p-value 

LDLR 3 26.08 (0.30) 26.46 (0.24) 0.23 0.85 0.04 
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6.9 Discussion 

This chapter combined microarray, IPA analysis and further in vitro 

experimental work to analyse differences in miRNA expression between basal 

and stimulated cells (Angio II, dbcAMP and KCl), as measured by microarray 

analysis. This generated 3 lists of miRNAs significantly differentially 

expressed as a result of each type of stimulation (Figure 6-8 to Figure 6-10). 

Based on these patterns of expression, 7 miRNAs were found to be 

consistently altered throughout the 3 treatments. These 7 miRNAs were 

assembled into 2 main clusters as shown in Figure 6-11 and Figure 6-12. The 

2 clusters were then cross-referenced with IPA analysis in order to construct 

a list of relevant mRNA targets and pathways that are predicted to be 

affected. Some of these miRNAs were validated by qRT PCR. 

6.9.1 Microarray 

Cross-referencing of miRNAs to mRNAs enabled identification of several 

predicted regulatory targets. IPA employs three levels of filter in its 

prediction of target: experimentally-validated target, high-confidence target 

and moderate-confidence target. These 3 levels of confidence are based on 

TargetScan, TarBase, miRecords, and the Ingenuity® Knowledge Base. The 

predicted targets are obtained by utilising the TargetScan algorithm which 

recognises the presence of conserved 8mers and 7mers that match the seed 

sequence of each miRNA. TarBase content identifies the target by 

miRNA/mRNA matching from Tarbase itself and miRBase identifiers. For 

experimentally-validated interactions, miRecords is used to ascertain 

identify these from published articles. Lastly, the Ingenuity® Knowledge Base 

is derived from thousands of manually-curated published articles by 

Ingenuity’s own scientific experts. 

miRNAs predicted to target CYP11B2 include: 

 miR-1275 and miR-4323 (basal vs Angio group, Figure 6-16) 

 miR-125b-5p/miR-125a-5p, miR-1275, miR-647 and miR-766-3p (basal 

vs dbcAMP, Figure 6-17) miR-125b-5p/miR-125a-5p, miR-708-5p, miR-

766-3p 
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miR-874-3p are predicted to bind to CYP11B2 (basal vs KCl group, Figure 

6-18).  

Of these, miR-125b-5p/miR-125a-5p and miR-766-3p are consistently 

expressed in a similar pattern across the 3 stimulations (i.e. downregulated 

in each stimulated group). Only miRNAs in the KCl group are predicted to 

target CYP11B1 (miR-874-3p) and CYP17A1 (miR-4730). CYP11B2 & CYP11B1 

encode members of the cytochrome P450 superfamily of enzymes: namely 

aldosterone synthase and11-β-hydroxylase. They are the monooxygenase 

cytochrome P450 proteins located at the inner mitochondrial membrane, 

which catalyse various processes including cholesterol and steroid 

metabolism and drug metabolism. Mutation of CYP11B2 will cause 

corticosterone methyl oxidase deficiency and mutation of CYP11B1 will lead 

to congenital adrenal hyperplasia (due to 11-β-hydroxylase deficiency). 

Another important gene in steroidogenesis is CYP17A1, which encodes 

17alpha-hydroxylase, important for the synthesis of mineralocorticoids, 

glucocorticoids, androgens, oestrogens and progestin. Mutation of this gene 

is associated with adrenal hyperplasia and 17-alpha-hydroxylase/17,20-lyase 

deficiency. In an experimentally validated study, miR-24 was shown to 

directly target the 3’UTR of CYP11B2 (Robertson, MacKenzie et al. 2013). In 

another study, miR-766 was shown to bind the 735G-allele at the 3’UTR of 

human CYP11B2; the transfection of miR-766 reduces human aldosterone 

synthase mRNA and protein level in adrenocortical cell lines. As there is 

known linkage disequilibrium between the A/G polymorphism at the 735 

position and the single nucleotide polymorphism at -344, this might suggest 

that miR-766 downregulates human aldosterone synthase gene expression 

and reduces blood pressure in human subjects carrying the -344T allele 

(Maharjan, Mopidevi et al. 2014). miR-125a-5p and miR-125b-5p also has 

been shown to downregulate aldosterone synthase expression in pEZX-

reporter plasmid experiments (Stacy Wood 2011). 

In the dbcAMP- and KCl-stimulated groups, 2 miRNAs are predicted to target 

HMGCR: miR-125b-5p/miR-125a-5p and miR-29b-3p. HMGCR is a rate-limiting 

enzyme for cholesterol synthesis regulated via a negative feedback 

mechanism controlled by sterols, the product of the reaction that it 
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catalyses. HMGCR is suppressed by cholesterol derived from the influx and 

degradation of low density lipoprotein (LDL) via the LDL receptor (LDLR). 

Competitive inhibitors of HMGCR increase liver LDLR, which in turn escalate 

the LDL plasma catabolism and decrease cholesterol concentration in 

circulation, a key factor of atherosclerosis. HMGCR aberrations may lead to 

cardiovascular disorder (e.g. coronary artery disease, myocardial infarction 

due to atherosclerosis formation) and stroke. It has been reported that 

mesangial cells produced aldosterone locally. Atorvastation, an HMGCR 

inhibitor intensely impaired the glucose, Angio II and LDL to aldosterone 

production. It is suggested that this mesangial endocrine system that 

produce local aldosterone might have therapeutic effect for diabetic 

nephropathy by the action of HMGCR inhibitor (Nishikawa, Matsuzawa et al. 

2010). Therefore, inhibiting of HMGCR by miRNAs might have therapeutic 

effect on the abnormal aldosterone level.  

There are a number of miRNAs that putatively bind ABCA1, in particular, 

miR-17-5p and miR-19b-3p/miR-19a-3p. Both of these miRNAs are derived 

from the same cluster. ABCA1 (ATP-binding cassette, sub-family A, member 

1) is from the superfamily of ATP-binding cassette (ABC) transporters. The 

protein transports cholesterol efflux in the cellular lipid removal pathway. 

The family of ABC genes is divided into seven distinct subfamilies (ABCA1, 

MDR/TAP, MRP, ALD, OABP, GCN20 and White). Abnormalities in the ABCA1 

gene are associated with Tangier's disease and familial high-density 

lipoprotein deficiency. In an animal experimental study, it was shown that 

mouse ABCA1 protein increased expression of HMGCR mRNA in the liver 

(Basso, Freeman et al. 2003). 

miR-19a-3p and miR-17-5p are predicted to target LDLR. The LDLR (low 

density lipoprotein receptor) gene encodes cell surface proteins for 

receptor-mediated endocytosis. Low density lipoprotein (LDL) is normally 

bound to the receptor and taken into the cell. The protein is degraded by 

the lysosome and free cholesterol is made available for downregulation of 

the microsomal enzyme HMGCR, the rate-limiting step in cholesterol 

synthesis. Simultaneously, a reciprocal upregulation of cholesterol ester 

synthesis occurs. LDLR mutation is related to familial hypercholesterolemia. 
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LDLR abnormalities have been associated with atherosclerosis, obesity, 

hypercholesterolemia, hyperglycaemia, and insulin resistance. 

6.9.2 Validation 

Table 6-14: miRNA expression in microarray and qRT PCR. 
Down= downregulated, Up= upregulated, *= p value < 0.05. 

miRNA Microarray qRT PCR 

Angio 
II 

dbcAMP KCl Angio 
II 

dbcAMP KCl 

miR- 
17-5p 

Down* Down* Down* Down Down Down* 

miR-154-
3p 

Down* Down* Down* Down Down Down 

miR- 
19a-3p 

Down* Down* Down* Down Down Down 

miR-20b-
5p 

Down* Down* Down* Down Down Down* 

miR-766-
3p 

Up* Up* Up* Up* Down Down 

 

Validation of miRNAs of interest identified in the microarray study (Basal vs 

stimulated cells) was done by qRT PCR. These miRNAs were: miR-17-5p, miR-

154, miR19a-3p, miR-20b-3p and miR-766-3p. miR-17-5p; each was 

consistently downregulated throughout the stimulation in microarray 

analysis. The expression was validated and only KCl caused a significant 

difference of expression. miR-17-5p belongs to Cluster 17-92. The primer for 

SYBR Green assay of miR-17-5p is similar to miR-106a-5p. Therefore, further 

analysis should be carried out to determine the real effect of gene 

expression by miR-17-5p. Interestingly, IPA analysis revealed that both miR-

17-5p and miR-20a-5p shared the same seed sequence in target mRNA (see 

Table 8-11, Appendix). This is not so surprising as cluster mir-17/miR-19a 

(located at chr 13q31.3) is a paralogue cluster to miR-106a/ miR-20b (chr 

Xq26.2) (Mogilyansky 2013).  

miR-17-5p is predicted by IPA to target LDLR and this effect was confirmed 

by qRT-PCR. LDLR is a vital transport mechanism for intracellular cholesterol 

homeostasis. Cholesterol is the main substrate of steroidogenesis, so 

targeting LDLR may reduce the level of cholesterol in the cytoplasm leading 
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to an effect on steroid secretion. No previous study has established the 

effect of LDLR level on aldosterone production intracellularly. However, 

miR-17-92 is widely expressed in various cancers and is known as the first 

‘oncomir’ (He, Thomson et al. 2005). miR-17 and its cluster are also known 

for their role in suppressing proapoptotic genes E2F1 (O'Donnell, Wentzel et 

al. 2005, Petrocca, Visone et al. 2008). Interestingly, in studying miRNA 

expression in human aging, miR-17, miR-106, miR-19b and miR-20a were 

each reported to be downregulated in cell aging models (CD8(+) T cells, 

renal proximal tubular epithelial cells and fibroblast of skin) (Hackl, Brunner 

et al. 2010). miR-17-p and mir-106a also were reported to be involved in 

promoting adipogenesis and inhibiting osteogenesis by targeting BMP2 (Li, Li 

et al. 2013). 

miR-20b-5p, like miR-17-5p, was consistently downregulated by all 3 

stimulations of H295R cells in vitro, but qRT-PCR validation only achieved 

significance during KCl stimulation. From the IPA database, mir-20b-5p 

shares a similar seed sequence with mir-17-5p, miR-106a-5p and other 

miRNAs, as shown in Table 8-11 (Despite sharing similar seed sequences, the 

PCR primers used for amplification of mir-20b-5p differs from that for miR-

17-5p). In human oral squamous carcinoma cells (clone E10), exogenous miR-

20b downregulated cell proliferation by 50% (Khuu, Jevnaker et al. 2014). 

Interestingly, miR-20b, along with miR-21 and miR-24, has been found to be 

downregulated in the plasma of patients with Type 2 Diabetes Mellitus 

(Zampetaki, Kiechl et al. 2010). In LCC9 cells, mir-20b is upregulated 

compared to LCC1 and MCF7 (Mulrane, Terrile et al. 2013). LCC9 is derived 

from LCC1 (which is derived from MCF7), is completely oestrogen 

independent and exhibits resistance to fulvestrant and tamoxifen. However, 

LCC1 and MCF7 (derived from breast cancer cell line) are sensitive to 

tamoxifen (block oestrogen action) and fulvestrant (selective oestrogen 

receptor degrader) (Skerry Benjamin James Oliver 2013). 

Again, miR-766-3p was consistently upregulated by all three stimulations 

according to microarray analysis (Basal vs stimulated cells). The upregulation 

pattern was confirmed by qRT-PCR for Angio II (p<0.05) but not dbcAMP or 

KCl treatment. In another study, expression of miR-766 was downregulated 
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in tumour-associated macrophage gastrointestinal cancer compared to 

normal gastrointestinal cells (Sugihara, Ishimoto et al. 2013). A study on 

microarray expression comparing a normal bladder cell line (SV-HUC-1) and 

bladder cancer cell lines revealed that miR-766 was downregulated in cancer 

cell lines ((Ueno, Hirata et al. 2012). 

Microarray is known for its sensitivity and fast generation of large amounts of 

data, requiring minimal RNA relative to other techniques e.g. Northern 

Blotting. As microarray is not a ‘gold standard’ quantitative method, qRT-

PCR is extensively employed to validate its key findings with greater 

confidence (Klein 2002). Many of the significant changes observed by 

microarray in the previous chapter could not be subsequently validated by 

qRT-PCR. There are several possible reasons for this, one of which may be 

insufficient power in the replication study i.e. a greater number of 

experimental replicates may have been required to identify significant 

changes between the basal and treatment groups for a qRT-PCR study. 

Although power calculations may have helped to identify this problem in 

advance, this would have required prior knowledge of the true size of 

expression change (if any), which was the aim of the experiment itself. The 

decision to use the group size employed here was based on previous studies 

which had been able to identify significant changes in this cell type. Another 

possible reason for the disparity between microarray and qRT-PCR results 

involves the RNA samples used. Although subjected to the same 

experimental conditions, the RNA samples analysed for microarray were 

different to those used for qRT-PCR, and were sourced from a different 

batch of H295R cells. The use of different batches of cells, or carry-over of 

contaminating factors from RNA isolation (e.g phenol, alcohol, airborne 

contamination) can cause adverse effect to RNA analyses (Freeman, Walker 

et al. 1999). Moreover, it has been reported that different efficiencies of 

cDNA production via reverse transcriptase method can also affect findings 

between qRT-PCR and microarray experiments (Freeman, Walker et al. 

1999). On the other hand, qRT-PCR may also give rise to spurious results 

through the introduction of exponential amplification error (Freeman, 

Walker et al. 1999), mispriming and formation of primers dimers (Bustin 

2002). However, it should be noted that primer dimers were excluded from 
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any realtime qRT-PCR analysis in the present study and good laboratory 

method aimed to reduce and, where possible, identify other errors through 

the use of control reactions, etc.  

6.10 Conclusions 

The microarray data presented in this chapter provide the first analysis of 

miRNA profiles in H295R cells following 3 types of stimulation (Angio II, 

dbcAMP and KCl). This revealed two main clusters, miR-17/19b and miR-

106a/20b, to be consistently downregulated during all 3 stimulations. Many 

previous studies have linked miR-17/19b with tumour formation but this is 

the first study relating this cluster to the adrenal cortex. Using IPA, it also 

presents evidence and possible mechanisms by which the two miRNAs might 

act in several relevant canonical pathways.  

Regardless of the reasons for inconsistent findings between the microarray 

and realtime qRT-PCR analyses (which are widely recognised and largely 

attributable to the semi-quantitative nature of microarray analysis), this 

study has validated certain key effects. This includes the fact that certain 

miRNAs are consistently altered across all 3 stimulations, and that one such 

miRNA inhibits the expression of LDLR, a gene relevant to steroidogenesis 

through its participation in cholesterol biosynthesis. The remaining 3 miRNAs 

showed no significant changes in quantity with the exception, of miR-125a-

5p, which responded to dbcAMP, as shown in the previous chapter. 
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7 General Discussion 
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Hypertension is the key risk factor for cardiovascular morbidity and mortality 

around the world. Abnormal levels of both systolic and diastolic blood pressure 

can cause adverse effects to heart, brain, kidney and other vital organs although 

most hypertensive cases are absent of symptoms. Despite the unknown aetiology 

of primary hypertension (PH), secondary hypertension offers a more definite 

causative root. Primary aldosteronism (PA) is the main cause of secondary 

hypertension (Scholl and Lifton 2013), with studies showing patients with PA 

have increased rates of cardiovascular events relative to PH patients of the same 

blood pressure (Milliez, Girerd et al. 2005). Approximately 15% of PA cases result 

from unilateral aldosterone producing adenoma (APA) (Ye, Mariniello et al. 

2007). Therefore, I conducted studies into APA and the mechanisms by which 

microRNA might regulate its pathology. This involved miRNA profiling of APA and 

normal adrenal tissue followed by bioinformatic prediction of possible effects, 

several of which were validated by in vitro experiment. A similar study was then 

conducted that examined changes to the miRNA profile of H295R adrenocortical 

cells following stimulation of aldosterone production. 

Microarray is a powerful tool for molecular study, capable of analysing 

expression of thousands of RNAs from multiple samples simultaneously. Many 

microarray studies have been implemented for cancer profiling (i.e. cancer vs 

non cancer), cancer stratification (i.e. carcinoma vs benign) or evaluation of 

tumour progression (i.e. early stage carcinoma vs late stage carcinoma) and 

assessment of tumour post-treatment (Giuseppe Russo 2003).  

In this study, total RNA samples from APA and NA were collected from formalin-

fixed paraffin-embedded (FFPE) and frozen tissue (Wood, M.MacKenzie et al. 

2011). Frozen tissue samples have been described as having better RNA and 

protein integrity compared to FFPE and many antibodies that work in frozen 

tissues do not respond well in FFPE (Giuseppe Russo 2003). Furthermore, utilising 

small specimen for microarray analysis has raised questions whether the sample 

truly represents the entire tumour’s gene expression. However, this technique 

can be improved by including multiple tissues punches for every sample in the 

microarray studies (Sallinen, Sallinen et al. 2000, Hoos, Urist et al. 2001). In my 

study, the adrenal and APA samples contain non-homogenous cell populations, 

therefore the miRNA detected in microarray studies are unlikely to represent 



241 
 
zone-specific expression. However, this can be improved by having zone-specific 

dissection and further qRT-PCR validation for the miRNA and mRNA expression. 

The quantitative limitations of microarray are well known, hence the need to 

validate significant changes in miRNA quantity by other methods, such as qRT-

PCR. It should be noted that several such changes identified by microarray did 

not emerge as significant when a more accurate quantitative method was used, 

so such findings should always be treated with caution. It may be that 

microarray has now been overtaken as the prime method for such analysis by 

RNA sequencing (RNAseq), which has the advantage of being more truly 

quantitative and of being able to identify novel transcripts, unlike microarray 

which is limited to known molecules represented on the chip. As the previously 

prohibitive costs of RNAseq continue to fall, it will probably become the main 

method employed for such studies. 

In spite of its limitations, in this study microarray was able to identify several 

significant changes in miRNA levels that were verified by qRT-PCR validation. It 

is also striking that certain changes in miRNA levels between APA and NA were 

also apparent in H295R cells following stimulation of aldosterone secretion 

(Figure 7-1). This may point to common mechanisms between the pathology of 

APA, with its raised aldosterone secretion, and the normal physiology of 

aldosterone regulation. It also points to a regulatory role for microRNAs in these 

mechanisms. In light of these findings, it seemed logical to investigate plausible 

targets of these dysregulated miRNAs that could be relevant to aldosterone 

biosynthesis and/or APA pathology. 
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Normal Adrenal vs
Aldosterone Producing Adenoma
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BasaI vs Angio II (H295R)
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Basal vs dbcAMP (H295R)
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Basal vs KCl (H295R)
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Figure 7-1: Consistent miRNA expression in adrenal tissues; NA vs APA (A) and in H295R 
cell line; basal vs Angio II (B), basal vs dbcAMP (C) and basal vs KCl (D). 
The dotted line indicates the detection cut-off point of 500 AU (n=4 in adrenal tissues and n=3 in 
each group of stimulation of H295R cell line). *miRNAs > 500 AU in NA or APA; †miRNAs present 
in both tissues/ both basal and stimulated cells (p<0.05). 

Within the evolving field of miRNA research, which depends on various 

quantitative techniques and predictive tools for target identification, a strong 

and reliable apparatus is needed to identify the most relevant biological target 

and pathways. Ingenuity Pathway Analysis supports such research by providing 

several tools e.g. miRNA Target Filter, which prioritises relevant miRNAs and 

mRNA targets. Furthermore, IPA is able to identify significant network and 

canonical pathways associated with the differentially expressed miRNA and 

targeted mRNA (Jiménez-Marín, Collado-Romero et al. 2009). IPA uses a 

manually curated non-public bibliographic database, which confers the ability to 

classify genes implicated in specific functions or diseases. For example, in this 

A B 

C D 
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study, it linked differentially-expressed miRNAs in stimulated H295R cells to the 

LDLR and HMGCR genes involved in cholesterol regulation. However, a downside 

of IPA is its bias towards cardiovascular and cancer mechanisms and pathways 

relative to other areas, such as endocrine disorders; this is a reflection of the 

overall bias in the research literature. Its manually-curated method for journal 

selection also limits its ability to deliver truly up to date findings, with an 

inevitable lag between publication of findings and its inclusion in the IPA 

database. For these reasons, IPA must be used with caution and a great deal of 

effort must be taken by the user to ensure that findings are properly filtered, 

are of physiological relevance and have a better than random level of actually 

occurring in a biological system. Nevertheless, IPA has provided several 

interesting findings for further study, in addition to the more obvious pathways.  

Clearly, the most obvious initial place to examine the impact of miRNAs in APA is 

the steroidogenic pathway. The CYP11B2 gene, encoding aldosterone synthase, 

is at the endpoint of this pathway. miR-125a-5p is upregulated in NA compared 

to APA and it is hypothesised that miR-125a-5p inhibits expression of CYP11B2, 

according to IPA. This finding is further supported by downregulation of CYP11B2 

following transfection of H295R cells with miR-125a-5p precursor mimic. 

Moreover, in a previous pEZX-reporter plasmid study, miR-125a-5p repressed 

CYP11B2 by directly targeting the 3’UTR (Stacy Wood 2011), providing the first 

direct evidence that miRNA may have a significant role in aldosterone 

biosynthesis. 

Using IPA to identify other pathways, cholesterol handling emerged as one of the 

key systems likely to be regulated at various points and by several of the 

differentially-expressed miRNAs. A high level of LDL is an established risk factor 

for atherosclerosis, the underlying aetiology of cerebrovascular disease and 

coronary heart syndrome. Statins are the most effective drugs in reducing 

circulating LDL, decreasing risk of stroke and cardiac events (Grundy 1998) by 

inhibiting HMGCR, the rate-limiting enzyme in production of cholesterol. This 

decreases intracellular sterol levels and reduces transport of the SCAP-SREB 

complex from endoplasmic reticulum (ER) to Golgi. Subsequently, it increases 

LDLR expression, transporting circulating LDL into cells (hepatocytes) and 

thereby downregulating blood LDL levels.  One study characterized a new class 
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of compound that reduces cholesterol level in vivo by upregulating LDLR through 

direct action on the SCAP-SREB complex in a hamster model (Grand-Perret, 

Bouillot et al. 2001). The compound reduced LDL and triglycerides by up to 80% 

and increased LDLR mRNA in the liver. From the perspective of the current 

study, it is interesting to note the interplay of LDLR and HMGCR expression in 

determining circulating cholesterol levels. 

If cholesterol levels can be regulated in this way, does this necessarily translate 

into significant changes in steroid biosynthesis? It has been assumed for many 

years that cholesterol supply was unimportant in determining steroid secretion 

as the rate-limiting stages of the process occurred further down the chain, 

either with the supply of cholesterol by StAR, or with the catalytic turnover of 

such enzymes as aldosterone synthase. Now, however, a different story is 

emerging. Baudrand et al recently reported that the HMGCR blockers statins 

effectively reduce aldosterone levels in hypertensive and diabetic subjects; 

interestingly, no similar cortisol suppression was observed (Baudrand, Pojoga et 

al. 2015). This finding is supported by a previous study showing that simvastatin 

treatment in hyperlipidaemic postmenopausal women also results in significant 

plasma aldosterone suppression but no changes in cortisol (Ide, Fujiya et al. 

1990). Furthermore, Dahl rats fed with a high salt diet and treated with 

simvastatin showed significant suppression of aldosterone (Bayorh, Ganafa et al. 

2005). A placebo-control study has also been conducted on men with 

hypercholesterolemia, with one group being treated with a high dose of 

simvastatin (80 mg). After 12 weeks, no changes in cortisol were observed in 

treated patients (Dobs, Schrott et al. 2000). Therefore, these studies appear to 

support the idea that changes in the handling and supply of cholesterol – through 

a pathway involving HMGCR – can result in significant effects on aldosterone 

secretion. 

If miRNAs are significant regulators of cholesterol, could their clinical actions be 

countered directly in vivo? Results from clinical trials of miRNA-related therapies 

suggest this is a possibility. miR-122 antagonist (Miravirsen) was introduced for 

phase II clinical trial in hepatitis C patients in an attempt to counter the 

properties of miR-122, which binds the HCV genome and protects it from 

degradation. Miravirsen act as specific miR-122 blocker and was shown to 
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effectively reduce HCV replication in vivo (Lanford, Hildebrandt-Eriksen et al. 

2010, Janssen, Reesink et al. 2013). Another clinical trial involved miRNA-

related treatment of liver carcinoma (Christoph 2013). MRX-34, a miR-34a mimic 

has a tumour suppressor function, increasing G1 cell cycle arrest and 

participating in the p53 tumour suppressor pathway. Such studies suggest 

miRNAs could have a promising therapeutic future.  

Future studies should explore the miRNA-mediated effects identified here, in 

order to verify that these result in actual changes to the proteins themselves, 

and to confirm their mechanism and physiological impact. It would also be 

valuable to repeat the H295R studies (possibly using the now-cheaper RNAseq 

rather than microarray), but this time simultaneously measuring mRNA levels as 

well as miRNA. This direct comparison of miRNA and mRNA in the same samples 

would be far more powerful than simply analysing miRNA alone, and would allow 

much more powerful analytical functions of the IPA software to be used.  

To conclude, in this thesis I have presented several novel findings demonstrating 

differential expression of certain adrenocortical miRNAs in physiological and 

pathophysiological conditions. Furthermore, with the aid of bioinformatic 

prediction and in vitro validation, I have shown that certain of these miRNAs 

have direct regulatory effects on key genes relevant to these systems, including 

CYP11B2 and HMGCR. Key miRNAs are significantly downregulated in APA tissues. 

It is hypothesized that reduced levels of these miRNAs may ‘de-repress’ 

expression of HMGCR, resulting in increased cholesterol synthesis which, in turn, 

would feed through into increased steroidogenesis.  

So, while these findings add to the small but growing body of evidence that 

miRNAs have a significant regulatory effect on corticosteroidogenesis through 

direct targeting of steroidogenic mRNAs, the influence of these miRNAs on 

availability of cholesterol – the vital substrate for all steroid production – is also 

apparent. Given that cholesterol supply is emerging as an important regulatory 

factor in corticosteroidogenesis, it may be that this study has uncovered a key 

mechanism that could be exploited in order to treat the consequences of 

dysregulated corticosteroid production.
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Table 8-1: Highly expressed miRNAs in NA (mir-10a to miR-195). 
Based on miRBase Database Release 21: June 2014. 

microRNA 
(previous ID) 

microRNA 
(latest ID) 

Sequence Chromosome 
Location 

Cluster Other microRNA 
within cluster 

Start Co-
ordinates 

End Co-
ordinates 

hsa-mir-10a hsa-miR-10a-
5p 

UACCCUGUAGAUCCGAAUUUGUG 17 No  48579838 48579947 

hsa-miR-
125a 

hsa-miR-125a-
5p 

UCCCUGAGACCCUUUAACCUGUGA 19 Yes hsa-miR-125a 51693254 51693339 

     hsa-let-7e 51692786 51692864 
     hsa-miR-99b 51692612 51692681 
hsa-miR-126 hsa-miR-126-

3p 
UCGUACCGUGAGUAAUAAUGCG 9 No - 136670602 136670686 

hsa-miR-139 hsa-miR-139-
5p 

UCUACAGUGCACGUGUCUCCAGU 11 No  72615063 72615130 

hsa-miR-
148a 

hsa-miR-148a-
3p 

UCAGUGCACUACAGAACUUUGU 7 No - 25949919 25949986 

hsa-miR-15a hsa-miR-15a-
5p 

UAGCAGCACAUAAUGGUUUGUG 13 Yes hsa-miR-15a 50049119 50049201 

     hsa-mir-16-1 50048973 50049061 
hsa-miR-195 hsa-miR-195-

5p 
UAGCAGCACAGAAAUAUUGGC 17 Yes hsa-miR-195 7017615 7017701 

     hsa-mir-497 7017911 7018022 
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Table 8-2: Highly expressed miRNAs in NA (mir-202* to miR-29c). 
Based on miRBase Database Release 21: June 2014. 

microRNA 
(previous ID) 

microRNA 
(latest ID) 

Sequence Chromosome 
Location 

Cluster Other microRNA within 
cluster 

Start Co-ordinates End Co-
ordinates 

hsa-miR-202* hsa-miR-202-5p UUCCUAUGCAUAUACUUCUUUG 10 No - 133247511 133247620 
hsa-miR-21 hsa-miR-21-5p UAGCUUAUCAGACUGAUGUUGA 17 No - 59841266 59841337 
hsa-miR-24 hsa-miR-24-3p UGGCUCAGUUCAGCAGGAACAG 19 Yes hsa-mir-24-2 loop 13836287 13836359 
     hsa-mir-23a 13836587 13836659 
     hsa-mir-27a 13836440 13836517 
   9 Yes hsa-mir-24-1 loop 95086021 95086088 
     hsa-mir-23b 95085208 95085304 
     hsa-mir-27b 95085445 95085541 
     hsa-mir-3074 95086014 95086094 
hsa-miR-26b hsa-miR-26b-5p UUCAAGUAAUUCAGGAUAGGU 2 No - 218402646 218402722 
hsa-miR-27a hsa-miR-27a-3p UUCACAGUGGCUAAGUUCCGC 19 Yes hsa-miR-27a 13836440 13836517 
     hsa-mir-23a 13836587 13836659 
     hsa-mir-24-2 13836287 13836359 
hsa-miR-27b hsa-miR-27b-3p UUCACAGUGGCUAAGUUCUGC 9 Yes hsa-miR-27b 95085445 95085541 
     hsa-mir-23b 95085208 95085304 
     hsa-mir-24-1 95086021 95086088 
     hsa-mir-3074 95086014 95086094 
hsa-miR-29a hsa-miR-29a-3p UAGCACCAUCUGAAAUCGGUUA 7 Yes hsa-miR-29a 130876747 130876810 
     hsa-mir-29b-1 130877459 130877539 
hsa-miR-29b hsa-miR-29b-3p UAGCACCAUUUGAAAUCAGUGUU 7 Yes hsa-mir-29b-1 loop 130877459 130877539 
     hsa-mir-29a 130876747 130876810 
   1 Yes hsa-mir-29b-2 loop 207802443 207802523 
     hsa-mir-29c 207801852 207801939 
hsa-miR-29c hsa-miR-29c-3p UAGCACCAUUUGAAAUCGGUUA 1 Yes hsa-miR-29c 207801852 207801939 
     hsa-mir-29b-2 207802443 207802523 
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Table 8-3: Highly expressed miRNAs in NA (mir-30a to miR-376c).  
Based on miRBase Database Release 21: June 2014. 

microRNA 
(previous ID) 

microRNA 
(latest ID) 

Sequence Chromosome 
Location 

Cluster Other microRNA within 
cluster 

Start Co-ordinates End Co-
ordinates 

hsa-miR-30a hsa-miR-30a-5p UGUAAACAUCCUCGACUGGAAG 6 No - 71403551 71403621 
hsa-miR-30b hsa-miR-30b-5p UGUAAACAUCCUACACUCAGCU 8 Yes hsa-miR-30b 134800520 134800607 
     hsa-miR-30d 134804876 134804945 
hsa-miR-30c hsa-miR-30c-5p UGUAAACAUCCUACACUCUCAGC 6 No hsa-mir-30c-2 loop 71376960 71377031 
   1 Yes hsa-mir-30c-1 loop 40757284 40757372 
     hsa-mir-30e 40754355 40754446 
hsa-miR-335 hsa-miR-335-5p UCAAGAGCAAUAACGAAAAAUGU 7 No - 130496111 130496204 
hsa-mir-376c hsa-miR-376c-3p AACAUAGAGGAAAUUCCACGU 14 Yes hsa-mir-376c 101039690 101039755 
     hsa-mir-1193 101030052- 101030129 
     hsa-mir-1185-1 101042977 101043062 
     hsa-mir-1185-2 101044198 101044283 
     hsa-mir-300 101041363 101041445 
     hsa-mir-376a-1 101040782 101040849 
     hsa-mir-376a-2 101040069 101040148 
     hsa-mir-376b 101040436- 101040535 
     hsa-mir-381 101045920 101045994 
     hsa-mir-487b 101046455 101046538 
     hsa-mir-495 101033755 101033836 
     hsa-mir-539 101047321 101047398 
     hsa-mir-543 101031987 101032064 
     hsa-mir-544a 101048658 101048748 
     hsa-mir-654 101040219- 101040299 
     hsa-mir-655 101049550 101049646 
     hsa-mir-889 101047901 101047979 
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Table 8-4: Highly expressed miRNAs in NA (mir-376 to miR-424).  
Based on miRBase Database Release 21: June 2014. 

microRNA 
(previous ID) 

microRNA 
(latest ID) 

Sequence Chromosome 
Location 

Cluster Other microRNA 
within cluster 

Start Co-
ordinates 

End Co-
ordinates 

hsa-miR-379 hsa-miR-379-5p UGGUAGACUAUGGAACGUAGG 14 Yes hsa-miR-379 101022066 101022132 
     hsa-mir-1193 101030052 101030129 
     hsa-mir-1197 101025564 101025651 
     hsa-mir-299 101023794 101023856 
     hsa-mir-323a 101025732 101025817 
     hsa-mir-329-1 101026785 101026864 
     hsa-mir-329-2 101027100 101027183 
     hsa-mir-380 101025017 101025077 
     hsa-mir-411 101023325 101023420 
     hsa-mir-494 101029634 101029714 
     hsa-mir-543 101031987 101032064 
     hsa-mir-758 101026020 101026107 
hsa-miR-424 hsa-miR-424-5p CAGCAGCAAUUCAUGUUUUGAA X Yes hsa-miR-424 134546614 134546711 
     hsa-mir-450a-1 134540341 134540431 
     hsa-mir-450a-2 134540508 134540607 

     hsa-mir-450b 134540185 134540262 

     hsa-mir-503 134546328 134546398 

     hsa-mir-542 134541341 134541437 
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Table 8-5: Highly expressed miRNAs in APA (let-7a to let-7d).  
Based on miRBase Database Release 21: June 2014. 

microRNA 
(previous ID) 

microRNA 
(latest ID) 

Sequence Chromosome 
Location 

Cluster Other microRNA 
within cluster 

Start Co-ordinates End Co-
ordinates 

hsa-let-7a hsa-let-7a-5p UGAGGUAGUAGGUUGUAUAGUU 9 Yes hsa-let-7a-1 loop 94175957 94176036 
     hsa-let-7d 94178834 94178920 
     hsa-let-7f-1 94176347 94176433 
   11 Yes hsa-let-7a-2 loop 122146522 122146593 
     hsa-mir-100 122152229 122152308 
   22 Yes hsa-let-7a-3 loop 46112749 46112822 
     hsa-let-7b 46113686 46113768 
     hsa-mir-4763 46113566 46113657 
hsa-let-7b hsa-let-7b-5p UGAGGUAGUAGGUUGUGUGGUU 22 Yes hsa-let-7b 46113686 46113768 
     hsa-let-7a-3 46112749 46112822 
     hsa-mir-4763 46113566 46113657 
hsa-let-7c hsa-let-7c UGAGGUAGUAGGUUGUAUGGUU 21 Yes  16539828- 16539911 
     hsa-mir-99a 16539089- 16539169 
hsa-let-7d hsa-let-7d-5p AGAGGUAGUAGGUUGCAUAGUU 9 Yes  94178834 94178920 
     hsa-let-7a-1 94175957 94176036 
     hsa-let-7f-1 94176347 94176433 

 
  

http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000060
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000067
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Table 8-6: Highly expressed miRNAs in APA (miR-103 to miR-149*). 
Based on miRBase Database Release 21: June 2014. 

microRNA 
(previous ID) 

microRNA 
(latest ID) 

Sequence Chromosome 
Location 

Cluster Other microRNA within 
cluster 

Start Co-ordinates End Co-ordinates 

hsa-miR-103 hsa-miR-103a-3p AGCAGCAUUGUACAGGGCUAUGA 20 Yes hsa-mir-103a-2 loop 3917494 3917571 
     hsa-mir-103b-2 3917502 3917563 
   5 Yes hsa-mir-103a-1 loop 168560896 168560973 
     hsa-mir-103b-1 168560904 168560965 
hsa-miR-107 hsa-miR-107 AGCAGCAUUGUACAGGGCUAUCA 10 No - 89592747 89592827 
hsa-miR-122 hsa-miR-122-5p UGGAGUGUGACAAUGGUGUUUG 18 Yes hsa-miR-122 58451074 58451158 
     hsa-mir-3591 58451080- 58451152 
hsa-miR-134 hsa-miR-134-5p UGUGACUGGUUGACCAGAGGGG 14 Yes hsa-miR-134 101054687 101054759 
     hsa-mir-154 101059755 101059838 
     hsa-mir-323b 101056219 101056300 
     hsa-mir-377 101062050 101062118 
     hsa-mir-381 101045920 101045994 
     hsa-mir-382 101054306 101054381 
     hsa-mir-485 101055419 101055491 
     hsa-mir-487a 101052446 101052525 
     hsa-mir-487b 101046455 101046538 
     hsa-mir-496 101060573- 101060674 
     hsa-mir-539 101047321 101047398 
     hsa-mir-541 101064495 101064578 
     hsa-mir-544a 101048658 101048748 
     hsa-mir-655 101049550 101049646 
     hsa-mir-668 101055258 101055323 
     hsa-mir-889 101047901 101047979 
hsa-miR-140 hsa-miR-140-3p UACCACAGGGUAGAACCACGG 16 No  69933081 69933180 
hsa-miR-149* hsa-miR-149-3p AGGGAGGGACGGGGGCUGUGC 2 No  240456001 240456089 

http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0007262
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Table 8-7: Highly expressed miRNAs in APA (miR-320a to miR-382). 
Based on miRBase Database Release 21: June 2014. 

microRNA 
(previous ID) 

microRNA 
(latest ID) 

Sequence Chromosome 
Location 

Cluster Other microRNA 
within cluster 

Start Co-ordinates End Co-
ordinates 

hsa-miR-320 hsa-miR-320a AAAAGCUGGGUUGAGAGGGCGA 8 No  22244962 22245043 
hsa-miR-34a hsa-miR-34a-5p UGGCAGUGUCUUAGCUGGUUGU 1 No  9151668 9151777 
hsa-miR-34c-3p hsa-miR-34c-3p AAUCACUAACCACACGGCCAGG 11 Yes hsa-miR-34c-3p 111513439 111513515 
     hsa-mir-34b 111512938 111513021 
hsa-miR-361 hsa-miR-361-5p UUAUCAGAAUCUCCAGGGGUAC X No  85903636 85903707 
hsa-miR-375 hsa-mir-375 UUUGUUCGUUCGGCUCGCGUGA 2 No  219001645 219001708 
hsa-miR-382 hsa-miR-382-5p GAAGUUGUUCGUGGUGGAUUCG 14 Yes hsa-miR-382 101054306- 101054381 
     hsa-miR-134 101054687 101054759 
     hsa-mir-154 101059755 101059838 
     hsa-mir-323b 101056219 101056300 
     hsa-mir-377 101062050 101062118 
     hsa-mir-381 101045920 101045994 
     hsa-mir-382 101054306 101054381 
     hsa-mir-485 101055419 101055491 
     hsa-mir-487a 101052446 101052525 
     hsa-mir-487b 101046455 101046538 
     hsa-mir-496 101060573- 101060674 
     hsa-mir-539 101047321 101047398 
     hsa-mir-544a 101048658 101048748 
     hsa-mir-655 101049550 101049646 
     hsa-mir-668 101055258 101055323 
     hsa-mir-889 101047901 101047979 

 
  

http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000742
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Table 8-8: Highly expressed miRNAs in APA (miR-432 to miR-483-5p). 
Based on miRBase Database Release 21: June 2014. 

microRNA 
(previous ID) 

microRNA 
(latest ID) 

Sequence Chromosome 
Location 

Cluster Other microRNA 
within cluster 

Start Co-
ordinates 

End Co-
ordinates 

hsa-miR-432  UCUUGGAGUAGGUCAUUGGGU
GG 

14 Yes hsa-miR-432 
100884483 

100884576 

     hsa-mir-337 100874493 100874585 
     hsa-mir-665 100875033 100875104 
     hsa-mir-431 100881007 100881120 
     hsa-mir-433 100881886 100881978 
     hsa-mir-127 100882979 100883075 
     hsa-mir-136 100884702 100884783 
hsa-miR-451 hsa-miR-451a AAACCGUUACCAUUACUGAGUU 17 Yes hsa-miR-451 28861369 28861440 
     hsa-mir-144 28861533 28861618 
     hsa-mir-451b 28861371 28861438 
     hsa-mir-4732 28861655 28861730 
hsa-miR-483-
5p 

hsa-miR-483-5p AAGACGGGAGGAAAGAAGGGA
G 

11 No  2134134 2134209 

 
  

http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000806
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0005563
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0001721
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0001723
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000472
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000475
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Table 8-9: Highly expressed miRNAs in APA (miR-509 to miR-574-5p). 
Based on miRBase Database Release 21: June 2014. 

microRNA 
(previous ID) 

microRNA 
(latest ID) 

Sequence Chromosome 
Location 

Cluster Other microRNA 
within cluster 

Start Co-ordinates End Co-
ordinates 

hsa-miR-509 hsa-miR-509-
3p 

UGAUUGGUACGUCUGUGGGUAG X Yes hsa-miR-509-1 
loop 

147260532 
147260625 

     hsa-mir-509-2 147258760 147258850 
     hsa-mir-509-3 147259652- 147259726 
     hsa-mir-509-2 

loop 
147258760 147258850 

     hsa-miR-509-1  147260532 147260625 
     hsa-mir-509-3 147259652- 147259726 
     hsa-mir-514b 147250151- 147250230 
     hsa-mir-509-3 

loop 
147259652- 147259726 

     hsa-miR-509-1  147260532 147260625 
     hsa-mir-509-2 147258760 147258850 
     hsa-mir-514b 147250151- 147250230 
hsa-miR-574 hsa-miR-574-

3p 
CACGCUCAUGCACACACCCACA 4 No  38868032 38868127 

hsa-miR-574-
5p 

hsa-miR-574-
5p 

UGAGUGUGUGUGUGUGAGUGU
GU 

4 No  38868032 38868127 
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Table 8-10: Highly expressed miRNAs in APA (miR-92a to miR-92b).  
Based on miRBase Database Release 21: June 2014. 

microRNA 
(previous ID) 

microRNA 
(latest ID) 

Sequence Chromosome 
Location 

Cluster Other microRNA 
within cluster 

Start Co-
ordinates 

End Co-
ordinates 

hsa-miR-92a hsa-miR-92a-
3p 

UAUUGCACUUGUCCCGGCCUGU 13 Yes hsa-mir-92a-1 
loop 

91351314 91351391 

     hsa-mir-17 91350605 91350688 
     hsa-mir-18a 91350751 91350821 
     hsa-mir-19a 91350891 91350972 
     hsa-mir-20a 91351065 91351135 
     hsa-mir-19b-1 91351192 91351278 
   X Yes hsa-mir-92a-2 

loop 
134169538 134169612 

     hsa-mir-106a 134170198 134170278 
     hsa-mir-18b 134170041 134170111 
     hsa-mir-19b-2 134169671 134169766 
     hsa-mir-20b 134169809 134169877 
     hsa-mir-363 134169378 134169452 
hsa-miR-92b hsa-miR-92b-

3p 
UAUUGCACUCGUCCCGGCCUCC 1 No  155195177 155195272 
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Table 8-11: miRNAs that are differentially expressed in Angio II-stimulated cells (>500 AU).  
Synonym means the miRNAs have similar seed sequence and share similar mRNA targets according to IPA analysis. Bold and underlined sequences are the seed 
sequence of the miRNA. 

miRNA (miRBase Acession) Synonym miRNAs/ Overlapped miRNAs 

(IPA) 

 Sequence Chromosome Number of targeted mRNA 

hsa-miR-106a-5p hsa-miR-17-5p, hsa-miR-20a-5p,  

hsa-miR-20b-5p 

AAAAGUGCUUACAGUGCAGGUAG x 1418 

hsa-miR-1185-1-3p - - - No match miRNA in IPA 

hsa-miR-126-3p hsa-miR-126-3p UCGUACCGUGAGUAAUAAUGCG 9 111 

hsa-miR-1275 - GUGGGGGAGAGGCUGUC 6 1870 

hsa-miR-140-5p - CAGUGGUUUUACCCUAUGGUAG 16 751 

hsa-miR-154-3p - AAUCAUACACGGUUGACCUAUU 14 309 

hsa-miR-17-5p hsa-miR-106a-5p, hsa-miR-20a-5p, hsa-

miR-20b-5p 

CAAAGUGCUUACAGUGCAGGUAG 13 1418 

hsa-miR-196b-5p hsa-miR-196a-5p UAGGUAGUUUCCUGUUGUUGGG 7 628 

hsa-miR-19a-3p hsa-miR-19b-3p UGUGCAAAUCUAUGCAAAACUGA 13 1448 

hsa-miR-20a-3p - - - Not included in IPA Target Filter analysis 

hsa-miR-20a-5p hsa-miR-17-5p, hsa-miR-106a-5p, hsa-

miR-20b-5p 

UAAAGUGCUUAUAGUGCAGGUAG 13 1418 

hsa-miR-20b-5p hsa-miR-17-5p, hsa-miR-106a-5p, hsa-

miR-20a-5p 

CAAAGUGCUCAUAGUGCAGGUAG X 1418 

hsa-miR-218-1-3p - - - Not included in IPA Target Filter analysis 

hsa-miR-222-3p hsa-miR-221-3p AGCUACAUCUGGCUACUGGGU X 807 

hsa-miR-345-5p - GCUGACUCCUAGUCCAGGGCUC 14 476 

hsa-miR-3613-5p - UGUUGUACUUUUUUUUUUGUUC 13 263 

hsa-miR-376a-5p - GUAGAUUCUCCUUCUAUGAGUA 14 3 

hsa-miR-4323 - CAGCCCCACAGCCUCAGA 19 1272 
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Table 8-12: miRNAs that are differentially expressed in Angio II-stimulated cells (>500 AU).  
Synonym means the miRNAs have similar seed sequence and share similar mRNA targets according to IPA analysis. Bold and underlined sequences are the seed 
sequence of the miRNA. 
miRNA (miRBase Acession) Synonym miRNAs/ 

Overlapped 

miRNAs (IPA) 

 Sequence Chromosome Number of targeted mRNA 

hsa-miR-4741 hsa-miR-4675 CGGGCUGUCCGGAGGGGUCGGCU 18 1188 

hsa-miR-4743-5p - UGGCCGGAUGGGACAGGAGGCAU 18 699 

hsa-miR-488-3p - UUGAAAGGCUAUUUCUUGGUC 1 735 

hsa-miR-493-5p - - - Not included in IPA Target Filter analysis 

hsa-miR-5100 - - - Not included in IPA Target Filter analysis 

hsa-miR-5190 - - - Not included in IPA Target Filter analysis 

hsa-miR-539-3p hsa-miR-485-3p AUCAUACAAGGACAAUUUCUUU 14 557 

hsa-miR-548v - AGCUACAGUUACUUUUGCACCA 8 627 

hsa-miR-568 - AUGUAUAAAUGUAUACACAC 3 319 

hsa-miR-574-5p - UGAGUGUGUGUGUGUGAGUGUGU 4 564 

hsa-miR-647 - GUGGCUGCACUCACUUCCUUC 20 1034 

hsa-miR-7-5p hsa-miR-7a-5p UGGAAGACUAGUGAUUUUGUUGU  

(from precursor: hsa-mir-7-1) 

UGGAAGACUAGUGAUUUUGUUGU  

(from precursor: hsa-mir-7-2)  

UGGAAGACUAGUGAUUUUGUUGU  

(from precursor: hsa-mir-7-3) 

9 

 

15 

 

19 

916 

hsa-miR-766-3p - ACUCCAGCCCCACAGCCUCAGC X 1096 

hsa-miR-937-5p - - - Not included in IPA Target Filter analysis 
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Table 8-13: miRNAs that are differentially expressed in dbcAMP-stimulated cells (>500 AU).  
Synonym means the miRNAs have similar seed sequence and share similar mRNA targets according to IPA analysis. Bold and underlined sequences are the seed 
sequence of the miRNA. 

miRNA (miRBase Acession) Synonym miRNAs/ Overlapped miRNAs 

(IPA) 

 Sequence Chromosome Number of targeted mRNA 

hsa-miR-100-5p hsa-miR-99a-5p AACCCGUAGAUCCGAACUUGUG 11 193 

hsa-miR-106a-5p hsa-miR-17-5p, hsa-miR-106b-5p, hsa-

miR-20a-5p, hsa-miR-20b-5p 

hsa-miR-93-5p 

AAAAGUGCUUACAGUGCAGGUAG X 1418 

hsa-miR-106b-5p hsa-miR-17-5p, hsa-miR-106a-5p, hsa-

miR-20a-5p, hsa-miR-20b-5p 

hsa-miR-93-5p 

UAAAGUGCUGACAGUGCAGAU 7 1418 

hsa-miR-107 hsa-miR-103a-3p AGCAGCAUUGUACAGGGCUAUCA 10 1255 

hsa-miR-1185-1-3p - - - Not included in IPA Target Filter analysis 

hsa-miR-1224-5p - GUGAGGACUCGGGAGGUGG 3 593 

hsa-miR-125a-5p hsa-miR-125b-5p UCCCUGAGACCCUUUAACCUGUGA 19 1530 

hsa-miR-125b-5p hsa-miR-125a-5p UCCCUGAGACCCUAACUUGUGA (from 

precursor: hsa-mir-125b-1) 

UCCCUGAGACCCUAACUUGUGA (from 

precursor: hsa-mir-125b-2) 

11 

 

21 

1530 

hsa-miR-126-3p hsa-miR-126a-3p UCGUACCGUGAGUAAUAAUGCG 9 111 

hsa-miR-1275 - GUGGGGGAGAGGCUGUC 6 1870 

hsa-miR-132-3p - UAACAGUCUACAGCCAUGGUCG 17 767 

hsa-miR-136-3p - - - Not included in IPA Target Filter analysis 

hsa-miR-140-5p - CAGUGGUUUUACCCUAUGGUAG 16 751 

hsa-miR-145-5p - GUCCAGUUUUCCCAGGAAUCCCU 5 1228 

hsa-miR-146b-5p hsa-miR-146a-5p UGAGAACUGAAUUCCAUAGGCU 10 650 

hsa-miR-15a-5p hsa-miR-16-5p UAGCAGCACAUAAUGGUUUGUG 13 2020 
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Table 8-14: miRNAs that are differentially expressed in dbcAMP-stimulated cells (>500 AU).  
Synonym means the miRNAs have similar seed sequence and share similar mRNA targets according to IPA analysis. Bold and underlined sequences are the seed 
sequence of the miRNA. 

miRNA (miRBase Acession) Synonym miRNAs/ Overlapped miRNAs 

(IPA) 

 Sequence Chromosome Number of targeted mRNA 

hsa-miR-154-3p hsa-miR-487a-3p AAUCAUACACGGUUGACCUAUU 14 309 

hsa-miR-16-2-3p - - - Not included in IPA Target Filter analysis 

hsa-miR-17-5p hsa-miR-106a-5p, hsa-miR-106b-5p, hsa-

miR-20a-5p, hsa-miR-20b-5p 

hsa-miR-93-5p 

CAAAGUGCUUACAGUGCAGGUAG 13 1418 

hsa-miR-181b-5p hsa-miR-181a-5p, hsa-miR-181c-5p AACAUUCAUUGCUGUCGGUGGGU 

(from precursor: hsa-mir-181b-1) 

AACAUUCAUUGCUGUCGGUGGGU 

(from precursor: hsa-mir-181b-2) 

1 

 

9 

1496 

hsa-miR-181c-5p hsa-miR-181a-5p, hsa-miR-181b-5p AACAUUCAACCUGUCGGUGAGU 19 1496 

hsa-miR-186-5p - CAAAGAAUUCUCCUUUUGGGCU 1 922 

hsa-miR-194-5p - UGUAACAGCAACUCCAUGUGGA (from 

precursor: hsa-mir-194-1) 

UGUAACAGCAACUCCAUGUGGA (from 

precursor: hsa-mir-194-2) 

1 

 

11 

709 

hsa-miR-196b-5p hsa-miR-196a-5p UAGGUAGUUUCCUGUUGUUGGG 7 628 

hsa-miR-197-5p - CGGGUAGAGAGGGCAGUGGGAGG 1 641 

hsa-miR-19a-3p hsa-miR-19b-3p UGUGCAAAUCUAUGCAAAACUGA 13 1448 

hsa-miR-19b-3p hsa-miR-19a-3p UGUGCAAAUCCAUGCAAAACUGA 

(from precursor: hsa-mir-19b-1) 

UGUGCAAAUCCAUGCAAAACUGA 

(from precursor: hsa-mir-19b-2) 

13 

 

X 

1448 
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Table 8-15: miRNAs that are differentially expressed in dbcAMP-stimulated cells (>500 AU).  
Synonym means the miRNAs have similar seed sequence and share similar mRNA targets according to IPA analysis. Bold and underlined sequences are the seed 
sequence of the miRNA. 
miRNA (miRBase Acession) Synonym miRNAs/ Overlapped 

miRNAs (IPA) 

 Sequence Chromosome Number of targeted mRNA 

hsa-miR-20a-5p hsa-miR-17-5p, hsa-miR-106a-5p, 

hsa-miR-106b-5p, hsa-miR-20b-5p 

hsa-miR-93-5p 

UAAAGUGCUUAUAGUGCAGGUAG 13 1418 

hsa-miR-20b-5p hsa-miR-17-5p, hsa-miR-106a-5p, 

hsa-miR-106b-5p, hsa-miR-20a-5p 

hsa-miR-93-5p 

CAAAGUGCUCAUAGUGCAGGUAG X 1418 

hsa-miR-21-5p - UAGCUUAUCAGACUGAUGUUGA 17 615 

hsa-miR-222-3p hsa-miR-221-3p AGCUACAUCUGGCUACUGGGU X 807 

hsa-miR-23a-3p hsa-miR-23b-3p, hsa-miR-23c-3p AUCACAUUGCCAGGGAUUUCC 19 807 

hsa-miR-23b-3p hsa-miR-23a-3p, hsa-miR-23c-3p AUCACAUUGCCAGGGAUUACC 9 807 

hsa-miR-23c hsa-miR-23a-3p, hsa-miR-23b-3p AUCACAUUGCCAGUGAUUACCC X 807 

hsa-miR-24-3p - UGGCUCAGUUCAGCAGGAACAG 

(from precursor: hsa-mir-24-1) 

UGGCUCAGUUCAGCAGGAACAG 

(from precursor: hsa-mir-24-2) 

9 

 

19 

1505 

hsa-miR-29a-3p hsa-miR-29b-3p, hsa-miR-29c-3p UAGCACCAUCUGAAAUCGGUUA 7 1492 

hsa-miR-29c-3p hsa-miR-29b-3p, hsa-miR-29a-3p UAGCACCAUUUGAAAUCGGUUA 1 1492 

hsa-miR-30a-5p hsa-miR-30c-5p, hsa-miR-30b-5p, 

hsa-miR-30e-5p 

UGUAAACAUCCUCGACUGGAAG 6 1592 

hsa-miR-30b-5p hsa-miR-30c-5p, hsa-miR-30a-5p, 

hsa-miR-30e-5p 

UGUAAACAUCCUACACUCAGCU 8 1592 
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Table 8-16: miRNAs that are differentially expressed in dbcAMP-stimulated cells (>500 AU).  
Synonym means the miRNAs have similar seed sequence and share similar mRNA targets according to IPA analysis. Bold and underlined sequences are the seed 
sequence of the miRNA. 

miRNA (miRBase Acession) Synonym miRNAs/ Overlapped miRNAs 

(IPA) 

 Sequence Chromosome Number of targeted mRNA 

hsa-miR-30c-5p hsa-miR-30a-5p, hsa-miR-30b-5p, hsa-

miR-30e-5p 

UGUAAACAUCCUACACUCUCAGC 

(from precursor: hsa-mir-30c-1) 

UGUAAACAUCCUACACUCUCAGC (from 

precursor: hsa-mir-30c-2) 

1 

 

6 

1592 

hsa-miR-30e-5p hsa-miR-30c-5p, hsa-miR-30a-5p, hsa-

miR-30b-5p 

UGUAAACAUCCUUGACUGGAAG 1 1592 

hsa-miR-329-3p - AACACACCUGGUUAACCUCUUU (from 

precursor: hsa-mir-329-1) 

AACACACCUGGUUAACCUCUUU (from 

precursor: hsa-mir-329-2) 

14 

 

14 

913 

hsa-miR-335-3p - - - Not included in IPA Target Filter analysis 

hsa-miR-337-3p - CUCCUAUAUGAUGCCUUUCUUC 14 373 

hsa-miR-337-5p - GAACGGCUUCAUACAGGAGUU 14 249 

hsa-miR-3613-5p - UGUUGUACUUUUUUUUUUGUUC 13 263 

hsa-miR-3620-5p hsa-miR-1587 GUGGGCUGGGCUGGGCUGGGCC 1 994 

hsa-miR-365a-3p - UAAUGCCCCUAAAAAUCCUUAU 16 715 

hsa-miR-369-5p - AGAUCGACCGUGUUAUAUUCGC 14 107 

hsa-miR-370-3p - GCCUGCUGGGGUGGAACCUGGU 14 1217 

hsa-miR-376a-5p - GUAGAUUCUCCUUCUAUGAGUA 14 3 

hsa-miR-376b-3p hsa-miR-376a-3p AUCAUAGAGGAAAAUCCAUGUU 14 581 

hsa-miR-376b-5p - - - Not included in IPA Target Filter analysis 

hsa-miR-376c-3p - AACAUAGAGGAAAUUCCACGU 14 667 
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Table 8-17: miRNAs that are differentially expressed in dbcAMP-stimulated cells (>500 AU).  
Synonym means the miRNAs have similar seed sequence and share similar mRNA targets according to IPA analysis. Bold and underlined sequences are the seed 
sequence of the miRNA. 

miRNA (miRBase Acession) Synonym miRNAs/ Overlapped miRNAs 

(IPA) 

 Sequence Chromosome Number of targeted mRNA 

hsa-miR-376c-5p hsa-miR-376b-5p - - Not included in IPA Target Filter analysis 

hsa-miR-377-3p - AUCACACAAAGGCAACUUUUGU 14 1227 

hsa-miR-409-3p - GAAUGUUGCUCGGUGAACCCCU 14 188 

hsa-miR-410-3p mmu-miR-344d-3p AAUAUAACACAGAUGGCCUGU 14 733 

hsa-miR-411-5p - UAGUAGACCGUAUAGCGUACG 14 337 

hsa-miR-424-3p - CAAAACGUGAGGCGCUGCUAU X 3 

hsa-miR-4270 - UCAGGGAGUCAGGGGAGGGC 3 1302 

hsa-miR-4284 - GGGCUCACAUCACCCCAU 7 1253 

hsa-miR-4286 - ACCCCACUCCUGGUACC 8 1195 

hsa-miR-4324 - CCCUGAGACCCUAACCUUAA 19 757 

hsa-miR-433-3p - AUCAUGAUGGGCUCCUCGGUGU 14 584 

hsa-miR-4444 - CUCGAGUUGGAAGAGGCG  

(from precursor: hsa-mir-4444-1) 

CUCGAGUUGGAAGAGGCG  

(from precursor: hsa-mir-4444-2) 

2 

 

3 

164 

hsa-miR-4454 - GGAUCCGAGUCACGGCACCA 4 111 

hsa-miR-454-3p hsa-miR-130a-3p UAGUGCAAUAUUGCUUAUAGGGU 17 1252 

hsa-miR-4727-5p mmu-miR-3084-3p UUCUGCCAGUCUCCUUCAGAC 17 948 

hsa-miR-4732-5p - UGUAGAGCAGGGAGCAGGAAGCU 17 322 

hsa-miR-4741 hsa-miR-4675 CGGGCUGUCCGGAGGGGUCGGCU 18 1188 

hsa-miR-4743-5p - UGGCCGGAUGGGACAGGAGGCAU 18 699 

hsa-miR-487a hsa-miR-154-3p AAUCAUACAGGGACAUCCAGUU 14 309 
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Table 8-18: miRNAs that are differentially expressed in dbcAMP-stimulated cells (>500 AU).  
Synonym means the miRNAs have similar seed sequence and share similar mRNA targets according to IPA analysis. Bold and underlined sequences are the seed 
sequence of the miRNA. 
miRNA (miRBase Acession) Synonym miRNAs/ Overlapped 

miRNAs (IPA) 

 Sequence Chromosome Number of targeted mRNA 

hsa-miR-488-3p - UUGAAAGGCUAUUUCUUGGUC 1 735 

hsa-miR-494 - UGAAACAUACACGGGAAACCUC 14 789 

hsa-miR-539-3p - - - Not included in IPA Target Filter analysis 

hsa-miR-542-3p - UGUGACAGAUUGAUAACUGAAA X 795 

hsa-miR-6076 - - - Not included in IPA Target Filter analysis 

hsa-miR-647 - GUGGCUGCACUCACUUCCUUC 20 1034 

hsa-miR-758-3p - UUUGUGACCUGGUCCACUAACC 14 542 

hsa-miR-766-3p - ACUCCAGCCCCACAGCCUCAGC X 1096 

hsa-miR-889 - UUAAUAUCGGACAACCAUUGU 14 140 

hsa-miR-93-5p hsa-miR-17-5p, hsa-miR-106a-5p, 

hsa-miR-106b-5p, hsa-miR-20a-5p 

hsa-miR-20b-5p 

CAAAGUGCUGUUCGUGCAGGUAG 7 1418 

hsa-miR-99a-5p hsa-miR-100-5p AACCCGUAGAUCCGAACUUGUG 21 193 
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Table 8-19: miRNAs that are differentially expressed in KCl-stimulated cells (>500 AU).  
Synonym means the miRNAs have similar seed sequence and share similar mRNA targets according to IPA analysis. Bold and underlined sequences are the seed 
sequence of the miRNA. 
miRNA (miRBase Acession) Synonym miRNAs/ Overlapped miRNAs (IPA)  Sequence Chromosome Number of targeted mRNA 

hsa-let-7g-5p hsa-let-7a-5p UGAGGUAGUAGUUUGUACAGUU 3 1396 

hsa-miR-100-5p hsa-miR-99a-5p AACCCGUAGAUCCGAACUUGUG 11 193 

hsa-miR-106a-5p hsa-miR-17-5p, hsa-miR-106b-5p, hsa-miR-20a-5p, 

hsa-miR-20b-5p, hsa-miR-93-5p 

AAAAGUGCUUACAGUGCAGGUAG X 1418 

hsa-miR-10b-5p hsa-miR-10a-5p UACCCUGUAGAACCGAAUUUGUG 2 780 

hsa-miR-125a-5p hsa-miR-125b-5p UCCCUGAGACCCUUUAACCUGUGA 19 1530 

hsa-miR-1271-5p hsa-miR-96-5p CUUGGCACCUAGCAAGCACUCA 5 1394 

hsa-miR-128-3p - UCACAGUGAACCGGUCUCUUU 

(from precursor: hsa-mir-128-1) 

UCACAGUGAACCGGUCUCUUU 

(from precursor: hsa-mir-128-2) 

2 

 

3 

1461 

hsa-miR-139-3p - - - Not included in IPA Target Filter analysis 

hsa-miR-15b-5p hsa-miR-16-5p UAGCAGCACAUAAUGGUUUGUG 13 2020 

hsa-miR-154-3p hsa-miR-487a-3p AAUCAUACACGGUUGACCUAUU 14 309 

hsa-miR-16-2-3p - - - Not included in IPA Target Filter analysis 

hsa-miR-17-5p hsa-miR-17-5p, hsa-miR-106b-5p, hsa-miR-20a-5p, 

hsa-miR-20b-5p, hsa-miR-93-5p 

CAAAGUGCUUACAGUGCAGGUAG 13 1418 

hsa-miR-186-5p - CAAAGAAUUCUCCUUUUGGGCU 1 922 

hsa-miR-195-5p hsa-miR-16-5p  17 2020 

hsa-miR-196b-5p hsa-miR-196a-5p UAGGUAGUUUCAUGUUGUUGGG 7 628 
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Table 8-20: miRNAs that are differentially expressed in KCl-stimulated cells (>500 AU).  
Synonym means the miRNAs have similar seed sequence and share similar mRNA targets according to IPA analysis. Bold and underlined sequences are the seed 
sequence of the miRNA. 

miRNA (miRBase Acession) Synonym miRNAs/ Overlapped miRNAs (IPA)  Sequence Chromosome Number of targeted mRNA 

hsa-miR-19a-3p hsa-miR-19b-3p UGUGCAAAUCUAUGCAAAACUGA 13 1448 

hsa-miR-19b-3p hsa-miR-19a-3p UGUGCAAAUCCAUGCAAAACUGA 

(from precursor: hsa-mir-19b-1) 

UGUGCAAAUCCAUGCAAAACUGA 

(from precursor: hsa-mir-19b-2) 

13 

 

X 

1448 

hsa-miR-20a-3p - - - Not included in IPA Target Filter analysis 

hsa-miR-20b-5p hsa-miR-17-5p, hsa-miR-106a-5p, hsa-miR-106b-5p, 

hsa-miR-20a-5p 

hsa-miR-93-5p 

CAAAGUGCUCAUAGUGCAGGUAG X 1418 

hsa-miR-21-5p - UAGCUUAUCAGACUGAUGUUGA 17 615 

hsa-miR-23a-3p hsa-miR-23b-3p, hsa-miR-23c AUCACAUUGCCAGGGAUUUCC 19 807 

hsa-miR-23b-3p hsa-miR-23a-3p, hsa-miR-23c AUCACAUUGCCAGGGAUUACC 9 807 

hsa-miR-23c hsa-miR-23a-3p, hsa-miR-23b-3p AUCACAUUGCCAGUGAUUACCC X 807 

hsa-miR-28-5p hsa-miR-708-5p AAGGAGCUCACAGUCUAUUGAG 3 874 

hsa-miR-29c-3p hsa-miR-29b-3p, hsa-miR-29a-3p UAGCACCAUUUGAAAUCGGUUA 1 1492 
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Table 8-21: miRNAs that are differentially expressed in KCl-stimulated cells (>500 AU).  
Synonym means the miRNAs have similar seed sequence and share similar mRNA targets according to IPA analysis. Bold and underlined sequences are the seed 
sequence of the miRNA. 

miRNA (miRBase Acession) Synonym miRNAs/ Overlapped 

miRNAs (IPA) 

 Sequence Chromosome Number of targeted mRNA 

hsa-miR-30a-5p hsa-miR-30c-5p, hsa-miR-30b-5p, hsa-

miR-30e-5p 

UGUAAACAUCCUCGACUGGAAG 6 1592 

hsa-miR-30b-5p hsa-miR-30c-5p, hsa-miR-30a-5p, hsa-

miR-30e-5p 

UGUAAACAUCCUACACUCAGCU 8 1592 

hsa-miR-30c-5p hsa-miR-30a-5p, hsa-miR-30b-5p, hsa-

miR-30e-5p 

UGUAAACAUCCUACACUCUCAGC 

(from precursor: hsa-mir-30c-2) 

UGUAAACAUCCUACACUCUCAGC (from 

precursor: hsa-mir-30c-1) 

1 

 

6 

1592 

hsa-miR-30e-5p hsa-miR-30c-5p, hsa-miR-30a-5p, hsa-

miR-30b-5p 

UGUAAACAUCCUUGACUGGAAG 1 1592 

hsa-miR-3120-3p - CACAGCAAGUGUAGACAGGCA 1 869 

hsa-miR-3178 - GGGGCGCGGCCGGAUCG 16 529 

hsa-miR-3195 - CGCGCCGGGCCCGGGUU 20 241 

hsa-miR-329 - AACACACCUGGUUAACCUCUUU 

(from precursor: hsa-mir-329-1) 

AACACACCUGGUUAACCUCUUU 

(from precursor: hsa-mir-329-2) 

14 

 

14 

913 

 

913 

hsa-miR-335-3p - - - Not included in IPA Target Filter analysis 

hsa-miR-337-3p - CUCCUAUAUGAUGCCUUUCUUC 14 373 

hsa-miR-3617-3p - - - Not included in IPA Target Filter analysis 

hsa-miR-376b-3p hsa-miR-376a-3p AUCAUAGAGGAAAAUCCAUGUU 14 581 

hsa-miR-376b-5p hsa-miR-376c-5p - - Not included in IPA Target Filter analysis 

hsa-miR-376c-5p hsa-miR-376b-5p - - Not included in IPA Target Filter analysis 
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Table 8-22: miRNAs that are differentially expressed in KCl-stimulated cells (>500 AU).  
Synonym means the miRNAs have similar seed sequence and share similar mRNA targets according to IPA analysis. Bold and underlined sequences are the seed 
sequence of the miRNA. 
miRNA (miRBase Acession) Synonym miRNAs/ Overlapped 

miRNAs (IPA) 

 Sequence Chromosome Number of targeted mRNA 

hsa-miR-3922-5p - UCAAGGCCAGAGGUCCCACAGCA 12 834 

hsa-miR-409-3p - GAAUGUUGCUCGGUGAACCCCU 14 188 

hsa-miR-424-3p - CAAAACGUGAGGCGCUGCUAU X 3 

hsa-miR-4284 - GGGCUCACAUCACCCCAU 7 1253 

hsa-miR-4288 - UUGUCUGCUGAGUUUCC 8 666 

hsa-miR-4497 - CUCCGGGACGGCUGGGC 12 414 

hsa-miR-454-3p hsa-miR-130a-3p UAGUGCAAUAUUGCUUAUAGGGU 17 1252 

hsa-miR-4730 - CUGGCGGAGCCCAUUCCAUGCCA 17 301 

hsa-miR-4732-5p - UGUAGAGCAGGGAGCAGGAAGCU 17 322 

hsa-miR-483-3p - UCACUCCUCUCCUCCCGUCUU 11 615 

hsa-miR-487a-3p hsa-miR-154-3p AAUCAUACAGGGACAUCCAGUU 14 309 

hsa-miR-489-3p - GUGACAUCACAUAUACGGCAGC 11 410 

hsa-miR-494 - UGAAACAUACACGGGAAACCUC 14 789 
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Table 8-23: miRNAs that are differentially expressed in KCl-stimulated cells (>500 AU).  
Synonym means the miRNAs have similar seed sequence and share similar mRNA targets according to IPA analysis. Bold and underlined sequences are the seed 
sequence of the miRNA. 
miRNA (miRBase Acession) Synonym miRNAs/ Overlapped 

miRNAs (IPA) 

 Sequence Chromosome Number of targeted mRNA 

hsa-miR-542-3p - UGUGACAGAUUGAUAACUGAAA X 795 

hsa-miR-543 - AAACAUUCGCGGUGCACUUCUU 14 916 

hsa-miR-568 - AUGUAUAAAUGUAUACACAC 3 319 

hsa-miR-574-5p - UGAGUGUGUGUGUGUGAGUGUGU 4 564 

hsa-miR-7-1-3p - - - Not included in IPA Target Filter analysis 

hsa-miR-766-3p - ACUCCAGCCCCACAGCCUCAGC X 1096 

hsa-miR-874-3p - CUGCCCUGGCCCGAGGGACCGA 5 1069 

hsa-miR-92a-3p hsa-miR-92b-3p UAUUGCACUUGUCCCGGCCUGU 

(from precursor: hsa-mir-92a-1) 

UAUUGCACUUGUCCCGGCCUGU 

(from precursor: hsa-mir-92a-2) 

13 

 

X 

1138 

hsa-miR-92b-3p hsa-miR-92a-3p UAUUGCACUCGUCCCGGCCUCC 1 1138 
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