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Abstract

Quantum mechanics, optics and indeed any wave theory exhibits the phenomenon of interference. In this thesis

we present two problems investigating interference due to indistinguishable alternatives and a mostly unrelated

investigation into the free space propagation speed of light pulses in particular spatial modes.

In chapter 1 we introduce the basic properties of the electromagnetic field needed for the subsequent chapters.

In chapter 2 we briefly review optical angular momentum, entanglement and spontaneous parametric down con-

version. In chapter 3 we review the properties of interference using the beam splitter and the Mach-Zehnder

interferometer. In particular we review what happens when one of the paths of the interferometer is marked

in some way so that the particle having traversed it contains information as to which path it went down (to be

followed up in chapter 4) and we review Hong-Ou-Mandel interference at a beam splitter (to be followed up in

chapter 5).

In chapter 4 we present the first of the interference problems. This consists of a nested Mach-Zehnder interfer-

ometer in which each of the free space propagation segments are weakly marked by mirrors vibrating at different

frequencies [1]. The original experiment drew the conclusions that the photons followed disconnected paths. We

partition the description of the light in the interferometer according to the number of paths it contains which-way

information about and reinterpret the results reported in [1] in terms of the interference of paths spatially con-

nected from source to detector.

In chapter 5 we present the second of the interference problems namely Hong-Ou-Mandel interference with par-

ticles possessing two degrees of freedom. We analyse the problem in terms of exchange symmetry for both boson

and fermion pairs and show that the particle statistics at a beam splitter can be controlled for suitably chosen

states. We propose an experimental test of these ideas using orbital angular momentum entangled photons.

In chapter 6 we look at the effect that the transverse spatial structure of the mode that a pulse of light is excited

in has on its group velocity. We show that the resulting group velocity is slower than the speed of light in vacuum

for plane waves and that this reduction in the group velocity is related to the spread in the wave vectors required

to create the transverse spatial structure. We present experimental results of the measurement of this slowing

down using Hong-Ou-Mandel interference.
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Chapter 1

Light

This thesis deals with interference problems involving the propagation of light in free space. The most compli-

cated matter interaction that we deal with is reflection off of a surface. The purpose of this chapter is to introduce

the basic properties of electromagnetic waves and paraxial optics that later chapters will build on. The material

contained in this chapter can be found in standard pedagogical texts. The material in the first part of this chapter

is contained in (§4 of) [3,4], the material in the second part is contained in [5,6] and the third part relies on [7] in

addition to [3,4].

This chapter constitutes a review of the topics used in chapter 5 and is not based on the author’s research. First

the classical concept of optical angular momentum is described. The discussion is restricted to light beams and

within that mostly to the paraxial domain. Then the main properties of the quantum mechanical phenomenon of

entanglement are described before moving onto a semiclassical treatment of spontaneous parametric downcon-

version.

1.1 Maxwell’s and wave equations

The behaviour of light in free space is governed by Maxwell’s equations with no charges or currents

∇·E= 0 (1.1)

∇×E=−∂B
∂t

(1.2)

∇·B= 0 (1.3)

∇×B=µ0ε0
∂E
∂t

(1.4)

where E and B are the electric and magnetic fields respectively and ε0 and µ0 are the permittivity and perme-

ability of free space respectively. The electric and magnetic fields obey the wave equation

1
c2
∂2E
∂t2 −∇2E= 0 (1.5)

where µ0ε0 = 1/c2, with the magnetic field B satisfying an identical equation. These can be arrived at by taking

the curl of equation (1.2) or (1.4) respectively and making use of the divergencelessness (1.1) and (1.3) of the

respective fields. From these fields the Poynting vector can be constructed

S= 1
µ0

E×B (1.6)

which describes the energy flux of the field.

13



14 CHAPTER 1. LIGHT

1.1.1 Potentials

The physical fields E and B can be derived from a vector potential A and a scalar potential Φ. Gauss’s law for

magnetism (1.3) means that the magnetic field can always be expressed as the curl of a vector potential

B=∇×A (1.7)

due to the identity

∇· (∇×A)= 0 (1.8)

that holds for any vector A. By expressing the magnetic field in the Faraday-Lenz law (1.2) in terms of the vector

potential one finds that due to the identity

∇× (∇Φ)= 0 (1.9)

for any scalar Φ, the electric field can be expressed in terms of the vector and scalar potentials as

E=−∇Φ− ∂A
∂t

. (1.10)

By inserting the electric and magnetic fields expressed in terms of the potentials into Gauss’s law (1.1) and the

Ampère-Maxwell law (1.4) and in addition imposing the Lorenz gauge condition

∇·A+ 1
c2
∂Φ

∂t
= 0 (1.11)

one obtains wave equations for the scalar and vector potentials respectively

(
∇2 − 1

c2
∂2

∂t2

)
Φ= 0, (1.12)(

∇2 − 1
c2

∂2

∂t2

)
A= 0. (1.13)

Due to the Lorenz gauge condition (1.11) the scalar and vector potentials for a monochromatic wave are related

by

Φ= c2

iω
∇·A. (1.14)

The vector potential is not purely transverse, as defined by having zero divergence [3, §4.1], but it does give

rise to an electric field, given by (1.10), that satisfies (1.1). The scalar potential compensates for the longitudinal

component of A. This ensures that the electric field as given by (1.10) is divergenceless even for a linearly polarised

plane wave. The general solution to (1.13) is given by

A(r, t)=∑
k

akei(k·r−ωt) +c.c. (1.15)

where c.c. denotes the complex conjugate (the vectorial nature of the quantity is also indicated) ensuring that

the expression describes a real valued vector potential. In the above a fictitious cubic cavity of volume V has

been assumed which allows for a discrete set of k-vectors. When a continuum of wavevectors can be supported

by the physical system under consideration the sum in (1.15) turns into an integral. The component explicitly

represented in (1.15) is the positive frequency component A(+)(r, t). The negative frequency component is obtained

by complex conjugation A(−)(r, t)= [A(+)(r, t)]∗. The magnitude of the wave vector |k|, denoted by k, and frequency

satisfy the relationship

c2k2 =ω2 (1.16)
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everywhere in free space as obtained by applying the wave operator (1.13) to the ansatz (1.15). Due to this

relationship ak in (1.15) need not be additionally parametrised by ω as for any given wave vector k the frequency

ω= ck is uniquely determined. A monochromatic wave

i
∂

∂t
A(+)
ω (r, t)=ωA(+)

ω (r, t) (1.17)

is one for which the summation in (1.15) is only over those k with a given magnitude ω/c. For such a wave the

magnitude of its wave vectors are fixed however they may point in arbitrary directions

Aω(r, t)= e−iωt ∑
|k|=ω/c

akeik·r +c.c. (1.18)

(as allowed by the cavity). When applied to a monochromatic field the wave equation (1.13) with the use of the

relation (1.16) reduces to the Helmholtz equation

(∇2 +k2)
Aω(r, t)= 0. (1.19)

At this point some simplifications are made. As polarisation is not of particular interest in this thesis the vector

potential is assumed to be linearly polarised in an arbitrary direction in the transverse plane A(r) = A(r)ex or y

(propagation is assumed to be in the z-direction). The trivial time dependence e−iωt also to be neglected and the

subscript ω dropped as in the transition to the Helmholtz equation from the wave equation a monochromatic

solution has been assumed.

Solutions corresponding to light beams are of interest. These are solutions that propagate in predominantly one

direction (set to be the +z direction) though some spreading of the light beam is unavoidable. To this end it is

useful to take the ansatz

A(r)=ψ(r)eikz (1.20)

where ψ(r) is some envelope function for the monochromatic wave eikz.

1.2 Paraxial wave equation

The form of the ansatz (1.20) in itself does not yet constitute a transition to paraxial optics [5]. The paraxial

condition is imposed on the ansatz (1.20) by restricting to solutions where the envelope function ψ(r) varies

slowly in the z-direction as quantified by ∣∣∣∣∂2ψ

∂z2

∣∣∣∣¿ ∣∣∣∣k∂ψ∂z

∣∣∣∣ . (1.21)

The paraxial wave equation is then the equation governing the spatial evolution of the envelope function(
∇2
⊥+2ik

∂

∂z

)
ψ(r)= 0 (1.22)

where ∇2
⊥ is the transverse laplacian involving second derivatives only with respect to the x and y coordinates.

This is formally identical to the Schrödinger equation for a free particle in two dimensions(
∇2
⊥+2i

m
ħ
∂

∂t

)
ψ(r⊥, t)= 0. (1.23)

This equivalence will be exploited in chapter 6 where a quantum mechanical formalism will be used (mainly due

to the notational simplicity of braket notation) to make classical optical calculations.
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1.2.1 Paraxial modes

The form of the lowest order solution of the paraxial wave equation may be motivated by looking at the spherical

solution to the Helmholtz equation

A(r)= eik|r|

|r| (1.24)

far away from its source (as embodied by the Fresnel approximation)

|r| ≈ (z− z0)+ (x− x0)2 + (y− y0)2

2(z− z0)
(1.25)

as is done in [5, §16]. The coordinates (x0, y0, z0) describe the source of the spherical wave. As the envelope

function varies slowly in the z-direction longitudinal distances are in general appreciably larger than transverse

distances between two arbitrary points of concern. The spherical wave in the paraxial regime is thus

A(r)= A0

q(z)
exp

(
ik

(x− x0)2 + (y− y0)2

2q(z)
+ ikz

)
(1.26)

where the function

q(z)= z− z0 (1.27)

describes the radius of curvature of the spherical wave. This source point is arbitrary and the coordinate system

may be chosen so that it is (0,0,0). However before doing so let z0 be augmented with an imaginary part, izR , that

will not be set to zero. The quantity zR is known as the Rayleigh range hence the potentially confusing subscript.

The function q(z) in its new complex form

q(z)= z− izR (1.28)

turns the paraxial spherical wave into a Gaussian wave and now describes two features of the wave namely its

radius of curvature as before and the width of the beam. This is usually expressed in terms of its reciprocal

1
q(z)

= 1
R(z)

+ i
2

kw2(z)
. (1.29)

where R(z) is the radius of curvature of the Gaussian beam and w(z) is the beam width. By inserting this into the

paraxial spherical wave it is apparent that the imaginary part of 1/q(z) is responsible for the Gaussian transverse

spatial profile of the beam. Once this is done,

A(r)= A0

z− izR
exp

(
− x2 + y2

w2(z)
+ ik

x2 + y2

2R(z)

)
, (1.30)

the reason for the decomposition of 1/q(z) in (1.29) is apparent. By splitting 1/q(z) into its real and imaginary

components and comparing the result with (1.29) one obtains the forms

R(z)= z
(
1+

( zR

z

)2
)

(1.31) w2(z)= w2
0

(
1+

(
z

zR

)2)
(1.32)

for the radius of curvature and the beam width respectively with w0 = w(0). The radius of curvature diverges

as z 7→ 0 meaning that at the beam waist (z = 0) the Gaussian beam approximates a plane wave with parallel

wavefronts of no curvature. By setting z = 0 in (1.29) the Rayleigh range can be expressed as

zR = kw2
0

2
. (1.33)



1.2. PARAXIAL WAVE EQUATION 17

Figure 1.1: The width and phase fronts of the beam near the beam waist.

There is a z-dependent phase variation of the carrier wave eikz associated with propagation due to the 1/q(z)

factor in (1.30) known as the Gouy phase

−i
|q(z)|
q(z)

= eiζ(z). (1.34)

It takes the value

ζ(z)= arctan
(

z
zR

)
. (1.35)

The Gaussian solution is generally normalised to have unit magnitude when integrated across the transverse

plane

A(r)=
√

2
π

1
w(z)

exp
(
− x2 + y2

w2(z)
+ ik

x2 + y2

2R(z)

)
. (1.36)

1.2.2 Higher order modes

The two major classes of higher order modes arise by solving the paraxial wave equation in Cartesian and cylin-

drical coordinates. Working in a Cartesian coordinate system has the advantage that the ansatz ψnm(x, y, z) =
ψn(x, z)ψm(y, z) reduces the 2+1 dimensional paraxial wave equation to two 1+1 dimensional equations

(
∂2

∂x2 +2ik
∂

∂z

)
ψn(x, z)= 0 (1.37)

with ψm(y, z) satisfying an similar equation in the other transverse coordinate. Two dimensional solutions may

then be constructed by simple multiplication HGnm(x, y, z)=HGn(x, z)HGm(y, z).

HGm,n(x, y, z)=
√

2
π

1

w(z)
p

2n+mn!m!
Hn

(p
2x

w(z)

)
Hm

(p
2y

w(z)

)
exp

(
− x2 + y2

w2(z)
+ ik

x2 + y2

2R(z)
+ i(n+m+1)ζ(z)

)
. (1.38)

The functions Hn(x) are Hermite polynomials. The advantage of working in a cylindrical coordinate system is

that it lends itself to solutions carrying a well defined value of angular momentum (c.f. chapter 4)

LGl p(r,ϕ, z)=
√

2n!
π(l+ p)

1
w(z)

(p
2r

w(z)

)m

L|l|
p

(
2r2

w2(z)

)
exp

(
− r2

w2(z)
+ ik

r2

2R(z)
+ ilϕ+ i(2|l|+ p+1)ζ(z)

)
(1.39)

though these are intrinsically two dimensional solutions. The functions L|l|
p (r) are associated Laguerre polynomi-

als.
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1.3 Quantised amplitudes

The transition to a quantum theory proceeds by replacing the components of the magnetic potential and its

complex conjugate by the annihilation and creation operators

ak 7→
√

ħ
2ε0V ωk

âk a∗
k 7→

√
ħ

2ε0V ωk
â†

k (1.40)

where V is the volume of the fictitious quantisation cavity that has been assumed in (1.15). They are hermitean

conjugates of each other and obey the commutation relation

[âk, â†
l ]= δk,l (1.41)

where δk,l is unity only if all three components of the two vectors k and l are the same otherwise it is zero. The

positive frequency part of the potential becomes

Â(+)(r, t)=
√

ħ
2ε0V

∑
k

1p
ωk

âkei(k·r−ωk t) (1.42)

(we stay in the scalar theory adopted for paraxial optics). In the quantum theory the negative frequency compo-

nent is related to the positive frequency component by Hermitian conjugation Â(−)(r, t) = [Â(+)(r, t)]†. The scalar

positive frequency electric and magnetic fields are in turn described by the operators

Ê(+)(r, t)= i

√
ħ

2ε0V

∑
k

p
ωk âkei(k·r−ωk t), B̂(+)(r, t)= i

√
ħ

2ε0c2V

∑
k

p
ωk âkei(k·r−ωk t). (1.43)

1.3.1 Continuum treatment

In the case of unidirectional continuum modes instead of a quantisation volume a quantisation area A is taken [7].

A unique propagation direction is typically found in optical experiments so that ak can be represented in terms

of frequency instead a(ω) with the commutation relations becoming

[â(ω), â†(ω′)]= δ(ω−ω′). (1.44)

Correspondingly the summation over k can replaced with integration over ω/c.

Â(+)
mn(z, t)=

√
ħ

4πε0A c

∫ +∞

0

1p
ω

âmn(ω)eiω(z/c−t)dω (1.45)

with the corresponding electric and magnetic field operators

Ê(+)
mn(z, t)= i

√
ħ

4πε0A c

∫ +∞

0

p
ωâmn(ω)eiω(z/c−t)dω, B̂(+)

mn(z, t)= i

√
ħ

4πε0A c3

∫ +∞

0

p
ωâmn(ω)eiω(z/c−t)dω (1.46)

where âmn(ω) are annihilation operators for the spatial mode labelled by n and m. The full description involving

the transverse spatial profile is then

Â(+)(r, t)= ∑
mn

ψmn(r)Â(+)
mn(z, t) (1.47)

where ψnm(r) are a set of orthonormal modes.
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1.3.2 Narrow bandwidth approximation

Quantum optical experiments typically deal with pulses or at the very least are performed over a finite amount

of time meaning that there is necessarily a spread of frequencies involved in their description straying from the

assumption of monochromaticity. However in general the narrow bandwidth assumption is valid in these cases

where the frequency spectrum

exp
(
− (ω−ω0)2

σ2

)
(1.48)

is such that the bandwidth is much smaller than the central frequency of the experiment

σ¿ω0. (1.49)

One may extend the integration range to all negative frequencies so that the electric field can be rewritten as

Ê(+)
mn(r, t)= i

√
ħω0

4πε0A c
âmn

(
t− z

c

)
(1.50)

where ânm(t) is the Fourier transform of the annihilation operator∫ +∞

−∞
âmn(ω)e−iωtdω. (1.51)

Under these conditions the longitudinal component of the Poynting vector given in (1.6) takes the form

Ŝ(x, y, z, t)=ħω0

+∞∑
m,n,m′,n′=0

ψ∗
mn(x, y, z)ψm′n′ (x, y, z)â†

mn

(
t− z

c

)
âm′n′

(
t− z

c

)
(1.52)

which when integrated over the transverse plane givesÏ ∞

x,y=−∞
Ŝ(x, y, z, t)dxdy=ħω0

∞∑
m,n=0

a†
mn

(
t− z

c

)
âmn

(
t− z

c

)
. (1.53)

This corresponds to the energy per unit time flowing through the transverse plane at z.



20 CHAPTER 1. LIGHT



Chapter 2

Angular momentum and spontaneous
parametric down conversion

This chapter constitutes a review of the topics used in chapter 5 and is not based on the author’s research. First

the classical concept of optical angular momentum is described. The discussion is restricted to light beams and

within that mostly to the paraxial domain. Then the main properties of the quantum mechanical phenomenon of

entanglement are described before moving onto a semiclassical treatment of spontaneous parametric downcon-

version.

2.1 Optical angular momentum

Light has associated with it a momentum density described by the quantity

p= ε0

2
(
E∗×B+E×B∗)

(2.1)

where E and B are the complex electric and magnetic fields in free space respectively. The above momentum

density integrated over a volume of the beam gives the momentum P carried by that volume of the beam. Any

light beam necessarily possesses angular momentum density about any point not on the beam axis

j= r×p (2.2)

where r is measured from the point of interest. The angular momentum J obtained from (2.2) by integration over

a volume is orthogonal to the direction of propagation of the beam. It is a recent realisation however that light

beams can carry angular momentum in their direction of propagation [34] due to the momentum density twisting

around the beam axis, heuristically speaking. Note that locally this angular momentum is everywhere orthogonal

to the Poynting vector but due to the rotational symmetry of such beams each of these quantities integrated over

a volume have dominant components along the direction of propagation and some radial component that need not

be comparable in magnitude to the former.

The optical angular momentum can be separated into spin and orbital components which are themselves not true

angular momenta [35, 36]. The spin component generates rotations of the polarisation but not the spatial distri-

bution and conversely the the orbital component generates rotations of the spatial distribution of light but not its

polarisation [37]. The angular momentum density obtained from (2.1) and (2.2) is in general subtly problematic

and not the most natural way in which it can be expressed in that it is not the form one obtains from applying

21
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Nöther’s theorem to rotations of an electromagnetic field [37] but it does give the correct integrated quantities.

In the following chapter angular momentum of photons will be used as a degree of freedom in particular due to

the large state space it provides. We shall be interested in extending some results known for polarisation to this

domain. For this reason the spin component, which can take only the values ±ħ is not of particular interest hence

in this review we focus on the orbital component of the angular momentum of light.

The required geometry for orbital angular momentum carrying beams is a helical phase structure eilφ where φ is

the azimuthal coordinate and l is an integer which is in principle unbounded [34, 38]. The angular momentum

number l has to be an integer because azimuthal positions differing by integer multiples of 2π (at any given

radius) represent the same point in space and thus must be assigned the same phase. For an l = 1 the surface

of constant phase is the helicoid obtained by taking the half real line (from r = 0 to r →∞) and simultaneously

translating it along and rotating it about the z-axis. For a general l the surface of constant phase are l intertwined

such helicoids. For example for l = 2 the surface of constant phase when truncated at a radius r is the surface

bounded by a double helix. The phase at r = 0 is not uniquely undefined so the amplitude of a helically phased

beam must go to zero at the phase singularity so that the undefined phase has no physical consequence [38]. Note

however that a dark spot in a beam does not automatically imply a helical phase structure.

2.1.1 Laguerre-Gaussian beams

Historically light has been established to carry angular momentum via the study of Laguerre-Gaussian beams

[34]. For a cylindrically symmetric paraxial beam with spatial profile v(r)eilϕ it can be shown [34, 39] that the

momentum density as given by the Poynting vector takes the form

p(r,ϕ, z)=ωε0

(
−Im

(
v∗
∂v
∂r

)
er + l

r
|v|2eϕ+k|v|2ez

)
(2.3)

where er,eϕ,ez are the unit vectors in the r,ϕ, z directions. It has been shown in the original work [34] that the

integrated angular momentum to integrated energy ratio for a Laguerre-Gaussian light beam is

ħl
ħω (2.4)

where it has been put into a suggestive form by the superfluous use of ħ. In this form this is to be interpreted as

a single photon of energy ħω in an lth order Laguerre-Gaussian mode carries ħl of angular momentum.

2.1.2 Bessel beams

Bessel beams

ul(r,ϕ, z)= Jl(
√

k2 −κ2r)eiκzeilϕ, (2.5)

where Jl(x) are lth order Bessel functions of the first kind [40], arise naturally from solving the full Helmholtz

equation (1.19) in cylindrical coordinates. In a plane wave decomposition of a zeroth order Bessel beam all of the

wave vectors lie on a cone parametrised by a single angle which results in an on axis bright spot. Higher order

Bessel beams have a dark spot on axis as must be the case due to the undefined phase there. Bessel beams are

non-paraxial beams that have a well defined value of angular momentum.

2.1.3 Experimental demonstration of optical angular momentum

It has been shown that an absorptive particle trapped in the centre of a Laguerre-Gaussian mode can be made

to rotate [41]. It has also been shown for such trapped particles that by controlling the polarisation of the beam
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the spin angular momentum can be made to add or to subtract from the rotation induced by the orbital angular

momentum depending on whether the spin and orbital angular momenta point in the same or opposite directions

confirming their mechanical equivalence [42, 43]. Beyond this the difference between spin and orbital angular

momenta has also been demonstrated by trapping particles in the annulus of a Laguerre-Gaussian mode and

transporting them along it thereby making the particles orbit a point external to them [44]. This is possible only

for orbital angular momentum as spin angular momentum induces always rotation about the particles own axis.

2.2 Entanglement

In order to introduce the features of entanglement it is sufficient to consider qubits (2 dimensional quantum

systems) in the computational basis |0〉, |1〉. The defining features of entanglement remain true for higher dimen-

sional states. Superpositions of the computational basis that lie in the x-z plane of the Bloch sphere [45, §2.4] at

an angle ξ to the z-axis will be denoted by

|ξ〉 = cos
(
ξ

2

)
|0〉+sin

(
ξ

2

)
|1〉

|ξ⊥〉 =−sin
(
ξ

2

)
|0〉+cos

(
ξ

2

)
|1〉

(2.6)

special cases of which are |±〉 for ξ=π/2.

An entangled state is defined negatively to be a state that is not a product state [45, §2.5]. A product state is a

state that can be expressed as the tensor product of two states. For example the composite system composed of

system A described by the state ψ0|0〉+ψ1|1〉 and of system B described by the state η0|0〉+η1|1〉 is described by

the state

ψ0η0|00〉+ψ0η1|01〉+ψ1η0|10〉+ψ1η1|11〉 (2.7)

where the shorthand |ψ〉|η〉 = |ψη〉 for tensor products of states has been employed. Any state

κ00|00〉+κ01|01〉+κ10|10〉+κ11|00〉 (2.8)

where a consistent decomposition κi j = ψiη j is not possible in any basis is an entangled state. Entanglement

encodes correlations between separated systems at the amplitude level rather than at the level of probabilities

[46]. As a result in some cases entanglement can give rise to correlations stronger than is classically realisable.

These are the famous violations of Bell’s inequalities [47–51].

2.2.1 Bell states

The simplest (and possibly most notable) set of entangled states are the Bell states

|Ψ±〉 = |01〉± |10〉p
2

, |Φ±〉 = |00〉± |11〉p
2

(2.9)

They form an orthonormal basis for a two-qubit system and are said to be maximally entangled, that is any

protocol requiring entanglement works better (with higher probability of success) with (2.9) than with entangled

states consisting of unbalanced superpositions.

Consider |Φ+〉 re-expressed in terms of the states |ξ〉, |ξ⊥〉 of (2.6) in the x-z plane of the Bloch sphere

|Φ+〉 = |ξξ〉+ |ξ⊥ξ⊥〉p
2

. (2.10)
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Alice can make a measurement on her qubit in any direction in the x-y plane and the state of Bob’s qubit collapses

to the same state that Alice obtained as a result of the measurement. This apparent spooky action at a distance
[52] is not as omnipotent a property however as it may seem at first sight. For example without a classical

communication channel between them Alice and Bob cannot send signals to each other using this property alone

[53]. Bob does not know the state of his qubit without Alice communicating the result of her measurement to him

because Alice could obtain either of the orthogonal outcomes with equal probability. Both before and after Alice’s

measurement the best Bob can say about his qubit is that it is in the maximally mixed state [45, §5]

1
2
|ξ〉〈ξ|+ 1

2
|ξ⊥〉〈ξ⊥|. (2.11)

To illustrate the non-classical correlations possible consider the following game [54]. Alice and Bob are isolated

from each other, they each flip a coin and for each outcome, heads (H) or tails (T), they respond with a value ±1.

The victory condition of the game is for them to give the same response for the coin flip results HH, HT, TH but

the opposite response for the coin flip outcome TT. Any strategy using classical means can win this game at most

3/4 of the time.

Now suppose they share many copies of a pair of qubits (a copy for each time they play the game) in the |Φ+〉AB

state and they each make measurements on their respective qubits. They each make a measurement in one

of two basis determined by the coin flip. Alice measures along the ±aH ,±aT directions (at angles αH = 0 and

αV = π/2 to the z-axis on the Bloch sphere respectively) and Bob measures along the ±bH ,±bT directions (at

angles βH =π/4 and βT =−π/4 to the z-axis on the Bloch sphere respectively) as illustrated in figure 2.1. As Bob’s

state collapses conditionally on Alice’s measurement to her measurement outcome it is reasonable to represent

both their measurements on the same Bloch sphere.

When Alice measures in the ±a on the Bloch sphere she can obtain the results a or its antipodal vector −a as

Figure 2.1: Left: The measurement basis used by Alice and Bob on the Bloch sphere. The angle between any
neighbouring pair of arrows is π/4. The arrow which is labelled corresponds to the +1 outcome and its antipodal
arrow corresponds to the −1 outcome. Right: The relationship of the angle subtended by a and b to the angle
subtended by −a and b. The angles subtended by −a and −b and by a and −b are the same as that of the former
two by symmetry.

results corresponding to the +1 and −1 outcomes of the measurement respectively. If Alice gets a measurement

outcome corresponding to some Bloch vector a then we know from (2.10) that the Bloch vector of Bob’s qubit is

also along a. If Bob makes a measurement in some other basis then the probability that his outcome is that

corresponding to some Bloch vector b is given by

1+a ·b
2

= cos2
(
ξab
2

)
(2.12)
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where ξab is the angle subtended by the vectors a and b and use has been made of the fact that a and b are

both unit vectors. However one must bear in mind that Alice obtains this result (or any other in the x− y plane

according to (2.10)) with probability 1/2. Thus the joint probability that Alice obtains the outcome corresponding

to Bloch vector a and Bob obtains the outcome corresponding to Bloch vector b is

Pr(a,b)=Pr(b | a)Pr(a)=Pr(a |b)Pr(b)= 1
2

cos2
(
ξab
2

)
. (2.13)

As there is no information communicated between Alice and Bob by measurement the time ordering of their

measurements in the above argument can be reversed with no observable consequences. There are two ways in

which they can obtain the same result

Pr(same)=Pr(a,b)+Pr(−a,−b)= cos2
(
ξab
2

)
. (2.14)

The case for opposite results consists of replacing either a (or b) by −a (or −b) in (2.12). Note however that in

that case the angle used on the right hand side is ξ−ab = ξa−b =π−ξab (c.f. figure 2.1) giving the result sin2 (ξab/2)
when re-expressed in terms of the same angle as is used in (2.12) so that the probabilities of the two orthogonal

outcomes sum to unity. In order to win the game Alice and Bob need to give the same answer in three of the cases

and the opposite answer in one of the cases

Pr(win)=Pr(same | HH)Pr(HH)+Pr(same | HT)Pr(HT)

+Pr(same | TH)Pr(TH)+Pr(opposite | TT)Pr(TT) .
(2.15)

Each case occurs with an equal probability of 1/4. All of the possible outcomes satisfying the victory conditions

of the game are enumerated in figure 2.2. For each coin flip outcome they can give a winning answer cos2 (π/8) of

the time. Thus by (2.15) they win the game with a probability of

Pr(win)= cos2 (π/8)≈ 85% (2.16)

outperforming the classically possible 75%.

Figure 2.2: Alice’s and Bob’s Bloch vectors corresponding to the outcomes satisfying the rules of the game for each
of the coin flip results. In each case their Bloch vectors subtend an angle of π/8.
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2.2.2 Partial Bell state analysis

To illustrate the new possibilities afforded by the correlation properties of Bell states and their measurement

consider quantum teleportation first proposed by Bennett et al. [55]. Suppose Alice and Bob share an entangled

pair of qubits |Ψ−〉AB and Alice wishes to send a qubit in some unknown state |ψ〉A′ to Bob. She can do this

by performing a Bell state measurement on the unknown qubit and her half of the entangled qubit pair and

communicating the result of the measurement to Bob. The classical communication is required as only in one of

the four cases does Bob’s qubit become the unknown qubit |ψ〉 however in the other three cases Bob’s qubit is only

a local Pauli operation {σ̂x, σ̂y, σ̂z} away from the original qubit |ψ〉. This can be most easily shown following [55]

by re-expressing the state |ψ〉A′ |Ψ−〉AB in terms of Bell states of the A′A qubit pair rather than of the AB qubit

pair

|ψ〉A′ ⊗|Ψ−〉AB =−1
2

{
i|Φ+〉A′A ⊗ σ̂y|ψ〉B −|Φ−〉A′A ⊗ σ̂x|ψ〉B +|Ψ+〉A′A ⊗ σ̂z|ψ〉B +|Ψ−〉A′A ⊗|ψ〉B

}
. (2.17)

where tensor products have been explicitly left in to aid the eye in separating the systems. The Pauli operators

effect rather simple transformations on the computational basis states

σ̂z :

{
|0〉 7→ |0〉
|1〉 7→ −|1〉 σ̂x :

{
|0〉 7→ |1〉
|1〉 7→ |0〉 σ̂y :

{
|0〉 7→ i|1〉
|1〉 7→ −i|0〉 (2.18)

Then it is immediately obvious from the form of (2.17) that Alice obtains any four of the Bell states with probability

1/4. In each of these cases Bob’s qubit collapses to a Pauli operator times the original state to be teleported. As

each of the Pauli operators squares to the identity, σ̂2
x,y,z =1, this mismatch with the original state can be undone

by applying the appropriate Pauli operator.

In order to be able to do this Alice and Bob must share an entangled qubit to begin with. In general, as illustrated

by this example, entanglement is a resource for quantum computational protocols. The need for Bell state analysis

in this protocol is manifest. The first experimental realisation of this by Bouwmeester et al. [56] has been with

photon polarisation states. Optical angular momentum provides a means of realising entanglement in a larger

state space. This motivates its study.

2.3 Spontaneous parametric down conversion

Parametric downconversion is a nonlinear effect arising due to second order nonlinear susceptibility of noncen-

trosymmetric media [57, §1]. In parametric down conversion a pump photon of frequency ωp is absorbed into a

virtual energy level, whose lifetime is restricted by the Heisenberg uncertainty relation, which then emits two

photons (signal and idler) of lower frequencies ωs,ωi [57, §1]. It is true for all three-wave mixing phenomena that

energy and in the case of a crystal much wider than the laser beam transverse momentum are conserved within

the electromagnetic field

ωp =ωs +ωi (2.19)

p⊥
p = p⊥

s + p⊥
i . (2.20)

Spontaneous parametric down conversion comes in two types known simply as I and II [58, §21.2]. Type I down

conversion creates a pair of photons of the same polarisation whereas type II downconversion creates photons

of orthogonal polarisation. Due to momentum conservation in the transverse plane the photons emerge with

opposite transverse momenta but there is no preferred direction along which the photon pair should emerge.



2.3. SPONTANEOUS PARAMETRIC DOWN CONVERSION 27

Hence there is a cone of possible locations where a photon may be detected. Due to the different refractive indices

experienced by the two polarisation modes the cones along which the two photons are created separate in type

II down conversion (c.f. figure 2.3). When photons are captured from the region where the two cones overlap

there is no way to know which photon is horizontally polarised and which one is vertically polarised resulting

in a polarisation entangled state [59]. However for the purposes of the following chapter we are interested in

type I down conversion. This leads to photon pairs that differ in only their orbital angular momentum value and

transverse position.

Figure 2.3: Type I (left) and type II (right:) parametric downconversion geometries. In both cases the angle
defining the cone is greatly exaggerated. The block represents the nonlinear crystal, the line perpendicular to the
block represents the pump beam and the two cones represent the possible directions in which the signal and idler
photons are produced.

2.3.1 Phase matching

The interaction Hamiltonian for spontaneous parametric down conversion must have a term â†
sâ†

i âp that cor-

respond to the absorption of a pump photon and the emission of a signal and an idler photon. To maintain

Hermitianity this must be complemented by its adjoint [17, §22.4]. Once the signal and idler fields have been

generated difference frequency generation also takes place which leads to amplification of the fields. The ampli-

fication they undergo in the time interval while they traverse the crystal is assumed to be sufficiently small that

no significant drain on the pump beam occurs. Thus the pump beam in the interaction can be treated classically

and â†
p can be replaced by a scalar amplitude αp to give [17, §22.4]

ĤI ∝ 1
V

∫
V
χ(2)ei

(
k(p)−k(s)−k(i))·rαp(k(p))â†(k(s))â†(k(i))dr+ ĥ.c. (2.21)

where V is the volume of the crystal of dimensions Lx,L y,Lz centered at the origin, χ(2) is a scalar second order

susceptibility and ĥ.c. denotes the hermitean conjugate. To illustrate the phase matching criterion it is possible

to consider only one signal and one idler mode and follow a similar reasoning to the perturbative multimode

treatments of [17, 60, 61]. This proceeds by writing down the Hamiltonian and finding the state for a short

interaction time by a first order expansion of the time evolution operator in the interaction picture. Thus the

starting point is the interaction Hamiltonian

ĤI ∝ 1
V
χ(2) ∏

j=x,y,z
sinc

 k(p)
j −k(s)

j −k(i)
j

2
L j

αp(k(p))â†(k(s))â†(k(i))dr+ ĥ.c. (2.22)



28 CHAPTER 2. ANGULAR MOMENTUM AND SPONTANEOUS PARAMETRIC DOWN CONVERSION

where sinc(x) = sin(x)/x. The perturbative approach to finding the downconverted biphoton state following [17,

§22.4] proceeds by

|ψ(t)〉 = e−
i
ħ

∫ t
0 ĤI dt′ |ψ(0)〉 ≈

(
1− i

ħ
∫ t

0
ĤIdt′

)
|ψ(0)〉. (2.23)

Now for illustrating the phase matching condition a lot of the details can be neglected here as the main concern is

how the state depends on the wave vectors of the signal and idler photons. From the above equations (2.21) and

(2.23) it is clear the amplitude of detecting a photon pair in the â†(k(s)) and â†(k(i)) modes has its k dependence

governed by

ψ
(
k(s),k(i)

)
∝ ∏

j=x,y,z
sinc

 k(p)
j −k(s)

j −k(i)
j

2
L j

 . (2.24)

The quantity ∆k j = k(p)
j −k(s)

j −k(i)
j is the phase mismatch in the j = x, y, z direction.

Longitudinal Considering only the z-component of (2.24) one obtains information about the efficiency of the

process related to how closely perfect phase matching was achieved [62, §2]. It shows that the probability of the

emission process is maximised at ∆kz = 0 and drops off rapidly, periodically dropping to zero whenever the phase

mismatch is an integer multiple of π. We are working under the assumption that the crystal is thin (typically

1-3mm [63,64]).

Transverse Of the transverse components something different can be concluded due to the geometry of the

process. Typically the width of the crystal in both transverse directions is much larger than the beam waists of

the pump and downconverted beams. The system can be said to have translational symmetry in the transverse

plane. This implies conservation of momentum in the transverse plane. This limit of the amplitude (2.24) can be

studied by taking the limit

lim
L j′→∞

sinc
(L j′∆k j′

2

)
→ δ

(
∆k′

j

)
(2.25)

where the index j′ only takes the values x, y corresponding to the transverse directions. Noting that the pump

beam defines the optic axis and the transverse plane, k(p) has no component in the transverse plane and the

transverse phase mismatch reduces to ∆k j′ = k(s)
j′ + k(i)

j′ . Hence the transverse amplitude of detection can be well

approximated by

ψ⊥
(
k(s)

x ,k(s)
y ,k(i)

x ,k(i)
y

)
∝ δ

(
k(s)

x +k(i)
x

)
δ

(
k(s)

y +k(i)
y

)
(2.26)

and using this state it can be shown that the transverse momentum conservation in SPDCspontaneous parametric

downconversion implies entanglement in the orbital angular momentum of the biphotons [65].

2.3.2 Angular momentum conservation and entanglement

The entanglement of optical angular momentum modes arises quite naturally in spontaneous parametric down

conversion as a result of transverse momentum conservation. To illustrate that (2.26) leads to angular momen-

tum entanglement the simple argument of [66, §8], which we follow here is sufficient. Since the argument only

involves applying a sequence of Fourier transformations it shows clearly that transverse phase matching implies

immediately angular momentum entanglement. The first step is to convert (2.26) into position representation by

the usual Fourier transform

ψ⊥
(
x(s), y(s), x(i), y(i)

)
∝ δ

(
x(i) − x(s)

)
δ

(
y(i) − y(s)

)
. (2.27)
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When changed to polar coordinates this expression involves a periodic delta function, δ
(
ϕ(i) −ϕ(s)) in the az-

imuthal argument as angular positions differing by 2π are indistinguishable. Analogously to the Fourier trans-

form of the usual Dirac delta, the periodic Dirac delta has a Fourier series representation

δ2π

(
ϕ(i) −ϕ(s)

)
= 1

2π

∞∑
l=−∞

eil
(
ϕ(i)−ϕ(s))

(2.28)

which is readily recognised as carrying the characteristic phase dependence of angular momentum states

1
2π

∑
l=−∞

|l〉i|− l〉s. (2.29)

The emitted photons can be emitted in any pair of complimentary directions [61]. By the rotational invariance

we can expect we expect angular momentum to be conserved. Hence for a pump beam of zero angular momentum

the signal and idler photons must have angular momenta opposite in value ls =−l i. This is verified in expression

(2.29). This also appears to be the case observed in experiment by [67].

This result that angular momentum is conserved and that this leads to entangled states is generally true for a

pump beam of any angular momentum leading to downconverted states of the form

∑
l
ψl |l〉s|lpump − l〉i. (2.30)

More generally it is true for arbitrary superposition of Laguerre-Gaussian modes (under colinear phase matching)

in which case the downconverted biphoton does not have a well defined combined angular momentum but is

generally entangled [63].

2.3.3 Experimental demonstration of optical angular momentum entanglement

Correlation of the orbital angular momentum of downconverted photons has been measured for pump beams of

zero and non-zero angular momenta [67, 68]. In these experiment sensitivity to phases between terms in the

entangled state (2.30) has been demonstrated to make sure that the correlations arise at the amplitude level

rather than at the probability level. The correlations arising from entanglement have been measured in both the

orbital angular momentum and the angle basis within the same experiment [69].

To fully demonstrate entanglement of the orbital angular momentum degree of freedom photon pairs with such

entanglement have been used to violate Bell inequalities in both two [70] and three dimensional sub-spaces [71]

of the angular momentum state space. Entanglement between four photons has recently also been realised [72]

using the orbital angular momentum degree of freedom.
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Chapter 3

Beam splitter and Mach-Zehnder
interferometer

This chapter is devoted to the study of the beam splitter and the Mach-Zehnder interferometer as these will be

key components of the problems studied in later chapters. Using these optical devices the basic properties of

superposition and of interference are explored. The material in this chapter can be found in standard pedagogical

texts such as [3] and [4].

3.1 Beam splitter

The beam splitter is a partially reflecting device. For an incoming wave of some amplitude A0 an amount rA0 is

reflected and tA0 is transmitted where r and t are the complex reflection and transmission coefficients respec-

tively [3, §3.2]. Let us consider waves with quantised amplitudes b̂†
1 and b̂†

2 before the beam splitter and â†
1 and

â†
2 after the beam splitter as shown in figure 3.1. We consider single particle input states impinging on the beam

Figure 3.1: The beam splitter with its ports and input/output modes labelled. Quantised amplitudes b̂† describe
light before the beam splitter and amplitudes â† describe light after the beam splitter.

splitter. These are described by |in j〉 = b̂†
j|vac〉 and the output states leaving the beam splitter are correspond-

ingly described in terms of output mode creation operators |out j〉 = â†
j|vac〉. Let r1 and t1 be the reflection and

transmission coefficients that lead to output 1 and likewise let r2 and t2 be the reflection and transmission coef-

31
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ficients that lead to output 2 (i.e. the coefficients are labelled so that their subscript indicates which mode they

reflect/transmit into.). The input from both ports are both reflected and transmitted. The modes before and after

the beam splitter are related by (
b̂†

1

b̂†
2

)
=

(
t1 r2

r1 t2

)(
â†

1

â†
2

)
(3.1)

The matrix in (3.1) represents the beam splitter operator denoted by B̂S. Its matrix elements BSi j = 〈out j|B̂S|ini〉

Figure 3.2: The four distinct possibilities of traversing the beam splitter. These correspond to the ways in which
a particle in a particular input mode can be connected by a path to a particle in a particular output mode. The
amplitudes with which these happen are those of the matrix elements in (3.1).

describe the amplitude with which a particle in given input mode (i) makes it to a given output mode ( j). These

possibilities of traversing the beam splitter are depicted in figure 3.2. There are some conditions on the transition

amplitudes. The commutation relations satisfied by the modes after the beam splitter must be identical to those

satisfied by the modes before the beam splitter. From this follows the unitarity of the beam splitter matrix of

equation (3.1)

[â1, â†
1]= [b̂1, b̂†

1]=1 ⇒ |t1|2 +|r2|2 = 1

[â2, â†
2]= [b̂2, b̂†

2]=1 ⇒ |t2|2 +|r1|2 = 1
(3.2)

[â1, â†
2]= [b̂1, b̂†

2]= 0 ⇒ t∗1r1 + r∗2 t2 = 0. (3.3)

The Hermitian conjugate of the relation on the left hand side (LHS) of (3.3) yields the complex conjugate of the

right hand side (RHS). No new information is to be learnt from it. The relations (3.2) and (3.3) can be summarised

in matrix form as

B̂S
†
B̂S= B̂SB̂S

† =1 (3.4)

Let the transmission and reflection coefficients be written in terms of real variables as t j = |t j|eiτ j and r j = |r j|eiρ j

where j can take values 1 or 2. From (3.3) one obtains the relation

|r1||t1|
|r2||t2|

= ei(π+τ2+τ1−ρ1−ρ2) = 1 (3.5)

where the second equality follows from the simultaneous conditions of the left hand side of the first equality being

real and positive and the right hand side having unit magnitude. By eliminating either the reflection coefficients

or the transmission coefficients from the left hand side of (3.5) using equations (3.2) one obtains that |t1| = |t2|
and that |r1| = |r2|. The two transmission coefficients can differ from each other only by a phase and the same

goes for the two reflection coefficients. This freedom in phase is restricted by

π+τ2 +τ1 = ρ1 +ρ2 (3.6)
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obtained from (3.5). A symmetric beam splitter t1 = t2 = t, r1 = r2 = r achieves this by ρ = τ+π/2. The most

general beam splitter can be created out of a symmetric beam splitter by appending the two output modes with

phases α1,α2 and one of the input modes with a phase β2. A phase for the fourth port is not necessary as it can

be absorbed into the global phase (therefore any other set of three out of the four ports will do). The beam splitter

matrix so obtained (
t1 r2

r1 t2

)
=

(
teiα1 rei(α1+β2)

reiα2 tei(α2+β2)

)
(3.7)

satisfies the phase restriction (3.5) on a beam splitter matrix. The sum of the phases of the new reflection co-

efficients contains the sum of all three appended phases and so does the sum of the transmission coefficients.

Hence the reflection and transmission coefficients of the general beam splitter (3.7) satisfy (3.6) if those of the

symmetric beam splitter do. An example used commonly in the balanced beam splitter case is obtained with

α1 = 0,α2 = 3π
2 ,β2 = 3π

2 is (
t1 r2

r1 t2

)
= 1p

2

(
1 1

1 −1

)
(3.8)

Due to being able to discard a global phase we choose the convention t = |t|, r = i|r| for symmetric beam splitters

throughout this text. Within this convention the most general symmetric beam splitter that satisfies (3.2) is

t = cos(θ) , r = isin(θ) . (3.9)

We will mostly be referring to balanced (θ =π/4) beam splitters which we will denote without the subscripts when

this is clear from the context (
t1:1 r1:1

r1:1 t1:1

)
= 1p

2

(
1 i

i 1

)
. (3.10)

In chapter 4 we will also be making use of beam splitters that split the power of an impinging beam in a 2:1 ratio(
t2:1 r2:1

r2:1 t2:1

)
= 1p

3

( p
2 i

i
p

2

)
. (3.11)

Implicit in the above analysis, due to the use of commutation relations (3.2) and (3.3), is that the beam splitter

acts on bosons (as the motivating example is light impinging on it). However we can also consider such a device

acting on fermions [8] such as those used in neutron interferometry [9,10]. In that case the anti-commutators of

the modes before and after the beam splitter satisfy identical relations

{â1, â†
1}= {b̂1, b̂†

1}=1 ⇒ |t1|2 +|r2|2 = 1

{â2, â†
2}= {b̂2, b̂†

2}=1 ⇒ |t2|2 +|r1|2 = 1
(3.12)

{â1, â†
2}= {b̂1, b̂†

2}= 0 ⇒ t∗1r1 + r∗2 t2 = 0. (3.13)

The transition from commutators to anti-commutators reflects the differing nature of bosons and fermions un-

der particle exchange as elaborated upon in section 2.1.3 .The same relations on the transmission and reflection

coefficients are obtained as were obtained for a device acting on bosons in (3.2) and (3.3). Both the commutator

and the anti-commutator are bilinear which is their main property from which these relations follow. We shall

compare and contrast the action of a beam splitter on two-particle states in chapter 5.
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3.1.1 Single particle inputs

Let us consider a single particle input to a beam splitter and ask where the particle ends up. The most general

such input is

|inψ〉 = (ψ1 b̂†
1 +ψ2 b̂†

2)|vac〉 (3.14)

where the normalisation condition |ψ1|2 +|ψ2|2 = 1 is observed. The probabilities of finding this particle in input

ports 1 and 2 (i.e. detecting the particle before letting it enter the beam splitter) are

〈inψ|b̂†
1 b̂1|inψ〉 = |ψ1|2 (3.15)

〈inψ|b̂†
2 b̂2|inψ〉 = |ψ2|2 (3.16)

There are of course two special cases

|in1〉 = b̂†
1|vac〉 (3.17)

|in2〉 = b̂†
2|vac〉. (3.18)

These states represent particles that are with certainty in port 1 and 2 respectively. Therefore these will be

referred to as states of definite port mode number. These are somewhat special for the reason that when one asks

about the whereabouts of a particle one expects the answer in terms of states of well defined port number rather

than in the 1p
2

(
b̂†

1 ±eiφ b̂†
2

)
|vac〉 basis. Let us take the case with the particle being incident on input 1. The output

state is

|in1〉 =
(
tâ†

1 + râ†
2

)
|vac〉 (3.19)

according to (3.1). Now one can ask what the probability is of finding the particle in output 1 and in output 2.

These are given by the expectation values

〈in1|â†
1â1|in1〉 = |t|2 (3.20)

〈in1|â†
2â2|in1〉 = |r|2. (3.21)

The particle is found to have made its way output 1 with probability |t|2 or to have made its way to output 2 with

probability |r|2. The relation (3.2) means that the particle emerges out of the beam splitter with unit probability

however in general we do not know with certainty which port it will emerge from. The case for input b̂†
2|vac〉

differs from the above analysis only in the labelling of the output ports. It is found in output 2 with probability

|t|2 or in output 1 with probability |r|2. If the input is particle of a well defined port mode number then the

particle ends up in either of the output modes with some probability determined by the amplitude of reflection

and transmission.

Now consider the general case (3.14). If both amplitudes ψ1 and ψ2 are non zero then one cannot say which input

port the particle represented by (3.14) is in. As the input is a superposition of being in each of the input ports

both processes (evolution from b̂†
1|vac〉 input and evolution from b̂†

2|vac〉 input) happen in superposition

|inψ〉 = (ψ1 b̂†
1 +ψ2 b̂†

2)|vac〉 =
[
(ψ1t+ψ2r)â†

1 + (ψ1r+ψ2t)â†
2

]
|vac〉. (3.22)

Again the particle ends up in either of the output modes with some probability but that probability is the sum

of amplitudes of reaching that output from input mode 1 and of reaching it from input mode 2. Interference
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Figure 3.3: The contribution to each of the output port modes that a particle impinging with unit amplitude on
input port 1 (left) and on input port 2 (right) makes. If the input is a superposition of input ports 1 and 2 with
amplitude ψ1 and ψ2 then the contribution to each output port is the weighted linear combination of each of these
c.f. figure 3.4

Figure 3.4: The contribution the input amplitude from each input port makes to output port 1 (left) and to output
port 2 (right)

manifests in the probabilities for being found in output 1 or 2

〈inψ|â†
1â1|inψ〉 = |ψ1t+ψ2r|2 (3.23)

〈inψ|â†
2â2|inψ〉 = |ψ1r+ψ2t|2. (3.24)

Upon having detected the particle in one of the ports it is not possible to know (even in principle) which input

port the particle originated in and hence how it got to the detector unless the input state (3.22) has a vanishing

ψ1 or ψ2. Let us consider a click in output port 1 for example. The particle either originated in port 1 and got

transmitted (this happens with amplitude ψ1t) or it originated in port 2 and got reflected (this happens with

amplitude ψ2r) in superposition. It is not possible to differentiate between these two alternatives as they both

lead to the same physical output state â†
1|vac〉. This interference can be controlled if one has control over the input

amplitudes ψ1,ψ2. The dependence of the amplitudes on the relative phase of the two alternatives is the hallmark

of interference. It occurs every time several processes or paths lead to the same physical outcome [11, §1].

In particular it can happen (depending on how the input state is prepared) that the particle emerges from a given

one of the output ports with unit probability. Consider the input amplitudes ψ1 = t∗,ψ2 = r∗. Then by the beam

splitter properties (3.2) and (3.3) the output probabilities (3.23) and (3.24) say that the particle emerges in output

port 1 with certainty. Conversely if ψ1 = r∗,ψ2 = t∗ then it emerges in output port 2 with certainty. While one

cannot say with certainty which input port the particle represented by states

|out1〉 =
(
t∗ b̂†

1 + r∗ b̂†
2

)
|vac〉, (3.25)

|out2〉 =
(
r∗ b̂†

1 + t∗ b̂†
2

)
|vac〉 (3.26)
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occupies one can say with certainty in which port it will end up. This is quite different from a classical particle

being input to port 1 or 2 with probability |ψ1|2 or |ψ2|2 respectively. The probability of ending up in output ports

1 and 2 for such a classical particle are

|ψ1|2|t|2 +|ψ2|2|r|2 > 0

|ψ1|2|r|2 +|ψ2|2|t|2 > 0
(3.27)

respectively. These probabilities can never reach zero if neither |r|2 nor |t|2 are zero unlike the probabilities (3.23)

and (3.24). That is the only cases for which an output probability can vanish in the classical scenario is if the

device is purely transmitting or purely reflecting and there is no lack of knowledge regarding which of the input

ports the particle impinges on. It is worth noting that the statement that ‘one does not know in which input the
particle is’ is true for both a classical particle impinging on one of the input ports with some probability P j each

and for a quantum particle impinging on one of the input ports with some amplitude ψ j each.

Note the reverse nature (with respect to each other) of the two scenarios of starting with the particle in a given

port with certainty and of ending up with the particle in a given port with certainty. However there is a subtle

difference between preparing a particle in a given port mode and detecting a particle in a given port mode. In the

former case the starting amplitude is unity (up to a phase) however in the latter case the output amplitude need

not have unit magnitude as it is possible to detect a particle for which the probability of detection in that given

mode is less than one. Hence they are not exactly each others reverse in general but only if either ψ1t+ψ2r = 1

or ψ1r+ψ2t = 1. These similarities can be seen by comparing figures 3.3 and 3.4.

For the special case of the symmetric balanced beam splitter the states of definite output port (3.25) and (3.26) in

terms of the input ports become

|out1〉 = 1p
2

(
b̂†

1 − ib̂†
2

)
|vac〉 = b̂†

r|vac〉 = |inr〉, (3.28)

|out2〉 = −ip
2

(
b̂†

1 + ib̂†
2

)
|vac〉 =−ib̂†

l |vac〉 =−i|inl〉 (3.29)

which are significant enough examples to warrant naming them. They are named in analogy with the circular

polarisation modes L,R expressed in terms of horizontal H and vertical V polarisations.

Consider again the general input state (3.14) now with the amplitude values ψ1 = 1p
2
,ψ2 =± 1p

2
. The input states

take the form

|in±〉 = 1p
2

(
b̂†

1 ± b̂†
2

)
|vac〉. (3.30)

For the output states one finds that
t± rp

2

(
â†

1 ± â†
2

)
|vac〉 = (t± r)|out±〉. (3.31)

The state has the same structure in terms of the output modes as it does in terms of the input modes. The only

change is a global phase t± r = e±iθ for the most general symmetric beam splitter. It is not possible to say with

certainty in which input port the particle represented by |in±〉 is and neither is it possible to say with certainty

in which output port it will be detected. What is possible to say about this particle though is that its state is

unaltered (up to a global phase) by the beam splitter.
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3.1.2 Mode swap

The symmetric beam splitter is subject to symmetry under the swapping of the two modes

M̂ :

(
t1 r2

r1 t2

)
7→

(
t2 r1

r2 t1

)
. (3.32)

This symmetry underpins the aforediscussed property of |in±〉 under the beam splitter transform [12]. It will

also prove useful for studying biparticle interference especially in the case of several degrees of freedom. The

symmetric beam splitter transform commutes with this operation

[B̂S,M̂]= 0 (3.33)

so eigenvalues with respect to M̂ are conserved by it. The reason for this is that the symmetric beam splitter can

be written as

B̂S= 1p
2

(
1+ iM̂

)
(3.34)

Beam splitter evolution in the M̂ eigenstate decomposition simply consists of picking up a phase depending on

the M̂ eigenvalue. Let us review how the 3 families of basis states that were considered so far behave under mode

swapping

M̂ :

{
â†

1 7→ â†
2, â†

l 7→ iâ†
r, â†

+ 7→ â†
+

â†
2 7→ â†

1, â†
r 7→ −iâ†

l , â†− 7→ −â†−
(3.35)

Given that the modes â†
1, â†

2 and â†
l , â

†
r are related to each other by a beam splitter transform (up to a phase) and

that the ordering of the mode swapping and the beam splitter transform does not matter it is expected that the

latter two are mapped onto each other by M̂ given that the former two are. However â†
± are eigenmodes of this

symmetry operation.

3.1.3 Biparticle input states

In treating biparticle states a distinctly quantum issue arises. When writing down a two-particle state of a second

quantised system we may consider either â†
i â

†
j|vac〉 or â†

j â
†
i |vac〉, where |vac〉 denotes the vacuum state and â†

i
and â†

j denote creation operators of two modes i and j of a certain degree of freedom that may or may not be

distinct. The ordering in itself does not matter but if both orderings appear in a formula they represent particle

exchanged alternatives of each other. The two physically equivalent alternatives are related by a phase of 0 or π

depending on whether the two particles are bosons or fermions respectively. This is due to the fact that a pair of

identical particles when exchanged is physically equivalent to the unexchanged alternative so the two states may

differ by a phase only [11, §4]. However exchanging the pair twice gets the particle pair back to its original state

hence

X̂(â†)X̂(â†) =1 (3.36)

where X̂(â†) is the particle exchange operator. Using the connection between spin and statistics [13] this symmetry

requirement on an otherwise arbitrary biparticle state characterised by ψ can be expressed as

X̂(â†)|ψ, s〉 = (−1)2s|ψ, s〉 (3.37)

where s is the spin of the particles constituting the particle pair. The choice of the biparticle being bosons or

fermions can be achieved by setting the commutator or the anticommutator of the creation operators to zero.
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A product of operators can always be written as half the sum of their commutator and anticommutator

â†
i â

†
j =

1
2

{â†
i , â

†
j}+

1
2

[â†
i , â

†
j]. (3.38)

The significance of this is that even without requiring either of the terms in it to vanish, the states produced

by their action on |vac〉 are endowed with the defining property of bosons and fermions (3.37) under particle

exchange. In the interest of notational convenience when dealing with particle pairs let us introduce some new

notation in which (3.38) takes the form

Â†
i j = B̂†

i j + F̂†
i j. (3.39)

In addition let us introduce symmetrising {} and antisymmetrising [] braces around index pairs so that the com-

mutator and anticommutator in (3.38) take the form

B̂†
i j = Â†

{i j} (3.40)

F̂†
i j = Â†

[i j]. (3.41)

Note that this is not an alternate notation for the commutator and anticommutator but for exchange symmetric

and antisymmetric components (under the exchange of indices) of an object with two indices. The difference will

be apparent and of significance in chapter 5 where particle pairs with two degrees of freedom are dealt with.

Particle exchange is performed by the exchange of the properties of the particles thus in this formalism by the

exchange of the indices

X̂(â†) : Â†
i j|vac〉 7→ Â†

ji|vac〉. (3.42)

The two terms in (3.39) satisfy

B̂†
ji|vac〉 = B̂†

i j|vac〉, (3.43)

F̂†
ji|vac〉 =−F̂†

i j|vac〉, (3.44)

hence we may identify them as boson and fermion pair creation operators respectively. Under any transformation

of a particle pair creation operator Â† the symmetric part B̂† = (Â† + X̂(â†) Â†)/2 keeps track of bosonic behaviour

and the antisymmetric part F̂† = (Â† − X̂(â†) Â†)/2 keeps track of fermionic behaviour. The restriction to bosons or

fermions corresponds to dropping the appropriate half of the expression.

A pair of bosons each of which have the same two-mode degree of freedom can occupy three distinct states

1p
2

Â†
11|vac〉, 1p

2
Â†

22|vac〉 and Â†
{12}|vac〉. (3.45)

Only one state is realisable by such a fermion pair, namely

Â†
[12]|vac〉. (3.46)

Building on the siginificance of mode swapping with respect to the states |in±〉 (c.f. (3.30)) the first two of the

biboson states (3.45) are instead combined as 1
2

(
Â†

11 ± Â†
22

)
|vac〉. It is perhaps easiest to understand the beam
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splitter’s effect on these states by rewriting them in terms of the single particle M̂ eigenmodes (3.30) [12] as

1
2

(Â†
11 + Â†

22)= 1
2

(Â†
+++ Â†

−−) (3.47)

1
2

(Â†
12 + Â†

21)= 1
2

(Â†
++− Â†

−−) (3.48)

1
2

(Â†
11 − Â†

22)= 1
2

(Â†
+−+ Â†

−+) (3.49)

1
2

(Â†
12 − Â†

21)=−1
2

(Â†
+−− Â†

−+). (3.50)

Both terms in the right hand side of (3.49) and (3.50) pick up zero phase as â†
+ and â†− pick up opposite phases

when passing through the beam splitter. Hence the states 1
2 (Â†

11 − Â†
22)|vac〉 and Â†

[12]|vac〉 are eigenstates of the

beam splitter. This statement about the latter is the fermion equivalent of the Hong-Ou-Mandel effect [14]. Â†
++

and Â†−− pick up phases i and −i respectively due to (3.31) meaning that (3.47) and (3.48) are mapped onto each

other by the balanced beam splitter. In the case of a general symmetric beam splitter parametrised according

to (3.9) they pick up phases e±iθ and the two states (3.47) and (3.48) are mixed by the beam splitter rather than

mapped onto each other.

B̂S :


1
2

(Â†
+++ Â†

−−) 7→ cos(2θ)
1
2

(Â†
+++ Â†

−−)+ isin(2θ)
1
2

(Â†
++− Â†

−−)

1
2

(Â†
++− Â†

−−) 7→ isin(2θ)
1
2

(Â†
+++ Â†

−−)−cos(2θ)
1
2

(Â†
++− Â†

−−)
(3.51)

This is the Hong-Ou-Mandel effect [15] and its reverse [12]. Hence (using the notation introduced in (3.39)) the

transition matrix for the beam splitter when extended to biparticles is


1
2 (B̂†

11 + B̂†
22)

B̂†
12

1
2 (B̂†

11 − B̂†
22)

F̂†
12

 7→


r2 + t2 2rt 0 0

2rt r2 + t2 0 0

0 0 1 0

0 0 0 1




1
2 (B̂†

11 + B̂†
22)

B̂†
12

1
2 (B̂†

11 − B̂†
22)

F̂†
12

 . (3.52)

Alternatively the structure of the transition matrix in (3.52) may be understood through the simultaneous re-

strictions placed on it by its commutation with M̂ and X̂(â†). Any physical Hamiltonian must respect the indis-

tinguishability of identical particles [16, §54]. If it does so then it (and the finite transformation generated by it)

must commute with the particle exchange operator.

[B̂S,X̂(â†)]= 0. (3.53)

It has already been established in (3.33) that the beam splitter also commutes with the port mode swap operator.

Hence only those states may mix under evolution due to a beam splitter that share an eigenvalue with respect

to each M̂ and X̂(â†). The operator X̂(â†) allows the three B̂†’s to mix only amongst themselves but M̂ allows
1
2

(
B̂†

11 − B̂†
22

)
to mix only with F̂†

12.

3.1.4 Hong-Ou-Mandel dip

As it is an important tool in quantum optics [3] (its use in the timing of photons in chapter 6 serves as an example

of this) let us look at the Hong-Ou-Mandel effect

B̂†
12|vac〉 7→ rt

(
B̂†

11 + B̂†
22

)
|vac〉+ (

r2 + t2)
B̂†

12|vac〉 (3.54)
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Figure 3.5: All the possible outcomes of a Hong-Ou-Mandel experiment. Note that only three of these lead
to outcomes that are physically distinct. Hence the rightmost two always occur in superposition and interfere
destructively for photons but constructively for fermions. The leftmost two paths are not an option for fermions
as they lead to two particles ending up in the exact same state. The lateral displacement of the beams with
respect to the face of the beam splitters is fictional and is for illustrative purposes only. If the experiment was
implemented with these displacements then it would serve as a property by which the particles port of origin can
be distinguished.

in greater detail. The above is what happens when the two photons impinging on the beam splitter are identical

in every way. This includes amongst other things the time at which they arrive at the beam splitter. Suppose that

a photon pair described by

|ψ〉 =
Ï

ψ(ω1,ω2)eiω2δtâ†
1(ω1)â†

2(ω2)dω1dω2|vac〉 (3.55)

is incident on a beam splitter. The eiω2δt factor means that the photon in input port 2 has been delayed by some

time δt. Taking the expectation valueÏ
〈ψ|Ê(−)

1 (t1)Ê(−)
2 (t2)Ê(+)

2 (t2)Ê(+)
1 (t1)|ψ〉dt1dt2 (3.56)

gives the coincidence count rate as

∝|t|4 +|r|4 + (
(r∗t)2 + (rt∗)2

) Î
ψ∗(ω2,ω1)ψ(ω1,ω2)e−i(ω2−ω1)δtdω1dω2Î |ψ(ω1,ω2)|2dω1dω2

. (3.57)

Ê1(t1) and Ê2(t2) are electric fields after the beam splitter at times t1 and t2 respectively. The integration over

detection times is required as the resolving time of photodetectors is much larger than the coherence time of the

photons typically involved in such experiments [17, §22.4.7]. For a photon pair anticorrelated in frequency about

a central frequency of ω0/2

ψ(ω1,ω2)= δ(ω0 −ω1 −ω2)exp
(
− (ω1 −ω2)2

2σ2

)
(3.58)

such as that obtained from parametric downconversion the coincidence count rate takes the form

|t|4 +|r|4 + (
(r∗t)2 + (rt∗)2

)
exp

(
−

(
σδt
2

)2)
. (3.59)

This is the famous Hong-Ou-Mandel dip as reported in [15]. Strictly speaking the state

|ψ〉 =
Ï

ψ(ω1,ω2)â†
1(ω1)â†

2(ω2)|vac〉dω1dω2 =
∫

exp
(
−2ω2

σ2

)
â†

1

(ω0

2
+ω

)
â†

2

(ω0

2
−ω

)
|vac〉dω (3.60)

created from (3.58) with the substitution ω1 = ω0/2+ω is not normalisable without including a spectrum for ω0.

However in arriving at the coincidence count rate (3.59) one can make use of the appearance of an ill-behaved

term δ(0) in both the numerator and denominator of (3.57).
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Let us now consider (3.59) in the case of a balanced beam splitter. For photons separated by a large time interval

δt only the first two terms contribute and the resulting coincidence count rate of 1/2 is the same as that for

independent particles. However if the photons arrive at the same time then the second two terms cancel the first

two terms exactly leading to a vanishing coincidence count rate. This transition from large separation time to a

vanishing separation time between the photons corresponds to a distinguishable to indistinguishable transition.

The transition matrix in (3.52) accounts only this indistinguishable case.

3.2 Mach-Zehnder interferometer

A Mach-Zehnder interferometer is constructed by bringing the two outputs of a beam splitter together on another

beam splitter [3, §3.3] as shown in figure 3.6. For notational convenience the first beam splitter is always oriented

and labelled according to figure 3.1 and the second beam splitter is labelled such that output 1 and 2 leads to

input 1 and 2 respectively thereby allowing for the two paths to inherit the labels 1 and 2. There is a phase eikL j

Figure 3.6: A schematic of a Mach-Zehnder interferometer. The dotted lines indicate the available spatial paths.

associated with traversing the path j where k = 2π/λ is the wave number and L j is the optical path length. In a

vacuum this coincides with the path length L
′
j as measured by a ruler. In general they are related by L j = nL

′
j

where n is the refractive index of the medium. However only the relative phase between the two paths is relevant.

One can always absorb the phase associated with one of the paths into the unobservable global phase. A relative

phase between the two paths can be introduced by changing the path lengths by an amount shorter than the

typical length of the pulses involved in the experiment.

3.2.1 Interference of paths in the interferometer

Like the beam splitter the Mach-Zehnder interferometer has two input modes and two output modes. However

now there are two paths between any given input and output modes. One can think of the Mach-Zehnder interfer-

ometer as the first beam splitter creating a superposition state (from a state of definite port number) which then

acts as the input to the second beam splitter. The output probabilities then vary depending on the relationship

between the input amplitudes to the second beam splitter. When looking at the entire setup this variation in

output probabilities is achieved by manipulating two equivalent paths internal to the interferometer.

Consider an input b̂†
1|vac〉 and let the output mode of concern be port 1. The particle can reach output 1 via path 1

(with amplitude t2eiφ1 ) or via path 2 (with amplitude r2eiφ2 ) in superposition. The transition amplitude between

input mode 1 and output port mode 1 is therefore given by

MZ11 = t2eiφ1 + r2eiφ2 . (3.61)
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Similar calculations hold for the other three input-output combinations. These are depicted in figure 3.7 and are

Figure 3.7: Matrix elements for a Mach-Zehnder interferometer.

computed as(
b̂†

1

b̂†
2

)
=

(
t r
r t

)(
eiφ1 0

0 eiφ2

)(
t r
r t

)(
â†

1

â†
2

)
=

(
t2eiφ1 + r2eiφ2 rt

(
eiφ1 +eiφ2

)
rt

(
eiφ1 +eiφ2

)
r2eiφ1 + t2eiφ2

)(
â†

1

â†
2

)
. (3.62)

This gives the transition amplitudes of a single two input mode by two output mode device that is distinct from

the beam splitter but a black box just the same. One can also consider superposition inputs to the Mach-Zehnder

interferometer and the output amplitudes are computed the same way as they were for the beam splitter(
ψ1 b̂†

1 +ψ2 b̂†
2

)
=

[(
ψ1MZ11 +ψ2MZ21

)
â†

1 +
(
ψ1MZ12 +ψ2MZ22

)
â†

2

]
|vac〉. (3.63)

where the matrix elements have not been written out in full in the interest of brevity. Such inputs (ψ1,ψ2 6= 0)

Figure 3.8: How the Mach-Zehnder interferometer mixes the input amplitudes for a general superposition input
state.

provide additional opportunities for interference in the output probabilities due to control over the input ampli-

tudes which can (and will in chapter 4) be considered as due to internal paths of a yet larger interferometer.

It is instructive to compute the explicit values of the transition amplitudes in the balanced beam splitter case to

gain a qualitative understanding of how the output amplitudes depend on path length differences when perfect
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interference is possible. The amplitudes of reaching port 1 and 2 from port 1 are

MZ11 = eiφ1 t2 +eiφ2 r2 =−iei φ2+φ1
2 sin

(
φ2 −φ1

2

)
(3.64)

MZ12 = eiφ1 rt+eiφ2 rt = iei φ2+φ1
2 cos

(
φ2 −φ1

2

)
(3.65)

respectively where φ2 −φ1 = k (z2 − z1) is the phase difference due to path length difference. One may use 2:1

beam splitters in which case it is manifest that (3.64) will never reach zero due to |t2
2:1|2 6= |r2

2:1|2 whereas (3.65)

may do so. There is a bias in the interferometer that favours sending the particle (for this specific input state) via

path 1. (For an input in port 2 the interferometer favours path 2.)

3.2.2 Mach-Zehnder interferometer with marked paths

If one of the paths is marked in some way so that it is possible to tell which path the particle traversed then the

amplitude for emerging at a given output port no longer depends on the relative phase of the two spatial paths.

The distinguishing of paths means that a property of a particle is changed in some detectable way depending on

which path it takes. There exists in principle a measurement that can tell them apart. We use the polarisa-

Figure 3.9: A schematic of a Mach-Zehnder interferometer with a polarisation rotator in arm 2. The dotted lines
indicate the available paths in the extended sense i.e. they depict both polarisation modes in both spatial modes.

tion degree of freedom for marking paths and consider all production and detection of photons to happen in the

horizontal-vertical basis. Hence states of definite polarisation refer to b̂†
H |vac〉, b̂†

V |vac〉. Suppose that path 2 is

appended with a half-wave plate, depicted as a cylinder in figure 3.9. Let the fast and slow axes of the crystal line

up with the orientations

â†
↔|vac〉 = 1p

2

(
â†

H + â†
V

)
|vac〉 â†

↔|vac〉 = 1p
2

(
â†

H − â†
V

)
|vac〉 (3.66)

so that the net effect of the half-wave plate, upon introducing a relative phase of eiπ between the â†
↔|vac〉 and

â†
↔|vac〉 polarisations [18], is to rotate the horizontal and vertical polarisations into each other

�HWP :

 â†
2H |vac〉 7→ â†

2V |vac〉
â†

2V |vac〉 7→ â†
2H |vac〉.

(3.67)

Any additional phase due to the half-wave plate may be absorbed into the phase eiφ2 due to path 2. One way to
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Figure 3.10: A half-wave plate with its axes bisecting the angle subtended by the horizontal and vertical directions
rotates the two polarisations into each other. Modes not containing any light are illustrated with a broken line as
in figure 3.2.2. For the rest of the figures the two polarisation modes are shown as the same spatial path and the
polarisation of the light at any given point is indicated by colour (vertical mode is red horizontal mode is green)

view the marked Mach-Zehnder interferometer of figure 3.9 is as a four input and four output device with two

polarisation modes in each port providing the extra modes as shown in figure 3.9. If the input is a particle in one of

the ports and in one of the two polarisation modes each with certainty i.e. b̂†
1H |vac〉, b̂†

1V |vac〉, b̂†
2H |vac〉 or b̂†

2V |vac〉
then there are no two ‘paths’ (in the extended sense so as to include polarisation) that lead to the same output

state (note that this includes port number and polarisation). There are two spatial paths that lead to output port

2 but they result in physically distinct outcomes, as distinguished by polarisation, at the output.

Consider the input state b̂†
2H |vac〉. It is in port 2 with certainty and in addition to this condition it is horizontally

polarised with certainty (when measured in the horizontal-vertical basis). We are interested in the probability

that the particle emerges in output port 1. In this case the probability of emerging in output port 1 is the sum

of the probabilities of a horizontally polarised photon emerging in port 1 and of a vertically polarised photon

emerging in port 1 as shown in figure 3.11. Hence the absence of interference between the two paths of the

interferometer.

Interference in this system has not been removed however. The state space has been increased and the input

Figure 3.11: The possible paths leading to a photon in output port 1 if the input is horizontally polarised in input
port 2.

states have been restricted to be ones that do not allow for two or more paths in state space leading to physically

identical outcomes. Similarly to the beam splitter interference in the output probabilities is possible but only if

the input is a superposition of the states of well defined port number and polarisation.

Suppose the input is a superposition of the horizontal and vertical polarisation states in input 2(
ψH b̂†

2,H +ψV b̂†
2,V

)
|vac〉. (3.68)

Now there are two ways of ending up in output 1 with horizontal polarisation. (We specify both port mode

and polarisation modes as it is qualitatively akin to having four output port modes and one being interested

in the probability of the particle emerging from just one of these.) Having originated horizontally polarised
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Figure 3.12: The possible paths leading to a horizontally polarised photon in output port 1 if the input is a
superposition of polarisation modes in one of the input ports. Similar calculations hold for for the remaining 3
physically distinct outcomes.

and taken path 1 (with amplitude ψH rteiφ1 ) or having originated vertically polarised and having taken path

2 (with amplitude ψV rteiφ2 ) both lead to the same output state as shown in figure 3.12. Interference is again

exhibited but it is due to the input being a superposition (in the polarisation degree of freedom this time) rather

than due to equivalent paths inside the interferometer. The amplitude rt
(
ψV eiφ2 +ψHeiφ1

)
for this process is

reminiscent of the amplitudes in (3.22) and (3.63). The interference occurs between amplitudes that describe the

input superposition.

One could also chose input states of a fixed polarisation and with a superposition describing the port mode degree

of freedom (
ψ1 b̂†

1H +ψ2 b̂†
2H |vac〉

)
(3.69)

to illustrate that the polarisation degree of freedom is not the thing responsible for salvaging interference but

that an output amplitude is the sum of two amplitudes (each of them a product of a transmission and an input

amplitudes). The probability of ending up in output port 1 with horizontal polarisation when the input state is

(3.69) is illustrated in figure 3.13. Input states entangled in port and polarisation modes (just to enumerate all

Figure 3.13: The possible paths leading to a horizontally polarised photon in output port 1 if the input particle is
horizontally polarised in a superposition of port modes 1 and 2. Similar calculations hold for for the remaining 3
physically distinct outcomes.

the distinct possibilities) are also possible (
ψ1H b̂†

1H +ψ2V b̂†
2V

)
|vac〉 (3.70)
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and result in interference. The probability of ending up in output port 1 with horizontal polarisation with this

input is illustrated in figure 3.14.

However if one is interested in simply the probability of ending up in output port 1 whatever the polarisation

Figure 3.14: The possible paths leading to a horizontally polarised photon in output port 1 if the input particle
is a superposition of being horizontally polarised in port 1 and of being vertically polarised in port 2. Similar
calculations hold for for the remaining 3 physically distinct outcomes.

then the result is still a sum of two probabilities each of which is sensitive to variations in the relative phase

between the paths. If one insists on the input states being one of b̂†
1H |vac〉, b̂†

1V |vac〉, b̂†
2H |vac〉, b̂†

2V |vac〉 rather

than allowing for a superposition of these then one can consider the system under investigation to be part of a

larger interferometer that starts with one of these states and creates the superposition state that is the input

to the Mach-Zehnder interferometer. In this way interference due to the input state being a superposition and

interference due to equivalent internal paths in an interferometer are not conceptually distinct.



Chapter 4

Nested Mach-Zehnder interferometer
with weakly marked paths

It is well known that in a single-particle interferometer, we can obtain interference or which-path information.

If we know which path the particle took then we lose the interference pattern. It has been suggested, however,

that it is possible to weakly mark the paths and yet retain interference. Here we present a critical analysis of this

proposal.

This work was motivated by the experiment of Danan et al. [1] where the paths were distinguished by the time

dependent transverse displacement of the beam. The problem is reduced to two spatial modes as only two are

necessary to describe the time dependent transverse spatial profile to within the accuracy of the experiment (i.e.

to within first order of a parameter in which a Taylor expansion is made). These correspond to the unperturbed

and perturbed part of the light. Within the latter information about which of the paths perturbed the light is

obtained from the time dependence of the amplitudes.

The content of this chapter is original work done in collaboration with Václav Potoček based on the publication

[19]. Though the formalism used is that of quantum optics the phenomena described here are interference effects

of waves of either Maxwell or de Broglie type. In fact the experiment reported in [1] that is being analysed was

carried out using a bright light laser.

4.1 Introduction

Recently there has been a proposal by Vaidman [20] to obtain which-way information from a photon in a nested

Mach-Zehnder interferometer by weak measurement. This has been implemented by Danan et al. [1] where the

measurement was performed by weakly marking each path by reflecting the light off of a vibrating mirror (see

Fig. 4.1) and measuring the time varying intensity difference across two halves of a quadrant detector placed at

one of the outputs. This has generated much interest in both theoretical [21,22] and experimental [23–29] contexts

due mainly to the controversial conclusion that the photons follow disconnected paths in the interferometer.

The point of issue arises when maximum possible destructive interference towards mirror F is arranged.

The assumption that this is complete destructive interference, i.e., that light reaching the detector D could have

gone only via the lower path in Fig. 4.1, led to the curious observation of the vibrational frequencies of mirrors

A and B along with that of C in the spectrum of the signal and yet the absence of frequencies of E and F.

A further surprise—that at first seems to support the assumption of complete destructive interference in the

inner interferometer—was the disappearance of all three frequencies A, B and C upon blocking the lower path

47
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Figure 4.1: A schematic of the nested Mach-Zehnder interferometer. The beam splitters with double lines denote
2:1 beam splitters with t2:1 = 1/

p
3, r2:1 = i

p
2/3. The mirrors vibrate with unique frequencies thereby marking the

paths. S is the source of light and D is a quadrant detector. All spatial paths supported by the interferometer are
indicated.

containing only mirror C, suggesting an interpretation that the photons did not reach the mirrors A and B via

E and F but rather as a disconnected part of their path via C. The explanation put forward by Danan et al. is

based on the two-state vector formalism pioneered by Aharonov et al. [30], linking the presence (or absence) of

the peaks at A,B (E,F) to the simultaneous presence (or the lack of) both forward- and backward-propagating

states from the source and the detector.

Once one acknowledges that there is a non-negligible leakage from the inner Mach-Zehnder interferometer

due to the fact that the two paths are partially distinguished, i.e., that light from paths containing mirrors A and

B does have a means of reaching the detector, the mystery vanishes. Salih [23] and Saldanha [24] both recognised

the significance of the leakage. Salih argued that in the case that true complete destructive interference towards

mirror F is arranged by setting mirrors A and B to vibrate at the same frequency but with opposite phase no

ground is given for the claims of Danan et al. Saldanha has provided a phenomenological description of the

interference by showing numerically that the leakage acts as a first-order correction to the beam profile and that

this leakage, when mixing with the light from arm C, acts to displace the light beam in the transverse plane,

thereby imprinting it with the signatures of mirrors A and B. Moreover, Danan et al., in the supplementary

material appended to their paper 1, have themselves shown that there is a non-negligible leakage by blocking light

from mirror F and observing the peaks corresponding to mirrors A and B disappear, although this was interpreted

by them as evidence for the lack of electronic noise in the set-up. Bartkiewicz et al. [29] have attempted to provide

a minimal fully quantum treatment working in the frequency domain only. However they have assumed that the

effect of the vibrating mirrors is to imprint the which-way information using mutually orthogonal (i.e. perfectly

distinguishable) states, hence their assumptions as well as results disagree with those of the experiment they are

describing.

We put Saldanha’s description on a simple analytical footing by modelling the effect of the mirrors as a first-

order Hermite-Gaussian perturbation to the light in the interferometer. We derive an effective observable that

1Supplement I to [1]
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shows explicitly that the perturbed portion of the light (carrying the which-way information) must mix with

the unperturbed part to give a non-vanishing signal. Within this context we discuss the experimental results

presented in [1]. Once the formalism is properly set up simple arguments based on the trade-off between path

distinguishability and visibility of interference can be employed to understand the results in all cases, in par-

ticular in the counter intuitive case of arm C being blocked for which a simple analysis in the two-state vector

formalism fails due to weak values becoming singular [25]. Further we show that by appropriate tuning of the

path lengths the signatures of certain mirrors may be hidden. We work throughout in the standard quantum

optical formalism. The treatment may be transposed to the classical domain by using a coherent state as an input

or by replacing annihilation and creation operators by complex field amplitudes. The validity of our quantum

treatment extends to fermion interferometry such as that based on neutrons, as all the relevant states and ob-

servables can also be constructed for fermions. This chapter is structured as follows: In Section 4.2 we begin by

establishing the formalism to be used to describe the interferometer. In Section 4.3, we use the formalism in a

quantum path sum approach to obtain an analytical description of the detector output and discuss the immediate

observations made possible by our method. In Section 4.4, we match our results to those measured in [1]. In

Section 4.5, we propose a small amendment of the system in which novel phenomena can be observed. Finally, we

conclude our results.

4.2 Production and detection of slightly tilted Gaussian beams

Let us consider a monochromatic paraxial beam going along the z axis incident at a mirror inclined at an angle

π/4+ϑ to its axis in the xz plane, as illustrated in Fig. 4.2. Inspired by the experiment [1], we will only consider

minuscule tilt angles ϑ for which no point of the mirror’s surface is displaced more than a fraction of a wavelength

over the principal cross section of the beam, as modelled by its beam waist w0. Mathematically, we will assume

the condition

w0ϑ¿λ, (4.1)

or equivalently

kw0ϑ¿ 2π, (4.2)

where λ is the wavelength and k = 2π/λ the wave number. For the typical values in the experiment [1], λ≈ 700nm,

w0 ≈ 1mm, and ϑmax ≈ 300nrad, the peak value of the left hand side of (4.2) is three orders of magnitude smaller

than π. For such small angles ϑ, the polarization axes in the reflected beam can be treated as independent of

the deviation and a scalar wave description is fully sufficient. Moreover, the reflected beam is simply an analytic

continuation of the incident beam in the reflected coordinate system (xr, yr, zr) as per Fig. 4.2.

4.2.1 Mode structure

It will be more practical to work in the untilted coordinate system (x′, y′, z′) where the reflected beam is rotated

by the angle 2ϑ. If the incident beam is paraxial with respect to z and described by a scalar complex field

u(x, y, z, t)=ψ(x, y, z)ei(kz−ωt), the reflected beam is paraxial with respect to z′ and similarly described by

ψ′(x′, y′, z′)= e2ikϑx′−2ikϑ2(z′−z′M )ψ(x′−2ϑ(z′− z′M), y′, z′), (4.3)

where z′M denotes the z coordinate of the point of intersection of the mirror with the beam axis. This transforma-

tion represents a symmetry of the paraxial wave equation (1.22) with respect to shear transforms [31]. At z′ = z′M ,
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Figure 4.2: Geometry of a tilted mirror and the original and reflected coordinate systems. The system (xr, yr, zr)
corresponds to (x, y, z) reflected with respect to the actual location of the mirror while (x′, y′, z′) is reflected with
respect to 45◦. The y axis is not affected by the reflection (y = y′ = yr) and is not depicted. Both the tilt angle ϑ
and the beam divergence are vastly exaggerated.

and with the condition (4.2) in mind, (4.3) can be written as

ψ′(x′, y′, z′M)=ψ(x′, y′, z′M)+2ikϑx′ψ(x′, y′, z′M)+O((kw0ϑ)2). (4.4)

Specifically, if the incident wave is Gaussian of the form

ψ(x, y, z)=HG00(x, y, z)=
√

2
πw2

0

zR

zR + iz
e−

k(x2+y2)
2(zR+iz) , (4.5)

where w0 is the beam waist zR = 1
2 kw2

0 is the Rayleigh range , the second term of the right hand side of (4.4)

represents a first-order Hermite-Gaussian wavefront

HG10(x, y, z)=
√

2
πw2

0

(
zR

zR + iz

)2 2x
w0

e−
k(x2+y2)
2(zR+iz) = 2x

w0

zR

zR + iz
HG00(x, y, z) (4.6)

superimposed on the former profile. After the reflection (4.4), the beam profile is described by

ψ′(x′, y′, z′)=HG00(x′, y′, z′)+ ikw0ϑ
zR + izM

zR
HG10(x′, y′, z′)+O((kw0ϑ)2). (4.7)

Thus a slightly displaced Gaussian beam is the superposition of an undisplaced Gaussian beam and a Hermite-

Gaussian beam as shown in figure 4.3. This result generalises rather straight forwardly to reflections off of several

tilted mirrors, whose angles ϑ allow for slow time variation. We will consider the tilts of all the mirrors, denoted

ϑA(t) through ϑF (t), to be bounded by a common ϑ at all times satisfying (4.2). The Gaussian term remains after

each reflection with the same amplitude (up to a correction of the order O[(kw0ϑ)2]) and represents a “carrier

wave” common to the whole optical path. Each of the mirrors adds a first-order Hermite-Gaussian component
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Figure 4.3: A slightly displaced Gaussian beam can be decomposed into an undisplaced Gaussian beam and a
Hermite-Gaussian correction with a small amplitude (again undisplaced). Consider the extremal cases. When
δM(t) is positive the Hermite-Gaussian correction increases the amplitude on the right (x > 0) and decreases it on
the left (x < 0) thus having shifted the beam to the right. When δM(t) is negative then by identical reasoning the
beam is shifted to the left. The time variation between these two extremes, denoted by the green wiggly line, is
encoded in the time dependence of δM(t).

with an amplitude

δM(t)= ikw0ϑM(t)
zR + izM

zR
(4.8)

relative to the carrier wave, where ϑM(t) is the tilt of the mirror M ∈ {A,B,C,E,F} and zM represents the optical

distance from the source, where the beam is collimated. (It is important to add that the rectangular configuration

of the interferometer defines the ‘x’ direction, and thus the orientation of Hermite-Gaussian modes, in every

path segment unambiguously.) In fact, summing these contributions is sufficient to describe the effect of several

consecutive mirrors. Of course, each of the successive mirrors will also apply a transformation to the side terms

added by the previous reflections but these will be second order in kw0ϑ and can be neglected.

The mirrors A,B,C,E,F oscillate at frequencies ωA to ωF , which are assumed to be all mutually different but

each of them many orders of magnitude smaller than ω0. (In [1] the former are of the order of hundreds of Hz, as

compared to the optical frequency of ω0 = 2.4×1015rad/s.) In this case there is no need to take into account any

time-frequency uncertainty or finite propagation time effects and the time dependence of the angles ϑM(t) can be

simply reflected in an explicit time dependence of the optical state incident at the detector.

The above results are valid for a monochromatic case with an error of O((w0/λ)−4) due to the paraxial wave ap-

proximation used. Under a narrow bandwidth assumption, their validity can be extended to quasi monochromatic

waves, affecting only the propagation factor ei(kz−ωt). The resulting error terms are of the order O((∆ω/ω0)(w0/λ)−2)

and for a typical optical laser source of coherence length ∼ 1m are strongly dominated by the former. In other

words, we can assume that for a sufficiently narrow vicinity of ω0 the spatial mode structure does not change

significantly.

The mode structure (4.7) from classical optics transfers rather straight forwardly to the quantum treatment

of the problem. A single particle with a temporal profile f (t) that satisfies the narrow bandwidth approximation

that has reflected off of mirror M is described by

|ψ〉 =
∫
R

f (t)
(
â†

00(t)+ ikw0ϑM(t)
zR + izM

zR
â†

10(t)
)
dt|vac〉 (4.9)

where the temporal profile of course satisfies the normalisation condition
∫ ∞
−∞ | f (t)|2dt. Thus two things happen

in superposition at a vibrating mirror when light in the Gaussian mode impinges on it. Light simply gets reflected
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with unit amplitude as for a stationary mirror and light reflects off of the mirrors and in addition gets excited

into the first order Hermite-Gaussian mode with amplitude δM(t). The sum of the modulus squared of these

amplitudes sums to more than unity but that is because the lowest order corrections to the amplitude of reflecting

off of a mirror unexcited are second order in δM .

4.2.2 Detection

Figure 4.4: A schematic of a quadrant detector. The shaded area is the gap between detectors. The values of
detector area radius and gap size are shown for the First Sensor QP50-6-SD2 used in [1].

The measurement of the beam position at the output of the interferometer is done with a quadrant detector.

This is an arrangement of four photodetectors in a two by two array as shown in figure 4.4. The active detector

area for the quadrant detector used in [1] has a diameter of 7.8mm and the gap between the detectors is 48µm [32].

The differences in intensity between the four detectors allow one to measure the position of a laser beam [33]

with respect to the centre of the detector. With the 300 nrad tilt of the mirrors the displacement of the beam is

at most on the order of microns for an optical setup a few meters long. The diameter of the beam used in the

experiment [1] is 1.2 mm. This is exceeded sufficiently by the active detector area for its finite size to not be a

factor when integrating over intensity in the transverse plane as detected by the detector. Considering that the

beam waist defines a region in which the intensity of the beam drops to 1/e of its maximum, losses due to this gap

can be neglected as it covers only ∼ 1/20 of the beam. In effect when considering the intensity measured by half of

the detector it can be assumed that the intensity of the entire half-plane is being recorded. Let us now consider

a quadrant detector placed further along the beam at z = zD . The idealised model of the detector measures the

total intensity difference between two half-planes in the direction of the displacement:

∆̂I(t)=
+∞∫

x=0

∫
y∈R

Ŝ(x, y, zD , t)dydx−
0∫

x=−∞

∫
y∈R

Ŝ(x, y, zD , t)dydx. (4.10)

If, according to (4.7), the modes HG00 and HG10 are sufficient to describe the state of the beam at any instant,

we can restrict the operator to the relevant subspace to get an effective observable. Doing so and carrying out the

explicit integration gives

∆̂I e(t)= I0

(
e−iζ(zD )â†

00(t′)â10(t′)+h.c.
)

(4.11)
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where

I0 =ħω0

√
2
π

, t′ = t− z
c

, and ζ(zD)= arctan
zD

zR
(4.12)

is the Gouy phase. (We note that if the detector is not geometrically ideal, as assumed above, only the prefactor I0

changes to reflect the geometry as long as it is symmetric with respect to the axis of the undisplaced beam.) From

this formula, we see that it is of great importance that both the carrier Gaussian wave and the Hermite-Gaussian

correction are incident at the detector plane simultaneously for a nonzero signal to be obtained. Moreover, the

response is linear in both the amplitudes, which will be crucial for allowing sensitivity to first order in the pertur-

bations caused by the mirrors.

Let us examine the expectation value of the observable (4.11) with the state (4.9)

〈ψ|â†
00(t′)â10(t′)|ψ〉 = ikw0ϑM(t)

zR + izM

zR
| f (t′)|2 (4.13)

and hence

〈ψ|∆̂I(t)|ψ〉 = 〈ψ|∆̂I e(t)|ψ〉 = 2kw0ϑM(t)I0
zD − zM√

z2
R + z2

D

| f (t′)|2. (4.14)

where again t′ = t− z/c is retarded time. This result illustrates the fact that right after the mirror (zD ≈ zM), the

Hermite-Gaussian component only modifies the local phase of the wave profile but the intensity remains parity-

symmetric, resulting in zero 〈∆̂I〉. The further the detector is placed from the mirror, the longer optical length

both the waves propagate freely, resulting in their superposition forming a displaced Gaussian profile as argued by

Saldanha [24] and producing a nonzero differential signal. With constant I0, zM , and zD , the differential signal

is proportional to ϑM(t) (within the small angle approximation). At large distances the differential intensity

saturates at the limit value of 2I0kw0ϑ. In [1] the mirrors are located at similar positions zM ¿ zR whereas

for the detector it holds that zD . zR . In order to illustrate the core of our argument without the burden of

unnecessary detail, we will reflect this in the following by leaving out terms of the form zM /zR , M ∈ {A,B,C,E,F},

so that the term (zR + izM)/zR in equation (4.8) reduces to 1. That is we work with the limiting value of the

observable (4.14) corresponding to the detector being far away from the mirrors. The analysis is equally tractable

but less transparent without this simplification.

One more important observation is that (4.14) does not significantly depend on small variations in path length

(of the order of λ). This allows us to denote in the following the position of the detector by a single zD coordinate

even in the case of interference of several distinct paths including small differences in optical path length to

obtain relative phases.

In the rest of this chapter, we will take the liberty of leaving out the time argument and the second spatial

index (which is always zero) of â and â† for the sake of brevity, as well as the time argument of ∆̂I, e.g.,

∆̂I = I0

(
e−iζ(zD )â†

0â1 +h.c.
)
. (4.15)

The result (4.14) indicates that any time dependence of the input state will only serve as a prefactor (in retarded

time) in the output state within the global assumptions.

4.3 Contribution of the distinct paths

In Fig. 4.1, we can identify three possible spatial paths from the input to the detector, determined by a reflection

off the mirrors E, A, F, or E, B, F, or C only. These paths will be denoted by A, B, and C after the mirrors unique

to them. Each of these paths enters the path sum with an equal weight of |t2
2:1| = |r2

2:1t2
1:1| = |r2

2:1r2
1:1| = 1/3 and
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Figure 4.5: All the ways light can traverse the nested Mach-Zehnder interferometer such that it is perturbed by
at most one mirror. Interfering paths are shown on the same diagram. Contributions (a)-(c) provide fully decisive
which-way information while contributions (e) and (f) provide only partial which-way information in ruling out
path C and contribution (d) provides no which-way information.

with a phase eiφA,B,C that includes the phase acquired during reflection and transmission. The 2:1 beam splitters

are realised by means of polarisers and polarising beam splitters in [1] but in a way that is indistinguishable from

polarisation-independent beam splitters with a fixed input polarisation at the measurement stage. As was shown

in the previous section each path contributes a Gaussian component â†
0|vac〉 with unit amplitude (up to corrections

of order δ2) and a Hermite-Gaussian component â†
1|vac〉 with amplitude

∑
M iδM(t) where the summation is over

the mirrors along that path. The net contribution of these three paths then to the output state at the detector is

|ψout(t)〉 = 1
3

(
α0â†

0 +
∑

M∈{A,B,C,E,F}
αM(t)â†

1

)
|0〉+O(δ2), (4.16)

where
α0 = eiφA + eiφB + eiφC ,

αM(t)= eiφM iδM(t), M ∈ {A,B,C},

αM(t)=
(
eiφA + eiφB

)
iδM(t), M ∈ {E,F}.

(4.17)

From this general form of the output state we can make several observations. The Gaussian term, â†
0|0〉, has

the same coefficient (to the first order) as if all the mirrors were stationary with zero tilt angles ϑM , therefore it

represents the part of the state with full visibility of interference but no distinction between the paths. All of the

which-way information (i.e., values dependent on ϑM(t)) is contained in the coefficient of the Hermite-Gaussian

component â†
1|0〉 and prevented from further influencing the carrier wave by the orthogonality of the two modes.

The amplitude of â†
1|0〉 is linear in all angles ϑM(t). The constant of proportionality will always be nonzero
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for αA(t), αB(t), and αC(t), unless the corresponding path is blocked. However, αE(t) and αF (t) in the â†
1|vac〉

component are undergoing interference of the same quality as paths A and B do in the â†
0|vac〉 component. The

last point is a direct consequence of the fact that the terms containing δA(t), δB(t), and δC(t) come from exactly

one of the three paths each, while the terms containing δE(t) or δF (t) appear in both paths A and B and therefore

interfere the in same way as the carrier Gaussian wave in these two paths. Thus the output state can be split

into three components with different characters with respect to path distinguishability. The Gaussian component

carries no which-way information. This is shown in figure 4.5 (d) in which all three paths interfere. The Hermite-

Gaussian component then breaks further down into two components. The part that corresponds to being marked

by mirrors E or F carries partial which-way information in that they exclude path C but these still undergo

interference as shown in figures 4.5 (e) and (f) respectively as these mirrors do not distinguish between paths A
and B. Finally the component corresponding to being marked by mirror A, B or C shown in figure 4.5 (a), (b) and

(c) respectively carries full which-way information.

We propose this simple explanation as a fully traditional alternative to the explanation given in the conclu-

sions section of [1], and moreover, one to be readily foreseen from the fact that which-way marking at mirrors E
and F does not distinguish between two interfering paths.

4.4 Analysis of the relevant cases

Please see print version or
figure 2 (a) of ref. [1].

(a) When the inner interferometer is tuned to con-
structive interference towards mirror F peaks cor-
responding to all the mirrors are observed.

Please see print version or
figure 2 (b) of ref. [1].

Due to copyright reasons these figures are removed from the electronic copy.

(b) When the inner interferometer is tuned to de-
structive interference towards mirror F peaks cor-
responding to mirrors E and F are not observed.

Please see print version or
figure 2 (c) of ref. [1].

(c) When mirror F is blocked while the inner in-
terferometer is tuned destructive interference to-
wards mirror F only one peak corresponding to
mirror C is observed.

Please see print version or figure 5 of
Supplement I to ref. [1].

(d) When mirror C is blocked while the inner in-
terferometer is tuned destructive interference to-
wards mirror F no peaks are observed.

Figure 4.6: The power spectra presented in [1] (a,b,c) and Supplement I (d) appended to it for the various config-
urations of the nested Mach-Zehnder interferometer.

For ease of comparison the results of [1] are reproduced in figure 4.6. Quantifying our results, direct applica-
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tion of the output state (4.16) to the effective observable (4.15) yields the differential signal as

〈ψout(t)|∆̂I|ψout(t)〉 = 2I0

9

∑
M

ℜ
(
e−iζ(zD )α∗

0αM(t)
)
. (4.18)

Inserting for the values of αM results in meaningful simplification only in the case where the phases φA , φB,

φC are equal or differ by integer multiples of π. By setting eiφA = eiφC = eiΦ and eiφB =±eiΦ in (4.17) one can see

that α∗
0αM is purely imaginary under this restriction and |α0| takes the value 2±1 for the constructive (+) and

destructive (−) interferences arranged in the inner Mach-Zehnder interferometer. The expectation value of the

differential intensity is then

〈ψout(t)|∆̂I|ψout(t)〉 = 2I0

9
sinζ(zD)|α0|

(
δA(t)±δB(t)+δC(t) + (|α0|−1

)(
δE(t)+δF (t)

))+O(δ2). (4.19)

This result agrees perfectly with the experimental results in [1] in the studied cases with path C opened

shown in figures 4.6 (a) and (b). In particular, if all the three paths are aligned for constructive interference, then

eiφA = eiφB = eiφC and |α0| = 3. This results in equal sensitivities to displacements from mirrors A,B and C and

double sensitivities to displacements from mirrors E and F, which in turn agrees with the 1 : 4 ratios of the peaks

in the power spectrum of the intensity. If path B is brought completely out of phase with path A and consequently

with C, then |α0| = 1, which explains the same factors in front of the three peaks A,B and C as in the above case

as well as the disappearance of any peaks at E and F in the spectral analysis of the signal.

To complete our comparison with [1], we show the correspondence of (4.19) to the experimental results in

which paths F and C are individually blocked shown in figures 4.6 (c) and (d) respectively. In the case of path

F or C being blocked eiφA,B or eiφC must be replaced by zero, respectively, in (4.17). By examining (4.17) and

(4.18) the consequences of these conditions may readily be seen. Blocking path F results in a single peak at C
as the only non-vanishing coefficients in the output state are αC(t) and crucially α0 showing that any light car-

rying information about the inner Mach-Zehnder interferometer has been prevented from reaching the detector.

Blocking path C results in the vanishing of αC(t) and in |α0| taking the value |exp(iφA)+exp(iφB)|. In the case

when constructive interference is arranged in the inner Mach-Zehnder interferometer all peaks along the A and

B paths show up as the carrier wave reaches the detector via these paths and so do all the perturbations caused

by the mirrors along these paths. When destructive interference is arranged, however, α0 vanishes and—with

the carrier wave absent—so does the entire signal.

4.5 Tunability of the peak heights

The analysis presented above shows that it is possible to reproduce the features described in [1] using conven-

tional quantum optical theory without recourse to spatially disconnected paths. We can make some predictions

for further effects based on this theory. From (4.9) we can see that if the relative phase of the Gaussian and

Hermite-Gaussian components could in principle be modified independently, the differential signal could be arti-

ficially strengthened or damped. For example, if the phase of the â†
0|vac〉 component was modified by an amount

of ζ(zM)− ζ(zD)+ π
2 , the expectation value of ∆̂I would become the limit value, as if the detector was placed at

infinity. Similarly, if the phase of the Gaussian component was modified by ζ(zM)−ζ(zD), the differential signal

would vanish. Although unexplored in [1], the experiment readily provides means of achieving this. All one needs

to do is break the condition of the paths being aligned in phase (or completely out of phase). This can be best

illustrated with path C unblocked, paths A and B with opposite phases, and allowing an extra phase shift by

statically displacing the mirror C. (In [1] only the mirror B was displaced to control relative phases of the paths.)
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In this setting, the values of the coefficients in (4.16) can be written as

α0 = eiφC ,

αM(t)= eiφM iδM(t), M ∈ {A,B,C},

αE(t)=αF (t)= 0

(4.20)

and the detector signal as

〈ψout(t)|∆̂I|ψout(t)〉 = 2I0

9

(
sin

(
φC −φA +ζ(zD)

)(
δA(t)−δB(t)

)+sinζ(zD)δC(t)
)
. (4.21)

Thus the relative strengths of the peaks at A and B to that of the peak at C can be tuned by simply moving the

mirror C. In particular, by matching the phase difference of φA−φC to the Gouy phase ζ(zD) (more precisely, to the

Gouy phase difference ζ(zD)−ζ(zA,B) had the approximation zA,B ¿ zR been not taken) and keeping φB −φA = π

fixed , the peaks at A and B (or either of them individually for zA 6= zB) may disappear completely.

4.6 Conclusions

We have modelled the experiment presented in [1] using only waves propagating forward in time and the inter-

ference of the possible paths. This allowed us to attribute the disappearance of peaks E and F in transitioning

from maximum to minimum possible interference towards mirror F to simple interference of paths in the inner

Mach-Zehnder interferometer as mirrors E and F do not distinguish between paths A and B. We have also shown

that the simultaneous disappearance of all three remaining peaks when blocking path C while maintaining de-

structive interference between the other two paths follows from the need for the perturbed wave â†
1|vac〉 to mix

with the unperturbed carrier wave â†
0|vac〉. The necessary presence of â†

0|vac〉 for a non-vanishing signal means

that interference between all the unblocked paths is a crucial part of the weak which-way measurement.

As a novel contribution to the discussion of this experimental setup we found the crucial dependence of the

relative heights of the peaks in [1] on the three phases φA,B,C associated with the three path lengths. In particular

we have shown that some of these may be made to vanish by tuning the three path lengths. This shows by explicit

construction that interpreting the lack of trace of a given mirror in the signal to mean that the photon has not

interacted with that mirror is erroneous. Furthermore we have also found a hitherto unexplored tuning of the

interferometer in which, without blocking any of the paths, the trace of only mirror C is present in the output

signal.
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Chapter 5

Two-particle interference

This chapter is concerned with Hong-Ou-Mandel interference in the case of particles possessing several degrees

of freedom (DoF). The basic principles are the same as that of chapter 4. The new feature one must take into

account here is that some of the alternative paths leading to a particular physical outcome are related by the

exchange of particles. Hence the phase relationship of the amplitudes of these alternative paths are defined by

the symmetry of the biparticle under particle exchange. Of the three exchanges possible on a biparticle with two

degrees of freedom (DoF1, DoF2, Particle) only two are independent. We study the interaction of a biparticle with

a beam splitter. The beam splitter cares about only one (the spatial) degree of freedom.

The content of this chapter is an original contribution done in collaboration with Václav Potoček and Stephen

Barnett published in the Journal of Optics [73].

5.1 Introduction

In a quantum mechanical description identical particles must be treated as indistinguishable. These come in

two different families, bosons and fermions, distinguished by their spin or helicity. States describing bosons are

symmetric under the exchange of particles and states describing fermions are antisymmetric under the exchange

of particles [74, §14].

In the quantum mechanical description of any process different alternatives by which the process might happen

add at the amplitude level rather than at the probability level if the two alternatives lead to physically indistin-

guishable outcomes [11, §1]. It is this that gives rise to interference phenomena. In particular whether identical

particles are exchanged or not during a physical process constitute such indistinguishable alternatives. As a re-

sult of this bosons and fermions exhibit behaviour quite distinct from one another [75].

This interference due to exchanged alternatives has been demonstrated for photons in the classic experiment

of Hong, Ou and Mandel [15] in which one photon is incident on each face of a balanced beam splitter. If the

modes occupied by the two particles interfere then the two photons always exit the beam splitter together [3, §6].

This is in contrast to the behaviour for distinguishable particles that exit together with probability 1/2. As the

two photons are made indistinguishable by adjusting their arrival times this results in the characteristic Hong-

Ou-Mandel dip. This provides a useful tool to demonstrate the interference of two modes [76] also in the case

when the distinguishable to indistinguishable transition is achieved by a degree of freedom other than time of

arrival [77]. The fermion counterpart to Hong-Ou-Mandel interference has also been demonstrated, by showing

that two electrons in the same spin state impinge on a beam splitter and the result is that they never leave in

the same arm [14]. This is consistent with the Pauli exclusion principle as both phenomena stem from the same

underlying principle that quantum states describing fermions are antisymmetric under exchange of the two par-

59
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ticles.

It is possible for the photons to exhibit fermion-like statistics at a beam splitter by leaving through different ports

if the transverse spatial profile [78] or polarisation state [79] is chosen suitably. In both cases these are antisym-

metric states forcing the state describing the spatial path degree of freedom to be antisymmetric.

The key feature resulting in the different behaviour of bosons and fermions at a beam splitter is the different sym-

metry that states describing them satisfy in the path degree of freedom [8]. In this chapter we consider particles

with multiple quantum numbers and show that control can be exerted over how the overall exchange symmetry

is distributed between the exchange symmetries of the two different quantum numbers. We use path and orbital

angular momentum as physical examples of these quantum numbers, allowing us to probe the symmetry in the

path quantum numbers using only a beam splitter. We show that for both bosons and fermions it is possible to

obtain the full range of allowed output statistics exhibited by bosons, fermions or mixtures of them. This includes

the extremal cases of purely bosonic and purely fermionic statistics. It is implicit in the construction of our chosen

states that the orbital angular momentum state can have arbitrarily large dimensionality.

5.2 Indistinguishable particles with two degrees of freedom

In the case of two degrees of freedom, the indices i and j in (3.42) are replaced by pairs of numbers (i,u) and ( j,v).

To describe a state of a particle with two degrees of freedom two numbers need to be specified in place of just one.

Here i, j are two modes of the first degree of freedom (later to be the port modes) and u,v are two modes of the

second degree of freedom (these will be angular momenta). In the particle pair creation operators we group the

indices of the same degree of freedom together according to

â†
iu â†

jv = Â†
i juv (5.1)

so that the second degree of freedom is seen as an extension to the first in (3.39). We distinguish the degrees of

freedom only by numbers as there is no restriction on what these may be other than that they must be indepen-

dent degrees of freedom. For example position and spin coordinates are a suitable choice of degrees of freedom

for this analysis however position and momentum coordinates are not as these two degrees of freedom act non-

trivially on the same state space. A position state can be expressed as a superposition of momentum modes

so exchanging the momentum properties of two particles is necessarily accompanied by exchanging the position

properties. This is the case for all conjugate degrees of freedom, e.g. angular position and angular momentum,

but also more generally for any two noncommutative observables, for example x and y components of spin.

5.2.1 Exchange operators

Either of the exchanges of the numbers corresponding to only one of the degrees of freedom

X̂(1) : Â†
i juv|vac〉 7→ Â†

jiuv|vac〉, (5.2)

X̂(2) : Â†
i juv|vac〉 7→ Â†

i jvu|vac〉 (5.3)

on its own is no longer sufficient to implement particle exchange. Particle exchange now means the simultaneous

exchange of both properties [16, 74]. The equivalence between the exchange of particles and of occupied modes

remains valid only by thinking of modes in a slightly more general way. We consider modes to be composite if they

are specified by several constituent modes from distinct degrees of freedom. The exchange of the two occupied

composite modes as outlined above is then equivalent to particle exchange. If the two particles are degenerate
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with respect to one of the constituent degrees of freedom we need not consider that degree of freedom as part

of the composite mode for the analysis of exchange symmetries as long as this degeneracy remains. In this way

degeneracy with respect to a degree of freedom corresponds to the removal of that degree of freedom. Degeneracy

with respect to a composite degree of freedom means degeneracy with respect to all its constituent degrees of

freedom.

In the case of multiple degrees of freedom, one can always partition a composite degree of freedom into two

constituent degrees of freedom which themselves may or may not be further decomposable. For this reason it is

sufficient to consider only two degrees of freedom to illustrate the principal difference between one and multiple

degrees of freedom.

For two degrees of freedom the equivalence between particle exchange and the exchange of modes takes the

form [16, §58]

X̂(1)X̂(2) = X̂(2)X̂(1) = X̂(â†). (5.4)

Symmetry under exchange of particles is distributed between the two constituent degrees of freedom in the sense

of the above relation. The exchange operators are Hermitian and square to the identity so they each have possible

eigenvalues of 1 or −1. The combination of (5.4) and of (3.37) gives the constraint on the eigenvalues of exchange

operators

X(1)X(2) = (−1)2s. (5.5)

If the symmetries in the two degrees of freedom are each well-defined, bosons must have the same exchange

symmetry in both whereas fermions must have opposite symmetries [79]. Mathematically one can express this as

Ŝ(1)Ŝ(2) + Â(1)Â(2) = Ŝ(â†) (5.6)

Ŝ(1)Â(2) + Â(1)Ŝ(2) = Â(â†) (5.7)

where the symmetriser and antisymmetriser (for k = 1,2, â†) are constructed out of the exchange operators as

Ŝ(k) = 1+ X̂(k)

2
Â(k) = 1− X̂(k)

2
. (5.8)

When looking at only one of the degrees of freedom it is possible to have a state that does not have a well defined

symmetry under the exchange of mode numbers and yet does not violate the requirement (3.37) that the particle

pair are either bosons or fermions and not a superposition of the two

|ψ, s〉 =ψS |X(1) = 1, s〉+ψA |X(1) =−1, s〉. (5.9)

This is not possible if there is only one degree of freedom available or equivalently when degeneracy in all but

one degree of freedom is imposed on the particle pair. Unless ψS or ψA vanish applying either X̂(1) or X̂(2) to this

state will produce a state linearly independent of |ψ, s〉. This is what is meant by the state of the first or second

degree of freedom not having a well defined symmetry. However it will always be the case that after applying both

exchange operators one obtains (−1)2s|ψ, s〉. Each of the exchange operators need not correspond to symmetries

of the state but their product must.

5.2.2 Biparticle excitations of modes

Let us consider explicitly the particle symmetrised (B̂†) and particle antisymmetrised (F̂†) biparticle modes. Port

modes and orbital angular momentum modes are used for the first and second degree of freedom respectively from

here on. This choice is due to a feasible experimental implementation for photons discussed towards the end of the
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chapter. It is not necessary to make a particular choice for the degrees of freedom until the next section but it is

linguistically convenient. The port modes available to the particles are 1 and 2 of which they may occupy the same

one (an unavoidable consequence of considering biparticle evolution under the beam splitter even if the starting

point is particles occupying different ports). However it shall be ensured that the angular momentum modes l
and j available to the biparticle are distinct (l 6= j). If the angular momentum numbers were to be identical then

the physics would reduce to that of Hong-Ou-Mandel interference for a biparticle with a single degree of freedom

as discussed in chapter 2. All the possible such biparticle states are obtained by

B̂†
11l j =

1
2

{â†
1l , â

†
1 j}, F̂†

11l j =
1
2

[â†
1l , â

†
1 j], (5.10)

B̂†
22l j =

1
2

{â†
2l , â

†
2 j}, F̂†

22l j =
1
2

[â†
2l , â

†
2 j], (5.11)

B̂†
12l j =

1
2

{â†
1l , â

†
2 j}, F̂†

12l j =
1
2

[â†
1l , â

†
2 j], (5.12)

B̂†
21l j =

1
2

{â†
2l , â

†
1 j} and F̂†

21l j =
1
2

[â†
2l , â

†
1 j] (5.13)

acting on the vacuum. In (5.10) and (5.11) (i.e. when both particles are in the same port mode) one may as well

put the symmetrising brace {} around l j for the B̂†’s and the antisymmetrising braces [] around l j for the F̂†’s. As

the port mode is necessarily exchange symmetric (X(1) = 1), due to the two numbers being identical, the particle

exchange symmetry defines the angular momentum exchange symmetry (X̂(2) = X̂(â†)).

In (5.12) and (5.13) (i.e. when modes of both the port degree of freedom and the angular momentum degree of

freedom are distinct) this is however not the case. Each of these is composed in equal parts of angular momentum

exchange symmetric and antisymmetric pieces

B̂†
12l j = Â†

{12}{l j} + Â†
[12][l j] B̂†

21l j = Â†
{12}{l j} − Â†

[12][l j] (5.14)

F̂†
12l j = Â†

{12}[l j] + Â†
[12]{l j} F̂†

12l j = Â†
{12}[l j] − Â†

[12]{l j}. (5.15)

The relations (5.14) and (5.15) are re-statements of (5.6) and (5.7) respectively in terms of creation operators.

However the defining property (for the present purposes) of the biparticle modes (5.12) and (5.13) is a one-to-one

correspondence between port mode numbers and angular momentum numbers (1 goes with l and 2 goes with j
in (5.12) and the converse is true in (5.13)). The sense in which this correspondence is to be understood is that

when the biparticle creation operators are written out in terms of single particle creation operators 1 and l are

in the subscript of the same creation operator and so are 2 and j in (5.12) and of course the converse pairing is

true for (5.13). Â†
12l j can be interpreted as the particle with angular momentum l being in port 1 and the particle

with angular momentum j being in port 2 (where Â† may be either B̂† or F̂†). The converse relation between port

mode numbers and angular momentum numbers is true for Â†
21l j.

5.3 Beam splitter

In a Hong-Ou-Mandel experiment with such biparticles the outcome in which angular momentum l ends up in

output port 1 is physically distinct from the outcome in which angular momentum l ends up in output port 2. The

particle represented by (5.12) and (5.13) are in this sense distinguishable. It is worth noting that the particles are

only distinguishable in this sense as long as there is no process that can transfer angular momentum between

the two particles.
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Figure 5.1: All the possible distinct outcomes derived from two possible inputs in a Hong-Ou-Mandel experiment
with a particle carrying angular momentum l (green) and a particle carrying angular momentum j (red). The
two rows represent inputs that are angular momentum exchanged alternatives of each other. Each column con-
tains a single physical outcome, hence processes in the same column interfere with each other. These diagrams
correspond to the bottom two rows of matrix elements in (5.16).


Â†

11l j

Â†
22l j

Â†
12l j

Â†
21l j

 7→


t2 r2 rt rt
r2 t2 rt rt
rt rt t2 r2

rt rt r2 t2




Â†
11l j

Â†
22l j

Â†
12l j

Â†
21l j

 (5.16)

Where Â† may be substituted by either B̂† or F̂†. This mimicks the statistics for distinguishable particles. To make

the particle pair indistinguishable one needs to remove the association between the values of the two degrees of

freedom. This can be done by (anti)symmetrising either the first or the second degree of freedom numbers with

respect to exchange. Doing this to either degrees of freedom are equivalent due to the link between the two via

particle exchange (5.4). To understand how the beam splitter acts on two particle multimode states it is more

convenient to consider (anti)symmetrising in the port mode degree of freedom as that is the degree of freedom

that the beam splitter manipulates. In the basis in which the biparticles are symmetrised and antisymmetrised

in the port modes the matrix representation of B̂S takes the form


1p
2
(Â†

11l j + Â†
22l j)

1p
2
(Â†

12l j + Â†
21l j)

1p
2
(Â†

11l j − Â†
22l j)

1p
2
(Â†

12l j − Â†
21l j)

 7→


r2 + t2 2rt 0 0

2rt r2 + t2 0 0

0 0 1 0

0 0 0 1




1p
2
(Â†

11l j + Â†
22l j)

1p
2
(Â†

12l j + Â†
21l j)

1p
2
(Â†

11l j − Â†
22l j)

1p
2
(Â†

12l j − Â†
21l j)

 (5.17)

where again Â† may be substituted by either B̂† or F̂† as the remaining choice in exchange symmetry of the angu-

lar momentum degree of freedom accommodates either. This now looks like the behaviour for indistinguishable

particles (3.52) with the difference that all four transformations are now possible for both bosons and fermions.

This means in particular that for states neither symmetric nor antisymmetric in the port mode degree of freedom

Â†
12l j, which is now a possibility, only the antisymmetric component gives rise to coincidence counts after the

beam splitter.

In (5.17) the port modes have been (anti)symmetrised with respect to M̂. However that means that they are also

(anti)symmetrised with respect to the port mode exchange operator X̂(P). The relationship between the eigenstates
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of the port mode swap M̂ and port mode exchange X̂(P) operators is shown in table 5.1.

X(P) = 1 X(P) =−1

M= 1
Â†

11l j + Â†
22l j

Â†
12l j + Â†

21l j
Not possible

M=−1 Â†
11l j − Â†

22l j Â†
12l j − Â†

21l j

Table 5.1: Port symmetry basis for two particle states classified according to both port mode swap and port mode
exchange operator eigenvalues.

5.4 General one particle per port input state

Let us assume for notational purposes that the input state is such that the two particles occupy distinct port

modes. Recall that in addition to this it is assumed that the particles occupy distinct angular momentum modes.

Given this let ψl j and ψ jl denote the amplitudes of the two physically distinct ways in which the two distinct

angular momenta can be assigned to the two distinct port modes. The first index denotes the angular momentum

in port 1 and the second index denotes the angular momentum in port 2. The angular momentum exchange

symmetric and antisymmetric states can be thought of as superpositions of the two distinct ways in which the

angular momenta can be distributed among the two port modes.

A general input state that contains one particle in each input port with an angular momentum distribution can

in general be split into symmetric and antisymmetric components with respect to angular momentum exchange.

For a state under the assumptions of the previous paragraph this looks like

|in〉 = ∑
l 6= j

ψl j Â
†
12l j|vac〉 = ∑

j<l

(
ψl j Â

†
12l j +ψ jl Â†

12 jl

)
|vac〉 = 2

∑
j<l

(
ψ{l j} Â

†
12{l j} +ψ[l j] Â

†
12[l j]

)
|vac〉, (5.18)

where Â† may be either B̂† or F̂† if the port mode exchange symmetry is the same or the opposite of the angular

momentum exchange symmetry respectively. The factor of two in the last expression arises from the use of the

symmetrisation and antisymmetrisation notation around the index pairs. The angular momentum exchange

symmetry properties of a state parametrised in this way may readily be classified by the symmetry properties

of the matrix Ψ composed of matrix elements ψl j. The most convenient feature of representing the state by the

matrix Ψ is that states related by the exchange of angular momentum numbers correspond to elements of the

matrix Ψ that are related by transposition. The diagonal terms correspond to components of the state that are

degenerate in angular momentum (not included in (5.18) but shall be dealt with briefly towards the end of the

next section) and the off-diagonal symmetric and antisymmetric components under transposition correspond to

angular momentum exchange symmetric and antisymmetric states respectively. Two special classes of states will

be used in the following. These are states for which the sum of angular momenta is well defined (i.e. l + j is the

same for each term in (5.18)) and states for which the difference in the two angular momenta is well defined. (For

one particle per port states let the difference in angular momenta be defined as the angular momentum in port 2

minus the angular momentum in port 1 for consistency in the use of minus signs.) In matrix form these are states
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that have non-zero elements along a single diagonal and along a single anti-diagonal respectively, for example

ΨΣl=1 =


0 0 0 . . .

0 0 ψ01

0 ψ10 0

. . .


Ψ∆l=1 =



. . .

0 ψ−10 0

0 0 ψ01

0 0 0
. . .


. (5.19)

Note that as the angular momentum numbers parametrising the entries extend to infinity in both directions the

element ψ00 is in the middle of the matrix. The ability to introduce a phase between the lower left and upper

right triangles ofΨ allows one to tune the exchange symmetry of the angular momentum state. Consider the case

in which these exchanged alternatives occur with amplitudes equal in magnitude but differing in phase

ψ jl = eiφ(l, j)ψl j. (5.20)

From rearranging the above expression so that the relative phase is expressed on the left hand side one finds that

the phase must satisfy

φ(l, j)=−φ( j, l). (5.21)

If the amplitudes of the one particle per port input state satisfy the restriction (5.20) then the angular momentum

exchange symmetric and antisymmetric components are modulated by φ(l, j) according to

ψ{l j} =
1
2

(
1+eiφ(l, j)

)
ψl j = e−i φ(l, j)

2 cos
(
φ(l, j)

2

)
ψl j (5.22)

ψ[l j] =
1
2

(
1−eiφ(l, j)

)
ψl j =−ie−i φ(l, j)

2 sin
(
φ(l, j)

2

)
ψl j. (5.23)

Note that while control is exerted over the angular momentum exchange symmetry of the state explicitly by the

relative phase between the angular momentum exchanged alternatives the port exchange symmetry is necessarily

also controlled by virtue of the restriction (5.4).

Only the port exchange antisymmetric part of the state will lead to coincidence counts after a 50:50 symmetric

beam splitter according to (5.17). Thus this control over phase between the distinguishable alternatives â†
1l â

†
2 j

and â†
1 j â

†
2l translates directly into variation in coincidence counts. In general the amount of variation introduced

into the coincidence counts is dependent on the values of l and j.
Consider the special case when the exchanged alternatives of all angular momentum pairs are related by the

same relative phase

ψ jl = eisgn(l− j)ϑψl j. (5.24)

For a state of this type the phase between interfering terms is the same for all interfering pairs of biparticle

modes. The input state (5.18) separates cleanly into symmetric and antisymmetric parts

|in〉 = 2e−i ϑ2

(
cos

(
ϑ

2

) ∑
j<l
ψl j Â

†
12{l j} − isin

(
ϑ

2

) ∑
j<l
ψl j Â

†
12[l j]

)
|vac〉. (5.25)

This is not a requirement but makes the demonstration of the effect clear as the coincidence counts of all angular

momentum components are suppressed by the same amount for a given value of the parameter ϑ hence angular

momentum dependent detection is not required to observe the functional dependence of coincidence counts on the

relative phase.
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5.5 An example for photons

A relative phase between ψl j and ψ jl can be introduced by rotating the angular momentum carrying field in

one of the ports and thereby introducing a phase that depends linearly on the rotation angle ϑ with a constant

of proportionality that is the angular momentum number of the photon in that port [80]. Let the phase be

introduced in port 2. Then a biphoton carrying angular momenta l and j will pick up a phase eilϑ if the l units

of angular momenta are carried in port 2 and it will pick up a phase ei jϑ if the j units of angular momenta are

carried in port 2. The difference in phase between the interfering alternatives now depends on the difference in

angular momenta between the two particles l − j. Thus to obtain the desired phase (5.24) by this method what

is required of the initially prepared state is to have a well defined absolute value of the difference between the

angular momenta of the photon pair. Note that well defined |∆l| is specified as ∆l differs by a minus sign for

angular momentum exchanged alternatives both of which must necessarily be present in the state. In the matrix

picture a state of this type has nonzero elements only on two shifted diagonals that are related to each other by

transposition of Ψ. For example

Ψ|∆l|=1 =



. . .
. . . 0 ψ−10 0

ψ0−1 0 ψ01

0 ψ10 0
. . .

. . .


. (5.26)

Further, if any of the elements in one of the shifted diagonals is zero then the corresponding element obtained by

transposition must also be zero.

Spontaneous parametric downconversion is an angular momentum conserving process so a pump beam of well

defined angular momentum λ creates downconverted states for which the sum of angular momenta of the two

photons sum to λ [65, 67]. By reversing the direction of angular momentum in one of the ports, which may be

achieved using a Dove prism, the angular momentum difference in the two ports becomes the constant λ (c.f.

(5.19)). In the matrix form reversing the direction of angular momentum in port 1 or 2 corresponds to reflecting

the matrix about the middle row or column respectively. The resulting state is not yet suitable for an interference

experiment as no term in the state has an interfering partner (assuming λ 6= 0). In other words, the two down-

converted photons would behave as distinguishable particles on the beam splitter. In the matrix picture this can

be seen quite clearly as the non-zero coefficients lie on a single shifted diagonal with the elements of the shifted

diagonal obtained by transposition being zero. However a pump beam with opposite angular momentum −λ will

produce exactly the missing terms required for interference [63]. Hence a pump beam of the superposition

|OAMpump =λ〉+ |OAMpump =−λ〉p
2

(5.27)
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(after a reflection of the transverse spatial profile in port 2) produces a state of exactly the required form (5.26)

for the demonstration of multimode Hong-Ou-Mandel interference. For λ= 1 this looks like

Ψλ=1 = 1p
2



. . .
. . . 0 c−21 0 0 0

c−12 0 c−10 0 0

0 c01 0 c0−1 0

0 0 c10 0 c1−2

0 0 0 c2−1 0
. . .

. . .


(5.28)

where the coefficients cl j are the amplitudes of a biphoton being produced by downconversion with angular mo-

mentum l and j in ports 1 and 2 respectively. The sum of the indices in each of the antidiagonals indicates which

component of (5.27) that antidiagonal originated from. For an arbitrary λ the indices of the antidiagonals sum

to ±|λ| and the two antidiagonals are separated by 2|λ|−1 antidiagonals composed of only 0’s. The property that

the interfering terms are present with equal amplitudes is ensured by the fact that the amplitudes do not depend

on which photon has which angular momentum (cl j = c jl) and that only the magnitudes of the angular momenta

determine the amplitude associated with downconversion (cl j = c|l|| j|) [63]. Due to these symmetries of cl j a state

so produced contains only angular momentum exchange symmetric terms to begin with

1p
2

L−λ∑
l=−L

(
cl,−l−λ|l, l+λ〉+ cl+λ,−l |l+λ, l〉)= L−λ∑

l=−L
c|l|,|l+λ|

|l, l+λ〉+ |l+λ, l〉p
2

. (5.29)

Upon introducing a phase by rotation of port 2 before the beam splitter, as illustrated in Figure 5.2, the exchange

antisymmetric part is introduced

L−λ∑
l=−L

c|l|,|l+λ|e
i
(
l+ λ

2

) [
cos

(
λθ

2

) |l, l+λ〉+ |l+λ, l〉p
2

+ isin
(
λθ

2

) |l, l+λ〉− |l+λ, l〉p
2

]
. (5.30)

Due to typographic reasons (a lot of information being contained in the indices) from (5.29) onward we switch to

Dirac notation B̂†
12l j|vac〉 = |l, j〉 where the first number in the ket represents the angular momentum in port 1

and the second number in the ket represents the angular momentum in port 2. In this notation only the angular

momentum exchange symmetry is given explicitly, the port exchange symmetries are left implicit.

If the pump beam were to be in the superposition (|OAMpump =λ〉−|OAMpump =−λ〉)/p2 then the downconverted

state would have only angular momentum exchange antisymmetric terms to begin with. These two possible pump

beams for λ = 1 correspond to first order Hermite-Gaussian modes oriented at right angles to each other. These

were used to demonstrate the existence of both peaks and dips in multimode Hong-Ou-Mandel interference [78].

As photons are bosons the angular momentum and the port exchange symmetries must be the same. Further we

know that only the port antisymmetric states give rise to coincidence counts after passing through a symmetric

50:50 beam splitter. Thus the variation in coincidence counts is expected to vary as

sin2
(
λθ

2

)
. (5.31)

If the same experiment is run with a Gaussian pump (zero angular momentum) then after a reflection in one of

the arms we have the state
L∑

l=−L
cll |l, l〉. (5.32)
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While the rotation of one of the arms introduces a phase that is not global it does not lead to a variation of

coincidence counts as there are no two two-particle terms in this sum that are interfering. The only effect to be

observed is Hong-Ou-Mandel interference irrespective of the introduced phase. The root cause of this is that the

two angular momentum numbers in each of the ports is the same in each term in (5.32) so no antisymmetric

angular momentum state can be constructed and the problem reduces to Hong-Ou-Mandel interference with only

one degree of freedom. This could in principle be used for calibration or as a control run to make sure that no

variation in coincidence counts is attributable to some other feature of the experiment.

Yingwen Zhang et al. [81] have performed this experiment with the state obtained directly from downconversion

run with a pump beam of zero angular momentum

∑
l 6=0

cl,−l |l,−l〉 =
L∑

l=1
cl,l

(|l,−l〉+ |− l, l〉). (5.33)

which does not have the property that the angular momentum difference is the same between the two ports for

all terms. Nevertheless the same method of introducing a relative phase still has the effect of rotating between

the exchange symmetric and exchange antisymmetric subspaces

L∑
l=1

p
2cl,l

[
cos(lθ)

|l,−l〉+ |− l, l〉p
2

− isin(lθ)
|l,−l〉+ |− l, l〉p

2

]
. (5.34)

From the above expression it is clear that the angular momentum symmetric subspace vanishes for lθ = (2n+
1)π2 where n is an integer hence for the choice of θ = π/2 only the odd valued angular momenta give rise to

coincidence counts. In their version of the experiment the angular momentum dependence of the coincidence

count suppression is exploited to act as an angular momentum parity filter.

5.6 Conclusions

We have shown that the statistics of particles incident on a beam splitter can be tuned if they possess an addi-

tional degree of freedom. The range of statistics attainable includes that of identical bosons, identical fermions

and those of distinguishable particles. The entire range of behaviour is attainable in implementations whether

the underlying particles are bosons or fermions. This sheds new light on the role of the particle type in inter-

ference experiments and means of overriding the natural statistics induced by spin, or as a convenient way of

studying bosonic and fermionic as well as intermediate statistics in a single experiment. Alternatively, one could

use the theory presented in the main text to inquire on the symmetry properties of a given two-particle state.

We proposed an experimental set-up by which the above concepts can be tested using angular momentum-

entangled photons generated by spontaneous parametric down conversion. In this scheme the change attained in

the output statistics depends on the angular momentum of the pump beam and a rotation angle.
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Figure 5.2: The 1p
2

(|λ〉+ |−λ〉) pump beam illuminates a non-linear crystal (NLC) that performs type I downcon-
version. The resulting state is split into two arms by a knife edge prism (KEP). In the bottom arm the angular
momentum is flipped using a Dove prism (DP) and a rotation is performed using a system of 2 more Dove prisms
(note that a single Dove prism rotated appropriately about the beam axis can perform the composite reflection
and rotation). This setup is also suitable for use with an |λ = 0〉 pump to illustrate that an angular momentum
degenerate state cannot be affected by a rotation in arm 1.
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Chapter 6

Slow light in free space

This chapter deals with how the group velocity of a pulse of light is affected by the transverse spatial structure of

the mode that the pulse is excited in. It is important to note that by “transverse” we mean the plane transverse

to the propagation direction. Any spatial structure in this plane is achieved by a distribution of k-vectors not all

aligned with the propagation direction. As one would expect from an intuitive geometrical picture the resulting

delay is given by ‘how much’ the k-vectors are off by in pointing in the propagation direction.

This chapter is based on work done in collaboration with Václav Potoček, Fiona Speirits and Stephen Barnett in

the Quantum Theory group, with Jaqui Romero, Daniel Giovannini and Miles Padgett in the Optics group who

performed the experiment and with Daniele Faccio from Heriott Watt University [2].

6.1 Introduction

The speed of light is trivially given as c
n , where c is the speed of light in free space and n is the refractive index

of the medium. In free space, where n = 1, the speed of light is simply c. We show that the introduction of

transverse structure to the light beam reduces the group velocity by an amount depending upon the aperture of

the optical system. The delay corresponding to this reduction in the group velocity can be greater than the optical

wavelength and consequently should not be confused with the ≈ π Gouy phase shift [82, 83]. We measure the

delay as a function of the transverse spatial structure of single photons.

The slowing down of light that we observe in free space should also not be confused with slow, or indeed fast, light

associated with propagation in highly nonlinear or structured materials [84,85]. Even in the absence of a medium,

the modification of the speed of light has previously been known. For example, within a hollow waveguide, the

wave vector along the guide is reduced below the free-space value, leading to a phase velocity v(φ) greater than

c. Within the hollow waveguide, the product of the phase and group velocities is given as v(φ)v(g)
z = c2 , thereby

resulting in a group velocity v(g)
z along the waveguide less than c [86]. Although this relation for group and phase

velocities is derived for the case of a hollow waveguide, the waveguide material properties are irrelevant. It is

the transverse spatial confinement of the field that leads to a modification of the axial component of the wave

vector, kz . In general, for light of wavelength λ , the magnitude of the wave vector, k0 = 2π
λ

, and its Cartesian

components {kx,ky,kz} are related through

k2
z +k2

x +k2
y = k2

0. (6.1)

All optical modes of finite x, y spatial extent require non-zero kx and ky , which implies kz < k0 , giving a corre-

sponding modification of both the phase and group velocities of the light. In this sense, light beams with nonzero
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Figure 6.1: Adding spatial structure to a light beam. (A) A Bessel beam can be created with an axicon, producing
conical phase fronts of angle α. (B) A ray entering a confocal telescope at radius r will travel an additional
distance proportional to cos−1(β).

kx and ky are naturally dispersive, even in free space.

6.2 Group velocity and wave vectors

Here we derive an analytical relationship between the group velocity of a narrow bandwidth pulse in the z direc-

tion and the x and y components of the k-vector k⊥. Recall from (1.48) and (1.49) that for a narrow bandwidth

pulse the spread in frequencies is far smaller than the central optical frequency of the pulse so that the ratio of

the two can be used as an expansion parameter. The result turns out to correspond to a geometric model. Let us

first consider the more heuristic eikonal approach as it provides the gist of the more rigorous argument based on

the wave model.

6.2.1 Eikonal model

Consider a plane wave at some angle α with respect to the direction in which propagation is of interest as in

figure 6.1A. By the simple frequency-wavenumber relationship ck0 =ω and (6.1)

ω= c
√

k2
⊥+k2

z. (6.2)
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This gives the phase and group velocities in the z-direction as

v(φ)
z = ω

kz
= c

√√√√1+ k2
⊥

k2
z

(6.3)

and v(g)
z = dω

dkz
= c√

1+ k2
⊥

k2
z

. (6.4)

When α is small (this is satisfied throughout the experiment) then |k⊥| ¿ kz ≈ k0 in which case a binomial

expansion of the group velocity (6.4) gives

v(g)
z ≈ c

(
1− k2

⊥
2k2

0

)
. (6.5)

This foreshadows the result that when not a single plane wave but a multitude of them subtly non-colinear are

considered the expectation of the transverse wave vector takes the place of the transverse wave vector in (6.5).

6.2.2 Wave model

The reciprocal of the group velocity along the propagation of direction, z, of a beam with phase profile φ(x, y, z;ω)

at a central frequency ω0 is given by,

1

v(g)
z

=
(
∂kz

∂ω

)
ω0

= ∂2φ(x, y, z;ω0)
∂z∂ω

. (6.6)

To take an effective group velocity of an electromagnetic disturbance over a volume in which the velocity is

changing, one needs to take a harmonic mean of the group velocity which consists of taking the reciprocal of the

averaged reciprocal group velocity (6.6)

v̄(g)
z =

(
1

z2 − z1

∫ z2

z1

1

v(g)
z

dz

)−1

. (6.7)

However in averaging the reciprocal group velocity one must also weight it by the local intensity of the field

|ψ(x, y, z;ω0)|2. The reciprocal group velocity averaged over a volume bounded by the planes perpendicular to the

direction of propagation at z1 and z2 consists of the expression

1
z2 − z1

∫ z2

z1

Ï
x,y

|ψ(x, y, z;ω0)|2 ∂
2φ(x, y, z;ω0)

∂z∂ω
dxdydz (6.8)

divided by the total weight Ï
x,y

|ψ(x, y, z;ω0)|2dxdy. (6.9)

Let us first deal with the total weight. As the experiment takes place entirely in the paraxial regime the formal

analogy between the paraxial wave equation (1.22) and the two dimensional Schrödinger equation (1.23) is ex-

ploited. Due to the formal correspondence we can borrow the ket representation in which the scalar beam profile

ψ(x, y, z;ω) is represented by |z,ω〉. Using this notationally compact way to deal with integrals over the transverse

plane equation (6.9) becomes simply
〈z,ω0|z,ω0〉 . (6.10)

For dealing with (6.8) one must bear in mind the relationship ψ(x, y, z;ω)= |ψ(x, y, z;ω)|eiφ(x,y,z;ω) so that the phase

profile can be represented as Im
{
ln

[
ψ(x, y, z;ω)

]}
. With this and extensive algebraic manipulation the expression
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for the group velocity in the region bounded by planes (transverse to the propagation direction) at z1 and z2 boils

down to

v̄(g)
z = (z2 − z1)/Im

[(
∂

∂ω

〈z,ω0|z,ω〉
〈z,ω0|z,ω0〉

)
ω0

]z2

z1

. (6.11)

This only gives positive phase speed (in other words, describes a wave travelling in the direction of the +z axis) if

the notation is chosen so that the kz term comes with a +i coefficient in the exponent.

If we use this group velocity to calculate the time it takes a wave packet to cover the distance z2 − z1, we obtain

t = Im
[(

∂

∂ω

〈z,ω0|z,ω〉
〈z,ω0|z,ω0〉

)
ω0

]z2

z1

=
[(
∂arg(〈z,ω0|z,ω〉)

∂ω

)
ω0

]z2

z1

. (6.12)

Thus the analytic expression for the delay of a non-planar wavefront, compared to a plane wave that travels at

speed c (which we approximate with a collimated beam in the experiment) is,

δz = ct− (z2 − z1)=
[(
∂arg(〈z, ck0|z, ck〉)

∂k

)
k0

− z
]z2

z1

(6.13)

where we have gone from dealing with frequencies to wave numbers using the relation ck = ω as applied to

derivatives with respect to these variables. Our experiment is well within the paraxial approximation. Equation

(6.13) can then be simplified even further in this case. The wave function ψ(x, y, z; ck) evolves from z1 to z2 by the

paraxial wave equation,
∂ψ

∂z
= i

2k
∇2
⊥ψ+ ikψ, (6.14)

where ∇2
⊥ = (∂/∂x)2 + (∂/∂y)2. The paraxial wave equation takes this slightly unusual form as it is expressed in

terms of the full function ψ= ueikz z whereas the paraxial wave equation in its usual form (1.22) governs u. Then

|z2, ck〉 = exp
(

id
2k

∇2
⊥+ ikd

)
|z1, ck〉, (6.15)

where d = z2 − z1 is the distance across which propagation is being considered. With the above substitution

(
∂〈z2, ck0|z2, ck〉

∂k

)
k0

= 〈z1, ck0|
(
− id

2k2
0
∇2
⊥+ id

)
|z1, ck0〉+〈z1, ck0| ∂

∂k
|z1, ck0〉 (6.16)

so that the delay (6.13) is given by

[(
∂arg(〈z2, ck0|z2, ck〉)

∂k

)
k0

− z
]z2

z1

= Im
〈z1, ck0|

(
− id

2k2
0
∇2
⊥+ id

)
|z1, ck0〉

〈z1, ck0|z1, ck0〉
−d

=− d
2k2

0
ℜ〈z1, ck0|∇2

⊥|z1, ck0〉
〈z1, ck0|z1, ck0〉

(6.17)

Note that ∇2
⊥ can be written as −k̂2

⊥, to denote a transverse wave vector, where

k̂⊥ =−i∇⊥. (6.18)

This implies that ∇2
⊥ is a Hermitian operator and thus its expectation value is real. The final expression for δz is

then

δz = d
2k2

0
〈k̂2

⊥〉|z1,ck0〉. (6.19)
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We can see that the effective group velocity

v(g)
z = c

1+ 〈k̂2
⊥〉

2k2
0

≈ c

(
1− 〈k̂2

⊥〉
2k2

0

)
(6.20)

is invariant under the free propagation and always smaller than c in agreement with the geometric ray optical

model based on figure 6.1

6.3 Bessel beams

Extending upon the case of a mode within a hollow waveguide, an example of a structured beam is a Bessel beam

6.1, which is itself the description of a mode within a circular waveguide [82,87]. In free space, Bessel beams can

be created using an axicon (figure 6.1A), or its diffractive optical equivalent [88], that converts a plane wave into

conical phase fronts characterised by a single radial component of the wave vector, k⊥ =
√

k2
x +k2

y [89–91]. This

single value of the radial component gives a unique value of kz < k0 and hence uniquely defined phase and group

velocities [92].

To avoid complications arising from the finite thickness of refractive optical elements, we use diffractive optics,

idealised as having zero thickness. For a Bessel beam created with diffractive optics [88], characterised by k⊥

(with k⊥ ¿ k0 ), the axial component of the wave vector is given by kz = k0

√
1− k2

⊥
k2

0
. The resulting phase velocity

and group velocity along z are

v(φ)
z = c

(
1− k2

⊥
2k2

0

)−1

(6.21)

and v(g)
z = c

(
1− k2

⊥
2k2

0

)
(6.22)

This modification of the phase and group velocities of Bessel beams has been examined in the classical, many-

photon regime. Subtle changes in velocity have been previously studied using Bessel beams in the microwave [93]

and optical regimes [94–96].

We demonstrate the intrinsic and linear nature of this reduction in group velocity, by measuring the delay in the

arrival time of single photons. Over a propagation distance of L , the reduction in the group velocity compared to

the plane-wave case gives a delay of

δzBessel ≈ L
k2
⊥

2k2
0
= L

2
α2. (6.23)

As an example, for an axicon designed to produce α= k⊥
k0

= 4.5×10−3 over a propagation distance of 1m, we predict

a delay of ∼ 30 f s, corresponding to a spatial delay of 10µm.

To measure the arrival time of single photons with femtosecond precision we adopt a method relying upon a

quantum effect, namely, the Hong-Ou-Mandel interference [15]. A parametric down-conversion source is used to

produce photon pairs that are strongly correlated in their wavelengths and their generation time. One photon

can then act as a reference, against which the arrival of the other photon can be compared figure 6.2. This second

photon goes through a free-space propagation section, in which a first spatial light modulator can be programmed

to act as a diffractive optical element implementing axicons or lenses. A second spatial light modulator then

reverses the structuring introduced by the first. When the arrival times of the two photons incident on a beam

splitter are matched to a precision better than their coherence time, both photons emerge from the same output

port. Under this matched condition, the coincidence rate for detection at the two output ports of the beam splitter
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Figure 6.2: Experimental apparatus. (A to D) A beta-barium borate (BBO) crystal is pumped by an ultraviolet
(UV) laser to produce photon pairs via spontaneous parametric down conversion. Photon pairs are separated by
a knife edge prism (KEP); a band-pass filter (BPF) sets the spectral profile of the down-converted light. Half-
wave plates (HWP) are used to maximise the efficiency of the spatial light modulators (SLM) and match the
polarisation of the polarisation-maintaining fibers (PMF). Signal and idler photons enter a fiber-coupled beam
splitter (BS) [97], whose outputs are single mode fibers (SMF) connected to avalanche photodiodes (SPAD). The
SPADs feed a coincidence counter.

falls to zero, which results in what is known as a Hong-Ou-Mandel dip. The position of the dip is recorded as a

function of the spatial shaping of the photon propagating in free space.

6.3.1 Experimental results

Taking the Bessel beam as our first example, the transverse structuring can be turned on and off for each value

of path delay. The corresponding position of the Hong-Ou-Mandel dip can then be directly compared between the

two cases. Figure 6.3A shows the baseline-normalised coincidences for two different values of α= k⊥
k0

(where we

define the baseline as the coincidence count at path delay far from the dip position). In all cases the width of the

Hong-Ou-Mandel dips is the same, set by the 10nm spectral bandwidth of the down-converted photons. The key

result is that the Hong-Ou-Mandel dip associated with the Bessel beam is delayed with respect to the dip obtained

for a collimated beam. We measure a delay of 2.7±0.8µm for the case of α1 = 0.00225rad and 7.7±0.8µm for

α2 = 0.00450rad. These measured values agree with theoretical predictions of 2.0µm and 8.1µm for α1 and α2,

respectively. The analytical form of this predicted delay (equation (6.23)) suggests a simple geometrical model,

where the delay arises from the additional length of the diagonal ray, propagating at an angle α with respect

to the optical axis. In figure 6.3B we compare the measured and predicted values for the delay, showing that

equation (6.23) is valid over the range of angles that we tested for the Bessel beam.

6.4 Gaussian beam

Perhaps the most common form of spatial structuring of a light beam is focusing, which also leads to a modification

of the axial component of the wave vector. We consider the propagation of light through a telescope comprising
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Figure 6.3: Experimental results for a Bessel beam. (A) Measured Hong-Ou-Mandel dips for two values of α
(α1 = 0.00225, red; α2 = 0.00450, blue) and the α= 0 case (black), with corresponding best fits [15]. (B) Measured
delays (open circles) and theoretical prediction from equation 1 (solid line), for different values of α. The delays
are expressed with respect to the α= 0 case, corresponding to an unstructured collimated beam.

Please see print version or figure 4 of ref [2].

Due to copyright reasons this figure is removed from the electronic copy.

Figure 6.4: Measured Hong-Ou-Mandel dips for collimated and focused Gaussian beams. (Left) Hong-Ou-Mandel
dip comparison for collimated (black) and focused (red) Gaussian beam. Minima are marked by A and B. (Right)
Hong-Ou-Mandel dip comparison for cases with an r = 1.4mm centre stop (blue, corresponding to inset C), and
an edge stop of the same radius (grey, corresponding to inset D). Minima are marked by C and D. The red dashed
curve is shown as a reference.

two identical lenses separated by twice their focal length, f (i.e., a confocal telescope). Assuming a ray-optical

model, a co-axial ray incident upon the first lens at radius r emerges from the second lens co-axially at the same

radius but inverted about the optical axis (figure 6.1B). Comparing the on-axis separation of the lenses to this

diagonal distance gives an additional distance travelled of δz = L/cos(β)−L ≈ r2/ f where β is the angle between

ray and optical axis. For a beam of Gaussian intensity distribution with 1/e2 radius w , the expectation value of

r2 is 〈r2〉 = w2/2. Therefore, the expected delay δzGauss for a Gaussian beam on transmission through a confocal

telescope is

δzGauss =
w2

2 f
=

(
w
f

)2
× f

2
(6.24)

where w is the waist of the input beam. The delay is a quadratic function of the quantity w
f , which can be

considered as a measure of the beam divergence, defined by the numerical aperture of the system. The delay

increases with increasing numerical aperture.

In the full theoretical model the quantity 〈k̂2
⊥〉, can be calculated as,

〈k̂2
⊥〉 =

k0

zR
(6.25)

where zR = 2 f 2/k0w2 is the Rayleigh range. When inserted into the general expression for the delay (6.19) this

leads to result (6.24) exactly as in our geometric calculation (figure 6.1B). As the delay increases with the square

of the numerical aperture, the delay becomes progressively harder to detect at longer distances.
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6.4.1 Experimental results

The delay arising from focusing is shown in figure 6.4. Trace A shows the position of the Hong-Ou-Mandel dip

for the case of a collimated beam, and trace B shows its position for the case of f = 0.40m. We measure a delay

of 7.7±0.4µm for the focused case. This is comparable to the predicted delay based on equation (6.24) which, for

our beam of w = 2.32±0.09mm, is 6.7±0.6µm.

6.4.2 Truncated beam

We further investigate the dependence of the delay upon the beam structure by introducing aperture restrictions

to the beam, in the form of centre and edge stops (insets of figure 6.4). For the cases where we put sharp aperture

restrictions (the centre and edge stops), a direct application of equation 6.19 leads to an infinite slowing down

because of the diffraction on the boundaries which result to infinitely many orders. However, we can still give an

estimate of the delays by recognising that

δzGaussian = w2

2 f
=

(
w2

2

)
1
f
= 〈r2〉

f
, (6.26)

where 〈r2〉 is the expectation value of the square of the radius of the beam weighted by the Gaussian intensity

distribution. For the cases where we insert centre and edge stops of radius 1.4 mm, we can normalise the resulting

obstructed and truncated Gaussian distributions and calculate 〈r2〉. Doing so leads to delay estimate of 11.6µm

and 2.1µm for the centre and edge stops, respectively, compared to the collimated case.

Results are shown in traces C and D in figure 6.4, together with the full-aperture focused beam case (red line,

trace B). Trace C shows the dip with a centre stop of radius 1.4mm, as shown in inset C. A centre stop increases

the expectation value of r2 , thereby increasing the delay compared to the full-aperture case. We measure a dip

position additionally delayed by 7.3±0.4µm compared to the full-aperture focused beam, giving a total delay of

15.0±0.6µm. Next, we introduce an edge stop of the same radius, as shown in inset D. By restricting the aperture,

the expectation value of r2 is decreased, decreasing the delay with respect to the collimated case. Trace D shows

the position of the Hong-Ou-Mandel dip, which is now reduced by 6.4±0.4µm with respect to the full-aperture

case, resulting in a total delay compared to the collimated case of 1.3±0.6µm.

6.5 Error analysis

It is important to consider three possible sources of systematic errors. First, the phase values of all the pixels

of the spatial light modulator lie between 0 and 2π with an average value of ≈ π. Regardless of what optical

component is encoded on the spatial light modulators, the effective thickness of the liquid crystal, as averaged

over the full aperture, remains the same. Consequently, the observed delay is not a result of the spatial light

modulators themselves. Secondly, the width of the Hong-Ou-Mandel dip remains compatible with the interference

filter used. Therefore the coherence time of the light is unchanged by the setting of the spatial light modulators

and therefore the magnitude of the delays cannot be a result of spectral post-selection. Thirdly, one must ensure

that the delays are not due to misalignment in the optical paths. In aligning the experiment, we used back-

projection [98]. More importantly, the alignment for the cases where we have aperture restrictions remains the

same (the coaxial apertures do not change the path of the beam). Hence, the delays we measure can only result

from the transverse structure of the beam and indeed are consistent with our theoretical predictions.

Our measurement of group velocity is strictly a measurement of the difference in propagation speed between a

reference photon and a spatially structured photon. No direct measurement of the speed of light is made. Within

this manuscript, the velocity we measure is strictly the group velocity of the photons [99].
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6.6 Conclusions

The speed of light in free space propagation is a fundamental quantity. It holds a pivotal role in the foundations

of relativity and field theory, as well as in technological applications such as time-of-flight measurements. It has

previously been experimentally established that single photons travel at the group velocity [99]. We have now

shown that transverse structuring of the photon results in a decrease in the group velocity along the axis of prop-

agation. We emphasise that in our full-aperture experiments, no pre- or post-selection is applied to the spatially

structured photons, and that the group velocities are always compared over the same propagation distance, much

as if they were in a race. The effect can be derived from a simple geometric argument, which is also supported by

a rigorous calculation of the harmonic average of the group velocity. Beyond light, the effect observed will have

applications to any wave theory, including sound waves. ‘
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Chapter 7

Summary

Here we recapitulate only the chapters based on original contributions. In chapter 4 we examined the nested

Mach-Zehnder interferometer in which each path is weakly marked by vibrating mirrors as reported in [1]. We

found that the time dependent change introduced by the mirrors to the transverse spatial stucture of the Gaussian

mode propagating through the interferometer can be modelled as a perturbation. This means that two orthogonal

modes of transverse spatial structure are required to describe light along each path of the interferometer corre-

sponding to the unperturbed and pertubed parts of the light. Which-way information is contained only in the

perturbed part of the light in the interferometer. The detection method used in the experiment that was analysed

measured the side to side vibration of the beam by measuring the time dependent intensity imbalance across two

halves of a quad-cell detector. In our two-mode model the unperturbed part of the light beam is ‘pushed’ from side

to side by the perturbed part of the light beam. Hence the unperturbed part of the light beam, whilst carrying

no which-way information, is essential for extracting which-way information from the perturbed part of the light

beam. It is the understanding of this interplay between the two components of light in the interferometer that

allowed us to interpret the experimental results reported in [1] without recourse to describing the light as having

"been in the parts of the interferometer through which they could not pass". Whe have also managed to find

further interesting features exhibited by this interferometer by showing that for particular choices of distances at

which the detector is placed not all of the which-way information is extractable from this particular measurement

method.

In chapter 5 we examined Hong-Ou-Mandel interference for particle pairs possessing two degrees of freedom.

We analysed the problem for boson pairs as well as fermion pairs. A notable feature of the Hong-Ou-Mandel

effect is that for particle pairs possessing a single degree of freedom different behaviour is exhibited by bosons

and fermions. Fermions never exit through the same port and bosons always exit through the same port. This

is the result of the fundamentally different symmety requirement that the two different types of particles satisfy

under particle exchange being inherited by the state describing the spatial modes of the particle pair. We found

that if the particle pairs have two degrees of freedom then the fundamental symmetry associated with the type

of the particle pair can be distributed between the states describing the two different degrees of freedom so as to

allow each type of particle pair to exhibit both behaviours. In fact the output statistics can be tuned to anything

inbetween these two extremes. We presented a proposed scheme for achieving an experimental demonstration of

this using photons obtained from spontaneous parametric downconversion with the additional degree of freedom

being orbital angular momentum. This is a natural choice as photon pairs entangled in orbital angular momen-

tum arise naturally in spontaneous parametric downconversion as discused in chapter 2.

In chapter 6 we looked at how the transverse spatial structure of the mode that a pulse of light is propagating in

effects the group velocity of that pulse of light. Tranverse spatial structure in a light beam is created by having a
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superposition of wave vectors pointing slightly off-axis with respect to the propagation direction. We found that

the group velocity of a pulse exited in a particular mode of tranverse spatial profile is a little slower than c and

results from the off-axis component of the wave vectors hence linking the reduction of the group velocity to the

spreading of the beam. The group velocity is given by the simple geometric relationship

v(g)
z ≈ c

(
1− 〈k̂2

⊥〉
2k2

0

)
(7.1)

where k0 is the magnitude of the wave vector of the quasi-monochromatic pulse of light and 〈k̂2
⊥〉 is the expec-

tation vlaue of the square of the transverse wave vector. In a sense light with transverse spatial structure does

not take the shortest possible path as it travels sideways a little with respect to its direction of propagation but

it does so in all transverse directions in superposition resulting in a spreading beam rather than a beam tilted

with respect to the face of the transverse planes it is travelling between. In the experiment [2] this was measured

using Hong-Ou-Mandel interference in which one of the photons received spatial structuring in addition to its

Gaussian profile. This included focussing, a Bessel profile and truncation of the beam in the transverse plane.

The extra path length needed for the unaltered photon to match the delay of the spatially structured photon was

on the order of a several microns accross a distance on the order of a meter.

Thanks for reading!
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