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Abstract

After the �rst direct detection of gravitational waves (GW) from a system of two colliding
black holes, we have stepped into the era of gravitational-wave astronomy. In order to
observe the broader and deeper universe, increase the detection rate for various sources
and do better source parameter extraction, it is essential to further enhance the sensitivity
of gravitational wave detectors. The design sensitivities of the current detectors are limited
by quantum noise nearly over the whole detection band.

Various quantum non-demolition technologies have been proposed to suppress the quantum
noise, one of which is called speed meter. Speed meter aims to improve the detector sensi-
tivity at low frequencies. Not only it can beat the standard quantum limit but also gives lots
of astrophysics prospects. For example, it gives longer waring time before the merge stage
of binaries and it signi�cantly improves the detection rate of massive binary black holds
(so far we have not observe any systems with component masses prior to merger greater
than 50 solar masses) allowing to uncover the potential existence of black hold population
in this range.

One speed meter experiment, Sagnac speed meter (SSM) proof of concept experiment is
currently carried out in Glasgow. This experiment aims to prove the superiority of speed
meters in terms of quantum radiation pressure noise in the low frequency compared with
an equivalent Michelson. One property of the Sagnac interferometer is that the light �elds
returning from the arms in two directions share the same path and always interfere de-
structively at the signal port. This property is unsuitable for conventional DC readout and
pushes the utilisation of balanced homodyne readout. Balanced homodyne readout is also
planed to be implemented in advanced LIGO upgrade, A+. This thesis introduces several
research topics around speed meters and balanced homodyne readout.

One problem of implementing balanced homodyne readout is the optical loss because of
the misalignment and mismatch between the separate local oscillator and signal beam in
balanced homodyne readout. A theoretical framework is built for analysing the static and
dynamic optical higher order modes e�ects. The results are applied to the Glasgow proof
of concept experiment. Misalignment is not only a problem in the balanced homodyne
readout, but also in the Sagnac interferometer itself. The e�ect of misalignment inside
the Sagnac interferometer on the quantum noise limited sensitivity is calculated with the
example of the Glasgow SSM experiment. Strategies for the implementation of an auto-
alignment scheme in SSM experiment are investigated.

I also investigate several aspects of considerations on implementing balanced homodyne
readout in A+, including local oscillator stability requirement, output mode cleaner arrange-
ment, local oscillator backscattering e�ects and sensing and control for di�erent degrees of
freedom in the balanced homodyne readout.
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For Sagnac speed meter with Fabry-Pérot resonators in the arms, it was shown theoretically
that an asymmetry of the main beamsplitter can lead to a reduction of the quantum limited
sensitivity at low frequencies. We propose an approach to solve this problem by utilising
balanced homodyne readout and choosing a proper local oscillator delivery port.

In Sagnac speed meter interferometer, ring cavities are required. Di�erent from linear cav-
ities, the circulating beam in the ring cavities and the normal of the input mirror are not
on the same line. The backscattering inside the ring cavity due to mirrors micro-roughness
can induce coupling between the two counter-propagating modes. I analyse the e�ect of
backscattering on quantum noise of a ring cavity when conducting measurement at one
output port. Starting from previous work in [1], I develop here a more in depth analysis of
the backscattering mechanism and present the results distinguished into three character-
istic levels of backscattering amplitude. Again this is carried out using the Glasgow SSM
experiment as an example.

In addition to Sagnac interferometer, other more advanced types of speed meter have been
proposed by the community, including one based on the principle of Einstein Podolsky
Rosen entanglement. I analyse the e�ect of several imperfections on quantum noise and
the potential sensitivity improvement by injecting frequency dependent squeezing.

Another new speed meter con�guration is based on a standard Michelson interferometer
featuring additional polarisation optics in the output port, named as polarisation circulation
speed meter. I propose an acceleration meter con�guration based on the combination of the
Sagnac speed meter and the polarisation circulation speed meter.

With no doubt that the loss-less variational readout scheme is better than speed meter,
however, it is more susceptible to optical loss compared with speed meter in real environ-
ment. Here I develop a comparison between speed meters and position meters with lossy
variational readout.
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Preface

Credits speci�c to the chapters are listed below.

Chapter 1 presents an introduction on gravitational waves, several noise sources of the
gravitational wave detector, some fundamental instruments of the gravitational wave de-
tector and techniques for overcoming the standard quantum limit.

Chapter 2 presents the design of Sagnac speed meter experiment conducting in Glasgow
and laser stabilisation schemes. The conceptual design of the Sagnac speed meter experi-
ment was developed by Stefan Hild, Christian Gräf, Sebastian Steinlechner and Ken Strain.
Jan Simon Hennig and Roland Schilling developed the optical layout. The linear cavity ex-
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ment of locking the strategy of locking the linear cavity in laser frequency stabilisation
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scheme.
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drew Spencer, Jennifer Wright contributed to various fruitful discussions relevant to this
article.

Chapter 4 discusses several practical issues in terms of implementing balanced homodyne
readout in A+. The motivations for this work were from Peter Fritschel and Stefan Hild. The
�rst consideration of local oscillator mode cleaner length stability originated from Hang
Yu. The initial sensing strategies of the di�erent degrees of freedom in balanced homo-
dyne readout were developed by Hang Yu. The simulation is based on the Finesse �le with
contributions from Charlotte Bond, Paul Fulda, Daniel Brown, Antonio Perreca, Andreas
Freise.

Chapter 5 presents the way of quantum noise cancellation in asymmetric Sagnac speed
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ing was in cooperation with Stefan Danilishin. Sebastian Steinlechner noticed the e�ect
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Bryan W Barr, Angus Bell, Peter Dupej, Christian Gräf, Jack Callaghan, Jan-Simon Hennig,
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Chapter 8 presents the e�ect of several imperfections on quantum noise in the EPR speed
meter and calculates the performance of injecting squeezing. The idea of this work is from
Stefan Danilishin. The theoretical work was was carried in collaboration with Eugene
Knyazev and Stefan Danilishin.

Chapter 9 presents an acceleration meter con�guration. The work is carried out by myself.

Appendix A develops a comparison between speed meters and position meters with lossy
variational readout. The motivation of this work was from Stefan Hild.

Appendix B shows the Finesse input �le of A+ for balanced homodyne readout. The �le
is for the simulation done in Chapter 4. It was written by Daniel Brown with contributions
from the Balanced Homodyne Detection for A+ workshop. I was one of the participants of
the workshop and contributed the design of arrangements of OMCs in the �le.

Appendix C shows the Finesse input �le of Glasgow Sagnac speed meter experiment. The
�le is for the simulations done in Chapter 6. It was written by Christian Gräf with contri-
butions from Andreas Freise, Stefan Danilishin, Sebastian Steinlechner and myself.



Chapter 1

Introduction

This chapter provides the fundamental information related to the work presented in the rest
of this thesis. Sec. 1.1 starts with the basic concepts of gravitational waves. Sec. 1.2 describes
several sources of disturbances in ground based gravitational wave detectors; Sec. 1.3 pro-
vides the overview of fundamental concepts of current gravitational wave detectors which
are directly related to the enhancement of the signal to noise ratio of detectors; Sec. 1.4
focuses on the quantum noise limited sensitivity of gravitational wave detectors and illus-
trates several techniques for overcoming the so called standard quantum limit which is a
result of Heisenberg’s uncertainty principle.

1.1 Gravitational waves

On 14th September 2015, humanity made its �rst gravitational wave detection from binary
black holes merging [2]. The event GW150914 marked the beginning of a new era, grav-
itational wave astronomy. In this section, I brie�y introduce the basic concepts related to
gravitational waves. The gravitational waves are generated if there is non-zero value of
the second time derivative of the quadrupole moment of an isolated system’s stress?energy
tensor, for example, from a spinning non-axisymmetric object or binary objects coalescing
with elliptical orbits [3]. In general relativity, space-time curvature is associated with the
stress-energy tensor of matter �elds, described by the Einstein Equation. In the Einstein
�eld equations, matter tells space-time how to curve, but the curved space-time also tells
matter how to move [4]. Considering the weak gravitational �eld limit, when the observer
is far away from the source, the Einstein equation can be linearized and analytically solved.
The general solution can be represented as a travelling plane wave with an amplitude ten-
sor, which can be reduced to two physical degrees of freedom by adopting a gauge called

1
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Tensor Traceless (TT) as

ℎ�� =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0
0 ℎ+ ℎ× 0
0 ℎ× −ℎ+ 0
0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (1.1)

Here ℎ+ and ℎ× represent the two polarisations of the gravitational wave. The e�ects of a
passing gravitational wave can be described as tidal force e�ects on the orthogonal plane
of its propagation. In terms of two free masses with distance L on the plane, the passing
gravitational wave introduces a distance variation �L which follows

�L =
ℎ+,×
2
L , (1.2)

The in�uences of gravitational waves on a ring of free falling test masses that is perpendic-
ular to the gravitational wave traveling direction are shown in Fig. 1.1. As we can see, gravi-
tational waves always squeeze and stretch the distance between two test masses. When the
distance of two test masses gets squeezed, the distance of two test masses in the orthogonal
direction gets stretched. The laser interferometer gravitational wave detector is actually to
sense the di�erential phase variances of two interfered beams which are modulated di�er-
entially by the motions of test masses. A simple Michelson scheme that describes how the
gravitational wave signals can be measured is shown in Fig. 1.2. In a simple Michelson, a
coherent laser source incidents on the central beamsplitter and is divided into two beams.
Each beam accumulates the phase change during traveling in the arm and the phase shift
modulated by the motion of the test mass. The two beams re�ected back recombine on the
beamsplitter and interfere with each other. Usually, the asymmetric port is tuned nearly
dark to measure the di�erential phase term between two recombined beams which can
caused by gravitational waves.

The gravitational wave detector measures such strain signals with the corresponding re-
sponse to both polarisations,

ℎ = F +(t)ℎ+ + F ×ℎ× , (1.3)

where F +∕× are so-called antenna patterns which depend on the interferometer opening
angle, sources sky location and signal polarisation angle. The sources that can be detected
by ground-based gravitational wave detector are mainly in the frequency range between
10 to 104 Hz. By the end of the second observation run, ten events of coalescence of binary
black holes and one event of coalescence of binary neutron stars have been detected.
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Figure 1.1: E�ects of gravitational waves on a ring of free test masses on the plane orthogonal to
its propagation. The distance between two test mass get squeezed or stretched by �L following the
rule of Eq. 1.2.

1.2 Noise sources of the ground based interferometer

A through understanding of the noise characteristics is a both, basic and crucial step to
build gravitational wave detectors and achieve the expected sensitivity in each frequency
band for corresponding types of astrophysics sources. In this section, I introduce several
noise sources including laser noise, seismic noise, thermal noise and quantum noise. Seis-
mic noise highly depends on local geographical situation, so it is usually concerned at the
primary stage of building a gravitational wave detector. Laser noise is a technical noise
that originates from the detector probe itself. Decreasing laser noise is usually a common
topic for precision measurement research utilising a laser. Especially, in the audio band,
the frequency band of interest for gravitational wave detection, the laser noise coupling is
signi�cant. Besides this section, in Chapter. 2, two essential laser stabilisation techniques
will be introduced in more detail. Thermal noises, mainly including coating thermal noise
and suspension thermal noise, cause test masses displacements directly. We have almost
isolated the system from the classical world, the fundamental worries will be quantum
noise, which consists of quantum shot noise and quantum radiation pressure noise, is the
focus of the majority of the chapters in this thesis. Note that the quantum shot noise is a
sensing noise, however, quantum radiation pressure noise is a displacement noise. There
are proposed con�gurations allowing displacement noise-free measurement based on the
understanding that gravitational waves and test mass displacement disturbances act dif-
ferently on light propagation and also allowing laser noise insusceptible measurement [5,
6].
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Figure 1.2: The schematic of a simple Michelson interferometer. BS represents the beamsplitter. The
two ports are labeled as symmetric port (laser port) and asymmetric port (signal port), respectively.

1.2.1 Seismic noise

Seismic noise comes from the ground motion of the earth. Reducing the seismic noise is
a key task for ground-based gravitational wave detector. The suspension systems based
on pendulum mechanism which have several isolation stages are developed as the seismic
noise passive suppression platforms. For a multistage isolation system, each stage attenu-
ates the �uctuating the �uctuations above the resonance frequencies following frequency
dependence of 1

f 2
.

Seismic noise presents in both horizontal and vertical directions. Fig. 1.3 shows the mea-
sured seismic motion of the �oor in the Glasgow interferometry lab. The horizontal mode
does couple into the gravitational wave channel. The vertical mode contamination to the
gravitational wave channel is tiny. It can be caused by the manufacturing imperfections
of the suspensions itself. In large scale gravitational wave detectorcavity, input test mass
(ITM) and end test mass (ETM) have unparallel locally de�ned vertical directions because
of the curvature of the earth surface. The local vertical displacement of one end mirror can
thus couple to the longitudinal gravitational wave channel.

1.2.2 Laser noise

Intensity noise

There are two ways that the laser intensity noise could show up as detection noise, which



1.2. NOISE SOURCES OF THE GROUND BASED INTERFEROMETER 5

Figure 1.3: Measured horizontal and vertical ground motion in the lab of University of Glasgow [7]
.

will be discussed below. In a resonate cavity, the test mass displacements sensed by pho-
todiode are obtained as intensity variations, thus the laser intensity �uctuation can mimic
the test mass displacement. This measurement noise can be written as [8, 9]

xin = RIN ⋅ xRMS [m∕
√

Hz],

RIN = ΔP
P

[1∕
√

Hz],
(1.4)

where RIN is short for the relative intensity noise, xRMS is the RMS value of the residual
displacement of the cavity test mass. Another e�ect comes from the classical radiation
pressure noise. The relationship between classical radiation pressure noise and quantum
radiation pressure noise can be represented by

xqutrp
√

ℏ!
2

=
xclarp

RIN
√

P
, (1.5)

where xqutrp and xclarp are the amplitude spectral density in displacement of quantum and
classical radiation pressure noise, respectively. We notice that, if the RIN level is constant,
the classical radiation pressure noise amplitude spectral density is proportional to P , which
is di�erent from the case of quantum radiation pressure noise which is proportional to

√

P .
The di�erence is because the radiation pressure force for both cases are proportional to
√

P , however, the amplitude of vacuum �uctuation is constant but the laser �eld amplitude
�uctuation is proportional to

√

P .

In the tuned Fabry-Perot Michelson interferometer operated near to dark, since the two
beams from the two arms interference destructively, the laser intensity noise and classical
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radiation pressure noise should be cancelled mostly as common mode information. How-
ever, there will still be �nite noise coupling depending on the strength of common mode
rejection. Even starting from very stable laser sources, we �nd that for gravitational wave
detectors we usually have to employ additional intensity stabilisation schemes for achiev-
ing the RIN requirements.

Frequency noise

Practically, the laser frequency cannot be treated as constant. The �uctuations can for
instance originate from either the variance of laser linewidth or the variance of linewidth
central frequency [10]. Thus for one laser beam with a travel distance L, the frequency
instability will introduce additional dephasing as 2�L

c
�f with the frequency variations �f

in Hz. The laser frequency noise e�ect is equal to a length variation with the relation

�f
f
= �L
L
, (1.6)

where f the laser frequency and �L is displacement noise. L is de�ned as the beam trav-
elling distance or the cavity length of a Fabry-Perot cavity. The typical frequency noise of
a free running laser used in gravitational wave detectors is recognised as [11]

�f = 100(100Hz
f

) [Hz∕
√

Hz]. (1.7)

Like the laser intensity noise, the laser frequency noise is also a common noise. Even
though, in order to acquire the lock of the arm cavities, it is helpful to develop a pre-laser
frequency stabilisation scheme [12]. The frequency stabilisation was typically realised by
locking the laser frequency on a reference cavity by Pound-Drever-Hall technique [13, 14].

1.2.3 Thermal noise

According to the �uctuation-dissipation theorem [15–17], the energy dispassion in a sys-
tem causes thermal �uctuation. The thermal noises in gravitational wave detectors mainly
come from the suspension and the test mass, so-called suspension thermal noise and mirror
thermal noises. Their amplitudes are proportional to mechanical loss and temperature.

Coating Brownian thermal noise

There are various types of thermal noises associated with the mirrors, e.g. Brownian noise,
thermoelastic noise and thermorefractive noise which arise from both coatings and sub-
strate. As it turns out, in the frequency band of interest of ground-based gravitational
wave detector, the coating Brownian noise is the dominating thermal noise associated with
the mirror. It results from the mechanical loss in the numerous layers of high and low index



1.2. NOISE SOURCES OF THE GROUND BASED INTERFEROMETER 7

materials coatings. Its power spectral density can then be estimated as[18]

SBrownian =
4kBT
�2f

(1 + �s)(1 − 2�s)
Es

d
w
�C , (1.8)

where kB is Boltzmann constant, T is the temperature, �s is Poisson ratio, Es is Young’s
modulus of the substrate, d is the coating thickness, w is the beam diameter on the mirror
and �C is the mechanical loss of coating.

Suspension thermal noise

Suspension thermal noise originates from the �bres and their connections to the test mass.
Above the fundamental pendulum frequency, the longitudinal thermal motion decreases
with increasing frequency ,f , following

√

1
f 5

[9][19]. In high frequency, the violin modes
manifest the �bre oscillations excited by the thermal force [20]. Increasing the stress of the
�bre pushes the reduction of the bounce mode frequency and the raise of the �rst violin
mode frequencies. Increasing the stress of the �bre could be achieved by reducing �bre
diameters [21].

1.2.4 �antum noise

Quantum noise originates from the quantum nature of laser light and is induced via the
measurement process measurement. In a gravitational wave detector, it manifests itself in
two ways, Shot noise (sensing noise), which dominates in high frequency band, and radia-
tion pressure noise (back-action noise), which dominates in low frequency band.

Shot noise

Shot noise is a kind of sensing noise. A photo diode counts photons and converts the
optical information into electronic information. In this process, due to the non-uniform
distribution, i.e., a Poissonian distribution, of the photons of a laser beam in space, the shot
noise limits the accuracy of probing the correct information. The shot noise is directly
proportional to the square root of incident power on the photo diode, however, the signal
information is proportional to the incident power. Thus the shot noise limited sensitivity
of the detector can be improved by increasing the laser power.

For a broadband photo counting device with a unit quantum e�ciency, the shot noise cur-
rent can be written as [9]

isn =
√

2eiDC [A∕
√

Hz] , (1.9)

where e is an electron charge, iDC is the photocurrent of a photodiode.

The relative intensity of shot noise can be written as

RINsn =
√

2e∕(R ⋅ P ) [1∕
√

Hz] , (1.10)
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where R is the photocurrent response to a certain power P of a photodiode device.

To detect gravitational waves using a simple Michelson interferometer, the shot noise am-
plitude spectral density in displacement can be represented by

xsn =
√

ℏc�
2�P

[m∕
√

Hz] , (1.11)

where ℏ is the reduced Planck’s constant, � is the laser wavelength and P is the optical
power circulating in the interferometer arms.

For a Fabry-Perot cavity, the shot noise amplitude spectral density can be approximated to
[9, 22]

xsn ≈
1
4F

√

�ℏ�c
Pin

(1 + (Ω�sto)2) [m∕
√

Hz] ,

�sto =
2LF
c�

[s]
(1.12)

Here F is the �nesse of the cavity, L is the cavity length, and �sto is the storage time of
the cavity, Pin is the input power to the cavity. 1

2��sto
is the corner frequency of the cavity.

We notice that the shot noise is inverse proportional to the cavity �nesse. So Fabry-Perot
cavities play an essential role in improving the shot noise limited sensitivity in current
generation gravitational wave detectors.

Radiation pressure noise

Radiation pressure noise is also referred to back action noise, because it is induced by the
back action of the probe itself onto the test mass. Since the light �eld is quantized, then
the non-uniform distributed photons will also provide �uctuating radiation pressure over
time, which will cause position variations of the test mass. The amplitude spectral density
of the quantum radiation pressure noise in a simple Michelson is given by

xrp =
1

mΩ2

√

2�ℏP
c�

[m∕
√

Hz] , (1.13)

where m is the mirror mass. For a Fabry-Perot cavity, the radiation pressure noise can be
expressed as [9]:

xrp =
4F
�mΩ2

√

4�ℏP
�c[1 + (Ω�sto)2]

[m∕
√

Hz] . (1.14)

According to Eq. 1.12, 1.14, whenΩ�sto is much smaller than 1, we can see that the shot noise
can still be treated as white noise approximately but the radiation pressure noise amplitude
spectral density arises towards low frequency following 1∕Ω2, which results from the test
mass’ mechanical susceptibility.
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Figure 1.4: Schematic of a Fabry-Perot cavity. The input �led ‘a’ at the can be misaligned respected
to the dashed line reference, the re�ection �eld are represented by ‘b’, the transmission �eld is
represented by ‘l’, ‘l′’ is the input from the end test mass port.

1.3 Fundamental features of gravitational wave detec-
tor

In this section, I introduce several fundamental concepts relevant for the understanding of
the second generation gravitational wave detectors.

1.3.1 Fabry-Perot cavity

Fabry-Perot cavities [23] play essential roles in gravitational wave detectors. As I showed
in the Sec. 1.2.4, by implementing Fabry-Perot cavity, the shot noise limited sensitivity can
be signi�cantly increased due to the ampli�ed output response to the mirror motion which
is characterised by cavity Finesse. As a laser beam resonator, a Fabry-Perot cavity also de-
�nes its eigen spatial mode. So it can be used as a mode cleaner by designing its geometric
construction. Detuned Fabry-Perot cavities are essential elements in some techniques for
beating standard quantum limit, for example, frequency dependent squeezing and varia-
tional readout. In this section, I introduce both the optical input-output (I/O) relation of the
Fabry-Perot cavity and its optomechanical I/O relation in two-photon formalism.

Optical input-output relation

Like shown in Fig.1.4, a represents the input �eld, b is the output �eld, e and f are the
inner �elds, l is the transmission �eld and ‘l′’ is the input from the end test mass port. By
solving a set of equations in which each equation demonstrates the relation between two
�elds right next to each other, I can write down

l = �a
−tITMtETMe−ikL

1 − rITMrETMe−2ikL
, (1.15)

b = a
(

√

1 − �2 + �
rITM − rETMe−2ikL

1 − rITMrETMe−2ikL

)

, (1.16)
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e = �a
itITM

1 − rITMrETMe−2ikL
, (1.17)

where � represents the mode overlap factor of of the input beam to the cavity, rITM and rETM
are the re�ectivity of input test mass (ITM) and end test mass (ETM), respectively. k is the
wave number of the laser beam and L is the length of the cavity. The free spectral range of
one cavity is de�ned as

FSR = c
2L

, (1.18)

which is the interval frequency range between two resonance frequencies of the cavity.
And the cavity half bandwidth is given as the half width at half-maximal circulating power,
which can be written in angular frequency as


 = 2arcsin

(

1 − rITMrETM
2
√

rITMrETM

)

FSR . (1.19)

In the gravitational wave detector, the cavities can be treated as a single-mode lumped
resonator [27]. Using the single-mode approximation, there is


 =
cTITM
4L

+
cTETM
4L

, (1.20)

where TITM and TETM are the power transmissivity of the cavity input mirror and end mirror,
respectively. The Finesse of the cavity can be written as the ratio of the cavity free spectral
range and the cavity full linewidth

F = FSR


� . (1.21)

Based on above equations, the loss terms of the cavity can be estimated by monitoring the
re�ection power [28],

PR = |a|2
(

1 − 4�2
TETM + |l|2

TITM

)

, (1.22)

Here I consider the overall loss as the transmission of cavity l. And

l =
√

l2ITM + l
2
ETM . (1.23)

The loss of ITM can be identi�ed by misaligning or removing the ETM, thus

PR = |a|2(1 − TITM − |lITM|
2) . (1.24)

Two-photon formalism
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The so-called two-photon formalism [29, 30] describes, locally, an arbitrary quasi-monochromatic
modulated electromagnetic wave with strainE(t) = 0

[

(Ac + ac(t)) cos!pt + (As + as(t)) sin!pt
]

in terms of 2-dimensional vectors of quadrature amplitudes AAA + aaa, where AAA = {Ac, As}T

stands for DC mean amplitudes vector andaaa = {ac, as}T stands for zero-mean non-stationary
variations and �uctuations of light. 0 =

√

4�ℏ!p
c

is the normalisation constant, c is the
speed of light, and !p is the carrier light angular frequency. It is usually more convenient
to work in the frequency domain:

ac,s(t) = ∫

∞

−∞

dΩ
2�
ac,s(Ω)e−iΩt , (1.25)

where we de�ne quadratures spectra at the modulation sidebands o�-set frequency Ω =
! − !p.

Opto mechanical input-output relation

In general, the input-output relation can be written in the form of[27]

b = � (ℝa + Rx) +
√

1 − �2a + T l̂′ , (1.26)

where � is the alignment coe�cients of the input beam to the cavity,

R = 2!0

√


1
cL

L

[

−Es
Ec

]

, (1.27)

and
[

Es
Ec

]

=

√

2I
ℏ!0

[

sin �
cos �

]

, (1.28)

with � de�ning the phase of a complex amplitude. Then

L = 1
(
 − iΩ)2 − �2

[


 − iΩ −�
� 
 − iΩ

]

, (1.29)

with � is the detuning from pump frequency. And

ℝ = 2
1L − I ,

T = 2
√


1
2L.
(1.30)

The intra cavity mode can be written as

e =
√

c
L
L

(

√


1â +
√


2l̂ + !0

√

1
cL

[

−Es
Ec

])

(1.31)
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Furthermore, concerning the mirror dynamics, the equation of motion can be written as

( +K)x = F 0
b.a + FGW . (1.32)

 = − 1
�Ω2

is the e�ective mechanical susceptibility, � = ( 1
m1
+ 1

m2
)−1 is the e�ective mass of

the longitudinal mechanical mode. K is the ponderomotive rigidity,

K =
�J�

(
 − iΩ)2 − �2
, (1.33)

with
J =

4!0I
�cL

, (1.34)

the normalised circulating power. And the random back action force can be represented by

F 0
b.a = 2ℏkE

Te. (1.35)

In the special case of a single, optical detuning-less and lossless Fabry-Pérot cavity, the I-O
relation can be derived as,

b = e2i�(Ω)
[

1 0
− 1

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
T arm

â + ei�(Ω)
[

0
√

2

]

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
R

x
xSQL

, (1.36)

with  is the Kimble optomechanical coupling factor [25],

 =
2Θ


Ω2(
2 + Ω2)
, (1.37)

where 
 = 
1 is the half bandwidth of the cavities. � = arctan(Ω


) is the phase shift that

the light sidebands at frequencyΩ acquire when propagating through and re�ecting o� the
cavity. And

xSQL =
√

2ℏ
�Ω2

, (1.38)

is the free mass amplitude spectral density of the standard quantum limit in displacement.

1.3.2 Power recycling cavity

The interferometer shot noise limited sensitivity can be further enhanced by implementing
an additional mirror at the symmetric port forming a so-called power recycling cavity with
two arm cavities input test masses. As we know, the symmetric port is the bright port
and common motion port. The sidebands which contain di�erential gravitational wave
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signal will only couple into the asymmetric port, i.e. the dark port. So the power recycling
cavity only enhances the circulating power in arm cavities rather a�ects signal beam. The
choice of the re�ectivity of the power recycling mirror should satisfy a wider bandwidth
of the power recycling cavity compared with the arm cavity. The appearance of the power
recycling cavity also utilises the power re�ected from arm cavities and enhances the laser
light utilisation e�ciency.

1.3.3 Signal recycling cavity

In contrast to the power recycling cavity, by adding a mirror at the asymmetric port, the
corresponding signal recycling cavity has no e�ect on carrier �eld that comes from the
symmetric port. However, at the asymmetric port, the di�erential GW signal sidebands
will be partially re�ected back to the main interferometer and go out again. The signal
recycled Fabry-Perot cavity thus results in a modi�ed decay rate and resonate frequency
of the interferometer, which is determined by the signal recycling mirror re�ectivity and
detuning. Hence it allows to gain the �exibility of shaping the interferometer response.
In two special cases, 0 or �

2
phase detuning (signal-recycling (SR) and resonant-sideband-

extraction (RSE) [31, 32]), can be used to realise an increased response function in a narrow
band a broadened bandwidth of the responseor. However, due to the bandwidth and peak
sensitivity product limit, also named Mizuno limit [33], the interferometer sacri�ces the
peak sensitivity in RSE mode. Even though, the RSE mode is the default mode utilised
in current gravitation wave detector. In the detuned case, the signal recycling cavity can
generate equivalent optical spring e�ect, thus allows the detector sensitivity overcome the
standard quantum limit (SQL) in a narrow band around the frequency of optical resonance
and mechanical resonance [32, 34].

1.3.4 Homodyne readout

That one can extract the gravitational wave signal passing through the interferometer from
the probe laser relies on the readout scheme. One popular and currently in use technology
is homodyne readout. Due to interference of the two laser beams returning from the arms
and the particular operating point of the interferometer, at the dark fringe, the gravitational
wave e�ects on laser parameters are maximised in principle. However, there are two tasks
that need to be solved in reality. First of all, considering that the gravitational waves only
provide very weak modulations on laser phase, if the photodiode is operating at the dark
fringe, the signal photocurrent would be of second order of smallness. Secondly, to keep the
interferometer on its operating point, a bipolar error signal is required for control purposes.
These two issues can be solved by introducing a reference laser, i.e. the local oscillator. One
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way to create the presence of a local oscillator local oscillator is to slightly o�set the in-
terferometer operating point at the readout port from dark fringe by introducing an arms
length di�erence, so-called DC readout [35, 36]. An advantage of this scheme is that the
local oscillator is automatically phase locked with the signal sidebands. Another way is to
introduce a split local oscillator which still originates from the interferometer pump. The
split local oscillator is mixed with the dark port sidebands on a beam splitter. Two pho-
todiodes are placed behind the two output ports of the beam splitter, respectively. Finally,
we read out the subtraction of the photocurrents of two photodiodes. This technology is
named as balanced homodyne readout [37]. The advantages of this scheme are that it al-
lows to arbitrarily choose the readout quadrature and that the noises in the local oscillator
itself can be subtracted. In Chapter. 3,4,5, greater details on the realistic implementation of
balanced homodyne readout will be introduced.

1.4 Overcoming standard quantum limit

In Sec. 1.2.4, the quantum noise was introduced as a fundamental noise source for gravi-
tational wave detection. In the second generation gravitational wave detectors, quantum
noise limits the detector sensitivity over a broad frequency band. In this section, I present
the basics of standard quantum limit (SQL) and introduce several quantum non-demolition
techniques for beating SQL [24–26].

1.4.1 Standard quantum limit

Conventionally, the quantum noise consists of the low frequency back action noise (radi-
ation pressure noise) and high frequency sensing noise (shot noise). The minimal sum of
the two types of noises builds a sensitivity bound, standard quantum limit. It was noted as
a consequence of Heisenberg uncertainty principle in continuous linear measurements by
Braginsky [38]. Considering that the test masses’ mechanical eigenfrequencies are usually
much smaller than the gravitational wave signal frequency concerned by the ground based
gravitational wave detectors, I treat the test masses as free masses. As a result, the power
spectral density of free mass the standard quantum limit for a displacement measurement
can be written as [27]

SSQL = 2ℏ|�| , (1.39)

where ℏ is the Planck constant, and � is the free mass mechanical susceptibility. As shown
in Fig. 1.5, in a linear continuous measurement system, the displacement measurement can
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Figure 1.5: The schematic of a continuous linear measurement system. Fext is the external force
applied onto the test mass, Fb.a. represents the back action force, z is the sensing noise, x is the
measurement output in displacement.

be represented mathematically by a linear equation as

x(Ω) = �(Ω)[Fb.a.(Ω) + Fext(Ω)] +Z(Ω) , (1.40)

whereZ(Ω) is the measurement noise of the meter and Fb.a. is the back action force induced
by the probe laser and Fext is the excitation force, which can be the gravitational wave tidal
force. Considering a conventional interferometer with resonant arm cavities, there will not
be correlations between shot noise and radiation pressure noise, the quantum noise spectral
density normalised to displacement (�(Ω)Fext(Ω)) can be written as

S = SZ + |�(Ω)2|SF , (1.41)

with SZ and SF quantifying the spectral densities of sensing noise and back action noise.
There is Heisenberg-like Uncertainty relation that constrain the relation between SZ and
SF as [39]

SFSZ ≥ ℏ . (1.42)

So that one can get the minimal noise spectral density, SSQL, as shown in Eq. 1.39. The
normalised SZ referes to shot noise which is white noise in terms of position measurement
in low frequency, and |�(Ω)2|SF refers to back action noise. Since

�(Ω) = − 1
�Ω2

, (1.43)

where � is the e�ective mass of corresponding mechanical displacement mode, we can read
that the back action power noise spectral density araises in low frequency following 1∕Ω4

and is inversely proportional to the square of the mirror mass.

It is also straightforward to derive the SQL in terms of other normalisations. The power
spectral density of SQL in force can be written as

SF
SQL =

2ℏ
�
. (1.44)
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And for advanced LIGO type Michelson interferometer, the power spectral density of SQL
in strain can be derived as

Sℎ
SQL =

4SF
SQL

�2L2Ω2
, (1.45)

since
F (t) =

�L
2

̈ℎ(t) . (1.46)

1.4.2 Squeezed vacuum injection

Squeezed vacuum injection is one of the most mature technologies for suppressing the
quantum noise. It has been demonstrated in larger scale gravitational wave detector GEO600
[40–42] and later on LIGO [43]. Eq. 1.4.1 shows the result of Heisenberg uncertainty prin-
ciple when there is no correlation between input state phase quadrature and amplitude
quadrature, i.e. for a vacuum state or a coherent state. However, there are ways of building
the correlation between two quadratures of the input �eld by means of non-linear optical
e�ects. Thus the squeezed state �eld can be prepared. Technically, by manipulating the
input quantum state in our favour, i.e. suppressing both Sz and SF in their corresponding
dominating frequencies, an overall improvement of quantum noise limited sensitivity can
be achieved. This technique is named as frequency dependent squeezing [25].

The picture can be understood as following. In one case, e.g. phase quadrature squeezing,
the uncertainty on phase quadrature is suppressed in company with the sacri�ce of the
measurement accuracy on the amplitude quadrature. This kind of squeezing can already
provide a high frequency sensitivity improvement. However, in low frequency, the detector
itself applies strong ponderomotive squeezing to the input �eld, i.e. the amplitude quadra-
ture �uctuations couple to phase quadrature in a frequency dependent way. Thus, to evade
the contamination of the ampli�ed noise by antisqueezing , a frequency dependent rotation
is required for the input state. The rotation process can be realised by a detuned �lter cavity.
Utilising frequency dependent squeezing is currently planed for future upgrade of current
gravitational wave detectors and future generation gravitational wave detectors. The math-
ematical description of realising ideal frequency dependent squeezing can be found in [27,
44].

1.4.3 Variational readout

Another way to suppress the quantum noise is to modify the output pass [25]. Since the
detector itself generates the correlation between phase and amplitude quadrature in the so-
called ponderomotive squeezing process, one can measure a certain combination of the two
quadratures realising an evasion of the contribution from the amplitude quadrature of the
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Figure 1.6: Conceptual scheme of speed measurement. The laser photons consecutively hit on the
front surface and rear surface with a time delay. The laser phase is modulated by the test mass
motion and measured by a phase meter.

input �eld, which raises the radiation pressure noise. This certain combination of quadra-
tures measurement can be achieved by utilising balanced homodyne readout and choosing
a proper homodyne angle. Again, the homodyne angle needs to be frequency dependent,
which can be realised by �ltering the low frequency sidebands by a detuned cavity. The
obstruction to implement variational readout in the future is mainly from optical loss. A
more detailed analysis relating to lossy variational readout can be found in Appendix. A.

1.4.4 Speed meter

Another approach of quantum non-demolition measurement can be conducted by choosing
commuting observables. In 1990, Braginsky came up with the speed meter concept [45]
since momentum is recognised as conserved observable. At that time, the idea idea was
still formulated in the context of application to resonant bar detectors. The �rst speed
meter con�guration based on laser interferometer is called sloshing cavity speed meter. It
is based on a Michelson interferometer and a so-called sloshing cavity is added at the output
port of the interferometer [46].

How the speed measurement can help improving the strain sensitivity of gravitational wave
detectors can be understood by the following picture. Utilising the concept of laser inter-
ferometry, one is always observing the di�erential phase of two interfered beams. In terms
of speed measurement of the test masses, smaller phase variances of the laser beam are
recognised towards lower frequency. In other words, the signal response decreases linearly
towards low frequency. Meanwhile, the radiation pressure force on the test mass is also
cancelled partially and decrease linearly towards low frequency. A conceptual scheme of
speed measurement is shown in Fig. 1.6. Similar to Eq. 1.40, the speed measurement at low
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Figure 1.7: Schematic of Sagnac speed meter. The blue arrows indicate the clockwise propagation
direction of the laser beam; The red arrows indicate the anticlockwise propagation direction of the
laser beam. The signal beam is represented by the dash line and sensed with a balanced homodyne
detector (BHD). The measurement process is described in the main text.

frequencies can be represented approximately by

ẋ(Ω) = Ω ⋅ �(Ω)[Ω ⋅ FBA(Ω) + Fext(Ω)] +Z(Ω) (1.47)

One can write down the noise spectral density normalised to signal force induced displace-
ment, i.e., �(Ω)Fext(Ω)),

S =
SZ
Ω2

+ Ω2|�(Ω)2|SF (1.48)

Obviously, according to Eq. 1.42, we can notice the speed meter noise spectral density will
still be limited by SQL. However, the back action term Ω2|�(Ω)2|SF at low frequencies is
relaxed with Ω2 and follows the SQL trend. This provides evidence of the priority of the
speed meter scheme on quantum noise limited sensitivity in low frequency. In the following
I introduce two realisations of the speed meter.

Sagnac speed meter scheme

The di�erential speed measurement of the arm cavities length variations can be achieved
by two consecutive measurements. In 2003, Chen pointed that the Sagnac interferometer is
automatically a speed meter interferometer [47]. Like shown in Fig. 1.7, for Sagnac inter-
ferometer, the di�erential speed measurement of the two arm cavities length variations is
realised by two counter propagating beams sensing the test masses position in two cavities
with a time delay respectively and interfering destructively at the dark port. The mirror
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Figure 1.8: Schematic of polarisation circulation speed meter. The di�erent polarisation laser �eld
are indicated on the top right conner of the �gure. PBS represents a polarisation beam splitter, QWP
represents a quarter wave plate, PCM is the polarisation circulating mirror and BHD is the balanced
homodyne detector. The measurement process is described in the main text.

displacement information carried by the two traveling beams can be presented as

��CW ∝
√

R[xN (t1) + xE(t2)] ,

��CCW ∝
√

T [xE(t1) + xN (t2)] .
(1.49)

After the destructive interference at the main beam splitter, the di�erential speed informa-
tion can be expressed as

ẋdarm(t1) ∝ −
√

R�CW +
√

T�CCW = ẋN (t1) − ẋE(t1) , (1.50)

when T = R = 1
2
.

Polarisation circulation speed meter scheme

Another Sagnac type of speed meter can be realised by utilising polarised light like shown
in Fig. 1.8 [48]. The main interferometer is pumped by p-polarised laser �eld that can be
represented by a linear combination of two circulation polarisation �elds. The vacuum that
enters from dark port will be set to the left circulation polarisation mode after transmitting
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through the polarisation beamsplitter (PBS) and a quarter wave plate (QWP). Then the
vacuum �eld will couple with the left circulation component in the laser �eld and convey
the di�erential mode displacement at time t1, xdarm(t1) = xN (t1) − xE(t1) which includes
the di�erential displacement driven by the laser radiation pressure. These sidebands will
go through QWP and be converted to s-polarisation. The sidebands re�ected from the
so-called polarisation circulation mirror (PCM) will go back to the interferometer again
after gaining a phase shift �. They will be in right circulation polarisation after travelling
through the QWP. The right polarisation �eld will sense the di�erential displacement of two
arm cavities at time t2. Finally, the �eld read out from dark port will be on p-polarisation
again. When � = �, the speed measurement is acquired as

ẋdarm(t1) = xdarm(t2) − xdarm(t1) . (1.51)



Chapter 2

Sagnac Speed meter proof of concept
experiment and laser stabilisation

In this chapter, I introduce several design aspects of the Sagnac speed meter (SSM) proof
of concept experiment in Glasgow, which will also serve as a speci�c example for demon-
strating several investigations later on Chapter. 3, 5, 6, 7 in this thesis. One aspect of special
relevance for later chapters are the amplitude and frequency stabilisation of the laser and
hence they will be discussed in a bit more detail.

2.1 Conceptual design and sensitivity

The SSM proof of concept experiment aims to prove the superiority of speed meters in
terms of quantum radiation pressure noise compared with an equivalent Michelson inter-
ferometer and to pave the way of the application of speed meters in future generation de-
tectors. The equivalent Michelson owes the identical shot noise limited sensitivity to that
of Sagnac in high frequency range. This equivalence comparison can be realised by design-
ing the Michelson interferometer with same arm cavity round trip length, same e�ective
mass of cavity mirrors, doubled input laser power and choosing the readout quadrature
of Sagnac speed meter on 45 degree. Any arbitrary readout quadratures can be chosen by
implementing the balanced homodyne readout.

The target band of this experiment is between 100 Hz and 1 kHz. The interferometer will
be pumped by a laser with 1.7W power and 1064 nm wavelength at the main beam splitter.
The transmission of the ITM is chosen around 700 ppm. About 4.8 kW circulating power
should build up inside the arm cavities which are of 2.8 m round trip length. It provides
signi�cant radiation pressure forces on the mirrors. The two arm cavities are in triangular
shape consisting of one 1 g ITM and two 100 g ETMs, so the e�ective mass of each cavity

21
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Figure 2.1: Design sensitivity of the Glasgow SSM experiment and equivalent Michelson. The red
trace is the quantum noise limited sensitivity of the Saganc speed meter, the orange trance is the
total noise budget. Compared with the Michelson quantum noise and total noise budget, which are
coloured in blue and light blue, there is a factor of 3-5 superiority of the SSM quantum noise and
total noise between 100 Hz and 1 kHz. The black curve is the free mass stand quantum limited in
displacement with the e�ective mechanical displacement mode mass.

mode is 0.995 g. Great care was taken in the design of the experiment to ensure that all
classical noises are kept below the quantum noise and hence quantum radiation pressure
noise can dominate the total noise budget in the frequency range from 100 Hz to 1 kHz. The
quantum noise and total noise budget is shown in Fig. 2.1.

2.2 Optical layout

The layout of the in-vacuum part of this experiment is shown in Fig. 2.2. There are nine
auxiliary suspensions in total. Suspensions with M4, M5, M7, M11 are for the alignment
of the input beam and serve as a passive seismic isolation system on the input pass. M8,
M10 are for the alignment between two cavities. M9 is a curved mirror, which is used
for the mode matching between the two arm cavities. The suspensions with M12, M13
are on the local oscillator path and suspensions with M14 and M15 are on the signal path
in the balanced homodyne readout. They play the role of seismic isolation on the output
pass. M1a, M1b are two 1g ITMs with a radius of curvature of 7.9 m, which helps prevent
the higher order optical modes resonance in the cavities [1]. M2a, M3a, M2b, M3b are
four 100g ETMs of the two triangular cavities. M6 is a thick 50:50 beamsplitter. It can
help to eliminate the multiple interferences inside the substrate bene�ting of the thickness.
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Figure 2.2: Optical layout of Glasgow SSM experiment. For a detailed description please refer to the
main text. [7]

The local oscillator is derived from the interferometer bright port and transmits through
M11. This choice enables wave front matching with the signal beam, assuming the relative
length of the LO path and the signal path is set correctly, [7] and can also help to subtract
the common motion noise in the signal beam due to the imbalance of main beamsplitter
[49]. PhD3 and PhD4 are the two photodiodes in the balanced homodyne readout. After
subtraction of the two photocurrents, the resulting data stream contains the di�erential
speed information of the two arm cavities.

2.3 Suspensions

The auxiliary suspensions are two stage pendulums with coil drivers on the �rst stage
which provides alignment control for both pitch and yaw degrees of freedom and eddy
current damping. The cavity ETM suspensions (100g suspensions) are triple stage suspen-
sions. Coil magnet actuators are available on both top mass and penultimate mass. The last
stage test mass is suspended by four 20�m fused silica �bres from the penultimate mass.
The �bres are welded directly on the ears of mass, so they compose a monolithic system.
This design can signi�cantly reduce the suspension thermal noise. In order to gain the
controls of longitudinal motion of test mass in the high frequency range, electrostatic drive
actuators [50, 51] are implemented on the last stage. It also has the advantage of evading
the Barkhausen noise [52]. The cavity ITM suspensions (1g suspension) are four stages
pendulum systems. The penultimate stage provides both actuation and switchable passive
eddy-current damping of test mass motion [53]. The last two stages are also monolithic.
Each fused silica �bre for the monolithic assembly is of 10�m diameter in the thin part and
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Figure 2.3: Optical layout of the linear cavity.

of 96 mm pulled length. More details can be found in [7].

2.4 Vacuum system

All the optics and suspensions are hosted in two connected vacuum chambers and located
on two breadborads with 90 cm diameter of each. In order to suppress the di�erential mo-
tion of cavity ITM and ETMs which locate in the front and rear tank, respectively. The two
breadborads are connected by a rigid bridge structure. Under the two breadboards, there
are three layers of stacks and springs, which serve as a pre-isolation scheme. The whole
system will be operated at pressures below 10−6 mbar.

2.5 Linear cavity and frequency stabilisation

As a pretest for the SSM experiment, we set up a linear cavity with two auxiliary suspen-
sions located on the two breadboard to measure the di�erential residual motion induced by
the environment. The linear cavity is designed to have a length of 1.35 m. The radius of
curvature of the ITM is 3 m, while the ETM is a �at mirror. There are two input alignment
mirrors M4 and M5 in front of the cavity. The optical layout is shown in Fig. 2.3.

2.5.1 Alignment and mode matching of linear cavity

In this section, I describe the alignment and mode matching work for the linear cavity.

Alignment
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Figure 2.4: The layout of the linear cavity experiment. Both frequency and amplitude �uctuations
are sensed in their corresponding stabilisation paths and corrected by feedback directly to the laser.
The top part is an aerial view and the bottom part is a side view. Because the linear cavity is set in
the vacuum tank which has a lower vertical height compared to the bench, a periscope is required
to lead the input laser to the tank.

Firstly, we got an input beam with desired power. The schematic of optics on bench is
shown in Fig. 2.4. We set the desired laser power by adjusting the relative polarisation
angle of the two half wave plate (HWPs). The second step was to align the pitch of the
input beam on the bench in air. We adjusted the beam axis to be parallel to the surface of
the bench top and to centre all laser beams on all of the optical elements.

In order to guide the beam on the bench to the vacuum tank, a periscope is set between as
show in Fig. 2.4. At the transmission ports of the top and bottom mirror of the periscope,
two spot position sensors are placed for recording the absolute beam spot position. Between
the periscope mirrors and the spot position sensors, there are re�ective mirrors which al-
low adjust the relative orientation of the re�ective beams and spot position sensors. They
are not draw in Fig. 2.4. We adjusted the re�ective mirror at the transmission port of the
periscope top mirror to keep the beam spot at the centre of spot position sensor as a refer-
ence. It helps to identify the beam alignment on the bench. The third step was to align the
beam in the vacuum tank. We adjusted the beam axis to be parallel to the surface of the
in-vacuum bread boards by adjusting the angle of the two mirrors on the bench which pro-
vide adjustable degrees of freedom for both beam tilt and shift in pitch and yaw direction.
The laser beam is 10 cm above the breadboard. In this process, we moved away the two
suspensions with mirror M4 and M5 for seeing the beam spot in a relative long distance for
a better alignment. Then we re-adjusted the re�ective mirrors behind the top and bottom
periscope mirrors to centring the beam spots at the spot position sensors as a reference.
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Figure 2.5: The snapshot of the design of mode matching.

The fourth step was to do pitch alignment for individual auxiliary suspensions using the
aligned incoming beam. The �fth step was to align the linear cavity with the input beam.
We started this by just installing the ETM and then aligned it so that the re�ected beam
overlaps the incoming beam. Only then we installed the ITM. The ITM was then aligned
again to overlap the re�ected beam with the incoming beam. At the transmission port of
ETM , we put a camera outside the vacuum tank for observing the mode shape of the trans-
mission beam of the cavity. Having completed this pre-alignment, the �nal alignment was
done by actuating the mirror via the coil magnet actuators via Control and Data System
(CDS) [3], thus observing �ash of TEM00 mode shape through the camera.

Mode matching

In order for maximum coupling of the input beam into the linear cavity, we need to establish
good overlap of the transversal mode of the input beam and the cavity eigen mode. This
is usually achieved by a set of lenses on the laser input path. I calculated the required
lenses parameters with the software, JamMt. In this experiment, the initial waist position
is de�ned at 0 m. The distance measured from initial waist to ITM is 3.14 m. The resulting
beam waist position should be on ETM after mode matching since the ETM is a plane
mirror while the ITM has a radius of curvature of 3 m. The cavity length is 1.35 m. With
these settings, a lens with focus length -100 mm was chosen to be placed 0.83m away from
the waist position and another lens with focus length 200 mm as chosen to be placed at
0.95 m from the waist position. Fig. 2.5 is the snapshot of the design of mode matching.
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Figure 2.6: The optical mode pictures while scanning the whole free spectral range.

2.5.2 Linear cavity locking

The cavity was locked by utilising the Pound-Drever-Hall technique (PDH) [13]. The pho-
todiode used to generate the PDH error signal was placed at the re�ection of the linear
cavity. A series of small steps and experimental tricks are useful to optimally set up the
PDH scheme:, 1) One needs to block extra beams re�ected by other optical components
in order to make sure the photodiode signal is dominate entirely by light re�ected back
from the cavity; 2) the re�ected beam power need to be attenuated for acquiring suitable
laser power shining onto photodiode. 3) Often it is useful to place a positive lens before
the photodiode to get a smaller beam size. The photodiode can then be placed close to the
resulting beam waist, so that the beam is not clipped on the photodiode. Between 2) and
3), a reference needs to be set to keep the laser beam aligned. By slightly adjusting the
height and angle of photodiode, the maximal output as judged by the DC photo current
can be obtained. The error signal is measured from the demodulation of the photodiode
output. The radio frequency (RF) modulation and demodulation scheme makes use of an
RF oscillator which is used on one hand for creating the RF sidebands on the input light,
but also on the other hand for demodulating the detected photo current. By scanning the
length of the cavity, we obtain the error signals of the carrier light and two sidebands for
the cavity length variation. The demodulated error signal is sent to CDS where we im-
plemented a digital controller. The output of the �lter bank in CDS is then sent to a high
voltage ampli�er driving the laser PZT adjusting the laser frequency. During later experi-
ments we extended the servo to feature split feedback, i.e. high frequency feedback to the
laser PZT and low frequency feedback to laser crystal temperature in order to increase the
actuator range of this servo. By monitoring the feedback signal applied to the laser PZT
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Figure 2.7: The displacement noise spectral density of the linear cavity in vacuum. The blue trace
represents the total noise when the frequency stabilisation scheme is switch o�, the yellow trace
is the theoretical free running laser frequency noise and the red trace is the cavity total noise with
frequency stabilisation active.

and using the calibration of the PZT provide by the laser manufacturer, it is possible, taking
into account the servo loop gain, to derive a spectral density of the equivalent displacement
noise of the cavity. This is shown as the blue trace in Fig. 2.7. Above 100 Hz, the free run-
ning laser frequency noise dominates the total noise. This motivates the work of frequency
stabilisation.

2.5.3 Frequency Stabilisation

Like shown in Fig. 2.4, the laser frequency is stabilised by a rigid reference cavity whose
round trip length is 40 cm. Also for the reference cavity proper alignment and mode match-
ing must be ensured. With that accomplished I observed the transversal modes resonating
the cavity by driving the mode cleaner piezo actuator over full free spectral range. As
shown in Fig. 2.6, there are two strongest peaks which are the fundamental mode com-
ponents. For triangular cavities where the lights do not incident along the normal of the
mirrors, there is a � phase shift di�erence introduced by the mirrors re�ection in a round
trip between P-polarisation and S-polarisation lights [54]. The broad band peak around
the middle is proved to be the fundamental mode in orthogonal polarisation. The slight
o�set to the middle could come from the nonlinearity during the scanning of the cavity
length. The reference cavity is locked by both laser temperature control and laser crystal
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Figure 2.8: The amplitude spectral density of laser intensity noise. The cyan trace is the measured
free laser intensity noise, the orange trace is the laser intensity noise with the stabilisation active.

piezo control. The linear cavity is locked by feeding its error signal to the reference cavity
piezo actuator for evaluating the frequency stabilisation performance. The linear cavity
total noise with the frequency stabilisation loop being active is shown as the red trace in
Fig. 2.7. The reasons of the wide hill around 800 Hz was not further investigated.

What is the frequency noise stability requirement in the SSM experiment? Actually, the
laser frequency noise does not couple to the dark signal port in the ideal case unless there
is a main beamsplitter imbalance.This originates from the fact that any common motion will
not couple to the dark part because of the character of the Sagnac interferometer typology
(two beams share the same path). The laser frequency noise is also a common motion
noise. In Chapter. 5, I will show that the common mode noise coupling can be canceled by
choosing a proper local oscillator port in the balanced homodyne readout.

2.5.4 Amplitude Stabilisation

As shown in Fig. 2.4, another branch of the beam is used for the amplitude stabilisation.
The amplitude stabilisation scheme consists two photodiodes. One is called in-loop pho-
todiode, which is for measuring the laser power �uctuations. The in-loop photodiode DC
output signal is sent to a servo box. In the servo box, it is subtracted from the reference volt-
age to obtain a bi-directional error signal. The subtracted signal is ampli�ed by a variable
gain and passes through �lters and then is sent back to the laser diode current modulation.
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The other photodiode is called out-loop photodiode, which is for monitoring the stabili-
sation performance. In the out-of-loop measurement the shot noise level is enhanced by
a factor

√

2, since both photodiode’s, in-loop and out-of-loop, shot noise contribute. In a
single cavity, the laser intensity noise will be ampli�ed due to opto-mechanical e�ect and
couples to other quadratures. In the Glasgow SMM experiment, laser intensity noise is a
again a common mode noise similar to laser frequency noise. The strength the intensity
noise coupling onto detection port due to main beam splitter imbalance can be strongly
suppressed by adopting a special choice of local oscillator in balanced homodyne readout,
which is the content of [49]. The relative intensity noise after stabilisation which is shown
in Fig.2.8 shows the obtained intensity noise stabilisation performance which ful�ls the
relevant requirements for the SSM experiment.

2.6 Summary

In this chapter, I introduced the design features of the Glasgow Sagnac speed meter proof
of concept experiment, including its conceptual design, optical layout and suspensions. I
introduced the preliminary experiments carried out using a suspended linear cavity, based
on which I tested the laser frequency stabilisation scheme. I also showed the performance
of the laser amplitude stabilisation. Both of these two laser noises ful�l the design require-
ments of the SSM experiment. These work pave the way of building the complete prototype
at the laser input end. With the current stabilised laser, we can start to construct the vac-
uum optics gradually, modelling the length and angular control schemes [55] and construct
the balanced homodyne detector at the signal output end. In Chapter. 3, I will describe
the investigations on realistic implementation of balanced homodyne readout in the SSM
experiment considering beam misalignment and jittering. In Chapter, 6, I will describe the
potential angular control schemes for the SSM experiment.



Chapter 3

Balanced-homodyne readout with
higher optical modes

Balanced homodyne detection (BHD) helps to eliminate the dark fridge o�set in advanced
LIGO type gravitational wave detectors and allows arbitrary quadratures readout of light
�eld compared with DC readout [56], thus has been suggested as a block for the advanced
LIGO upgrade and third-generation observatories (More details can be found in Chapter. 4).
The Sagnac speed meter interferometer is even incompatible to DC readout [57], and there-
for pushes the implementation of BHD. So investigations on realistic implementation of
BHD are important.

In this chapter, the work is about the implementation of BHD considering the local oscillator
(LO) beam or signal beam misalignment and mismatch. I investigate how the high order
modes (HOMs) in either LO and signal beam due to mismatch and misalignment e�ect
the output of the BHD. I develop a full framework for analyzing the static optical HOMs
occurring in the BHD paths related to the misalignment or mode matching at the input and
output ports of the laser interferometer. I also calculate the LO beam jitter noise coupling
into the output of BHD. The analyses can be applied to general types of interferometers with
BHD. As it turns out, the beam misalignment at output port only degrades the shot noise
limited sensitivity at high frequencies similar to the e�ect of imperfect quantum e�ciency
of the photodetector. The beam misalignment at input port not only degrades the shot noise
limited sensitivity but also e�ects the sensitivity at low frequencies because of the decrease
of circulating power in the interferometer arm cavities. Further more, taking the Glasgow
speed meter proof of concept experiment as an example, we �nd that the beam jitter noise
introduced by seismic motion is well below the quantum noise level in the frequency range
of 10 Hz to 1000 Hz.

This work, which I lead has been published as a journal article. It is reproduced in the
following.
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With the recent detection of gravitational waves (GWs), marking the start of the new field of GW
astronomy, the push for building more sensitive laser-interferometric gravitational wave detectors (GWDs)
has never been stronger. Balanced homodyne detection (BHD) allows for a quantum-noise (QN) limited
readout of arbitrary light field quadratures, and has therefore been suggested as a vital building block for
upgrades to Advanced LIGO and third-generation observatories. In terms of the practical implementation
of BHD, we develop a full framework for analyzing the static optical high-order modes (HOMs) occurring
in the BHD paths related to the misalignment or mode matching at the input and output ports of the laser
interferometer. We find the effects of HOMs on the quantum-noise limited sensitivity is independent of the
actual interferometer configuration; e.g. Michelson and Sagnac interferometers are affected in the same
way. We show that misalignment of the output ports of the interferometer (output misalignment) only
affects the high-frequency part of the quantum-noise limited sensitivity (detection noise). However, at low
frequencies, HOMs reduce the interferometer response and the radiation pressure noise (back-action noise)
by the same amount and hence the quantum-noise limited sensitivity is not negatively affected in that
frequency range. We show that the misalignment of the laser into the interferometer (input misalignment)
produces the same effect as output misalignment and additionally decreases the power inside the
interferometer. We also analyze dynamic HOM effects, such as beam jitter created by the suspended
mirrors of the BHD. Our analyses can be directly applied to any BHD implementation in a future GWD.
Moreover, we apply our analytical techniques to the example of the speed meter proof-of-concept
experiment under construction in Glasgow. We find that for our experimental parameters, the performance
of our seismic isolation system in the BHD paths is compatible with the design sensitivity of the
experiment.

DOI: 10.1103/PhysRevD.95.062001

I. INTRODUCTION

After a half-century search, the first detection of gravi-
tational waves in 2015 [1] further inspired the worldwide
effort to increase the sensitivity of laser-interferometric
gravitational wave detectors (GWDs). As the design
sensitivity of the second-generation detectors is limited
by quantum noise over most of the detection frequency
band, the development and implementation of novel
techniques which reduce or even circumvent quantum
noise is a major task within the detector collaborations [2].
Quantum noise originates from the quantum nature of

laser light and manifests itself in two ways. Shot noise, or

sensing noise, dominates at high frequencies, while radi-
ation pressure noise, or back-action noise, dominates at low
frequency. At each frequency there is an optimal laser
power which balances the two noise sources, giving rise to
the so-called “standard quantum limit” (SQL). Using
quantum nondemolition (QND) techniques [3], it is in
principle possible to achieve sensitivities beyond the SQL
[4,5]. These techniques often require the readout of a
specific quadrature of the interferometer output light field,
e.g. in the variational readout scheme [4]. Balanced
homodyne detection (BHD) allows for arbitrary readout
quadratures and therefore naturally offers itself for this task.
Another approach to surpass the SQL is the speed meter
topology [6], in which the speed of a test mass is detected
instead of its position. In 2003, Chen [7] pointed out that
the Sagnac interferometer topology behaves as a speed
meter, and a proof-of-principle experiment is currently
being set up in Glasgow [8]. As it turns out, there is no
suitable carrier field available in the output port of Sagnac

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW D 95, 062001 (2017)

2470-0010=2017=95(6)=062001(13) 062001-1 Published by the American Physical Society



33

interferometers and so an external local oscillator (LO) is
required, which is provided by BHD.
Current GWDs employ a dc readout [9] (sometimes also

referred to as a “homodyne readout”), in which a small
differential arm-length offset is introduced that leads to
some carrier light in the signal port and which serves as the
LO for detection with a single photodetector. The local
oscillator power needs to be chosen such that the photon
shot noise is well above the electronic noise of the detector.
Now that quantum-noise reduction using squeezed light has
become a key ingredient of current detectors [10,11], the
requirements for the local oscillator power and the resulting
voltages in the photodetector electronics are close to
reaching technical limitations as the squeezing strength
further improves [12]. Here, the current-subtracting design
of BHD helps to bring the requirements down again to
manageable levels [13].
Thus, there is significant interest in applying BHD in

GWDs as an enabling technology for further improvements
in the quantum-noise limited sensitivity. So far there is
surprisingly little experience with BHD in gravitational wave
detectors [13,14], especially with regards to the requirements
and difficulties that come with suspended optics, long
baselines and highest sensitivities in the few hundred hertz
regime. Here we develop a framework to investigate and
define those effects. In Sec. II, we introduce a general
calculation in a BHD readout involving the higher-order
mode components; in Sec. III, we consider how HOMs enter
the quantum noise picture that describes interferometers such
as GWDs; in Sec. IV, we then illustrate how HOMs come
about from misalignment and mismatch in BHD; in Sec. V,
we derive how static misalignment or mismatch affect the
quantum-noise limited sensitivity of a Michelson interfer-
ometer; in Sec. VI, we look at the example of the Glasgow
SSM experiment to verify the effects on such a QND
techniques candidate configuration; in Sec. VII, we calculate
the dynamic beam jitter noise coupling in a BHD readout.

II. FUNDAMENTALS OF BALANCED HOMODYNE
DETECTION WITH HIGHER-ORDER MODES

Let us start by establishing the fundamental equations
whichdescribeBHDreadoutwithHOMs.Wedefine the time-
varying electrical fields of the signal and LO beams as sðr; tÞ
and lðr; tÞ, respectively, where we collected the transverse
spatial coordinates in r. For both fields, we separate the dc
components Smn, Lmn from the fluctuations smn and lmn,
wherem,n ≥ 0 are the indices of theHermite-Gaussianmode
expansions, TEMmn. A natural reference for the mode
expansion is the fundamental mode of the optical instrument,
e.g. the fundamental mode defined by the arm cavities in a
GWD. The two optical fields can then be written as

sðr; tÞ ∝
X

m;n≥0
umnðr; zÞ½Smn þ smn%e−iωt þ H:c: ð1Þ

lðr; tÞ ∝
X

m;n≥0
umnðr; zÞ½Lmn þ lmn%e−iωt þ H:c: ð2Þ

where umnðr; zÞ is the spatial distribution of the electric field
of Hermite-Gaussian modes of orders m, n in the plane
transverse of the direction of propagation z; ω is the carrier
frequency; and H.c. denotes the Hermitian conjugate.
Afterwards, the signal and LO beams are overlapped

on the BHD beam splitter with a relative phase ϕh that
defines the homodyne angle, i.e. the detected light field
quadrature. The fields in the two beam splitter outputs are
given by

P1 ¼
leiϕh þ sffiffiffi

2
p ; P2 ¼

−leiϕh þ sffiffiffi
2

p : ð3Þ

These fields are detected by two photodiodes, and the
resulting photocurrents are subtracted from each other,
resulting in the output photocurrent

IBHD ∝ P1P
†
1 − P2 P

†
2

¼
X

m;n≥0
ðLmn þ lmnÞðSmn þ smnÞ†eiϕh þ H:c: ð4Þ

To simplify the notation, in the following we use a
single index j to enumerate the mode indices mn, i.e.
for j ¼ 0, fmng ¼ f00g; for j ¼ 1, fmng ¼ f01g; for
j ¼ 2 , fmng ¼ f02 g, etc.
For future purposes, we separate the BHD photocurrent

into the classical dc and the fluctuation parts using so-
called “two-photon formalism” [15,16] which is used to
describe the fields using a two-dimensional vector of two
orthogonal quadrature amplitudes. Then the dc components
and fluctuations in signal beam and LO beam are defined as
S, s, L, l, in which e.g. s ¼ ðsc; ssÞT, where the superscript
T stands for transpose. The additional homodyne angle ϕh
is used to single out the particular readout quadrature.
Mathematically, it means that the LO field needs to be
multiplied by a rotation matrix of the following form:

Hϕh
¼

"
cosðϕhÞ − sinðϕhÞ
sinðϕhÞ cosðϕhÞ

#
: ð5Þ

Then the classical dc part reads

IdcBHD ∝
X

j≥0
S†jHϕh

Lj þ H:c:; ð6Þ

while the fluctuating part, containing classical and quantum
noise as well as modulation sidebands, is given by

IflBHD ∝
X

j≥0
s†jHϕh

Lj

þ
X

j≥0
S†jHϕh

lj þ
X

j≥0
s†jHϕh

lj þ H:c: ð7Þ
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III. QUANTUM-NOISE CHARACTER IN
BALANCED HOMODYNE READOUT

In this section, we focus on the effect the HOMs have on
the quantum noise of an interferometer with BHD readout.
We denote the input light fields at the dark port (DP) and

bright port (BP) of the interferometer i and p , respectively.
Then o and q stand for the respective output fields. Those
will contribute to the signal and LO light fields. Then we
can introduce the I/O relations by defining the interferom-
eter transfer matrix (TM):

0

B@

o 0
o 1

..

.

1

CA

|fflfflffl{zfflfflffl}
~O

¼

0

B@
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1
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0
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0
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CCCA: ð9Þ

Any single transfer matrix, e.g.Akj, is a 2 × 2 matrix that
stands for the transformation from the TEMj input field to
the TEMk output field. Ekj is a two-dimensional vector of
the optomechanical response functions of the kth output
mode at the DP to the displacement, xjðΩÞ, of the jth
mechanical degree of freedom of the interferometer, with N
being the total number of mechanical degrees of freedom.
The BP response function Fkj is defined in the same way.
We use notations Ro and Rq for the whole response
matrices for DP and BP, respectively.
Since gravitational waves couple to the differential

degree of freedom of the arm cavities, it is sufficient for
us to consider only the longitudinal motion of the two end
test masses, i.e. x1 and x2 , defining their common mode xþ
and differential mode x− via

x1 ¼
xþ þ x−

2
; x2 ¼

xþ − x−
2

: ð10Þ

Then the response functions E01 and E02 for the funda-
mental light mode we measure can be written in terms of
the latter ones, Rþ and R−, as

E01 ¼ Rþ þR−; E02 ¼ Rþ −R−: ð11Þ

The output fields o and q are sent towards the BHD
through a train of steering optics. The LO beam can be
derived from various sources. For example, in the particular
case of the Glasgow SSM (that will be discussed in detail
later in this article), the reflection from the interferometer is
used to provide the LO for the BHD, i.e. the BP as shown in
Figs. 1 and 2. Note that this scenario is more general than

the simpler case of getting the LO beam by picking off
some light from the pumping laser directly (by turning the
beam splitter after the laser by 90 degrees in Fig. 1), for
mathematically this amounts to setting to zero all Cij and
Fij in Eq. (9), and also setting Dij ¼ I2 δij with I2 being a
2 × 2 identity matrix and δij the Kronecker delta.

FIG. 1. Schematic of a balanced homodyne readout setup of a
generic interferometer. The input and output fields at the bright
port of the interferometer are denoted as p and q , respectively,
while the corresponding fields at the dark port of the interfer-
ometer are denoted as i and o , respectively. Then the o field and q
field enter into the BHD path as signal beam s and LO beam l.
There is also a vacuum field v that couples into the l field due to
the LO pickoff mirror. l and s are overlapped with each other at
the balanced homodyne beam splitter. The output photo current
IBHD is a subtraction of the output of two photodiodes. The
homodyne angle ϕh is the relative phase of the two beams
entering the BHD.
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Due to imperfect optics, and alignment fluctuations origi-
nating from residual pendulum motion, o and q will suffer
from misalignment and mismatch with respect to the inter-
ferometer modes. A redistribution of different modes will
ensue and the newmodes of theLO, l, and signal beam, s, will
be a mixture of the original modes o and q . Mismatch and
misalignment can be described by scattering matricesOl and
Os for the LO beam and signal beam, respectively, defined as
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1
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0
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q 0
q 1

..

.

1

CA; ð12Þ

where (as shown in Fig. 2) the matrix component Os
kj

(Ol
kj) describes how the jth mode of the o field (q field)

contributes to the kth mode of the s field (l field). Each
Os

kj (Ol
kj) is a 2 × 2 matrix. Os (Ol) are not arbitrary;

rather they need to satisfy the unitarity relation O†
sOs ¼

O†
lOl ¼ I, where I is the identity matrix, as a consequence

of the law of energy conservation.
As the LO field mixes in a vacuum field v coming from

the open port of the pickoff mirror (see Fig. 2), the actual
LO field at the BHD reads

l0 ¼
ffiffiffiffiffiffi
Rp

p
l þ

ffiffiffiffiffiffi
Tp

p
v; ð13Þ

where Rp and Tp are the power reflectivity and trans-
missivity of the pickoff mirror, respectively. Then accord-
ing to Eq. (7), we can write out the BHD readout
photocurrent in terms of quantum noise and differential
mode motion as

FIG. 2. Schematic of the HOM fields transformation in the interferometer with BHD readout. Multiple modes field p and i can enter
into the interferometer from BP and DP, and only the interferometer mode field will suffer the ponderomotive squeezing effect, which
can be explained by the four transfer matricesA, B, C, D. The output fields from BP and DP are q and o . We represent the misalignment
and mismatch in both paths, signal and LO, by a separate block, i.e. Os and Ol. The necessity for a pickoff mirror in order to create the
LO beam causes additional vacuum noise v to couple into the BHD readout.
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IBHD ∝
ffiffiffiffiffiffi
Rp

p
L†½OsðAiþ Bp Þ% þ S†½

ffiffiffiffiffiffi
Rp

p
OlðCiþ Dp Þ þ

ffiffiffiffiffiffi
Tp

p
v% þ

ffiffiffiffiffiffi
Rp

p
L†

0

BB@

Os
00

Os
10

..

.

1

CCAR−x− þ H:c:; ð14Þ

in which we neglect the term ∝ l†s, the second-order term
in the noise fluctuations. Finally, using the formalism of
Eq. (12) in [17], one can write down the quantum-noise
power spectral density as

S ∝
"
L†OsðASiA† þ BSpB†ÞO†

sL

þ S†OlðCSiC† þ DSpD†ÞO†
l S

þ L†OsðASiC† þ BSpD†ÞO†
l S

þ S†OlðCSiA† þ DSpB†ÞO†
sL

þ
Tp

Rp
S†S

#,$$$$$$
L†

0

B@

Os
00

Os
10

..

.

1

CAR−

$$$$$$

2

; ð15Þ

where Si and Sp are the power spectral density matrices of i
and p input fields [18]. For each optical mode, the
components of Si and Sp are defined as

πSi
jj0δjj0δðΩ −Ω0Þ≡ hîjðΩÞî†j0ðΩ

0Þ þ î&jðΩ0ÞîTj0ðΩÞi

πSp
jj0δjj0δðΩ −Ω0Þ≡ hp̂jðΩÞp̂†

j0ðΩ
0Þ þ p̂&

jðΩ0Þp̂T
j0ðΩÞi;

ð16Þ

where we define the Hermitian conjugate of the two-
dimensional vector of light quadratures of the jth mode
as ij† ¼ ði†c;j; i

†
s;jÞ and the complex conjugate of the same

vector as ij& ¼ ði†c;j; i
†
s;jÞT. S

i;p
jj0 are 2 × 2 matrices of power

spectral densities of input fields in the jth mode when j ¼
j0 and cross spectral densities between the jth and j0th
modes of the corresponding input fields, if there are any.

IV. MATHEMATICAL TREATMENT OF
MISMATCH AND MISALIGNMENT OF

MULTIMODE HERMITE-GAUSSIAN BEAMS
IN A LINEAR OPTICAL SETUP

In this section, following the formalism of [19,20], we
calculate scattering matrices that describe transformation of
the multimode Gaussian beam as it undergoes misalign-
ment in the imperfect optical steering train from an input or
output port of the interferometer to the corresponding input
port of the balanced homodyne detector.
Firstly, we define the Cartesian coordinate system

ðx; y; zÞ for the mode at the output port of the interferom-
eter. We assume the beam propagates along the z-axis with
z0 being the position of the beam waist and z ¼ 0 is the
location of the observation plane. x, y are the transverse
spatial coordinates. Then, the spatial profile of the Hermite-
Gaussian beam is given by

umnðx; y; zÞ ¼ ð1þ ζ2 Þ12NmnHm

"%
2

1þ ζ2

&1
2 x
w0

#
Hn

"%
2

1þ ζ2

&1
2 y
w0

#
e
−ikzþiðmþnþ1Þ arctanðζÞ− x2 þy2

w2
0
ð1−iζÞ; ð17Þ

where ζ ¼ z−z0
zR

is a normalized z-coordinate and zR is the
Rayleigh range of the beam. We define the angular aperture
of the beam as γ ¼ w0=zR. The normalization factor Nmn is
given by Nmn ¼ πw2

02
mþn−1m!n!. The individual modes

satisfy the orthogonality condition

ZZ
þ∞

−∞
drumnðx; y; zÞu&klðx; y; zÞ ¼ δmkδnl: ð18Þ

We then introduce a misalignment of the beam by an
angle θ around the −y-axis at the beam waist location,
followed by transverse displacements Δx and Δy. These
transformations yield the new misaligned beam coordinate
system ðx0; y0; z0Þ (see Fig. 3). In addition, we allow for a

mismatch of the beam parameters, which can be described
by the two coefficients

K0 ¼
z0 − z00
zR

;

KR ¼ z0R − zR
zR

¼ w02
0 − w2

0

w2
0

: ð19Þ

Therefore, misalignment of the two beams is parametrized
by Δx, Δy and θ, while the mismatch in beam size and
wavefront curvature is parametrized by K0 and KR. The
transformation between ðx; y; zÞ and ðx0; y0; z0Þ can then be
written as
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x0

w0
0

¼ xþ Δxþ z sinðθÞ
ð1þ KRÞ

1
2w0

;

y0

w0
0

¼ yþ Δy
ð1þ KRÞ

1
2w0

;

ζ0 ¼ ζ þ K0

1þ KR
: ð20Þ

As the spatial modes of the initial beam, umnðx; y; zÞ,
comprise a full orthonormal set, any mode um0n0 of
the misaligned beam can be expressed in terms of the
former,

um0n0ðx0; y0; z0Þ ¼
X∞

m¼0

X∞

n¼0

cm
0n0

mn umnðx; y; zÞ: ð21Þ

The coupling coefficients cm
0n0

mn are obtained from Eqs. (18)
and (20), resulting in

cm
0n0

mn ¼ e−ikðz
0
0−z0Þei2 kzsin

2 ðθ2 Þ
ZZ

þ∞

−∞
drum0n0u%mneikx sinðθÞ:

ð22Þ

Since Hermite-Gaussian modes are factorizable in
x and y, the same applies to the coupling coefficients,
i.e. cm

0n0
mn ¼ cm

0
m cn

0
n . According to [19], the factorized cou-

pling coefficient reads

cm
0

m ¼ ð−1ÞmEðxÞðm0!m!ð1þ KRÞm
0þ1

2 ð1þ K%Þ−ðmþm0þ1ÞÞ12 ½Sg − Su'e
−ikðz0

0
−z0Þ

2 ; ð23aÞ

Sg ¼
X½m0=2 '

μ0¼0

X½m=2 '

μ¼0

ð−1Þμ0Xm0−2 μ0X0m−2 μ

ðm0 − 2 μ0Þ!ðm − 2 μÞ!
Xminðμ;μÞ

σ¼0

ð−1ÞσFμ0−σF0μ−σ

ð2 σÞ!ðμ0 − σÞ!ðμ − σÞ!
; ð23bÞ

Su ¼
X½ðm0−1Þ=2 '

μ0¼0

X½ðm−1Þ=2 '

μ¼0

ð−1Þμ0Xm0−2 μ0−1X0m−2 μ−1

ðm0 − 2 μ0 − 1Þ!ðm − 2 μ − 1Þ!
Xminðμ0;μÞ

σ¼0

ð−1ÞσFμ0−σF0μ−σ

ð2 σ þ 1Þ!ðμ0 − σÞ!ðμ − σÞ!
: ð23cÞ

The symbol [m=2 ] stands for the integer part of m
2 .

Su ¼ 0 for m ¼ 0 or m0 ¼ 0. The notations in Eqs. (23) are
given in Table I. For the y-axis, m, m0 have to be replaced
by n, n0 and X, X0 by Y.
As misalignment angles and shifts are usually small

compared to the wave front curvature scale, hereafter we
neglect the effect of wave front tilting.
The above calculated coefficients can be translated into

the components of the scattering matrices Os
jj0 and Ol

jj0 ,
which describe the misalignment effects in the signal and
LO path, in two-photon formalism, for the individual
optical modes at the corresponding input ports of the BHD:

Os
kj ¼ jckj jHϕkj

; Ol
kj ¼ jdkj jHψkj

ð24Þ

where ckj →cm
0n0

mn ¼cm
0

m cn
0

n and ϕkj ≡ argðckjÞ, and similarly
for dkj and ψkj.

The many elements in the optical paths that connect the
output ports of the interferometer to the corresponding
input port of the BHD each apply their own misalignment
and mismatch transformations. Here we reduce this

TABLE I. Notations used in Eqs. (23).

K KRþiK0

2

X ð1þ K%Þ−1
2 ðΔxw0

− ðð−z0ÞzR
− iÞ θγÞ

X0
ð1þ K%Þ−1

2 ðΔxw0
− ðð−z

0
0Þ

zR
þ ið1þ 2 K%ÞÞ θγÞ

Y ð1þ K%Þ−1
2
Δy
w0

F K
2 ð1þKRÞ

F0 K%

2

EðxÞ
e−

X0X
2 −iΔxw0

θ
γ0

EðyÞ
e−

y2

2

FIG. 3. Schematic of the general mismatch and misalignment
transformation of the Gaussian beam. The waist sizes of the initial
beam and the transformed beam are given by w0, w0

0, respectively.
z0 and z00 stand for the coordinates of the waist position of the two
beams in the corresponding coordinate systems. The observation
plane is located at z ¼ 0 and z0 ¼ 0. The misalignment can be
described by the angular misalignment θ, as well as by the
displacements Δx and Δy.
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complexity to a single effective beam rotation (θ), and
lateral (Δx and Δy) shifts of the beam and modified beam
parameters (z00, z

0
R) as they are measured at the detection

point, i.e. at the input of the BHD. It can be easily shown
that this does not undermine the generality of our treatment,
and the transform that any linear optical system does to the
HG optical beam can be represented in that way [19,21].

V. INFLUENCE OF HIGHER-ORDER MODES ON
THE QUANTUM NOISE IN A MICHELSON
INTERFEROMETER WITH BALANCED

HOMODYNE DETECTION

In this section, we provide the application of the above
framework on the conventional Fabry-Pérot-Michelson
interferometer. The interferometer transfer matrices, A,
B, C, D, defined in Eqs. (8), can be written for our
particular case as [4]

A00 ¼ e2 iβarm
!

1 0

−KMI 1

"
; B00 ¼

!
0 0

0 0

"
; ð25aÞ

C00 ¼
!
0 0

0 0

"
; D00 ¼ e2 iβarm

!
1 0

−KMI 1

"
ð25bÞ

for the fundamental mode of the interferometer. KMI is
the optomechanical coupling factor of a Fabry-Pérot-
Michelson interferometer defined as

KMI ¼
2 Θγarm

Ω2 ðγ2arm þ Ω2 Þ
; ð26Þ

where γarm ¼ cTITM
4L is the half-bandwidth of the arm cavities

of length L and with input mirror power transmittance
TITM, andΘ ¼ 4ωParm

McL is the normalized circulating power in
both arms.
For the HOMs, i.e. for j, k > 0, we assume the high-

finesse arm-cavity interferometer to be a highly selective
mode filter that does not let HOMs in, rather reflecting
them off without any dispersion (frequency dependent
phase shift). Therefore the corresponding transfer matrices
take a particularly simple form:

Akj ¼ Dkj ¼ δkj

!
1 0

0 1

"
; Bkj ¼ Ckj ¼

!
0 0

0 0

"
;

ð27Þ

indicating that the vacuum noise in HOMs is reflected to
the output port right away, without any additional phase
shift. However, the fundamental mode light interacts with
the interferometer and thereby it gets ponderomotively
squeezed by the optomechanical interaction with the
mechanical degrees of freedom of the interferometer.

This fact is reflected in Fig. 3 by the squeezed error ellipse
of the TEM00 mode at both IFO output ports, o and q .
The response of the interferometer to the differential

mechanical modes of the arm mirrors, that are of particular
interest in the context of gravitational wave detectors, can
be written as

R− ¼ eiβarm
ffiffiffiffiffiffiffiffiffiffiffi
2 KMI

p

xSQL

!
0

1

"
; ð28Þ

where xSQL stands for the single-sided spectral density of
the standard quantum limit in terms of displacement, and
βarm ¼ arctanð Ω

γarm
Þ is the phase shift that the light sidebands

with frequency Ω acquire when propagating through and
reflecting off the arm cavity [22].
We can distinguish three different cases of how misalign-

ments can couple into the BHD readout:
(1) Output misalignment occurring in one or both of the

BHD paths, which refers to (a) in Fig. 4.
(2) Input misalignment in the interferometer, which will

cause multiple mode fields to be injected into the
interferometer as shown in Fig. 2 and is referred to as
(b) in Fig. 4.

(3) Combination of the input and output misalignment,
which refers to (c) in Fig. 4.

We note that the pickoff mirror is set to pick up the
reflection beam of the interferometer as the LO beam. As
the specific design for implementing the BHD readout in a
full large scale GW detector, i.e. Advanced LIGO, is still
under discussion, in the following we use similar instru-
ment parameters as for the Fabry-Pérot-Michelson inter-
ferometer considered in [8]. The input power is 3.4W, the

FIG. 4. Schematic of the output ports and input ports misalign-
ment. The black line indicates the fundamental mode defined by
the arm cavities of the interferometer. The colored lines show the
HOM components caused by different misalignment conditions.
(a) Output misalignment, i.e. misaligned LO path, or misaligned
signal path, respectively. (b) Input misalignment, i.e. misaligned
input laser beam, which will contribute HOMs to the LO beam
and reduce power inside the main interferometer. (c) Combination
of input port misalignment and output signal port misalignment.
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power transmissivity of the cavity input test mass is
700 ppm, the effective cavity mass is around 1g, and the
arm cavity length is around 1.4 m.

A. Output misalignment

The left-hand plot of Fig. 5 shows the effect of output
misalignment onto the quantum-noise limited displace-
ment sensitivity of our example Fabry-Pérot-Michelson
interferometer with BHD using a phase quadrature read-
out. The differently colored traces indicate different
magnitudes of misalignments. The right-hand top plot
shows the amplitude spectral density (ASD) of the
quantum noise, while the lower plot on the right-hand
side shows the response of the differential arm length
degree of the interferometer.
For output misalignment we obtain that at the frequen-

cies below 5 kHz, where radiation pressure noise dominates
in the interferometer, there is no visible influence on the
quantum-noise limited sensitivity due to HOMs in the BHD
paths. The most pronounced effect can be seen in the shot-
noise dominated frequency band, i.e. above 5 kHz. This can
be understood by the following chain of arguments. The
ponderomotive squeezing, which is described by KMI, is
responsible for the radiation pressure noise at low frequen-
cies and affects only the TEM00 mode. The effect of
misalignment on this mode can be described by a simple
multiplication by the factors jd00j < 1 and jc00j < 1 of the
fundamental mode contributions to the LO and the signal
beams, including the arm mirrors’ displacement signal.
While the contribution of the HOMs can have in general a
complicated structure at the level of field operators, the fact
that all fluctuating parts of the HOM fields are in the
vacuum state, which is invariant to phase shifts, the
resulting additional noise in the BHD photocurrent can
be described by the noise operators, nHOM, that absorb all
the HOM vacuum fields and enter the readout signal with

effective coefficients
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jd00j2

q
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jc00j2

q
, corre-

spondingly. Assuming that there is no significant classical
field leaving the Michelson interferometer at the dark port,
one can safely neglect the noise contribution of the cross
term between the classical component in the signal beam
and quantum noise in the LO beam. Then we write out the
BHD photocurrent in the phase quadrature for the case of a
misaligned LO beam as

IBHD ∝ jLj
"
jc00j

#
e2 iβarmð−KMIî0c þ î0sÞ þ eiβarm

ffiffiffiffiffiffiffiffiffiffiffi
2 KMI

p

xSQL
x−

$

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jc00j2

q
ΔnHOMs

%
þ H:c: ð29Þ

where jLj represents the magnitudes of the LO dc compo-
nents. Analogously we can describe the case of a mis-
aligned signal beam by replacing c00 with d00.

Therefore, the effect of misalignment and HOM con-
tamination of the readout signal is mathematically equiv-
alent to the effect of loss at the readout photodetectors, with
the misalignment coefficient jc00j2 serving as an effective
quantum efficiency of the readout. Indeed, radiation pres-
sure noise creates the real displacement of the mirrors of the
interferometer indistinguishable from the signal displace-
ment. Therefore, apparently the signal-to-noise ratio (SNR)
for back-action noise is not influenced by the output beam’s
misalignment, hence the back-action dominated part of
QNLS. Shot noise, on the contrary, remains the same
regardless of the level of output loss while the signal
magnitude decreases proportionally. Thus SNR for shot
noise goes down, worsening the QNLS, as can be seen in
Fig. 5 and in the following two formulas for QN and
QNLS, respectively:

SQN ≃ jc00j2 ðS0s;SNðfÞ þ S0s;BAðfÞÞ þ ð1 − jc00j2 Þ; ð30Þ

where S0s;SNðfÞ ¼ 1 and S0s;BAðfÞ are the shot-noise and
back-action components of the power spectral density
(PSD) of the quantum noise on phase quadrature at the
dark port in the TEM00 mode, respectively, and for QNLS,

SQNx ≃ jc00j2 ð1þ S0s;BAðfÞÞ þ ð1 − jc00j2 Þ
jc00j2 jR−sj2

¼
S0s;BAðfÞ
jR−sj2

þ 1

jc00j2 jR−sj2
; ð31Þ

where jc00j2 jR−sj2 stands for the optomechanical response
function, emphasizing the signal contents reduced by jc00j2 .
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FIG. 5. Left panel: Displacement quantum-noise limited sensi-
tivity (QNLS). Upper right panel: Quantum-noise (QN) ampli-
tude spectral density. Lower right panel: Response function of the
interferometer for different values of the misalignment angle
between the LO beam and the signal one at the BHD. It refers to
part (a) in Fig. 4. This gives the following values of equivalent
relative lateral displacement of the two beams normalized by the
beam radius on the photodiode: 0.05, 0.25, 0.5, 0.7.
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B. Input misalignment

Figure 6 shows the effect of input misalignment, which
refers to part (b) in Fig. 4. We find that in the low-frequency
range the sensitivity suffers more than in the case of output
misalignment, while the low-frequency sensitivity benefits
instead.
The effect of input misalignment is twofold: on the one

hand, HOMs contaminate the local oscillator beam and lead
to the decrease of the LO fundamental mode amplitude by a
factor of je00j < 1, which amounts to the same effect as
described above for output misalignment. On the other
hand, this also reduces the amount of classical light
circulating in the fundamental mode of the interferometer
by je00j2 , thereby reducing the back-action noise, repre-
sented by the optomechanical coupling factor KMI in the
I/O relations [23].
Thus the BHD photocurrent can be approximately

expressed as

IBHD ∝ jLj
!
je00j

"
e2 iβarmð−je00j2 KMIî0c þ î0sÞ

þ eiβarm
je00j

ffiffiffiffiffiffiffiffiffiffiffi
2 KMI

p

xSQL
x−

$
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − je00j2

q
ΔnHOMs

%

þ H:c:; ð32Þ

so that the quantum-noise power spectral density is
given by

SQN ≃ je00j6S0s;BAðfÞ þ 1; ð33Þ

and for the PSD of the QNLS, the above PSD is divided by
the modulus squared of the optomechanical response
function that is proportional to je00j4jR−sj2 :

SQNx ≃ je00j2 S0s;BAðfÞ
jR−sj2

þ 1

je00j4jR−sj2
: ð34Þ

So in the back-action dominated frequency band the SNR is
improved by 1=je00j2 due to lower power, circulating in the
interferometer. While at the shot-noise dominated band the
SNR is decreased to a much stronger degree, i.e. je00j4, since
the signal is reduced both due to the misalignment of the
LO beam and due to the reduced response of the lower-
power interferometer to the mirror displacement.

C. Combined output and input misalignment

In Fig. 7, we show a special case when input and output
misalignment compensate each other so as to produce a
perfect overlap of the LO and the signal beam at the BHD
photodiodes. This somewhat artificial situation demon-
strates the fact that the effects of input and output misalign-
ment can partially compensate each other. Here the
reduction of SNR is caused solely by the effect of the
decrease of power circulating in the interferometer.
Hence, the QN PSD can be written as

SQN ≃ je00j4S0s;BAðfÞ þ 1; ð35Þ

and the response of the interferometer is reduced by the
factor je00j. Combining these two effects in the QNLS PSD,
one obtains

SQNx ≃ je00j2 S0s;BAðfÞ
jR−sj2

þ 1

je00j2 jR−sj2
: ð36Þ

For arbitrary misalignment combinations, it is necessary to
specify the exact field distribution among different modes.
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FIG. 7. Left panel: Displacement QNLS. Upper right panel: QN
amplitude spectral density. Lower right panel: Response function
of the interferometer for different values of the misalignment
angle between the input laser beam and the interferometer, and at
the same time the same amount and same direction of misalign-
ment for the signal beam is set to recover perfect overlap between
the signal field and LO field. It refers to part (c) of Fig. 4.
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FIG. 6. Left panel: Displacement QNLS. Upper right panel: QN
amplitude spectral density. Lower right panel: Response function
of the interferometer for different values of the misalignment
angle between the input laser beam and the interferometer. It
refers to part (b) in Fig. 4.
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In that case the general framework provided in Sec. III can
be used.

VI. EXAMPLE OF THE SAGNAC SPEED
METER INTERFEROMETER

In this section, we give another illustrating example of the
influence of HOMs on the quantum noise, i.e. the particular
configuration of the zero-area Sagnac speed meter interfer-
ometer [24,25] which is proposed as a candidate for
suppressing the SQL. To be specific, we use the parameters
for the ERC-funded proof-of-principle prototype Sagnac
speed meter (SSM) interferometer being constructed at the
University of Glasgow [8,17], featuring equivalent param-
eters as the Michelson configuration in the previous section.
We introduce a general Sagnac interferometer with RBS

and TBS representing the main BS power reflectivity and
transmissivity. The interferometer transfer matrices, A, B,
C, D, defined in Eqs. (8), can be written for our particular
case as [17]

A00 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RBSTBS

p
e2 iβsag

"
1 0

−Ksym 1

#
; ð37aÞ

B00 ¼ ðRBS − TBSÞe2 iβsag
"

1 0

−4KMI 1

#
; ð37bÞ

C00 ¼ ðRBS − TBSÞe2 iβsag
"
1 0

0 1

#
; ð37cÞ

D00 ¼ −2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RBSTBS

p
e2 iβsag

"
1 0

−Kasym 1

#
; ð37dÞ

where βsag ¼ 2 βarm þ π
2 is the corresponding phase shift for

the full Sagnac interferometer. The symmetric and asym-
metric Saganac interferometer optomechanical coupling
factors are defined as

Ksym ¼ 2 KMIsin2 βarm ≃ 8Θγarm
ðΩ2 þ γ2armÞ2

;

Kasym ¼ 2 KMIcos2 βarm ≃ 8Θγ3arm
Ω2 ðΩ2 þ γ2armÞ2

: ð38Þ

The response of the interferometer to the common
(cARM) and differential (dARM) mechanical modes of
the arm mirrors, that are of particular interest in the context
of gravitational wave detectors, can be written as

R− ¼ −ie2 iβarm
ffiffiffiffiffiffiffiffiffiffiffiffi
2 Ksym

p

xSQL

"
0

1

#
; ð39Þ

Rþ ¼ −e2 iβarm
ðRBS − TBSÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 Kasym

p

xSQL

"
0

1

#
: ð40Þ

Figures 8 and 9 show the effect of output and input
misalignment of the Sagnac speed meter with BHD read-
out, using similar levels of misalignment as were presented
earlier for the example of the Fabry-Pérot-Michelson
interferometer. As expected, the observed effects from
misalignment are the same for the Sagnac speed meter
and the Michelson interferometer.
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FIG. 9. Displacement QNLS of the Glasgow Sagnac interfer-
ometer for different values of the misalignment angle between the
input laser and the interferometer. (The blue dashed curve
indicates the QNLS of a perfectly aligned Michelson interfer-
ometer with equivalent parameters as the speed meter.) The inset
shows the amplitude spectral density of the QN only for the
respective case. These are the same beam parameters and
misalignment conditions as in Fig. 8.
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FIG. 8. Displacement QNLS of the Glasgow Sagnac interfer-
ometer for different values of the misalignment angle between the
LO beam and the signal one at the BHD. (The blue dashed curve
indicates the QNLS of a perfectly aligned Michelson interfer-
ometer with equivalent parameters as the speed meter.) The inset
shows the amplitude spectral density of the QN only for the
respective case. This gives the following values of equivalent
lateral displacement of the two beams normalized by the beam
radius on the photodiode: 0.05, 0.25, 0.5, 0.7.
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VII. NONSTATIONARY MISALIGNMENT
EFFECTS IN THE BALANCED

HOMODYNE DETECTOR

All the beams’ misalignment and mismatch effects
considered thus far were assumed stationary. However,
in the real interferometer with suspended optics the optical
paths of the LO and the signal beams are disturbed in a
nonstationary way as a result of seismic motion of the
ground. Therefore, the initially static parameters describing
the misalignment of the Gaussian beams given in Sec. IV
now have to be considered as random functions of time
defined by the local seismic noise of the lab. It is the subject
of this section to estimate the additional noise in the BHD
readout incurring from the random seismically driven
movements of the suspended optical components, such
as steering mirrors. Specifically, we look at the influence of
tilt (pitch) motion, which has a much stronger coupling
from the longitudinal ground motion than the rotation
direction, which is a consequence of the suspension design.
For simplicity, we assume the two input beams of the

BHD, the LO and the signal beams, are Gaussian with
nonzero dc components only in the fundamental TEM00

mode, which can be justified by the use of output mode
cleaners for these two beams [13]. We also assume ac parts,
encompassing quantum and classical fluctuations, to be
much smaller in magnitude than the dc components.
The signal beam is the interferometer DP o , while the LO

is taken from the reflected light q . As in Eq. (12), we can
thus write

L0 ¼ Q0; S0 ¼ Hϕh
Os−l

00 ðtÞO0; ð41Þ

where Q0 and O0 are TEM00 mode dc parts in q and o ,
respectively. We choose the coordinate system of the LO
beam as a reference, and the relative misalignment of the
signal beam is represented by Os−l

00 , defined in terms of
coupling coefficients c00 as in Eq. (24). According to
Eq. (5), the main dynamic photocurrents can be written as

IdyBHD ∝ Q†
0Hϕh

Os−l
00 ðtÞO0 þ H:c: ð42Þ

We further assume that the two beams are perfectly
matched in the static case; i.e. they have the same waist size
w0 and Rayleigh range zR and thus the same spot size on the
photodetectors. According to Eq. (23), in misalignment
condition, c00ðtÞ in terms of the small jitter angle θ or
equivalent beam shift Δr and beam size wðzÞ on the
photodetectors is given by

c00ðtÞ ¼ exp
!
−
k2 w2 ðzÞΔr2 ðtÞ
8ðz2 þ z2RÞ

"

¼ exp
!
−
k2 w2 ðzÞθ2 ðtÞ

8

"
; ð43Þ

where wðzÞ ¼ w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðz=zRÞ2

p
. In general, θðtÞ contains

a dc part and the fluctuation part, which means
θðtÞ ¼ θDC þ θflðtÞ.
In order to calculate the jitter noise spectral density, we

need an additional step to calculate the spectral density of
the quadratic random process θ2 ðtÞ, after which it is
straightforward to write the spectral density of the jitter
noise as

Sjitter ¼ jQ†
0Hϕh

O0j2
k4w4ðzÞ

64
ð4θ2dcSθfl þ Sθfl 2 Þ: ð44Þ

According to Eqs. (2)–(44) in [26], Sθ2fl turns out to be the
convolution of the spectral density of SθflðΩÞ, which reads

Sθ2flðΩÞ ¼
Z

∞

−∞
SθflðΩ

0ÞSθflðΩ −Ω0ÞdΩ: ð45Þ

In the Sagnac interferometer, the fundamental mode ampli-
tudeO0 mainly comes from the imbalance of the main beam
splitter, ηBS ¼ RBS − 0.5, and then O0 ¼ 2 ηBSP0.
Taking again the Glasgow SSM as an example, we

calculated the expected additional nonstationary beam jitter
noise due to seismic motion coupling into the LO and
signal path. While the double-pendulum suspensions of
these mirrors [8] strongly suppress seismic noise at
frequencies in our experiment band, there is still significant
motion of the mirrors at the pendulum eigenfrequencies.
Starting from a measured displacement noise spectral
density, we apply our simulated suspension transfer func-
tion for longitudinal motion to pitch motion coupling. This
result in the pitch noise spectral density is shown in the
inset in Fig. 10. From this, and using Eqs. (44) and (45), we
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FIG. 10. Additional nonstationary beam jitter noise driven by
seismic motion in the lab plotted against the QNLS curves of the
equivalent Michelson interferometer and of the Sagnac speed
meter interferometer with no imbalance in the beam-splitting
ratio and with 0.1% BS imbalance. The beam waist size is
0.925 mm, with beam travel distance 2.038 m. The inset is the
spectral density of jitter angle θ.
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arrive at the total noise contribution due to seismically
driven beam jitter noise in the Glasgow SSM experiment as
shown by the orange curve in Fig. 10. This traditional noise
is far below the quantum-noise limited sensitivity in our
measurement band between 100 and 1000 Hz.

VIII. SUMMARY

In this article, we investigated the performance of a
balanced homodyne readout in practical applications
including degradation effects from optical higher-order
Hermite Gaussian modes. We provided a general solution
for considering the effect of HOMs which are related to the
input and output ports’misalignment on the quantum-noise
limited sensitivity. The solution provides a framework for
solving arbitrary conditions of input and output port
misalignments or mismatch. This framework can be
applied to any interferometer; i.e. it is independent of
the actual interferometer configuration. We found that
output port misalignments only degrade the amplitude
spectral density of the shot-noise limited part of the
quantum-noise sensitivity by a factor of c00 or d00, while
the sensitivity in the back-action noise limited range will
not degrade. In the case of input misalignment, i.e. the laser
beam being misaligned with respect to the eigenmode of
the interferometer, firstly the laser amplitude inside the
interferometer will be reduced by a factor e00, thus changing
the quantum-noise limited sensitivity, and secondly it will
also contribute to the LO beam misalignment and worsen
the amplitude spectral density of the quantum-noise limited

sensitivity on high frequencies by a factor of e00
2 in total. In

addition, we investigated the noise coupling mechanisms
from beam jitter, i.e. time varying HOM contributions.
Using the case of the speed meter proof-of-concept experi-
ment under construction in Glasgow as an illustrating
example, we found that the seismically introduced beam
jitter noise is well below the quantum-noise level in our
sensitive frequency range 10–1000 Hz. We note that though
our framework supports the injection of squeezed light
states, for clarity we have refrained from a detailed
discussion of squeezing light injection in this article.
In conclusion, we have developed and applied a general

framework for investigating realistic applications of bal-
anced homodyne detection in suspended interferometers
with realistic (i.e. imperfect) optics, thus paving the way for
technical design studies of future upgrades to gravitational
wave detectors featuring balanced homodyne readout.
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Chapter 4

Balanced-homodyne readout for
aLIGO+

Di�erent from DC readout, balanced homodyne detection (BHD) uses a spatially separated
local oscillator (LO). Thus, the signal port can be tuned to be nearly dark with only leav-
ing the signal sidebands and tiny DC beam due to optics imperfection, e.g. di�erential arm
cavity input test mass loss factor. There are several advantages as motivations to imple-
ment BHD in gravitational wave detectors. Firstly, the signal recycling cavity length noise
coupling which is proportional to the arm detuning in DC readout can be essentially elim-
inated [58, 59]. Secondly, the backscattering of bright light into the asymmetric port can
be reduced. (Although due to the new output mode cleaners position design which will be
discussed below, the backscattering from mode cleaners to asymmetric port do not bene�t.)
Thirdly, the radio frequency sidebands o�set in the asymmetric port can be eliminated [36,
60]. Fourthly, The balanced homodyne readout also has the advantages of tunability of the
homodyne angle and subtracting local oscillator and single beam self noises [61]. Hence,
the balanced homodyne readout will be an essential element of advanced LIGO (aLIGO)
upgrade, i.e. aLIGO+ (A+).

In this chapter, I describe several aspects of considerations on implementing balanced ho-
modyne readout in advanced LIGO, including the LO instability, output mode cleaner phase
noise coupling, LO backscattering noise, balanced homodyne readout sensing and control.
The research of local oscillator instability pushes the consideration of using three stages
suspensions for relay optics on the LO path in A+; To eliminate the output mode cleaners
phase noise coupling, I prove the scheme of dual mode cleaners at each output port of BHD
beamsplitter can work for A+; The research of LO backscattering noise gives one motiva-
tion of taking LO from the power recycling cavity pick-o� port (POP) in A+. These results
were presented in the BHD working group for A+.

45
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Figure 4.1: Schematic of simple balanced homodyne readout layout. ‘IFO’ represents the main in-
terferometer, ‘Sig’ represents the signal beam, ‘LO’ represents the local oscillator beam, P1 and P2
are two �elds after the BHD beamsplitter, I1 and I2 are the photocurrents of two photodiodes.

4.1 Requirement for local oscillator path stability

I start here by writing down the general calculation of balanced homodyne readout in the
two-photo formalism. I de�ne the LO �eld and signal �eld before the balanced homodyne
beamsplitter by L and S , in which L = (L + lc, ls)T and S = (S + sc, ss)T in two photo
formalism. L,S represent the classical amplitude and l, s represent the �uctuations. The
gravitational wave signals are part of ss. The two �elds in balanced homodyne beamsplitter
outputs with BHD angle on LO �eld can be written as

P1 =
√

Tℍ(�)L +
√

RS ,

P2 = −
√

Rℍ(�)L +
√

TS .
(4.1)

The homodyne angle is de�ned by one rotation matrix

ℍ(�) =

[

cos� − sin�
sin� cos�

]

. (4.2)

Thus the photocurrents of two photodiodes can be written as

I1 = P †
1 P1, I2 = P †

2 P2 . (4.3)

And the balanced homodyne readout photocurrent can be written as

IBHD ∝ I1 − I2 . (4.4)
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The term related to �uctuations read,

IflBHD ∝ s
†ℍL + S†ℍl + s†ℍl + ℎ.c. . (4.5)

When R = T = 1
2

and � = �
2
, I obtain

IflBHD ∝ 2(Lss − Sls) . (4.6)

We see that if there is non-zero laser power at the asymmetric port, then phase noise in the
LO path will couple into the output signal. The phase noise from the displacement, �x, of
re�ective optics in the local oscillator can be written as

N =
2!

√

Isig
c

�x , (4.7)

where ! is the laser angular frequency, Isig = S2 is the normalised bright light power in
signal port,

Isig =
2Psig
ℏ!

. (4.8)

And Psig is the power in unit of Watts. This local oscillator phase noise should not be larger
than the product of the total noise budget of detector or the quantum noise for a quantum
noise limited detector and the detector response. In other words, the second term in Eq. 4.6
should not be larger than the �rst term. This means

N

|

[

0 1
]

ℍ(�)Rx|

<
√

Sx , (4.9)

where
√

Sx is the amplitude spectral density of the detector noise in displacement and Rx

is the detector response to the arm cavities di�erential motion. The relation between an
re�ective optics displacement, �x, and the phase variations, �, caused by that is

�� = 4�
�
�x . (4.10)

Thus, in order to calibrate to spectral density in phase, a factor of 4�
�

should be applied
to the displacement stability requirement. Assuming the signal port DC power is 1 mW,
Fig. 4.2 shows additional phase noises caused by local oscillator phase �uctuations which
indicates the equivalence to the design sensitivities of aLIGO and A+. In the high fre-
quency, shot noise limited region (above 100 Hz), the phase �uctuations should be smaller
than 4 × 10−9 rads∕

√

Hz or 4 × 10−16m∕
√

Hz. However, when we consider the additional
noise contribution to the design noise budget, we expect the additional noise contribution
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is less than 1% in power spectral density. Since nearly all the noise source incarnations
are not correlated with each other, including this local oscillator instability noise, a factor
of 10 safety margin in the local oscillator phase noise requirement in amplitude ensures
the compatible to within 1% with the design sensitivity. The phase noise in local oscillator
can originate from di�erent sources, e.g. mirrors thermal �uctuations and seismic noise, in
which the seismic coupling via the suspensions and their resonance dominates. For a sin-
gle optics, considering the number of the re�ective optics on LO path, i.e., in current layout
design, the requirement should be further divided by

√

5. We assume conservatively to
obtain this requirement via a pure passive isolation system. Thus, considering the typical
ground motion,

xground ≈ 10−10
(

10Hz
f

)

m∕
√

Hz , (4.11)

A triple stage suspension design is required to achieve the single re�ective optics phase
noise requirement. One could be thinking about the use of a feedback scheme in combi-
nation with two stage suspensions. This would require a high gain loop and broad control
bandwidth. However, the loop sensing noise is even larger than the LO phase noise. By
taking the choice of a triple stage passive isolation scheme, a low bandwidth loop can be
applied to keep the homodyne angel locked. Low bandwidth then allows to role o� any
sensor noise so that no signi�cant control noise will be introduced in the detection band.

4.1.1 Output mode cleaner (OMC) stability

Since the second term in Eq. 4.6 refers to the relative phase stability of the LO beam in
respect to the signal beam, our phase noise requirement derived in the previous section
also applies to the signal path. The current DC readout con�guration features an OMC
at the asymmetric port for getting rid of optical higher order modes (HOMs) and radio
frequency (RF) sidebands and hence we have to analyse whether the OMC provides low
enough noise to be compatible with the LO phase noise stability requirement.

In DC readout, the LO and signal beam are overlapped on the same path and the same
quadrature, i.e. phase quadrature, because both the LO in DC readout and signal beam
are generated from the length di�erence of two arms with the only di�erence, one (LO) is
constant, the other (signal) is dynamic. The homodyne angle can only be changed due to the
di�erential losses in the arms. arms optical loss. [27, 62]. Thus, any sidebands modulated
by the mode cleaner mirror displacement on the bright beam should just couple onto the
orthogonal quadrature, amplitude quadrature. So there is no contamination to the signal.

However, the situation is in the balanced homodyne readout if two mode cleaners are ap-
plied on the LO and signal path, respectively, and the interference between the two beams
happens after two mode cleaners. The LO beam in balanced homodyne readout does not
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Figure 4.2: Stability requirement of the LO phase for aLIGO and A+ employing BHD. Phase �uctu-
ations indicated by the di�erent traces would cause an additional noise contribution equal to the
design noise level of these instruments.

originate from the dark port, but instead a pick o� beam from the bright port is used. So its
amplitude locates on the amplitude quadrature. Thus the LO mode cleaner mirror displace-
ments create sidebands on phase quadrature and contaminates the signal as phase noise.
Even in case there is only one OMC on the signal path, the OMC mirror displacements also
create phase noise. Because the DC components in the signal beam which arises due to the
arms optical loss di�erence also locate on amplitude quadrature.

Similar to the re�ective optics stability requirement for the LO path, we can de�ne stability
requirement �xMC for the relative length of the two output mode cleaners. The relation is

�x
�xMC

=
FMC
�

, (4.12)

where FMC is the �nesse of the mode cleaner, which are assumed to have identical designs.
The aLIGO output mode cleaner has a �nesse around 400. Fig 4.3 shows the phase noise
�uctuation requirement of the OMCs in case of balanced homodyne required to reach the
aLIGO and A+ sensitivities. Unfortunately, after taking into account a factor of 10 as safety
margin, even the mode clean thermal noise cannot ful�l the requirement. So, we had to



50 CHAPTER 4. BALANCED-HOMODYNE READOUT FOR ALIGO+

Figure 4.3: Level of OMC induced phase noise �uctuations which would cause a noise contribution
similar to the design sensitivity of Advanced LIGO and A+.

�nd an alternative design. Fig. 4.4 sketches out several options for realising the evasion of
mode cleaners noise contamination.

A. One mode cleaner for both signal and LO beam: Two beams travel in the same di-
rection, however, inject from di�erent couplers. The mode cleaner mirrors motions
modulate the two beams simultaneously and in the same way. Thus this phase noise
becomes common noise for two beams and will be subtracted out according to Eq. 4.8.
However, the signal beam and LO beam will exchange their HOMs and RF compo-
nents, since the transmitted beams will be overlapped with the re�ected components
of the beam which comes from the other input coupler. So two beams after OMC still
contain the same amount of HOMs and RF sidebands in total as before. These light
�elds will contribute additional shot noise and reduce the overall sensitivity [63].

B. Two beams travelling in the opposite direction but injected from the same coupler.
In this case, the local oscillator HOMs and RF components will be re�ected to the
interferometer from the asymmetric port. In the ideal case, the interferometer itself
can reject these high order optical mode light �elds. However, due to imperfect optics
in the interferometer HOMs are created and can leak into the asymmetric port. Thus
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Figure 4.4: Options of output mode cleaners arrangement to eliminate the mode cleaners phase noise
coupling. The red trace represents the signal beam; the blue trace represents the local oscillator
beam.

these light �elds which re-enter the interferometer from the asymmetric port will
cause interactions with the interferometer that are not easy to predict. And even
the fundamental mode components in LO will be re�ected into the asymmetric port
as long as there is mismatch between the transmission of input coupler and output
coupler. This e�ect is equivalent to the e�ect of backscattering. There is no doubt
that it will lead damages to the detector sensitivity.

C. Two di�erent polarisations are designed for local oscillator and signal beam in one
mode cleaner. The signal beam can be transferred to p-polarisation and enters into
the mode cleaner together with s-polarised LO beam. As long as the two beams co-
resonate in the OMC, the same principle as options A and B, the OMC noise can be
subtracted as common motion noise in the �nal photodiode current. To realise a bal-
anced homodyne detection, we can add another half-wave plate at the transmission
port of OMC and rotate the two beams polarisation angles by 45 degrees, respectively.
Thus by utilising a polarisation beam splitter (PBS) as the BHD beamsplitter, the LO
and signal beams can interference destructively or constructively at the transmission
port or the re�ection port of this PBS, depending on the rotation direction of the
former mention 45 degrees polarisation angle.

However, the OMC �nesse for p-polarisation beam needs to be identical to the s-
polarisation beam. This requires the same phase relation and re�ectivity of coatings
for the two non-normal incidence beams in two polarisations. Thus it feels too risky
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Figure 4.5: Simpli�ed aLIGO optical layout. This plot is taken from [65] and is modi�ed to indicate
two local oscillator pick o� port options, i.e. POP port and BSAR port. POP refers to the power
recycling cavity pick o�, BSAR refers to the anti-re�ective coating surface of the main beamsplitter.

to rely on coatings providing good performance as the base-line plan for A+. How-
ever, in order to keep the door open for future options (beyond A+), the Caltech team
will continue to investigate detailed aspects of this option [64].

D. Two mode cleaners are placed behind the balanced homodyne beam splitter. In terms
of displacement noises created by each OMC, this scheme is equivalent to the DC-
readout. Since the local oscillator and signal beam interference before the mode clean-
ers, where the homodyne angle is de�ned, the mode cleaners motion will only couple
to the orthogonal quadrature.

In the end, the D) option was chosen as the most practical way forward for the balanced
homodyne detection for A+. Since the mode cleaners have very broad bandwidth, any
asymmetries of two mode cleaners should be equivalent to two photodiodes imbalance.
The drawback is that the LO �eld circulating in the OMCs could couple back into the in-
terferometer asymmetric port due to the backscattering. However, the total backscattering
will not be worse than in DC readout. At least, in this option, the backscattering �eld from
the signal path before balanced homodyne readout beamsplitter is signi�cantly reduced
due to the signi�cantly reduced DC power in that part of the path, compared to the case of
DC readout.
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Figure 4.6: The ratio of the scattering transfer functions in POP option over BSAR option. The colour
bar indicates the factor by how much less sensitive the POP option is in terms of backscattering
within the LO path compared to the BSAR option. The y-axis indicates the quadrature in which the
scattering source will couple. Note that most scattering sources will not have a �xed phase relation,
but instead e�ectively scatter with an arbitrarily varying phase.

4.2 Local oscillator delivery options

Several options are currently discussed for deriving a local oscillator beam and guiding
it to the vacuum chamber hosting the BHD. One interesting aspect of the local oscillator
choice is the e�ect of backscattering from any components inside local oscillator path back
into the main interferometer. The schematic of two local oscillator delivery options are
shown in Fig. 4.5. Both option access a a well �ltered and stabilised laser beam from within
the main interferometer. Intuitively one would assume that any backscattering from the
BSAR local oscillator is much more harmful as it only enters one arm, i.e. it is intrinsically
scattering into the di�erential mode, while backscattering from the POP local oscillator re-
enters the interferometer via the power recycling cavity and is therefore in the common
mode, which couples much less to the GW channel. The aim of this section is to investigate
the magnitude of relative coupling of scattered light from the two local oscillator options.

For obvious reasons, it is very hard if not even impossible at the current stage to make
any good predictions about the actual scattering sources, their scattering amplitudes and
relative motions, that will be present in advanced A+ BHD. So, to gain insight into the
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scattering susceptibility of the two di�erent options we simulate a single scattering source
of identical properties in both LO paths and look at the relative strength of the coupling
transfer function from the backscattering �eld �uctuations to the detector’s output (rather
than any absolute values). I added one additional mirror with 100 ppm re�ectivity in the
local oscillator path. A signal is applied to this mirror (note this signal is much smaller than
the laser wavelength). Note that depending on the microscopic position of the scatterer and
its motion, the scattering will either be in the phase quadrature, the amplitude quadrature
or anywhere in between. I account for this by simulating the scattering transfer function
for di�erent phases of the scattering mirror. As mentioned above, the key to look at here
is the di�erence between the two transfer functions instead of their absolute values (which
would change depending on the backscattering amplitude). Fig. 4.6 shows the ratio of the
two scattering transfer functions. We �nd that, as expected from intuition, the POP option
is in all cases less susceptible to scattering compared to the BSAR option.

4.3 Sensing and control

In this section, I simulate the error signals that can be used for controlling the di�erent
degrees of freedom in balanced homodyne readout for A+. I will start by introducing several
degrees of freedom that require to be controlled. In a second step, I will detail potential
locking strategies currently under consideration. The strategies mainly rely on the outcome
of MIT BHD workshop [66].

4.3.1 Degrees of freedom

The following degrees of freedom are required to be controlled in the balanced homodyne
readout:

• Balanced homodyne readout angle

• Length of each of the two OMCs

• Alignment between LO and signal beam (pitch/yaw)

• Input alignment of the combined LO and signal beams to OMCA/OMCB (pitch/yaw)

The possible locking strategies for these degrees of freedom will be discussed in the follow-
ing.



4.3. SENSING AND CONTROL 55

Figure 4.7: The schematic of the optical layout design of A+ BHD and sensing schemes.

4.3.2 BHD readout angle control

There are various strategies that can be utilised for locking the homodyne angle. One
scheme is referred to as the 36MHz scheme. In advanced LIGO, 9 MHz and 45 MHz RF
modulation sidebands are applied onto the input light. Both of them are resonant in the
power-recycling cavity, but not in the arm cavities. A relatively small Schnupp asymme-
try (8 cm) was chosen in order to couple the majority of the 45 MHz sideband power into
the signal recycling cavity and suppresses the 9 MHz power in the signal recycling cav-
ity, leading to a better separation of the error signals for the two recycling cavities. In the
advanced LIGO case with a signal recycling mirror transmission of 35%, nearly all of the
45 MHz sidebands are transmitted to the AS output, while only about 0.3% of the 9 MHz
sidebands leak to asymmetric port. We want to utilise the two sets of RF sidebands present
in the LO and the signal beam to lock the homodyne angle. The two RF sidebands along
with LO and signal beam carriers will interfere when the LO and signal beams overlap on
the balanced homodyne readout beamsplitter. By demodulating the photodiode signals in
the re�ection of the two OMCs at the beat frequency of the two sets of RF sidebands, i.e.
36 MHz and subtracting the resulting signals derived from the two OMCs, we can get the
error signal for the homodyne angle, which is shown in Fig. 4.8. This result is simulated
by using Finesse (frequency domain interferometer simulation) software [67]. The corre-
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Figure 4.8: The error signal of the homodyne angle. It is the subtraction of demodulation signals
of two photodiodes which are placed at the re�ection of two OMCs. The operating point is at
homodyne angle of 90 degree.

sponding commands are as following

pd1 err_A $fM nOMCA_ICb
pd1 err_B $fM nOMCB_ICb

More detailed analytical calculation to demonstrate the principle can be derived as follows.
The signal and LO �elds with the main RF sidebands can be expressed as

Es = |S|ei(!+� sinΩ1t) ,

El = |L|ei(!+� sinΩ2t) .
(4.13)

|S| and |L| are absolute amplitude of signal beam and LO beam, ! is the laser beam angular
frequency, � and � are the RF modulation indices of the two beams, and Ω1 and Ω2 are the
RF modulation frequencies of the two beams. With small modulation index, they can be
expanded by Bessel functions up to the �rst order as

Es = |S|[J0(�)ei!t + J1(�)ei(!+Ω1)t − J1(�)]ei(!−Ω1)t ,

El = |L|[J0(�)ei!t + J1(�)ei(!+Ω2)t − J1(�)ei(!−Ω2)t]ei� .
(4.14)
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After the two beams are combined on the BHD beamsplitter, the two �elds can be written
as

P1 =
El + Es
√

2
, P2 =

El − Es
√

2
. (4.15)

If no OMCs exsit, the photocurrents of each photodiode can be written as

I1 =
|Es|2 + |El|2 + EsE∗

l + ElE
∗
s

2
,

I2 =
|Es|2 + |El|2 − EsE∗

l − ElE
∗
s

2
.

(4.16)

Since there are two OMCs behind the BHD beamsplitter and we use the re�ection of the
OMCs for locking purpose, the carrier components transmit through the OMCs and hence
at the photodiodes only the RF components remain. The subtraction the photocurrents in
re�ection of the two OMCs are derived:

Id = J1(�)J1(�)|S||L|{ei[(Ω1−Ω2)t−�] − ei[(Ω1+Ω2)t−�] − ei[−(Ω1+Ω2)t−�] + ei[(Ω2−Ω1)t−�]} + ℎ.c.

= 4J1(�)J1(�)|S||L|[cos(Ω1 − Ω2)t − cos(Ω1 + Ω2)] cos� ,
(4.17)

where ℎ.c. denotes the hermitian conjugate. Then we mix the residual components with a
demodulation signal cos(Ω1 − Ω2)t + �, where � is the demodulation phase. We �lter out
the any oscillation terms created in the demodulation process by sending the demodulated
signal to a low pass �lter and obtain

err ∝ J1(�)J1(�)|S||L|[cos(� + �) + cos(� − �)] = J1(�)J1(�)|S||L| cos� cos � . (4.18)

We can notice when the demodulation phase is 0 and homodyne angel is �
2
, we get the zero

crossing with maximum slope.

4.3.3 Length of each of the two OMCs

For locking the output mode cleaners longitudinal degree of freedom, we can use a dither
scheme, i.e. dither the local oscillator in length and demodulate at the transmission of
output mode cleaners. The Finesse commands are as following

fsig dither BHDANG phase 107 0 100
pd1 PD_MCA 107 90 nBHD1
pd1 PD_MCB 107 90 nBHD2
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Figure 4.9: The error signal of OMCA length variation. The sensing photodiode is placed at the
transmission of the OMCA. The error signal is measured by demodulating the current of the pho-
todiode in quadrature at the dithering frequency.

I chose a dither frequency of 107 Hz and amplitude 100 in Finesse. There is good error signal
in the case of in quadrature demodulation. The error signal of the OMCA longitudinal
motion is shown in Fig. 4.9. The case is symmetric for OMCB.

4.3.4 Alignment between LO and signal beam

The alignment between the local oscillator and signal beam degrees of freedom can be
covered by the beamsplitter, i.e., we can always �nd a beamsplitter position to keep the
transmission of the local oscillator and signal beam symmetric. Thus they are also over-
lapped with the re�ected beams. Similar to the control of the BHD angle we can use the
36 MHz scheme as described above to generate error signals for the alignment between
LO and signal beam. The misalignment between LO and signal beam could be caused by
balanced homodyne beamsplitter angular rotation. Assuming the LO and signal beam are
overlapped on beam splitter, the alignment between the local oscillator and signal beam
degrees of freedom can be covered by the beamsplitter actually, i.e., we can always �nd a
right beamsplitter angle to keep the transmission beams of the LO and signal beam sym-
metric, so they are also overlapped with the re�ected beams. In this section, I demonstrate
the alignment sensing between LO and signal beam with the example of one of the possi-
ble misalignments caused by the beamsplitter tilting. Since the LO and signal beam waists
are not on the beamsplitter, any jitter of the BHD beamsplitter alignment will induce both
beam shift and tilt in both, pitch and yaw degrees of freedom. To �nd the correct gouy
phase telescope at the re�ection of the OMCs to decouple the shift and tilt, I �nd both the
signal and local oscillator beams waist are 0.2 m away from the BHD beamsplitter in the
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Figure 4.10: Simulated errors signal for alignment between signal beam re�ection and local oscilla-
tion beam transmission of BHD beamsplitter in pitch and yaw degrees of freedom. The misalignment
is created by tilting the BHD beamsplitter. The sensing QPDs are placed in the re�ection of OMCB.
The error signals are derived from the QPD photo current after demodulation at 36 MHz.

Finesse �le which re�ects our current thinking and planning on what the beam layout will
look like. By adding a perfectly re�ective mirror at the waist position in the LO path in
the Finesse code and titling it, I can �nd the correct gouy phase for sensing pure shift if
there is no response on the quadrant photodiode (QPD). So two QPDs are placed at OMCA
re�ection port and two QPDs are placed at the OMCB re�ection port. The responses of the
QPDs at the OMCB re�ection port for balanced homodyne beamsplitter rotation are shown
in Fig. 4.10.

The Finesse commands for sensing pitch degrees of freedom are

maxtem 3
s sMCABS 0.001 nOMCA_ICb nQPDABSa
bs1 QPDABS 0.5 0 0 0 nQPDABSa nQPDABSb nQPDABSc nQPDABSd
s sQPD_A_1 0.001 nQPDABSb nQPD_A_1
s sQPD_A_2 0.001 nQPDABSc nQPD_A_2

s sQPD_A_2 0.001 nQPDABSc nQPD_A_2
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bs1 QPDBBS 0.5 0 0 0 nQPDBBSa nQPDBBSb nQPDBBSc nQPDBBSd
s sQPD_B_1 0.001 nQPDBBSb nQPD_B_1
s sQPD_B_2 0.001 nQPDBBSc nQPD_B_2

pd1 QPD_A_1 $fM 0 nQPD_A_1
pd1 QPD_A_2 $fM 0 nQPD_A_2
pd1 QPD_B_1 $fM 0 nQPD_B_1
pd1 QPD_B_2 $fM 0 nQPD_B_2

pdtype QPD_A_1 y-split
pdtype QPD_A_2 y-split
pdtype QPD_B_1 y-split
pdtype QPD_B_2 y-split

attr sQPD_A_1 g 25
attr sQPD_A_2 g 115
attr sQPD_B_1 g 25
attr sQPD_B_2 g 115

xaxis BHDBS ybeta lin -1m 1m 99
yaxis re:im

4.3.5 Input alignment of the combined LO and signal beams to OMCs

Another degree of freedom is the input alignment of the beam from BHD beamsplitter to
the OMCs. Since we already established control of the overlap of the LO and signal beam
the overlap of LO and signal beam (see Sec. 4.3.4 above), it should be equivalent to derive
the alignment signals of the OMCs either from the dithering the LO beam or the signal
beam so that we dither the local oscillator in length and demodulate at the transmission
of output mode cleaners. The proper gouy phase telescope is derived following the same
procedure as described in Sec. 4.3.4. In Fig. 4.11, I give an example of a mode cleaner input
alignment error signal for the rotation of one of the re�ective optics, OMA1, between BHD
beamsplitter and OMCA. The Finesse commands for sensing pitch degrees of freedom are

maxtem 3
fsig dither BHDANG phase 107 0 100

s sOMCAWFS 0.001 nBHD1 nOMCAWFSa



4.3. SENSING AND CONTROL 61

Figure 4.11: The error signal for input alignment of the combined beam from BHD beam splitter to
OMCA in pitch and yaw degrees of freedom. The jittering signal is created by shaking one re�ective
mirror, OMA1 (see Fig. 4.7), between BHD beamsplitter and OMCA. The sensing QPDs are placed
at the transmission of the OMCA. The error signals are measured by demodulating the current of
the QPDs in phase at dithering frequency.

bs1 OMCAWFS 0.5 0 0 0 nOMCAWFSa nOMCAWFSb nOMCAWFSc nOMCAWFSd
s sOMCAQPD_1 0.001 nOMCAWFSb nQPDA_1
s sOMCAQPD_2 0.001 nOMCAWFSc nQPDA_2

s sOMCBWFS 0.001 nBHD2 nOMCBWFSa
bs1 OMCBWFS 0.5 0 0 0 nOMCBWFSa nOMCBWFSb nOMCBWFSc nOMCBWFSd
s sOMCBQPD_1 0.001 nOMCBWFSb nQPDB_1
s sOMCBQPD_2 0.001 nOMCBWFSc nQPDB_2

attr sOMCAQPD_1 g 15
attr sOMCAQPD_2 g 105
attr sOMCBQPD_1 g 15
attr sOMCBQPD_2 g 105
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pd1 PD_MCA_1 107 0 nQPDA_1
pd1 PD_MCA_2 107 0 nQPDA_2
pd1 PD_MCB_1 107 0 nQPDB_1
pd1 PD_MCB_2 107 0 nQPDB_2

pdtype PD_MCA_1 y-split
pdtype PD_MCA_2 y-split
pdtype PD_MCB_1 y-split
pdtype PD_MCB_2 y-split

xaxis BHDBS ybeta lin -1m 1m 99
yaxis re:im

4.3.6 Summary

In this chapter, I introduced and discussed several design aspects relevant for the balanced
homodyne readout implementation in A+. We found triple stage suspensions are required
for the relay optics in the local oscillator path, guaranteeing the required local oscillator
stability. I presented various options for the optical design considering noise requirements
imposed by the OMC thermal noise and then discussed the advantages and disadvantages
of the di�erent options. In the end, the option of placing two OMCs after the BHD beam-
splitter was chosen the most practical way forward for the balanced homodyne detection
for A+. We found that the delivery of the local oscillator from the POP port is a better
choice compared with the BSAR port in terms of the local oscillator backscattering noise.
Moreover, I presented strategies for controlling the various degrees of freedom involved in
the BHD system.



Chapter 5

�antum noise cancellation in
asymmetric speed meters with
balanced homodyne readout

The design sensitivity of current generation and proposed future generation gravitational
wave detectors is limited by quantum noise over nearly the whole frequency band, in which
the radiation pressure noise dominates at low frequencies. The improvement of detector
sensitivity at low frequencies not only can improve the SNR for various sources of gravi-
tational waves but also can give longer waring time for electromagnetic (EM) counterparts
of gravitational wave event. Moreover, it could signi�cantly improves the detection rate of
massive binary black holds. So far there are no observations of any systems with compo-
nent masses prior to merger greater than 50 solar masses [68].

The speed meters have been identi�ed to be a promising technique to reduce quantum radi-
ation pressure noise in future generation gravitational-wave detectors, in which Sagnac in-
terferometer can be served as a speed meter. In a Sagnac speed meter, the main beam splitter
imbalance is recognised as one of the most signi�cant challenges which limits the detector’s
sensitivity. In this chapter, one solution by implementing BHD readout and proper choice
of the pick o� port of the local oscillator (LO) is analysed. As it turns out, by taking the LO
from the re�ected light at the pumping port of the interferometer or the direct re�ection
o� the main beam splitter’s anti-re�ective coating, the quantum noise contamination from
the laser pumping port can be almost compensated. Taking the example of Glasgow Sagnac
speed meter experiment, it is proved that with the proper choice of LO pick o� port, at fre-
quency of 100 Hz, the requirement of relative intensity noise of the pumping laser decreases
by 3 orders of magnitude.

This work, which I lead has been published as a journal article. It is reproduced on the
following pages.
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Abstract
The Sagnac speedmetre topology has been identified as a promising technique to reduce quantum
back-action in gravitational-wave interferometers. However, imbalance of themain beamsplitter has
been shown to increase the coupling of laser noise to the detection port, thus reducing the quantum
noise superiority of the speedmetre, compared to conventional approaches, in particular at low
frequencies. In this paper, we show that by implementing a balanced homodyne readout schemewith
a suitable choice of the point fromwhich the local oscillator (LO) is derived, the excess laser noise
contribution is partly compensated, and the resulting speedmetre can bemore sensitive than state-of-
the-art positionmetres. This is achieved by picking-off the LO from either the reflection port of the
interferometer or the anti-reflective coating surface of themain beamsplitter.We show that either
approach relaxes the relative intensity noise (RIN) requirement of the input laser. For example, for a
beam splitter imbalance of 0.1% in theGlasgow speedmetre proof of concept experiment, the RIN
requirement at frequency of 100Hz decreases from 4 10 Hz10´ - to 4 10 Hz7´ - , moving the
RIN requirement from a value that is hard to achieve in practice, to onewhich is routinely obtained.

1. Introduction

In 2015, we stepped into the era of gravitational-wave astronomywith the first direct detection of gravitational
waves (GW) from a colliding binary black hole (BBH) systemby the twoAdvanced LIGO interferometers [1].
Two exciting years of discoveries have given us fourmore BBHmerger events [2–5], and one collision of neutron
stars [6], with the last system also being observed in the electromagnetic spectrum [7].

Those discoveries, apart from generating a great deal of fascinating new science hitherto unavailable to
humanity, identified the need to improve the sensitivity of the existing detectors, particularly in the low
frequency range (<30Hz)where the noise of the detectormasksGWsignals frommassive black holes, i.e.with
masses M30> :, where M: is one solarmass. It alsomasksGWs from a stage in the evolution of binary neutron
stars a fewminutes before the end of the in-spiral, observation of which could allow an early warning to be issued
to EMobservers.

The design sensitivity of current and proposed laser interferometric gravitational-wave detectors is limited
by quantumnoise [8, 9] overmuch of their detection frequency band. This noise stems from fundamental
quantum-mechanical fluctuations of the phase and amplitude of coherent laser light. In particular, amplitude
fluctuationswhich produce a randomback-action force on the testmasses, willmimic the action ofGWswhen
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the power in the arms reaches the design level of MWand could therefore have the largest potential impact at
low frequencies where the noise amplitude rises as f−2, inwhich f is theGW frequency.

Speed-metre interferometers werefirst proposed by Braginsky andKhalili [10] as a way to suppress quantum
back-action noise in barGWdetectors. Later, this concept was generalised to laserGW interferometers [11].
Back-action noise reduction in speedmetres stems from the quantumnon-demolition (QND)nature of test
mass’ velocity [12] as a quantumobservable, in contrast to the displacementmeasured byMichelson
interferometers. This advantage of speedmetres over positionmetres at low frequencies inspired the
development of several different speedmetre topologies [13–18].

One of these configurations, the zero-area Sagnac interferometer, was first identified as aQND speed-metre
byChen [14]. In a Sagnac interferometer, two counter-propagating light beams visit the arms sequentially in the
opposite order and return to themain beam-splitter. In this process, each beam carries phase information
resulting frommirror displacements in both arms but the light visits the two arms at times separated by the
interval τ, equal to the arm cavity ring down time. The counter-propagating beams add at the beamsplitter and
interfere destructively at the readout port of the interferometer. Detection of this light results in an output signal
which carries phase information proportional to themean relative velocity of the interferometer arm length
changes. Hence the Sagnac interferometer performs aQNDmeasurement of speed.

In the ideal case, a Sagnac interferometer is always operating at the dark fringe atDC.Only signal sidebands,
with amplitude proportional to the relative differential velocity described above, propagate to the readout port.
This robustness of Sagnac topology to optical path variations, compared to the usualMichelson interferometer,
was deemed to be an advantage, warranting its application inGWdetectors [19]. However, it was later
recognised that any deviation of themain beamsplitter from the ideal 50:50 ratiowould pose a limit to the
sensitivity that could be achieved, due to coupling of laser-port fluctuations to the readout port [20, 21].

It has been shown that by adding appropriate readoutmethods to speedmeter interferometers, it is possible
to reduce the coupling of laser noise fluctuations to theGWreadout signal [20, 22, 23]. In this paperwe take
inspiration from that work, and analytically investigate the potential cancellation of quantumnoise in
asymmetric (i.e.non-ideal) Sagnac speedmeters that employ balanced homodyne detectors. By extending this
analysis to theGlasgow Sagnac speedmetre (SSM), we investigate potential additional cancellation of laser
technical noise.

TheGlasgow SSMemploys balanced homodyne readout andwe show three options for the arrangement of
the required local oscillator (LO) infigure 1.We examine the quantumand classical noise reductionwhen using
a balanced homodyne detector LO taken from the interferometer bright port (BP) versus the noisier option of
using laser light which has not been through the interferometer. Given the partial cancellation of laser noise, we
can allow for deviation from50:50 ratio at themain beamsplitter and thus resolve the primary problem that has
been identifiedwith Sagnac interferometers.

In section 2, we conduct an analytical treatment of quantumnoise of an asymmetric SSM interferometer,
and showhowbalanced homodyne readout can help to suppress quantumnoise, given the proper choice of the
LO. In section 3we show the analysis on the relaxed requirement of relative laser intensity noise base on
simulation software FINESSE [24].

Figure 1.Topologies considered for the speedmeter with balanced homodyne detector (BHD). Blue lines represent the path of the
laser light through the interferometer, red dashed lines represent the shared path of the local oscillator and interferometer light, and
the red solid line represent the local oscillator after its path diverges from the interferometer light. (A) Shows the case where the local
oscillator is derived by tapping off a small fraction of the input beamand guiding it to the output port. (B) Shows the case where the
local oscillator is derived by tapping off the intercavity light at the central beamsplitterʼs anti-reflective coating, i.e. BSARLO. (C)
Shows the case where the light used as the local oscillator will have passed through thewhole interferometer and encountered the same
delay and dispersion aswell as the same optomechanical interaction as the signal beam, i.e. co-moving LO.
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2.Quantumnoise of an imperfect speedmeter IFO

2.1. Two-photon formalism
In this section, we use the two-photon formalism of quantumoptics [25, 26]. It describes, locally, an arbitrary
quasi-monochromaticmodulated electromagnetic wavewith strain
E t A a t t A a t tcos sinc c p s s p0� w w= + + +ˆ ( ) [( ˆ ( )) ( ˆ ( )) ] in terms of two-dimensional vectors of quadrature
amplitudes A a+ ˆ, where A A A,c s

T= { } stands forDCmean amplitudes vector and a a a,c s
T=ˆ { ˆ ˆ } stands for

zero-mean non-stationary variations and fluctuations of light (superscript T denotes transpose of thematrix or

vector). Here normalisation constant
c0

4 p� �
�

=
p w

,� is effective cross section of the beam, c the speed of light,

andωp is the carrier light frequency. It is usuallymore convenient towork in the frequency domain:

a t a
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wherewe define quadratures spectra at themodulation sidebands off-set frequencyΩ=ω−ωp.
In order to understand how thefluctuations entering the pumping port of the interferometer influence all

three variants, we need to analyse the input–output relations of the asymmetric interferometer with an emphasis
on the transfer functions of the pump sideband fields to both, the readout port, and to the LO.Hereinafter we
attain the result.

2.2. Input–output relations of the asymmetric Sagnac interferometer
Weconsider a Sagnac interferometer withmain beam splitter non-unity ratio R T 1BS BS ¹ . The beam splitter is
depicted infigure 2, withRBS andTBS representing the power reflectivity and transmissivity of themain beam
splitter. The three LO choices that we investigate here require the knowledge of the following 3 outputfields,

(i) Readout port outputfield ô (for all three variants)

(ii) Part b
REˆ of the output field ô contributed by the clockwise propagating light beam that gives the LO field

upon reflection off themain beam splitter anti-reflecting coating (variant figure 1(B))

(iii) Return field q̂ at the pumping port (for the co-moving LO choice offigure 1(C))

Expressed in terms of the dark port (DP) inputfield, î andBP inputfield p̂ and signal displacements. Following
the [21], those can bewritten as:

o i p t tx x , 2i p d d c c! != + + +ˆ ˆ ˆ ( )
q i p q qx x , 3i p d d c c� �= + + +ˆ ˆ ˆ ( )

b i p t tx x , 4i p d d c c
RE RE RE RE RE! != + + +ˆ ˆ ˆ ( )

where xc=xn+xe and xd=xn−xe stand for the twomechanicalmodes of the Sagnac interferometer, namely
the common and the differentialarm elongationmodes or cARMmode and dARMmode. The transfermatrices

Figure 2. Schematic of the input and output fields around themain beam splitter.
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i! , i
RE! and i� define the coupling ofDP inputfield î to the corresponding output port. The other threematrices

are ofmore interest to us, i.e. p! , p
RE! and p� , as they describe how laser fluctuations p̂ couple to the

corresponding output ports of the interferometer. It is straightforward to show (see [21] for details) that these
transfermatrices, in case of imbalanced beam splitter with R TBS BS¹ , follow thewell known structure of the
tuned optomechanical interferometer transfermatrix (see, e.g., [27, 28]):

R T2 e
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with diagonal elements describing the purely optical response (withfixedmirrors position), whereas the lower
off-diagonal term, featuring the so called optomechanical coupling factor # first introduced byKimble et al
[27], embraces the details of interaction ofmechanical degrees of freedomof the interferometer with the
corresponding lightfield (via radiation pressure). Response of the interferometer to both, differential and
commonmechanicalmotion of themirrors can bewritten as:
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where 2sag arm 2
b b= + p is the Sagnac-specific additional phase shift that signal sidebands at frequencyΩ

acquire in the course of propagation through the interferometer. x
M

2
SQL 2

�
=

W
stands for the freemass

displacement standard quantum limit (SQL). Symmetric and asymmetric optomechanical coupling factors of
imperfect Sagnac interferometer are defined the sameway as in [21]:
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W the phase shift acquired by a sideband field in one arm cavity. cT
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the normalised

power, where Parm is the circulating in each armof an equivalentMichelson,M is the reducedmass of the dARM
mode and L is the length of the arm.Note that 4sym asym arm# # #+ = , whichwill be used later.
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2.3. Balanced homodyne readout
One sees that asymmetry of the BS couples a fraction of pump laser light to theDPof the interferometer. This
creates a non-zeroDC component of the signal light (i.e. a component at the carrier frequency) that can be easily
obtained from the I/O-relations above if one setsΩ→0 and 0arm# l ,

O PR T , 19BS BS= -( ) ( )
where the correspondingDCfields are expressed in terms of pumpfield at themain BS, P . Analogously, one can
derive theDC component of the LObeam for all three choices of the LO.

(i) L Pdir µ for the direct LOoption;

(ii) L B PRAR
RE

BSµ µ for the BSAR coating reflection LOoption;

(iii) L Q PR T2co BS BSµ µ - for the co-moving LOoption;

As shown in [29, 30], the fluctuation part of the readout photocurrent of the balanced homodyne detector is
proportional to a sumof following terms:

o L O lI , 20HD
T� �µ +ˆ ˆ ( )†

where

cos sin
sin cos

, 21� f f
f f

=
-⎡

⎣⎢
⎤
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withf defining the homodyne angle. l̂ stands for the noisefields of the LO. Forf=π/2 (phase quadrature
readout), the photocurrent can be further simplified as

L OI o l , 22s sHD µ -∣ ∣ ˆ ∣ ∣ˆ ( )
The potential of noise cancellation can be readily seen from this expression, for the phase noise in the two optical
paths comes from the same source, i.e. from the pump laser. Followingwe continue to demonstrate how the
quantumnoise cancellation is tailored by properly choosing the LOdelivery port. The l̂ field for three choices of
the LOwe consider here can bewritten along the same lines as corresponding classical amplitudes of the LO L:

(i) l pdir µˆ ˆ for the direct LOoption;

(ii) l bAR
RE

µˆ ˆ for the BSAR coating reflection LOoption;

(iii) l qco µˆ ˆ for the co-moving LOoption.

At low frequencies, themain contribution to the quantumnoise comes from the off-diagonal radiation pressure
term in the transfermatrices, as arm# and asym# both rise steeply asΩ→0. Indeed, we substitute equations (2),
(3) into equation (20), leaving only the leading terms, one can get the low-frequency contribution to the readout
photocurrent fromBP for the co-moving LOoption the following expression:

I p p4 sin 2cos sin 2cos . 23c cco
BP

co arm asym co sym! # # ! #f f f fµ - - = -[( ) ] ˆ [ ] ˆ ( )
Similarly, for BSARLOoption one can get:

I psin 2 cos , 24cBSAR
BP

BSAR sym! # f fµ -[ ] ˆ ( )
where

PR T R T2 e , 25co BS BS BS BS
2i sag! = - b( ) ∣ ∣ ( )

PR T T R2 e . 26BSAR BS BS BS BS
2i sag! = - b( ) ∣ ∣ ( )

With homodyne anglef=π/2, we simply have

I p , 27c
BP

sym#µ ˆ ( )
for both the co-moving LOand the LOderived from the BSAR coating reflection. This expression shows partial
cancellation of steep low-frequency dependence and only the speed-metre-like term remains, whichmanifests in
flat low-frequency dependence. This remaining term, aswe discuss later, stems from the differential back-action
force driven by the BP amplitude fluctuations represented by a cosine quadrature operator pĉ . Even though,
since this remaining term is proportional to R TBS BS-∣ ∣which refers to the beam splitter asymmetry, as shown
in equations (25), (26), its contribution is alwaysmuch smaller than the quantumnoise contribution fromDP in
terms of any realistic beam splitter imbalance. However, for LOderived directly formmain laser, the expression
has no radiation pressure related contribution in the second term in equation (20), hence
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I p , 28cdir
BP

arm#µ ˆ ( )
and the contribution from the BP-driven commonmotion of the interferometermirrors remains
uncompensated.

The physics behind this cancellation stems from the very principle of the balanced homodyne readout,
where anyfluctuations and variations of light that drive both, the LO and the signal light in the sameway, are
cancelled by design.Hence the partial cancellation of quantumnoise that we demonstrated above comes from
this insensitivity to the commonphase signal produced by the commonpart of the radiation pressure force,
created by the BPfluctuations p̂, i.e. F F F 2c n e

r.p. r.p. r.p.
= +ˆ ( ˆ ˆ ) where Fe n,

r.p.ˆ stand for radiation pressure forces in
each of the arms. The remaining uncompensated part stems from the non-zero differential radiation pressure
force, F F F 2d n e

r.p. r.p. r.p.
= -ˆ ( ˆ ˆ ) , ensuing from the imbalance of the amplitudes of the reflected and transmitted

light at the asymmetricmain beam-splitter.

2.4.Quantumnoise limited sensitivity of Sagnac interferometerwith BPnoise cancellation
It is straightforward now to calculate theQNLS power spectral density expressions for all three choices of LO,
using the derived earlier I/O-relations for both, the BP and theDPof the interferometer. It requires knowing the
transfermatrices of the BHDphotocurrent in all three considered schemes on the inputfluctuation fields, î and
p̂. In order to simplify the equation, the rotationmatrix � is absorbed into L and O. After expressing the LO
fluctuationsfield, l̂ , in terms of î and p̂ one gets from (20):

L i L O pI t x t x , 29i p d d c cdir dir
T

dir
T T dir dir! !µ + + + +ˆ ˆ ( ) ˆ ( )

L O i L O pI t x t x , 30i i p p d d c cco co
T T

co
T T co co! � ! �µ + + + + +ˆ ( ) ˆ ( ) ˆ ( )

L O i L O pI t x t x , 31i i p p d d c cBS,AR AR
T T RE

AR
T T RE AR AR! ! ! !µ + + + + +ˆ ( ) ˆ ( ) ˆ ( )

where the last two terms stand for the signal part of the BHDphotocurrent caused by the differential and
common signalmotion of themirrors, respectively. For the general case of arbitrary homodyne angle,fLO, the
corresponding expressions for the dARMand cARMresponses in all three cases read:

t
x

t R T
x

ie
2

sin , e
2

sin , 32d c
dir i sym

SQL
LO

dir i
BS BS

asym

SQL
LO

sag sag
# #

f f= = -b b ( ) ( )

t
R T

x
tie

8
sin , 0, 33d c

co i BS BS sym

SQL
LO

cosag
#

f= =b ( )

t
R T

x
tie

8
sin , 0. 34d c

AR i BS BS
2

sym

SQL
LO

ARsag
#

f= =b
( ) ( )

Note that for the co-moving LO and for the BSAR-coating reflected LO there is an additional advantage of zero
sensitivity to the commonmotion of the arms (cARMdegree of freedom). It cuts off the potential coupling of
noise from themuch loosely controlled cARMdegree of freedom into the readout channel of the Sagnac
interferometer. Finally, one can calculate theQNLS power spectral density of a Sagnac interferometer, in the
units of differential displacement of the arms using the followingwell-known general formula:

S
n I I n

t

i i
. 35x

LO option
LO option LO option

LO option
=

á W W¢ ñ∣ˆ ( )◦ ˆ ( ) ∣
∣ ∣ ( )

The general formula reads:

L O L O

L t

L O L O

L t

O O

L t

S S S S

T
, 36

x x x x

i i
i

i i

d

p p
p

p p

d

p

d

co DP,co BP,co PO,co

T T

T 2

T T

T 2

T

T 2

! �  ! � ! �  ! �
W = + +

=
+ +

+
+ +

+

( )
( ) ( )

∣ ∣
( ) ( )

∣ ∣ ∣ ∣ ( )
† † † †

wherewe assumed that the power reflectivity/transmissivity of the pick-off beam splitter is equal toRp/Tp and
there is an additional noise term, S x

PO due to vacuumfields, entering the open port of this beam splitter. Here a 
is the spectral densitymatrix for the input light a Wˆ( ), defined as

S a a2 vac vac , 37ij
a

i jp dW W - W¢ = á W W¢ ñ( ) ( ) ∣ ˆ ( )◦ ˆ ( ) ∣ ( )†

where averaging goes over the vacuumquantum state of light vacñ∣ and {i, j}={c, s}. Substitution of (5) and
(11) gives for the components of theQNLS the following formulae:

S
x R T

2

1 8 1 cot
, 38x

DP,co
SQL
2

sym BS BS LO
2

sym

*

*

#

#

f
=

+ - -[ ( ) ] ( )
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S
x R T

2

2 cot
, 39x

BP,co
SQL
2

BS BS
2

sym LO
2

sym

#
#

f
=

- -( ) [ ] ( )

S
x T

R

R T

2 sin
, 40x p

p
PO,co

SQL
2

BS BS
2

sym
2

LO*# f
=

-( ) ( )

where R T4sym BS BS sym*# #= is the new effective optomechanical coupling factorwith account for BS
asymmetry. The suppression of noise due to the doublemeasurement scheme of the SSM andBHD, the
speedmeter frequency dependence of the quantumnoise at low frequencies, is seen infigure 3.

3. Relative laser intensity noise requirement

The direct implication of suppression of laser noise contribution to theQNLS, discussed earlier and shown in
figure 3, is themuch relaxed relative laser intensity noise (RIN) requirements, ensuing from the significantly
weakened transfer function fromBP amplitude quadrature to the BHD readout following from the
equations (27) and (28).

In this section, we consider as an example the SSMproof-of-principle experiment being built in the
University of Glasgow [31]. Due to the complexity of the instrument, we have eschewed analytical calculation in
favour of the numerical, using FINESSE [24] to simulate the RIN requirement. This is done by simulating the
quantumnoise at the BHDdetection port, finding the transfer function of input laser power noise at the BP to
detection port, and dividing quantumnoise by the transfer function then by the input laser power.

The transfer functions from the input laser amplitude fluctuations to the BHD readout port with homodyne
angleπ/2 andπ/4 are shown infigure 4. And themain beam-splitter asymmetry is characterised by setting
RBS=0.501. Aswe can see, the transfer functions for co-moving andBSARLOoptions are significantly
weakened compared to themain laser LOoption in low frequency for both homodyne angles. Another feature
thatwe notice is the difference between the two readout quadratures in high frequency for three LOoptions.
That can be understood form the equation (27), since for phase quadrature readout, the transfer function of the
amplitude quadrature noise is just proportional to sym# , which decrease in high frequency according to
equation (17). However, on an alternative homodyne angle as shown in equation (23) and (24), the amplitude
noise gets coupled to the readout constantly and dominates in high frequency. From the two equations, we can
also understand the dip at a specific frequency that indicates a cancellation between the frequency dependent
back action noise and the constantly coupled amplitude noise for the case

4
f = p .We note that the gap between

co-moving LOoption andBSARLOoption comes form the relatively weak LOpower fromBSAR as shown in
table 1. In this experimental set up, the power of the laser we use is 1.7Wand the AR reflection is 100 ppm. So
that the presentation for BSARoption here is only on the state of principle illustration but not for realistic
implementation for this experiment.

Figure 3.Plots of quantumnoise limited sensitivity (QNLS) of Sagnac interferometer for two different options of local oscillator in
balanced homodyne detector. Dashed black curve showsQNLS for an equivalentMichelson interferometer. The green, yellow and
cyan dot curves which corresponds to Sagnac interferometer QNLSwith 10%, 1%and 0.1%main beam splitter imbalance are almost
overlappedwith the blue solid curve that corresponds to symmetric Sagnac interferometer QNLS. All parameters are given in table 1.
For comparisonwith the full noise budget of theGlasgow speedmetre please refer tofigure 2 in [31].
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Thefigure 5 shows the quantumnoise for the three LOoptionswith different readout quadratures. Figure 6
shows the RIN requirement. As expected, the RIN requirement get relaxed by three orders ofmagnitude below
100 Hz by selecting co-moving or BSARLOoptions.

Figure 4.The laser amplitude fluctuations transfer function from the laser port to detection port for the three LOoptions with 0.1%
main beam splitter imbalance and different homodyne angle, i.e. ,

2 4

p p . The parameters are given in table 1 for Glasgow speedmetre
proof of concept experiment.

Table 1.Parameters of theGlasgow SSMexperiment.

Parameter Value

Armcavity length L 1.3 m
Optical power P 1.7 Wat beam splitter,∼1 kW in the arms
Armcavity round trip loss �25 ppm
Opticmassm Arm cavity input testmass (ITM) 860 mg, arm cavity end testmass (ETM) 100 g
TransmissivitiesT and reflectivitiesR Central beamsplitter,RBS=TBS=0.5, ITM,TITM=700 ppm
Main Laser LO and co-moving LOpower 10 mW
BSARLOpower 0.078 mW
Main readout Balanced homodyne detectorwith suspended optical local oscillator path

Figure 5.The quantumnoise for the three LOoptionswith 0.1%main beam splitter imbalance and different homodyne angle, i.e.
,

2 4

p p . The parameters are given in table 1 forGlasgow speedmetre proof of concept experiment.
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4. Summary

Speed-metre configurations ofGW interferometers are known to provide a significant improvement of
quantumnoise limited sensitivity at low frequencies because by suppression of quantumback-action noise
usingQNDmeasurement of speed [28, 32]. This advantage increases the signal-to-noise ratio (SNR) of speed-
metre-basedGWdetectors for compact binary coalescences by at least two orders ofmagnitude if compared to
the equivalentMichelson interferometer in the quantum-noise-limited case [33]. Zero-area Sagnac
interferometer is one of the possible ways to realise theGWDbased on speed-metre principle. However it was
shown [21] that, in a non-ideal realistic case of asymmetric beam splitter, the fluctuations of the laser pump
couple into the readout port of the interferometer, thereby creating an excess radiation pressure noise that
significantly worsens theQNLS of speedmetre interferometer and hence its SNR. In this work, we demonstrate
that using a balanced homodyne readout schemewith a particular choice of the LOoption this detrimental effect
can be almost completely attenuated.

Picking the LObeam from the reflected light at the pumping port of the interferometer (the co-moving LO
option), or from the direct reflection off themain beam splitterʼs AR coating (the BSARLOoption), one can
significantly reduce themagnitude of the transfer function of the laser fluctuations from the pumping port to the
readout one and qualitatively change its frequency dependence at low frequencies.We show analytically that this
partial cancellation of laser fluctuations stems from the very nature of the BHD scheme that is inherently
insensitive to any common variations of light phase in LO and signal beamof the BHDdriven by input laser
fluctuations.We further confirmour analyticalfindings by numerical simulation of theGlasgowproof-of-
principle speed-metre interferometer set-up and estimating the relative laser intensity noise requirements for it.
Our simulation shows that at frequency of 100 Hz the RINdecreases by 3 orders ofmagnitude, form
4 10 Hz10´ - to 4 10 Hz7´ - if the co-moving or BSARLOoption is chosen versus the conventional
direct pick-off of the LObeam from themain laser. It is worth noting here that these 3 orders ofmagnitudemean
reducing the RIN requirement from a very challenging valuewhich is beyond the best achieved so far [34–36] to
a valuewhich is easily achievable.

This feature of Sagnac interferometer can, in principle, be expanded to any scheme of speed-metre
interferometer that uses the Sagnac-type way of performing the velocitymeasurement, where signal sidebands
co-propagate with the carrier light throughout themain interferometer, including the polarisation-based speed
metres [15, 16, 33]. Hence, we report here themethod that solves the challenges originating frombeam splitter
asymmetry of a real speed-metre interferometer setup by using a balanced homodyne readout schemewith a
particular choice of a LObeam.
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Chapter 6

On the misalignment and alignment of
Sagnac speed meter interferometer

Speed meter con�gurations are much more complicated compared with conventional Michel-
son interferometer. Practically, they face the challenges of more possible imperfections due
to the complexities of the con�gurations. Danalishin made the analyses on the main beam
splitter asymmetric and intra cavity loss in plane wave mode pro�le [69]. With further
analysis, the negative e�ect of beamsplitter asymmetric can be mostly compensated by
choosing a special LO beam in balanced homodyne readout [49], which is introduced in
Chapter. 5.

Up to now, there are few investigations on the e�ects of the speed meter internal misalign-
ment with higher optical modes (HOMs) taken into account. To achieve optimal sensitivity
of the interferometer detector, usually several independent length degrees of freedom need
to be controlled within small ranges to maintain the operating point. It is also essential
to keep the angular degrees of freedom of the cavity mirrors on on their operating points
to maintain the maximum power, reduce the optical loss and reduce the loss, reduce jitter
noise and other technical noise couplings [70]. Due to the very low loss requirements of
the ERC proof of concept speed meter experiment (stemming from realising a speed meter
using only a meter scale baseline), very good alignment control is vital for this experiment.

This chapter is around the misalignment and alignment of Sagnac speed meter. In Sec.6.1,
I review the Sagnac speed meter input output (I/O) relations in plane wave mode pro�le;
In sec. 6.2, I describe the general I/O relation of misaligned optics; In Sec. 6.3, I calculate
the impacts of misalignments from several typical optical components in the Sagnac in-
terferometer on the quantum noise limited sensitivity; In Sec. 6.4, I use the Glasgow SSM
experiment optical layout as an example to propose possible auto-alignment sensing and
control strategies based on simulation software, Finesse [67].

75
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6.1 Sagnac interferometer in plane wave mode profile

Before stepping into the Hermite-Gauss pro�le, I remind the reader of the of the standard
tools for calculations of quantum noise, i.e. I/O relations and the two-photon formalism.
De�ning the input �eld a and output �eld b, the I/O relations for an interferometer can be
written in the form of

b = Ta + R x
xSQL

, (6.1)

where T is the interferometer transfer matrix, R is the interferometer response vector for
the test mass displacement, xSQL =

√

2ℏ
MΩ2

is the the standard quantum limit for the square
root of the single-side spectral density of test mass displacement x(Ω) with corresponding
e�ective mode massM . Using a balanced homodyne readout (see Chapter. 3 ,4 ,??) it is pos-
sible to realise reading out any arbitrary readout quadrature. [56, 67]. I introduce the local
oscillator classical �eld as L. The quantum noise spectral density can then be calculated as

Sx = x2SQL
LTℍ†TSaT †ℍL

|LTℍR|2
. (6.2)

where the homodyne angle is quanti�ed by one rotation matrix ℍ,

ℍ =

[

cosΦ − sinΦ
sinΦ cosΦ

]

. (6.3)

And Sa is the spectral density matrix of the input �eld.

In a Sagnac speed meter interferometer, there are two �elds that travel through each of the
arm cavities in opposing directions (see Fig. 1.7 or Fig. 1 in Chapter. 5). In either cavity,
both circulating modes contribute to the radiation pressure force. The I/O relation of an
cavity in Sagnac interferometer, e.g. for the clockwise output of cavity N can be calculated
as

bRN = e2i�(Ω)
[

1 0
−2RBS 1

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
T armRN

aRN + e2i�(Ω)
[

0 0
−2

√

RBSTBS 0

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
T b.aLN

aLN+

ei�(Ω)
[

0
√

4RBS

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
RarmRN

√

2x
xSQL

,

(6.4)

where the index ‘R’ represent the clockwise propagating light �elds and the index ‘L’ repre-
sents the anti-clockwise direction.  is the optomechanical Kimble factor, which is de�ned
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as
 =

2Θ

Ω2(
2 + Ω2)

, (6.5)

where 
 = cT
4L

is the half-bandwidth of the cavities with cavity length L and the input
test mass power transmitivity T , Θ ≡ 4!P

McL
is the normalised circulating power in the arm,

P is the circulating power in the cavity in one direction, M is the e�ective mass of the
interferometer di�erential arm elongation modes (dARM) mode. � = arctan

(

Ω



)

is the
phase shift that the sidebands with frequency Ω acquire when propagating through and
then re�ecting o� the cavity.

The beam splitter relations can be introduced as

aLE = −
√

RBSi +
√

TBSp ,

aRN =
√

TBSi +
√

RBSp ,
(6.6)

where the dark port and bright port inputs are represented by i and p, respectively. The
cavities connection relations are de�ned as:

aRE = bRN ,

aLN = bLE .
(6.7)

In the detuning-less case (i.e. the carrier �elds are resonant in the arm cavities), the two
output �elds from two cavities that recombine at the beam splitter can be solved out as [69]

bLN = T armLN

[

T b.aRERN + LE
]

+ LN ,

bRE = T armRE

[

RN + T b.aLNLE
]

+ RE ,
(6.8)

where

LN = T b.aRNaRN + Rarm
LN

xN
xSQL

, RN = T armRN aRN + Rarm
RN

xN
xSQL

,

LE = T armLE aLE + Rarm
LE

xE
xSQL

, RE = T b.aREaRE + Rarm
RE

xE
xSQL

.
(6.9)

The dark port and bright port output �elds can be written as

o = −
√

RBSbRE +
√

TBSbLN ,

q =
√

TBSbRE +
√

RBSbLN ,
(6.10)

where I de�ne the dark port and bright port output �elds as o and q, respectively. Finally,
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the dark and bright port output �elds can be solved out in the form of

o = Tii + Tpp + t−x− + t+x+ .

q = ℝii +ℝpp + q−x− + q+x+ .
(6.11)

The response vector for the common motion and di�erential motion of the two arm cav-
ities are de�ned as t+ and t− at dark port and q+ and q− at bright port. The common and
di�erential motions are de�ned as

x+ = xN + xE ,

x− = xN − xE .
(6.12)

In the case of perfectly symmetric Sagnac,

Ti = e2i�sag
[

1 0
−sag 1

]

, (6.13)

t− = −ei�sag

√

2sag

xSQL

[

0
1

]

, (6.14)

where �sag = 2� +
�
2

and sag = 4 sin
2 �. Since in the perfectly symmetric case, there is

no coupling between bright port input and dark port output and no coupling of common
mode displacement at the dark port, Tp and t+ are empty. Then the quantum noise spectral
density can be derived straightforwardly according to Eq. 6.2 .

6.2 I/O relations for misaligned optics

In this section, I provide the mathematical description for considering the misalignments
that occur in the interferometer by describing the I/O relations of misaligned optics. Mis-
alignments create the coupling between the fundamental mode and HOMs, which can be
described by complex coupling coe�cients [71][63]. In order to compatible with the I/O
relations in two-photo formalism, I represent these coe�cients in matrix format. A travel-
ing beam a contains multimode components, ai, where the fundamental mode is named as
a0. After misalignment, the �eld a′ in new spatial modes can be expressed as

⎡
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(6.15)
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Figure 6.1: Simpli�ed diagram of optical layout of the Glasgow Sagnac speed meter proof of concept
experiment. The detailed optical layout is shown in Fig. 2.2 (chapter 2). In addition, the positions
of the sets of quadrant photodiodes (QODs) for the purpose of alignment sensing are indicated by
blue ellipse. ‘Cav’ represents cavity, ‘M’ represents mirror, i and p are the input �elds of dark and
bright port; o and q are the output �elds of dark and bright ports.

where the matrix Mkj describes how the j-th mode of the a �eld contributes to the k-th
mode of the a′ �eld. Each Mkj is a 2 × 2 matrix. And the whole matrix M needs to satisfy
the unitarity relation M†M = I, as a consequence of the law of energy conservation, where
I is the identity matrix. Each Mkj can be written as

Mkj =kj

[

cos�kj − sin�kj
sin�kj cos�kj

]

. (6.16)

It contains the absolute value kj and the phase information due to a di�erent travel dis-
tance (including the Gouy phase e�ect). The detailed calculations of mode coupling ma-
trixes are introduced in [63]. The I/O relation for a plane wave mode pro�le (see Eq. 9.6)
can be transformed to describe Hermite-Gauss mode pro�les as:
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. (6.17)

I note that two mode coupling matrixes are applied onto the input �eld and the transfer
matrix T , respectively. The �rst matrix is in charge of �tting the original beam into the
cavity eigen mode frame, the second one is in charge of converting the output �eld from the
frame of the cavity to the original input beam frame. They are alway identical. I also note
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Figure 6.2: Simpli�ed �ow chart of the I/O relation of the interferometer according to Fig. 6.1. Each
block represents a mode coupling matrix. There are two blocks in terms of an misalignment of one
component. One is in charge of �tting the input beam into the eigen mode frame de�ned by the
optical component, another one is in charge of converting the output �eld from the frame de�ned
by the optical component to the original input beam frame. Blue traces represent the ‘R’ direction
traveling �elds, orange traces represent the ‘L’ direction traveling �elds. (a) is the �ow chart for
dark port input (b) is the �ow chart for laser bright port input.

that, the cavity transfer matrix T and response vector R are di�erent from the ideal case
due to the di�erent circulating power caused by misalignment. Thus I require to modify
the corresponding Kimble factor. The Kimble factor is proportional to both the back action
force and the output response to the test mass motion. One example of this modi�cation is
shown in the asymmetric Sagnac case in plane wave mode pro�le, i.e., in Eq. 6.4.

For the misalignment of a single plane mirror, one just need to replace the transfer matrix
T for cavity by an identity matrix I, ie.
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. (6.18)

In the case of a curved mirror, it is more complicated, since the mirror modi�es the complex-
valued parameter q of the fundamental mode by a similar e�ect to that of a thin lens fol-
lowing the ABCD-matrix method [72, 73]. In the SSM experiment, there is one concave
mirror connecting the arm cavities, i.e. M9 in Fig. 6.1. The radius of curvature of this mir-
ror is designed to match the wave front of the incoming beam, which means the values of
complex-valued parameter q of the beam are symmetrically identical on the incoming path
and outgoing path. So we can ignore the e�ect of the distance of the beam propagation
between the two cavities when considering the alignment and mode matching of the two
arm cavities in Sagnac interferometer. This makes the modelling of I/O relation of the full
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interferometer in Hermite-Gauss mode pro�le more simple.

6.3 Static misalignments in Sagnac Interferometer and
quantum nosie

In this section I analyse the possible misalignments that can happen in the Sagnac in-
terferometer. In a Sagnac interferometer, there are three parts that determine its overall
performance of quantum noise limited sensitivity , i.e. the main beam splitter, the mirror
connecting the arm cavities and the two arm cavities themselves. I split the alignment of
the full interferometer up into three parts: 1) the alignment between the beam transmitted
through the main beamsplitter and cavity E; 2) the alignment of the re�ection beam from
main beamsplitter to cavity N; 3) the alignment between the two arm cavities.

For my analyses I will use the optical layout of Glasgow SSM experiment as a realistic exam-
ple. This simpli�ed version is shown in Fig. 6.1. Two aspects need to be considered in order
to establish the I/O relation for the full interferometer in the Hermite-Gauss modes pro�le:
(1) The mode coupling process due to misalignments, which is the content in Sec. 6.2; (2)
Changes of the circulating �elds in the cavity which change both, the response function
of the cavity output �eld to the cavity mirrors’ displacement and the total radiation pres-
sure force. The two aspects for the full interferometer can be better traced by treating the
dark port and bright port inputs separately as shown in Fig. 6.2. The part (a) in Fig. 6.2
shows how the I/O relation form dark port input to dark port output in the Hermite-Gauss
modes pro�le should be de�ned based on the I/O relation in the plane wave mode pro�le in
Sec. 6.1. The (b) part helps to �gure out how the powers of circulating �elds in the cavities
and in both directions are scaled regarding di�erent misalignments. It has to be noted that
for a misalignment, there are two misalignment directions which can be quanti�ed by two
conjugate mode coupling matrixes.

Starting from these decoupled three degrees of freedom, I analyse several special sets of
misalignment conditions:

A. The cavities connection mirrors (CM) M8 and M10 are misaligned.

B. Cavities N and E are misaligned in the opposite direction by the same magnitude,
which I refer to as pure out-of-phase cavity misalignment.

C. Cavities N and E are misaligned in the same direction with same magnitude, which I
refer to as pure in-phase cavity misalignment.

D. Either cavity N or E is misaligned, which I refer to as individual cavity misalign-
ment.
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Figure 6.3: The quantum noise limited sensitivity of Glasgow speed meter experiment in cases of
di�erent misalignment conditions.

The resulting quantum noise limited sensitivity is shown in Fig. 6.3. The results can be
understood with the help of Fig. 6.2.

A. In terms of the e�ects of misalignment of the CM, it is actually straightforward to
refer to the e�ects of optical loss between the two cavities.

B. The e�ects of arm cavities out-of-phase misalignment is more complex and can be
understood as following.

Firstly, we analyse the scaling of the power of the circulating �elds in the two cavities.
Mathematically, the pure out-of-phase cavity misalignment means that the coupling
matrixes for the N and E cavity are conjugate. The coupling of modes from the output
of one cavity to the input of the other is just a reciprocating process because the two
‘N’ , ‘E’ matrices are conjugate, as can be seen from part (b) in Fig. 6.2. The powers
of circulating beams in both cavities and in both directions are actually balanced but
with a reduced value. So it is equivalent to a power loss of the laser at the bright
input port of the interferometer.

Secondly, we analyse the modes distributions of quantum �elds according to part (a)
in Fig. 6.2. In the part (a) of Fig. 6.2, the misalignments of optics at the dark port
inputs can be disregarded, because the dark port input is just vacuum. Then before
the quantum �elds in the two paths of the two traveling directions recombine on
the main beamsplitter, the spatial modes of them are de�ned by cavity E and cavity
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N, respectively. The spatial mode matrices of the two cavities are conjugate and we
only care about the fundamental mode �eld which is the overlapped part, so partial
quantum �elds which circulated in the arm cavities are lost towards HOMs. This is
equivalent to the output loss.

In summary, the impacts of cavity out-of-phase misalignment can be summarised as
following:

• Loss of input power.

• Output loss, which is equivalent to imperfect photo diode quantum e�ciency.

The �rst e�ect is also why one can notice that in the back action noise dominated low
frequency region, the quantum noise limited sensitivity is even slightly lower than
with ideal alignment.

C. The similar understanding process of the two cases above can be applied to the pure
in-phase cavity misalignment.

Firstly, there is a similar e�ect to that of CM misalignment, which refers to the optical
loss between the two cavities. In this case, the two ‘N’ , ‘E’ matrices are identical, so
mathematically, the modes coupling from the output of one cavity to the input of the
other is a one way coupling according to Fig. 6.2. The mathematical mechanism of
this part is actually the same as the CM misalignment.

Secondly, a fraction of the two laser beams transmitted through the main beamsplit-
ter do not enter into the two arm cavities due to the misalignment. So it is again
equivalent to a power loss of the laser at the bright input port of the interferometer.

In summary, the impacts of the cavity in phase misalignment can be summarised as
following:

• Loss of input power.

• Optical loss between the two arm cavities.

D. The individual cavity misalignment is actually straightforward to refer to the e�ects
of optical loss of one cavity.

I note that, the conditions I compute above are somehow arti�cial, because in reality it is
not always possible to decouple the three degrees freedom. However, the current results
have already shown the necessity of aligning the interferometer accurately. In next section,
I simulate the possible auto-alignment strategies using the example of the Glasgow Sagnac
speed meter experiment.
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Figure 6.4: Diagram of showing the locations of di�erential wave front sensing schemes.

6.4 Autoalignment strategies for dynamic misalignment

In this section, I investigate the sensing and control of the dynamic misalignment in the
Glasgow SSM experiment. In order to being able to simulate the alignment error signals
corresponding to the degrees of freedom discussed above, I had to develop a suitable in-
put �le for the Finesse software, that works with HOMs. Indeed, the original Finesse �le
that I used initially caused some confusion, because the plane wave mode case and the
Hermite-Gauss mode case did not give identical results. The problem originated from the
fact that in Finesse all optics are de�ned as thin optics, while in reality the thickness of the
curved mirror, e.g. ITMs, would modify the gaussian beam parameters of the transmitted
beams similar to the e�ect of a lens. After de�ning the two surfaces of each ITM separately
and adding a fused silica space between, the resulting sensitivity in Hermite-Gauss mode
coincides with that in plane wave pro�le. With this issue resolved, I can start simulation.

The di�erential wave front sensing sensors for the alignment between the input laser and
the two cavities are placed behind M9 with two pairs of QPDs, QPDa (QPDa1, QPDa2) and
QPDb, (QPDb1, QPDb2), as shown in Fig. 6.4. In terms of control of the alignment between
the two cavities. I put a set of di�erential wave front sensing scheme behind M7 with one
pair of QPDs, QPDc (QPDc1, QPDc2), as shown in Fig. 6.4. This method is called the Ward
method [74].

In order to validate how well the sensing signals can map multiple independent degrees
of freedom and evaluate the controllability of a system, one can de�ne the vector space
of the mirrors to be controlled, B, with each vector, �⃗i, and the space of normalised signal
vectors, S, with each vector, s⃗i [75]. The mirrors angular positions can be mapped by the
photodiode signals via the relation:

S = OB . (6.19)
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Figure 6.5: Results of the computation of quality parameter of OA in pitch for two sets of mirrors:
(1) M5, M7, M4, M11; (1) M5, M7, M4, M6. The colour bar indicates quality parameter. The x-axis
and y-axis indicates the common Gouy phase of QPDa and QPDb. The left plot corresponds to (1),
the right plot corresponds to (2).

where O is de�ned as optical matrix. The reconstructed volume in the space of the mirrors
can be computed by using the wedge product as:

V = |det(O)| . (6.20)

V = 0 tells the system is completely degenerate while V = 1 tells the system is perfectly
decoupled. In the case of 0 ≤ V ≤ 1, an equivalent spatial separation between the degrees
of freedom of the alignment system can be computed by constructing another matrix which
spawns the same volume. It is constructed by making all vectors to be orthogonal except
one and the one to be misaligned with respect to the �rst vector by an angle �, named as
quality parameter :

� = arcsin(|det(O)|) . (6.21)

� is then an indication of the controllability of system given a matrix O.

Since the arm cavities are more stable systems compared with the input beams, we can
treat them as the reference. We treat the mirrors’ pitch and yaw separately, since they
are independent in the ideal case. Obviously, there are only two mirrors, M8 and M10,
responsible to the alignment between two cavities. However, there are �ve mirrors on the
input path to the two cavities, i.e. M4, M5, M11, M6, M7. If we want to sense and control all
the seven mirrors, it will not be possible to distinguish them with six signals1 as the system
is underdetermined.In order to stabilise the system, it is not necessary to get all mirrors
under control. Usually, one pair of mirrors can provide the shift and tilt degrees of freedom
of a beam and allow us to perfectly align the input beam to the eigenmode of a cavity. I
select four mirrors among M4, M5, M11, M6, M7 for the purpose of input beams alignment

1As we know, in the Ward sensing system, the demodulation phases of QPDs do not give di�erential
impacts on the error signals of beam shift and tilt [76], so there only six independent signals of the six QPDs.
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Figure 6.6: Results of the computation of quality parameter of OD in pitch indicating the relation
of mirrors: M8, M10 and two signals of QPDc. The y-axis indicates quality parameter. The x-axis
indicates the Gouy phase of QPDc1.

to the two cavities. In our system, M7 is placed after the beam splitter and only e�ects the
input beam alignment to cavity E; M6 is a beamsplitter and mainly e�ects the alignment of
the re�ected beam to cavity N. In the following I will investigate two options: (1) M5, M7,
M4, M11, M8, M10 are used for the purpose of control; (2) M5, M7, M4, M6, M8, M10 are
used for the purpose of control. Firstly, I tried to test whether the six signals can map the
angular displacements space of the six mirrors. The whole sensing scheme can be described
as
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Figure 6.7: Results of the computation of quality parameter of Mab
con in pitch indicating the relation

of the four signals of QPDa and QPDb and two sets of mirrors: (1) M5, M7, M4, M11; (1) M5, M7,
M4, M6. The colour bar indicates quality parameter. The x-axis and y-axis indicates the common
Gouy phase of QPDa and QPDb. The left plot corresponds to (1), the right plot corresponds to (2).

Since only RF signals are detected, obviously misalignments of M8 and M10 are not sensible
to QPDa and QPDb, thus the optical matrix O will be in the form of

O =

[

OA 0
OC OD

]

. (6.24)

Mathematically, there is
|det(O)| = |det(OA)||det(MD)| . (6.25)

So we can evaluate the controllability of the entire system by computing the quality pa-
rameter of OA and OD separately.

Firstly, I tried to �nd the optimal quality parameter of OA. In Finesse, I put one common
Gouy phase on QPDa1 and QPDa2, another common Gouy phase on QPDb1 and QPDb2.
And I added 90 degrees phase di�erence between them in each pair. The total signal of each
QPD are normalised to be 1. In pitch direction, the quality parameter of OA as a function
of two common Gouy phases is shown in Fig. 6.5. As we can observe, the optimal quality
parameters of OA of the two scheme are around 7×10−6 degree and 1.8 degree, respectively.
Both values are quite low.

Secondly, I tried to compute the quality parameter of OD. In Finesse, I put a common Gouy
phases on QPDc1 and QPDc2 and added 90 degrees phase di�erence between them. In pitch
direction, the quality parameters of OD as a function of common Gouy phase are shown in
Fig. 6.6. As we can observe, the optimal quality parameters of OD is around 1.57 degree.

Overall, we have to conclude that the six signals cannot well map the angular displacements
space of any the two sets of the six mirrors. The signals of QPDa and QPDb are strongly
overlapped because the impacts of the misalignments of M4, M5, M11 on QPDa are identical
to these on QPDb. The signals of QPDc not only contain information of M8, M10, but also
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Figure 6.8: Results of the computation of quality parameter of Oc
con in pitch indicating the relation

of two signals of QPDc and mirrors, M8, M10. The y-axis indicates quality parameter. The x-axis
indicates the Gouy phase of QPDc1.

Figure 6.9: Results of the computation of quality parameter of OA in pitch for two sets of mirrors:
M1a, M2a, M1b, M2b. The colour bar indicates quality parameter. The x-axis and y-axis indicates
the common Gouy phase of QPDa and QPDb.
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M1a, M2a, M1b, M2b. While, this does not mean the whole system is not controllable,
in practice, we can select one pair of mirrors for controlling the beam input alignment to
cavity E and another pair of mirrors for controlling the beam input alignment to cavity N
by applying servos with di�erent design such as large gain di�erence. And M8, M10 are for
controlling the alignment of the beam between two cavities with cavity E as the reference.
The control relations are then given by
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and
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where Oab
con are in the form of

[

× 0
0 ×

]

. The quality parameters of Oab
con and Oc

con for pitch

as a function of common Gouy phase are shown in Fig. 6.7 and Fig. 6.8. As we can observe,
with common Gouy phase on QPDa and QPDb of 65 degree, the optimal quality parameter
of Oab

con raises up to about 80 degree. Also we �nd the two schemes to give almost identical
results because M11 and M6 are very close in terms of spatial location. With a common
Gouy phase on QPDc of 68 degree, the optimal quality parameter of Oc

con is over 80 degree.
This tells us that each pair of mirrors can cover two orthogonal degrees of freedom of the
beam misalignment (beam shift and tilt) using the corresponding cavities as the reference.
As an example, the optimal control matrix indicating the control relation of the signals from
QPDa and QPDb and M5, M7, M4, M11 can be computed as

⎡

⎢

⎢

⎢

⎢

⎢

⎣

�⃗M5

�⃗M7

�⃗M4

�⃗M11

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−0.39 −0.76 0 0
0.92 0.65 0 0
0 0 −0.73 −0.74
0 0 0.68 −0.68

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

s⃗QPD1a
s⃗QPD2a
s⃗QPD1b
s⃗QPD2b

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (6.29)

The optimal control matrix indicating the control relation of the signals from QPDc and
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M8, M10 can be computed as
[

�⃗M8

�⃗M10

]

=

[

0.63 0.71
−0.78 0.71

][

s⃗QPD1c
s⃗QPD2c

]

. (6.30)

Another way is to take the input beam as the reference and control the cavity mirrors
following the jittering of the input beam. For this analysis I select M1a, M2a, M1b, M2b
for the control purpose. Again I computed the quality parameter of Oab

con. The results are
shown in Fig. 6.9. As we can observe, at common Gouy phases for both QPDa and QPDb
around 10 degree, there is optimal quality parameter of 80 degree. With this set up, the
optimal control matrix of the whole system can be computed as

⎡

⎢

⎢

⎢

⎢

⎢

⎣

�⃗M1a

�⃗M2a

�⃗M1b

�⃗M2b

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0.44 −0.88 0 0
0.9 0.48 0 0
0 0 0.45 −0.88
0 0 0.89 0.48

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

s⃗QPD1a
s⃗QPD2a
s⃗QPD1b
s⃗QPD2b

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (6.31)

In the same manner, the optimal control relation for yaw direction can be computed as

⎡

⎢

⎢

⎢

⎢

⎢

⎣

�⃗M5

�⃗M7

�⃗M4

�⃗M11

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−0.73 0.74 0 0
0.68 0.68 0 0
0 0 −0.69 0.73
0 0 0.72 0.68

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

s⃗QPD1a
s⃗QPD2a
s⃗QPD1b
s⃗QPD2b

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (6.32)

or
⎡

⎢

⎢

⎢

⎢

⎢

⎣

�⃗M1a

�⃗M2a

�⃗M3a

�⃗M4a

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−0.54 −0.84 0 0
0.84 −0.54 0 0
0 0 0.55 0.84
0 0 −0.83 0.54

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

s⃗QPD1a
s⃗QPD2a
s⃗QPD1b
s⃗QPD2b

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (6.33)

and
[

�⃗M8

�⃗M10

]

=

[

0.72 −0.71
−0.69 −0.71

][

s⃗QPD1c
s⃗QPD2c

]

. (6.34)

6.5 Summary

In this chapter, I developed an analysis of the e�ects of misalignments in a Sagnac speed
meter and provided the foundation to calculate quantum noise in the conditions of sev-
eral misaligned optics. The alignment of the Sagnac interferometer can be decoupled into
three parts: 1) the alignment between the beam transmitted through the main beamsplit-
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ter and cavity E; 2) the alignment of the re�ection beam from main beamsplitter to cavity
N; 3) the alignment between the two arm cavities. I analysed several special misalign-
ment conditions de�ning as: (1) connection mirrors misalignment; (2) out-of-phase cavity
misalignment; (3) in-phase cavity misalignment; (4) individual cavity misalignment. The
impact of connection mirrors misalignment can be summarised as optical loss between the
two cavities. The impacts of cavity out-of-phase misalignment can be summarised as loss of
input power and interferometer output loss, which is equivalent to imperfect photo diode
quantum e�ciency. Impacts of cavity in phase misalignment can be summarised as loss of
input power and optical loss between the two arm cavities. Individual cavity misalignment
can be summarised as optical loss of an individual cavity. With the example of Glasgow
SSM experiment layout, I discussed possible sensing and control strategies for the interfer-
ometer alignment. The dynamic alignment of the three parts can be well covered with the
sensing schemes shown in Fig. 6.1, the control matrices were modelled.
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Chapter 7

Backsca�ering e�ects on quantum
noise of ring cavities

In this chapter, I analyse another optical imperfection in a ring resonator of a Sagnac speed
meter and its impact on quantum noise, i.e., optical backscattering. I refer to the back
scattering phenomenon due to the interaction of the laser beam and an imperfect mirror
surface. In the case of coherent scattering, the scattering surface will not a�ect the intrinsic
properties rather only the propagation direction of the propagating beam [1]. The scatter-
ing angle usually depends on the spatial frequency of the mirror surface roughness and
�atness. At low spatial frequency, the distribution of the scattered light �elds will cover a
small angle range. For one speci�c spatial frequency, one scattering �eld coincides exactly
with the counter propagating cavity mode, and is hence called backscattering.

In a ring cavity, the backscattering inside the cavity creates coupling between two direc-
tions circulation modes and induce more complex interactions between the laser beams
and the test mass. In Sec. 7.1, I introduce the optical I/O relations of a beamsplitter with
the micro-roughness surface considering the backscattering; in Sec. 7.2, the I/O relations
of a ring cavity with movable input test mass are derived; in Sec. 7.3, the quantum noise
limited sensitivity in displacement of the ring cavity is calculated and the resulting features
are analysed; in Sec. 7.3.1, I calibrate the displacement sensitivity into strain sensitivity;
in Sec. 7.3.2, the quantum constraint theory of a multipoles system is applied to validate
the calculations. The same topic is investigated in [1]. As an extension, in this chapter, I
investigate not only the weak backscattering but also stronger ones. Employing a detailed
analytical calculation, I present the mechanism and impacts of the backscattering distin-
guished into three di�erent characteristic cases based on the level of the backscattering
amplitude.

93
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Figure 7.1: Left: The diagram that shows the input beam, transmission backscattering beam (blue)
and re�ection back scattering beam (red) around a beamsplitter; Right: the diagram that shows the
relations among input �elds, output �elds and intra cavity �elds in a ring cavity. a and b present
the input and output �eld, e and f are the intra cavity �elds. The subscript R represents clockwise
propagation direction, L represents the anti-clockwise propagation direction.

7.1 Optical I/O relations of a beamspli�er

In the case of the ring cavity with a low transmission input mirror, which is the usual case
for arm cavities in gravitational wave detectors, considering the smallness of the power of
other scattering modes and that they only leak into free space (equivalent to optical loss),
I only consider the backscattered modes that travel along with the normal modes routes. I
consider both the re�ection scattering and transmission scattering as shown in the left of
Fig. 7.1. I assume the power of scattering �eld is scaled by one back scattering coe�cient
� and the corresponding power re�ectivity and transmissivity of the mirror [1]. The I/O
relations of input and output �elds on the input coupler of the ring cavity is shown in the
right of Fig. 7.1. Mathematically, the I/O relations on the input mirror of a single cavity can
be de�ned in the following formate,

⎡

⎢

⎢

⎢

⎢

⎢

⎣

bR
bL
fR
fL

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−
√

R
√

�Rei�r1
√

T
√

�T ei�t1
√

�Rei�r2 −
√

R
√

�T ei�t2
√

T
√

T
√

�T ei�t3
√

R
√

�Rei�r3
√

�T ei�t4
√

T
√

�Rei�r4
√

R

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

aR
aL
eR
eL

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (7.1)

where �tj , �rj represent the phase gained by the scattered �elds in transmission and re�ec-
tion. Constrained by the energy conservation law, the bounding conditions can be derived
as following,

�r1 = −�r2 + � = �r3 = −�r4 + � ,

�t1 = −�t2 + � = �t3 + � = −�t4,

�t4 = �r2 − � .

(7.2)
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or

�r1 = −�r2 − � = �r3 = −�r4 − � ,

�t1 = −�t2 − � = �t3 − � = −�t4,

�t4 = �r2 + � .

(7.3)

In principle, due to the random distribution of roughness on the mirror surface, any phases
satisfy the above relation are possible. In this chapter, I assume one special case, i.e the left
and right modes phase are symmetric. In this case, the backscattering coe�cients should
be purely imaginary. In the case of the �rst phase relations set, �r1 =

�
2
, the I/O matrix is

⎡

⎢

⎢

⎢

⎢

⎢

⎣

bR
bL
fR
fL

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−
√

R i
√

�R
√

T i
√

�T
i
√

�R −
√

R i
√

�T
√

T
√

T −i
√

�T
√

R i
√

�R
−i
√

�T
√

T i
√

�R
√

R

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

aR
aL
eR
eL .

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(7.4)

In the case of the second phase relations set, �r1 = −
�
2
, the I/O matrix is

⎡

⎢

⎢

⎢

⎢

⎢

⎣

bR
bL
fR
fL

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−
√

R −i
√

�R
√

T −i
√

�T
−i
√

�R −
√

R −i
√

�T
√

T
√

T i
√

�T
√

R −i
√

�R
i
√

�T
√

T −i
√

�R
√

R

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

aR
aL
eR
eL .

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(7.5)

In following calculation process, I take the �rst set of sign conventions as the example.

7.2 Opto-mechanical I/O relations of a ring cavity

After con�rming the phase and amplitude of the backscattered �elds, in this section, I will
derive the complete I/O relation of the cavity with moveable input mirror following the
conventional procedures in [27].

According to Eq. 7.4, there is

fR =
√

T aR − i
√

�T aL +
√

ReR + i
√

�ReL + 2ik
(
√

RER + i
√

�REL
)

x ,

fL =
√

T aL − i
√

�T aR +
√

ReL + i
√

�ReR + 2ik
(
√

REL + i
√

�ReR
)

x ,
(7.6)

where x represents the displacement of the movable input test mass, EL,R represents DC
intra cavity �eld. It can be excited by both external force and laser radiation pressure force.
The round trip travel time of the light is de�ned as � = 2L

c
. The intra cavity sidebands
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gain phase shift ‘Ω�’ after traveling the round trip. So the relation between the intra cavity
�elds e and f are,

eR = fReiΩ� , eL = fLeiΩ� . (7.7)

By substituting Eq. 7.6 into Eq. 7.7, there is

eR =
[
√

T aR − i
√

�T aL +
√

ReR + i
√

�ReL + 2ik
(
√

RER + i
√

�REL
)

x
]

eiΩ� ,

eL =
[
√

T aL − i
√

�T aR +
√

ReL + i
√

�ReR + 2ik
(
√

REL + i
√

�ReR
)

x
]

eiΩ� .
(7.8)

With the single mode approximation [27], Eq. 7.8 can be derived as,

eR =

[
√

T aR − i
√

�T aL + i
√

�ReL2ik(
√

RER + i
√

�REL)x
]

eiΩ�

1 −
√

ReiΩ�

=

[
√

T aR − i
√

�T aL + i
√

�ReL + 2ik(
√

RER + i
√

�REL)x
]

e−iΩ� −
√

R

=

[
√

T aR − i
√

�T aL + i
√

�ReL + 2ik(
√

RER + i
√

�REL)x
]

1 − i�Ω − (1 − T+�
2
)

=

[
√

T aR − i
√

�T aL + i
√

�ReL + 2ik(
√

RER + i
√

�REL)x
]

(
 − iΩ)�
,

eL =

[
√

T aL − i
√

�T aR + i
√

�ReR + 2ik(
√

REL + i
√

�RER)x
]

(
 − iΩ)�
.

(7.9)

Since the backscattering coe�cients � is much smaller than the cavity transmissivity T , I
ignore in the equations above the e�ect of � to the e�ective half bandwidth 
 . By de�ning

 = T

2�
, eR can be written as

eR =

√

T aR − i
√

�T aL
(
 − iΩ)�

+
i
√

�R
(
 − iΩ)�

(
√

T aL − i
√

�T aR + i
√

�ReR)
(
 − iΩ)�

+
2ik(

√

RER + i
√

�REL)x
(
 − iΩ)�

+
i
√

�R
(
 − iΩ)�

2ik(
√

REL + i
√

�RER)x
(
 − iΩ)�

.

(7.10)

For simplicity here, I de�ne two e�ective factors ,

� =

√

�

�

, y = Ω


. (7.11)



7.2. OPTO-MECHANICAL I/O RELATIONS OF A RING CAVITY 97

So that I can simplify Eq. 7.9 as

eR =
√

2

�

[

( 1
1 − iy

+

��2

(1 − iy)2
)aR + (

i�
(1 − iy)2

−
i�
�
1 − iy

)aL

]

1
(Ω)

+ URx ,

eL =
√

2

�

[

( 1
1 − iy

+

��2

(1 − iy)2
)aL + (

i�
(1 − iy)2

−
i�
�
1 − iy

)aR

]

1
(Ω)

+ ULx ,
(7.12)

where
(Ω) = 1 + �2R

(1 − iy)2
, (7.13)

and

UR =
2ik

(
√

RER + i
√

�REL
)

(
 − iΩ) �
+

i
√

�R
(
 − iΩ) �

2ik
(
√

REL + i
√

�RER
)

(
 − iΩ) �
1

(Ω)
,

UL =
2ik

(
√

REL + i
√

�RER
)

(
 − iΩ) �
+

i
√

�R
(
 − iΩ) �

2ik
(
√

REL + i
√

�REL
)

(
 − iΩ) �
1

(Ω)
.

(7.14)

For convenience, I write the �eld relations in the two-photo formalism. According to
Eq. 7.12, when Ω = 0, the DC intra cavity �elds amplitudes can be written out as

ER =
√

2

�

{

(1 + 
��2)

[

AR

0

]

+ (� − �
�)

[

0
AL

]}

1
(0)

,

EL =
√

2

�

{

(1 + 
��2)

[

AL

0

]

+ (� − �
�)

[

0
AR

]}

1
(0)

.

(7.15)

With the single mode approximation, the radiation pressure force can be calculated as

Frp = F0 + Fx = 2ℏk
(

ET
ReR + ET

LeL
)

. (7.16)

In the following I assume that the backscattering coe�cient � is no larger than 1ppm, i.e.
� ≤ 10 and then neglect the smallness term. The displacement independent radiation
pressure force can be derived as

F0 =
4ℏk

�

{

[

1
1 − iy

− �2

(1 − iy)2

]

([

AR 0
]

aR +
[

AL 0
]

aL
)

+
[

�
1 − iy

+ �
(1 − iy)2

]

([

0 AR

]

aL +
[

0 AL

]

aR
)

}

1
(Ω)(0)

,

(7.17)
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and the dynamic radiation pressure force can be derived as

Fx = −
16ℏk2x

2�2

�
(

1 + �2
)

|ARAL|

(1 − iy)2
1

(Ω)(0)2
. (7.18)

The equation of motion of the moveable mirror in frequency domain can be written as

(

�−1 +Krig
)

x = F0 + Fx + FGW , (7.19)

where � = − 1
�Ω2

is the free mass mechanical susceptibility with e�ective mass � and
Krigx = Fx. According to the dynamic radiation pressure force derived above, it is straight-
forward to write out the optical rigidity,

Krig = −
16ℏk2


2�2
�
(

1 + �2
)

|ARAL|

(1 − iy)2
1

(Ω)(0)2
. (7.20)

A new e�ective mechanical susceptibility can be de�ned as

�new =
1

�−1 +Krig
. (7.21)

The output bR can be written in terms of aR, aL and eR as

bR = −
√

RaR + i
√

�RaL +
√

T eR . (7.22)

In general the I/O relations usually take the form of

bR =
(

TRsℎ + TRrp
)

aR +
(

TLsℎ + TLrp
)

aL +
(

RR + RL
)

⏟⏞⏞⏞⏟⏞⏞⏞⏟
Rx

x , (7.23)

where Tsℎ represents shot noise only transfer matrix, Trp represents back action only trans-
fer matrix and R is the response function of the output �eld to the mirror displacement.
Summarising the derived equations of �eld relation and mirror dynamics, it is then straight-
forward to get the response vectors and transfer matrices. The response vectors can be
derived as

RR =
4kx

�

{

[

1
1 − iy

− �2

(1 − iy)2

]

[

0
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]

−
[

�
1 − iy

+ �
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]

[
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0

]}

1
(Ω)(0)

,

(7.24)

RL = 4k�

{

[

�2

(1 − iy)2
− 1
1 − iy

]

[

AL

0

]

−
[

�
1 − iy

+ �
(1 − iy)2

]

[

0
AR

]}

1
(Ω)(0)

.

(7.25)
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I note than the contribution of RL is also a smallness term which can be neglected. The
shot noise transfer matrixes can be derived as

TRsℎ =
1 + iy
1 − iy

[

1 − �2 0
0 1 − �2

]

1
(Ω)

, (7.26)

TLsℎ =
1

(1 − iy)2

[

0 −2�
2� 0

]

1
(Ω)

. (7.27)

The back action only matrixes can be derived as

TRrp =
16ℏk2


2�2
�new

{

[

1
(1 − iy)2

− 2�2

(1 − iy)3
+ �4

(1 − iy)4

]

[

0 0
A2R 0

]

+
[

�
(1 − iy)2

+ �
(1 − iy)3

− �3

(1 − iy)3
− �3

(1 − iy)4

]

[

0 0
0 ARAL

]

−
[

�
(1 − iy)2

− �3

(1 − iy)3
+ �
(1 − iy)3

− �3

(1 − iy)4

]

[

ARAL 0
0 0

]

−
[

�2

(1 − iy)2
+ 2�2

(1 − iy)3
+ �2

(1 − iy)4

]

[

0 A2L
0 0

]}

1
(0)2(Ω)2

,

(7.28)

TLrp =
16ℏk2


2�2
�new

{

[

1
(1 − iy)2

− 2�2

(1 − iy)3
+ �4

(1 − iy)4

]

[

0 0
ARAL 0

]

+
[

�
(1 − iy)2

+ �
(1 − iy)3

− �3

(1 − iy)3
− �3

(1 − iy)4

]

[

0 0
0 A2R

]

−
[

�
(1 − iy)2

− �3

(1 − iy)3
+ �
(1 − iy)3

− �3

(1 − iy)4

]

[

A2L 0
0 0

]

−
[

�2

(1 − iy)2
+ 2�2

(1 − iy)3
+ �2

(1 − iy)4

]

[

0 ARAL

0 0

]}

1
(0)2(Ω)2

.

(7.29)

7.3 Amplitude quantum noise spectral density in dis-
placement

In this section, I quantify the quantum noise spectral density of a single ring cavity and
analyse the impacts of backscattering. Using the level of the backscattering amplitude we
can distinguish 3 scenarios: weak backscattering,i.e. � ≪ 1, critical backscattering, i.e.
� = 1 and strong back scattering, i.e. 1 < � ≤ 10.
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Weak backscattering

Weak backscattering means the backscattering coe�cient is much smaller than 1 ppm, i.e.
|�| is much smaller than 1. In this case, I can get further approximated form of transfer
matrices simpli�ed from Eq. 7.26 to Eq. 7.29,

TRsℎ =
1 + iy
1 − iy

[

1 0
0 1

]

, TLsℎ =
1

(1 − iy)2

[

0 −2�
2� 0

]

. (7.30)

TRrp =
16ℏk2�new

2�2(1 − iy)2

[

0 0
A2R 0

]

, TLrp =
16ℏk2�new

2�2(1 − iy)2

[

0 0
ARAL 0

]

. (7.31)

One can already observe that the only signi�cant di�erence comes from the new mechanical
susceptibility modi�ed by the optical rigidity when both input light �elds are considered.
Let us have a closer look the the DC intra cavity �elds circulating in the ’R’ direction.
According to the backscattering phases derived in Sec. 7.1 and Eq. 7.15, only the component
coupling from the ‘L’ input �eld due to backscattering is on the phase quadrature (the
orthogonal quadrature with respect to the �eld circulating in ‘R’ direction which originates
from ‘R’ input). When the two inputs are identical, the modi�ed mechanical susceptibility
can be written as

�new =
1

−�Ω2
[

1 + � 16ℏk2

mΩ2
2�2(1−iy)2

] , (7.32)

Compared with the free mass mechanical susceptibility, the new one is more rigid in low
frequency. The quantum noise amplitude spectral densities of the ring cavity are shown
in Fig. 7.2. Both positive and negative � that refer to the two sets of backscattering phases
derived in Sec. 7.1 are considered. I take the ring cavity in the SSM experiment as described
in Chapter. 2 as an example. The pump power is 1.7 W at each input port , the cavity
ITM mass is 1 g and two ETMs are 100 g, respectively. The cavity ITM transmission is
632 ppm. We see that displacements are signi�cantly suppressed at low frequencies. A peak
representing the mechanical resonance shows up in the case of positive optical rigidity.

Critical backscattering

The critical backscattering occurs for � = T 2

4
, i.e. |�|=1. According to Eq. 7.26, in this case,

one input mode contribution will be totally cancelled at its corresponding output port. This
destructive interference happens between the intra cavity �eld transmission and the direct
re�ection of the input �eld. One interesting feature in this case is that the output response
to mirror displacements shows a speed meter like trend (see lower right subplot of Fig. 7.3.)
This can be seen from Eq. 7.24. It results from the destructive interference between the
sidebands of circulating mode in the intrinsic direction and the sidebands coupling from
backscattering of the intra cavity mode circulating in the opposite direction. These two
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Figure 7.2: The quantum noise limited sensitivity (QNLS), quantum noise (QN) and response of
a single ring cavity which is pump by two identical beams. The backscattering magnitudes are
weak backscattering. The cavity and laser parameters used in the calculation represent the SSM
experiment and are stated Chapter. 2. The two inputs powers are 1.7 W for each. The cavity e�ective
mass is 1 g. The cavity ITM transmission is 632 ppm.

Figure 7.3: The QNLS, QN and response of a single ring cavity which is pumped by two identical
beams. The backscattering strength is critical backscattering. The cavity and laser parameters in
the calculation represent the SSM experiment and are stated in Chapter. 2. The two inputs powers
are 1.7 W for each. The cavity e�ective mass is 1 g. The cavity ITM transmission is 632 ppm.
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interfering components originate form the same input �eld. The backscattering �elds are
of even numbers of backscattering process. Meanwhile, the backscattered sidebands gain
time delays.

However, it is not a speed meter con�guration, although in the displacement sensitivity,
the speed-meter-like trend can be observed at low frequency. It is again because that the
optical rigidity suppresses the displacement originating from displacement independent
radiation pressure force. Regarding to the displacement independent radiation pressure
force, according to Eq. 7.17, part of the radiation pressure force is speed-meter-like cancelled,
however, the part originating from backscattering �elds of odd numbers of backscattering
process is not cancelled.

Strong backscattering

Strong back scattering refers to cases when the backscattering coe�cient is larger than 0.1
ppm and smaller than 1 ppm, i.e. 1 < � ≤ 10. In this case, at the output port, the �elds from
backscattering are stronger than the intrinsic modes, resulting in a drastically increased
optical rigidity. The new e�ective mechanical susceptibility can be derived as,

�new =
1

−�Ω2(1 + �(1 + �2) 16ℏk2

�Ω2
2�2(1−iy)2
)
, (7.33)

Comparing Eq. 7.33 with Eq. 7.32, we can �nd that the terms proportional �2 which was
neglected in Eq. 7.32 plays the dominat role in the strong backscattering case. Let us con-
sider again the example of the mode circulating in the ’R’ direction. The two dominated
DC components on the amplitude quadrature are neither the intrinsic circulating mode in
‘R’ direction nor the re�ection backscattering of odd numbers of backscattering process
form intrinsic circulating mode in ‘L’ direction. Rather the two dominated components are
the re�ection backscattering from the intrinsic circulating mode in ‘L’ direction and the
re�ection backscattering form the part of circulating mode in ‘L’ direction which comes
from the re�ection backscattering of the odd order from the intrinsic circulating mode in
‘R’ direction. The quantum noise limited sensitivities, quantum noise spectral densities and
responses are shown in Fig. 7.4.

7.3.1 Strain sensitivity calibration

We have seen in the previous section that in ring cavities with backscattering the displace-
ment sensitivities at low frequencies are better than in the ideal case without backscatter-
ing. This is because of the e�ects of optical rigidity, which is common for both radiation
pressure force and external forces. However, only the e�ects of optical rigidity on radia-
tion pressure force appear in the displacement sensitivity. So in this section, I calibrate the
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Figure 7.4: The QNLS, QN and response of a single ring cavity which is pumped by two identical
beam in the case of strong backscattering. The cavity and laser parameters in the calculation rep-
resent the SSM experiment and are stated in Chapter. 2. The two inputs powers are 1.7 W for each.
The cavity e�ective mass is around 1 g. The cavity ITM transmission is around 632 ppm.

displacement sensitivity to strain sensitivity.

The equation of motion of the mirror driven by gravitational wave strain can be described
as

F (t) = (�−1 +Krig)x(t) = �ℎ̈(t)
L
2
. (7.34)

In the frequency domain, this translates to

(�−1 +Krig)x(Ω) = −�Ω2ℎ(Ω)
L
2
. (7.35)

When the optical rigidity is zero, the displacement is just proportional to strain, since
� = − 1

�Ω
. While with backscattering, the cavity mirror’s dynamic at low frequencies is

dominated by the optical rigidity e�ect. To calibrate the displacement sensitivity to strain
sensitivity, I only need to derive the strain response of the ring cavity, which relates to the
displacement response as

Rℎ = −�new�Ω2Rx
L
2
. (7.36)

In the case of weak backscattering, the strain sensitivity of the ring cavity is shown in
Fig. 7.5. Observed from Fig. 7.5, the strain sensitivities in all cases are almost identical. That
again proves that the dynamics of the cavity mirror driven by both the radiation pressure
force and gravitational wave tidal force are modi�ed in the same way due to backscattering.
The e�ects get compensated in the quantum noise limited sensitivity in strain.
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Figure 7.5: The QNLS in strain, QN and strain response of a single ring cavity which is pumped by
two identical beams for weak backscattering. The cavity and laser parameters used in the calculation
represent the SSM experiment and are stated in Chapter. 2. The two inputs powers are 1.7 W for
each. The cavity e�ective mass is 1 g. The cavity ITM transmission is 632 ppm.

7.3.2 �antum constraints of 2 × 4 pole system

The purpose of this section is originally to validate the correctness of the calculations done
above, since these results appeared very counter-intuitive at the earlier stages of the in-
vestigations. From another point of view, the ring cavity with two inputs and two outputs
is a typical multipole optomechanical system. Since interesting quantum backscattering
phenomenons are involved, it is also worthwhile to test the general quantum constraints
of a multipole system using this case as an example. The theory of linear quantum 2 ×N
pole systems is introduced by Braginsky and Khalili in [38]. Miao further investigated two
new equalities in the constraints in the case of an ideal quantum limited 2×2 poles system
in [77]. In this section, I take the mathematical description of continuous linear measure-
ment in the the existing literature and I apply it to the special example of the quantum
backscattering in ring cavities.

In a multiple poles system, the general solutions of the Heisenberg equation of motion are,

Zj(t) = Z0
j (t) + ∫

∞

−∞
dt′

N
∑

i=1
�ZjFi(t − t

′)q(t′)

Fj(t) = F 0
j (t) + ∫

∞

−∞
dt′

N
∑

i=1
�FjFi(t − t

′)q(t′) ,

(7.37)

where Z is the output of the detector, F is the input which refers to the radiation pres-
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sure force, �ZF quanti�es the detector’s response to the system variable q, which is the
displacement in my case and �FF quanti�es the dynamical back action.

Going into frequency domain, in the case of the 2×4 poles system there are two inputs and
two outputs:

Z1(!) = Z0
1 (!) + �Z1F1(!)q(!) + �Z1F2(!)q(!) ,

Z2(!) = Z0
2 (!) + �Z2F1(!)q(!) + �Z2F2(!)q(!) ,

F1(!) = F 0
1 (!) + �F1F1(!)q(!) + �F1F2(!)q(!) ,

F2(!) = F 0
1 (!) + �F2F1(!)q(!) + �F2F2(!)q(!) .

(7.38)

The susceptibility and the unsymmetrised spectral density are related as [77]

�AB(!) − �∗BA = (i∕ℏ)[SAB(!) − SBS(−!)] . (7.39)

The symmetrised spectral density S̄AB , is related with SAB as [77]

S̄AB(!) = [SAB(!) + SBA(−!)]∕2 . (7.40)

Following the standard approach in [38, 77], I de�ne a auxiliary operator,

Q = ∫ d![�∗1Z
0
1 (!) + �

∗
1 (!)F

0
1 (!) + �

∗
2Z

0
1 (!) + �

∗
2 (!)F

0
1 (!)] , (7.41)

where �, � are arbitrary functions. Since the value of the product of this operator is positive
de�nite[38, 77], it means in terms of unsymmetrized spectral density, there is

∫

∞

−∞
d!

[

�∗1 ⅄Ƶ�∗2 �∗1 �∗2
]

⎡

⎢

⎢

⎢

⎢

⎢

⎣

SZ1Z1 SZ1Z2 SZ1F1 SZ1F2
S∗Z1Z2 SZ2Z2 SZ2F1 SZ2F2
S∗Z1F1 S∗Z2F1 SF1F1 SF1F2
S∗Z1F2 S∗Z2F2 S∗F1F2 SF2F2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
S

⎡

⎢

⎢

⎢

⎢

⎢

⎣

�1
�2
�1
�2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

≥ 0 . (7.42)

So that there is the constrain,
det(S) ≥ 0 . (7.43)

And the relations in Eq. 7.39 and Eq. 7.40 results in

SAB = S̄AB ±
ℏ
2i
(�AB − �∗BA) . (7.44)

In a simpler case, e.g. a 2 × 2 poles system, S is a 2 by 2 matrix and the quantum constrain
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Figure 7.6: The determinate of spectral density S in terms of di�erent values of backscattering
coe�cients.

can be derived as

S̄ZZ(!)S̄FF (!) − |S̄ZF |
2 ≥ ℏ

4
|�ZF |

2 ± ℏIm[S̄∗ZF�ZF (!) − �FF (!)S̄ZZ] . (7.45)

However, in the case we are interested here it would be too lengthy to derive a similar form
as above for a 2 X 4 poles system. Since each unsymmetrized spectral density term can be
represented by the symmetrized spectral density and susceptibility according to Eq. 7.44, it
is enough to check the validity already based on Eq. 7.43. In this special example of , the
port ‘1’ and port ‘2’ refers to port ‘R’ and port ‘L’, respectively. The symmetrised double
sided spectral density, e.g.S̄Z1Z1 , S̄Z1Z2can be written as

S̄Z1Z1 =
1
2

{

[

cos �1 sin �1
] (

TRsℎ
(

TRsℎ
)† + TLsℎ

(

TLsℎ
)†
)

[

cos �1
sin �1

]}

, (7.46)

S̄Z1Z2 =
1
4

{

[

cos �1 sin �1
]

(

T11T
†
21 + T12T

†
22

)

[

cos �2
sin �2

]

+
[

cos �2 sin �2
]

(

T ∗21T
T
11 + T ∗22T

T
12

)

[

cos �1
sin �1

]}

,

(7.47)

where �1, �2 are the arbitrary readout angles of the two port. In a similar way we can derive
the calculations of the other auto and cross spectral densities according to their de�nitions
. I note that, in terms of the spectral density of force, there are no readout quadratures
existing by de�nition. Finally, when �1 = �2 = �∕2, the determinate of matrix S is shown
in Fig. 7.6, which conforms to equality in the general quantum constraint.



7.3. AMPLITUDE QUANTUM NOISE SPECTRAL DENSITY IN DISPLACEMENT 107

7.3.3 Summary

In summary, the current �ndings of backscattering e�ects on quantum noise can be ex-
plained by two clues: the optical rigidity e�ects due to the backscattering coupling between
circulating modes in two directions onto orthogonal quadratures; the destructive interfer-
ence between two dominating �elds originating from the same input �eld. The former one
only exists when there are two identical input beams. The latter one shows signi�cant ef-
fects in the critical backscattering case. In this chapter, with the basis of the work done in
[1], the research was carried out in a more analytical way and the mechanisms of impacts
of backscattering on quantum noise of a triangular cavity were presented in terms of three
characteristic levels of backscattering amplitude.
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Chapter 8

Analysis of imperfections of EPR type
speed meters and squeezing

In this chapter, some of the follow up investigations for a new type of speed meter based on
Einstein-Podolsky-Rosen (EPR) entanglement [78] are described. In Sec. 8.1, I review the
features of EPR speed meter. In Sec. 8.2, I develop a framework which allows to take optical
loss and several imperfections into account. I show their impacts on the quantum noise
limited sensitivity. In Sec. 8.3, I analyse how squeezing can help to improve the overall sen-
sitivity further in the optimal way and mitigate the impact of signal loss on the sensitivity
of the EPR speed meter scheme in intermediate frequency band.

8.1 EPR speed meter conception

As introduced in Chapter. 1, the speed measurement can be realised by doing even numbers
of sequential position measurements and designing a � phase shift between two in each
pair. In Sagnac type speed meter, the arm cavity decay time provides the time delay among
the sequential measurements.

The EPR speed meter scheme can be treated as two Michelson interferometers featuring
correlated radiation pressure but have di�erent bandwidths. The two di�erent e�ective
bandwidths features a time delay between two position measurement. In signal recycled
Fabry-Pérot–Michelson interferometer, the two correlated e�ective Michelson modes can
be achieved by pumping two orthogonal polarisation light into one con�guration. The dif-
ferent e�ective bandwidth of the two modes can be constructed by inserting a quarter wave
plat in the signal recycling cavity. Thus one polarisation ’sees’ an interferometer featuring
RSE, i.e. having a broad bandwidth, while the other polarisation mode gains an additional
�
2

phase shift and hence ’sees’ an interferometer with signal recycling, i.e. a comparably

109
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narrow bandwidth. The outputs of two modes are combined on a polarisation beamsplitter
with a 45 degree rotation. One readout schemes at the ‘+’ port of the beamsplitter measures
the speed of test masses, another independent readout scheme at the ‘-’ port of the beam-
splitter measures the position of test masses. The common radiation pressure force can be
known and further cancelled in a EPR way by measuring the amplitude quadrature of the
‘+’ port output �eld and the phase quadrature of the ‘-’ port output �eld.

8.2 Impacts of imperfections

In this section I build the full framework which allows to calculate the quantum noise lim-
ited sensitivity in the cases of various imperfections.

The derivation of the full speed meter interferometer can be started from the derivation of
the I/O relation of a Fabry-Pérot cavity. The well know optical I/O relation of a resonate FP
cavity is recognised as

b =  a + n + 

[

0
1

]

x , (8.1)

where I de�ne the output �eld as ‘b’ , the input �eld from cavity ITM as ‘a’, input �eld
from cavity ETM ‘n’ and mirrors’ di�erential displacement ‘x’. The corresponding optical
transfer functions  ,  and output response to displacement are recognised as

 =

ITM − 
ETM + iΩ


 − iΩ
, (8.2)

 =
2
√


ITM
ETM

 − iΩ

, (8.3)

 =
2!0E

 − iΩ

√


ITM
cL

, (8.4)

and


ITM =
cTITM
4L

,


ETM =
cTETM
4L

.
(8.5)

L is the length of the cavity, Ω is the angular frequency of sidebands caused by mirrors
motion. The cavity half band width is 
 = 
ITM + 
ETM. Note that in the case of a lossless
cavity, the transmission of ETM can be treated as 0. The normalised circulating amplitude
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inside the cavity E is de�ned as

E =

√

2I
ℏ!0

, (8.6)

where I is the circulating power. !0 is the angular frequency of the laser. The radiation
pressure force driven by both input �elds from ITM and loss port is,

Frad = ℏac +
2!0E

 − iΩ

√


ETM
cL

nc . (8.7)

The cavity mirror displacements are driven by both radiation pressure noise and external
force, e.g. gravitational wave tidal force. The mirror displacement is recognised as

x = �[Frad + FGW] , (8.8)

where � is the mechanical susceptibility of the test masses. By summarising the equa-
tions above, the optomechanical I/O relation of a single cavity, taking mirror dynamics and
radiation pressure into account, can be derived into the form of

b = Ta + ℕn + RxGW , (8.9)

where T andℕ are the transfer matrixes for corresponding input �eld from ITM and ETM.R
is the response vector to the gravitational wave induced mirrors displacements. In terms of
the I/O relation of a Fabry-Pérot Michelson interferometer, the main beam splitter relations
are introduced as

aN =
p + i
√

2
, aE =

p − i
√

2
, o = bN − bE

√

2
, (8.10)

where the bright port and dark port input �elds are symbolised as p and i, the input and
output �elds of North and East cavities are marked with subscript N and E. Hence, the
Fabry-Perot cavity Michelson interferometer’s optomechanical I-O relation can be derived
as

o = TMIi + ℕMIn + RMIx
d
GW , (8.11)

where
TMI = T ,ℕMI = ℕ ,RMI = R∕

√

2 . (8.12)

Here n = (nN − nE)∕
√

2 represents the e�ective vacuum coupling due to optical loss of
both cavities. xdGW is de�ned as

xdGW = x
N
GW − x

E
GW . (8.13)

In a EPR type speed meter, there are two Michelson position meter modes with di�erent
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Figure 8.1: Conceptual demonstration of the EPR speed meter. For clarity the blue and red light
beams are drawn separately in this diagram, while in the real implementation these beams would
be exactly on top of each other. The red and light blue traces represent two orthogonal modes in
polarisation. The process of measurement is described in the main text.

e�ective bandwidth. The broad band mode is named as mode ‘1’ and the narrow band mode
is named as mode ‘2’. The circulating power distributions in the cavity of the two modes
should obey

Θ1 =

1Θ(1 + ")

1 + 
2

,Θ2 =

1Θ(1 + ")

1 + 
2

, (8.14)

where Θ represents the total e�ective circulating power. The circulating power and half
bandwidth of the two modes are labeled by subscription 1 and 2. I take into account a
possible error in power distribution as ". Note that, when calculating the I/O relation of each
mode, the back action force created by the other mode is necessary to be taken into account,
which is the key to create correlations between the two mode. Finally, in order to create
two entangled states, the two outputs �elds are overlapped on a polarisation beamsplitter
which is rotated by 45 degree. The two output ports after the beamsplitter are named as +
and −, respectively.
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Table 8.1: Parameters used in the sensitivity modelling

M=200 kg Reduced mass of the interferometer

L =4000m Arm Length

!0=2�c∕1550 nm Optical pump frequency

I=3MW Cavity circulating power


1=2� × 500Hz Half bandwidth of EPR speed meter broadband
mode


2=2� × 30Hz Half bandwidth of EPR speed meter narrow band
mode


MI=2� × 500Hz Half bandwidth of Fabry-Perot cavity Michelson
position meter


2=2� × 125Hz Half bandwidth of Sagnac speed meter

In terms of the output �elds at the interferometer dark port, there are the relations

ô+ =

√

T ô1 +
√

Rô2
√

2
, ô− =

√

T ô1 −
√

Rô2
√

2
, (8.15)

In terms of the input �eld from the dark port, there are the relations

î1 =

√

T î+ +
√

Rî+
√

2
, î2 =

√

T î+ −
√

Rî−
√

2
, (8.16)

where
T = 1

2
− � , T = 1

2
+ � . (8.17)

The possible imbalance of the polarisation beamsplitter is introduced as �. Gathering the
relations above, the transfer matrix from the input �elds to the output �elds at ‘+’ and ‘-’
port can be calculated. So that the �nal optical I/O relation for the full interferometer can
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be calculated in the form of

o+ = +i− ++i+ ++n + +

[

0
1

]

xd ,

o− = −i− +−i+ +−n + −

[

0
1

]

xd ,

(8.18)

where +,−,+,−,+,− are the optical transfer functions from the corresponding input

�elds to the output �elds of ‘+’ and ‘-’ port, +

[

0
1

]

and −

[

0
1

]

are the response func-

tion of the output �elds of ‘+’ and ‘-’ port to the darm mode mirrors displacements. The
optomechanical I/O relation can be written as

o+ = T+i− +ℝ+i+ + ℕ+n + R+x
d
GW ,

o− = T−i− +ℝ−i+ + ℕ−n + R−x
d
GW ,

(8.19)

where T+,−,ℝ+,−,ℕ+,− are the optomechnical transfer matrices from the corresponding in-
put �elds to the output �eld of the ‘+’ and ‘-’ ports, R+ and + are the response functions
of the output �elds of ‘+’ and ‘-’ port to the darm mode mirrors displacements caused by
a gravitational wave tidal force. The di�erential speed informations of the mirrors motion
is contained in phase quadrature of the output �eld at ‘-’ port. Meanwhile, the ‘-’ port
output �eld contains also the the contribution from radiation pressure force driven by the
‘+’ port input. So that although the amplitude quadrature of the ‘+’ port output does not
contain any mechanical motion information, it is entangled with the mechanical motion
information in phase quadrature of the ‘-’ port output. So that this entanglement can be
removed in the EPR way by measuring the two orthogonal quadratures at the two ports,
i.e., phase quadrature of ‘-’ port and amplitude quadrature of ‘+’ port, and combining the
photocurrents in the optimal way of obtaining the best quantum noise limited sensitivity.

The resulting optimal power spectral density is derived as

Sopt =
S++S−− − S+−S−+

S++ + S−− − S+− − S−+
, (8.20)

in which each term represents the auto spectral density or cross spectral density for the
corresponding channels that are indicated by the subscripts. The way of calculating cross
spectral densities for a 2×4 poles system was introduced in Sec. 7.3.2.

As shown in Fig. 8.2, the EPR speed meter is most sensitive to the output loss, e.g. the im-
perfect quantum e�ciency of the photodiodes. The e�ects of arm loss, polarisation beam-
splitter imbalance and power distribution on two polarisation mode are relative weak. The
parameters are listed in Table. 8.1, which are identical to the parameters in [78].
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Figure 8.2: Quantum noise limited sensitivity of Michelson position meter, Sagnac speed meter and
EPR speed meters which also include various types of imperfections. The Michelson position meter
parameters are identical to the broad band mode of the ERP speed meter. The bandwidth of Sagnac
speed meter is chosen to realise that the radiation pressure noise magnitude in low frequency is
same as the shot noise magnitude.

One feature discussed in [78] is that the EPR speed meter can be shot noise limited above

2. Since the speed meter behaviour occous anyway only up to 
2, a moderate optical power
could be chosen to get a shot noise limited position meter behaviour above this frequency.
However, it is worse by around a factor of

√

2 compared with Michelson interferometer
whose bandwidth is the same as the bandwidth of EPR speed meter broad band mode . This
can be observed in Fig. 8.2. It is obvious from comparing Eq. 30 and Eq. 27 in [78]. This
can also be understood intuitively, since only half of the mechanical motion information
is detected at the ‘−’ port. In terms of a concrete design for gravitational wave detection,
the parameters needs to be optimised in detail. One way the improve the quantum noise
limited sensitivity is utilising squeezing. In next section, I introduce how to improve the
overall sensitivity by injecting two-modes squeezing.

8.3 Squeezing enhancement

Di�erent from the 2× 2 pole system, in which only one input and one output are involved,
there are two inputs and two outputs correlated in the EPR speed meter con�guration.
The technique of squeezing modi�es the input �elds allowing that on the desired quadra-
ture, signal and squeezed �uctuations are measured without degrading the SNR with anti-
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squeezing �uctuations. So the ways of tailoring the input squeezing are decided by the
anticipant result of measurement. Following this logic, in order to �nd the optimal way
of implementing squeezing in this complex multi poles system, I start by deriving the the
photocurrents of the EPR speed meter.

Assuming there are no imperfections, the relation between optical transfer functions from
input �elds to the output �elds at ‘+’ and ‘-’ ports in Eq. 8.19 and the optical transfer func-
tions from input to the output �elds in each Michelson position meter mode can be derived
based on the derivations in Sec. 8.2 as

+ = − =
1 − 2
2

, + =
1 + 2
√

2
,

− = + =
1 + 2
2

, − =
1 − 2
√

2
.

(8.21)

Summarising the derived equations in Sec. 8.2, the photocurrent on general readout quadra-
ture can be derived as

C+ ∝ cos�+(+a
c
+ + +ac−) + sin�+(+a

s
+ + +as−) + sin�+ℏ�+(+a

c
+ + −ac−)

+ sin�++xdGW ,

C− ∝ cos�−(−a
c
+ − −ac−) + sin�−(−a

s
− −−a

s
+) + sin�−ℏ�−(+a

c
+ + −ac−)

+ sin�−−xdGW ,

(8.22)

where �+ and �− are the homodyne angles of the readouts at ‘+’ and ‘-’ ports. In order to
obtain a pure speed meter, the corresponding homodyne angles �+ and �− can be chosen
as 0 and = �

2
. Thus we obtain

C+ ∝ +a
c
+ + +ac− ,

C− ∝ −as− +−a
s
+ + ℏ�−G+a

c
+ + ℏ�

2
−a

c
− + −xGW

(8.23)

In the ‘−’ port, the noise term induced by ac+ can be subtracted by the known information
from the ‘+’ port by implementing �lters in post analysis. Thus the optimal result can
be obtained by combining the two parts in the way that +C− − ℏ�−+C+. The noise
photocurrents normalised to gravitational wave signals in displacement can be calculated
as

Copt ∝
−
−
as− +

−

−
as+ + ℏ�

(

− − +
+
+

)

ac− . (8.24)

It can be transformed into matrix format as

Copt =
[

0 1
] −

−

[

1 0
0 1

]

a+ +
[

0 1
] −
−

[

1 0
EPR 1

]

a−, (8.25)
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where EPR = ℏ� −
−
(− − +

+
+
). When the input �elds a+ and a− are in squeezed state ,

the power spectral density of the optimal photocurrents can be written as [27]

Sopt =
[

0 1
]

{

−

−

[

1 0
0 1

][

cos �+ − sin �+
sin �+ cos �+

][

e2r+ 0
0 e−2r+

][

cos �+ sin �+
− sin �+ cos �+

](

−

−

[

1 0
0 1

])†

+
+

−

[

1 0
EPR 1

][

cos �− − sin �−
sin �− cos �−

][

e2r− 0
0 e−2r−

][

cos �− sin �−
− sin �− cos �−

]

(

+

−

[

1 0
EPR 1

])†}[

0
1

]

, (8.26)

where r+ and r− are the squeezing factors de�ning the strength of squeezing, �+ and �−
de�ne the squeezing quadratures. Simplifying the equation above, I de�ne

V+ =
[

0 1
] −

−
, V− =

[

0 1
] −
−

[

1 0
EPR 1

]

. (8.27)

Then there is

Sopt =e2r+(Vc
+ cos �+ + Vs

+ sin �+)
2 + e−2r+(−Vc

+ sin �+ + Vs
+ cos �+)

2

+e2r−(Vc
− cos �− + Vs

− sin �−)
2 + e−2r−(−Vc

− sin �− + Vs
− cos �−)

2 .
(8.28)

It is the straightforward to obtain that, in order to get the minimal quantum noise spectral
density with squeezing injection from the + and − port, the rotation angle should follow

�+ = atan
(

−
Vc
+

Vs
+

)

= 0, �− =
(

−
Vc
−

Vs
−

)

= atan
(

−EPR
)

. (8.29)

The sensitivity curves that demonstrate the squeezing enhancement are shown in Fig. 8.3.
As a conclusion, in order to get the best overall enhancement of the sensitivity via squeez-
ing, two squeezed vacuum injections are required. The ‘−’ port squeezing requires fre-
quency dependent rotation, while the ‘+’ port squeezing is frequency independent. When
into both ports squeezing with the same squeezing factor are input, there is an overall
sensitivity improvement across the whole frequency band by the squeezing factor. By en-
hancing the ‘+’ port squeezing, the intermediate frequency sensitivity, i.e. 
2 < Ω < 
1, can
be further improved. This can be understood with the help with Eq. 8.25. The shot noise
stream consists of two components contributed from two uncorrelated inputs. It is evident
that low frequencies, i.e. Ω ≪ 
2, and high frequency, i.e. Ω ≫ 
1, |−| ≈ 0. However, in
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Figure 8.3: Quantum noise limited sensitivity in strain of Michelson position meter, Sagnac speed
meter and EPR speed meters with optimised di�erent levels of squeezing injection from ‘+’ and ‘−’
port.

the intermediate frequency range, the absolute values of − and − are compatible. More
speci�cally, there is

|

|

|

|

−

−

|

|

|

|

=
(
1 + 
2)Ω

1
2 + Ω2

. (8.30)

In the frequency range from 
2 to 
1, we �nd that |−

−
| > 1. So that the squeezing injection

in + port helps the intermediate frequency sensitivity with a great e�ort.

8.4 Summary

The EPR speed meter was proposed in [78] with several advantages, for example, it is sim-
ple to be realised by taking minor extensions on the traditional Michelson con�guration
and it can be switched between speed meter mode and position meter mode without any
replacement of hardwares, rather simply by switching the readout quadrature of the ‘+’
output from amplitude quadrature to phase quadrature.

In this chapter, I extended the work in [78]. Here we prove the compatibility of the scheme
with the injection of squeezed light. In Sec. 8.3, I showed how squeezing should be imple-
mented in EPR speed meter, i.e. inject two-mode squeezing into both ‘−’ and ‘+’ ports in a
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frequency dependent and independent way, respectively. It is worthwhile to mention that
the ‘+’ port input vacuum contaminates the shot noise limited sensitivity mainly at inter-
mediate frequency. This impact can be mitigated by injecting phase quadrature squeezed
vacuum.

In Sec. 8.2, I developed a complete framework which allows me to quantify the e�ect of
loss and several potential imperfections on the quantum noise limited sensitivity of the
EPR speed meter. As it turned out, the output loss shows the most drastic impact on low
frequency sensitivity with a moderate loss factor.

In terms of implementing EPR speed meter into future generation gravitational wave de-
tectors, parameter studies and the comparison between di�erent types of speed meters are
still ongoing.
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Chapter 9

An acceleration meter

In the �eld of gravitational wave detection, the current detectors are all position meters.
In the quantum regime, the position measurement induces the back action noise due to
the force actuating on the test mass. There is a Heisenberg-like uncertainty relation that
constrains the measurement noise and back action noise as introduced in Section. 1.4 and
uncovered in [77]. Speed meters are recognised as back action evasion schemes, since the
momentum is a conserved variable in quantum measurements. However, in speed measure-
ments, the quantum noise is still limited by back action noise at low frequencies, since the
momentum is not anymore proportional to the velocity under driving of radiation pressure.
Further analysis reveals momentum, P = mv−gSM(t)ac , where gSM(t) is the strength of
coupling between the light and the mirrors’ mechanical motion, and ac = (a+ a†)∕2 is the
amplitude quadrature of light, which is proportional to the radiation pressure force [48].
While the input observable to gravitational wave detector is actually the gravitational wave
tidal force. One may consider to treat the force actuating on the mirror as the observable
and measuring the acceleration of the mirror motion. Thus a weaker coupling between
light to the acceleration of the mirror in low frequency should be expected. In this Chap-
ter, I develop the concept of an acceleration meter and the corresponding con�guration for
its realisation. The acceleration meter conception could also be potentially interesting to
general opto-mechanical system.

In the same manner as used in Sec. 1.4.4 , I introduce the expression of an acceleration
measurement,

ẍ(Ω) = Ω2 ⋅ �(Ω)[Ω2 ⋅ FBA(Ω) + FextΩ] +Z(Ω) (9.1)

The noise spectral density in displacement can be calculated as

S =
SZ
Ω4

+ Ω4|�(Ω)2|SF (9.2)

Compared with the position measurement, at low frequencies, the acceleration measure-
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ment is dominated by shot noise instead of back action noise. With a stronger back action
evasion, the shot noise raises up due to the the signal reduction. The interferometer is a
phase meter in nature. The phase is directly modulated by test mass position motion so the
shot noise is white noise in terms of position measurement in the cavity half bandwidth.
In the same manner, radiation pressure noise is white noise in terms of force measurement
in the cavity half bandwidth. So the weights of the sensing noise and back action noise can
be traded o� by choosing di�erent measurement observables.

9.1 Acceleration measurement

In Sec. 1.4.4, I introduced two types of speed meters, the circulation polarisation speed meter
based on the Michelson interferometer and the Sagnac speed meter interferometer. Based
on the understandings introduced in Sec. 1.4.4, it is possible to get an acceleration meter
by combining the two typologies, i.e. by implementing the circulation polarisation scheme
on a Sagnac interferometer as shown in Fig. 9.1. Firstly, the left circulation polarisation
light goes over the Sagnac and senses the di�erential speed information ẋdarm(t1). Then
the dARM mode sidebands will be transformed into p polarisation by the QWP. They enter
into the interferometer again from the dark port after re�ecting from the PCM and traveling
through the QWP as the right circulation �elds. So they interact with the right circulation
polarisation bright carrier light in the interferometer. The carrier needs to acquire N�
phase shift, where N is a even number, as it propagates from the QWP towards PCMs and
re�ects o�. The clockwise and anti-clockwise traveling signal sidebands in the Sagnac on
right circulation polarisation can be written as

��CW ∝
√

T ẋdarm(t1) + xN(t2) + xE(t2 + Δt) ,

��CCW ∝ −
√

Rẋdarm(t1) + xE(t2) + xN(t2 + Δt) ,
(9.3)

where Δt is the time delay between the light’s interactions with cavity mirrors in the N
and E cavities. The �elds in the two directions will interfere at the main beam splitter again
resulting as

ẍdarm(t1) ∝ −
√

R��CW +
√

T ��CCW = ẋdarm(t2) − ẋdarm(t1) (9.4)

where R = T = 1
2
, t2 − t1 = 2Δt. Considering the time delay 2Δt is still small compared

with low frequency gravitational wave signal period, acceleration measurements should be
able to be realised based on this con�guration.



9.2. QUANTUM NOISE 123

Figure 9.1: Schematic of Sagnac based circulation polarisation acceleration meter. The measurement
process is described in the main text.

9.2 �antum noise

Again, I start from the I/O relation of the single arm cavity for calculating the quantum
noise spectral density of this con�guration. Then I compare its quantum behaviour with
speed meter and position meter. Since in one arm cavity there are two light travel directions
(clockwise and anticlock wise) and two orthogonal polarisation for each of these directions,
there are four back action e�ects terms. I split the back action terms out from the I/O rela-
tion of one single cavity, e.g I/O relation for the right circulation polarisation and clockwise
direction of cavity E can be written as

brRE = T armrREarRE + T b.arLEarLE + T b.alREalRE + T b.alLEalLE + RrRExE , (9.5)

and where symbol a = (ac , as)T and b = (bc, bs)T represent the input and output �elds of
cavities, respectively. T armrRE , T b.arLE , T b.alREalRE and T b.alLEalLE are the optical transfer matrices
and back action only transfer matrices for input �elds of the corresponding directions and
polarisations, which are indicated by subscripts. R means clock-wise direction, L means
anti-clockwise direction. r means right circulation polarisation, l means left circulation
polarisation. Considering two cavities, two traveling directions and two circulation polar-
isation modes, there should be eight equations for describing the full interferometer I/O
relations.
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The optical transfer matrix and back action only transfer matrix can be written as

T arm = e2i�
[

1 0
− 1

]

,

T b.a. = e2i�
[

0 0
− 0

]

,

(9.6)

where  is the Kimble optomechanical factor [25] for a single cavity de�ned as

 =
2Θ


Ω2(
2 + Ω2)
, (9.7)

and where all the symbols were already de�ned in Chapter. 6. � = arctan
(

Ω



)

is the phase
shift that the light sidebands with frequency Ω acquire after propagating through and then
re�ecting o� the cavity.

The main beam splitter I-O relations can be easily written out, e.g.

arRN =
√

TBSir +
√

RBSpr ,

arLE = −
√

RBSir +
√

TBSpr ,

alRN =
√

TBSil +
√

RBSpl ,

alLE = −
√

RBSil +
√

TBSpl ,

ol =
√

TBSblLN −
√

RBSblRE ,

(9.8)

where symbols i, p represent the dark port and bright port input �elds, symbol o, q represent
the dark port and bright port output �elds. The dark and bright input �elds in p-polarisation
can be written as a linear combination of left and right circulating �elds as

ip = (ir + il)∕
√

2 ,

pp = (pr + pl)∕
√

2 .
(9.9)

The Sagnac inner �eld relations are given by:

alRE = blRN , arRE = brRN ,

alLE = blLE , arLN = brLE .
(9.10)

The acquired Φ phase shift in the polarisation circulating cavity can be represented by a
matrix ℙ,

ir = ℙol, (9.11)
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Figure 9.2: Quantum noise limited sensitivity of three di�erent types of interferometer: polarisation
circulation acceleration meter, Sagnac speed meter and Michelson position meter. The input laser
power of the Michelson position meter is chosen as twice of the polarisation circulation acceleration
meter and Sagnac speed meter, in order to guarantee they have identical circulating power. The
other parameters of the three meters are chosen the same as for the Glasgow SSM experiment. The
solid traces represent the conventional case, the dash traces represent the case of ideal variational
readout.

where ℙ is the rotation matrix:

ℙ =

[

cos(Φ) − sin(Φ)
sin(Φ) cos(Φ)

]

. (9.12)

Finally the full con�guration I-O relation can be derived in the form of

op = or = e2i�acc
[

1 0
−acc 1

]

ip + ei�acc
[

0
√

2acc

]

xdarm
xSQL

(9.13)

And the quantum noise limited sensitivity with the homodyne detection angle � can be
calculated as

S =
x2SQL
2

e−2r +
[

cot � −acc
]2e2r

acc
, (9.14)
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where r represents the frequency independent squeezing strength. This expression can also
be used for speed meter and position meter by replacing acc by the corresponding Kimble
optomechanical factors of speed meter and position meter.

For Michelson position meter, Sagnac speed meter, polarisation circulation speed meter and
polarisation circulation acceleration meter with identical input laser power, cavity length
and dARM mode e�ective test mass, there are the relations

Sag = 4MI sin
2 � ,

P−spe = 2MI sin
2 � ,

P−acc = 2P−spe sin
2 2� ,

(9.15)

where MI is the Kimble optomechanical factor of a Fabry-Pérot Michelson interferometer.
If cot � = , the back action term can be cancelled completely. This technique is called
variational readout [25, 79].

In order to make a fair comparison of the di�erent types of meters, I decided to set them
all to identical circulating power. Again I use as example the parameters of the proof of
concept SSM experiment in the University of Glasgow [57, 69] for the Sagnac speed meter
model. the same input power is for the polarisation circulation acceleration meter, while
doubled input power is for Michelson position meter.

Fig. 9.2 shows the results of my analysis: the solid traces show the quantum noise limited
sensitivity of three types of meters, while the dash line show the quantum noise limited
sensitivity of the corresponding meters employing variational readout. At low frequencies
(below 1000 Hz) the acceleration meter sensitivity follows the same trend as the position
meter, however, it does not bene�t from variational readout. That tells, acceleration meter
can achieve very strong back action noise cancellation in low frequency, however shot noise
raise up because of signal reduction in low frequency.

In Fig. 9.3, the dash-dots line show the quantum noise limited sensitivity of the three
types of interferometers with squeezing injection. By injecting 10dB frequency indepen-
dent squeezing, the acceleration meter gets improved sensitivity in both low frequency and
high frequency, only the intermediate frequency sensitivity which is dominated by radia-
tion pressure noise gets worse. The similar behaviour can be observed for increasing the
laser power.
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Figure 9.3: Quantum noise limited sensitivity of three di�erent types of interferometer: polarisation
circulation acceleration meter, Sagnac speed meter and Michelson position meter. The input laser
power of Michelson position meter is chosen as twice of the polarisation circulation acceleration
meter and Sagnac speed meter guaranteeing they have the identical intra cavity circulating power.
The other parameters of the three meters are chosen as the same as the Glasgow SSM experiment.
The solid traces represent the conventional case, the dash traces represent the case of injecting 10 dB
frequency independent squeezing.

9.3 Summary

In terms of this particular acceleration meter con�guration, we can observe that there are
two frequencies at which the sensitivity touches the standard quantum limit. This results
in better sensitivity of this acceleration meter compared with a Michelson interferometer
below 10000 Hz. Of course, the parameters used in this example give high radiation pressure
noise in the Michelson position meter model, whether this acceleration meter con�guration
with parameters of real gravitational wave detectors can show this superiority signi�cantly
is still worthwhile investigation.

Alternative con�gurations need to be investigated if this particular con�guration is too
complex to be taken as an realistic engineering program. If the superiority of acceleration
meter stated above also holds for a more realistic model, more detailed considerations for
the acceleration meter concept could be developed for the future.
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Chapter 10

Conclusions

The design sensitivities of the current gravitational wave detectors are limited by quantum
noise nearly over the whole detection band. Speed meter is considered to be an option for
the future generation gravitational wave detectors. The Sagnac speed meter proof of con-
cept experiment is currently carried out in Glasgow. We aimed to demonstrate a factor of
3-5 superiority of the quantum radiation pressure noise limited sensitivity from the 100 Hz
to 1000 Hz, compared to an equivalent Michelson interferometer. Since in the Sagnac in-
terferometers, the light �elds traveling in two directions share the same path and always
interfere destructively at the signal port, conventional DC readout is unsuitable. Therefore,
balanced homodyne detection was planned to be implemented in the SSM experiment.

In terms of implementing suspended BHD, Chapter. 3 investigated one practical problem,
i.e. misalignment and mismatch between the separated local oscillator and signal beam. My
analysis provoded a framework allowing to solve arbitrary misalignments or mismatches
and it can be applied to any interferometer con�guration. The results were applied to the
Glasgow proof of concept experiment. One of the main discoveries was that the misalign-
ments between LO and signal on the output path only degrades the amplitude spectral
density of the shot noise limited part of the quantum noise noise sensitivity, while the sen-
sitivity in the back-action noise limited range is not a�ected by misalignments. In addition,
we investigated the mechanism of noise coupling in dynamic misalignments due to beam
jitter, which creates time varying HOMs. Based on the suspension models used in SSM
experiment, we found that the seismically introduced beam jitter noise is well below the
quantum noise level in the experiment in the targeted frequency range of 100-1000 Hz.

In Chapter. 4, I discussed several practical issues in terms of implementing balanced homo-
dyne readout in A+, including derivations of local oscillator stability requirement, several
options of output mode cleaner arrangement, local oscillator backscattering e�ects and
sensing and control for di�erent degrees of freedom in the balanced homodyne readout.
Conservatively, in order to suppress the seismic noise via pure passive isolation systems and
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to guarantee the required LO stability, several triple stage suspensions would be required
for delivering the LO beam towards the BHD beam splitter. We compared the advantages
and disadvantages of various options of the BHD optical layout and we found, considering
the noise requirements imposed by thermal noise of the OMC itself, that placing two OMCs
after the BHD beamsplitter to be the most practical option. We found that the POP option is
in all cases less susceptible compared with BSAR option to LO backscattering noise, leading
a better choice for the delivery of the LO.

It was shown theoretically that an asymmetry of the main beamsplitter can lead to a reduc-
tion of the quantum noise limited sensitivity of the Sagnac speed meter at low frequencies.
This is because the radiation pressure noises created by the input �eld �uctuations from the
laser port couple into the readout port of the interferometer as excess noises. In Chapter. 5,
we proposed an approach to solve this problem by utilising balanced homodyne readout
and choosing a proper local oscillator delivery port. Picking the local oscillator beam from
the re�ection beam at interferometer laser port (the co-moving LO option), or from the di-
rect re�ection o� the main beam splitter’s AR coating (the BSAR LO option), the magnitude
of the transfer function of the laser �uctuations from the pumping port to the readout one
can be signi�cantly reduced. We showed analytically that this cancellation of laser �uctu-
ations stems from the very nature of the BHD scheme that is inherently insensitive to any
common variations of light phase in the LO and signal beam of the BHD driven by input
laser �uctuations. Taking the SSM experiment as an example, at a frequency of 100Hz the
RIN requirement decreases by 3 orders of magnitude, from 4×10−10∕

√

Hz to 4×10−7∕
√

Hz
if the co-moving or BSAR LO option was chosen vs. the conventional direct pick-o� of the
LO beam from the main laser. That means it reduced the RIN requirement from a very
challenging value to one that is easily achievable.

Misalignment is not only a problem in the balanced homodyne readout, but also in the
Sagnac interferometer itself. In Chapter. 6, the e�ect of misalignment onto the quantum
noise limited sensitivity of the Glasgow SSM experiment is calculated. I analysed several
special misalignment conditions separated into the following cases: (1) connection mirrors
misalignment; (2) out-of-phase cavity misalignment; (3) in-phase cavity misalignment; (4)
individual cavity misalignment. We found that the impact of connection mirrors misalign-
ment can be summarised as optical loss between the two cavities. Impacts of cavity out-of-
phase misalignment can be summarised as loss of input power and interferometer output
loss which is equivalent to imperfect photo diode quantum e�ciency. Impacts of cavity in
phase misalignment can be summarised as loss of input power and optical loss between
the two arm cavities. Individual cavity misalignment can be summarised as optical loss
of one cavity. Strategies for the implementation of an auto-alignment scheme in the SSM
experiment were also discussed.

Similar to the Fabry-Perot resonators in the arms of gravitational wave detectors based
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on the Michelson con�guration, in a Sagnac speed meter interferometer, ring cavities are
required. Di�erent from linear cavities, the circulating beams in the ring cavities and the
normal of the input mirror are not on the same line. The backscattering inside the ring cav-
ity can create coupling between two modes circulating in opposite directions. In Chapter. 7,
we analysed the e�ect of backscattering on quantum noise of a ring cavity when conducting
measurement at one output port. Starting from previous work in [1], I developed a more
detailed analysis. The mechanisms of impacts of backscattering were presented in terms
of three levels of backscattering amplitude: weak backscattering (� ≪ 1), critical backscat-
tering (� = 1), strong backscattering (1 < � ≤ 10). The current �ndings of backscattering
e�ects on quantum noise can be explained by two clues: the optical rigidity e�ects due to
the backscattering coupling between circulating modes in two directions onto orthogonal
quadratures; the destructive interference between two dominating �elds originating from
the same input �eld. The former one only exists when there are two identical input beams.
The latter one shows signi�cant e�ects in the critical backscattering case. Again the results
were carried out using the Glasgow SSM as an example.

In addition to the Sagnac interferometer, other more advanced types of speed meter have
been proposed by the community, including one based on the principle of Einstein Podol-
sky Rosen entanglement. In Chapter. 8, I analysed the e�ect of several imperfections on
quantum noise in the EPR speed meter and proved its compatibility with frequency depen-
dent squeezing. As it turned out, the output loss showed the most drastic impact on the
sensitivity at low frequencies. In terms of implementing an EPR speed meter into future
generation gravitational wave detectors, further parameter studies and the comparison be-
tween di�erent types of speed meters are required and such e�orts are currently ongoing.

In Chapter. 9, I proposed an acceleration meter con�guration based on the combination of
the Sagnac speed meter and polarisation circulation speed meter. As it turned out, the accel-
eration meter is shot noise limited in both low frequencies and high frequencies. I observed
that there are two frequencies at which the sensitivity touches the standard quantum limit.
This leads to better sensitivity of this acceleration meter at low frequencies, compared to
Michelson interferometer. In the future, less complex acceleration meter con�gurations
could be investigated.
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Appendix A

Comparison of lossy variational
readout versus speed meter

Variational readout can in principle evade the back action noise by building correlations
between shot noise and radiation pressure noise in the readout process [25, 79]. Speed meter
can also partially cancel the radiation pressure noise by partially cancelling the radiation
pressure force.

Both of them are low frequency back action evasion scheme. With no doubt that the ideal
variational readout scheme is better than speed meter, however, it is more susceptible to
optical loss compared with speed meter in an realistic environment. In this appendix, I
compare the Michelson interferometer employing a variational readout scheme, consider-
ing output loss, with a speed meter, . As we showed in Eq. 9.6, the simple form of the
quantum noise power spectral density of an interferometer can be written as

S =
ℎSQL
2

1 + (cot � −)2


. (A.1)

With out a�ecting the interferometer infrastructure, we can clearly see that, by tuning the
readout angel as following

acot� =  , (A.2)

the minimal value of the spectral density can be achieved. In this process, the back action
noise is completely evaded. Allowing for optical loss modi�es the I/O relation as

o =
√

1 − �

[

e2i�(Ω)
[

1 0
− 1

]

i + ei�(Ω)
[

0
√

2

]

ℎ
ℎSQL

]

+ �n , (A.3)
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Figure A.1: Quantum noise limited strain sensitivities of a Michelson position meter, Michelson
position meter with loss-free variational readout, Michelson position meter with variational readout
featuring 60ppm roundtrip loss and a speed meter. The parameters used for this analysis resemble
the Advanced LIGO design con�guration. A readout angle of pi/2 is chosen for the conventional
advanced LIGO and Sagnac speed meter model.

where � is the coe�cient of loss in power. Thus the resulting power spectral density is [79]

S =
ℎSQL
2

1 + �
1−�

1
sin2 �

+ (cot � −PM∕SM)2

PM∕SM
. (A.4)

Because of the appearance of loss term, �, the optimal angle needs to satisfy cot � = (1 −
�)PM∕SM. Thus the position meter quantum noise spectral density with a lossy variational
readout scheme can be derived as [79]

SLV,PM =
ℎSQL
2
( 1
1 − �

1
PM

+ �PM). (A.5)

Measuring on phase quadrature, the ideal speed meter sensitivity can be calculated as

SID,SM =
ℎSQL
2
( 1
SM

+SM) . (A.6)

When cot � = SM(0), the speed meter is optimised for low frequency sensitivity.

To calculate the sensitivity of the position meter with variational readout and optical losses,
I use the instrument parameters of advanced LIGO and the transmission of the �lter cavity
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ITM, Tf = 0.0012, which is the design value for the implementation of frequency dependent
squeezing in A+. The radiation pressure noise in the advanced LIGO design is fairly low, so
the speed meter with same parameters does not show its superiority. Thus for considering a
Sagnac type speed meter, I choose its e�ective bandwidth as half of the e�ective bandwidth
of the position meter model, which can be achieved by adopting a signal recycling mirror
with an alternative transmissivity.

With comparative instrument parameters, the lossless variational readout position meter
is always much better than a speed meter at low frequencies. However, the sensitivity of
lossy variational readout position meter at low frequencies raise as 1∕f 2 towards DC, thus
there will be a crossing point on a certain frequency for which the lossy variational readout
position meter and the speed meter give exactly the same performance. The relation of
frequency and loss factor at the crossing point is shown in Fig. A.2 and Fig. A.3. The left
y-axis represents the loss factor, the right y-axis presents the equivalent loss coe�cients
of �lter cavity. The calibration relation between the loss factor and the equivalent loss
coe�cients of �lter cavity is [80]

1 − � ≈ �
Tf
. (A.7)

According to Fig. A.1 and Fig. A.2, with only taking the �lter cavity loss into account, i.e.
60 ppm round trip loss, the superiority of lossy variational readout scheme compared with
the speed meter can be observed from 8 Hz to 100 Hz. However, in advanced LIGO, the
current total loss from the sources on the readout chain including output Faraday isolator,
OMC, photodiode and mode matching, etc. is up to 20% [81]. According to Fig. A.1 and
Fig. A.2, with this total loss factor, the lossy variational readout scheme can only present
its superiority compared with the speed meter from 20 Hz to 100 Hz. Even though we can
expect upgrades of the detector performance in terms of output loss, assuming 10% total
loss can be achieved, the lossy variational readout is still only better above 14 Hz. We �nd
the speed meter is more attractive than variational readout with realistic losses.
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Figure A.2: The relation of frequency and loss factor at the crossing point of the sensitivity between
the lossy variational readout position meter and the sensitivity of the speed meter. The left y-axis
presents the loss factor, the right y-axis represents the equivalent loss coe�cients of the �lter cavity.

Figure A.3: The relation of frequency and loss factor at the crossing point of the sensitivity between
lossy variational readout position meter and the sensitivity of low frequency optimised speed meter.
The left y-axis is for loss in power, the right y-axis is for equivalent loss of �lter cavity.



Appendix B

Finesse input file of A+ for balanced
homodyne readout

%%% FTblock header
#------------------------------------------------------------
# An A+ design file originlly made for the BHD workshop
#in October 2018.
# This file is based on the full design aLIGO model and then
# adapted for the new design choices
#-------------------------------------------------------------
# CHANGES
#-------------------------------------------------------------
%%% FTend header

%%% FTblock laser
##########################################################
# Laser and input optics
l L0 125 0.0 0.0 ni
bs jitter 1 0 0 0 ni n0 dump dump

s lmod1 1 n0 n1

# modulators for core interferometer sensing -
#Advanced LIGO, CQG, 2015
# http://iopscience.iop.org/article/10.1088/0264-9381/32/7/074001/
meta#cqg507871s4-8
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# 9MHz (CARM, PRC, SRC loops)
const f1 9099471
const f2 45497355

mod mod1 $f1 0.18 1 pm n1 n2
s lmod2 1 n2 n3

# 45MHz (MICH, SRC loops)
mod mod2 $f2 0.18 1 pm n3 nLaserOut
###########################################################
%%% FTend laser

%%% FTblock IMC
###########################################################
s sIMCin 0 nLaserOut nMC1in

bs1 MC1 6000u 0 0 44.59 nMC1in nMC1refl nMC1trans nMC1fromMC3
s sMC1_MC2 16.24057 nMC1trans nMC2in

bs1 MC2 0 0u 0 0.82 nMC2in nMC2refl nMC2trans dump
s sMC2_MC3 16.24057 nMC2refl nMC3in
attr MC2 Rc 27.24

bs1 MC3 6000u 0 0 44.59 nMC3in nMC3refl nMC3trans nMCreturn_refl
s sMC3substrate 0.0845 $nsilica nMC3trans nMC3ARin
bs2 MC3AR 0 0 0 28.9661 nMC3ARin dump nIMCout dump

s sMC3_MC1 0.465 nMC3refl nMC1fromMC3
############################################################
%%% FTend IMC

%%% FTblock HAM2
############################################################
s sHAM2in 0.4282 nIMCout nIM11

# IM1 a.k.a. SM1
bs1 IM1 0 0 0 53 nIM11 nIM12 dump dump
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s sIM1_IM2 1.2938 nIM12 nIM21

# IM2 a.k.a. PMMT1
bs1 IM2 0 0 0 7 nIM21 nIM22 dump dump
attr IM2 Rc 12.8

s sIM2_FI 0.260 nIM22 nFI1

# Input faraday isolator
dbs FI nFI1 nFI2 nFI3 nREFL

s sFI_IM3 0.910 nFI3 nIM31

# IM3 a.k.a PMMT2
bs1 IM3 0 0 0 7.1 nIM31 nIM32 dump dump
attr IM3 Rc -6.24

s sIM3_IM4 1.210 nIM32 nIM41

# a.k.a SM2
bs1 IM4 0 0 0 45 nIM41 nHAM2out dump dump
##############################################################
%%% FTend HAM2

%%% FTblock PRC
##############################################################
s sPRCin 0.4135 nHAM2out nPRM1

# PRM
# AR surface
m2 PRMAR 0 40u 0 nPRM1 nPRMs1
# Substrate
s sPRMsub1 0.0737 $nsilica nPRMs1 nPRMs2
# HR surface
m1 PRM 0.03 8.5u $phi_PRM nPRMs2 nPRM2
attr PRM Rc 11.009
# Distance between PRM and PR2
s lp1 16.6107 nPRM2 nPR2a
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# PR2
bs1 PR2 250u $Mloss 0 -0.79 nPR2a nPR2b nPOP nAPOP
attr PR2 Rc -4.545
# Distance from PR2 to PR3
s lp2 16.1647 nPR2b nPR3a
# PR3
bs1 PR3 0 $Mloss 0 0.615 nPR3a nPR3b dump dump
attr PR3 Rc 36.027
# Distance from PR3
s lp3 19.5381 nPR3b nPRBS

##############################################################
%%% FTend PRC

%%% FTblock BS
##############################################################
# BS beamsplitter
##------------------------------------------------------------
## BS
## ^
## to IMY |
## | ,’-.
## | + ‘.
## nYBS | ,’ :’
## nPR3b | +i1 +
## ----------------> ,:._ i2 ,’
## from the PRC nPRBS + \ ‘-. + nXBS
## ,’ i3\ ,’ --------------->
## + \ + to IMX
## ,’ i4.’
## ‘._ ..
## ‘._ ,’ |nSRBS
## - |
## |to the SRC
## |
## v
##------------------------------------------------------------
bs1 BS 0.5 $Mloss $phi_BS 45 nPRBS nYBS nBSi1 nBSi3
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s BSsub1 0.0687 $nsilica nBSi1 nBSi2
s BSsub2 0.0687 $nsilica nBSi3 nBSi4
bs2 BSAR1 50u 0 0 -29.195 nBSi2 dump14 nXBS nPOX
bs2 BSAR2 50u 0 0 29.195 nBSi4 dump15 nSRBS dump16

##############################################################
%%% FTend BS

%%% FTblock Yarm
##############################################################
# Distance from beam splitter to Y arm input mirror
s ly1 5.0126 nYBS nITMY1a

lens ITMY_lens $LY_f nITMY1a nITMY1b
s sITMY_th2 0 nITMY1b nITMY1

# Y arm input mirror
m2 ITMYAR 0 20u 0 nITMY1 nITMYs1
s ITMYsub 0.2 $nsilica nITMYs1 nITMYs2
m1 ITMY 0.014 $Mloss $phi_ITMY nITMYs2 nITMY2
attr ITMY Rc -1934

# Y arm length
s LY $Larm nITMY2 nETMY1

# Y arm end mirror
m1 ETMY 5u $Mloss $phi_ETMY nETMY1 nETMYs1
s ETMYsub 0.2 $nsilica nETMYs1 nETMYs2
m2 ETMYAR 0 500u 0 nETMYs2 nPTY
attr ETMY Rc 2245
attr ETMY mass 40
attr ITMY mass 40

##############################################################
%%% FTend Yarm

%%% FTblock Xarm
##############################################################



142 APPENDIX B. FINESSE INPUT FILE OF A+ FOR BALANCED HOMODYNE READOUT

# Distance from beam splitter to X arm input mirror
s lx1 4.993 nXBS nITMX1a

lens ITMX_lens $LX_f nITMX1a nITMX1b
s sITMX_th2 0 nITMX1b nITMX1

# X arm input mirror
m2 ITMXAR 0 20u 0 nITMX1 nITMXs1
s ITMXsub 0.2 $nsilica nITMXs1 nITMXs2
m1 ITMX 0.014 $Mloss $phi_ITMX nITMXs2 nITMX2
attr ITMX Rc -1934

# X arm length
s LX $Larm nITMX2 nETMX1

# X arm end mirror
m1 ETMX 5u $Mloss $phi_ETMX nETMX1 nETMXs1
s ETMXsub 0.2 $nsilica nETMXs1 nETMXs2
m2 ETMXAR 0 500u 0 nETMXs2 nPTX
attr ETMX Rc 2245
attr ETMX mass 40
attr ITMX mass 40

##############################################################
%%% FTend Xarm

%%% FTblock SRC
##############################################################
# Distance to SR3
s ls3 19.3661 nSRBS nSR3b
# SR3
bs1 SR3 0 $Mloss 0 0.785 nSR3b nSR3a dump dump
attr SR3 Rc 35.972841
# Distance from SR3 to SR2
s ls2 15.4435 nSR3a nSR2b
# SR2
bs1 SR2 0 $Mloss 0 -0.87 nSR2b nSR2a dump dump
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attr SR2 Rc -6.406
# Distance from SR2 to SRM
s ls1 15.7586 nSR2a nSRM1
# Signal recycling mirror SRM-08
m1 SRM 0.32 8.7u $phi_SRM nSRM1 nSRMs1
s SRMsub 0.0749 $nsilica nSRMs1 nSRMs2
m2 SRMAR 0 50n 0 nSRMs2 nSRM2
attr SRM Rc -5.6938

s sSRM_FI 0.7278 nSRM2 nFI2a

###############################################################
%%% FTend SRC

%%% FTblock OUTPATH
###############################################################
# Directional beam splitter (ideal Faraday Isolator with 4 ports)
# ----------------------------------------------------------------
# Description of node connections, inputNode --> outputNode
# --
# nFI2a (SRM) --> nFI2c (OMC)
# nFI2b (SQZ) --> nFI2a (SRM)
# nFI2c (OMC) --> nFI2d (Unused)
# nFI2d (Unused) --> nFI2b (SQZ)

dbs FI2 nFI2a nFI2b nFI2c nFI2d

# Distance FI2 --> OM0, length guess
s sFI_OMo 2 nFI2c nOM0a

# Initial steering mirror on HAM6 for AS
bs1 OM0 0.01 0 0 45 nOM0a nOM0b nAS nOM0d

#s sSI2BS 0.8 nOM0b nSIBS1 #####new
#bs SIWaist 1 0 0 0 nSIBS1 nSIBS2 nSIBS3 nSIBS4 ######new

s sOM0_BHDBS 1 nOM0b nBHDBSc # OM0 to BHD BS, length guess
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# BHD BS
bs1 BHDBS 0.5 0 0 0 nBHDBSa nBHDBSb nBHDBSc nBHDBSd

# Path from BHD BS to OMCA
s sBSHD_OMA1 0.01 nBHDBSa nOMA1a
bs1 OMA1 0 0 0 0 nOMA1a nOMA1b dump dump
s sOMA1_OMA2 1.5 nOMA1b nOMA2a
bs1 OMA2 0 0 0 0 nOMA2a nOMA2b dump dump
s sOMA2_OMA3 1 nOMA2b nOMA3a
bs1 OMA3 0 0 0 45 nOMA3a nOMA3b dump dump
s sOMA3_OMC 0.5 nOMA3b nOMCA_ICa

attr OMA1 Rc 1.03729872
attr OMA2 Rc 1.23953474

# Path from BHD BS to OMCB
s sBSHD_OMB1 0.01 nBHDBSd nOMB1a
bs1 OMB1 0 0 0 0 nOMB1a nOMB1b dump dump
s sOMB1_OMB2 1.5 nOMB1b nOMB2a
bs1 OMB2 0 0 0 0 nOMB2a nOMB2b dump dump
s sOMB2_OMB3 1 nOMB2b nOMB3a
bs1 OMB3 0 0 0 45 nOMB3a nOMB3b dump dump
s sOMB3_OMC 0.5 nOMB3b nOMCB_ICa

attr OMB1 Rc 1.03729872
attr OMB2 Rc 1.23953474
###############################################################
%%% FTend OUTPATH

%%% FTblock LO
###############################################################
# ref G1800283
s sPR2_LOM 5 nPOP nLOMa
bs LOM 1 0 0 45 nLOMa nLOMb dump dump
s LOM_LOLens 5 nLOMb nLOLensa
lens LOLens -12.8 nLOLensa nLOLensb
s sL2BS 0.8 nLOLensb nBS1
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bs BHDANG 1 0 0 0 nBS1 nBS2 nBS3 nBS4
s sLOLens_BHDBS 0.2 nBS2 nBHDBSb
###############################################################
%%% FTend LO

%%% FTblock OMCA
###############################################################
# OMCA (as built parameters original OMC: D1300507-v1)
bs1 OMCA_IC 0.0076 10u 0 2.7609 nOMCA_ICa nOMCA_ICb nOMCA_ICc
nOMCA_ICd
# Input Coupler IC (flat mirror)
s sICA_OCA 0.2815 1 nOMCA_ICc nOMCA_OCa
# Distance from IC to OC
bs1 OMCA_OC 0.0075 10u 0 4.004 nOMCA_OCa nOMCA_OCb nBHD1
nOMCA_OCd
# Output Coupler OC (flat mirror)
s sOCA_CMA1 0.2842 1 nOMCA_OCb nOMCA_CM1a
# Output Coupler OC (flat mirror)
bs1 OMCA_CM1 36u 10u 0 4.004 nOMCA_CM1a nOMCA_CM1b nOMCA_CM1c
nOMCA_CM1d
# Curved Mirror CM1
attr OMCA_CM1 Rc 2.57321
s sCMA1_CMA2 0.2815 1 nOMCA_CM1b nOMCA_CM2a
# Curved Mirror CM1
bs1 OMCA_CM2 35.9u 10u 0 4.004 nOMCA_CM2a nOMCA_CM2b nOMCA_CM2c
nOMCA_CM2d
# Curved Mirror CM2
attr OMCA_CM2 Rc 2.57369
s sCMA1_ICA 0.2842 1 nOMCA_CM2b nOMCA_ICd
# Distance from CM2 to IC
###############################################################
%%% FTend OMCA

%%% FTblock OMCB
###############################################################
# OMCB (as built parameters original OMC: D1300507-v1)
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bs1 OMCB_IC 0.0076 10u 0 2.7609 nOMCB_ICa nOMCB_ICb nOMCB_ICc
nOMCB_ICd
# Input Coupler IC (flat mirror)
s sICB_OCB 0.2815 1 nOMCB_ICc nOMCB_OCa
# Distance from IC to OC

bs1 OMCB_OC 0.0075 10u 0 4.004 nOMCB_OCa nOMCB_OCb nBHD2
nOMCB_OCd
# Output Coupler OC (flat mirror)
s sOCB_CMB1 0.2842 1 nOMCB_OCb nOMCB_CM1a
# Output Coupler OC (flat mirror)

bs1 OMCB_CM1 36u 10u 0 4.004 nOMCB_CM1a nOMCB_CM1b nOMCB_CM1c
nOMCB_CM1d
# Curved Mirror CM1
attr OMCB_CM1 Rc 2.57321
s sCMB1_CMB2 0.2815 1 nOMCB_CM1b nOMCB_CM2a
# Curved Mirror CM1
bs1 OMCB_CM2 35.9u 10u 0 4.004 nOMCB_CM2a nOMCB_CM2b nOMCB_CM2c
nOMCB_CM2d
# Curved Mirror CM2
attr OMCB_CM2 Rc 2.57369
s sCMB1_ICB 0.2842 1 nOMCB_CM2b nOMCB_ICd
# Distance from CM2 to IC
###############################################################
%%% FTend OMCB

%%% FTblock cavities
###############################################################
cav cavIMC MC2 nMC2in MC2 nMC2refl
cav cavXARM ITMX nITMX2 ETMX nETMX1
cav cavYARM ITMY nITMY2 ETMY nETMY1
cav cavSRX SRM nSRM1 ITMX nITMXs2
cav cavSRY SRM nSRM1 ITMY nITMYs2
cav cavPRX PRM nPRM2 ITMX nITMXs2
cav cavPRY PRM nPRM2 ITMY nITMYs2
cav cavOMCA OMCA_IC nOMCA_ICc OMCA_IC nOMCA_ICd
cav cavOMCB OMCB_IC nOMCB_ICc OMCB_IC nOMCB_ICd

###############################################################
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%%% FTend cavities

%%% FTblock constants
###############################################################
const nsilica 1.44963098985906
const nTGG 1.954
const nCalcite 1.65846
const Mloss 37.5u
const Larm 3994.4692
const fM 36.397884M
const fP 54.596826M
const LY_f 34.5k # lens ITMY
const LX_f 34.5k # lens ITMX
###############################################################
%%% FTend constants

%%% FTblock tunings
###############################################################
const phi_SRM 90.0
const phi_PRM 0.0
const phi_ITMX 0.0
const phi_ITMY 0.0
const phi_ETMX 0.0
const phi_ETMY 0.0
const phi_BS 0
################################################################
%%% FTend tunings

%%% FTblock commands
################################################################
maxtem 0
#printnoises
#noxaxis

#pd P nETMX1
#qnoised n 1 $fs nETMX1
#fsig noise 1
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fsig sigX ETMX phase 1 0 1
fsig sigY ETMY phase 1 180 1

#hd QNLS 180 nBHD1 nBHD2

xaxis sigX f log 10 5000 999
yaxis abs

#################################################################
%%% FTend commands
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Finesse input file of Glasgow SSM
experiment

%%% FTblock ssm_reference_constants
const Pin 3.4
# twice the nominal power, see header for detailed explanation
const nFS 1.44963 # refractive idx of fused silica

## RF modulation stage
const EOM1.fRF 15M
const EOM1.midx 0.3
const EOM2.fRF 100M
const EOM2.midx 0

## lengths of OptoCad ray segments
const lrs2 250.E-3 # input -> M4
const lrs3 145.981E-3 # M4 -> M5
const lrs4 253.9E-3 # M5 -> M11
const lrs5 75.1016E-3 # M11 -> M6
const lrs7 99.8598E-3 # M6 -> M7
const lrs8 303.5388E-3 # M7 -> M1a
const lrs10 1.3279 # M1a -> M2a
const lrs11 0.2040966 # M2a -> M3a
const lrs12 1.328 # M3a -> M1a
const lrs17 400.0202E-3 # M1b -> M6
const lrs19 1.3281 # M1b -> M2b
const lrs20 0.2037275 # M2b -> M3b

149
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const lrs21 1.3281 # M3b -> M1b
const lrs23 505.5960E-3 # M1a -> M10
const lrs24 326.5940E-3 # M10 -> M9
const lrs25 261.2865E-3 # M9 -> M8
const lrs26 556.0402E-3 # M8 -> M1b

## mirror parameters
const M1a{p}.refl 0.999368
const M1a{p}.trns 0.000632
const M1a{p}.loss 0
const M1a{p}.phi 0
const M1a{p}.aoi 0
const M1a{p}.roc -8
const M1a{p}.mass 0.85m
const M1a{p}.thickness 0.005

const M2a{p}.refl 0.9999966
#const M2a{p}.trns 3.4u
# this is 50percent of the total round-trip loss
const M2a{p}.loss 0
const M2a{p}.phi 0
const M2a{p}.aoi 0
#const M2a{p}.roc 0
const M2a{p}.mass 100m

const M3a{p}.refl 0.9999966
#const M3a{p}.trns 3.4u
# this is 50percent of the total round-trip loss
const M3a{p}.loss 0
const M3a{p}.phi 0
const M3a{p}.aoi 0
#const M3a{p}.roc 0
const M3a{p}.mass 100m

const M1b{p}.refl 0.999368
const M1b{p}.trns 0.000632
const M1b{p}.loss 0
const M1b{p}.phi 0
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const M1b{p}.aoi 0
const M1b{p}.roc -8
const M1b{p}.mass 0.85m
const M1b{p}.thickness 0.005

const M2b{p}.refl 0.9999966
#const M2b{p}.trns 3.4u
# this is 50percent of the total round-trip loss
const M2b{p}.loss 0
const M2b{p}.phi 0
const M2b{p}.aoi 0
#const M2b{p}.roc 0
const M2b{p}.mass 100m

const M3b{p}.refl 0.9999966
#const M3b{p}.trns 3.4u
# this is 50percent of the total round-trip loss
const M3b{p}.loss 0
const M3b{p}.phi 0
const M3b{p}.aoi 0
#const M3b{p}.roc 0
const M3b{p}.mass 100m

const M4.refl 1
const M4.loss 0
const M4.phi 0
const M4.aoi 45
#const M4.roc
#const M4.mass

const M5.refl 1
const M5.loss 0
const M5.phi 0
const M5.aoi 45
#const M5.roc
#const M5.mass

const M6{p}.refl 0.5
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const M6{p}.loss 0
const M6{p}.phi 0
const M6{p}.aoi 29.19505498
#const M6{p}.roc
#const M6{p}.mass

const M7.refl 1
const M7.loss 0
const M7.phi 0
const M7.aoi 49.39870535
#const M7.roc
#const M7.mass

const M8{p}.refl 1
const M8{p}.loss 0
const M8{p}.phi 0
const M8{p}.aoi 43.33405689
#const M8{p}.roc
#const M8{p}.mass

const M9{p}.refl 1
const M9{p}.loss 0
const M9{p}.phi 0
const M9{p}.aoi 5.477377081
const M9{p}.roc 5.13
#const M9{p}.mass

const M10{p}.refl 1
const M10{p}.loss 0
const M10{p}.phi 0
const M10{p}.aoi 42.25439783E0
#const M10{p}.roc
#const M10{p}.mass

const M11.refl 0.5
const M11.loss 0
const M11.phi 0
const M11.aoi 45
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#const M11.roc
#const M11.mass

#########################################################
%%% FTend

%%% FTblock ssm_reference_ifoskeleton

## Beam path from laser source up to main BS
l i1 $Pin 0 n0a
s rs0 0 n0a n0b
mod EOM1 $EOM1.fRF $EOM1.midx 1 pm n0b n0c
s rs00 0 n0c n0d
mod EOM2 $EOM2.fRF $EOM2.midx 1 pm n0d n0
s rs2 $lrs2 n0 nM4w
bs2 M4 $M4.refl $M4.loss $M4.phi $M4.aoi nM4w nM4n
nDump1 nDump2
s rs3 $lrs3 nM4n nM5n
bs2 M5 $M5.refl $M5.loss $M5.phi $M5.aoi nM5w nM5n
nDump3 nDump4
s rs4 $lrs4 nM5w nM11w
bs2 M11 $M11.refl $M11.loss $M11.phi $M11.aoi nM11w nM11n
nM11e nM11s
s rs5 $lrs5 nM11n nM6{p}w

##########################################################
## Central BS
bs2 M6{p} $M6{p}.refl $M6{p}.loss $M6{p}.phi $M6{p}.aoi
nM6{p}w nM6{p}n
nM6{p}e nM6{p}s

##########################################################
## Cavity a
s rs7 $lrs7 nM6{p}e nM7w
bs2 M7 $M7.refl $M7.loss $M7.phi $M7.aoi nM7w nM7n
nDump5 nDump6

s rs8 $lrs8 nM7n nm1a_1w
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m1 m1a_1 1 0 0 nm1a_1w nm1a_1s
s r1a_med_1 $M1a{p}.thickness $nFS nm1a_1s nM1a{p}n

bs1 M1a{p} $M1a{p}.trns $M1a{p}.loss $M1a{p}.phi $M1a{p}.aoi
nM1a{p}w nM1a{p}n nM1a{p}e nM1a{p}s
attr M1a{p} Rc $M1a{p}.roc
attr M1a{p} mass $M1a{p}.mass

s rs12 $lrs12 nM3a{p}n nM1a{p}e
bs2 M3a{p} $M3a{p}.refl $M3a{p}.loss $M3a{p}.phi $M3a{p}.aoi
nM3a{p}w nM3a{p}n nM3a{p}e nM3a{p}s
attr M3a{p} mass $M3a{p}.mass

s rs11 $lrs11 nM2a{p}n nM3a{p}w

bs2 M2a{p} $M2a{p}.refl $M2a{p}.loss $M2a{p}.phi $M2a{p}.aoi
nM2a{p}w nM2a{p}n nDump9 nDump10
#bs2 M2a{p} $M2a{p}.refl $M2a{p}.loss $M2a{p}.phi $M2a{p}.aoi
nM2a{p}w nM2a{p}n nM2a{p}e nM2a{p}s
attr M2a{p} mass $M2a{p}.mass

s rs10 $lrs10 nM1a{p}s nM2a{p}w

cav AC_a M1a{p} nM1a{p}s M1a{p} nM1a{p}e

############################################################
# Path between cavities a and b
s r1a_med_2 $M1a{p}.thickness $nFS nM1a{p}w nm1a_2s
m1 m1a_2 1 0 0 nm1a_2w nm1a_2s
s rs23 $lrs23 nm1a_2w nM10{p}n

bs2 M10{p} $M10{p}.refl $M10{p}.loss $M10{p}.phi $M10{p}.aoi
nM10{p}w nM10{p}n nDump11 nDump12

s rs24 $lrs24 nM10{p}w nM9{p}n

#bs M9{p} 1 0 0 5.477377081 nM9{p}w nM9{p}n nDump13 nDump14
bs2 M9{p} $M9{p}.refl $M9{p}.loss $M9{p}.phi $M9{p}.aoi
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nM9{p}w nM9{p}n nM9{p}e nM9{p}s
# w/o ’dumps’, i.e. vacuum may creep in
attr M9{p} Rc $M9{p}.roc

s rs25 $lrs25 nM9{p}w nM8{p}w

bs2 M8{p} $M8{p}.refl $M8{p}.loss $M8{p}.phi $M8{p}.aoi
nM8{p}w nM8{p}n nDump15 nDump16

s rs26 $lrs26 nM8{p}n nm1b_1w

############################################################
## Cavity b

m1 m1b_1 1 0 0 nm1b_1w nm1b_1s
s r1b_med_1 $M1b{p}.thickness $nFS nm1b_1s nM1b{p}w

#bs2 M1b{p} $M1b{p}.refl $M1b{p}.loss $M1b{p}.phi $M1b{p}.aoi
nM1b{p}w nM1b{p}n nM1b{p}e nM1b{p}s
bs1 M1b{p} $M1b{p}.trns $M1b{p}.loss $M1b{p}.phi $M1b{p}.aoi
nM1b{p}w nM1b{p}n nM1b{p}e nM1b{p}s
attr M1b{p} Rc $M1b{p}.roc
attr M1b{p} mass $M1b{p}.mass

s rs19 $lrs19 nM1b{p}s nM2b{p}w

bs2 M2b{p} $M2b{p}.refl $M2b{p}.loss $M2b{p}.phi $M2b{p}.aoi
nM2b{p}w nM2b{p}n nDump17 nDump18
#bs2 M2b{p} $M2b{p}.refl $M2b{p}.loss $M2b{p}.phi $M2b{p}.aoi
nM2b{p}w nM2b{p}n nM2b{p}e nM2b{p}s
attr M2b{p} mass $M2b{p}.mass

s rs20 $lrs20 nM2b{p}n nM3b{p}w

bs2 M3b{p} $M3b{p}.refl $M3b{p}.loss $M3b{p}.phi $M3b{p}.aoi
nM3b{p}w nM3b{p}n nDump19 nDump20
attr M3b{p} mass $M3b{p}.mass
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s rs21 $lrs21 nM3b{p}n nM1b{p}e

cav AC_b M1b{p} nM1b{p}s M1b{p} nM1b{p}e

s rs17 $lrs17 nM6{p}n nm1b_2w
m1 m1b_2 1 0 0 nm1b_2w nm1b_2s
s r1b_med_2 $M1b{p}.thickness $nFS nm1b_2s nM1b{p}n

############################################################
%%% FTend

# reflected light from central BS: nM11s
# main output of Sagnac: nM6{p}s

# checking cavity parameters
maxtem 3
retrace force
#trace 2

# sagnac output
s out1 1 nM6{p}s nHD1

# sagnac reflection through M11
s out3 1n nM11s nHD2

fsig sig1 M2a{p} 1 0 0.5
fsig sig2 M2b{p} 1 180 0.5

## homodyne with Sagnac reflected port as LO
bs dHD .5 .5 0 0 nHD1 nout1 nout2 nHD2

qhdS _bhd 180 nout1 nout2
scale meter _bhd
beam b1 nHD1
beam b2 nHD2

xaxis sig1 f log 100 100k 999
yaxis log abs



157



158 APPENDIX C. FINESSE INPUT FILE OF GLASGOW SSM EXPERIMENT



159



160 APPENDIX C. FINESSE INPUT FILE OF GLASGOW SSM EXPERIMENT



Bibliography

[1] D. Pascucci. “On optics surface imperfections and their e�ects on the sensitivity of
speed meters”. PhD thesis. University of Glasgow, 2019.

[2] B. Abbott et al. “Observation of Gravitational Waves from a Binary Black Hole Merger”.
In: Phys. Rev. Lett. 116 (6 2016), p. 061102. doi: 10.1103/PhysRevLett.116.
061102.

[3] S. S. Leavey. “Enhancing the sensitivity of future laser-interferometric gravitational
wave detectors”. PhD thesis. University of Glasgow, 2017.

[4] J. B. Camp and N. J. Cornish. “Gravitational wave astronomy”. In: Annu. Rev. Nucl.
Part. Sci. 54 (2004), pp. 525–577.

[5] Y. Chen et al. “Interferometers for Displacement-Noise-Free Gravitational-Wave De-
tection”. In: Phys. Rev. Lett. 97 (15 2006), p. 151103. doi:10.1103/PhysRevLett.
97.151103.

[6] Y. Chen and S. Kawamura. “Displacement- and Timing-Noise-Free Gravitational-
Wave Detection”. In: Phys. Rev. Lett. 96 (23 2006), p. 231102. doi:10.1103/PhysRevLett.
96.231102.

[7] J.-S. Hennig. “Mirror suspensions for the Glasgow Sagnac speed meter”. PhD thesis.
University of Glasgow, 2018.

[8] M. Cerdonio, L. Conti, A. Heidmann, and M. Pinard. “Thermoelastic e�ects at low
temperatures and quantum limits in displacement measurements”. In: Phys. Rev. D
63 (8 2001), p. 082003. doi: 10.1103/PhysRevD.63.082003.

[9] B. J. J. Slagmolen et al. “Direct Measurement of the Spectral Distribution of Thermal
Noise”. In: (2004).

[10] G. D. Domenico, S. Schilt, and P. Thomann. “Simple approach to the relation between
laser frequency noise and laser line shape”. In: Appl. Opt. 49.25 (2010), pp. 4801–4807.
doi: 10.1364/AO.49.004801.

[11] M. Bassan. Advanced Interferometers and the Search for Gravitational Waves. Vol. 404.
Nov. 2013. doi: 10.1007/978-3-319-03792-9.

161

http://dx.doi.org/10.1103/PhysRevLett.116.061102
http://dx.doi.org/10.1103/PhysRevLett.116.061102
http://dx.doi.org/10.1103/PhysRevLett.97.151103
http://dx.doi.org/10.1103/PhysRevLett.97.151103
http://dx.doi.org/10.1103/PhysRevLett.96.231102
http://dx.doi.org/10.1103/PhysRevLett.96.231102
http://dx.doi.org/10.1103/PhysRevD.63.082003
http://dx.doi.org/10.1364/AO.49.004801
http://dx.doi.org/10.1007/978-3-319-03792-9


162 BIBLIOGRAPHY

[12] M. Bassan. “Advanced interferometers and the search for gravitational waves”. In:
Astrophysics and Space Science Library 404 (2014), pp. 275–290.

[13] R. W. P. Drever et al. “Laser phase and frequency stabilization using an optical res-
onator”. In: Applied Physics B 31.2 (1983), pp. 97–105. issn: 1432-0649. doi: 10.
1007/BF00702605.

[14] E. D. Black. “An introduction to Pound–Drever–Hall laser frequency stabilization”.
In: American journal of physics 69.1 (2001), pp. 79–87.

[15] H. B. Callen and T. A. Welton. “Irreversibility and Generalized Noise”. In: Phys. Rev.
83 (), pp. 34–40.

[16] R. F. Greene and H. B. Callen. “On the Formalism of Thermodynamic Fluctuation
Theory”. In: Phys. Rev. 83 (6 1951), pp. 1231–1235. doi: 10.1103/PhysRev.83.
1231.

[17] H. B. Callen and R. F. Greene. “On a Theorem of Irreversible Thermodynamics”. In:
Phys. Rev. 86 (5 1952), pp. 702–710. doi: 10.1103/PhysRev.86.702.

[18] S. Reid and I. W. Martin. “Development of mirror coatings for gravitational wave
detectors”. In: Coatings 6.4 (2016), p. 61.

[19] G. Hammond, S. Hild, and M. Pitkin. “Advanced technologies for future ground-
based, laser-interferometric gravitational wave detectors”. In: Journal of Modern Op-
tics 61.sup1 (Dec. 2014), S10–S45. doi: 10.1080/09500340.2014.920934.

[20] N. A. Robertson et al. “Quadruple suspension design for Advanced LIGO”. In: Clas-
sical and Quantum Gravity 19.15 (2002), pp. 4043–4058. doi: 10.1088/0264-
9381/19/15/311.

[21] D. Coyne. “The A+ Upgrade: Expanding the Advanced LIGO Horizon”. In: LIGO Doc-
ument (2018).

[22] N. Nakagawa, B. A. Auld, E. Gustafson, and M. M. Fejer. “Estimation of thermal noise
in the mirrors of laser interferometric gravitational wave detectors: Two point cor-
relation function”. In: Review of Scienti�c Instruments 68.9 (1997), pp. 3553–3556. doi:
10.1063/1.1148321. eprint: https://doi.org/10.1063/1.
1148321.

[23] C. FABRY. “Theorie et applications d’ une nouvelle methods de spectroscopie interef-
erentielle”. In: Ann. Chim. Ser. 7 16 (1899), pp. 115–144.

[24] V. B. Braginsky, Y. I. Vorontsov, and K. S. Thorne. “Quantum Nondemolition Measure-
ments”. In: Science 209.4456 (1980), pp. 547–557. issn: 0036-8075. doi: 10.1126/
science.209.4456.547.

http://dx.doi.org/10.1007/BF00702605
http://dx.doi.org/10.1007/BF00702605
http://dx.doi.org/10.1103/PhysRev.83.1231
http://dx.doi.org/10.1103/PhysRev.83.1231
http://dx.doi.org/10.1103/PhysRev.86.702
http://dx.doi.org/10.1080/09500340.2014.920934
http://dx.doi.org/10.1088/0264-9381/19/15/311
http://dx.doi.org/10.1088/0264-9381/19/15/311
http://dx.doi.org/10.1063/1.1148321
https://doi.org/10.1063/1.1148321
https://doi.org/10.1063/1.1148321
http://dx.doi.org/10.1126/science.209.4456.547
http://dx.doi.org/10.1126/science.209.4456.547


BIBLIOGRAPHY 163

[25] H. J. Kimble, Y. Levin, A. B. Matsko, K. S. Thorne, and S. P. Vyatchanin. “Conversion
of conventional gravitational-wave interferometers into quantum nondemolition in-
terferometers by modifying their input and/or output optics”. In: Phys. Rev. D 65 (2
2001), p. 022002. doi: 10.1103/PhysRevD.65.022002.

[26] Y. Chen, S. L. Danilishin, F. Y. Khalili, and H. Müller-Ebhardt. “QND measurements
for future gravitational-wave detectors”. In: General Relativity and Gravitation 43.2
(2011), pp. 671–694. issn: 1572-9532. doi: 10.1007/s10714-010-1060-y.

[27] S. L. Danilishin and F. Y. Khalili. “Quantum Measurement Theory in Gravitational-
Wave Detectors”. In: Living Reviews in Relativity 15.5 (2012). doi: 10.1007/lrr-
2012-5.

[28] K. Arai. “Loss map measurement at Caltech 40 m lab”. In: LIGO Document (2015).

[29] C. M. Caves and B. L. Schumaker. “New formalism for two-photon quantum optics. I.
Quadrature phases and squeezed states”. In: Phys. Rev. A 31 (5 1985), pp. 3068–3092.
doi: 10.1103/PhysRevA.31.3068.

[30] B. L. Schumaker and C. M. Caves. “New formalism for two-photon quantum op-
tics. II. Mathematical foundation and compact notation”. In: Phys. Rev. A 31 (5 1985),
pp. 3093–3111. doi: 10.1103/PhysRevA.31.3093.

[31] A. Buonanno and Y. Chen. “Quantum noise in second generation, signal-recycled
laser interferometric gravitational-wave detectors”. In: Phys. Rev. D 64 (4 2001), p. 042006.
doi: 10.1103/PhysRevD.64.042006.

[32] A. Buonanno and Y. Chen. “Scaling law in signal recycled laser-interferometer gravitational-
wave detectors”. In: Phys. Rev. D 67 (6 2003), p. 062002. doi:10.1103/PhysRevD.
67.062002.

[33] J. Mizuno. “Comparison of optical con�gurations for laser-interferometric gravitational-
wave detectors [microform] /”. In: (Feb. 2019).

[34] A. Buonanno and Y. Chen. “Signal recycled laser-interferometer gravitational-wave
detectors as optical springs”. In: Phys. Rev. D 65 (4 2002), p. 042001. doi: 10.1103/
PhysRevD.65.042001.

[35] S Hild et al. “DC-readout of a signal-recycled gravitational wave detector”. In: Clas-
sical and Quantum Gravity 26.5 (2009), p. 055012. doi: 10.1088/0264-9381/
26/5/055012.

[36] T. T. Fricke et al. “DC readout experiment in Enhanced LIGO”. In: Classical and
Quantum Gravity 29.6 (2012), p. 065005. doi: 10.1088/0264- 9381/29/
6/065005.

http://dx.doi.org/10.1103/PhysRevD.65.022002
http://dx.doi.org/10.1007/s10714-010-1060-y
http://dx.doi.org/10.1007/lrr-2012-5
http://dx.doi.org/10.1007/lrr-2012-5
http://dx.doi.org/10.1103/PhysRevA.31.3068
http://dx.doi.org/10.1103/PhysRevA.31.3093
http://dx.doi.org/10.1103/PhysRevD.64.042006
http://dx.doi.org/10.1103/PhysRevD.67.062002
http://dx.doi.org/10.1103/PhysRevD.67.062002
http://dx.doi.org/10.1103/PhysRevD.65.042001
http://dx.doi.org/10.1103/PhysRevD.65.042001
http://dx.doi.org/10.1088/0264-9381/26/5/055012
http://dx.doi.org/10.1088/0264-9381/26/5/055012
http://dx.doi.org/10.1088/0264-9381/29/6/065005
http://dx.doi.org/10.1088/0264-9381/29/6/065005


164 BIBLIOGRAPHY

[37] P. Fritschel, M. Evans, and V. Frolov. “Balanced homodyne readout for quantum lim-
ited gravitational wave detectors”. In: Opt. Express 22.4 (2014), pp. 4224–4234. doi:
10.1364/OE.22.004224.

[38] V. B. Braginsky and F. Y. Khalili. Quantummeasurement. Cambridge University Press,
1995.

[39] F. Khalili et al. “Negative optical inertia for enhancing the sensitivity of future gravitational-
wave detectors”. In: Phys. Rev. D 83 (6 2011), p. 062003. doi:10.1103/PhysRevD.
83.062003.

[40] T. L. S. Collaboration. “A gravitational wave observatory operating beyond the quan-
tum shot-noise limit”. In: Nature Physics 7 (Sept. 2011), 962 EP –.

[41] B Willke et al. “The GEO-HF project”. In: Classical and Quantum Gravity 23.8 (2006),
S207–S214. doi: 10.1088/0264-9381/23/8/s26.

[42] C A�eldt et al. “Advanced techniques in GEO 600”. In: Classical and QuantumGravity
31.22 (2014), p. 224002. doi: 10.1088/0264-9381/31/22/224002.

[43] J. Aasi et al. “Enhanced sensitivity of the LIGO gravitational wave detector by using
squeezed states of light”. In: Nat Photon 7.8 (Aug. 2013), pp. 613–619.

[44] S. L. Danilishin, F. Y. Khalili, and H. Miao. “Advanced quantum techniques for future
gravitational-wave detectors”. In: arXiv preprint arXiv:1903.05223 (2019).

[45] V. Braginsky and F. Khalili. “Gravitational wave antenna with QND speed meter”.
In: Physics Letters A 147.5 (1990), pp. 251 –256. issn: 0375-9601. doi: http://dx.
doi.org/10.1016/0375-9601(90)90442-Q.

[46] P. Purdue and Y. Chen. “Practical speed meter designs for quantum nondemolition
gravitational-wave interferometers”. In: Phys. Rev. D 66 (12 2002), p. 122004. doi:
10.1103/PhysRevD.66.122004.

[47] Y. Chen. “Sagnac interferometer as a speed-meter-type, quantum-nondemolition gravitational-
wave detector”. In: Phys. Rev. D 67 (12 2003), p. 122004. doi:10.1103/PhysRevD.
67.122004.

[48] S. L. Danilishin et al. “A new quantum speed-meter interferometer: measuring speed
to search for intermediate mass black holes”. In: Light: Science & Applications 7.1
(2018), p. 11. doi: 10.1038/s41377-018-0004-2.

[49] T Zhang et al. “Quantum noise cancellation in asymmetric speed metres with bal-
anced homodyne readout”. In: New Journal of Physics 20.10 (2018), p. 103040. doi:
10.1088/1367-2630/aae86e.

http://dx.doi.org/10.1364/OE.22.004224
http://dx.doi.org/10.1103/PhysRevD.83.062003
http://dx.doi.org/10.1103/PhysRevD.83.062003
http://dx.doi.org/10.1088/0264-9381/23/8/s26
http://dx.doi.org/10.1088/0264-9381/31/22/224002
http://dx.doi.org/http://dx.doi.org/10.1016/0375-9601(90)90442-Q
http://dx.doi.org/http://dx.doi.org/10.1016/0375-9601(90)90442-Q
http://dx.doi.org/10.1103/PhysRevD.66.122004
http://dx.doi.org/10.1103/PhysRevD.67.122004
http://dx.doi.org/10.1103/PhysRevD.67.122004
http://dx.doi.org/10.1038/s41377-018-0004-2
http://dx.doi.org/10.1088/1367-2630/aae86e


BIBLIOGRAPHY 165

[50] M Hewitson et al. “Charge measurement and mitigation for the main test masses
of the GEO 600 gravitational wave observatory”. In: Classical and Quantum Gravity
24.24 (2007), pp. 6379–6391. doi: 10.1088/0264-9381/24/24/013.

[51] S. M. Aston et al. “Update on quadruple suspension design for Advanced LIGO”. In:
Classical and Quantum Gravity 29.23 (2012), p. 235004. doi: 10.1088/0264-
9381/29/23/235004.

[52] R. Weiss and D Kelley. “Collection of reports on Barkhausen noise”. In: LIGO Docu-
ment 900061 (2008), p. 2009.

[53] J.-S. Hennig et al. “Demonstration of a switchable damping system to allow low-
noise operation of high-Q low-mass suspension systems”. In: Phys. Rev. D 96 (12
2017), p. 122005. doi: 10.1103/PhysRevD.96.122005.

[54] F.J.RAAB and S.E.WHITCOMB. “Estimation of special optical properties of a trian-
gular ring cavity”. In: LIGO Document (1992).

[55] S. S. Leavey et al. Control of a velocity-sensitive audio-band quantum non-demolition
interferometer. 2016. arXiv: 1603.07756 [gr-qc].

[56] S. Steinlechner et al. “Local-oscillator noise coupling in balanced homodyne readout
for advanced gravitational wave detectors”. In: Phys. Rev. D 92 (7 2015), p. 072009.
doi: 10.1103/PhysRevD.92.072009.

[57] C Gräf et al. “Design of a speed meter interferometer proof-of-principle experiment”.
In: Classical and Quantum Gravity 31.21 (2014), p. 215009.

[58] K. Izumi and D. Sigg. “Advanced LIGO: length sensing and control in a dual recycled
interferometric gravitational wave antenna”. In: Classical and Quantum Gravity 34.1
(2016), p. 015001. doi: 10.1088/0264-9381/34/1/015001.

[59] H. Yu et al. “Prospects for Detecting Gravitational Waves at 5 Hz with Ground-
Based Detectors”. In: Phys. Rev. Lett. 120 (14 2018), p. 141102. doi: 10.1103/
PhysRevLett.120.141102.

[60] L Barsotti, M Evans, and P Fritschel. “Alignment sensing and control in advanced
LIGO”. In: Classical and Quantum Gravity 27.8 (2010), p. 084026. doi: 10.1088/
0264-9381/27/8/084026.

[61] T. Zhang et al. “Plans for the A+ Balanced Homodyne readout”. In: LIGO Document
(2018).

[62] A. Freise and K. A. Strain. “Interferometer Techniques for Gravitational-Wave Detec-
tion”. In: Living Reviews in Relativity 13.1 (2010). doi: 10.1007/lrr-2010-1.

http://dx.doi.org/10.1088/0264-9381/24/24/013
http://dx.doi.org/10.1088/0264-9381/29/23/235004
http://dx.doi.org/10.1088/0264-9381/29/23/235004
http://dx.doi.org/10.1103/PhysRevD.96.122005
http://arxiv.org/abs/1603.07756
http://dx.doi.org/10.1103/PhysRevD.92.072009
http://dx.doi.org/10.1088/0264-9381/34/1/015001
http://dx.doi.org/10.1103/PhysRevLett.120.141102
http://dx.doi.org/10.1103/PhysRevLett.120.141102
http://dx.doi.org/10.1088/0264-9381/27/8/084026
http://dx.doi.org/10.1088/0264-9381/27/8/084026
http://dx.doi.org/10.1007/lrr-2010-1


166 BIBLIOGRAPHY

[63] T. Zhang et al. “E�ects of static and dynamic higher-order optical modes in balanced
homodyne readout for future gravitational waves detectors”. In: Phys. Rev. D 95 (6
2017), p. 062001. doi: 10.1103/PhysRevD.95.062001.

[64] K Arai et al. “Some thoughts on polarization BHD”. In: LIGO Document ().

[65] and J Aasi et al. “Advanced LIGO”. In: Classical and Quantum Gravity 32.7 (2015),
p. 074001. doi: 10.1088/0264-9381/32/7/074001.

[66] Y Hang. “Some studies on the BHD sensing and control for A+”. In: LIGO Document
(2018).

[67] A Freise et al. “Frequency-domain interferometer simulation with higher-order spa-
tial modes”. In: Classical and Quantum Gravity 21.5 (2004), S1067–S1074. doi: 10.
1088/0264-9381/21/5/102.

[68] B. P. Abbott et al. “Binary Black Hole Population Properties Inferred from the First
and Second Observing Runs of Advanced LIGO and Advanced Virgo”. In: The Astro-
physical Journal 882.2 (2019), p. L24. doi: 10.3847/2041-8213/ab3800.

[69] S. L. Danilishin et al. “Quantum noise of non-ideal Sagnac speed meter interferometer
with asymmetries”. In: New Journal of Physics 17.4 (2015), p. 043031.

[70] P. Fritschel et al. “Alignment of an interferometric gravitational wave detector”. In:
Appl. Opt. 37.28 (1998), pp. 6734–6747. doi: 10.1364/AO.37.006734.

[71] F. Bayer-Helms. “Coupling coe�cients of an incident wave and the modes of a spher-
ical optical resonator in the case of mismatching and misalignment”. In: Appl. Opt.
23.9 (1984), pp. 1369–1380. doi: 10.1364/AO.23.001369.

[72] H. Kogelnik. “On the Propagation of Gaussian Beams of Light Through Lenslike Me-
dia Including those with a Loss or Gain Variation”. In:Appl. Opt. 4.12 (1965), pp. 1562–
1569. doi: 10.1364/AO.4.001562.

[73] H. Kogelnik and T. Li. “Laser Beams and Resonators”. In: Appl. Opt. 5.10 (1966),
pp. 1550–1567. doi: 10.1364/AO.5.001550.

[74] D Babusci et al. “Alignment procedure for the VIRGO interferometer: Experimental
results from the Frascati prototype”. In: Physics Letters A 226 (Feb. 1997), pp. 31–40.
doi: 10.1016/S0375-9601(96)00907-3.

[75] M Mantovani and A Freise. “Evaluating mirror alignment systems using the optical
sensing matrix”. In: Journal of Physics: Conference Series 122 (2008), p. 012026. doi:
10.1088/1742-6596/122/1/012026.

http://dx.doi.org/10.1103/PhysRevD.95.062001
http://dx.doi.org/10.1088/0264-9381/32/7/074001
http://dx.doi.org/10.1088/0264-9381/21/5/102
http://dx.doi.org/10.1088/0264-9381/21/5/102
http://dx.doi.org/10.3847/2041-8213/ab3800
http://dx.doi.org/10.1364/AO.37.006734
http://dx.doi.org/10.1364/AO.23.001369
http://dx.doi.org/10.1364/AO.4.001562
http://dx.doi.org/10.1364/AO.5.001550
http://dx.doi.org/10.1016/S0375-9601(96)00907-3
http://dx.doi.org/10.1088/1742-6596/122/1/012026


BIBLIOGRAPHY 167

[76] D Babusci et al. “Alignment procedure for the VIRGO interferometer: experimental
results from the Frascati prototype”. In: Physics Letters A 226.1 (1997), pp. 31 –40.
issn: 0375-9601. doi: https://doi.org/10.1016/S0375-9601(96)
00907-3.

[77] H. Miao. “General quantum constraints on detector noise in continuous linear mea-
surements”. In: Phys. Rev. A 95 (1 2017), p. 012103. doi: 10.1103/PhysRevA.
95.012103.

[78] E. Knyazev, S. Danilishin, S. Hild, and F. Khalili. “Speedmeter scheme for gravitational-
wave detectors based on EPR quantum entanglement”. In: Physics Letters A 382.33
(2018). Special Issue in memory of Professor V.B. Braginsky, pp. 2219 –2225. issn:
0375-9601. doi: https://doi.org/10.1016/j.physleta.2017.10.
009.

[79] Y. Chen, S. L. Danilishin, F. Y. Khalili, and H. Müller-Ebhardt. “QND measurements
for future gravitational-wave detectors”. In: General Relativity and Gravitation 43.2
(2011), pp. 671–694.

[80] H. Miao, H. Yang, R. X. Adhikari, and Y. Chen. “Quantum limits of interferometer
topologies for gravitational radiation detection”. In: Classical and Quantum Gravity
31.16 (2014), p. 165010. doi: 10.1088/0264-9381/31/16/165010.

[81] W. Christopher et al. “Phase Sensitive Ponderomotive Opto-Mechanical Ampli�er”.
In: LIGO Document (2018).

http://dx.doi.org/https://doi.org/10.1016/S0375-9601(96)00907-3
http://dx.doi.org/https://doi.org/10.1016/S0375-9601(96)00907-3
http://dx.doi.org/10.1103/PhysRevA.95.012103
http://dx.doi.org/10.1103/PhysRevA.95.012103
http://dx.doi.org/https://doi.org/10.1016/j.physleta.2017.10.009
http://dx.doi.org/https://doi.org/10.1016/j.physleta.2017.10.009
http://dx.doi.org/10.1088/0264-9381/31/16/165010

	Thesis Coversheet
	2019TengPhD
	Thesis Coversheet
	2019TengPhD
	Abstract
	Revision history
	Licence
	Table of contents
	List of figures
	Acknowledgements
	Preface
	1 Introduction
	1.1 Gravitational waves
	1.2 Noise sources of the ground based interferometer
	1.2.1 Seismic noise
	1.2.2 Laser noise
	1.2.3 Thermal noise
	1.2.4 Quantum noise

	1.3 Fundamental features of gravitational wave detector
	1.3.1 Fabry-Perot cavity
	1.3.2 Power recycling cavity
	1.3.3 Signal recycling cavity
	1.3.4 Homodyne readout

	1.4 Overcoming standard quantum limit
	1.4.1 Standard quantum limit
	1.4.2 Squeezed vacuum injection
	1.4.3 Variational readout
	1.4.4 Speed meter


	2 Sagnac Speed meter proof of concept experiment and laser stabilisation
	2.1 Conceptual design and sensitivity
	2.2 Optical layout
	2.3 Suspensions
	2.4 Vacuum system
	2.5 Linear cavity and frequency stabilisation
	2.5.1 Alignment and mode matching of linear cavity
	2.5.2  Linear cavity locking
	2.5.3 Frequency Stabilisation
	2.5.4 Amplitude Stabilisation

	2.6 Summary

	3 Balanced-homodyne readout with higher optical modes
	4 Balanced-homodyne readout for aLIGO+
	4.1 Requirement for local oscillator path stability
	4.1.1 Output mode cleaner (OMC) stability

	4.2 Local oscillator delivery options
	4.3 Sensing and control
	4.3.1 Degrees of freedom
	4.3.2 BHD readout angle control
	4.3.3 Length of each of the two OMCs
	4.3.4 Alignment between LO and signal beam
	4.3.5 Input alignment of the combined LO and signal beams to OMCs
	4.3.6 Summary


	5 Quantum noise cancellation in asymmetric speed meters with balanced homodyne readout
	6 On the misalignment and alignment of Sagnac speed meter interferometer
	6.1 Sagnac interferometer in plane wave mode profile
	6.2 I/O relations for misaligned optics
	6.3 Static misalignments in Sagnac Interferometer and quantum nosie
	6.4 Autoalignment strategies for dynamic misalignment
	6.5 Summary

	7  Backscattering effects on quantum noise of ring cavities
	7.1 Optical I/O relations of a beamsplitter
	7.2 Opto-mechanical I/O relations of a ring cavity
	7.3 Amplitude quantum noise spectral density in displacement
	7.3.1 Strain sensitivity calibration
	7.3.2 Quantum constraints of 24 pole system
	7.3.3 Summary


	8  Analysis of imperfections of EPR type speed meters and squeezing
	8.1 EPR speed meter conception
	8.2 Impacts of imperfections 
	8.3 Squeezing enhancement
	8.4 Summary

	9 An acceleration meter
	9.1 Acceleration measurement
	9.2 Quantum noise
	9.3 Summary

	10 Conclusions
	A  Comparison of lossy variational readout versus speed meter
	B Finesse input file of A+ for balanced homodyne readout
	C Finesse input file of Glasgow SSM experiment
	Bibliography





