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Abstract

The study of b-quarks is very important as they play an important role in many Higgs and beyond-
the-Standard-Model searches, and their treatment using perturbative quantum chromodynamics
(QCD) is not completely understood. This thesis presents a measurement of cross-sections for
the production of a boosted Z-boson in association with a large-radius jet, differential in kinematic
variables of the jet and its b-tagged sub-jets. This measurement provides an important test of pertur-
bative QCD with emphasis on the production rates and kinematics of the bottom quarks. The phase
space probed in the measurement is particularly relevant for beyond-the-Standard-Model searches.
The differential and total cross-sections are presented at particle-level, where the fully Bayesian
unfolding method was used to correct the data. The Z + bb process is a significant background
to several important Higgs-boson searches; a particular example being the search for a Higgs bo-
son decaying to h-quarks, produced in association with a vector boson, V(H — bb). A study of
the signal-modelling uncertainties in the 2017 search for V(H — bb), where the first evidence for
the H — bb decay was observed, is presented in this thesis. These analyses would not be possi-
ble without b-tagging algorithms to identify the b-quarks in the final state. It is important that the
performance of b-tagging algorithms in data is well modelled by Monte Carlo simulation. A cali-
bration of the b-tagging efficiency of the MV2c10 algorithm in small-radius track-jets is therefore

also presented.
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Chapter 1
Introduction

A particle consistent with the Standard Model Higgs boson was observed by the ATLAS and CMS
experiments at the Large Hadron Collider (LHC) in 2012 viaits H—yy and H— V'V decay modes
[1, 2]. Following this discovery, exploring the properties of the Higgs and its coupling with other
particles is very important. In 2017, evidence for the H — bb decay was found in a search where
the Higgs boson was produced in association with a vector boson, V(H — bb). In this thesis, the
study of the signal-modelling uncertainties in this analysis is presented.

A dominant background for many Higgs searches, including V(H — bb), is a vector boson
produced in association with b-tagged jets (V + bb). The mis-modelling of this background was a
dominant systematic error in the V(H — bb) search, therefore improving our understanding of it is
a key part of improving the V(H — bb) search in the future. It is also a very important process in
its own right. It is sensitive to prediction-uncertainties from perturbative QCD, so measurements
can help to constrain some of the main associated theory and modelling uncertainties relating to
the treatment of the kinematics and amplitude of b-quarks in the initial and final state.

Identifying b-quarks is a crucial aspect of the V(H — bb) search and Z + bb cross-section
measurement presented in this thesis, which is done using b-tagging algorithms. Itis very important
that the performance of these algorithms is well-understood and correctly modelled by Monte Carlo
simulation, therefore calibrations are performed to derive any necessary correction scale-factors. A
measurement and subsequent calibration of the b-tagging efficiency in Run-2 data was made using
the tag-and-probe method in #7 events.

Chapter[2|gives a brief overview of the Standard Model of particle physics and how it is used for
making cross-section predictions at the LHC. A description of the LHC and the ATLAS detector is
given in Chapter[3] as well as how the information from the detector is used to reconstruct physics

objects for use in analysis. The calibration of the b-tagging efficiency using the MV2c10 algorithm



for track-jets is presented in Chapter[d In Chapter [5|the measurement of differential fiducial cross-
sections in events where a Z-boson is produced in association with two b-quarks is described.
Finally, a description of the signal-modelling studies performed for the V(H — bb) search is given

in Chapter 6] before closing the thesis with some concluding remarks in Chapter [7]



Chapter 2
Theoretical framework

Over a century of experiments by physicists working to gain insight into the fundamental nature
of the world around us has culminated into one of the most precise physical theories: the Standard
Model. The Standard Model encapsulates our understanding of the interactions between three of
the four fundamental forces of the universe and the currently known particles within it. It is a robust
theory which has been tried and tested and yet still holds up to scrutiny.

Despite its resilience, the Standard Model has some flaws. To start off, it does not include
gravity; one of the four fundamental forces. This is not a problem for particle physics as gravity’s
effect can be considered negligible at the subatomic scale, but it does throw into question whether
the Standard Model really is the "final say". It also leaves some pertinent questions unanswered.
The majority of the matter in the universe is hypothesised to be dark matter, a type of matter inferred
from its gravitational effect on the rotation of galaxies [3]] and the harmonic structure of the cosmic
microwave background, and yet the Standard Model does not offer any clues as to what this is. In
the Big Bang an equal amount of matter and antimatter should have been created, yet the universe is
made primarily of matter. An explanation for this is CP-violation: a violation of charge-conjugation
parity-(CP) symmetry which states that the laws of physics should be invariant under the exchange
of a particle and antiparticle, and under a mirror inversion of the physical system [4]. The result
of this violation is that particles and antiparticles behave differently. The Standard Model contains
sources of CP violation [5], but not enough to explain the remaining matter-antimatter imbalance.
These are just a few examples of such questions. Whilst the Standard Model describes what we
know very well, it isn’t giving us the answers to the unknown.

The work carried out in this thesis focuses on Standard Model processes. In this chapter, the
Lagrangian formalism of the Standard Model is presented, before going on to describe how this is

used to calculate cross-sections for physics processes at the LHC. To test Standard Model predic-



tions against data, simulations are used which are provided by Monte Carlo event generators. An

overview of how these generators work is given in the final section.

2.1 The Standard Model

The Standard Model describes the properties of the known fundamental particles and their interac-
tions with three of the four fundamental forces. The known cohort of particles can be split into two
categories according to their spin: fermions, which have half-integer spin, and bosons which have
integer spin. Fermions are the fundamental constituents of matter and are comprised of quarks
and leptons, the properties of which are summarised in Tables [2.1] and [2.2] respectively. Quarks
interact with both the strong force and the electroweak force by virtue of their colour charge and
electric charge. Charged leptons interact via the electromagnetic and the weak force, whilst neu-
trinos which are neutral particles, interact via the weak force only. For each fermion, there exists
a corresponding anti-particle. Fermions interact via the fundamental forces through the exchange
of force-mediating bosons; the electromagnetic force is mediated by the photon, the strong force
is mediated by the gluon, and the weak force is mediated by the vector bosons W and Z. The
properties of these bosons are summarised in Table[2.3] Also included is the Higgs boson which is
a scalar boson which arises via the Higgs mechanism, described in Section [2.1.3]

The Standard Model is formulated as a quantum field theory. It is a composite gauge the-
ory which is locally invariant under transformations of the SU(3). X SU(2), X U(1)y symmetry
group. In this formalism, the interactions of the fundamental forces are described using gauge
fields and particles are described using quantum fields. An overview of the different components
of the Standard Model Lagrangian is given in the following sections and is based on the following

References [6, |7, 8, 9, |10], where further details of the material presented can be found.

2.1.1 Quantum electrodynamics

Quantum electrodynamics (QED) describes the interactions between electrically charged fermions
and photons via the electromagnetic force. The Lagrangian density describing the interaction is
derived by requiring that the Lagrangian density for freely propagating fermion fields, v, is locally
invariant under gauge transformations of the U (1) symmetry group. This is ensured by defining a
gauge-invariant derivative,

D, =0,+icA,, @.1)



Quarks
Generation Particle Mass [MeV] Charge(Q)

" u 2.4 2/3
d 4.8 1/3
ond ¢ 1.27 x 10° 2/3
s 104 1/3
- t 171 x 10° 2/3
b 42 % 10° 1/3

Table 2.1: A summary of the mass and charge of quarks [11]].

Leptons
Generation Particle Mass [MeV] Charge(Q)

e 0.511 -1

lst
v, <1.1x107¢[12] 0

ond U 105.7 -1
v, <0.17 0
T 1.77 x 103 -1

3rd
v <155 0

T

Table 2.2: A summary of the mass and charge of leptons [11].

Bosons
Interaction Particle Mass [GeV] Charge(Q)
EM Photon y 0 0
W -boson W#* 80.39 +1
Weak
Z-boson Z 91.19 0
Strong gluon g 0 0

Table 2.3: A summary of the properties of the vector-boson mediators of the fundamental forces
included in the Standard Model [11]].



where A , is the electromagnetic gauge field, the manifestation of which is the photon. This couples
to the fermion field with a strength defined by the coupling constant, e. With the addition of a kinetic
term describing the interaction between the fermion field and the electromagnetic field, the resulting

QED Lagrangian density is

1 —
Lopp = =7 F"F, +V (iy"D, —m)y, 22)

where F#" is the electromagnetic field strength tensor defined as,
F,=0d,A,—-0A,. (2.3)

There is no photon self interaction term here which reflects the fact that photons are not self-
coupling. Such a term would have an analogous form as the gluon-interaction term shown in the

next section.

2.1.2 Quantum chromodynamics

Quantum chromodynamics (QCD) describes the interaction of quarks and gluons via the strong
force [|13,|14]. It is invariant under the SU(3), symmetry group, which gives rise to the conserved
quantity color charge, c. The Lagrangian density of QCD is derived analogously to QED; the
Lagrangian density for free quark fields, y/f , where f denotes the quark flavour and j denotes
its colour charge which can be red, green, or blue, is required to be invariant under an SU(3),

transformation of colour space. To ensure this, a gauge-invariant derivative, Df; is defined
"o .
D;; = 0"6;; + gt AL, (24)

where 17, are the Gell-Mann matrices which are generators of the SU(3) group. There are eight
generators corresponding to eight gluon fields, A%, whose coupling strength with the quark fields
is governed by g, the strong coupling constant (where gs2 = 4ra,). The resulting QCD Lagrangian

density is defined as

Lo = _ZF:VF;V + 2 w! (ir,Df = m6, ) wl. 2.5)

where m  is the quark mass. The gluon field strength tensor, F. is defined as

a __ a _ a _ b gc
Fo = 0,A% = 0,A% — g f,, AL A°, (2.6)



where a, b, c denote the colour indices of the gluon fields which can run over their eight degrees
of freedom, and f,,, are the structure constants of the SU(3) group. The third component of
Equation [2.6|represents gluon self-coupling, which is a distinguishing feature of QCD with respect
to QED and reflects that SU(3) is non-abelian.

2.1.3 Electroweak theory and the Higgs mechanism

The weak nuclear force and the electrodynamic force can be unified into a single electroweak force
which has a SU(2), XxU(1), gauge symmetry [15,/16,/17]. The L subscript represents the fact that
the weak force couples to left-handed fermions fields only (or right-handed anti-fermion fields),
where "left-handed" refers to the particle’s chirality. The Y subscript corresponds to the hyper-
charge quantum number which is the resulting conserved quantity of the U (1), symmetry group.
Using a similar approach to that used for QED and QCD, the Lagrangian density is derived by
requiring that the fermion fields are invariant under SU(2); and U (1), gauge transformations. The

resulting Lagrangian density is defined as

Low= Y L) +Ly +Ly+ L) 2.7)

I=e,u,r

The first term, £(/), represents the interactions between massless W /Z gauge bosons and leptons.
The second and third terms are kinetic terms for the interactions of the vector fields, B u and VVM",
defined as

1

Ly==3BuB" Ly ==3 2 (W) 7. (238)

Each physical field representing a vector-boson can be written as a superposition of these fields,
the mixture of which depends on the coupling strength of the fields and the weak mixing angle, 6,
as follows
£ L 1 — w2
W = ﬁ<wﬂ FiW?).
zZ,= W: cos 6y, — B, sinfy,, (2.9)

A, =W?sinby + B, cos by,

So far, the electroweak Lagrangian does not contain mass terms. This is not a problem for
photons, as experimental evidence tells us that they are massless. Simply adding these terms by
hand to the Lagrangian does not work as this would break SU(2), X U(1), invariance. These
terms are generated via the Brout-Englert-Higgs mechanism [18,|19] where an SU(2), doublet of

a complex scalar field, the Higgs field, ¢, is introduced. This field is described by the following



Lagrangian density,
+
Lige, = (D,9) (D')) = V(). (2.10)

where
V(p) =4 (d7¢) — 12T, 2.11)

is the SU (2), -invariant scalar potential and u and A are scalar constants. When u? > 0, the potential
has a minimum centred on the origin. When u? < 0, the potential has degenerate minima given by
Gpin = i\/TZ/A, which are referred to as the vacuum expectation values, v. The shape of this
potential is depicted in Figure Choosing one of these non-zero minima, a process referred to
as spontaneous symmetry breaking, and performing a perturbative expansion of ¢ around it gives

@ min = U+ H. This leads to a new Higgs Lagrangian with mass terms,

1 1 .
~0,Ho"H + Zg2 (H?+20H + ) Wiw

[:Higgs = 2

+ é (&2 +g?) (H*+2vH +v*) Z,Z* (2.12)
+ W H? + % (H*+4vH?).

Mass terms have only been generated for the vector bosons and there is no photon term, reflecting
the fact that the photon is massless. A mass term also arises for the field H introduced by the
spontaneous symmetry breaking mechanism, which corresponds to the mass of the Higgs boson.
There are no mass terms generated for the fermion sector therefore additional terms must be added
to the Lagrangian which are called Yukawa coupling terms. The Yukawa coupling terms in the

Lagrangian for each fermion f have the form

c G, (Y 9¥r+ Y'Y, +he), (2.13)

Yukawa —
where G is the Yukawa coupling term, ¥, is an isospin doublet of left-handed fermions, ¥y is an
isospin singlet of right-handed fermions, ¢ is the complex scalar Higgs field, and Ac is the hermitian
conjugate.

The final term of Equation describes the interaction between quarks and the W /Z gauge
bosons. In the interaction between W -bosons and quarks (the charged-current interaction), the
Cabibbo-Kobayashi-Maskawa (CKM) matrix is introduced which controls the mixing between
quark flavours [20, 21]]. When a quark propagates "freely" it is said to be in a mass eigenstate
whilst when it interacts with the weak force, it is in a weak eigenstate. The CKM matrix describes

the transition between these states and specifies the amplitudes of the interactions between quark



Figure 2.1: A diagram showing the shape of the scalar Higgs potential, V' (¢), for the case when

p* < 0. The minima of the potential are ¢, ;, = +1/—u2/4 and correspond to the points around
the lower circle of the "Mexican hat". This diagram was taken from Reference [22].

flavours. These amplitudes have been measured by experiments [11]] and their values are

Vial Vis| Vs 0.974 0.224 0.004
Vam = | V| [Ves| Vo] | =] 0.218 0997 0.042 | (2.14)
Vial Vil |Vl 0.008 0.039 1.019

This shows that quarks of the same generation have the highest interaction amplitudes, demonstrated
by the diagonal elements of the matrix. In particular, the top quark decays almost exclusively to
a W -boson and a bottom quark. It is also notable that |V,,| and |V,,| are very small. In practice
this means that b-hadrons are long lived as the quark transitions involved in their decay are highly
CKM-suppressed.

The CKM matrix can be parametrised in terms of three mixing angles, 6, T which control the
mixing between quarks in generations i and j, and a complex phase, &,

i6

C12€13 S12€13 S;3€°
— _ _ io _ id
Vekm S12€23 — €12523513€ C12€23 = §12523513€ €3 |» (2.15)
is is
812823 = €12€23513€ —C12823 — 812€23513€ €23C13

where s;; = sin6;; and ¢;; = cos 6;;. The presence of the complex phase in this matrix is the source

of CP violation in flavour-changing weak interactions in the Standard Model [11].



2.2 Proton interactions

Generally in particle physics, and indeed for the analysis presented in Section [5] we are interested
in testing the predicted cross-section for a particular physics process. Cross-sections are calculated
from scattering amplitudes which represent the transition rate from an initial state to a final state.
These scattering amplitudes can be interpreted from a perturbative expansion of the Standard Model
Lagrangian density using Feynman diagrams and Feynman rules [23]].

The formalism presented so far has dealt with the interactions of fundamental particles however
protons are not fundamental particles; they are composite particles made up of quarks and gluons
(collectively called partons). As a result, the calculation of the cross-section must take into account
the structure of the proton as well as the hard interaction of its partons, which is described in this
section. The discussion presented is based on References [8, |24, 9], from which further details can
be found.

2.2.1 The running coupling

Divergences due to the inclusion of loop corrections in a calculation can be absorbed via the process
of renormalisation, where the parameters of the Lagrangian are redefined such that the divergences
are subtracted. This leads to a dependence of the a, on the scale at which these subtractions take
place, the renormalisation scale, pg. As aresult, the strong coupling exhibits what is referred to as
"running" behaviour—its value depends on the scale at which it is being probed. This behaviour is

governed by the beta function, which can be expanded as
Bay) = —a’(by + bya, + bya? + ...), (2.16)

where b, is the leading order (one-loop) coefficient and b, is the next-to-leading order (two-loop)

coefficient. At leading order, the strong coupling coupling constant can be defined as

2
@ (Q) = (1) : 2.17)

1+ a (,ui) by In <f—;>

R

From this equation we see that as Q% — oo, @, tends to zero; a behaviour which is called asymptotic
freedom. In this regime the partons can be approximated as being free, i.e. non-interacting, and
perturbation theory is used to make calculations (referred to as perturbative QCD, pQCD). Con-

versely, as Q? decreases towards ~ 200 MeV, the coupling becomes increasingly large. This effect
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is called confinement and is the reason quarks are only observed in bound states (hadrons). The
exception to this is the top-quark, which decays before confinement takes hold and hence top quarks

are also never "seen".

2.2.2 Factorisation theorem

The factorisation theorem can be used to apply our knowledge of quark/gluon interactions to proton
interactions. In this formalism, the structure of the proton can be considered as being independent
to the hard interaction process. This factorization of these different regimes into less than y and
greater than y, where i is the factorization scale, allows us to write the cross-section for a generic

collision of protons carrying momentum P, , as

1 2 2
o (P, P,) = / dxdx, Y fx i) £ (i) 6, (xR P (12), 2 L
0 i.j=4:4. Hr Hr

(2.18)

where the hard-interaction cross-section between partons i and j carrying momentum p, , = x,, P, ,

is denoted as 6, i

probability that a given parton carries a fraction x; , of the proton’s total momentum. The intro-

and f;; (x,,, 43 ) are parton distribution functions (PDFs). These describe the

duction of the factorisation scale, which defines the boundary between what is considered part of
the PDF and what is considered part of the partonic cross-section, means that both the partonic
cross-section and the PDF depend on this scale.

As aresult of asymptotic freedom, the partonic cross-section can be expressed as a perturbative

series in aj,
n
A _ k m, . m
6, = a; Zc al, (2.19)
=0

where the ¢™ coefficients are functions of x, ,, and the index m denotes the incremental increase in
the series, with each additional term describing real quark/gluon emissions and loop corrections.
The index k denotes the leading order at which a specific process contributes. For example, for
Z + jets, the minimum order is k = 1. In practice this series is often truncated at a fixed order, n,
where n = O is referred to as a leading order (LO) prediction, n = 1 a next to leading order prediction
(NLO), and so on. There is also a distinction to be made between full NLO, where virtual-loops are
accounted for in the calculation, and tree NLO where only real-emission corrections are accounted
for. The truncation of the series at a fixed order means that the cross-sections are dependent on
ug and pp, whereas a calculation to all orders would not have this dependence. It is therefore

recommended that the effect of varying these scales is taken into account in measurements, and in
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theory comparisons with data.

2.2.3 Parton distribution functions

PDFs are not directly calculable from first principles and are therefore derived from fits to experi-
mental data. The PDFs are parametrised as a function of x at a starting scale, Q,, using a specific
ansaetz, and are then evolved to other scales using the DGLAP evolution equations [25, 26, 27],
which give the Q? dependence of the PDFs. The DGLAP equations are coupled such that the evo-
lutions takes into account the momentum modification resulting from emissions and splitting of the
quarks and gluons, where different splitting kernels exist for the different possible splittings of the
quarks and gluons.

There is some ambiguity when it comes to the b-quark PDF and indeed heavy-flavour quarks in
general, but the b-quark is of particular relevance to the work presented in this thesis. To address
this, there are generally two different schemes which are used for calculations. The first is the four
flavour number scheme (4FNS) where the b-quark is massive and its PDF is zero. In this scheme
b-quarks can only participate in the hard scatter via matrix-element (ME) gluon splitting and they
do not enter in the PDF evolution. Conversely, the b-quark may be considered as being massless.
In this case the b-quark PDF is not zero meaning there can be b-quarks in the initial state as well
as the final state [28]]. In general it is not clear which of these schemes is "most correct”, therefore
calculations are made using both schemes and are compared with the data.

There are a number of different collaborations which perform global PDF fits, such as NNPDF,
CTEQ, and MSTW. These groups use different starting ansaetz for the initial parametrisation of the
PDF, different data in their fits, and different fitting techniques. This means that the results can
differ and it is therefore recommended that the effect of using different PDF sets on a measurement

is assessed and an uncertainty assigned for any observed differences.

2.3 Monte Carlo simulation

Monte Carlo (MC) event generators encompass our understanding of the Standard Model and are
used to model physical processes, allowing us to compare data to predictions made from theory.
This allows us to both check our understanding of the Standard Model and to test beyond-the-
Standard-Model (BSM) theories.

Modelling proton-proton interactions typical at the LHC is a challenging task due to the complex

nature of the interactions, which is illustrated by Figure 2.2 which shows a schematic diagram of
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a proton-proton collision. The colliding protons are shown by the horizontal green lines. The hard
partonic interaction occurring between two partons shown in blue is depicted by the central dark
red circle. The particles resulting from the hard interaction, depicted in red, undergo showering
until they succumb to QCD confinement and hadronise, which is represented by the green ovals.
The decay of these hadrons is shown by the green arrows. In parallel to the hard interaction, an
additional partonic interaction occurs as shown by the purple oval and purple shower.

The simulation is tasked with providing accurate simulations for these various components of

the interaction. It can therefore be broken down into the following steps:

e Calculation of the primary hard interaction using matrix elements,
e Modelling of the parton shower which arises due to QCD radiation from quarks and gluons,
e Hadronisation of the partons into hadrons,

e Describing the additional interactions occurring simultaneously with the hard interaction,

referred to collectively as the underlying event,

e Simulation of the detector response to particles interacting with it.

A summary of the matrix element calculation, parton shower model and hadronisation is given be-
low in addition to a description of how these are combined to provide a full prediction. The last

two steps are not discussed here and the reader is referred to References [29,30]] for further details.

Matrix elements

Matrix element event generators simulate the central part of the event based on the partonic in-
teraction cross-section described in Section[2.2.2] The partonic cross-section can be expressed in
terms of the matrix element, M, which can be interpreted as the sum of all participating Feynman

diagrams contributing to the process,

Mapon = D FS (2.20)

1

The matrix element generator performs an integration over the phase space defined by the allowed
configurations of the momenta of participating partons, and samples the partons’ helicity and colour
configurations in order to calculate the cross-section. Monte Carlo integration techniques are par-
ticularly well suited to the high-dimensions typical for these phase-space integrations due to their
quicker convergence rate with respect to other integration techniques. These calculations can be-

come complex and time consuming at higher orders where virtual and real emissions are included.
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Figure 2.2: A schematic overview of the different interactions happening as a result of a proton-
proton collision which are simulated using Monte Carlo generators. This image was sourced from
Reference [31]].
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This is because there can be numerous extra Feynman diagrams contributing to a process and diver-
gences in the calculation arise which must be taken into account. The divergences can also cause

sharp peaks in the probability density, which can make sampling of the phase-space inefficient.

Parton showers

A parton shower generator models the soft and collinear branching of quarks and gluons in both the
initial state and the final state. The modelling involves the iterative calculation of the probability
for a parton a to split to partons b and ¢, which is described by the DGLAP evolution equations

and a set of splitting functions (P,_,.(z)). In order to restrict the branching probability to be < 1,

—bc
the probability that the parton does not split in a particular iteration of the evolution (i.e between
scales Q% and Q%) must also be accounted for. This is done via the Sudakov form factor [32[] which

is added to the DGLAP evolution equations and is defined as

Q2 ) 1_Q2/k2
dk? a 0
A, (0% 0;) =exp {— / —= dzpﬁ,,c(z)} , (2.21)
(@)

2 k? 2rx o /K

where z is the fraction of parton a’s momentum carried by the outgoing partons b or c. The DGLAP
equations govern the splitting and evolution in the momentum transfer from the momentum scale
of the hard process to the scale where QCD confinement takes hold and hadronisation occurs.

Of particular importance for the analysis presented in Chapteris the g — bb splitting function.
The general splitting function for a g — g4 splitting is defined as

P,_.:(2) =Ty (2> + (1 —2)*) (2.22)

where T, = 1/2 is a colour factor fixed by convention, and z is the fraction of the gluons mo-
mentum carried by the outgoing quarks. This is defined under the assumption of massless quarks
however, therefore alterations must be made to take into account the quark masses in the case of
g — bb splitting. It is not a priori clear what is the correct way to do this. One option which some
generators employ is the so-called quasi-collinear limit [[33]] which results in an additional term in
the g — qq splitting function. It is also not clear what scale should be used for a, in the splitting.
Generally the relative p; of the quarks is used, but an alternative option could be their mass, or a

combination of the two [34]]. Measurements of g — bb splitting can help inform the choice of scale.

Hadronisation

When the momentum transfer of the partons reaches the scale of QCD confinement, pQCD ceases
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to be a good basis and hadronisation occurs. The hadronisation models which govern this transi-
tion of coloured particles to hadrons can be split into two categories: string models [35]] and cluster
models [36]. In the string models, as two quarks are pulled apart, their potential energy increases
due to QCD confinement until it is high enough that a new pair of quarks is created from the vac-
uum. In the cluster model, clusters are formed from colour-connected pairs of quarks which are
formed from g — ¢4 splitting. The string model is the nominal model utilised by the PYTHIA MC
generator, whilst cluster models are nominally used by SHERPA and HERWIG. After hadronisation,

there can be unstable hadrons remaining which are decayed to stable, final-state hadrons.

Matching/Merging

The matrix element generator and parton shower generators have complimentary strengths: the
matrix element is better at modelling hard, well-separated parton topologies whilst parton show-
ers model soft, collinear emissions well. To get a full prediction, we usually combine the results
of these generators, taking care not to double count any of the emissions. In practice this a com-
plex and non-trivial procedure therefore a very simplified description is given here, with further
details available in Reference [29]. There are two methods used to combine matrix element pre-
dictions with parton shower predictions, called matching and merging. A matching method is used
by POWHEG, where the hardest emission in the parton shower prediction is corrected to reproduce
the matrix element. In the merging procedure, the phase space is sliced such that one region is
described mainly by the matrix element and the other is described by the parton shower, where the
boundary is defined by a choice of scale. Merging algorithms are used by SHERPA, HERWIG and
MADGRAPH.
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Chapter 3

Reconstruction of physics objects using the
ATLAS detector at the LHC

When a particle passes through a detector it leaves a unique signature based on the components
of the detector that it interacts with, which allows it to be identified. The work presented in this
thesis was carried out using data collected by the ATLAS detector from proton-proton collisions
at the LHC. In this section, an overview of the LHC, the ATLAS detector and its components are
given. Following this, the identification and reconstruction of particles using the ATLAS detector
is detailed.

3.1 The LHC

The Large Hadron Collider (LHC) [37], situated at the European Organisation for Nuclear Research
(CERN), is the world’s largest particle accelerator. In a tunnel with a circumference of 27 km, which
was previously occupied by the Large Electron Positron collider [38], it accelerates two beams of
protons in opposite directions using a series of radio-frequency cavities. Superconducting magnets
are used to bend the beams and stabilise their trajectory. The protons collide at several defined
interaction points at a centre of mass energy of 13 TeV. It is also capable of colliding lead ions but
for the purposes of this thesis, its function as a proton-proton (pp) collider is described.

Protons produced from ionised hydrogen first enter the LINAC2 which is a linear accelerator.
Here the protons are accelerated to 50 MeV before being delivered to the Proton Synchrotron
Booster (PSB). The PSB splits proton bunches into stacks of circular synchrotron rings and ac-
celerates them to an energy of 1.4 GeV. The bunch structure required for the LHC is a maximum

of 2800 proton bunches separated by 25 ns. The protons from the PSB are directed to the Proton
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Synchrotron (PS) which arranges them to match the LHC bunch structure and accelerates the pro-
tons to 25 GeV. At this point they are brought to the injection energy of 450 GeV at the Super
Proton Synchrotron (SPS) before being injected into the LHC beam pipes. This process is shown
schematically in Figure[3.1]

At the interaction points situated around the LHC ring are the four main experiments: ATLAS ,
CMS, LHCb, and ALICE [40, 41, 42, 43]]. The ATLAS detector is the largest of the two general-
purpose detectors, the other being CMS. The work for this thesis was carried out using data collected
from the ATLAS detector, which is described in Section

3.1.1 Luminosity

It is important to know the integrated luminosity of the dataset used in analyses. The instantaneous

luminosity, defined as the ratio between the rate of a process and its cross section, is expressed as

NN,

2
4ro,o,

L=fn, 3.1
where f, is the beam revolution frequency, n, is the number of bunches, N, are the respective
number of protons in each beam, and o, , define the transverse profile of the beam. The beam
profile is calibrated using Van-der-Meer scans, where the beams are scanned across each other in
the transverse plane and the interaction rate as a function of the beams’ transverse separation is

measured [44,45]. From this, the total integrated luminosity, L, can be calculated as

L=/£dt. (3.2)

Figure [3.2]shows the accumulation of integrated luminosity during 2015 and 2016 of the LHC
Run-2 [46], the dataset used by analyses presented in this thesis. The plot shows a comparison
of the luminosity delivered by the LHC and the luminosity recorded by the ATLAS detector. The
recorded data undergoes further processing to ensure that the reconstructed physics objects are
of good quality for physics analysis. Following this, the total integrated luminosity available for

analysis from this period was 36.1 + 1.2 fb™".

3.1.2 Pile-up

For a given bunch-crossing there is typically one hard interaction of interest. Since there are around

100 billion protons per bunch, multiple soft pp interactions can happen simultaneously with the
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Figure 3.1: A diagram showing the LHC accelerator and injection chain at the CERN accelerator

complex taken from Reference [39].
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Figure 3.2: The integrated luminosity accumulated during each day of the 2015 and 2016 data
taking periods of Run-2 at the LHC. The green plot shows the luminosity delivered by the LHC
and the yellow plot shows the luminosity recorded by the ATLAS detector, which differs due to
data-taking inefficiencies in the detector [46].

hard interaction, which is referred to as pile-up. These additional interactions make it difficult for
analyses to identify the hard interaction of interest. The average number of pile-up interactions, u,

is defined as
_ Lo

H= m
The average number of pile-up interactions per bunch crossing was calculated for data collected
in 2015 and 2016 of Run-2 of the LHC and is shown in Figure [3.3| [46]. Simulated samples used
in analysis are reweighted such that their simulated pile-up profile matches the profile measured in
data.

(3.3)

3.2 The ATLAS detector

The ATLAS (A Toroidal LHC ApparatuS) detector is the largest experiment at the LHC and in fact
is the largest particle detector ever built, with a length of 46 m and a width of 25 m. It is a general
purpose detector designed to investigate a wide range of physics from precision measurements of
SM processes, to searches for new physics. This section provides a brief overview of the detector,
with a complete description available in Ref [40]].

ATLAS has a cylindrical geometry around the beam pipe and forward-backward symmetry with
respect to the collision point at its center. Its main subsystems are arranged in concentric cylin-

drical layers around the beam pipe and can generally be split into two regions: the central barrel
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Figure 3.3: The luminosity delivered as a function of the average number of pile-up interactions
per bunch crossing for data collected during the 2015 and 2016 data taking periods of Run-2 at the
LHC [46].

region which is parallel to the beam-line and the end-caps which are perpendicular to the beam-line.
The subsystems used for particle detection are the inner detector, the calorimeters, and the muon
spectrometer, with their respective layout depicted in Figure [3.4]

Each subsystem has an important role to play in the reconstruction of physics objects. Figure[3.5]
shows examples of the subsystems involved in the detection of different particles. An overview of
these systems is given in the following sections, followed by further details of how they are used to

reconstruct particles in Sections [3.3]to [3.6]

3.2.1 Coordinate system

ATLAS uses a right-handed coordinate system where the origin is situated at the nominal interaction
point in the centre of the detector, the z-axis is aligned along the beam line, the y-axis points
vertically (upwards) and the x-axis points horizontally to the centre of the ring. Being transverse
to the beam-line, the x-y plane is defined as the transverse plane. Cylindrical coordinates are used
to reflect the geometry of the detector: the azimuthal angle around the z-axis is described by ¢; the
polar angle with respect to the beam-line is described by ; the radial distance from the centre of
the detector in the transverse plane is described by r.

The momentum of a physics object is p = (p,, p,»p.), where p_, p,, p, are the components of
the momentum in the x, y, and z direction. The transverse momentum of an object, p;, will be used

most often in this thesis and is the projection of the momentum in the transverse plane, py = psin 6.
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Figure 3.4: A diagram of the ATLAS detector labelling its main components, the majority of which
are described in more detail later in the chapter [40].

A transformation of the polar angle, pseudorapidity, #, is defined as

11=10g<tan (g)) (3.4)

In the case of a massless particle, the pseudorapidity becomes equivalent to rapidity, y. Differences
in rapidity are Lorentz invariant under boosts along the z-axis. This is especially important at
hadron colliders because since hadrons are composite particles, the momentum of their interacting
constituents is unknown. If one of these constituents has significantly more momentum than the
other, the decay products will be boosted with respect to the lab frame. It is convenient to shift to
the centre-of-mass frame of the constituent collision, hence it is important to use variables which
transform well under this shift. The rapidity is defined as

1, E+p,

=1
y=qlogp—

(3.5)

z

A particle travelling perpendicular to the beam-line has # = 0, whilst a particle travelling parallel

to the beam-line has # = oco. The spatial separation between particles, AR, is defined as AR =
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Figure 3.5: A diagram of the components of the ATLAS detector involved in the detection and
reconstruction of different particles taken from the ATLAS public web page (http://atlas.ch). The
muon passes through each layer of the detector before reaching the muon spectrometer, which is
the outermost layer of the detector. The photon and electron are both stopped by the electromag-
netic calorimeter, but the electron has a curved trajectory due to its charge and the magnetic field
created by the solenoid magnet. Similarly the proton and neutron are both stopped in the hadronic
calorimeter but can be distinguished by the fact that the proton has a curved trajectory.
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3.2.2 Inner detector

The inner detector (ID) is the innermost sub-detector and is used to reconstruct the tracks of charged-
particles and vertices in an event [47]. It is situated between the beam pipe and the calorimeters at
a radius of up to 1.1 m and covers the range || < 2.5. A surrounding solenoid magnet immerses
the ID in a 2 T magnetic field which bends the trajectory of a charged particle as it traverses the
detector. The points at which each particle interacts with the detector material, referred to as hits,
are fitted to reconstruct the particle’s trajectory. The curvature of the track is used to estimate the
charge-to-momentum ratio of the particle. The ID is made up of four independent sub-systems: the
insertable B-layer (IBL), the pixel detector, the semi-conductor tracker (SCT), and the transition
radiation tracker (TRT), with their layout shown in Figures[3.6]and [3.7]

The innermost layer is the IBL which is situated between the inner layer of the pixel detector
(the B-layer) and the beam pipe at a radius of 33 mm [48]]. It is a pixel layer which was added
during the long shut down of the LHC before Run-2 to preserve the lifetime of the B-layer, which
is highly susceptible to radiation damage. This preserved the b-tagging and tracking performance of
the ATLAS detector, whilst also improving the precision of vertex-finding (vertexing) and tagging
by providing an additional measurement closer to the interaction point.

The next layer of the ID is the pixel detector which covers radii between 40 < r < 140 mm.
It is a high-precision detector composed of three layers of silicon pixels in both the barrel and the
end-cap regions. Together with the IBL, it is designed to provide measurements as close to the
interaction point as possible and hence determines the impact-parameter resolution of a particle,
making it a vital component for the identification of b-hadrons. As an example, the expected trans-
verse impact-parameter resolution for a pion with p; = 200 GeV is approximately 10 um. The pixel
and IBL together provide four precision measurements of a particle’s track.

The SCT is situated in the intermediate radial range of the ID, covering radii between 300 <
r < 520 mm. It is a silicon strip detector with four layers in the barrel region and nine in the
end-cap. The SCT provides a further four complementary precision-measurements of the track and
thus contributes towards the measurement of momentum, impact parameter & vertex position, and
pattern recognition.

The outermost layer of the ID is the TRT which is both a straw-tube tracker and transition-
radiation detector. The TRT extends between radii of 560 < r < 1080 mm. The straw tubes are
filled with xenon gas, which is ionised by charged particles in the detector. The gaps between the
straws are filled with a mixture of gases which have a varying refractive index, causing particles
to radiate photons. Electrons radiate more photons than hadrons which aids in their identification.

The TRT is designed to allow continuous tracking of particles with up to 36 measurements of a
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Figure 3.6: Diagram of the ATLAS inner detector labelling its main components [40]].

track. The large number of measurements compensates for their reduced precision and aids track

pattern-recognition.

3.2.3 Calorimeters

The calorimeters are situated outside of the ID and their purpose is to measure the energy of parti-
cles by entirely stopping them, whilst the ID is designed to absorb as little energy as possible. There
are two categories of calorimeter: the electromagnetic calorimeter (ECAL) which is designed to
measure the energy of electrons and photons, and the hadronic calorimeter (HCAL) which is de-
signed to measure the energy of hadrons [40]. Their layout is depicted in Figure[3.§]

The ECAL is a high-granularity liquid argon (LAr) sampling calorimeter which covers the pseu-
dorapidity range |5| < 3.2. The ECAL uses liquid argon as the active material for particle detection
and lead as the particle absorber. It has an accordion geometry which ensures complete symmetric
coverage in ¢, as shown in Figure 3.9 Electromagnetic (EM) particles undergo bremsstrahlung
after interacting with the lead, initiating an EM shower. The evolution of this shower is charac-
terised by the calorimeter’s radiation length, X, which is defined as the distance over which the
EM particle loses all but 1/ eﬂ of its energy. An important design requirement for the calorimeter

was that it must provide adequate containment of the shower, therefore the length of the ECAL is

I'This is the exponential e, not the electron charge
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Figure 3.7: Additional diagram of the ATLAS inner detector showing the radii of its various com-
ponents in the barrel region [49].
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Figure 3.8: Diagram of the ATLAS calorimeters labelling their main components [40].

at least 22X, in the barrel region and 24X, in the end-caps.

The HCAL is comprised of a scintillator-tile calorimeter covering |#| < 1.7 in the barrel re-
gion, LAr calorimeters in the end-caps covering || > 1.5, and additional LAr calorimeters in the
end-caps providing coverage in the forward region up to |#| < 4.9. In the tile calorimeters, the
active material is the scintillating tiles and steel is used as the absorber. Hadrons interact with the
calorimeter via the strong force as well as the electromagnetic force. They interact with the steel
initiating a hadronic shower. This is characterised by the nuclear interaction length of the mate-
rial, A, defined as the distance over which the hadronic particle loses all but 1/e of its energy. In
addition to measuring the energy of hadrons and containing the hadronic shower, the HCAL has
the additional task of limiting the "punch-through" of non-muon particles into the muon system.
The HCAL has a depth of approximately 7.54 in the barrel region. Together with the ECAL, the
calorimeter system has a total depth of approximately 9.7, which both limits punch-through and

provides adequate energy resolution for jet measurements.

3.2.4 Muon spectrometer

The muon spectrometer is the outermost layer of the detector. It is made up of different components

designed for measuring the muon tracks and for triggering, which are shown in Figure[3.10] Muons
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Figure 3.10: Diagram of the ATLAS muon system labelling its main components [40].

have a higher mass with respect to electrons meaning they lose less energy to bremsstrahlung ra-
diation as they pass through the detector. As a result they are expected to be the only detectable
particle which can make it through the calorimeter. The spectrometer can provide a momentum
measurement with a minimum relative resolution of 10% for muons with p; = 1 TeV going down
to 3% for muons with p; = 100 GeV.

Toroidal magnets surround the muon spectrometers, deflecting the muon’s trajectory and allow-
ing its charge and momentum to be measured. The components used for the momentum measure-
ment are the monitored drift tube (MDT) chambers and the cathode strip chambers (CSC). These
chambers cover the pseudorapidity range |n| < 2.7, where the MDT chambers cover most of this
range and the innermost region (high #) is covered by the CSCs since they have higher granularity
and can withstand the higher muon flux and backgrounds [51].

The muon trigger system is made up of resistive plate chamber’s (RPC) in the barrel region
which cover |7| < 1.05 and thin gap chamber’s (TGC) in the end-cap region which cover 1.05 <
|n] < 2.4. Together they provide good spatial and time resolution for fast particle-triggering.
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3.2.5 Trigger

There are approximately 40 million events per second occurring in the ATLAS detector; a rate which
is far too high to record every event. As such, a trigger system which identifies events of interest
for storage is essential. The system is tasked with ensuring that events of interest are recorded
with a high efficiency whilst maintaining an appropriate level of background rejection. The system
has two levels: the hardware-based level 1 (L1) trigger and the high level trigger (HLT), which
is software based. Together these systems reduce the event rate to 1 kHz, the maximum rate for
storage.

The L1 trigger is the first stage and reduces the event rate from 40 MHz to 100 kHz with a
decision time (latency) of 2.5 ps [40,|52]. The L1 uses information from the calorimeters and muon
spectrometers to find interesting features such as high p; particles or large missing/total transverse
energy deposits. The L1 identifies regions of interest (ROI) which contain these interesting features,
defined by their location in #-¢. As well as the coordinate position, the ROI contains information
on the type of feature found and the particular pre-defined threshold it passed. These ROIs are
passed to the HLT for processing.

The HLT uses a farm of computers to reconstruct events using designated reconstruction algo-
rithms. In the ROI, the HLT uses supplementary detector data at full granularity and full precision
to implement selections. The processing is split into two steps; the first being a fast first-pass to
reject events and the second being a slow precision reconstruction step [S3[]. The HLT reduces the
event rate from 100 kHz to 1 kHz .

The list of L1 and HLT triggers used in ATLAS constitute the trigger menu. The composition of
the trigger menu and the trigger thresholds can be altered to ensure that the HLT output rate does
not exceed the 1 kHz limit. To maintain optimal performance of the triggers, the trigger thresholds
are modified to account for changes in the instantaneous luminosity. For example, pre-scales can
be applied to set a limit on the fraction of events that are accepted by the triggers. The events that
are accepted by the trigger system are saved into streams. The "Main" stream is where events used

by physics analyses are saved.

3.3 Tracks and vertices

Tracks
A "hit" is the interaction of a particle with a layer of the inner detector. These hits are clustered
(clusters) to form space-points which are three-dimensional measurements representing the point

at which the particle traversed the ID. A track seed is formed from sets of three space-points orig-
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inating from the SCT, the pixel system, or from both. Track candidates are built by combining
additional space-points compatible with the track trajectory with the track-seed [49].

A single track-seed can result in multiple track-candidates, therefore it is necessary to resolve
any ambiguities by ranking tracks using a score system. The track score is based on the number of
clusters it has, the number of holes (an expected cluster which is missing), the y? of the track fit,
and its p;. A cluster can be shared by no more than two track candidates, therefore tracks with the
highest score are given precedence for keeping the shared cluster. Track candidates are rejected if
they have pr < 400 MeV, |g| > 2.5, and < 7 clusters.

At this point the TRT hits are considered. The track seeded from pixel and SCT hits is extrap-
olated outwards to find compatible TRT hits. If compatible hits are found and their addition to the
track improves its score, the TRT information is added to the track [54].

The track reconstruction efficiency measured in MC simulation as a function of the initial par-
ticle’s p; is shown in Figure [3.11| which is taken from Reference [49]. At low py, the track recon-
struction efficiency reaches a maximum of around 95% which degrades to between 70% and 90%
depending on the number of charged particles in the vicinity of the measured track. Figure [3.11]
also shows the track reconstruction efficiency of tracks inside jets as a function of the separation
between the track and the jet, A R(jet, particle). The maximum reconstruction efficiency for these
tracks is around 95%. For high-p; jets and low separations corresponding to the centre of the jet
where the density of charged particles is high, the efficiency drops to as low as 80%.

Vertices

A vertex seed is found by extrapolating tracks which pass quality criteria back to the beam line to
look for an intersection. The vertex seed and the tracks are iteratively fitted and tracks found not to
be compatible based on an assigned weight are removed [55]. To find other vertices in the event,
this process is repeated for the remaining tracks until there are no more vertices left to be found or
no more tracks. The primary hard-scatter vertex is defined as the vertex with the highest sum of its

associated tracks’ p3.

3.4 Electrons

3.4.1 Reconstruction

Electron reconstruction uses information from both the ECAL and the ID. Localised energy clusters
in the ECAL are used to measure the energy of the electron, and charged particle tracks measured

in the ID are used to define the direction of the electron at the interaction point. The first step
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Figure 3.11: The track reconstruction efficiency as a function of a) the initial parent particle pr,
where the particular parent particle and decays considered are shown in the legend, and b) the
separation between the track and a jet, A R(jet, particle), for tracks reconstructed within a jet, where
the p; of the jet considered is shown in the legend. These plots were taken from Reference [49].

in the reconstruction is finding the EM clusters, known as seed-cluster reconstruction [56]. The
ECAL is divided into a grid of towers, each of size Ay X A¢ = 0.025 X 0.025 which matches the
granularity of the middle layer of the calorimeter. A sliding-window algorithm is used to find EM
cluster candidates [57]]. A cluster is formed when the window of size 3 X 5 towers contains energy
deposits with a total transverse energy above 2.5 GeV. The next step is ID track-reconstruction,
starting with a pattern recognition algorithm. A pion or electron hypothesis is used to model the
energy loss due to bremsstrahlung by default. If a track seed with p; > 1 GeV cannot be extended
to a full track with at least seven silicon hits, and it forms within a loosely defined EM cluster ROI,
then the electron hypothesis is used allowing up to 30% energy loss per intersection. The track
candidates are fit using a y>-fitter [58] which resolves any ambiguities relating to tracks sharing
hits. A final fitting procedure, an optimised Gaussian-sum filter [59]], is applied to better account
for bremsstrahlung effects. The final step is applying a matching procedure to the cluster and track.
The tracks are considered matched to EM clusters if they are within Ay < 0.05 and A¢ < 0.05 of

the cluster.

3.4.2 Identification

The signature of prompt electrons can be mimicked by background processes which include elec-
trons from photon conversions, electrons from heavy-flavour hadron decays, and jets which mimic

electrons. A likelihood-based identification procedure is used to distinguish the signal electrons
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from backgrounds [56]]. The probability density functions (pdfs) of discriminating variables in
both the signal and background are used to construct likelihoods. The signal and background like-
lihoods, Lg and Ly, are defined as

Le() = [ Pestxp. (3.6)
i=1

where X is the vector of the discriminating variables, and P (x;) (C € S, B) are the signal/background
pdfs for the i’th discriminating variable. Some examples of discriminating variables used in this
procedure are track quality, TRT radiation and track-cluster matching. For each electron candidate,

these likelihoods are used to form the discriminant, d; , defined as:

L

d = —> 3.7
Lo+ Ly S

Working points are defined based on this discriminant. These working points are Loose, Medium,
and Tight, where the cut on d; increases between Loose and Tight. The Tight working point gives
the highest background rejection at the expense of decreased signal acceptance, whilst the converse
is true for the Loose working point. The efficiencies of these working points are measured in data
using a tag-and-probe method in J/y — ee and Z — ee events, where one electron is tagged and
the efficiency of selecting the other electron/positron is probed. As an example, for an electron with
80 < p; < 150 GeV the Tight, Medium, and Loose working points have identification efficiencies
of 90%, 94%, and 96% respectively.

3.4.3 Isolation

Electrons from background processes such as heavy hadron decays tend to be surrounded by the
other particles from the decay, therefore isolation requirements are enforced on electrons to help

distinguish the signal from background [56]]. The isolation variables used are:

e E™, which is a calorimeter-based variable and is defined as the sum of the transverse energy
of topological clusters (which are defined in Section [3.6.1)) found within a cone of radius
AR = 0.2 around the electron candidate,

varcone

[ pT
of tracks passing quality requirements found within a variable radius cone around the electron
track. The cone radius is defined by AR = min(10/p;[GeV], R

electron p; increases.

, which is a track-based variable and is defined as the sum of the transverse momentum

max) and it decreases as the
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Isolation selection criteria, referred to as working points, are defined based on the ratio of these
variables with the electron p;. The working points relevant for analyses in this thesis are Loose,
which is defined such that the efficiency is fixed for uniform electron p; and 5, and Gradient, which
is defined such that the efficiency is fixed for uniform p but not #. There is an additional working
point, LooseTrackOnly, which has the same definition as Loose but only the track-based isolation
variable is used. The isolation efficiencies for the Loose and LooseTrackOnly working points are
98% and 99% across the whole electron p; range. For the Gradient working point, the efficiency is
90% for an electron with p; = 25 GeV, rising to 99% for p; = 60 GeV.

3.4.4 Systematic uncertainties

Electron calorimeter energies are calibrated to the true electron energy in simulation, the details
of which can be found in Reference [60]. Any discrepancies between the energy scale and reso-
lution in the simulation with respect to the data are corrected using scale-factors which are used
to re-scale the measured energies. There are systematic uncertainties associated with the calibra-
tion procedure arising largely from uncertainties in the measurement of the electron energy by the
calorimeter. In addition to the calibration, the efficiency of selecting leptons in MC simulation,
including reconstruction and application of the isolation and identification working points, is cor-
rected using scale-factors derived from data using the tag-and-probe method in J/y — ee and
Z — ee events [56]. In this method, an electron selected using strict identification requirements
is considered as the "tag", and the other electron in the event is considered as the probe; efficiency
measurements are made on the probe electron. These scale factors also have associated statisti-
cal uncertainties and systematic uncertainties arising from the procedure, which are encoded as

alternative scale-factors.

3.5 Muons

3.5.1 Reconstruction

Muons are identified in the ATLAS detector using information from the muon spectrometer, the
inner detector, and the calorimeters. Muon track reconstruction is performed independently in the
inner detector and muon spectrometer. In the muon spectrometer, a candidate track is formed from
the combination of track-segments in its different layers. This combination occurs by performing a
x° fit to the hits in the segments [61].
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Muons can be categorised into four types based on the particular sub-detectors used for its

reconstruction:

e Combined muon (CB) tracks are formed from a combined fit to the hits from the independent

tracks reconstructed in the inner detector and the muon spectrometer.

o Segment-tagged muon (ST) tracks are formed from the combination of an ID track and at least

one matching track-segment in the MDT or CSC chambers.

e Calorimeter-tagged muon (CT) tracks are reconstructed from an ID track which has a match-

ing energy deposit in the calorimeter compatible with a muon.

e Extrapolated muon (ME) tracks are reconstructed from only a MS track which is compatible

with originating from the interaction point.

The CB muon takes precedence over the other types if there are any overlaps. Other muon types
are designed to recover muons which would not have been detected due to their low p; or because
they fell in a region of reduced acceptance in the MS, or to extend the reconstruction acceptance
past the # limits of the ID.

3.5.2 Identification

A prompt muon is produced at an interaction point and may come from the decay of a W or Z
boson, to name a few examples. Muons from other sources are non-prompt and are considered
as backgrounds. Sources of these non-prompt muons include the in-flight decays of pions and
kaons, a charged hadron punching through the calorimeters and being detected in the muon system,
and semi-leptonic decays of heavy-flavour hadrons. A set of identification criteria can be applied
to distinguish prompt muons from these backgrounds [61]. The main background comes from
the muons originating from in-flight hadron decays, which are characterised by having a bend in
their reconstructed track resulting from the displaced decay vertex of the hadron. This bend tends
to result in poor fit quality and incompatible momenta measurements made in the MS and ID.

Variables which encompass these differentiating features are:

e the g/p significance, which is defined as the absolute difference between the charge (¢q) to
momentum (p) ratio of muons measured in the ID and in the MS, divided by the quadrature-

sum of the corresponding uncertainties;

e /', defined as the absolute value of the difference between the transverse momentum mea-

surements in the ID and MC divided by the p; of the combined track;
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e normalised y? of the combined track fit.

There are also requirements on the number of hits in the ID and MS for a given track. Identification
working points are defined based on these variables. These working points are Loose, Medium, and
Tight. The Tight working point gives the highest background rejection at the expense of decreased
signal acceptance, whilst the converse is true for the Loose working point. For a muon with a py
between 20 and 100 GeV, the identification efficiencies of the Loose, Medium, and Tight working
points are 98.1%, 96.1%, and 91.8% respectively.

3.5.3 Isolation

Prompt muons are mostly produced isolated from other particles in the event which means that
measuring the detector activity around a muon candidate can help to distinguish it from background

muons [61]. Two variables are defined to serve this purpose:

varcone30
T

of tracks within a cone of size AR = min(10 GeV/pf., 0.3) surrounding the muon candidate,

e A track-based isolation variable, p , which is the scalar sum of the transverse momenta

where p? is the muon’s momentum.

topocone20
ETp

e A calorimeter-based isolation variable, , which is the sum of the transverse energy

of topological clusters in a cone of size AR = 0.2 around the muon.

Isolation working points are defined using the ratio of these isolation variables to the transverse
momentum of the muon itself. The working points relevant to the work presented in this thesis
are: LooseTrackOnly which is defined by a cut on p}am"“e” / P’f and is 99% efficient for all # and
pr: and Gradient which is defined by cuts on py<°"** /p/ and E;Opoconezo /Pl and is 90% efficient at
ph =25 GeV rising to 99% for pj. > 60 GeV.

3.5.4 Systematic uncertainties

The muon momentum scale and resolution are calibrated such that the MC simulation describes the
data correctly. This calibration is carried outin J/w — up and Z — up events where a fit is used to
extract correction scale-factors, as described in Reference [61]. Systematic uncertainties arise from
this procedure which come from varying the parameters of the fit. Similarly, measurements of the
reconstruction, isolation, identification and trigger efficiencies are made in data and MC using the
tag-and-probe method in J/yw — uu and Z — up events [61]. Any discrepancies found between
data and MC are corrected for using scale factors, where systematic uncertainties are introduced by

these corrections.
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3.6 Jets

3.6.1 Reconstruction

Proton-proton collisions produce a large number of quarks and gluons which immediately hadronise
into a collimated shower of particles. These are reconstructed and referred to as "jets". Jets are a
very useful tool for approximating the kinematics of the hadronic final states which are typical at
the LHC. Jets can be categorised based on their constituents: calorimeter jets are built from energy
deposits in the calorimeter and track-jets are built from ID tracks. Truth-jets can also be defined
which are built from stable, final-state particles in MC generators.

Specifically, the building blocks of calorimeter jets are topological clusters (topo-clusters) of
energy deposits in the calorimeters [62]. The topo-clusters are formed by collecting calorimeter

cell signals according to their energy significance, defined as

S _ Ecell (3 8)
ell — ’ .

Ci

noise, cell

where E

cell

is the energy deposited in the cell and o,

noise, cell

is the cell’s average expected background
noise arising from pile-up or electronic noise sources. These components are measured on the EM
scale meaning that the energy deposits from electrons and photons are reconstructed correctly but
the hadron energy deposits are not.

The algorithm to build the topo-clusters begins by collecting all calorimeter cells with a signal
> 2

significance passing S,

> 4, which are the seeds. Cells neighbouring a seed which have S,
are iteratively added until the final neighbours have S, > 0. Finally, the clusters are corrected to
the hadronic scale using a local hadronic cell weighting scheme (LCW) [62]]. This is a calibration
derived from MC which corrects for: the "non-compensating" nature of ATLAS calorimeters, where
the signal for a hadron is lower than that of an electromagnetic particle despite depositing the same
energy, and signal losses due to noise-suppression in topo-cluster formation & inactive calorimeter
material.

The final topo-clusters are clustered using the anti-k, jet-algorithm [63]] to reconstruct the jets.

This is an iterative algorithm which is based on two distance measures defined as

A?
d; = min(k;’, k’ = (3.9)
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which is the distance between two clusters, and
dip = k. (3.10)
which is the distance between a cluster and the beam. In these equations, Al.zj is defined as
AL ==y + (@~ ¢), (3.11)

where k,; is the transverse momentum of cluster i, y; is the cluster’s rapidity, ¢, is its azimuthal
angle and R is the radius parameter of the jet. The variable p is a parameter of the algorithm which
governs its behaviour. For p = —1, the equation represents the anti-k, algorithm, p = 1 corresponds
to the inclusive k, algorithm, and p = 0 corresponds to the Cambridge-Aachen algorithm.

The algorithm begins by calculating d;; and d;p for all of the clusters. Cluster i and cluster
J are combined if the smallest distance found was d,;. The distances are then recalculated using
this new cluster. On the other hand, if the smallest distance was d, g, then cluster i is considered
to be a complete jet and is removed from the procedure. This process is continued until all of the
clusters have been clustered into jets. The behaviour of the algorithm is such that soft particles
tend to cluster with hard particles before they cluster together. This suppresses soft-particles from
influencing the shape of the jet, whilst hard particles dominate. In practice this means that jets built
using the anti-k, algorithm are circular, whilst jets built using the k,-algorithm can have irregular
boundaries due to the influence of soft particles. This is demonstrated in Figure [3.12] The benefit
of circular jets is that they are compatible with ATLAS jet trigger algorithms.

To reconstruct the track-jets, the anti-k, jet-clustering algorithm is used as described above but
the inputs are ID tracks rather than topo-clusters. There are two different jet collections used in
analyses presented in this thesis: R = 1.0 calorimeter jets (which are referred to as large- R jets),
and R = 0.2 track-jets. ATLAS also makes use of calorimeter jets clustered with R = 0.4 and
"reclustered" jets with R = 1.0 which are built from calibrated R = 0.4 jets.

3.6.2 Large-R jets
Trimming

At high p, the jets produced from a two- or three-body decay can start to merge, making it difficult
to resolve them using standard R = 0.4 calorimeter jets. This effect is generically referred to as
"boosting". To capture the decay products, a larger radius of R = 1.0 is used during jet reconstruc-

tion. However the larger radius of the large- R jet means that it is more likely to be contaminated
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Figure 3.12: A comparison of jet shapes when built using a) the k,-algorithm and b) the anti-k,-
algorithm. Jets built using the latter tend to have regular, circular shapes whilst jets built using the
k,-algorithm have irregular boundaries due to the influence of soft-particles [64].

with soft energy clusters originating from multiple partonic interactions within the signal pp colli-
sion (the "underlying event"), pile-up interactions, and extra QCD radiation. Since we are primarily
interested in the hard-scatter signal process, these soft components must be removed.

The technique used to do this is called "trimming" [65]]. The constituents of the large-R jet are
re-clustered using the inclusive-k, algorithm described by Equations[3.9)and[3.10] to build R = 0.2
sub-jets. Sub-jets with a p; less than 5% of the p; of the original jet are discarded.

Calibration

A calibration is performed to restore the energy and mass of the jet to the truth jet energy scale.
The calibration accounts for effects such as calorimeter non-compensation, where the response of
the hadronic calorimeter is lower than the electromagnetic calorimeter, energy deposits which don’t
pass noise thresholds, and energy deposits which fall outside of the calorimeter acceptance [66].
Firstly, a jet energy scale (JES) calibration derived from MC simulation is applied to the jet
which accounts for the calorimeters response to the true jet energy and corrects the jet four-momenta
to the particle-level energy scale. Following this, an analogous jet mass scale (JMS) calibration is

applied to correct the jet mass to the particle-level mass.
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Systematic uncertainties

The large- R jet energy scale (JES) and jet mass scale (JMS) uncertainties are derived by comparing
the ratio of kinematic variables (e.g mass or p;) of calorimeter jets to track jets, in data and MC

simulation. The ratio _
calo-jet

Pr
ri = track-jet (3.12)
T

is constructed for both MC and data. Since the track jets and calorimeter jets are affected by un-
correlated systematic effects, the physics — which is correlated — can be separated from the detector
systematic effects by comparing variables between the two jet collections. The dependence on the

double ratio comparing data to MC,

(3.13)

on the variable p; in this example, is used to determine the uncertainty associated with the calibra-
tion [|67]][68]].

The uncertainties are split into four components which account for the difference between data
and simulation, the parton shower modelling differences, uncertainties relating to the reference
tracks used in the ratios, and the statistical uncertainty on the measurement. The uncertainty in the
jet mass resolution (JMR) is estimated by smearing the jet mass such that its resolution is reduced

by 20%, and for the jet p; resolution (JER), an absolute uncertainty of 2% was recommended [|69].

3.7 b-tagging

The ability to identify jets containing b-quarks, referred to generically as b-tagging, is of crucial
importance for many analyses; two particular examples being described in Chapters [5|and [6] It is
made possible by the fact that b-flavoured hadrons have unique decay properties which help to dis-
tinguish them from other hadrons. In ATLAS there are three baseline algorithms which exploit these
properties. Their distinguishing power is condensed into a single discriminant using a multivariate
algorithm, described in Section n

3.7.1 Baseline algorithms

All of the baseline algorithms described in this section use information about the tracks associated
to the jet. Tracks are associated to the jet based on their angular separation, A R(track, jet), where

the limit varies as a function of the jet p; to account for the increased collimation of high p; b-
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hadron decay products. A track can only be associated to one jet, so if it satisfies the association
requirement for more than one jet then it is associated to the closest jet. Tracks are also required to

pass quality requirements which differ depending on the particular algorithm being used [70].

Secondary vertex tagger

The main exploited feature of the b-hadron decay is its long lifetime. With a lifetime of around
1 ps, b-hadrons tend to travel distances of order 1 mm before decaying which means it is possible
to resolve a second decay vertex displaced from the primary interaction vertex using inner detector
tracks. The baseline algorithm which exploits this property is the inclusive secondary vertex (SV)
algorithm. The algorithm uses tracks associated to a jet to construct two-track vertices. After
discarding vertices consistent with light-hadron decays, these two-track vertices are combined to
construct a single vertex. An iterative y? fit is applied to this vertex, which removes incompatible
tracks until the vertex passes defined quality criteria. The properties of this secondary vertex can

be used to distinguish b-jets from other jets.

Jet fitter

b-hadrons most commonly decay to c-hadrons since the CKM matrix element |V, |> > |V,,|?,
which means a third decay vertex coming from the c-hadron decay can also be resolved in addition to
the secondary vertex. A multi-vertex reconstruction algorithm called jet fitter (JF) reconstructs the
full b-hadron decay chain using these vertices and their properties. Properties of the reconstructed

decay chain are the resulting discriminating variables from this algorithm.

Impact parameter taggers

Additional features used to distinguish b-jets are the signed impact parameter significances of the
tracks in the jets. The impact parameter of a track is defined as its point of closest approach to the
primary vertex. There are two components: the transverse impact parameter, d,,, which is measured
in the r-¢ plane, and the longitudinal impact parameter, z,,, which is measured in the z-direction.
The impact parameters are signed such that they are positive if the track crosses the jet-axis in front
of the primary vertex, and negative if they do not [71]]. Their significances are defined as d,/ 04,
and z,/c, , where o, is the uncertainty on d,, and o, is the uncertainty on z,. Tracks originating
from b/c-hadrons tend to have positively signed impact parameters and tracks originating from a

b-hadron tend to have a higher average decay length significance compared to those originating
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from c-hadrons and light particles. Probability density functions (pdf of the signed significances
are used to construct likelihood ratios for different jet-flavour combinations. The tagger named
IP2D uses only the transverse significances in the pdfs whilst the tagger named IP3D uses both
the transverse and longitudinal significances in the pdfs. The output of each likelihood ratio is the

resulting discriminating variable from these taggers.

3.7.2 MV2c10 algorithm

Each of the individual baseline algorithms provide a degree of separation between the different
flavoured jets, however they are more powerful when they are combined into a single discrimi-
nant using a multivariate algorithm. The algorithm and resulting discriminant used for analyses
presented in this thesis is MV2c10 [70].

The MV2c10 algorithm uses a boosted decision tree (BDT) trained to discriminate b-jets from
c/light- jets using simulated #f events. The discriminating variables from the individual baseline
taggers are the input parameters to the BDT. In the training sample, b-jets are assigned as the signal
and c- and light- jets as the background. The background is composed of 7% c-jets and 93% light-
jets [72]]. The composition of c- and light-jets in the background can be changed to alter their
respective rejection rates. This configuration was chosen as it was found to give sufficient c-jet
rejection whilst maintaining high light-jet rejection. At the 70% b-tagging efficiency working point
for track-jets, the measured c-jet rejection rate, defined as the inverse of the c-jet tagging efficiency,
is 7.09 and the light-jet rejection rate is 119 [[73]].

A cut on the MV2c10 discriminant corresponds to a particular b-tagging efficiency working
point. The BDT is trained separately for each jet collection meaning the values of MV2c10 corre-

sponding to a particular working point differ between jet collections.

3.7.3 Truth-flavour labelling

To check that a jet identified as a b-jet according to the MV2c10 algorithm really was a b-initiated
jet, a flavour-labelling scheme where a truth-level hadron is matched to a jet can be used. A final-
state, weakly-decaying hadron with p; > 5 GeV is matched to a jet if it is within AR < 0.2 of the
jet. A hadron may be matched to one jet only therefore the hadron is matched to its closest jet if
there is more than one candidate. The jet can therefore be identified as b-initiated if a b-hadron is

matched, c-initiated if a c-hadron and no b-hadron is matched, and light if there is no ¢ or b hadron

ZNote that the lower-case version of this acronym as presented here refers to a generic probability distribution
function, whilst the upper-case version of the acronym PDF refers to a parton distribution function
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matched to the jet.

3.7.4 Systematic uncertainties

The b-tagging efficiency in simulation is calibrated to the data using scale-factors. For jets which
are not b-tagged, an inefficiency scale factor is also applied.The systematic uncertainties associated
with the calibration arise due to detector effects and uncertainties from 7 modelling. Details of the

calibration and associated uncertainties are given in Chapter 4]

43



Chapter 4

Calibration of the b-tagging efficiency in
track-jets

Many important physics analyses rely on b-tagging algorithms to identify b-quarks in the final
state. These algorithms exploit the unique properties of b-hadron decays to identify them within a
jet, as described in Chapter Their performance is evaluated by measuring the efficiency of the
algorithm to select b-flavoured jets — referred to as the b-tagging efficiency. Since the algorithms
are developed and trained using MC simulated events, they may perform differently in the data.
To compensate for these potential discrepancies, a calibration is performed to derive per-jet scale-
factors which correct the b-tagging efficiency in MC, €, to that in data, €,,,,. For a tagged jet, the

scale factor is defined as

b = daa 4.1)
MC
Scale-factors also exist for un-tagged jets. These are known as inefficiency scale-factors and are
defined as —

s=—— eMl‘zC. 4.2)
The total scale factor for a given MC event is the product of the individual jet scale-factors for each
jet in the event.

There are two main methods used to carry out a calibration: the combinatorial likelihood
method and the tag-and-probe method. The combinatorial likelihood method uses a likelihood
formalism to extract the b-tagging efficiency [72]]. This leads to a more precise measurement of
the efficiency as it retains event-level jet correlations. The tag-and-probe method uses a sample of

probe jets to measure the b-tagging efficiency. This chapter focuses on the details of the tag-and-
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probe method and how it was used to calibrate the b-tagging efficiency of the MV2c10 algorithm in
track-jets. The event selection and details of the data and samples used to perform the measurement
are given in Sections .1)and #.2] Following this, the use of the the tag and probe method to mea-
sure the efficiency is described in Section[4.3] Comparisons between the data and MC predictions
and an outline of the systematics uncertainties considered in the analysis are then given, before

presenting the results in Section {.6]

4.1 Event selection

The semi-leptonic decay mode of the top-quark to a b-quark, t — Wb, has a branching fraction
of 99.9%. The calibration analysis was therefore performed using 7 events as they provide an
abundant source of b-jets to study. To select these di-leptonic #7 events, exactly one electron and
exactly one muon with opposite charge were required. The opposite-charge and different-flavour
requirements reduced contamination from background processes. Similarly the ee and uu decay
modes were not targeted as these suffer from additional backgrounds from Z+ jets. To target the
two b-jets from the #f decay, exactly two track-jets were required. At least one of these was required
to be b-tagged. Whilst it was initially thought that requiring exactly two track-jets would be a rather
strict requirement, it was found that there was roughly a 1:1 correspondence between the number of
track-jets in an event and the number of small-radius calorimeter jets. The kinematic requirements

on the objects used in the selection are detailed below.

Leptons: The electron was required to be in the fiducial region of the EM calorimeter (|| < 1.37,
1.52 < |n| < 2.5) and have p; > 28 GeV. The muon was required to have p; > 28 GeV and
|n] < 2.5. Both the electron and the muon were required to pass the Medium identification
criteria. They were also both required to be isolated according to the Gradient isolation

working point. The leptons were required to be identified by single-lepton triggers.

Track-jets: The track-jets were required to have p; > 10 GeV and || < 2.5. For the remainder of

this chapter, the track-jets will be referred to generically as "jets".

b-tagging: The b-tagging was performed using the Mv2c10 algorithm, described in Section
The requirement was that the jet must have MV2c10 > 0.6455, corresponding to the 70%
b-tagging efficiency working point.
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4.2 Data and MC samples

Data collected during Run-2 at the LHC in 2015 and 2016 at centre of mass energy \/E =13 TeV
were used to perform this calibration. Only events recorded when all components of the detector
were fully functioning were used. The data sample corresponds to an integrated luminosity of
36.1 fb".

MC samples were used to simulate the signal and background processes. The sources of back-
ground considered were single top production in association with a W boson (W't), which is the
dominant non-tf process, Z+ jets where the Z decays via Z — t7, where one tau lepton decays
to an electron and two neutrinos and the other tau lepton decays to a muon and two neutrinos, and
finally diboson production (WW, ZZ, W Z) where both bosons decay leptonically. The matrix
element generators, parton shower generators, and PDFs used to provide simulations for each of
these processes are summarised in Table 4.1} In each case, the samples were normalised to the
highest cross section available for the given process. In the samples interfaced with PYTHIA8 and
HERWIG, the program EVTGEN was used to simulate the decays of bottom and charm hadrons [74].
Each sample was processed using GEANT4 which simulates the ATLAS detector [75]]. The #f sam-
ples listed as "alternative" in Table [4.1| were used to asses systematic uncertainties related to the

modelling of the signal, as described in Section4.5]

4.3 The tag-and-probe method

The tag-and-probe method relies on the expectation that there are at least two b-jets in the event
coming from the top-quark decays, as shown in Figure[d.1| As described in Section[4. 1], only events
with exactly two jets where one of them was b-tagged were selected. The b-tagged jet was defined
as the "tag-jet" and the second jet in the event was considered to be the "probe-jet". The b-tagging
efficiency measurement was performed only on the probe-jets to avoid any bias from enforcing a
tag, but the presence of the tag-jet increased the probability that the probe-jet would also be a b-jet,
which helped to achieve high b-flavour purity in the probe-jet sample.

In events where only one jet was b-tagged, the probe-jet was defined as the non b-tagged jet.
When both jets passed the b-tagging requirements, they were each considered as probe-jets. It
was investigated whether including events with three jets would benefit the analysis, however this
resulted in a reduced purity of the probe-jet sample as the extra jets tended to have light or c-flavour,
therefore it was decided that the gain in statistics was not worth the reduction in purity. Figure 4.2]

shows a comparison of the predicted probe-jet flavour fractions as a function of the jet p; in two-jet
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Process Matrix element Parton shower PDF set Other packages /

additional details

Nominal
1t POWHEG PYTHIA6 CT10 Perugia 2012 tune
hdamp = My
Wt POWHEG PYTHIAG CT10 Perugia 2012 tune
Diboson SHERPA 2.1.1 SHERPA 2.1.1  CTIO
Z+jets POWHEG PYTHIAS CT10
Alternative
tt MADGRAPHS_AMC@NLO HERWIG ++  CTI10
1t POWHEG HERWIG ++  CT10
tt (radLo) POWHEG PYTHIAG CT10  Perugia 2012 radLo tune
hdamp = Mgy
1t (radHi) POWHEG PYTHIAG CT10  Perugia 2012 radHi tune

hdamp = 2mtop

Table 4.1: Details of the nominal and alternative samples used to simulate the signal and back-
ground processes. The hy,,,, parameter is a variable which controls the cut-off scale for first-gluon
emission in the parton shower.

events and three-jet events from different MC samples. This comparison shows that the probe-jet
b-purity decreased by around 20% across all of the jet-p; bins. In fact in the three-jet events, the
fraction of light-flavour jets even exceeded the fraction of b-flavour jets in the lowest jet-p; bin. In

the two-jet events, the b-jet purity reaches a maximum of around 90 %, falling off again at high p;.

4.3.1 Light-jet subtraction and efficiency measurement

The probe-jet sample can be contaminated with light/c-flavour jets due to contributions from back-
ground processes, or if the second b-jet from the 7 decay fell outside of the experimental acceptance.
A data/MC comparison of the MV2c10 distribution of probe-jets is shown in Figures #.3(d)| and
4.4l where the contamination of light/c-flavour jets in the data sample can be seen. The probe-jet
sample was required to consist only of b-jets for the efficiency measurement, therefore a light-jet

subtraction was performed to remove this contamination.
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Figure 4.1: A Feynman diagram showing ¢ production and the subsequent decays of the top quarks
into b-quarks and W -bosons. The b-quarks are reconstructed as b-jets and selected as either a tag-jet
or a probe-jet.
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Figure 4.2: The flavour-fractions of the probe-jets as a function of the probe-jet p; in a) two-jet
events and b) three-jet events. The probe-jet purity is worse in three-jet events, dropping by ap-
proximately 20% in all p; bins. In the two-jet events, the purity increases with jet-p until around
100 GeV where it flattens and drops off by around 10%.
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The light-jets were subtracted from data using the predicted light-jet flavour fraction, (1 — f,),
where f, is the b-jet purity, measured from the MC as shown in Figure The subtraction was
carried out bin-by-bin in the MV2c10 distribution, where the bin number is denoted by i, according
to the following equation:

T = pfe - N - f) e (4.3)

i i tot

The corrected b-jet yield in data, n{°", was obtained by subtracting the light-jet contribution from the
original observed number of probe-jets, n?a‘a. The light-jet prediction was obtained by multiplying
together the unit-normalised number of light-flavour jets in MC, ﬁiight, the total number of probe-jets
in data across all bins, N, [C(‘)‘:‘a, and the light-jet fraction. The unit-normalised prediction was altered

using the total data yield to avoid the results being affected by the absolute MC prediction of the
yield.

4.3.2 Measuring the b-tagging efficiency

From the corrected sample of probe-jets in data obtained from the light-jet subtraction, the cumu-

lative efficiency as a function of the cut on the MV2c10 discriminant was computed using

Z’_’ma_x peort
j=i i

r"max peorr >
j=1 "

4.4)

where n,,, = 50 is the number of bins in the MV2c10 distribution. The resulting distribution gave
the efficiency of selecting a b-jet as a function of the proposed cut on the MV2c10 discriminant.
This calculation was carried out for both the data and the MC and any discrepancies between the
two were used to derive correction scale-factors to be applied to the MC. The results are presented
in Section 4.6l

4.4 Detector-level comparisons

Comparisons between the data and MC prediction for kinematic variables of the physics objects
used in the analysis are presented in this section. Figure 4.3 shows the multiplicity of b-tagged
jets in each event, and the p;, MV2cl10, and # of the probe-jet. From these plots it can be seen
that there is good agreement between the data and the MC prediction. The exception to this is the
MV2c10 distribution, where disagreement between the data and MC prediction is observed at low
values of MV2c10, corresponding to light-flavour jets. This effect was attributed to mis-modelling

of the impact-parameter discriminant and its effects were accounted for by the light-jet calibration
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scale-factors. Since the mis-modelling occurred for MV2c10 values < —0.4, it had a minor effect
on the tag-jet given that the jet was required to have MV2c10 > 0.6455.

The uncertainty bands in these plots correspond to the quadrature sum of the detector modelling
uncertainties described in Section[4.5] and the MC statistical uncertainties. Additional lines for the
alternative tf models are included in the plot. The error bars on the data points are the statistical

uncertainties on the data.

4.5 Systematic uncertainties

There were two types of systematic uncertainty considered in the analysis: uncertainties relating to
the modelling of the signal, and experimental uncertainties related to the detector performance. The
effects of the systematic uncertainties on the scale-factors were assessed via their influence on the
predicted light-jet fraction used in the light-jet subtraction procedure described in Section [4.3.1]
For each systematic uncertainty, there was a representative varied MC-prediction (either from a
different MC sample, or alternative scale-factors applied to the nominal) and hence a varied pre-
diction of the light-jet fraction. The light-jet subtraction procedure was carried out for each of
these systematically-varied predictions, and the resulting efficiency was calculated following the
procedure described in Section[4.3.2] This resulted in an efficiency for each systematic uncertainty.

For each signal-modelling variation, the absolute difference between the corresponding varied-
efficiency and the nominal efficiency was defined as the uncertainty, unless stated otherwise. For
the detector-modelling systematics, there were up and down variations for each systematic, cor-
responding to an increased and decreased effect with respect to the nominal prediction. Varied
efficiencies were derived for both the up and down variation, then the maximum difference be-
tween the nominal and these variations was taken as the uncertainty. To get the final uncertainty
on the scale-factors, each of these components for both detector-uncertainties and modelling uncer-
tainties were added in quadrature. The particular effects considered are described in the following

sections.

4.5.1 Signal modelling

Systematic uncertainties relating to the modelling of the ¢ signal were derived using MC-predictions
from alternative MC generators. The different aspects of the modelling for which uncertainties were

estimated were:

e Parton shower modelling: the uncertainty was estimated using an alternative MC sample
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ment includes systematic uncertainties related to detector effects and MC statistical uncertainties.
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with a different parton shower model, POWHEG+HERWIG++.

e Matrix element calculation: the nominal sample used a LO matrix element calculation. To as-
sess the difference when using a NLO matrix element calculation, the POWHEG+HERWIG++
sample was compared to the MADGRAPH5_AMC @ NLO+HERWIG++ sample.

e Parton shower radiation: the nominal #f sample was compared to similar samples with differ-

ent tunes which simulated enhanced or suppressed radiation in the parton shower.

4.5.2 Detector uncertainties

Detector uncertainties are considered to reflect our imperfect understanding of the performance of
the detector and reconstruction techniques. The aspects of experimental uncertainty considered in

this analysis were:

e Light/c-flavour efficiency calibration uncertainties: since the light-jet flavour fraction was a
key part of the efficiency measurement, uncertainties relating to the light and c-flavour jet

efficiency calibration were assessed.

e Lepton reconstruction effects: uncertainties relating to electron and muon reconstruction
were assessed. The specific components considered were uncertainties in the lepton en-
ergy/momentum scale and resolution, lepton identification efficiency, lepton isolation effi-

ciency, and the lepton trigger efficiency.

e Luminosity: an uncertainty of 2.1% was assigned for both 2015 and 2016 data, derived by a
calibration of the luminosity scale using x—y beam-separation scans, following a methodol-

ogy similar to that detailed in Reference [76].

e Pile-up: to account for the effects of pile-up, a reweighting was applied to the MC. The
uncertainty associated with the pile-up reweighting procedure was evaluated by varying the

scale-factors used to perform the reweighting.

4.6 Results

The calibration results were derived as a function of jet-p;. Scale-factors were derived for five jet-

py bins, therefore the MV2c10 distributions were split accordingly into five regions according to
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Efficiency working point [%] MV2c10

60 0.8529
70 0.6455
77 0.3706
85 -0.1416

Table 4.2: The MV2c10 values corresponding to each fixed-cut efficiency working point.

the py of the probe-jet, as shown in Figure .4l The light-jet subtraction described in Section [4.3.1]
was then performed in each of these regions to get the "corrected" distributions.

From each of these corrected MV2c10 distributions corresponding to each jet-p; bin, efficiency
distributions were derived according the procedure described in Section 4.3.2] From these, the
efficiencies at MV2c10 values corresponding to each fixed-cut working point, shown in Table 4.2}
were extracted for both the data and MC. These efficiencies were plotted as a function of p; for
each working point and are shown in Figure

Finally, the scale-factors were derived by taking the data/MC ratio of these efficiencies. The
resulting plots are shown in Figure 4.6] and the scale factors along with the breakdown of their
uncertainty are given in Tables [4.3] to [4.6] It can be seen that in general all of the scale-factors
were consistent with unity across all of the working points, with the exception of the lowest p bins
for the 85% working point. In this case, this is because this working point is most affected by the
MV2c10 mis-modelling of light-jets described earlier. For each scale factor derived, the largest
contributor to the total systematic uncertainty was the tz-modelling uncertainty.

These results were an important cross-check for the scale-factors derived using the alternative
likelihood calibration method, the results of which are also displayed in Figure .6|for comparison.
Since it is the more precise method, the likelihood calibration method provides the scale-factors
which are used by analyses, however it is important that the results are validated using the tag-and-
probe method.
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pr [GeV] 10-20 20-30 30-60 60-100 100-250
Scale factor 1.035 1.011 0.988 0.989 0.960

Total unc 0.035 0.027 0.025 0.024 0.064
Data stat 0.011 0.009 0.005 0.007 0.013
MC stat 0.010 0.007 0.004 0.005 0.009

Detector modelling 0.013 0.004 0.002 0.002 0.003
1t modelling 0.030 0.024 0.024 0.022 0.061

Table 4.3: The resulting per-bin scale-factor and associated uncertainties split by category for the
60% fixed-cut efficiency working point.

pr [GeV] 10-20 20-30 30-60 60-100 100-250
Scale factor 1.030 1.007 0.986 0.988 0.957
Total unc 0.037 0.026 0.025 0.023 0.061
Data stat 0.008 0.007 0.004 0.006 0.012
MC stat 0.007 0.006 0.003 0.004 0.007

Detector modelling 0.016 0.003 0.002 0.002 0.002
1t modelling 0.032 0.025 0.024 0.022 0.059

Table 4.4: The resulting per-bin scale-factor and associated uncertainties split by category for the
70% fixed-cut efficiency working point.

4.7 Summary

The results of the b-tagging efficiency calibration for the MV2c10 algorithm in track-jets have been
presented. Using the tag-and-probe method, the calibration was carried out targeting tf events
and used the combined 201542016 dataset. The scale-factors for each b-tagging working point
were derived and presented. They were found to be largely consistent with unity. The results were
compared to scale-factors derived using the likelihood method, which is the method used to provide
the default scale-factors used by analyses [72]. The scale-factors were found to be consistent within

the respective uncertainties, therefore providing an important validation of the results.
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pr [GeV] 10-20 20-30 30-60 60-100 100-250
Scale factor 1.026 1.014 0.994 0.994 0.9556

Total unc 0.037 0.025 0.025 0.022 0.059
Data stat 0.007 0.006 0.004 0.005 0.011
MC stat 0.005 0.005 0.003 0.004 0.006

Detector modelling 0.013 0.003 0.002 0.002 0.002
1t modelling 0.033 0.023 0.024 0.021 0.057

Table 4.5: The resulting per-bin scale-factor and associated uncertainties split by category for the
77% fixed-cut efficiency working point.

pr [GeV] 10-20 20-30 30-60 60-100 100-250
Scale factor 1.040 1.026 1.006 0.996 0.966
Total unc 0.036 0.024 0.025 0.021 0.060
Data stat 0.006 0.005 0.003 0.005 0.010
MC stat 0.004 0.003 0.002 0.003 0.005

Detector modelling  0.009 0.003 0.002 0.001 0.002
1t modelling 0.033 0.023 0.025 0.020 0.059

Table 4.6: The resulting per-bin scale-factor and associated uncertainties split by category for the
85% fixed-cut efficiency working point.
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Chapter 5
Boosted Z + bb cross-section measurement

In this chapter I present a measurement of the cross-section for production of a Z-boson in associa-
tion with a b-tagged large-radius (large- R) jet, differential in kinematic variables of the large-R jet
and its associated small- R track-jets. This measurement provides an important test of perturbative
QCD, with emphasis on the production rates and kinematics of bottom quarks. This process is also
a significant background to several important Higgs boson searches, a particular example being the
V(H — bb) search presented in Chapter @

The chapter begins with an overview of the analysis, which includes the motivation for perform-
ing the measurement. After that, the event selection is presented in Section[5.2] followed by details
of the dataset and MC samples used in Section[5.3] The detector-level observables are presented in
Section [5.4] The procedure used to correct the measurement to particle-level is described in Sec-
tion[5.5] The systematic uncertainties considered in the analysis and their treatment are described
in Section [5.6] Finally, the chapter concludes with the results which are shown in Section [5.7]and
remarks on how they can be used in the future in Section

5.1 Overview

The production rates and kinematics of bottom quarks produced in both the initial and final state are
subject to theory and modelling uncertainties. The source of heavy flavour in the initial state arises
perturbatively from gluon splitting to b quarks, which is described via DGLAP evolution [25, 26,
277]. There is an ambiguity in this evolution in the usual factorization scheme regarding whether
the emergence of heavy flavour is isolated into the partonic cross-section or if it is also permitted
in the evolution of the PDFs.

The former picture is the four-flavour number scheme (4FNS), in which the b-quark density in
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the PDF is set to zero. This means that the perturbative generation of initial-state b-quarks comes
from gluon splitting to a bb pair in the partonic matrix element, where the b-quark is massive.
Consequently, in the 4-flavour scheme there are always at least two participating b-quarks, although
they may fall outside the region of experimental acceptance. By contrast, in the five-flavour number
scheme (SFNS) the PDF evolution can generate initial-state b-quarks (treated as being massless),
but in this case it is only possible to resolve one b-quark outside of the proton. Example Feynman
diagrams for Z + bb production under these two schemes are shown in Figure

In a hypothetical all-orders calculation these two schemes would give the same results, but for a
truncated perturbation expansion they generally give different predictions. Both of these approaches
have relative merits: the 4FNS allows for transverse momentum exchange through the initial-state
heavy quarks and hence might be expected to describe event kinematics better, while the SENS is
able to make use of higher-order calculations not available in matrix elements matched to parton
showers. It is therefore important to compare experimental measurements of b-quark production to
predictions using both of these schemes.

In addition to these initial-state production uncertainties, theoretical uncertainties are also found
in final state production of b-quarks. The usual parton shower formulation for parton splitting is
derived in the collinear-emission limit, using the p; of the splitting as the characteristic (renormal-
ization) scale, but this choice is only well motivated for gluon-emission splitting functions [77],
and its use in gluon splitting (especially to heavy quarks) is an extrapolation requiring empirical
testing. This is important since uncertainties in heavy-flavour production by gluon splitting are a
leading systematic limitation on the sensitivity to Higgs boson decays to bb in the t7H, VH and
gluon fusion channels — particularly in boosted-Higgs configurations where the two b-quarks are
relatively collinear, similar to the dominant gluon-splitting kinematics.

A previous measurement of the Z +b(b) process was made during Run-1 of the LHC using \/_ =
7 TeV proton-proton collision data by ATLAS [78] and CMS [79]. Amongst other variables, the
differential cross-section as a function of AR(b, b) (the separation between the b-jets) was measured
and was found to be mismodelled by comparing to the MC generators available at the time. These
results are shown in Figure The mismodelling occurred mostly at low AR(b, b), which is the
region dominated by gluon splitting.

In the measurement presented in this chapter, data recorded during 2015 and 2016 of Run-2
of the LHC were used. The increased centre of mass energy of \/E = 13 TeV with respect to the
Run-1 measurement means that the Z-boson and associated b’s are produced with higher transverse
momentum, allowing the boosted phase space, where the b’s are collimated in the large-R jet, to

be explored for the first time for this process. In order to measure smaller separations, typical of
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gluon to bb splitting and helping to constrain the modelling of this in parton shower generators,
small-radius track-jets ghost-associated to the large-R jet were used. Cross sections differential in

the following variables were measured:

e Properties of the large- R jet in the inclusive (no tagging requirements) and two-b-tag regions,

specifically the jet mass, m;, and transverse momentum, pJT;

e The separation between the two b-tagged track-jets associated to the large-R jet in the 2-tag
region, AR(b, b).

e Properties of the large-R jet and Z-boson, specifically the transverse momentum, pJT+Z , of

their vector sum and their separation in ¢, A¢(Z,J).

The cross sections were measured at detector-level and corrected to particle-level using the
fully-Bayesian unfolding method, described in Section[5.5.2] The total fiducial cross sections for
both inclusive boosted Z+jets production and boosted Z + bb production were also measured using
this method.

5.2 Event selection

To select events containing a leptonically-decaying Z-boson candidate produced in association with
a large- R jet, exactly two charged leptons of the same flavour (e or u) and at least one large- R jet
were required. The invariant mass of the lepton pair, m,,, was required to be greater than 50 GeV to
mirror the same implicit requirement in the MC simulation of ¥+ jets. There was no opposite-sign
requirement on the leptons. A large-R jet was considered to be b-tagged if any of the track-jets
which were matched to it via the ghost-association method [80] were b-tagged. In this method, the
track-jets were provided to the jet clustering algorithm with their p; set to an infinitesimal value
to ensure that they don’t influence the reconstruction of the jet. The track-jets which lie within the
radius of the large- R jet were clustered into it. Events were assigned to two categories depending on
how many b-tags were associated to the large- R jet: an inclusive region without b-tag requirements,
and an exclusive 2-tag region. In events with more than one large- R jet, the 2-tag jet was considered
as the signal jet from which the properties were measured. If there was no 2-tag jet, the highest p
jet was considered as the signal jet. The kinematic requirements on the physics objects used in this

selection are defined below.

Leptons: Electrons were required to pass the Medium identification criteria. They were required
to be detected in the fiducial area of the EM calorimeter (|| < 1.37, 1.52 < |n| < 2.47)
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Figure 5.1: Feynman diagrams showing different Z + bb production mechanisms. The top left
diagram is an example of a 4F diagram, whilst the other three are SF diagrams.
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Figure 5.2: An ATLAS measurement (a) and CMS (b) measurement of the differential cross-section
of AR(b,b) in Z + bb events using data collected during Run-1 of the LHC at a centre of mass
energy of \/E =7 TeV . The low AR(b, b) region typical of gluon-splitting was found to
be mismodelled by the predictions compared to at the time.
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and have p; > 27 GeV. Muons were required to pass the Tight definition in addition to
having |n| < 2.5 and p; > 27 GeV. Both electrons and muons were required to be isolated
from significant energy deposits in the calorimeter and from high-momentum tracks; the
LooseTrackOnly isolation definition was used in both cases. At least one lepton was required

to be identified by a single-lepton trigger for each candidate event.

Large-R jets: The large-R jets were required to have p; > 200 GeV and |5| < 2, to favour
a boosted topology and ensure that the majority of the jet lay within the tracker volume.

Additionally, the jet calibration was only valid for large- R jets with p; > 200 GeV.

Track-jets and b-tagging: The b-tagging was applied to the matched track-jets which were re-
quired to have py > 10 GeV and || < 2.5. A cut value for the discriminant corresponding
to a 70% signal tagging efficiency (in simulation) was used to maintain a low rate of charm-

and light-flavour background jets.

Overlap removal: An overlap removal procedure was used to correct for scenarios where a single
particle or object leaves multiple signatures in the detector. For example, the calorimeter en-
ergy deposit from an electron can be reconstructed as a large- R jet, meaning that the electron
would be double-counted. To correct for this, the separation between each lepton and large-
R jet in the event was computed. Any large- R jets which were within AR = 1.0 of a lepton
were discarded. After this procedure, it was required that at least one jet was remaining in

the event, otherwise the event was discarded.

In early iterations of the analysis, there were extra kinematic cuts implemented to suppress tf
background which inclusively appeared to reduce the background at a very small cost. It was later
found from studies of the MC events, that these cuts reduced the truth-to-reco efficiency in events
with high-p; large-R jets by up to 12%, where truth-to-reco efficiency is the efficiency for a jet
produced by the MC generator (a "truth" jet) to pass the detector simulation and be reconstructed.
These cuts were: E;“iss < 100GeVand71 < m,, < 111 GeV, where E;“iss 1s the missing transverse
energy and m,, is the dilepton invariant mass. For the m,, cut, this was understood as being due
to the reduced mass resolution at high p. For the E%liss—cut, the reason was thought to be that the
E‘Tniss was reconstructed using R = 0.4 calorimeter jets rather than large-R jets. In the boosted
topology these jet algorithms cannot always resolve the b-jets so there can be cases where the two
b’s are reconstructed in one R = 0.4 jet which does not properly capture their full py, leading to an
overestimate of the E‘Tniss. This effect is exacerbated at higher large- R jet pr when the b’s become

more collimated. Optimisation studies of the E}“i“ cut revealed that there actually was no optimal
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Inclusive selection
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Figure 5.3: INCLUSIVE SELECTION: The dilepton invariant mass in the electron channel (left) and
the muon channel (right). The systematic uncertainties are combined and shown by the dark grey
band, and the statistical uncertainties are shown by the light grey band. The statistical uncertainty
on the data is given by the error bar on the data point.

cut which would maximise the signal to background significance and since the #f background was at
most 10% of the signal even without the cuts, it was decided to remove them. Figure|5.3[shows the
dilepton invariant mass spectrum with these cuts removed in both the electron and muon channel.

There was also a stricter requirement on the number of large- R jets in the event, where previ-
ously it had been required that exactly one jet be present in the event. It was found however that
this cut also reduced the truth-to-reconstruction efficiency by up to 10%. The efficiency reduction
was seen for events where there was exactly one jet at truth-level, but zero or more than one jet at
detector-level. This was due to a number of reasons: smearing of the AR distance between a jet
and a lepton, meaning that a jet failing overlap removal at truth-level "survives" it at detector-level
(or vice versa); fake detector-level jets which have no truth-level counterpart; detector-level jets
migrating out of detector acceptance; and jet-radius effects where a single jet at truth-level could
be reconstructed as two detector-level jets. As a result of this observation, it was decided that this

cut should be loosened.
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5.3 Data and MC samples

The data used in this measurement were collected during the 2015 and 2016 pp collision runs at
\/E = 13 TeV, corresponding to a total integrated luminosity of 36.1 fb~!. Only collision events
where all of the ATLAS sub-detectors were fully operational and the beam conditions were stable
were analysed.

Monte Carlo samples were used to simulate the signal events, estimate the contamination from
background processes, unfold the data to particle-level, and to make comparisons to the unfolded
data. The processes contributing as a background were W + jets, tf, and diboson. The W + jets
process contributed as a background when a second same-flavour lepton arose through a jet faking
the lepton signal in the detector. The #f process contributed when each of the W bosons from the
top decays decayed to same-flavour leptons. The diboson processes (W W, W Z, Z Z) contributed
when one of the bosons decayed hadronically and one decayed leptonically. Single-top had a smaller
cross-section and similar acceptance to W+ jets and therefore was considered negligible.

The matrix element generators, parton shower generators, and PDFs used to provide simula-
tions for each of these processes are summarised in Table [5.1] In each case, the samples were
normalised to the highest cross section available for the given process. In the samples interfaced
with PYTHIA8 and HERWIG, the program EVTGEN was used to simulate the decays of bottom and
charm hadrons [[74]. Each sample was processed using GEANT4 which simulates the ATLAS de-
tector [[75]]. The listed "alternative" samples were used for evaluation of systematic uncertainties
relating to signal and background modelling, which are described in Section[5.6] Both the SHERPA
samples and the MADGRAPH5_AMC @NLO+PYTHIA8 samples were generated using a 5-flavour

number scheme calculation.
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Process Matrix element PDF set Parton Shower

Nominal

Z+jets SHERPA v2.2 NNPDF30nnlo  SHERPA v2.2

tt POWHEGBOX NNPDF30nnlo PYTHIA8
W+ jets SHERPA v2.2 NNPDF30nnlo  SHERPA v2.2
Diboson SHERPA v2.1 CT10nlo SHERPA v2.1

Alternative

Z+jets MADGRAPHS_AMC@NLO NNPDF30nlo PYTHIAS

tt MADGRAPH5_AMC@NLO NNPDF30nnlo PYTHIAS

1t POWHEG NNPDF30nnlo HERWIG7

tt (radLo) POWHEG NNPDF30nnlo PYTHIA8
hdamp = Myop

tt (radHi) POWHEG NNPDF30nnlo PYTHIAS

Pamp = 2 % My,

Table 5.1: Details of the nominal and alternative samples used to simulate the signal and back-
ground processes used in the analysis.
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5.4 Detector-level observables

Detector-level comparisons between data and the MC prediction for the observables of interest are
presented in this section. The plots are split such that the electron and muon decay modes of the
Z-boson can be compared for each observable, to verify consistency between the two object types.
In addition, the modelling of the observables is assessed in two control regions: a tf-enriched region
and a fakes-enriched region. The details of these control regions and the comparisons between data

and the MC prediction for the observables in these regions are given in Sections[5.4.2]and [5.4.3|

The observables from the inclusive event selection, i.e. without any requirement on large- R jet

b-tagging, are shown in Figure for pJT & m;, and Figure for pJT+Z & A¢p(Z,J). From these

comparisons it can be seen that the MC simulation overestimates the p and

piT7, especially at high

values. Similarly, the region where the Z-boson and the large-R jet are produced close together,

re. A¢p(Z,)) < 1.0, is also overestimated. From the pJTJ’Z and A¢(Z,J) distributions, it can be

seen that there appears to be "extra radiation" in the event: if the Z-boson and large-R jet were the

J+Z
T

peaked at #. Whilst the A¢(Z,J) distribution does peak at z, the distribution is broad and has a

only two objects in the event, p-"“ would peak sharply around zero and A¢(Z,J) would be sharply
long tail down to zero. Additional studies were carried out to investigate this extra radiation, which
are discussed in Section

The observables in the exclusive 2-tag event selection are shown in Figure [5.6|for m; and py,
and AR(b, b) is shown in Figure For each of these observables, there is a relatively flat 20%
difference between the data and the MC prediction.

The uncertainty bands shown in the distributions are composed of the statistical uncertainty
on the MC sample, the detector-related systematic uncertainty, and modelling uncertainties on the
signal and #7 background. Each of these components, which are described in detail in Section
were added in quadrature to obtain the full uncertainty band.
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Figure 5.4: INCLUSIVE SELECTION: The transverse momentum (top) and mass (bottom) of the
large- R jet, for the electron channel (left) and the muon channel (right). The systematic uncertain-
ties are combined and shown by the dark grey band, and the statistical uncertainties are shown by
the light grey band. The statistical uncertainty on the data is given by the error bar on the data
point.
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Figure 5.5:

INCLUSIVE SELECTION: The p; (top) and separation in ¢ (bottom) of the large- R jet and

Z boson, for the electron channel (left) and the muon channel (right). The systematic uncertainties
are combined and shown by the dark grey band, and the statistical uncertainties are shown by the
light grey band. The statistical uncertainty on the data is given by the error bar on the data point.
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Figure 5.6: 2-TAG SELECTION: The transverse momentum (top) and mass (bottom) of the large-
R jet, for the electron channel (left) and the muon channel (right). The systematic uncertainties are
combined and shown by the dark grey band, and the statistical uncertainties are shown by the light
grey band. The statistical uncertainty on the data is given by the error bar on the data point.

71
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Figure 5.7: 2-TAG SELECTION: The A R between the two associated b-tagged track-jets of the large-
R jet, for the electron channel (left) and the muon channel (right). The systematic uncertainties are
combined and shown by the dark grey band, and the statistical uncertainties are shown by the light
grey band. The statistical uncertainty on the data is given by the error bar on the data point.
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5.4.1 Studies of extra radiation in the event

It was observed that there were events where the p; of the large-R jet and the Z-boson were not
balanced, shown by the broad distribution and long tails to high values in the pJT+Z observable. This
is to be expected to some extent, given that there was no pp-cut applied to the selected Z-boson
whilst the large- R jet was required to have p; > 200 GeV. When investigating the topology of
the Z-boson and the large-R jet via their A¢ separation, it was observed that the Z-boson and
large-R jet were predominantly produced back-to-back (i.e. A¢(Z,J) peaks at x), though there
were tails down to zero indicating events where this was not the case. This implied that the extra
radiation didn’t have a strong influence on the topology of the Z-boson and large-R jet, given that
pJT+Z extends to large values and yet the Z-boson and large-R jet are largely back-to-back.

In an attempt to understand this further, the relationship between pJT+Z and A¢(Z,]), as a func-
tion of the large-R jet p; was investigated. Figures 5.8 and[5.9)shows distributions of the average
A¢p(Z,]J) as a function of pJT+Z , where the distributions were split according to the large-R jet py.
From Figures [5.8(a) and [5.9(a)|it can be seen that for events where the large-R jet p; was between
200 and 400 GeV, as pJT+Z increases the A¢(Z,J) decreases sharply. However for higher large- R jet
pp where pr > 600 GeV, the A¢(Z,]J) remains relatively flat as a function of pJT+Z , as shown in

Figures|5.8(c) and [5.9(c)l This suggests that in events with a high py jet, the event is dominated by

the high-p, recoiling large-R jet and Z-boson, and the "extra radiation" — at whatever magnitude

— is isotropically distributed around either of these objects.

J+Z
T

Figures [5.10(a)| and [5.10(b)| show the average p}** as a function of the large-R jet py in both the

J+Z
T
J+Z
T

Z-boson py in both the electron and muon channel. Here it can be seen that the shape is influenced

Finally, the scaling of p-"“ as a function of the large-R jet p; and the Z-boson p; was studied.

electron and muon channel. From these distributions it can be seen that p-"“ scales very strongly

with the large-R jet p;. Figures |5.10(c)| and |5.10(d)| show the average p7“ as a function of the

by the minimum py-cut on the large-R jet. As the Z-boson approaches p; = 200 GeV, matching
the minimum py of the large- R jet, pJT+Z decreases. Beyond this, pJT+Z increases before plateauing.
The fact that pJT+Z was so strongly correlated with the large- R jet p; and less so for the Z-boson
pr. led to the conclusion that these were events where the Z-boson was radiated from one of the

outgoing quarks.

5.4.2 tt-enriched region

A selection was defined which closely matched the signal-selection but was enriched in #f events,

where exactly one electron and exactly one muon were required whilst keeping all other aspects
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Inclusive selection - electron channel
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Figure 5.8: Distributions of the average A¢(Z,]J) as a function of p"“ in events where the large-
R jet p; satisfies the requirement given in the caption of each distribution. The error bar is the
standard error on the average.
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Inclusive selection - muon channel
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of the selection the same. This t7-enriched region was created to check that the 7 background was
modelled well.
Comparisons between data and the MC prediction in this region for each observable are shown

in Figures [5.I1] to [5.12] For the majority of the variables there is no significant mismodelling

J+Z
T

observable, and the first bin of the 2-tag large-R jet p;. To account for these effects, an additional

observed outside of the error band, with the following exceptions: the first two bins of the p

20% normalisation uncertainty on the ¢ background was assigned for all observables, as well as

J+Z

an additional uncertainty accounting for the ~ 50% discrepancy in the first two bins of the p7

observable.

5.4.3 Fakes-enriched region

The background contribution from W + jets largely arises due to jets being mis-reconstructed as
a lepton, referred to generically as a "fake". This occurs most commonly for electrons rather than
muons given that the jet would have to punch-through the calorimeters and leave a signature in
the muon spectrometer to fake a muon, which is uncommon. In the muon channel, W+ jets can
contribute when a real lepton from a heavy-hadron decay provides the second same-flavour lepton
required in the signal selection. To assess the modelling of the W + jets background, a fakes-
enriched region was defined where the lepton identification requirements were relaxed to the Loose
working point, whilst keeping other aspects of the event selection the same. If this background was
mismodelled then the modelling of the observables in this fake-enriched region would be worse
than in the signal region. There were no significant differences in the modelling observed for any
of the variables, despite the increase in the number of fakes, indicating that this process was not
mismodelled. As an example, a comparison between the inclusive pJT in the signal region and the
fakes-enriched region is shown in Figure This comparison shows that there is no significant
difference in the modelling between these two regions.

Another process which can act as a background is multijet i.e. inclusive QCD. Multijet produc-
tion has a high cross section and can contribute as a background when at least two jets fake a lepton.
To assess whether the analysis was sensitive to contributions from this background, the calorimeter

isolati ‘ : 20
isolation variable, E >

, was compared in data and MC in the fake-enriched region. If there
was multijet-contamination that wasn’t being accounted for, then an excess of events in data com-
pared to MC in the tails of the E;Opoconez0

be isolated than real leptons. Figure [5.14] shows the comparison of this variable in the electron

variable would be seen, as fake-leptons are less likely to

and muon channel. It is clear that there is no significant excess of events in data, therefore it was

concluded that there was no significant contamination from multijet in this analysis.
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Inclusive selection - ¢t CR
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Figure 5.11: INCLUSIVE SELECTION: The transverse momentum (a) and mass (b) of the large-
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the statistical uncertainties are shown by the light grey band. The statistical uncertainty on the data
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Figure 5.12: 2-TAG SELECTION: The transverse momentum (a) and mass (b) of the large- R jet, and
the A R between the two associated b-tagged track-jets of the large- R jet (c) in the top control region.
The systematic uncertainties are combined and shown by the dark grey band, and the statistical
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Inclusive selection - W+ jets-enriched
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Inclusive selection - multijet-enriched
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5.5 Unfolding

The aim of the measurement is to extract particle-level cross-sections differential in the kinematic
variables of interest, but so far in this thesis these variables have been measured at detector-level
only. To get the particle-level measurement, the data is "unfolded". Unfolding is the term used
to describe the procedure of inferring the "true" kinematic distribution from data by removing
distortions due to detector resolution effects from the measurement. The primary motivation for
unfolding the data is that it allows measurements made using different detectors which perform
differently, e.g. ATLAS and CMS, to be directly compared with minimal correction. In addition,
it preserves the measurement for comparisons with new predictions in the future, in the case that
information about the detector effects becomes unavailable.

The method used to unfold the data in this analysis was the fully Bayesian unfolding technique
(FBU) [81]], the details of which are presented in Section[5.5.2] The data are unfolded to the particle-
level fiducial-selection defined in Section [5.5.1] The response matrices for the observables are
presented in Section [5.5.3] followed by the details of tests performed to validate the unfolding
method. The final results come from a combined unfolding of the data from both the electron
channel and the muon channel. Before doing this, the consistency of the results from each of these

channels was checked, as discussed in Section[5.5.4]

5.5.1 Particle-level fiducial selection

The data were corrected to a particle-level fiducial selection which closely matched the detector-
level selection, to minimise any model-dependent extrapolation. Exactly two leptons, e or u, with
pr > 27 GeV and || < 2.5 were required to select the Z-boson, where there was no opposite-sign
requirement on the leptons. At least one truth-level large- R jet was required, with p; > 200 GeV
and || < 2.0. This truth-level large- R jet was built from stable truth-particles. Like in the detector-
level selection, overlap removal between the large- R jets and the leptons was applied, where they
were required to be separated by AR > 1.0.

The events were characterised based on the number of true b-labelled track-jets that were matched
to the large- R jet. The truth-level track-jets were built from stable charged particles. The matching
was performed by requiring that the track-jets and the large- R jet satisfy the geometric requirement
that A R(track-jet, large- R jet) < 1.0. Due to technical limitations, it was not possible to perform
ghost-association between the track-jets and the large- R jets which would have been preferred in
order to match the detector-level selection more closely. The truth-level track-jets were considered

b-labelled if a true b-hadron with p; > 5 GeV was ghost-associated to them. The large- R jet was
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considered to have two b-tags if there were exactly two b-labelled track-jets associated to it. In the
case that there was more than one large- R jet in the event, if one of the jets was categorised as 2-tag
then it was classed as the signal jet, otherwise the highest p; large-R jet was classed as the signal

jet.

5.5.2 Fully Bayesian unfolding method

The FBU technique was used to derive the posterior probability of the particle-level differential
cross-sections given the observed data [81]]. To extract this probability, the likelihood of the data
given the MC prediction was constructed, where the parameters of interest were the particle-level
signal cross-sections (6P). The systematic uncertainties described in Section were taken into
account using nuisance parameters (p) which allow for additional degrees of freedom in the likeli-
hood.

The first component of the likelihood function was the total predicted number of signal and
background events in each bin of the detector-level observables, given a set of 6P and p values. The
total predicted event count in bin r of a detector-level observable (x,) was defined as the product of

the luminosity, & (p ), and the predicted cross-sections for background, b,(p ), and signal, s,(5),
x,@%.5) = Z3) (b,3) +5,(7)) . (5.1)

The predicted signal cross section can be defined in terms of the particle-level signal cross-sections

via the response matrix, R(p),

5,(5)= ) R,(5)o, (5.2)

where ¢ denotes the index of the particle-level bin. The elements of the response matrix represent
the conditional probability for a particle-level event in bin # to have a matching detector-level event
in bin . The background predictions, b,(p ), were constructed as linear interpolations between the
nominal prediction and the prediction corresponding to each systematic uncertainty. They were
defined as

b(F)=bo+ D pulb —b,y). (5.3)

ke systematics

where b, , is the nominal background prediction in bin r, b, is the background prediction in bin r

from the systematic variation k, and p, is the unit-scaled nuisance parameter corresponding to this
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variation. The response matrices are computed in a similar manner

th(ﬁ) = th,O + Z Pr (th,k - th,O) > 5.4

ke systematics

where R, is the nominal response matrix, and R, is the response matrix for systematic varia-
tion k. Defined in this manner, the background predictions and signal predictions — via the response
matrices — were smoothly varied, allowing the space of predictions created by systematic uncer-
tainties to be explored.

Finally, the likelihood was constructed as the product of Poisson probabilities over all detector-

level bins r, as a function of the model parameters, 6P and p:

£d|3*,5)= [] Poiss(d, x,(" 7)) (5.5)

re bins

The posterior probability distribution given the observed data was then defined as

P@EP, 5| d)=Ld|5,F) - H Prior, (p; ). (5.6)

k€ systematics

The mode of this distribution over all parameters of interest and nuisance parameters was deter-
mined using Newton’s method of gradient ascent on the log-likelihood [82]. The likelihood dis-
tribution was then sampled using a Metropolis-Hastings Markov Chain Monte Carlo, assisted by
calculating the Hessian matrix of the likelihood distribution at the maximum-likelihood point. Us-
ing this method, the full posterior distribution in the combined space of nuisance parameters and
particle-level signal cross-sections was obtained.

A flat prior probability distribution was imposed on the particle-level cross-sections with the
requirement that each particle-level cross-section be non-negative. A flat prior was chosen to ex-
press "prior ignorance' on the values of the cross sections with the aim of not biasing the results.

The prior definitions for nuisance parameters corresponding to systematic variations are discussed
in Section [5.6.6)

5.5.3 Response matrices

The effects of the detector were encoded in the response matrix, which is a key ingredient of the

unfolding procedure. It is built for each observable from simulated events which fulfil both the

! An alternative choice of prior to express "prior ignorance" would be the Jeffreys prior.
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detector- and particle-level requirements. Each component of the response matrix, R, is the con-

rt>
ditional probability for a particle-level object with an observable in bin 7 to have a matching detector-
level object with an observable in bin r. Figures [5.15]to[5.18|show the response matrices for each
variable in the inclusive region and 2-tag region for both the electron and muon channel, built us-
ing the nominal MC prediction. The matrices are generally diagonal across variables meaning that
particle-level events tended to be reconstructed in the same detector-level bin.

Events at particle-level sometimes did not have a detector-level counterpart if the detector-level
event lay outside of the experimental acceptance, which lead to a truth-to-reconstruction efficiency,
€, which was included in the response matrix. The response matrix can be written in terms of € by
introducing the migration matrix M,

R, = #, (5.7

e 2 M,
where n is the number of particle-level bins. Each element of the migration matrix, M,,, is the
joint probability that a particle-level object is produced in observable bin ¢ and reconstructed in

observable bin r. The truth-to-reconstruction efficiency for each variable in each channel is shown

in Figures to

Non-fiducial Z+ jets background

If an event at detector-level did not have a particle-level counterpart, it was considered to be part of
a non-fiducial Z+ jets background. This could happen if the detector-level event migrated into the
experimental acceptance whilst its particle-level counterpart was outside of the fiducial-acceptance.
This could also happen if the detector-level event was mis-reconstructed. For example in the case
of variables in the 2-tag region, a jet which is c- or light-flavour at particle-level may be mis-tagged
as a b-jet by the b-tagging algorithms, meaning it passed the detector-level selection but not the
fiducial selection. This relies on the assumption that the MC sample was accurately predicting the
particle-level properties, which may not have been the case: for this reason, systematic uncertainties

on the signal-modelling were taken into account.
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Figure 5.15: The response matrices for pJT (top) and my (bottom) in the inclusive region for the
electron channel on the left, and the muon channel on the right.

86



S 1800 T [ T T T T T e T & 1800 T T T T T T T
3 rzZ - ee 7 8 CZ - pu 1 —05
5 1600/~ {5 = 13 TeV =R < 1600 s = 13 TeV —
iy F 36.11b? 4 %5 ¥ Faseam? ]
o140~ - 1400 =
5 F B 5 F 4 —0.4
& 1200 — —|04 & 1200 —
1000} — 1000 4 —o3

L 1 0.3 r ]
800 - 800[— -

r ] r 1 —o.2
600~ — 02 600 .
400 - 400(— -

F 7 o1 r S
2001 - 200F -

ol v e ] g ol e T g

0 200 400 600 800 1000 1200 1400 1600 1800 0 200 400 600 800 1000 1200 1400 1600 1800

Truth pT(J+Z) [GeV] Truth pT(J+Z) [GeV]

(@) (b)

5 [T T 5 [T T

N 3—Z - ee — —06 N 3—Z - —

A [ {s=13TeVv ] e [ Vs=13Tev ]
< [ 3e1fp? ] < 361t 1 95

S 25 — =105 g 25— —

x L ] o L ]
L ] r 1 —0.4

2 — —0.4 21— |

C ] L 1 —o3
15[ — 03 15— —

i - —o.2 i+ q P2
05 - —o1 05 - P

P N N RN AR ERVRTENEN S R of il e 1]

0 0.5 1 15 2 25 3 0 0.5 1 15 2 2.5 3

Truth A ® (Z,J) Truth A ® (Z,J)
(©) d

Figure 5.16: The response matrices for pJT+Z (top) and A¢(Z,J) (bottom) in the inclusive region for

the electron channel on the left, and the muon channel on the right.

87



1200 e e e e e 1200 [ e e

% £z ‘ ee‘ ! 1 —04 % £z ‘ ‘ ‘ 3 —0.35

o E< ~ 3 o - HR =

1100 {5 =13 Tev = 1100 ys=13 Tev =

2 E L 4 —0.35 b E 1 4

B 10000 36110 E 1000036110 3 —os3

x = B x S E

2 = 4 —03 o = 3

S 900/ - S 900F -

g E E 2 E 34 —0.25

- C 7 - C 3

8 800 — —0.25 8 800 —

& F E & = 4 —02
700 = o2 700 E
600 3 600 — 015

£ 4 —0.15 e 3
5001 E S00E- = —Joa
C 4 —0.1 C ]
400— —] 400— —
F R = 4 —o.05
300/ 4 005 300 =
200Et e i b b b b b e d g 200E i b b b b b e e d g
200 300 400 500 600 700 800 900 1000 1100 1200 200 300 400 500 600 700 800 900 1000 1100 1200
Truth Large-R jet p, [GeV] Truth Large-R jet P, [GeV]
(a) (b)

%4007”“””‘””””HHHHHHHH; %4007”“””‘””HHHHHHHHHH;

8, rZ - ee :404 o CZ - e |

@ 350 Vs=13TeV i @ 350 Vs =13 TeV i [

< [ 36.1fb™ ] < [ 36.1fb™ ]

E r 7 035 E r ]

Q — —  — —

5. 300 ] = 800p 4 —0.25

] r 1 —o.3 ; r ]

Q I - Q I -

o C | =g C |

g 250 = s 250 o o2

o r 4 1025 ° r 7 :

€ 200 - € 200] -

o - - _| x - =

E 1 02 F 4 —o.15
1501~ = ois 150 3
C ] C J —0.1
100 — —0.1 100 —
E ] B 1 —lo.os
50— - 005 50— -
S T R NS P PR S R T PR TR
50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400
Truth Large-R jet mass [GeV] Truth Large-R jet mass [GeV]
(©) (d)

Figure 5.17: The response matrices for pJT (top) and m; (bottom) in the 2-tag region for the electron
channel on the left, and the muon channel on the right.
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5.5.4 Unfolding tests

To ensure confidence in the unfolding procedure, a series of validation tests were performed. The
first was a technical closure test to check that the unfolding framework was able to unfold the nom-
inal detector-level MC prediction to obtain the corresponding truth-level prediction. A so called
data-driven closure test was performed to assess the sensitivity of the unfolding method to data/MC
shape-differences in the measured observables, the results of which are discussed. Before perform-
ing the combined unfolding of the electron and muon channel, the compatibility of the channels was
checked. Finally, to assess the sensitivity of the results to the choice of prior on the particle-level
cross sections, the unfolding was performed using alternative priors and the results were compared.
These tests are now treated in turn. It should be noted that the binning shown in the plots in this sec-
tion can differ from the binning shown in the final results, as a number of these tests were performed

before the binning was finalised.

Technical closure test

The technical closure test was performed to validate the technical implementation of the unfolding
procedure. The detector-level MC prediction from the same MC sample that was used to build the
nominal response matrix was used as the data. This was then unfolded using the nominal response
matrix and the resulting unfolded distribution was expected to match the truth-level prediction from
the same MC sample, within the limits of numerical precision. Since the MC events have various
scale factors applied, the resulting number of events in a bin can be a non-integer value. The
rounding of these non-integer event counts means that the unfolded results may not match exactly
with the best prediction from the Poisson distribution. This is especially true in low-population bins
where the rounding "error" is a larger fraction of the bin population. Figures[5.23|to [5.26|show the
results of this closure test for each variable in both the electron and muon channel and demonstrate

that good technical closure was observed.

Data-driven closure test

The data-driven unfolding test was performed to assess whether the unfolded results were sensitive
to mismodelling of observables by the MC prediction. This was performed by Dr Andy Buckley
by reweighting the MC prediction using a smooth function of truth-level observables, such that the
detector-level MC prediction matched the data more closely. The smooth function was obtained by
performing a single-value-decomposed pseudo-inversion of the response matrix, which was then

applied to the data. The ratio between the resulting truth-prediction from this method and the orig-
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inal truth prediction was then fitted with a third-order polynomial. The reweighted detector-level
prediction was unfolded using the original, nominal response matrix. If the method was insensi-
tive to data/MC mismodelling, then the unfolded results were expected to be consistent with the
reweighted truth prediction.

The procedure was carried out for each variable in each channel and the results are shown in
Figures to @ It can be seen that for most of the variables, the results were compatible with
the reweighted truth-level prediction and therefore the ability to unfold observables was largely

unaffected by their data/MC shape differences at detector-level. The exceptions to this were the pJT

J+Z
T

by the MC predictions at detector level. To account for this effect, the deviations that were observed

and p-"“ observables, which is not too surprising given that these variables had the worst modelling

from this closure test were added in quadrature with the final unfolded uncertainty.

Sensitivity to choice of signal prior

To assess the sensitivity of the unfolded results to the choice of prior on the parameters of interest,

the data were unfolded using the following priors:
e A flat prior — the nominal choice of prior,

e A Gaussian centred on the Sherpa-predicted differential cross section in the given bin, de-

noted as PP with a width of 1.0 in units of the differential cross section,
e A Gaussian centred on o2, with a width equal to ¢ShePa,

This was considered to be a stress-test of the procedure, as these priors were not believed to be
representative of our prior belief on the particle-level cross section. The unfolded results using
these alternative priors were compared to the nominal scenario, where flat priors were used. The
results of this test are shown in Figures [5.31]to [5.32] In the bottom panel of these plots, the
ratio between the data unfolded with the alternative priors ("Other") and data unfolded with the flat
priors are shown. The SHERPA prediction is also included for reference. These results show that the
unfolded results obtained using each different priors were largely consistent with one another, with
deviations of up to 10% observed for only a handful of bins. Since these priors were not considered
to be sensible choices and an uncertainty was already assigned from the results of the data-driven

closure-test, there was no additional uncertainty assigned based on this test.
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Figure 5.19: The truth-to-reconstruction efficiency for pJT (top) and m; (bottom) in the inclusive
region for the electron channel on the left, and the muon channel on the right.
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Figure 5.20: The truth-to-reconstruction efficiency for p¥# (top) and A¢(Z,J) (bottom) in the
inclusive region for the electron channel on the left, and the muon channel on the right.
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Figure 5.21: The truth-to-reconstruction efficiency for pJT (top) and m, (bottom) in the 2-tag region
for the electron channel on the left, and the muon channel on the right.
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Figure 5.22: The truth-to-reconstruction efficiency for the separation between the b-tagged asso-
ciated track-jets, AR(b, b), in the 2-tag region for the electron channel on the left, and the muon
channel on the right.
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Inclusive selection: technical closure test
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Figure 5.23: The unfolded SHERPA prediction compared to the truth-level cross section for p’T (top)
and m; (bottom) in the inclusive region for the electron channel on the left, and the muon channel
on the right. The error bars represent the 16-84% quantile range of the posterior distribution of
each unfolded bin, and the central value is its the global posterior mode.
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2-tag selection: technical closure test
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Figure 5.25: The unfolded SHERPA prediction compared to the truth-level cross section for pJT (top)
and m, (bottom) in the 2-tag selection for the electron channel on the left, and the muon channel on
the right. The error bars represent the 16-84% quantile range of the posterior distribution of each
unfolded bin, and the central value is its the global posterior mode.
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2-tag selection: technical closure test
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Figure 5.26: The unfolded SHERPA prediction compared to the truth-level cross section for A R(b, b)
in the 2-tag selection for the electron channel on the left, and the muon channel on the right. The
error bars represent the 16-84% quantile range of the posterior distribution of each unfolded bin,
and the central value is its the global posterior mode.
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Inclusive selection: data-driven closure test
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Figure 5.27: The unfolded pseudo-data compared to the reweighted truth-level cross section for pJT
(top) in the electron channel (right) and muon channel(left) and m; (bottom) in the electron channel
(right) and muon channel(left). The error bars represent the 16—-84% quantile range of the posterior
distribution of the unfolded pseudo-data in each bin, and the central value is its the global posterior
mode.
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Inclusive selection: data-driven closure test
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Figure 5.28: The unfolded pseudo-data compared to the reweighted truth-level cross section for
pJT+Z (top) in the electron channel (right) and muon channel(left) and A¢(~Z,]J) (bottom) in the
electron channel (right) and muon channel(left). The error bars represent the 16-84% quantile
range of the posterior distribution of the unfolded pseudo-data in each bin, and the central value is
its the global posterior mode.
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Figure 5.29: The unfolded pseudo-data compared to the reweighted truth-level cross section for pJT
(top) in the electron channel (right) and muon channel(left) and m; (bottom) in the electron channel
(right) and muon channel(left). The error bars represent the 16—-84% quantile range of the posterior
distribution of the unfolded pseudo-data in each bin, and the central value is its the global posterior
mode.
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Inclusive selection: signal-prior comparisons
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Figure 5.31: Comparisons of the data unfolded with alternative signal priors to the nominal sce-
nario where the data is unfolded with a flat prior. The inclusive variables a) pJT, b) my, ¢) pJT+Z and
d) A¢(Z,]J) are shown. The error bars represent the 16-84% quantile range of the posterior distri-
bution of each unfolded bin in the nominal scenario, and the central value is its the global posterior
mode.
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2-tag region: signal-prior comparisons
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Figure 5.32: Comparisons of the data unfolded using different signal priors to the nominal scenario
where the data is unfolded with a flat prior. The 2-tag variables a) pJT, b) m; and c) AR(b, b) are
shown. The error bars represent the 16-84% quantile range of the posterior distribution of each
unfolded bin in the nominal scenario, and the central value is its the global posterior mode.



Lepton channel compatibility checks

The electron channel and muon channel were unfolded together to the same particle-level fiducial
region defined in Section [5.5.1] which is referred to as the "combined" unfolding. To do this, the
electron channel and muon channel response matrices are concatenated, as well as the data and
background prediction. A diagram of the format of the combined response matrix in shown in
Figure[5.33]

Before performing the combined unfolding of the data from the electron and muon channel,
the compatibility between the individual results from the channels was assessed. Firstly, the nui-
sance parameters corresponding to common systematic variations on each variable were checked
to ensure that they were compatible between the lepton channels. In particular, it was checked that
the common nuisance parameters did not pull in different directions between the channels, which
could lead to cancellations when combined. It was found that the nuisance parameter posteriors
were compatible between the channels with no significant pulls observed. As an additional check,
the unfolded results from the combined unfolding were compared to the results from the individual
channels to check the consistency. These comparisons for each variable are shown in Figures[5.34]
to[5.35] In some bins there were apparent tensions between the unfolded results from the individual
lepton channels; for example the final two bins of the pJT+Z distribution and the final bin of the 2-tag
pfr and m;. To understand if these were significant, the data was unfolded in each lepton channel
including only nuisance parameters related to the MC statistical uncertainty and lepton-related sys-
tematics. These results for each variable are compared in Figures to These plots show

that in most cases the difference is not significant within the 1o defined uncertainty.

5.6 Systematic uncertainties

The systematic uncertainties which affected the measurement can be split into two categories:
detector-related and modelling-related. The sources of uncertainty from each of these categories
are described in the following sections. In the unfolding procedure, the systematics were assessed
using nuisance parameters. A nuisance parameter was defined for each systematic uncertainty and
was associated with the corresponding "template" of the particular uncertainty, which included the
background prediction and response-matrix prediction. In the detector-level comparisons displayed
in Section[5.4] each component of uncertainty was added in quadrature to build the total uncertainty
band. For systematic uncertainties which had an upward and downward variation, their effect was
symmetrized by taking the average of their respective difference to the nominal, since there were

not large asymmetries observed. For the other uncertainties, their absolute difference with respect
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Figure 5.33: An illustration of a combined response matrix used in the unfolding, where the indi-
vidual response matrices from the electron and muon channel are concatenated.
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Figure 5.35: The unfolded data compared to the truth-level cross-sections for the 2-tag variables pJT,
my and AR(b, b). The plots show comparisons between unfolded results when the lepton channels
were unfolded separately and when they were unfolded together. The error bars represent the 16—
84% quantile range of the posterior distribution of each unfolded bin, and the central value is its the
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Figure 5.36: Comparison between the unfolded electron-channel data and muon-channel data where
only MC-stat nuisance parameters and lepton-systematic nuisance parameters were included in the
unfolding model for each inclusive variable: pJT, my, pJT+Z and A¢(Z,]J). The error bars represent
the 16-84% quantile range of the posterior distribution of each unfolded bin, and the central value
is its the global posterior mode.
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Figure 5.37: Comparison between the unfolded electron-channel data and muon-channel data where
only MC-stat nuisance parameters and lepton-systematic nuisance parameters were included in the
unfolding model for each 2-tag variable: pJT, my and AR(b, b). The error bars represent the 16-84%
quantile range of the posterior distribution of each unfolded bin, and the central value is its the
global posterior mode.
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to the nominal prediction was used, unless stated otherwise in the following sections.

5.6.1 Modelling uncertainties

There are aspects of the physics that are not fully understood which are reflected by systematic
uncertainties associated with its modelling. In this analysis, uncertainties associated with the mod-
elling of the Z+ jets signal were considered as well as uncertainties related to the modelling of the

dominant background, 7.

Signal-modelling

The signal-modelling uncertainties were estimated by applying systematically-varied event weights
to the nominal sample to get systematically-varied predictions, or by comparing to an alternative

sample. The signal modelling uncertainties considered were:

e Scale variations: the renormalization, ug, and factorisation scales, u were varied by a fac-
tor of 0.5 or 2 in a correlated and independent manner, leading to a total of six variations.
These variations account for the effects of missing higher order terms in the cross section

calculation.

e PDF set: alternative PDFs were considered by using the central values of the CT14nnlo [83]]
and MMHT2014 NNLO [84] PDF sets.

e a(m,) value: alternative versions of the nominal PDF set with +0.001 shifted variations

of a,(m,) ~ 0.118 were used to asses the uncertainty.

e Matching scheme: a comparison was made between the SHERPA samples and the MADGRAPHS-
_AMC@NLO+PYTHIA8 samples as these generators use different procedures for the match-
ing. This comparison also represents the difference between a LO and an NLO calculation
as the SHERPA sample is NLO whilst MADGRAPHS_AMC @NLO+PYTHIAS is LO.

° pJT+Z mismodelling: the samples were reweighted such that the pJT+Z distribution in MC

matched that in data, giving an alternative prediction to compare to which accounted for

the mismodelling of this variable.

In the error bands displayed in detector-level data/MC comparisons, the component of the signal
modelling uncertainty arising due to scale uncertainty was computed by taking the envelope of the

effect of each individual scale variation. Similarly, the PDF component was computed by taking
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the envelope of the effects of the different PDF-set central values. The a, component was found
by symmetrising the effects of each +0.001 shifted variation. To get the total signal-modelling
uncertainty, each of these components were added in quadrature. The uncertainty derived from the
comparison with the MADGRAPHS_AMC@NLO+PYTHIA8 model (referred to as the MGS5 un-
certainty henceforth) was not included in the error band of the detector-level data/MC comparisons.
In the unfolding, each of the variations listed above were included which allowed the full space of

predictions to be explored by the unfolding, rather than only using the envelopes.

tt background modelling

The uncertainties related to the modelling of the ¢ background were estimated using the alternative

MC samples described in Section [5.3] The modelling effects considered were:

e Matrix-element model: an uncertainty related to the choice of model for simulation of the
hard-scattering and corresponding matching to the parton shower was assessed by comparing
a sample using POWHEG with a sample using MADGRAPHS_AMC@NLO.

e Parton shower model: an uncertainty related to the choice of parton shower model was eval-

uated by comparing a sample using PYTHIAS8 with a sample using HERWIG7.

e Parton shower radiation: uncertainties relating to the modelling of radiation in the shower
were assessed by comparing samples with enhanced or suppressed parton shower radiation

to the nominal sample.

An additional uncertainty was also added to account for mismodelling of pJT+Z in tf events, which

was discussed in Section [5.4.2]

Background normalisation uncertainties

After assessing the modelling of the backgrounds using control regions as discussed in Section[5.4]
additional normalisation uncertainties were added to the analysis to account for any mismodelling

of these backgrounds. Specifically, the following uncertainties were added:

e Non-fiducial Z + jets background: a 20% normalisation uncertainty was assigned in the
inclusive region, whilst a 50% uncertainty was assigned in the 2-tag region. The uncer-
tainty was increased in the 2-tag region to be conservative about any mismodelling of Z +
light/c-flavour jets. Due to limited statistics it was not possible to construct a dedicated con-

trol region for this background, although the inclusive region serves as a good proxy.
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e 11, diboson, and W + jets backgrounds: a 20% normalisation uncertainty was assigned for

each of these backgrounds in both the inclusive region and 2-tag region.

5.6.2 Detector uncertainties

Detector uncertainties reflect the fact that our understanding of the detector and the performance of
the reconstruction algorithms are not perfect. A description of the systematic uncertainties associ-
ated with the reconstruction of the various physics objects and how they were derived was given in

Section 3] The particular sources of systematic uncertainty considered were:

e Leptons: uncertainties related to the lepton energy scale & resolution, reconstruction effi-

ciency, identification efficiency, isolation efficiency and trigger efficiency were considered.

e [arge-R jets: uncertainties on the jet energy scale, jet mass scale, jet energy resolution, and

jet mass resolution were considered.

e Flavour tagging: uncertainties related to the calibration of the tagging efficiency for b-flavour

jets and the related c-, and light-flavour tagging inefficiencies were considered.

e Pile-up reweighting: the uncertainty associated with the pile-up reweighting procedure was

evaluated by varying the scale-factors used to perform the reweighting.

e Luminosity: an uncertainty of 2.1% was assigned for both 2015 and 2016 data, derived by a
calibration of the luminosity scale using x—y beam-separation scans, following a methodol-
ogy similar to that detailed in Ref. [[76]. This uncertainty is not included in the error band on
the data/MC plots, but it was included in the unfolding.

5.6.3 Pruning of systematic uncertainties

To reduce the time required to perform the unfolding, systematics with a negligible impact on the
particle-level observables were pruned. The criteria for pruning were that a systematic uncertainty
must change the background prediction by less than 5% relative to the nominal prediction in all
detector-level observable bins, and alter the response matrix by less than 0.002 in all bins. The

systematic uncertainties which were pruned are:

e large- R jet scale uncertainties: for every variable the scale variations of jet substructure vari-

J+Z

T the mass-scale

ables were pruned. For the large-R jet p; (inclusive and 2-tag) and p

uncertainties were also pruned.
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e large-R jet resolution uncertainties: the jet mass resolution was pruned for every variable

excluding the large- R jet mass in the inclusive and 2-tag region.

e b-tagging: all b-tagging uncertainties were pruned for the inclusive variables. For the tagged
variables, most of the variations were pruned with the exception of the three largest b-components,

an extrapolation component, a c-mis-tag component, and two light-mis-tag components.

e clectron uncertainties: most of the calibration uncertainties were pruned. The identification

and isolation components of the scale factor uncertainties survived for each variable.

e muon uncertainties: most of the calibration uncertainties were pruned. For the scale factor
uncertainties: for each variable all were pruned aside from the identification components,

and the isolation components for the inclusive variables.

None of the t7-modelling, signal-modelling or pile-up uncertainties were pruned for any variable.

5.6.4 Unfolding uncertainty

An additional uncertainty was assigned as a result of the data-driven closure test described in Sec-
tion m This test showed that the unfolding of the inclusive pJT and pJT+Z was sensitive to the
detector-level mismodelling of these variables by the MC simulation. The difference between the
unfolded result and the reweighted prediction in each bin was taken as the uncertainty for each lep-
ton channel, and the envelope of these was used as the final uncertainty in each bin. This was added
in quadrature with the final error band on the unfolded results, and was not included as a prior in

the unfolding procedure. This resulted in a total increase of ~ 40% in the uncertainty on the final

J+Z

bin of pJT and ~ 30% in the uncertainty on the final bin of p;;

5.6.5 MUC statistical uncertainties

Statistical uncertainties in the nominal MC sample were also considered. They are included in the
error band of the data/MC comparisons. In the unfolding, a pruning procedure was again applied
as it would not have been feasible to add a nuisance parameter for every bin of both the response

matrix and the backgrounds. The pruning requirements were:

e For a given background bin, the uncertainty was pruned if its relative effect with respect to

the total detector-level prediction in the bin was less than 5%.

e For a given bin in the response matrix, the uncertainty was pruned if it led to a relative effect

on the resulting detector-level prediction in the bin of less than 1%.

115



This procedure was developed to avoid including large statistical uncertainties on very off-diagonal
bins in the matrix, which have a small effect on the detector-level prediction.

For all variables, most of the MC statistical uncertainties associated with the off-diagonal bins
of the response matrix were pruned. The exception to this was the m; and p]T in the 2-tag region,
where some of the off-diagonal bin uncertainties survived. For most variables, the MC statistical

uncertainties on the background were pruned.

5.6.6 Definitions of the priors on nuisance parameters

The definitions of the nuisance parameters for the different uncertainties were:

e Luminosity uncertainty: no variation templates exist for this uncertainty as it corresponds
to a linear scaling of all rates, therefore a log-normal prior was used with 4 = 0 and 0 =
0.021, to ensure positive rates and to act as a conservative proxy for the measured luminosity

uncertainty

e Background normalisation uncertainties: Gaussian priors with y = 0 and ¢ = 0.2 were used,
with the exception of the non-fiducial Z+ jets background for the 2-tag variables, where a

prior with 4 = 0 and o = 0.5 was used.

e Additional #f modelling uncertainty: Gaussian prior with y = 0 and ¢ = 0.5 for the first two
bins only.

e All other uncertainties: Gaussian prior with 4 =0 and ¢ = 1.0
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5.7 Results

The normalised differential cross-sections as a function of the measured observables are presented
here compared with the predictions from SHERPA 2.2.1 and MADGRAPHS_AMC @NLO+PYTHIAS
as well as the predicted total fiducial cross-sections for boosted inclusive Z+ jets production and
Z + bb production. Comparisons between the measured normalised differential cross-sections and
the predictions allow us to determine whether the MC generators model the shape of these ob-
servables well, whilst comparisons between the total fiducial cross-section allow us to determine
whether the overall rate of the process is well modelled. A description of how these results were
extracted from the multi-dimensional posterior probability distribution is given in Section [5.7.1]
The statistical and systematic uncertainties were estimated as described in Section [5.6] and their

resulting effect on the unfolded cross-sections was estimated as described in Section[5.7.2]

5.7.1 Extracting the unfolded spectrum

The result of the FBU unfolding technique is the full multi-dimensional posterior probability-
distribution over the whole space of nuisance parameters and the parameters of interest. In order
to visualise this, the full posterior probability distribution is marginalised into a one-dimensional
posterior distribution for each truth-bin. These posterior distributions are then translated into the
unfolded spectrum: the central value is the projected global most-likely point and the error bar is
defined as the central region containing 68% of the probability. This can lead to asymmetric error
bars if the posterior distribution is non-Gaussian, as the most likely point can lie near the edges of
this central region. An illustrative example of how the posterior distributions are translated into the
unfolded distribution is shown in Figure[5.38] The full posterior can also be marginalised for each

nuisance parameter in this manner.

5.7.2 Uncertainties on the final results

The contribution of each individual source of uncertainty — via the nuisance parameters — to the
final total error on the measured cross-sections was estimated using the covariances. Specifically,
the uncertainty, u, on the parameter of interest oP, e.g. a particular cross-section bin, due to a
nuisance parameter p, is assessed as the covariance between P and p, divided by the square-root

of the variance of p,,

Y= COV(GP,pk). (5.8)

V var(p,,)
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The covariances are calculated using the n sampled points in the likelihood scan using

cov(a®, ) = = ;(ap — 5o — - (5.9)

where 6P and p, are the means of the parameter of interest and nuisance parameter, respectively.
The relative uncertainty on o® due to p, is defined as u/6P.

This procedure was carried out for each source of nuisance parameter individually, and for
groups of nuisance parameters. Figures [5.39]to[5.40|show the estimated relative-uncertainty con-
tributions from the leading sources of systematic uncertainty, for each variable of interest. These
are compared with the total uncertainty band, which is the 16-84% quantile range of the poste-
rior distribution of the particular bin. For each variable, the systematic uncertainties associated
with the large-R jet, and the modelling of the #f background appear as leading sources. In the
comparison for pJT and my in the 2-tag region, the error band on the final bin looks very large com-
pared to the contribution from the leading systematic uncertainty. This is because the estimation
of the systematic contribution assumes that the posterior distributions are Gaussian, which is not
the case for these bins. The estimated contribution to the total uncertainty from nuisance parameter
groups is summarised for each variable and each bin in Tables[5.3]to Similarly, the quadra-
ture sum of these uncertainty components do not necessarily equal the defined total uncertainty
due to anti-correlations of nuisance parameters in the unfolding fit, and the fact that the statistical-
error associated with the data is not listed as one of the components. One could approximate this
component by unfolding the MC prediction without any systematic nuisance parameters. Since
the likelihood is constructed using Poisson statistics, this would give an estimate of the intrinsic

Poisson statistical-uncertainty associated with the input data.
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Figure 5.39: The estimated contribution to the total error from the six leading systematic uncer-
tainties for the inclusive variables a) pJT, b) my, ¢) pJT+Z and d) A¢(Z,J). The error bands represent
the 16-84% quantile range of the posterior distribution of each unfolded bin.
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Figure 5.40: The estimated contribution to the total error from the six leading systematic uncer-
tainties for the 2-tag variables a) pJT, b) m; and ¢) AR(b, b). The error bars represent the 16-84%
quantile range of the posterior distribution of each unfolded bin.
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Checking the nuisance parameter constraints

Since the systematic uncertainties in this analysis were effectively profiled, it was important to
check the constraints of their corresponding nuisance parameters. A full set of nuisance parameter
summary plots are shown in Figures [5.41|to[5.44] These plots summarise the posterior probability
distributions for each nuisance parameter. In general, it can be seen that there were no strong
constraints observed on any of the nuisance parameters, reflected by the fact that the width of their
posterior probability distributions was consistent with their prior width. The one exception was
the nuisance parameter associated with the MGS uncertainty, for which strong constraints were
observed for each variable. This was not unexpected, as the MGS5 model was generally worse at
describing the data compared to the nominal Sherpa model.

To assess whether this constraint was resulting in an underestimate of this uncertainty, the nui-
sance parameter was decomposed into two nuisance parameters: one in which the difference with
respect to Sherpa increased as a function of the particular variable in question, and one in which
the difference with respect to Sherpa decreased. For example, the contents of a given bin, r¢, of the
response matrix corresponding to a decomposed nuisance parameter is defined as

b;’p =(AX f)+ b (5.10)

sherpa’

where A = by .. — b’ flerpa is the difference between the MG5 prediction (by; <) and the Sherpa
prediction (b;;erpa) in the bin, and f, is a fraction which varies this difference. For the second
nuisance parameter, this fraction would be replaced with (1— f,). The fraction is varied as a function
of the bin number ¢, such that in one nuisance parameter, A increases as a function the variable in
question, whilst in the other it decreases. Splitting the nuisance parameter in this manner meant
that the resulting decomposed nuisance parameters would have a smaller effect with respect to the
original MGS5 nuisance parameter, therefore some relaxation of the constraint was expected from
this alone.

The nuisance parameter constraints in the single NP scenario and decomposed NP scenario were
compared and in general there were no significant reductions in the constraints on the decomposed
nuisance parameters with respect to the original. An example comparing the nuisance parameter
pulls when unfolding with the single MGS5 nuisance parameter and when unfolding with the de-
composed MGS5 nuisance parameter is shown in Figure for pJT+Z . The size of the resulting
error bars from this test were also checked. There was no significant increase in the resulting error
bands on the unfolded results in the decomposed-NP scenario, therefore it was concluded that the

uncertainty arising from this comparison was not being significantly underestimated.
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Figure 5.43: Summary plots of the posterior distributions of each nuisance parameter for a) pJT

and b). The error bands represent the 16-84% quantile range of the posterior distribution of each

nuisance parameter, the blue circles represent the global posterior mode, and the purple circles
represent the median. Note that the posterior for the luminosity is different as its prior was a log-

normal centred on one whilst the others were a Gaussian centred on zero.

125



2-tag selection

1.5
1.0 . T+ 4 T T T o T B ) T
0.0 34 l 1 b4 Il
T ..II ¢e © 4 I
®
®
—1.5L PR S S S S S S S S S S S S S S S S S S R
. w —_— = [a =] -~ -~ o v o 1] n H < viE Q oM s N
3 ERCESESS§59cECESBESELDRSESEEEERTEEE
] 5225 ao6cEL L3 ELVEEQEZHENS $JS560000 TG
3 €z Z2 o € o R5F =X - ' A~ ' m + OF ° = € € o & o o e oa
& gg 5903 %Y U N 1N 13 T £ =z R R R TR TR ]
> 259 S2E82288 SdadaNmu®STcITpiieeLs
3 SIF 59183 ¢s c~ cecNc¥RITESL SSa448480<2
Tl 2% PWEETE, B E£558EL£35 L= 528 ] E)
= 552 5 S fec-e 5293593 = 55 =
Ky g S g T Sme® s dadat st 23
= s} ] P8 9wy Qo wnd 0 g ]
3 8 £2aQ 9209 a9y 8 B
3 o -8 = @ o o o o
S c I i 5 5
- ] B8 BLo8848. 89
3 S8 BEHBERE KRS
2 - oo uu Py @ =
a SusSsusuU
s s %=

(a) AR(b, b)

Figure 5.44: Summary plots of the posterior distributions of each nuisance parameter for AR(b, b).
The error bands represent the 16-84% quantile range of the posterior distribution of each nuisance
parameter, the blue circles represent the global posterior mode, and the purple circles represent the
median. Note that the posterior for the luminosity is different as its prior was a log-normal centred
on one whilst the others were a Gaussian centred on zero.
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Figure 5.45: Nuisance parameter summary when the unfolding was performed with the original
MGS nuisance parameter (a) and when the unfolding was performed with the decomposed MG5
nuisance parameters (b). The error bands represent the 16-84% quantile range of the posterior
distribution of each nuisance parameter, the blue circles represent the global posterior mode, and

the purple circles represent the median. Note that the posterior for the luminosity is different as its

prior was a log-normal centred on one whilst the others were a Gaussian centred on zero.
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Sample ci" [pb] o> [pb]

tot tot

0.35 0.0058
Data 2.30103 0.0137+0.90%
SHERPA 2.368 +0.006  0.0091 = 0.0001

MADGRAPHS _AMC@NLO 2.837+0.024 0.0119 +0.0014

Table 5.2: The measured total fiducial cross-sections for inclusive Z + jets production, ¢™

tot ’
and Z + bb production, atzo':ag, compared to the corresponding predictions from MADGRAPHS-

_AMC@NLO+PYTHIA8 and SHERPA. The errors quoted on the MC predictions are statistical
only.

5.7.3 Differential and total fiducial cross-sections

The measured total fiducial cross-sections for both the inclusive and 2-tag region are shown in
Table [5.2] and the measured normalised differential cross-sections for each variable of interest are
shown in Figures [5.46] and where each are compared to the predictions from SHERPA 2.2.1
and MADGRAPHS5_AMC @NLO+PYTHIAS8 . These final results along with the associated errors
and their estimated breakdown into components are also summarised in Tables [5.3|to [5.10]

In the inclusive region, at high pJT+Z , the data differs from both the SHERPA 2.2.1 and MADGRAPHS-
_AMC@NLO+PYTHIA8 predictions. A deviation with respect to the predictions is also ob-
served in the lowest bin of the A¢(Z,J) distribution, whilst the rest of the distribution is described
well by the predictions. Similarly, mismodelling is observed at high pJT and high m;. The mea-
sured total fiducial cross-section in this region was found to be consistent with the prediction from
SHERPA 2.2.1 within 1o, whilst it differed with the MADGRAPHS_AMC @NLO+PYTHIA8 pre-
diction by more than lo.

In the 2-tag region, the measured differential cross-sections are generally consistent with the
predictions within the error bar for each variable. The total fiducial cross-section was underesti-
mated by the SHERPA 2.2.1 prediction in this region whilst it was consistent with MADGRAPHS-
_AMC@NLO+PYTHIA8 within the 1¢ uncertainty.
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Inclusive selection
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Figure 5.46: The unfolded data compared to the normalised truth-level cross-sections for the inclu-
sive variables a) pJT, b) my, ¢) pJT+Z and d) A¢(Z,J). The error bars represent the 16-84% quantile
range of the posterior distribution of each unfolded bin, and the central value is the global posterior

mode.
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2-tag selection
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Figure 5.47: The unfolded data compared to the normalised truth-level cross-sections for the 2-tag
variables a) pJT, b) m; and c) AR(b, b). The error bars represent the 16-84% quantile range of the
posterior distribution of each unfolded bin, and the central value is the global posterior mode.
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pJT bin (GeV) 200-250 250-300 300-400 400-500 500-600 600-700 700-900  900-1200  1200-2000

Results
i(}% (Gev™h 99x%x1073 46x1072 1.8x107% 58x10* 22x10™* 94x10° 3.0x107° 64x10°° 4.1x107’
Total uncertainty (%) 7.7 10.2 4.7 9.5 11.8 13.3 15.1 23.1 81.7
Uncertainty breakdown (%)

Scales & PDFs 0.5 0.4 0.0 0.2 0.0 0.1 0.4 1.0 0.7
MC modelling 5.8 2.0 1.3 2.0 3.1 4.2 1.5 0.0 10.5
MC statistics 0.0 0.1 0.1 0.0 0.1 0.1 0.0 1.4 0.1

tf modelling 0.7 0.2 0.2 1.6 1.4 2.8 1.1 1.7 4.2
Bkg normalisation 53 0.1 1.8 1.6 2.1 24 2.9 3.1 5.6
Jet reco 54 4.8 5.5 2.8 2.7 33 5.9 9.6 25.8
Electron reco 1.9 1.0 1.1 0.4 1.0 1.4 0.4 0.4 0.1
Muon reco 1.1 1.6 1.8 33 4.4 5.3 5.2 5.8 9.7
Pile-up 0.7 0.2 0.8 1.6 2.0 1.1 2.1 3.2 9.1
Luminosity 4.3 2.9 3.5 34 3.5 3.6 3.6 3.6 4.4

Table 5.3: Inclusive p,Jr: Summary of the differential fiducial cross-sections as a function of pJT and their relative total uncertainty.
The breakdown of the uncertainties into defined groups of nuisance parameters are also shown. Note that the quadrature-sum of
the individual components may not equal the total uncertainty due to nuisance parameter anti-correlations in the unfolding fit and
the fact that the data-statical component is not listed. The total uncertainties displayed here have been symmetrised with respect
to the uncertainties displayed in the results plots.



m, bin (GeV) 10-70 70-140 140-220 220-300 300-600

Results

if_;] (Gevh 13x1072 23x107 3.0x10™* 29x1075 24x107°

Total uncertainty (%) 4.3 18.8 21.8 38.8 31.2
Uncertainty breakdown (%)

Scales & PDFs 0.3 0.9 1.3 32 2.8
MC modelling 2.6 2.0 0.2 11.7 3.6
MC statistics 2.0 1.1 0.8 6.4 1.2
tt modelling 1.0 0.9 2.7 39 6.2
Bkg normalisation 1.4 3.8 3.2 4.6 6.0
Jet reco 2.1 6.8 6.1 2.1 3.6
Electron reco 1.1 2.8 2.7 7.1 0.5
Muon reco 0.7 1.2 2.3 5.5 0.8
Pile-up 2.6 2.5 0.1 0.3 2.9
Luminosity 2.9 2.1 1.0 0.3 6.7

Table 5.4: Inclusive m; : Summary of the differential fiducial cross-sections as a function of m; and
their relative total uncertainty. The breakdown of the uncertainties into defined groups of nuisance
parameters are also shown. Note that the quadrature-sum of the individual components may not
equal the total uncertainty due to nuisance parameter anti-correlations in the unfolding fit and the
fact that the data-statical component is not listed. The total uncertainties displayed here have been
symmetrised with respect to the uncertainties displayed in the results plots.
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pJT+Z bin (GeV) 0-50 50-100 100-150 150-200 200-250 250-300

Results

1L GevT)  56x107 42107 30x107 26x107 20x 107 11x107
o APy

Total uncertainty (%) 5.2 4.4 3.1 4.4 5.2 6.5
Uncertainty breakdown (%)
Scales & PDFs 0.6 1.4 1.6 3.1 1.3 1.7
MC modelling 5.1 6.4 5.5 2.6 6.1 6.3
MC statistics 0.8 0.0 4.1 0.8 0.1 0.5
tt modelling 0.0 0.6 1.1 0.3 0.0 0.3
Bkg normalisation 1.5 2.2 0.9 1.6 33 4.3
Jet reco 6.5 4.6 13.9 20.5 5.9 7.4
Electron reco 0.7 1.3 1.7 1.3 0.9 0.8
Muon reco 0.9 0.6 0.2 1.9 0.5 0.2
Pile-up 0.8 0.4 1.9 1.7 0.1 0.1
Luminosity 35 35 6.7 34 4.2 4.8

Table 5.5: Inclusive p,Jr+Z : Summary of the differential fiducial cross-sections as a function of

pJT+Z and their relative total uncertainty. The breakdown of the uncertainties into defined groups of

nuisance parameters are also shown. Note that the quadrature-sum of the individual components
may not equal the total uncertainty due to nuisance parameter anti-correlations in the unfolding fit
and the fact that the data-statical component is not listed. The total uncertainties displayed here
have been symmetrised with respect to the uncertainties displayed in the results plots.
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pJT+Z bin (GeV) 300-350 350-450 450-600 600-800  800-1000 1000-1800

Results

ld;— (GeV™)  64x107* 24x10™* 82x107° 1.7x107° 44x107° 3.1x1077

Total uncertainty (%) 8.0 9.4 10.3 12.9 26.5 60.0
Uncertainty breakdown (%)

Scales & PDFs 1.8 1.4 0.6 0.4 0.9 1.0
MC modelling 2.5 2.0 0.7 1.1 1.0 0.6
MC statistics 0.3 0.1 0.1 0.4 0.0 0.0
tt modelling 0.9 0.0 0.7 0.7 0.6 1.7
Bkg normalisation 4.2 2.5 2.4 1.7 2.5 1.8
Jet reco 6.5 6.1 5.8 5.8 7.0 8.9
Electron reco 0.1 0.6 0.8 0.5 0.6 0.1
Muon reco 0.6 1.7 1.4 1.8 1.9 0.6
Pile-up 0.2 0.6 1.7 1.8 1.7 1.3
Luminosity 4.9 4.4 4.6 4.8 5.6 4.1

Table 5.6: Inclusive p‘rz continued: Summary of the differential fiducial cross-sections as a

function of pJT+Z and their relative total uncertainty. The breakdown of the uncertainties into defined

groups of nuisance parameters are also shown. Note that the quadrature-sum of the individual
components may not equal the total uncertainty due to nuisance parameter anti-correlations in the
unfolding fit and the fact that the data-statical component is not listed. The total uncertainties
displayed here have been symmetrised with respect to the uncertainties displayed in the results
plots.
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A¢p(Z,J) bin 0.0-0.5 0.5-1.0 1.0-1.5 1.5-2.0 20-23 2326 2.6-2.8 28-3.0 3.0-3.2

Results

idA;leJ) 1.2x1072 19%x1072 32x107% 81x102 1.8x1072 032 0.59 1.2 2.1
Total uncertainty (%) 22.7 12.1 11.3 7.0 5.7 34 2.4 2.8 3.0

Uncertainty breakdown (%)
Scales & PDFs 2.7 0.0 0.7 0.0 0.2 0.0 0.2 0.3 0.2
MC modelling 5.7 1.2 2.5 1.5 0.7 0.5 0.5 0.7 0.9
MC statistics 1.0 0.3 0.0 0.3 0.4 0.2 0.2 0.2 0.3
tt modelling 9.2 3.7 4.8 3.6 3.2 2.4 1.8 1.2 1.4
Bkg normalisation 6.4 5.0 4.6 4.2 3.8 3.8 34 2.8 2.0
Jet reco 9.2 3.7 4.7 4.4 5.0 6.2 6.8 7.4 6.2
Electron reco 1.2 0.1 0.6 0.9 1.1 2.0 2.3 2.8 2.7
Muon reco 5.1 4.2 34 2.7 2.2 1.8 1.1 0.5 1.0
Pile-up 1.0 0.2 0.8 0.8 1.2 0.3 0.5 0.5 0.5
Luminosity 5.1 4.8 4.6 4.4 4.2 4.3 4.1 3.9 3.6

Table 5.7: Inclusive A¢(Z,J): Summary of the differential fiducial cross-sections as a function of A¢(Z,J) and their relative
total uncertainty. The breakdown of the uncertainties into defined groups of nuisance parameters are also shown. Note that the
quadrature-sum of the individual components may not equal the total uncertainty due to nuisance parameter anti-correlations in the
unfolding fit and the fact that the data-statical component is not listed. The total uncertainties displayed here have been symmetrised
with respect to the uncertainties displayed in the results plots.



pJT bin (GeV) 200-250  250-300  300-400  400-600  600-1200

Results
ijﬁ (Gev™) 1.0x 1072 47x107% 1.5%x107% 49x10™* 1.8x107
Total uncertainty (%) 15.3 25.8 27.8 25.4 103.3
Uncertainty breakdown (%)
Scales & PDFs 2.4 0.8 1.3 2.7 4.0
MC modelling 0.3 13.8 14.6 2.5 3.9
MC statistics 0.9 2.1 2.1 2.6 33
tt modelling 0.2 14.9 14.4 2.8 0.4
Bkg normalisation 22.1 9.3 18.7 13.1 36.5
Jet reco 3.0 8.3 8.6 1.7 10.6
Electron reco 3.5 3.5 4.5 4.0 8.2
Muon reco 1.2 0.2 1.2 1.0 2.5
Pile-up 1.4 0.6 1.9 1.4 15.5
Luminosity 6.0 4.9 5.3 4.6 7.4

Table 5.8: 2-tag p‘; : Summary of the differential fiducial cross-sections as a function of pJT and
their relative total uncertainty. The breakdown of the uncertainties into defined groups of nuisance
parameters are also shown. Note that the quadrature-sum of the individual components may not
equal the total uncertainty due to nuisance parameter anti-correlations in the unfolding fit and the
fact that the data-statical component is not listed. The total uncertainties displayed here have been
symmetrised with respect to the uncertainties displayed in the results plots.
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my bin (GeV) 10-70 70-140 140-220 220-400

Results
lj—mJ (Gev™h 7.6x 107 6.1x107 14x107° 5.1x107
Total uncertainty (%) 18.0 18.8 41.6 104.7
Uncertainty breakdown (%)

Scales & PDFs 0.6 0.1 1.4 3.3
MC modelling 6.2 4.4 5.9 8.9
MC statistics 0.5 1.9 0.9 6.1

1t modelling 5.8 12.8 4.0 10.6
Bkg normalisation 20.5 22.7 10.6 12.6
Jet reco 0.9 13.1 3.5 1.9
Electron reco 0.5 0.1 3.5 9.2
Muon reco 3.8 6.7 0.9 0.9
Pile-up 0.0 7.1 2.3 0.8
Luminosity 5.5 6.9 4.3 3.3

Table 5.9: 2-tag my: Summary of the differential fiducial cross-sections as a function of m; and
their relative total uncertainty. The breakdown of the uncertainties into defined groups of nuisance
parameters are also shown. Note that the quadrature-sum of the individual components may not
equal the total uncertainty due to nuisance parameter anti-correlations in the unfolding fit and the
fact that the data-statical component is not listed. The total uncertainties displayed here have been
symmetrised with respect to the uncertainties displayed in the results plots.
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AR(b, b) bin 0.18-0.3 0.3-04 0.4-0.6 0.6-0.8 0.8-1.0
Results
1_do 1.7 2.1 1.3 1.0 0.7
& dAR(b,D)
Total uncertainty (%) 26.0 18.8 17.7 21.0 33.3

Uncertainty breakdown (%)

Scales & PDFs 0.6 0.0 0.7 0.2 1.5
MC modelling 2.3 2.1 8.7 1.6 5.0
MC statistics 0.8 1.7 0.7 0.3 0.9

tt modelling 3.2 1.0 0.8 32 2.2
Bkg normalisation 26.3 11.1 11.9 16.8 22.0
Jet reco 4.1 5.5 6.9 7.7 11.4
Electron reco 3.2 1.4 1.4 1.9 3.3
Muon reco 0.2 1.9 2.1 1.9 0.6
Pile-up 1.7 2.6 3.8 3.5 0.8
Luminosity 5.4 4.4 4.6 5.7 6.2

Table 5.10: 2-tag AR(b, b): Summary of the differential fiducial cross-sections as a function of
A R(b, b) and their relative total uncertainty. The breakdown of the uncertainties into defined groups
of nuisance parameters are also shown. Note that the quadrature-sum of the individual components
may not equal the total uncertainty due to nuisance parameter anti-correlations in the unfolding fit
and the fact that the data-statical component is not listed. The total uncertainties displayed here
have been symmetrised with respect to the uncertainties displayed in the results plots.
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5.8 Summary

Cross-sections differential in kinematic variables of the b-tagged large- R jet produced in associa-
tion with a Z-boson have been measured, as well as total fiducial cross-sections for the inclusive
and 2-tag regions. These measurements have been compared to predictions from SHERPA 2.2.1 and
MADGRAPHS5_AMC@NLO+PYTHIAS . In the 2-tag region, the shapes of the observables were
well modelled by both predictions, whilst the normalisation was better modelled by the MADGRAPHS-
_AMC@NLO+PYTHIA8 prediction. This was slightly surprising given that the MADGRAPHS-
_AMC@NLO+PYTHIA8 sample was a LO prediction, whilst the SHERPA 2.2.1 prediction was
a NLO prediction (for up to two jets, and LO for up to four), hence one might naively expect the
SHERPA prediction to do better. In the inclusive region, shape mismodelling was observed for all
of the variables by both predictions. Contrary to the 2-tag region, the normalisation was better
modelled by the SHERPA prediction.

Systematic uncertainties were largely dominant in the inclusive region, whilst statistical un-
certainties became leading in the more extreme regions of phase-space. Despite the fact that the
unfolding procedure had the potential to constrain systematic uncertainties, it was not able to do so
in this analysis. In future iterations, control regions could be used in the unfolding fit to allow for
greater constraint of the uncertainties. In the 2-tag region and in the extreme regions of inclusive
phase-space, the measurement was statistically limited. The increase in luminosity from the addi-
tion of the remainder of the Run-2 dataset as well as new data from Run-3 of the LHC should help
to reduce these limitations in the future.

Due to lack of available samples at time of writing, the results were compared only to sam-
ples utilising the 5-flavour number scheme calculation method. It would be interesting to compare
the results to a sample utilising the 4-flavour number scheme, to ascertain whether either of these
schemes do a better job of modelling the data. In addition, the PYTHIAS parton shower generator
has the functionality to alter the scale choice used in g — bb splitting. It would be interesting to
compare the results to some PYTHIA8 samples with different choices of scale, to shine a light on
what the most appropriate choice is.

An additional measurement of the Z+ jets process was performed in parallel by another AT-
LAS group of analysers, where a lower momentum phase space was targeted and additional variables
were measured. The results from this analysis together with those presented in this chapter will be
invaluable for constraining the modelling uncertainties associated with this process and for tuning

and developing MC simulations.
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Chapter 6
V (H — bb) signal modelling studies

A particle with properties consistent with the Standard Model Higgs boson was observed by AT-
LAS and CMS during Run-1 of the LHC in 2012. With the additional data collected during Run-2,
the properties of the Higgs can be measured with increased precision and differential measurements
are starting to emerge.

The coupling of the Higgs to fermions was observed via its decay to z-leptons in Run-1 [85],
but its direct coupling to quarks, until very recently, had not been observed. The best candidate
for observing Higgs-quark coupling is the b-quark because the H — bb branching ratio is 58%: the
largest amongst all of the Higgs decay modes and accounting for over half of the total decay width,
as shown in Figure [86]]. This means H — bb is a very important process for constraining the
decay width of the Higgs.

The dominant Higgs boson production mode is gluon-gluon fusion, as shown by the blue line
in Figure but the H — bb signature is very difficult to disentangle from hadronic activity with
the same final state, as its production cross-section is around 107 times smaller than that of generic
b-jet production [87]]. Higgs production in association with a vector boson, V' H, offers a cleaner
final state owing to the leptonic decay modes of the vector bosons which reduce the background,
making this the most sensitive production mode for accessing the H — bb decay.

In 2017, a search for V(H — bb) using 36.1 fb™" of data collected during 2015 and 2016 observed
an excess of signal events with a significance of 3.5¢, providing the first evidence for H — bb [88)].
This chapter details my contribution to this analysis which was evaluating the signal-modelling
uncertainties. An overview of the analysis is given in Section[6.T]to contextualise the work followed
by details of the study in the subsequent sections. The full details of the analysis can be found in
Ref [88].
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Figure 6.1: The expected production cross-sections for each channel as a function of the Higgs
boson mass (a) and the branching ratios for the Higgs boson decay modes as a function of the
Higgs boson mass (b), taken from Reference [[86].

6.1 Analysis overview

Signal regions were defined to target the different leptonic decay modes of the W or Z boson that
is produced in association with the Higgs, with further categorisation based on the number of jets
in the event and the p; of the vector boson, p‘T/ . The phase space where the Higgs and the vector
boson have high p was targeted, as this region has the highest signal-to-background ratio. It should
be noted that the high p; region referred to here is lower than what is referred to as high p; in the
analysis presented in the previous section. The signal and the majority of the backgrounds were
estimated using MC simulation. The backgrounds considered were V+ijets, 17, single-top (W't), and
diboson (WW ,W Z, ZZ). The multijet background, which arises from jets faking the signature of
leptons, was estimated using data-driven techniques in the 1-lepton channel, whilst it was negligible
in the O0- and 2-lepton channel as a result of the selection cuts. In the O-lepton channel, additional
cuts on angular variables were implemented, whilst in the 2-lepton channel the requirement of two
isolated leptons within a dilepton invariant mass window suppressed the fakes to a negligible level.
A W+ jets control region was defined in the 1-lepton channel and a top control region was defined
in the 2-lepton channel in order to provide constraints on these backgrounds.

A boosted decision tree (BDT) was used to derive the discriminating variable used in the anal-
ysis. A BDT is a multivariate statistical analysis technique used to separate signal and background

processes; it takes a list of variables shown to give good signal-background discrimination, de-
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termines the optimal configuration of these variables for maximal separation, and condenses this
information into a single discriminant. A dijet-mass analysis, where the discriminating variable
was the invariant mass of the two b-jets, m,;, was performed in parallel to validate and cross-check
the result.

A binned maximum likelihood fit performed simultaneously in each signal region and con-
trol region was used to extract the V(H — bb) signal strength, y, along with the probability that
the results were consistent with a background only hypothesis, p,, from the data. Systematic un-
certainties associated with detector modelling, limited MC statistics and signal and background
modelling were encoded in the fit using nuisance parameters. The likelihood fit relied heavily on
MC simulation to model the signal and background, therefore it was important that uncertainties in
the modelling were assessed. The modelling uncertainty nuisance parameters were split into two
categories: normalisation and shape. The normalisation nuisance parameters controlled the signal
and background yields in the different analysis regions and the shape nuisance parameters defined
alternative templates for the fitted distributions used in the fit. The work carried out to derive the
signal-modelling uncertainties is documented in this chapter.

The extraction of the signal strength using this technique was validated by measuring the SM
diboson signal strength, V' Z, in parallel. In this cross-check, the BDT was trained to instead extract
the W (Z — bb) signal. The similar final state with a higher cross-section offered a robust cross check
of the methods used. Observing this well understood process with a signal strength consistent with
the Standard Model provided reassurance that the framework was working correctly.

Finally, the results using the Run-2 data were combined with the results from the Run-1 analysis.
The resulting probability that the observed V(H — bb) signal events were a result of background
only was p, = 0.018%. This corresponds to an observation significance of 3.6 standard deviations,
assuming a Higgs mass of m, = 125 GeV. The resulting fitted relative signal strength with respect
to the SM for all channels combined was 4 = 0.90 + ().18(stat.)fg:%(syst.), which is compatible
with the SM [_88].

6.2 Procedure for evaluating the uncertainties

As mentioned, MC simulation of the signal and background played a key role in the likelihood fit
used to extract the V(H — bb) signal strength, therefore the evaluation of uncertainties relating
to this modelling was important. For the signal, uncertainties relating to the following modelling

effects were assessed:

e The residual dependence on the renormalisation scale, yy, due to missing higher order correc-
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tions in the fixed-order differential cross-section and dependence on the factorisation scale, p;
e The effect of varying the PDF and the a (m ) values;
e The modelling of the parton-shower.

The uncertainties were evaluated using dedicated MC samples, to be described in Section [6.4]
These samples were available only at particle-level, therefore the uncertainties were derived via
particle-level comparisons using the RIVET analysis framework [89]. A dedicated selection was
written to match the detector-level selection as closely as possible and used to perform the studies.
This selection is described in Section

To mirror the categorisation of nuisance parameters required for the likelihood fit, the effect of
each systematic uncertainty was split into two components: acceptance variations affecting event
yields in the signal regions, and shape variations reflecting shape differences in the distributions of
pY and m,;. Only distributions of p¥ and m,; were evaluated as these had the most discriminating
power of the list of variables used as input to the BDT. The shape variations represent alternative
shape templates which are controlled by nuisance parameters in the fit. To assess the acceptance
uncertainties, the samples were normalised to the same cross-section. To assess shape uncertainties,
the distributions being compared were normalised to the same area to avoid double-counting the
acceptance effects. For both the shape templates and the acceptance, the uncertainties derived were
symmetrised such that they represented both the +16 and —1¢ variation.

Uncertainties on the total production cross-section for each process and uncertainties relating
to NLO electroweak (EW) corrections were also considered in the analysis. Whilst I did not derive

these particular uncertainties, they are described briefly in Section for completeness.

6.3 Event selection

The analysis used three main selections targeting the leptonic decay modes of the two V' H associated-
production channels: O-lepton (ZH — vvbb), 1-lepton (WH — £vbb) and 2-lepton (ZH —
£*¢~bb), where £ = e, u (contributions from leptonically-decaying z-leptons are included if the
electron or muon pass the kinematic requirements). In all cases the uncertainties for ZH — vibb
were derived using the 0-lepton selection, the uncertainties for W H — £vbb using the 1-lepton
selection, and for ZH — #*#~bb using the 2-lepton selection. The 0- and 1-lepton channels were
split further into events with exactly two jets and events with exactly three jets, whilst the 2-lepton
channel is split into events with exactly two jets and events with at least three jets. This > 3 jet

region will be referred to as the 3-jet region henceforth. A > 4 jet veto in the 0- and 1-lepton
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channels was implemented to reduce contamination from large #f background in these channels. In
the 2-lepton channel, where the #f background is relatively smaller, the absence of this veto brings
extra sensitivity. In all cases, at least two of the selected jets were required to be b-tagged.

To target regions with high signal-to-background ratio, the events were further categorised into
ranges of p¥ . In the O-lepton channel this corresponds to E;“iss; in the 1-lepton channel it is the
vector sum of the charged lepton p and E‘T“iss; and in the 2-lepton channel it is the p; of the 2-lepton
system. In all of the leptonic channels there was a p‘T/ > 150 GeV region, and in the 2-lepton channel
there was an additional 75 GeV < p¥ < 150 GeV region. This region was not explored for the
0- and 1-lepton channel as the increase in background outweighed any increased signal sensitivity.
No distinction was made between these two p‘T/ regions in the 2-lepton channel when assessing the
acceptance uncertainties — they were derived inclusively in p¥ for each analysis region.

The selection described above is summarised in Table[6.1l This table also details the kinematic
cuts imposed on the leptons and jets and describes some additional selection cuts. In particular,
a number of angular selections were made in the O-lepton channel. These cuts are categorised
into multijet rejection cuts, and signal-enhancing cuts. The O-lepton channel suffered from larger
background contamination with respect to the other channels, therefore the extra cuts helped to
ensure a maximum signal-to-background ratio. In particular, the multijet rejection cuts reduced the

multijet contamination to a negligible level.
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94!

Selection

ZH—vvbb

W H— £vbb

ZH—?¢*¢"bb

1 sub-channel

e sub-channel

Leptons 0 loose leptons 1 tight electron | 1 medium muon 2 loose leptons
pr > 7 GeV, same flavour
pr > 71GeV pr > 27 GeV pr > 25 GeV > 1 lepton with pp > 27 GeV
E}“i“ > 150 GeV > 30GeV — —
My, — — 81 GeV < m,, < 101 GeV
Jets Exactly 2 or 3 jets, pp > 20 GeV Exactly 2 or > 3 jets, p; > 20 GeV
b-jets Exactly 2 b-tagged jets, leading b-jet p; > 45 GeV

py regions

> 150 GeV

75 < py < 150 GeV, py > 150 GeV

Z pi;,ts

> 120 GeV (2-jets), > 150 GeV (3-jets)

Multijet rejection:
A¢(Efrr1iss’ Emiss

T,trk

min[Ag(EM, jet)]

< 90°

> 20° (2-jets), > 30° (3-jets)

Signal-enhancing:
AG(ET™, bb)
Ag(b,, by)

> 120°
< 140°

Table 6.1: Summary of the signal event-selection, adapted from Ref [[88]. The angular cuts in the O-lepton channel have been cate-
gorised into multijet rejection cuts, and signal enhancing cuts. The 0-lepton channel suffers from larger background contamination,
therefore these extra cuts are required.



6.4 MC samples

As previously mentioned, the V H signal is comprised of three production modes: ZH — vbb,
ZH — ¢*¢~bb and W H — £vbb. These processes were simulated using the POWHEG generator
with the MINLO (multiscale improved NLO) procedure applied [90], interfaced to PYTHIAS [91]]
for the parton shower and applying the AZNLO tune with the NNPDF3.0 PDF [92] set. These
samples were used as the nominal prescription.

The POWHEG MINLO +PYTHIA8 samples include systematic variations stored as alternative
event weights allowing the effects described in Section [6.2] to be studied. The alternative event

weights correspond to:

e Variations of the y, and u . scales. Both are varied by a factor of 0.5 or 2 in a correlated and

independent way, leading to six variations.
e 30 PDF and two «, variations from the PDFALHC15_30 set [93, (92, 84, 83|94, 95, 96]].

To investigate the effects of varying the parton shower and underlying event tune, MADGRAPHS-
_AMC@NLO +PYTHIAS8 samples were used. These samples were produced using MADGRAPHS-
_AMC@NLO [97] for the hard scattering generation and PYTHIAS for the parton shower, hadroni-
sation, underlying event and multiple-parton interaction simulation. The NNPDF2.3 5f FFN [98]]
PDF sets with A14 tune [99] were used. In addition to this baseline prescription, additional sam-
ples with the five variations of the A14 parton shower tune were used [99]. The variations on
this tune account for the effects of changing the level of underlying-event activity, changing the
colour-reconnection range, and altering the levels of initial-(ISR) and final-state radiation (FSR).

Finally, POWHEG MINLO +HERWIG7 samples were used to assess the effect of using a different
parton shower model. This sample was largely the same as the nominal POWHEG MINLO sample
with the difference being that it was interfaced with the HERWIG7 parton shower model rather than
PYTHIAS, and used the H7-UE-MMHT tune.

The samples were normalised to the best theoretical prediction of the cross-section for the dif-
ferent processes at the time. The cross-sections for gg-initiated W H and ZH were calculated at
NNLO in QCD [100] [[101]] and NLO in EW [[102]]. The cross-section for gg-initiated ZH was cal-
culated at NLO [103]]. These cross-sections are summarised in Table[6.2] The given uncertainties
take into account QCD scale, PDF and «, uncertainties which were added in quadrature and are
described in Section
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Process order cross-section (pb)
WH NNLO(QCD)+NLO(EW) 1.37 £ 0.04

W*H  NNLO(QCD)+NLO(EW) 0.84

W~H  NNLO(QCD)+NLO(EW) 0.53
ZH NNLO(QCD)+NLO(EW) 0.887003

gg > ZH NLO(QCD) 0.12

qq > ZH 0.76

Table 6.2: Inclusive cross-section for the signal processes.
6.5 Results

6.5.1 Parton shower and underlying event variations

To estimate the effect of parton shower modelling on the signal, two different strategies were used:
variation of the parton shower tune and the use of a different parton shower model, HERWIG7.
Ideally, the former would have been assessed using POWHEG MINLO +PYTHIAS samples with
variations of the AZNLO tune, however these samples were not available. Instead, the baseline
MADGRAPHS5_AMC@NLO +PYTHIA8 samples were compared to those generated with varied
PYTHIAS8 A14 tunes. The effect of using an alternative parton shower model was assessed by com-
paring the nominal POWHEG MINLO +PYTHIA8 sample to POWHEG MINLO +HERWIG7.

Acceptance
Separate uncertainties were derived for the tune variations and for the model comparison. The
acceptance prediction from a given variation is defined as @"*" and the acceptance prediction from

the nominal is defined as a™™. There were five tune variations in total which each had an up

var
dow

and down component, with their respective acceptances defined as azgf and ai® . The fractional

uncertainty arising from each tune variation was calculated as

max(lavar _ anoml, |anom _ ag?;vnl)

i . 6.1)

anom

These uncertainties were summed in quadrature to get the total uncertainty resulting from tune
variations. For the model comparison, the uncertainty was calculated as the percentage difference
between the HERWIG7 acceptance prediction and the nominal PYTHIAS prediction. The final uncer-
tainty was taken as the maximum of these, which was the PYTHIA8-HERWIG7 model comparison

in all cases.
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Process Uncertainty
2j 3j/2j
ZH—vvbb  10.0% 13.0%
WH—¢vbb  12.1% 12.9%
ZH—¢¢7bb 13.9% 13.4%

Table 6.3: Summary of the uncertainties assigned for the effect of parton shower modelling on the
V' H acceptance in each analysis region.

This procedure was carried out to derive acceptance uncertainties for the two-jet and three-jet
categories of each V'H channel. The uncertainties for the 2-jet and 3-jet regions were found to
be consistent. As a result, only the 2-jet acceptance uncertainty was used and an additional un-
certainty was derived for the ratio between the acceptance in the 3-jet and 2-jet categories in each
V H channel, following the same procedure described above. The final values of these acceptance

uncertainties are shown in Table

Shape

To assess the shape differences arising from the tune variations and the alternative parton shower
model, ratios between these variations and the nominal were taken for py’ and m,;. In each lepton
channel, shape differences were considered separately for the 2-jet and 3-jet channels. For p¥ , each
ratio was parametrised using a linear fit whilst a second-order polynomial was used for m,;.

The p¥ shape differences with respect to the nominal for each tune variation are shown in Fig-
ure [6.2] The variation yielding the maximum shape difference in each region is highlighted by a
cyan line and represents the shape uncertainty used in each region. The shape difference resulting
from the comparison of the models was significantly smaller than for the tune variations, therefore
no additional uncertainty was assigned.

The resulting m,; shape difference with respect to the nominal for each tune variation in each
selection is shown in Figure[6.3] Again, the maximum shape difference is highlighted with a cyan
line in each region and represents the shape uncertainty used for this region. Shape deviations were
also observed in the model comparison, which are shown in Figure [6.4] These shapes were very
similar for each selection and due to their complicated nature, were difficult to fit with a continuous
distribution. As a result, the ratio histogram representing the largest deviation was used as an

additional shape template for each region.
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Figure 6.2: Shape comparison of the p¥ distributions for each V' H process, i.e. lepton channel,

and each number of jets category. The fit through the up and down variation of each tune is shown,
where the maximum fit is highlighted by the cyan line. The latter was used as a shape uncertainty.
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Figure 6.3: Shape comparison of the m,; distributions for each V'H process, i.e. lepton channel,
and each number of jets category. The fit through the up and down variation of each tune is shown,
where the maximum fit is highlighted by the cyan line. The latter was used as a shape uncertainty.
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Figure 6.4: Ratios of the m,; distributions for each V' H process, i.e. lepton channel, and each
number of jets category from the POWHEG MINLO +PYTHIA8 vs POWHEG MINLO +HERWIG7
comparison.

6.5.2 PDF and «,

These uncertainties were derived from comparisons between the nominal POWHEG MINLO +PYTHIAS
samples and those generated with the PDF and the a(m ,)+0.001 variations from the PDF4LHC15_30
PDF set.

Acceptance

Acceptance uncertainties were calculated inclusively as the 2-jet and 3-jet uncertainties were found
to be consistent. The percentage difference between each varied sample and the nominal was calcu-
lated and summed in quadrature to derive the PDF component of the uncertainty. The percentage
differences between the varied a, samples and the nominal were derived, and their average was
taken as the a, component of the uncertainty. These components were added in quadrature to get

the final uncertainty. The values of these acceptance uncertainties are summarised in Table [6.4]

Shape

The ratio of m,; and p! between each varied sample and the nominal was taken. The shapes were
considered separately between the 2-jet and 3-jet categories. The ratios were parametrised by a
linear fit for p!’ and a second-order polynomial for m,;. It was found that the PDF and a; variations
had a negligible effect on the m,; shape and therefore no shape uncertainty was assigned to this

distribution. Figure[6.5|shows the fitted ratios for each PDF and a; variation in each region, where
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Process Uncertainty (inclusive)

ZH—vvbb 1.1%
W H— £vbb 1.3%
ZH—?¢ ¢~ bb 0.5%

Table 6.4: Summary of the systematic uncertainties on the V' H acceptance originating from altering
the PDF and a, uncertainties.

the envelope is highlighted by the green line. The shape deviations are small and similar across all
of these regions, therefore the largest shape variation was taken as the final shape uncertainty for

all channels, which was the envelope shown in the 0-lepton 2-jet region.

6.5.3 Scale variations

The nominal POWHEG MINLO +PYTHIAS8 samples were compared to those generated with weights
corresponding to varied factorisation and renormalisation scales, in order to derive uncertainties

based on these variations.

Acceptance

The acceptance uncertainties were derived using the Stewart-Tackmann-method (ST method) to en-
sure that correlations between the perturbative uncertainties in the exclusive jet bins were correctly
taken into account, as well as additional uncertainties induced by imposing a jet boundary [104].
This method translates uncertainties on inclusive jet selections into a set of uncertainties on the
exclusive jet selections used in the analysis. The inclusive jet categories were defined as > 2 jets,
> 3 jets, and > 4 jets. For each of these categories, the envelope of the percentage differences
between the nominal and each scale variation was taken. These, along with the nominal inclusive
acceptances, were the ingredients for the method. The application of the ST method, which involves
solving a covariance matrix defined in Reference [[104], results in a correlated and uncorrelated un-
certainty in each two-jet bin, an uncertainty for each three-jet bin, and an additional uncertainty

accounting for the > 4 jet veto in the 0- and 1-lepton channels, shown in Table

Shape
To derive the shape uncertainties for m,; and pY, the ratio between each variation and the nominal
description was parametrised by a linear fit for p¥ and a second-order polynomial for m,;, shown in

Figures [6.6] and respectively. For both variables, the shapes were considered separately for the
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Figure 6.5: p¥ : Fits through shape differences arising from each PDF and «, variation, for each
V' H process, i.e. lepton channel, split into the 2-jet and 3-jet category. The green line shows the
envelope of those variations in each region. These shapes are consistent, therefore the maximum
of these envelopes was used as the systematic uncertainty in all regions which was the envelope
shown for the 0-lepton 2-jet region.
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Process

Uncertainty

2-jet  2-jet (correlated with 3-jet) 3-jet 4-jet veto
ZH — vwbb 6.9% -7.0% 500 -2.5%
ZH — IlIbb  3.3% -3.2% 3.9% -
WH — £vbb 8.8% —8.6% 6.8% 3.8%

Table 6.5: Summary of the acceptance uncertainties resulting from scale variations, computed

using the Stewart Tackman method.

2-jet and 3-jet categories. In each region and for each variable, the envelope of these variations is

highlighted by a cyan line; this envelope was used as the shape uncertainty in each of these regions.
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Figure 6.6: p¥ : Fits through the deviations originating from each scale variation for each VH
process, i.e. lepton channel, split into the 2-jet and 3-jet category. The cyan line shows the envelope
of those variations and was chosen as a systematic uncertainty for the p¥ shape in each respective
region.
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Figure 6.7: my;: Fits through the deviations originating from each scale variation for each VH
process, i.e. lepton channel, split into the 2-jet and 3-jet category. The cyan line shows the envelope
of those variations and was chosen as a systematic uncertainty for the m,; shape in each respective
region.
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6.5.4 Additional uncertainties

In addition to the analysis-specific uncertainties described in the previous sections, additional un-
certainties relating to the calculation of the total production cross-sections, the H — bb branching
ratio, and the effect of NLO EW corrections on differential distributions were also included in the
analysis. I did not derive these uncertainties, however a brief description is given here for com-
pleteness.

The uncertainties on the calculated total cross-sections reported in Table arise due to the
effects of varying the scales p and g, as well as variation of the PDF and a, value. These un-
certainties were treated as normalisation nuisance parameters in the fit. An uncertainty was also
considered for the H — bb branching ratio, which was also treated as a normalisation nuisance
parameter. This uncertainty took into account missing higher-order effects in the calculation of
the branching ratio and uncertainties on the mass of the b-quark and a,, Whilst the effect of NLO
EW corrections was included in the calculated total cross-sections, their effect on the differential
distributions was not. Since they were expected to have a significant effect on the p¥ distributions,
corresponding corrections were derived as a function p‘T/ . The signal samples were then reweighted

such that they included these corrections.

6.5.5 Impact of uncertainties

The acceptance and shape uncertainties derived were assigned as normalisation and shape nuisance
parameters in the fit, respectively. To estimate the contribution of the signal-modelling uncertainties
as a whole to the total systematic uncertainty, their nuisance parameters were fixed to their best-fit
value. The fit was then repeated and a new total uncertainty was extracted. The difference in quadra-
ture between the new uncertainty and the original gave an estimate of the signal-modelling uncer-
tainties’ impact to the total uncertainty. This was done for each category of uncertainty considered
in the analysis as shown in Figure [6.8] From these results it can be seen that the signal-modelling
uncertainties were the leading contributor to the total systematic uncertainty. In particular, it was
the parton shower acceptance uncertainties, which as a whole, were the single leading source of

systematic uncertainty in the analysis at 10-13.9%.

6.6 Summary

Systematic uncertainties relating to the modelling of the V(H — bb) signal were assessed. They

were found to be the largest contributor to the total systematic uncertainty on the final result, with
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Source of uncertainty Oy

Total 0.39
Statistical 0.24
Systematic 0.31
Experimental uncertainties
Jets 0.03
Frmiss 0.03
Leptons 0.01
b-jets 0.09
b-tagging c-jets 0.04
light jets 0.04
extrapolation 0.01
Pile-up 0.01
Luminosity 0.04
Theoretical and modelling uncertainties
Signal 0.17
Floating normalisations 0.07
Z + jets 0.07
W 4+ jets 0.07
tt 0.07
Single top quark 0.08
Diboson 0.02
Multijet 0.02
MC statistical 0.13

Figure 6.8: A summary of the impact of each source of uncertainty on the resulting signal strength
with respect to the SM [88]].

158



the leading uncertainty coming from the parton shower acceptance effects.

The analysis techniques described in Section [6.1] formed the basis for an updated search us-
ing 79.8 fb~! of Run-2 data, where a 4.9¢ excess of V(H — bb) signal events was observed [105].
This result was included in two combinations: firstly with 7 TeV and 8 TeV Run-1 data; secondly
with the results of other H — bb searches via the t#H and vector-boson fusion production modes
which also combined Run-1 and Run-2 results. These combinations resulted in observation of the
H — bb decay mode with a significance of 5.46. Another combination of the result with other
searches for V' H production, where the Higgs decayed to two photons or two Z bosons, resulted in
an excess of V' H signal events with a observed significance of 5.3¢. The resulting signal strengths
with respect to the SM from the combinations described are shown in Figure [6.9]

Whilst I didn’t actively work on this iteration of the analysis, the uncertainties derived as de-
scribed in this chapter were mostly re-used in this analysis as the signal MC samples remained
the same for the most part. The exception to this was the parton shower acceptance uncertainties.
Updated POWHEG MINLO +PYTHIAS8 samples with AZNLO tune variations became available as
well as an updated POWHEG MINLO +HERWIG7 sample which offered improved MC statistics.
Following re-evaluation of the parton shower uncertainties with the inclusion of these new samples,
the acceptance uncertainties decreased from being in the range of 10-13.9% to 2.9-11.9%. Despite
this, whilst their contribution to the total uncertainty as a whole decreased, the signal-modelling un-
certainties remained the largest contributor to the total systematic uncertainty with respect to other
categories of uncertainty. The parton shower acceptance uncertainty was still one of the largest,
however in this analysis it was no longer the single largest source of systematic uncertainty.

For future iterations of the analysis there are certainly improvements to be made in how the
signal-modelling uncertainties are evaluated. So far the signal-modelling uncertainties have always
been derived at particle-level and with a particle-level framework, however this means that truth-to-
reconstruction resolution effects in m,; and p¥. are not assessed or accounted for. In addition, if the
uncertainties were evaluated at detector-level their effect on the BDT discriminant directly could
be assessed rather than using m,; and p¥ as a proxy. Progress has been made in this area where
a new framework has been developed which allows for truth-to-reconstruction matching between
physics objects used to evaluate the uncertainties. Studies are also beginning on the feasibility of
using the BDT discriminant to derive uncertainties rather than m,; and py. Finally, due to the lack
of available samples, dedicated uncertainties were not assessed for gg-initiated ZH production. In
the future it would be interesting to see what the size of these uncertainties would be and if they

are indeed compatible with those derived for gg-initiated Z H production.
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Figure 6.9: The fitted values of a) the H — bb signal strength for the separate production channels
and their combination, and b) the V' H signal strength for the different Higgs decay channels and
their combination, both taken from Reference [103]].
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Chapter 7
Conclusion

In 2017, the first evidence for the H — bb decay was obtained in a search for V(H — bb). A
dominant background for this search is Z + bb, the mis-modelling of which was one of the leading
systematic errors in the analysis. Improving the understanding of this background is therefore a key
part of improving the V(H — bb) search in the future, as well as being an interesting process in its
own right. Z + bb is sensitive to uncertainties relating to the predictions of perturbative QCD; in
particular uncertainties regarding the treatment of the kinematics and amplitude of b-quarks in the
initial and final state. Measuring this process can therefore help to constrain these uncertainties. The
identification of b-quarks is a crucial aspect of both the V' (H — bb) search and Z + bb measurement,
hence it is important that the performance of b-tagging algorithms is well-understood.

In this thesis a calibration of the b-tagging efficiency of the MV2c10 algorithm in track-jets
was performed in data collected at a centre of mass energy of \/E = 13 TeV. The calibration
was performed using the tag-and-probe method and the resulting scale-factors were an important
validation of the scale-factors obtained using the likelihood calibration method, which are used by
analyses in ATLAS. This calibration is important for ensuring that the MC simulation correctly
describes the performance of the MV2c10 b-tagging algorithm in data.

With the performance of the b-tagging algorithm understood, a measurement of the kinematic
variables of a high p; b-tagged large-R jet produced in association with a Z-boson was then pre-
sented. The measurement was performed on a dataset corresponding to 36 fb™" collected at a
centre of mass energy of \/E = 13 TeV. This is the first measurement of this process in the boosted
phase-space. The cross-sections were measured as a function of the large-R jet p; & mass in both
the inclusive region and the 2-tag region, the separation between the tagged sub-jets, AR(b, b), and
the p; of the vector-sum of the Z-boson and the large-R jet as well as their separation in ¢ in the

inclusive region. The shape of the variables tended to be mismodelled by the MC predictions in
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the inclusive region, whilst the predictions were more compatible with the data within 1o for vari-
ables in the 2-tag region. The total fiducial cross-sections for the inclusive and 2-tag region were
also measured. The data was found to agree with the SHERPA prediction within 1o in the inclusive
region and consistent with the MADGRAPHS_AMC@NLO+PYTHIAS8 prediction within 1o in the
2-tag region.

The Z+ jets process is a dominant and important background for many Higgs analyses, a par-
ticular example being the V(H — bb) search, which is also presented in this thesis. The studies per-
formed to assess the signal-modelling uncertainties in the 2017 analysis, where the first evidence
for this process was seen, have been presented. It was found that the dominant signal-modelling
uncertainty arose from the parton-shower modelling, which in fact turned out to be the leading
systematic uncertainty in the analysis. Since this process is sensitive to the modelling of the parton
shower, the understanding regarding g — bb splitting gained from the Z + bb measurement will be
crucial for future searches.

In parallel to the boosted Z + jets measurement described in this thesis, a resolved measure-
ment was performed by another ATLAS group of analysers, where a lower momentum phase space
was targeted. The produced b-quarks are less collimated in this phase-space, meaning small-radius
R = 0.4 calorimeter jets can be used to resolve them — hence the term "resolved". The results from
both this analysis and the boosted analysis presented in this thesis are very important for future
V(H — bb) searches. The results from these Z+jets analyses will be invaluable for constraining the
modelling uncertainties associated with this background process in the search, which as mentioned
earlier are currently one of the leading sources of systematic uncertainty. Along with the inclu-
sion of the full Run-2 dataset, this could be a key contribution towards achieving a single-channel
observation of the V' (H — bb) process.

In addition to the analyses presented in this thesis, I was also involved in a Run-2 measurement
of observables sensitive to the b-quark fragmentation function, which is the function governing the
transition of a b-quark into a b-hadron. Thus far, the treatment of b-quark fragmentation functions in
MC generators has been based on measurements made at LEP [106} /107, 108]], hence it is important
to check whether the modelling still holds true at a hadron collider. The results of this measurement
along with the results of the Z + bb measurement can be used for future Monte Carlo development

and tuning, which will in turn help the many analyses for which b-quarks play an important role.
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