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to my wife, Elizabeth,

and my parents



O LORD, our Lord,
how majestic is your name in all the earth!
You have set your glory
above the heavens.
From the lips of children and infants
you have ordained praise
because of your enemies,

to silence the foe and the avenger,

When I consider your heavens,
. the work of your fingers,
the moon and the stars,
which you have set in place,
what is man that you are mindful of him,
the son of man that you care for him?
You made him a little lower than the heavenly beings

and crowned him with glory and honour.

You made him ruler over the works of your hands;
you put everything under his feet:
all flocks and herds,
and the beasts of the field,
the birds of the air,
and the fish of the sea,
all that swim the paths of the seas.

0 LORD, our Lord,

how majestic is your name in all the earth!

Psalm 8 .
(New International

Version)
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PREFACE

This thesis presents the results of a numerical investigation into the
structure of symmetric periodic solutions of the restricted three-body
problem, and in particular, the relationships between families of planar
and three-dimensional periodic orbits, and between families in the
circular and elliptic versions of the restricted problem. The numerical
techniques used in the determination of families and series of symmetric
periodic orbits in each of the different versions of the problem are also

described.

Chapters 1 and 2 and the first five sections of Chapter 3 form an
introduction to the restricted problem,,with emphasis on periodic orbits
and their properties, such as symmetry and stability. The remaining
section of Chapter 3 is concerned with bifurcations of planar with three-
dimensional periodic orbits. Chapter 4 deals with numerical techniques
for determining periodic orbits; in Chapters 5 - 8, various aspects of
the structure and classification of symmetric periodic solutions are
discussed, and numerical examples are given to illustrate each of these
aspects. The original material contained in this thesis begins with
Section 3.6 of Chapter 3, and includes Chapter 4'(with the exception of
Section 4.2), together with Chapters 5 - 8, The bulk of the content of
Chapters 4 and 5 has been published in the journal "Celestial Mechanics",
Vol. 21, pp. 395 - 434 (with Dr. V. Markellos); a second paper presenting
some of the results given in Chapter 7 has been accepted for publication

in the same Jjournal.

The numbering of tables, figures and équations in this thesis follows
the usual decimal notation indicating the chapter to which each belongs.
Computer plots of representative periodic‘orbits belonging to the families.
discussed in Chapters 5 - 8 are given in the Appendix, and are numbered
Al, A2, A3... etc.

I would like to take this opportunity to thank a number of people who
have helped me in the course of my work. I am grateful for financial
support in the form of a Research Studentship provided by the Science
Research Council. It is my pleasure'to thank my supervisors,

Prof. A.E. Roy and Prof. P.A. Sweet, for their help and encouragement
over the last three years; special thanks go to Dr. (mow Prof.) V.V.

Markellos for numerous invaluable discussions and for suggesting many



of the topics upon which the work of this thesis is based. The
assistance of Dr. P. Rosenberg of the University of Glasgow in providing
the necessary numerical integration routines, and general advice on the
runnihg of computer programs, is appreciated. I would like to record

my gratitude to Mrs., L, Williamson for her efficient typing of most of

the tables, and to Mrs., M. Morris and Mr. P. McHaffie for preparing the
diagrams. Last, but not least, thanks go to my wife Elizabeth for typing

this thesis.,
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SUMMARY

This thesis is concerned with the structure of symmetric periodic
‘solutions of the restricted three-body problem, in the cases of planar
and three-dimensional motion of the massless third particle, and for
circular and elliptic motion of the two massive primaries. Particular
emphasis is placed on the relationships existing between families of
periodic orbits in the different versions of the problem, and on numerical
methods of continuing periodic orbits in the simplest version of the
restricted problem, the planar circular case, into the more general

versions of the problem.

The restricted three-body problem ié introduced in Chapter 1; appli¥
cations to actual physical systems are discussed, and a derivation of the
equations of motion in their usual form is offered. The Jacobi integral
and the Lagrange equilibrium solutions are also obtained for later
reference. Chapter 2 deals with periodic orbits and their significance
- from both the theoretical and practical points of view; symmetry properties
~and periodicity conditions are discussed in terms of the two possible types
of "mirror configuration" in the restricted problem. The existence of
monoparametric sets or families of periodic orbits in both the circular
- and elliptic versions of the restricted problem, for a fixed value of the
mass parameter of the primaries, is discussed in this chapter, and '
Strémgren's and Hénon's explorations of the planar circular problem are

briefly reviewed.

A first-order treatment of variations in a periodic orbit resulting
from small changes in the initial conditions is given in Chapter 3, and
this is used to establish the usual linear stability criterion. Variations
resulting from small changes in the parameters pm (mass parameter) and e .
. (orbital eccentricity) of the primaries are also introduced for use in
. subsequent chapters. The bifurcation, or branching, of families of
3 periodic orbits (for fixed.P) is discussed in general terms, with a more
detailed analysis in the particular case of "vertical" bifurcations, that
is, bifurcations of planar with three-dimensional periodic orbits.
Numerical techniques for éstablishing families of three-dimensional
symmetric periodic orbits are described in Chapter 4, with particular
reference to the numerical determination of "vertical branches", or

families of three-dimensional orbits generatéd from vertical bifurcations.



The results of a numerical investigation of the vertical branches of
Str8mgren's family f, in the Sun-Jupiter case (F = 0-00095) of the
circular problem, are given in Chapter 5 to illustrate the foregoing
discussion, Examples corresponding to each kind of vertical bifurcation,
and all possible symmetry classes, are given, The results confirm the
prediction that families of three-dimensional orbits bifurcating vertically
from the plane occur in pairs, and the predicted relationship between
symmetry properties and multiplicity is observed. With a single
exception, the vertical branches investigated are found to connect the
families of retrograde and of direct satellite orbits about the less-

massive primary (Jupiter).

The continuation of periodic orbits of the circular restricted problem
into the elliptic case is discussed in Chapter 6. Three-dimensional as
well as planar periodic orbits are considered, and it is shown that for
any commensurability in the period with that of the primaries, two
families of periodic orbits of the elliptic problem can always be obtained
from a commensurable orbit of the circular problem. To illustrate the
discussion, numerical examples are presented for each type of commensur-

ability, including orbits of both simple and double symmetry.

Chapter 7 deals with the numerical determination of series of vertical
bifurcation orbits, for which the vertical stability index a, is kept
constant and the mass parameter r.is allowed to vary. The importance
of this type of series (from any orbit of which may be generated either
one or two entire families of three-dimensional periodic orbits),,with
regard to the structure of symmetric periodic sdlutions, is discgssed,
and numerical examples in both the circular and elliptic cases of the
restricted problem are offered, together with an instance of the continu-
ation of planar periodic orbits of the elliptic restricted problem into

three dimensions.

Chapter 8 presents the results of a preliminary investigation into the
phenomenon of three-dimensional bifurcation: that is, the intersection
of two families of periodic orbits in three dimensions. Numerical
examples given in this chapter include a family of three-dimensional
orbits which appears to terminate in a planar orbit with consecutive
collisions, and a family originating from a quadruple bifurcation in

three dimensions.



1, THE RESTRICTED PROBLEM

1.1 Introduction

The restricted three-body problem is perhaps the most celebrated
problem of dynamics, and has occupied an important place in the
development of dynamical and mathematical techniques for over two
centuries. Simple in its formulation, yet of great complexity in
the structure of its solutions, the restricted problem has absorbed
the interest of great mathematicians such as Fuler, Lagrange, Jacobi,
Poincaré and Birkhoff. The restricted problem rests on the firm
foundation of classical Newtonian physics (Newton's laws of motion
and of gravitation) and so presents an appealing purity and simplicity

not often found in other fields of intellectual endeavour,

One way of defining the restricted three-ovody problem would be to
start with what is usually referred to as the "N-body problem", the
problem of the motion of N massive particles under the sole influence
of their mutual gravitational interactions, following Newton's famous
law, which states that the force of attraction between any two bodies
(in the point-mass approximation) is proportional to each of their
masses and inversely proportional to the square o£ the distance
. between them, Thus each of the N bodies is attracted by the N-1
others, and experiences an acceleration proportional to the vector
sum of the N-1 forces. For arvitrary values of N, the problem.is
extremely oomplicated, and it has been found that only for N = 2 ie
it possible to obtaih a complete analytical solution; the addition
of one further particle to the system renders the problem non-integ-
rable and discouragingly complicated. (The two-body problem is said
to be "integrable" because it possesses a sufficient number of integrals
of the motion to allow the state of the system to be determined at
any epoch given only the values of the integrals;y a "non-integrable"
problem is one‘for which an insufficient number of integrals exists .
to allow the direct determination of the exact sfate of the system
at‘an arbitrary epoch). A considerable reduction in the complexity
of the "general" three-body problem results when the mass of one of
the three particles is taken to be so small that it has no effect«oﬁ

the motion of the other two. The two massive particles, referred



to as the "primaries", then behave as a two-body system, and their
motion can be determined; it remains only to find the motion of the
third body of infinitesimal mass. This modification of the three-
body problem, still non—integréble, is termed the "restricted"

problem,

The most general form of the restricted problem is usually con-
sidered to be the "three-dimensional elliptic restricted problem";
"three-dimensional"” refers to the orbit of the third body, and
"elliptic" to the orbit of the primaries. It is well known that
there are three categories of solutions of the two-body problem:
elliptic, parabolic and hyperbolic, according as the total energy
of the system is negative, zero or positive, respectively. In the
restricted problem, the primaries are conventionally taken to move
in an elliptic relative orbit; the cases of parabolic and hyperbolic
motion of the primaries would not be expected to result in "interest-
ing" solutions for the motion of the third particle, except perhaps
during a finite time interval around the instant of pericentre passage
of the primaries. Virtually all applications of the restricted
problem in celestial mechanics involve an elliptical orbit of the
primaries, and it is obvious that periodic solutions of the restricted

problem can only occur in the elliptic case.

There are two important simplifications of the three-dimensional
elliptic restricted problem. The first of these results when the
eccentricity of the elliptic orbit of the primaries is taken to be
zero, and is referred to as the "circular restricted probleﬁ";
There are several important differences between the circular (zero
eccentricity) and elliptic (non-zero eccentricity) cases, the most
important of which is that there exists an integral of thehcircuiar
problem (the Jacobi integral), while no integral exists for the
elliptic problem. Because of its greater simplicity and the small
eccentricities normally encountered in applications, the circular

problem has received much more attention than the elliptic case.

The second important simplification is termed the "planar restricted
problem", and arises because of the property that if at any instant

- the massless third body lies in the orbital plane of the primaries,



with its velocity vector also in the plane, its subsequent motion will
be confined to that plane, It is therefore possible to consider only
planar motion of the third body in the plane of the primaries (or
"horizontal" plane). In many applications of the restricted problem{
the actual motion is almost two-dimensional, and the planar approxi-

mation is therefore quite a good one,

The "circular" and "planar" simplifications can be applied independ-
ently, resulting in a total of four versions of the restricted problem:
the planar circular case, the three-dimensional circular case, the
planar elliptic case and, finally, the three-dimensional elliptic case,
Of these four versions, the planar circular restricted problem is the
simplest and has been most extensively explored. A special case of
the circular restricted problem (in two or three dimensions), known
as Hill's problem, is concerned with the motion of the third body
in the vicinity of one of the primaries, in the limit as the mass of

- the primary is reduced to zero; the scale of length is adjusted in
- such a way that this does not degenerate into the restricted two-body
problem, In all of these different versions of the restricted problem,

the fundamental property of non-integrability remains.,

The restricted three-body problem has its origins in the work of
Euler on the classic problem of the motion of the Moon under the
gravitational influences of the Earth and Sun (the lunar problem),
and was first formulated in a paper published in 1772, In the same
year, Lagrange discovered particular solutions (equilibrium solutions)
valid in both the restricted and general three-body problems. A
major advance was made in 1836 by Jacobi, who discovered the integral
of the circular restricted problem which now bears his name.: This
integral was used by Hill in 1878 in connection, once again, with

- the lunar problem, In 1899, Poincaré showed that no other integrals
of the restricted problem existed, and made many other important
contributions to the study of the problem, It was Poincaré who first

' used the term "restreint" (restricted) to signify this particular

| caée of the three-body problem, and a great deal of modern work in

. many areas of the restricted problem is based on his ideas,

Numerical study of the restricted problem began with Darwin at



the end of the 19th century, and Moulton and his school at the beginning
of the 20th. Becausg of the laboriousness of hand calculation, this
early work was limited in scope and in accuracy; yet important advances
were made, and‘many of the principal classes of periodic orbits of the
planar circular problem were computed. Progress was also made, at
about this time, in the sphere of regularisation, a mathematical tech-
nique which removes the singularities of the equations of motion
(corresponding to the positions of the two primaries). Several regular-
isation methods have been devised, and were applied not only in the
analytical study of the restricted problem, but also in numerical

work, resulting in improved accuracy of integration of orbits involving
close approaches to one or other of the primaries, and allowing numerical
solutions to be continued through collision with one or other of the
primaries. During the 1920's and 30's, Str8mgren and his co-workers

at the Copenhagen Observatory carried out a detailed numerical invest-
igation of the planar circular restricted problem, mainly in the case

- of equal masses of the primaries (often referred to as the "Copenhagen

problem").

With the rise of the electronic computer in the 1950's and 60's, it
became possible to perform fast, accurate numerical integrations of the
equations of motion of the restricted problem. Particular interest in
the Earth-Moon case was stimulated by the need to compute spaceciaft
trajectories for lunar missions; numerical studies were also carried out
on periodic orbits in the vicinity of the Lagrange equilateral triangle
equilibrium points L4 and LS.- With the aid of the electronic computer
it became possible to tackle the three-dimensional restricted problem,
and to calculate the stability properties of periodic orbits, exercises
previously beyond the practical limits of hand-calculation. The
digital computer has nowadays become an indispensable research tool.in
the study of the restricted problem; the numerical approach to the
problem has almost become an experimental science, its results beiﬁg
' used to construct and test various theories about the structure and ‘

é properties of the solutions (periodic and non-periodic) of the restricted

? problem,



1.2 Applications

The assumptions of the restricted three-body problem (point masses,
Newtonian gravitational attraction, and no external forces acting, such as
aerodynamic drag) confine its sphere of applicability to astronomical
systems consisting of massive bodies separated by distances much greater
than their physical dimensions. Various modifications of the restricted
problem have been studied, taking into account the effects of tidal
forces or of a resisting medium, or other departures from point-mass
gravitational attraction, but we shall restrict our attention to the

"pure" problem,

The origins of the restricted problem lie in studies of the lunar
problem, The motion of the Moon is almost entirely controlled by the
gravitational attractions of the Sun and the Earth, the other planets
exerting only a feeble influencej a simple calculation shows that the
Sun attracts the Moon twice as strongly as does the Earth, and although
the gravitational force due to the Sun is largely cancelled out by the
centrifugal force due to the motion of the Earth-Moon system about the
Sun, the Moon's orbit around the Earth is subject to large solar
perturbations. The restricted problem is applied to the Earth-Moon-Sun
system by taking the Earth and Sun to be the two massive primaries, the
Moon then being represented by the massless third body. This model
neglects a number of effects, such as lunar perturbations of the Earth's
orbif around the Sun, and departures from strict point-mass gravitation
caused by tidal forces. In the Earth-Mbon—Sun system these effects are
appreciable, and the restricted problem (usually the special case known
as Hill's.problem) represents only an approximate first step in the full

lunar problem.

The classic application of the restricted prbblem-uithin the Solar
System is that of the motion of a minor body (an asteroid or satellite)
in the Sun-Jupiter system, Jupiter is the most massive body in the
Solar System apart from the Sun, outweighing all the other planets put
together, and has an important influence on the motions of the asteroids,
most of which orbit the Sun in a belt between the orbits of Mars and
Jupiter. The asteroids have negligible masses compared with Jupiter or
the Sun, and the assumptions of the restricted problem are valid to a
very high accuracy in this application, The famous "Kirkwood Gaps" are

gaps in the distribution of asteroid mean motions which correspond closely



to commensurabilities with the mean motion of Jupiter; there are also
groups of asteroids which cluster around certain commensurable values of
the mean motion, such as the Trojan family at the 1:1 commensurability.

The discovery of the Trojan asteroids close to the L4 and L5 Lagrange
equilateral triangle equilibrium points has stimulated detailed study of
the solutions of the restricted problem in the vicinity of these two points.
The restricted problem has also been applied to the outer satellites of -
Jupiter, which experience such large solar perturbations as to depart
appreciably from Keplerian motion around the planet. The circular restricted
problem in either two or three dimensions is the main tool for the study

of the orbits of these bodies, but investigation of the hypothesis that
some of Jupiter's outer satellites (particularly the retrograde ones) are
captured asteroids has to start with the elliptic restricted problem,

because capture cannot occur under the assumptions of the circular problem.

Other Solar System applications of the restricted problem have been made,
with varying degrees of validity, usually involving the Sun and a planet as
the primaries, and another planet or a (natural) satellite as the third
body of the system. With the advent of rockets and interplanetary space-
craft, there has been revived interest in the use of the restricted problem
for calculating space probe trajectories;Etﬁegligible mass of a man-made
spacecraft compared with the natural bodies of the Solar System ensures
that one of the main assumptions of this model is satisfied to high accuracy.
The main interest has been in the trajectories of lunar probes, with the
Earth and Moon as the two massive primaries, and more recently there have
been propéSalS to place spacecraft, or even inhabited space colonies, at
the equilateral triangle equilibrium points of the Earth-Moon system.

Applications of the restricted three-body problem outside the Solar
System, though rather 1imi;bed, include (a) investigation of the possibility
of planets in binary star systems, (b) the use of zero-velocity surfaces
and "Roche lobes" in the study of close binary star systems, and (c) analysis
of the stability of star clusters against disruption by gravitational
i perturbations of the Galaxy. The relatively narrow range of normal stellar
masses means that triple star systems must be modelled by the general,

- rather than the restricted, three-body problem.

The restricted three-body problem has been studied not only in its
applications, as listed above, but also as a pure dynamical problem.

Because of the simplicity of its formulation, and because of the large



amount of effort that has been expended in the analytical and numerical
investigation of its solutions, it is & proving ground for mathematical
techniques and dynamical theories, many of which are transferable to

other types of problem.

While the results presented in this thesis are intended to illustrate
certain general characteristics of the overall structure of symmetric
periodic solutions of the restricted problem, and do not necessarily
correspond to any actual astronomical system, a substantial proportion
pertain to the Sun-Jupiter case (mass parameter}; = 0.00095) of the i)roblem
and correspond to retrograde orbits around the planet Jupiter of similar

dimensions to the orbits of the natural retrograde satellites.

1.3 Equations of Motion

In this section, a fairly detailed derivation of the equations of motion
of the restricted three-body problem is presented for the general case of
- an elliptical orbit of the primaries, and three-dimensional motion of the
third body. This is not intended to be in any way an original presentation,
following as it does the standard derivations of, for example, Kopal and
Lyttleton (1963) and Szebehely (1967). The object is to show how the
- equations are obtained for the generalcase, at the same time introducing
the various coordinate systems and the notation used throughout this thesis,
' The equations of motion, in their final form, are readily simplified in the
case of a circular orbit of the primaries, and for planar motion of the
third body. Firstly, the differential equations of motion of the restricted

_three-body problem will be derived (in "physical"™ or "dimensional" units).

Since the motion of the two primaries is known, the expression "equations
of motion of the restricted problem" really means the equations of motion
of the third body of the system, that is, the particle of infinitesimal mass.
Let the masses of the two primaries be my and My and let the mass of the

third particle, m3, be sufficiently small compared with both my and m, as

~ to have a negligible effect on the orbits of the primaries. Let O bz the

2 centre of mass, or barycentre, of the primaries and OXYZ a fixed Cartesian

- coordinate system with origin at O, such that the X and Y axes lie in the
plane of the primaries, the direction 62 being defined as. the direction from
O to the position of pericentre of the primary of mass m2. (If the orbits
of the primaries about the barycentre O are circular, the precise directions

of axes X and Y in the plane are arbitrarily defined). Since the primaries
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form a closed two-body system, OXYZ is an inertial coordinate system.
Let the position vectors of bodies m, m, and ms referred to this
coordinate system be respectively 'B-'l’ 52 and R; defining ()’E,Q’,%) to be
unit vectors in the directions of the three inertial axes, the position -

vectors can be written in component form
A A
=X X+ Y I+ZZ
A A A
Xo X+ VY +3H 2 | (1-1)
A A
= XX + Y9 +22 .

Since the primaries move in the (X,Y)-plane, we can at once write Zlé o,

22?: 0. The distance D= [gl - 32, between the primaries at any epoch (is

given by

R P P
1]

a (1-¢e)
D= |+ ecosB ’ (1-2)

where a and e are respectively the semi-major axis and eccentricity of
the relative orbit of the primaries, and © is the true anomaly at the
epoch. Note that for zero eccentricity, D = a (constant). Now by
definition of the barycentre, we have

R+ myRa = Q. (13)

Thus

D= (H’ m[/"‘:.) lgl, . ' (1-4)

Defining the MASS PARAMETER B by -

My

F= e @)

we obtain

i

R = 'Sll
Ry = ‘&-l

It follows from the definition of the coordinate system OXYZ that the

/MD
(l-#)D.

(1-6)

1

- polar angle of vector ,}3(2 with respect to the X-axis is equal to the true

anomaly © of the primaries (see Figure 1.1). We can therefore write.

Bi = —pD (Reost+ P5n6)

A (1-7)
Ra= (5D (Recost+ Y&\G) .
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Figure 1,1 : The inertial coordinate system OXYZ. The primaries

m, and m, orbit the barycentre O in the (X,Y) plane.
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These two equations give the positions ‘@1 and 512 of the two primaries in )
terms of the true anomaly 9 (recall that D is a function of 6). In principle,
B can be computed for any epoch by means of Kepler's Equation, although in
practice this is inconvenient and time-consuming. It will be shown later
that this difficulty can be avoided by introducing a rotating coordinate
system and by using @, instead of the epoch t, as the independent variable

in the equations of motion.

The equations of motion of the third body, of mass m3, can be expressed

in vector form as

mR* = F +F, (1-8)

where 5* = *ﬁ is the acceleration vector as measured with respect to
dt®
inertial coordinates, and }7}1,'32 are the forces of gravitational attraction

acting on m5 due to primaries m 47, respectively, Defining the vectors

Brofp ™ by B-Ri )
Ba= R—Ra)

are given by Newton's law of gravitational attraction

(1-9)

the forces F, and F
w~l o2

(written in vector form):

§| - G’M,M_; (_.-QL

~ A;- ’ A.z

where l\lalgl‘ ’ A;,* ng‘ ’ and G is the Newtonian gravitational constant.

; Dividing through Equation (1-8) by m,, and inserting Equations (1.10), we have

3
R¥+ S+ Smep, = g

. (1-11)

The vector equation (1-11) may be written in component form

¥+ Bm (X-X)+ & (X%) = 0 )
o AY .

VoS (-m s B mw) - 0 7

Z2¥+ G(%*’%—;)Z’ = 0
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where dots denote differentiation with respect to the time ¢,

AF = (XX + (Y-9)" + 27,

(1-13)
AL = (%Xt + (-v) 4+ 2%, |

and (xl’YI)’ (Xi,Yz) are the non-zero components of vectors R ,R, as given
by Equations (1:7)., These are the equations of motion of the three-
dimensional elliptic restricted problem, with respect to inertial coordinates
and in terms of physical or dimensional quantities (that is, quantities

which can be specified in any self-consistent system of units),

This form of the equations of motion is perfectly usable for numerical
integrations, but it is advantageous to carry out certain transformations
- which cast the equations into a more convenient form. Firstly, a new
coordinate system is introduced which rotates synchronously with the primaries;
secondly, the dimensional coordinates are replaced by a dimensionless set
by choosing an appropriate unit of length; and thirdly, a new choice of
independent variable is made. The end result of these operations will be
that (i) the primaries are at fixed locations in the new coordinate system,
rather than tracing out elliptical paths about the barycentre, (ii) the
actual physical dimensions of the three-body system do not enter into the
new equations, reflecting the fact that they have no real dynamical signi-
ficance, . - (iii) Kepler's Equation does not ha&e to be solved in orde} to
integrate the equations of motion, and (iv) the new equations are particularly

convenient for use in the determination of periodic orbits.

Let us introduce the Cartesian coordinate system O}1l with origin at O,
such that the $-axis is in the direction of the instantaneous position of
primary m, and the’!—axis coincides with the Z-éxis of the inertial coordinate
system (see Figurel,2), This new coordinate system therefore rotates non-

5 uniformly with the primaries my and m,, which simply oscillate on the f-axis

2
at periodically varying distances Rl_and R2 from the origin, as given by
Equations. (1+6) and (1-2). The transformation between coordinate system

0XYZ and 0§41 is
¥ = Xews® + Ysh@
q= —Kang + Yeusb | | (1-14)
¥= 2, -
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‘Figure 1.2 : The rotating coordinate system O§1I!. The § and n
axes rotate with the primaries in the (X,Y) plane;

the § and Z axes coincide.
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and the vector ’13, can be expressed as
A
R= 5§+ w9+ 1%, (1-25)

where (?,4‘],2 ) are unit vectors in the directions of the three axes of the
rotating coordinate system. The instantaneous angular velocity @ of the
system Oh}‘i with respect to the inertial system OXYZ is equal to the orbital

angular velocity of the primaries:

w=w? = wf, (1-26)

where

de/dt . (1-17)

"
The acceleration vector 'I}’ of the third body of the system as measured
with respect to this rotating reference frame is given by the Coriolis

Theorem:

" 0

R = 5*"' QX(QXB)"?-QKB - Qxﬁ  (1-18)

In this equation, unstarred derivatives are those measured in the rotating
system; the first term on the right-hand side is the inertial acceleration,
given by Equation (1—11), the remaining terms being respectively the centri-
fugal force and Coriolis force terms, and a term resulting from the non-
uniform angular velocity of the rotating coordinate system. Since w varies
only in magnitude, and not in direction, we can write

L] [ A .
&3 = wi (1-19)

and Equation (1-18) becomes

B = R% yur (¥ +3)+ 20(§5-§4) + & (45 - 59). -0

n, -
Substituting for R™ from Equation (1-11), we obtain the vector equation
-

of motion of the body m, with respect to the rotating coordinate system:

3

B"" Gmi: O+ GZ\: - (W f-l—?.wq-&’uq)} (u"'-] 2»!-&:})‘6 0,

(1.21)
where A A
(Y+R) T+ m9+ 13,

(1-22)
= (5-R2)§ +97 + 18,

L=
Ba
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and Ry, R, are given by Equation (1-6).

The next step is to carry out a further transformation, from the coordinate
system O}'q‘} to a new coordinate system Oxyz, defined by: '
x=$/D
y=1/D | (1-23)
2=3%/D.
This new dimensionless coordinate system has as unit of length the distance
D between the primaries, as given by Equation (1-.2). Because the coordinate
system Oxyz rotates with the primaries, and has a unit of length which varies
periodically with the period of the primaries, it is often referred to as the
"barycentric rotating-pulsating” system, In the circular restiricted problem
the unit of length D is a constant. Note that the transformed coordinates
of the primaries are x; = -Rl/p ==, yl =z, =0, and X, = R2/D = 1-p,
¥y =2z, = 0; both primaries are therefore at {ixed locations in,the
transformed system (see Figure 1.3).
The position vector R of the third Body is transformed to

c=R/D, ' | (1.24)

and since the unit vectors (%,¥,2) in the directions of the axes of the

. A
rotating-pulsating coordinate system are identical to (?,ﬁ,»‘l), we can write

|
L = x&+3ﬁ+z§ = —5(’5§+ '1'?*' !‘2) ] © (1.29)
The vectors'el andéz’ are transformed to |
gi= 8/D= (xip)R+yd+ed,
ﬁg Q&,D = (K-Hr)%-&- yi+ st

The final step in the procedure is to introduce a change of independent

(1-26)

variable in the equations of motion from the epoch t to the true anomaly 6

of the priméries, by means of the relation

d . dod _ 4 . -
"B VB | oo

Note that for the circular restricted problem, W is éonstant. Let o be an

arbitrary dimensional coordinate, and define the dimensionless variable
x=a/D. (1.28)

The time derivative of & is

& = "’Ti‘a (0x) = w(dz +d&/), (1-29)



- 17 -

\\N
/7

mS(X.v,Z)

Fi e 1,3 : The dimensionless rotating-pulsating coordinate syétem

Oxyz. The primarieé m, and m, have fixed positions on

2
the x axis; the distance between the primaries is taken

as the unit of length,
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From Equation (1.2),
a(l-¢eshd  _  De s

D/= T eIy (1-30)
(1+ ecosd) [+ecesO
where the prime denotes differentiation with respect to 8, and so
— [ esi§
= wD (‘;"" (I+ew9)) (1-31)
Differentiating once more with respect to t, we obtain
o.smB
(“D"’“mD)Q","“ (lH,wB) (32)
1.32
+ D2 6 L (et
Now the angular momentum integral for the primaries can be written
wDt = h  (constant). (1-33)
Differentiating with respect to t, and using Equation (1:30), we get
_ 9,2 [eMm0
= =2 l+ecsd/ ’ (1-34)
and Equation (1+32) becomes
= s@ ) 7
& = wtD d//.;,(&C_"_ ], (1-35)
._ [+ecos® o

We now have to perform the trapsformations defined in Equations (1-23) and
(1-27) to the equations of motion (1:21). This is done by applying the
general formulae (1-31) and (1-35) to the 6omponents of Equation (1-21);
noting that | -

6w _ Glmtm)(ip) =(_‘£_.) ('_:&3) ) (1-36)
2

NG D& [+ecosO

Gma =( @ ) (), (1-37)
b3 [+ecasB | \ 6 |

and

where ar:[ |» o= |e L

After some reductlon, we obtain the equations of motion of the three-~
dimensional elliptic restricted problem with respect to rotating-pulsating

coordinates (x,y,z), in component form:



" N |-l .
¥ rix = (-l-ewe)( o 6’;’)" ) - (1-38)

)
I =
er oz (l+wsa

From Equations (1:26), we have
6t = (R
&t = (x-'"f/»\)"-f‘ y*+ ¢*,

Note that for non-zero values of the primary orbit eccentricity e, the

(1-39)

right-hand sides of Equations (1:38) have an explicit dependence on the

true anomaly ©; this has important dynamical consequences, as we shall see
later. All of the quantities appearing in these equations are dimensionless;
the two basic parameters are P the mass parameter, and e, the eccentricity
of the relative orbit of the primaries., From its definition in Equation
(1-5), we see that ja can have any value between O and 1 (since m, and m, must
be non-negative); P = 0 when m, is zerq vhile p = 4 for equal masses of the

primaries, Usually m, is taken to be the less massive of the two primaries,

2
so that O&p €%, values greater than g = 4 being essentially redundant
(Equations (1-38) and (1-39) are unaltered if p is replaced by 1l-p).
However, it is sometimes more convenient, for the sake of continuity, to

allow R to have any value in the range [0,1].

The equations of motion of the three-dimensional circular restricted

" problem are obtained simply by setting e=0 in Equations (1-38), with the

result that the factor (14 ecosaO)-'1 becomes unity, éliminating the ,e;lcplicit
appearance of the independent variable in the equations of motion. The
planar restricted problem corresponds to the case =0 the third of
Equations (1-38) reduces to an identity and the first two define the motion

in the horizontal plane,

1.4 The State Vector

The state vector, which we shall denote by J5) is al vector in the six-
dimensional phase space (coordinate-velocity space) of the restricted problem,
describing the state of the third body of the system at any instant. It

- is a convenient form of notation which will be used extensively throughout

this thesis; in this section the notation will be introduced and the equations

of motion (1.38) expressed in terms of s,



- 20 =

The state vector has components
s1 e X3 82 =z Y3 53 = Z 3 (1.40)
34_- x!; 8 = y's Bg = z',
where (x,y,z) are the components of the third body with respect to the

rotating-pulsating coordinate system, and primes denote differentiation

with respect to ©, the true anomaly of the primaries. The notation

50 = (8150208031804 505 80¢)

1-41
(xO ’yO ’ZO ’x(') 7Y6 ’7'6 ) ( 4 )

will be used to denote the value of the state vector at the initial epoch,
when the true anomaly of the primaries has the value qy. The expression
"initial conditions" will be employed to mean the components of‘g « Since
the three differential equat1ons of motion (1-38) are of second order, a
unique solution is specified once the values of the six initial conditions

(xo,yo,zo,xo,yo,z') have been given,

An alternative formulation of the equations of motion (1-38), in terms
of the state vector, is

s'=£(s;9), (1-42)
where the vector function f has components
fi =51y
fL = 5,
fs = 83 (1-43)
£, = 255+ E [ Astp(ip)(a - ’)}'
fs = -2s, + Efsy
‘b = (ER',) S3 )

d - - :
" kGsiysn$) = 1= 25 = Sy @)
e(e) = (l+e.cos9)" .

From Equations (1-39) and (1-40),
'L—- (3,4“,’*) 4“3 4’33 ) (l 45)
= (5=l + ¥+ s,

Thus the three second-order equations (1+38) have been replaced by six first-

order equations (1:42); thése,will be used in preference to the original
equations,
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1.5 Jacobi Integral

Let 1 be a function of the three coordinates (x,y,z) of the third body
of the system (with respect to the rotating-pulsating coordinate system)
defined by

|-

_ 1,032 o2 _

0 (%y2) = £ (x4 29 + —f' + -% + -}_/«(lﬁ , (1+46)
or, equivalently, by

a1 L) + r(a «,). o

It can be shown by inspection that the equations of motion (1-38) may be

written
0 o0 (1 )3 A
2 '(tmoso/ 2x
[ (1 \2 ¥ | .
y'+2A <'+ec»s\9) 3y (1-48)
" A )')-Q. .
T hE = \U—ecosa 2z J

The total derivative of Q with respect to @is

| = 8L .t 4 0 i 5L
R — x + == + 022 !

e - Y el
= (I+ec6$9)(_?("xl+ yiyle a0 2'2—.)) o (1-9)

by Equations (1-48). We therefore have

d Ly 2 9l 52
Now _ : /
/. £
0 _ L e (1-51)
[+ecesd [+ess& (l+eco:l9) -
~ Combining Equations (1-50) and (1-51) and integrating, we obtain
S | xlz 1 1t 2 j‘ ..fle.n"\e o( .
= (x4t +2 42 + 0. (1-52)
[+ecsO z(d+y ) (1+ecesB)*
Along a particula.r' solution of the equations of motion,” _ the following

invariant relation must therefore hold for all values of @:
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L Kyt j Aeimd 49 = Lc, (es3)
l-lréM‘B ( ty (I-I—ecpse} + .

where C is a constant whose valuevcan.be determined from the initial conditions
(the values of x,y,z,x',y' and z' at 6 =@ ). This invariant relation is
not an integral of the elliptic restricted problem, because of the appearance
of the non-integrated _term involving .. The main practical value

of Equation (1+53) is as a check on the accuracy of numerical integrations

of the equations of motion. .

In the circular restricted problem, however, e ® 0 and the non-integrated
term vanishes, with the important result that Equation (1+53) becomes
an .integral: ‘

20 — (xn*vn*%n*%—z.) = C, (1-54)

The constant of integration, C, is known as the JACOBI CONSTANT, after the
mathematician who first discovered the integral. This is the only integral
of the circular restricted problem, as has been shown by Poincaré, and
replaces the energy and angular momentum integrals of the general thﬁree-body
problem, which are no longer valid in the restricted problem. The left-

. hand side of Equation (1+54) can be divided into two terms, one of which,

20 -2% , involves only the coordinates, while the other, x!'T4 3‘7'4' 2’1
(the square of the speed of the third body with respect to rotating axes),
involves only the first derivatives of the coordinates. The Jacobi constant
C is uniquely defined only within an additive constant, according to the
definition of the function £L . Since only the partial derivatives of L
with respect to the coordinates feature in the equations of motion (1-48),
the addition of an arbitrary constant is permissible and the valﬁe of C will
alter correspondingly. The constant %F(l - '1) has been inserted into
Equation (1-46) to allow the more compact expression (1:47) to be written.
This definition of the function ) , and consequently of the Jacobi constant,
follows the recommendation of Szebehely in his book "Theory of Orbits".

It' is important to note that not all authors employ this definition and it
is often necessary to transform published numerical results to achieve
consistency. The "rotating-pulsating" coordinate syste_m Oxyz, as defined
in Section 1.3, and (where applicable) the Jacobi constant, as defined in
this section, will be used throughout this thesis,

. The form of the Jacobi integral (Equation (1:54)) leads to the introduction

of an important set of surfaces in coordinate space, usually referred to as

zero-velocity surfaces. For a given value of the Jacobi constant, say C* ’



the zero-velocity surfaces comprise those points (x,y,z) which satisfy
9._0.(7(,3,%) -2+ = c¥ . (1+55)

Clearly, if the third body of the system has the value C* of the Jacobi

constant, its velocity at all points on these surfaces is zero. This has

important consequences for qualitative studies of the motion of the third

body, for the zero-velocity surfaces are effectively barriers to the massless

particle through which it cannot pass. Motion is possible only within

those regions of coordinate space, bounded by the zero-velocity surfaces,

for which

- *
X!t ryl* 4’.2"' =20-2+*-C" >0 (1.56)

Those regions of coordinate space for which ’L—Q.-%"-—Cx' < O

are referred to as "forbidden regions". In the planar circular restricted
problem, the zero-velocity surfaces reduce to zero-velocity curves in the
(x,y)-plane, and these curves are often -termed "Hill curves" after the
mathematician who first made use of the Jacobi integral in connection with
the problem of the stability of the Earth-Moon system.

An extensive discussion of zemw-velocity curves and their significance is
given in Szebehely (1967).

1.6 Lagrange Solutions

We now present a brief derivation of the equilibrium solutions of the
restricted problem usually named after their discoverer, Lagrange. An
.equilibrium solution is one for which the coordinates (x,y,z) of the massless
third body, with respect to the Bérycentric rotating-pulsating coordinate
system, are constant; the velocity components (x',y',z') and acceleration
components (x",y",z") of the massless body in this coordinate system must
therefore all vénish. The procedure for finding the equilibrium solutions
is straightforward: taking the equations of motion (1-38), we set
X' 2Y' m2' 20, X" ay" = 2" = 0 and solve for x,y and z. If such
solutions exist, they are the coordinates of points having the property
that if the massless body is at rest at such a point, it experiences no net

force and therefore remains in equilibrium at that point.

Equations (1+39) show that if the coordinates (x,y,z) are all constant,
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then so are the distances a"l and >

(Recall that the coordinate system has unit of length D, the distance

between the primaries, which varies periodically with €; thus, if o" and cr2

o7, of the third body from the two primaries.

are constant, the distances Al and Az measured with respect to a f ixed
unit of length actually pulsate in a periodic fashion), Taking the trurd
of Equations (1+38), and setting z" = 0, we obtain

( | )("%—ﬁi)—' 2 = o. (157

|+ ecesO

Now the expression in square brackets can only vanish, for all values of 9,
for e = 0 and O'i <y oo, 0'2 —-os: this is the trivial case where the massless
body lies infinitely distant from the primaries and so experiences no
attractive forces, clearly not a true equilibrium solution; we conclude

that any non-trivial equilibrium points must lie in the plane of the primaries
(z = 0).

Setting x' ® x" = y' = y" = O in the first two of Equations (1-38), we
(l— - )X—/A(l-/ﬁ) ‘i‘z "’L‘,) =0,
I+ecos9 | )

(158)

| o
(—,;;;)(I—L;;——@)y =0, s

obtain

and we seek solutions (x,y) valid for all values of 6. From Equation (1-59)
we have either
y=>0 . (1-60)

or

6.'3

|.- .l_'L.—_f_s_ =0 . '(l~6l)
1

The solutions corresponding to y = O are referred to as the COLLIN'EAR
EQUILIBRIUM POINTS, since they are collinear with the two prlma;mes. For

¥y = 2 = 0, Equations (1+39) give

o = |xtpml, (6)

dqp = (7"“'/‘! )

and from Equation (1-58) the collinear equilibrium points have x-coordinates
satisfying -
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a— SR _ pletty )

[oetpl® x—t4p]?

In each of the three intervals I, : (x<-p), I, : (—}l(X <1-p) and
i3 : (x 71-}1), Equation (1+63) becomes a different quintic in x. For
O<IA<%, each of these three quintics has one and only one real root in the
corresponding interval on the x-axis; consequently, there are three collinear
equilibrium points, usually denoted by Ll,L2 and L3’ one occurring in each

of the three intervals Il’ 12 and 13' that is, ong situated between the
primaries, and the other two on either side of the primaries, as shown
schematically in Figure 1.4. (A fuller discussion of the collinear
equilibrium points and numerical methods of solving the quintics are given

by Szebehely (1967)).

The remaining equilibrium solutions are those for which Equation (1-61)
is valid. Equation (1-58) then gives

— T — =0 - (1-64)
6}3 ‘-23 )
or 0 = 0%, ; substituting into (1-61) we obtain

dl = 63_ =’ l. . . (1.65)

There are only two points in the (x,y)-plane for which Equation (1+65) is
valid: these are the EQUILATERAL TRIANGLE EQUILIBRIUM POINTS, designated

L, and L
4 20

59 each of which forms an equilateral triangle with the two primaries.

There is no standard system for labelling the five Lagrange equilibrium
points, except that L1 - L3 are always the collinear po-ints and 1.4 ,L5 the
equilateral triangle points. Indeed, the choices of origin and orientation
of the rotating coordinate system of the restricted problem vary between
different authors, despite attempts to standardise the notation. The
designations indicated in Figure 1.4 will be adhered to throughout this

thesis.
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¢

Figure 1.4 :

Schematic diagram of the locations of the five Lagrange

equilibrium points in the (x,y) plane,
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2. PERIODIC ORBITS

2.1 Introduction

The existence of periodic orbits of the restricted three-body problem,
that is, orbits which repeat themselves after certain fixed periods of time,
with respect to a suitable coordinate system, has been established mathe-
matically by a number of methods, such as the method of analytical contin-
uation, the process of equating Fourier coefficients, the application of
fixed point theorems, and the method of power series. An example of the
first method is the ana)}tical continuation of orbits of the restricted two-
body problem (thé problem of the motion of a body of infinitesimal mass
under the gravitational attraction of a single massiverprimary) into the
circular restricted three-body problem, the mass of the second primary
being increased from zero to non-zero values. Poincaré's work in this
area led to his classificatioh of the periodic orbits of the restricted
problem into three "kinds": the first kind (premi®re sorte) are those generated
by analytical continuation of circular two-body orbits in the plane of the
primaries, the second kind (deuxime sorte) are generated from elliptical
orbits in the plane, and the third kind (troisi2me sorte) from elliptical
orbits inclined to the plane of the primaries. Analytical and numerical
continuation wi}l be referred to in subsequent chapters, with particular

emphasis on methods of numerical  continuation.

The importance of periodic orbits in the study of the restricted problem
has long been recognised. . Because the restricted problem is non-integrable,
the only orbits for which complete information is available are asymptotic,
periodic or almost-periodic orbits; for non-periodi¢ motion, the behaviour
over intervals of time tending to infinity is complefely unknown, since
numerical integration can only be carried on for a finite time. The
practical importance of periodicity is therefore that if the motion is known
over a finite interval (the period of the orbit), then the solution is
available, in principle to arbitrary precision, from t = - 00to t = 4 0O,
In his classic "M&thodes Nouvelles", Poincaré (1899) advanced the opinion
that the study of periodic orbits was indeed the only opening through which
it would be feasible to explore the three-body problem. His famous conjecture,
which has since been proved subject to appropriate assumptions, states that
given a particular solution of the circular restricted problem, a periodic

solution (generally of very long period) can always be found such that the
difference between the solutions is arbitrarily small for any desired time
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interval, Schwarzschild's (1898) version of this conjecture uses the
terminology of phase space: in an arbitrarily close neighbourhood of any
point in the phase space there is a point representing a periodic orbit,
in general of very long period. Thus, rather than being "exotic" or
untypical kinds of solutions, periodic solutions are in fact dense in the

global set of solutions of the restricted problem.

The motivation for studying periodic orbits stems not only from their
"practical" and "representational" significance, as already mentioned, but

also from certain other important properties, which include the following:

(i) periodic orbits of the circular problem can often be obtained by

 analytical continuation from two-body orbits, or from linearised

solutions at the Lagrange equilibrium points, and this analytical
continuation approach can be further applied to generate three-
dimensional periodic orbits and periodic orbits of the elliptic
restricted problem, from planar periodic orbits of the circular

problem;

(ii) periodic orbits can be established numerically in continuous sets
or "families" which, for a given value of the mass parameter pm,

are monoparametric (see Section 2,5);

(iii) the existence of "bifurcation orbits", with certain well-defined
stability properties, allows exploratioh of the periodic solutions
of the restricted problem to be carried out in a systematic,
methodical way;

(iv) rigorous criteria can be established for the linear stability of

pefiodic orbits (stability with respect to small perturbations);

(v) - neérly—periodic phenomena are widely observed in nature, and in
. particular the orbits of nearly all of the various bodies of the
Solar System can be approximated by periodic orbits, frequeﬁtly

“with periods which are mutually commensurable.

‘The importance of periodic orbits is not confined to the study of the
restricted three-body problem, and many of the points listed above apply
equally to the periodic orbits of other non-integrable dynamical systems
of two or three degrees of freedom. However, as the subtitle of Szebehely's
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book "Theory of Orbits", viz. "The Restricted Problem of Three Bodies",
indicates, the study of orbits (particularly periodic ones, for the reasons
already given) and of the restricted problem, is inextricably linked, and
the analytical and numerical techniques developed primarily for the purpose
of attacking the restricted problem are applicable to many other dynamical

problems,

The analytical and numerical approaches to the determination of periodic
orbits are essentially complementary. Since the restricted problem is non-
integrable, arbitrary solutions can only be determined by numerical methods;
however, rigorous proofs of existence, and other properties of periodic
orbits, can only be achieved by analytical theory. It is important to
recognise the fundamental limitations of the numerical approach to the
restricted problem. Numerical integration of the equations of motion can
only give an approximation to the exact solution, because the differential
equations themselves are not in fact integrated; rather, they are replaced
by finite difference equations with solutions which may have completely
different characteristics from the original differential equations. The
numerical approach relies heavily on analytical theorems of existence,
continuity, etc., for its validity; but in return, it offers a wealth of
results which may stimulate further analytical developmeht and a greater
understanding of the structure of the set of periodic solutions unattain-

able by purely analytical methods.

Attention has, in the past, focused almost exclusively on the periodic

orbits of the planar circular case of therestricted problem, although in
. recent years there has been increasing interest in the three-dimensional,
and to a lesser extent the elliptic, cases. The main theme of this thesis
is the structure of periodic solutions of the restricted problem in all of
its manifestations, and particularly the relationéhips which exist between
periodic orbits of the planar and three-dimensional cases, and between
periodic orbits of the circular and elliptic cases. The approach taken in
this chapter is therefore general in character, deéling with such topics as
periodicity and symmetry in the context of three-dimensional orbits of the

circular and elliptic problems; mention will be made, where appropriate,
| of the simplifications arising in the case of planar orbits. Section 2.6
deals with the Str¥mgren classification of periodic orbits in the planar
circular problem, and is therefore specific to that particular case; as
we shall see in later chapters, howeyer, the basifangggérg? nomenclature

can be generalised to allow the classification QQ‘ﬁhree-dimensional periodic
orbits, as well as orbits of the elliptic problem,
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2.2 Definition and Classification

The definition of a periodic orbit of the restricted three-body problem
given in the previous section can be expressed in mathematical form in terms
of the position vector r(®) = (x(0),y(0),z(8)) of the massless third body
with respect to the barycentric rotating-pulsating coordinate system. A
periodic orbit is any solution 3(9) of the equations of motion (1+38) which,
for all values of @, satisfies

r+1) = £, (2:1)

wnere T, a positive constant, is the PERIOD of the solution. This definition
of periodicity, it should be noted, means periodicity with respect to the
rotating-pulsating coordinate system, and does not necessarily involve
periodicity with respect to an inertial frame of reference. An important
distinction arises here between the circular (e = 0) and elliptic (e > 0)

versions of the restricted problem, as we shall see.

Differentiation of Equation (2-:1) with respect to @ yields
r/(6+T) = x/(8). (2-2)

Equations (2-1) and (2-2) can be combined, using the state vector g = (r,r'),
to give

s(0+T) = §(6), ' (2+3)

which, upon differentiation, yields
= / .
s/(e+7) = s°(8). |  (2-4)

Now the equations of motion of the restricted problem, in state vector form,
are (Equation (1-42))

s = f,(%}e)-  (2+5)

From Equations (2:3),(2+4) and (2-5) it is found that for a periodic orbit,

the function £ satisfies .
£(s(0);06+7) = £(s(6);60). (2-6)

The part of f, explicitly dependent upon the independent variable @ is the
factor E(@) = (1 + ecos'O)—1 (Equations (1-43) and (1-44)). Equation (2+6)

shows that
E(9+T) = E(G)) (2.7)
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for all values of ©, is a necessary condition for periodicity with period T.
For the circular restricted problem (e = 0), E(6) = 1 and Equation (2-7) is
satisfied for any value of T. In the elliptic problem, however, e ¥ 0, and,
by Equations (2+7) and (1-44), the period T must satisfy

T = 2km (2.8)

for some (positive) integer k. This shows that in the circular restricted
problem, periodic orbits of arbitrary period may, in principle, exist, while
in the elliptic restricted problem, only periodic orbits of period equal to

an integer multiple of 2w (the period of the primaries) can exist.

The transformation from dimensional inertial coordinates (X,Y,Z) to
rotating-pulsating coordinates (x,y,z), defined by Equations (1-14) and (1-23),

can be written in matrix form

X | s ga8 O X

= —— |—sing & o .
y ol Y | (2-9)
7 o o | Z

where D(8), given by Equation (1-2), is periodic in © with period 5. The

inverse transformation is

X cs@ —sh@ O x :
v = 1)(3) sb w8 O y |- (2+10)
7 : o) 0 | z '

It is clear from Equation (2:10) that a periodic solution x(OZ,y(O),z(O)

with respect to rotating-pulsating coordinates, with period T, will transform
to a periodic solution X(©),Y(®©),2(8) with respect to the inertial coordinate
system if and only if T = 2kw, for some integer k.- All periodic orbits

of the elliptic problem are therefore periodic with respect to both rotating
and non-rotating frames, while in the circular problem an orbit which is
periodic in the rotating frame will not in general be periodic in the inertial

frame, unless the period satisfies Equation (2-8).

Any periodic orbit of the restricted problem‘can be classified according
to the following general scheme:

(a) planar or three-dimensional;

(b) circular or elliptic problem;

(c) symmetric or asymmetric.
The properties (a) and (b) have already been discussed; the symmetry

property (c) will be dealt with in Section 2.3 . The three properties
(a),(b) and (c) are all independent, and consequently there are eight
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categories of periodic orbits within this classification scheme. Of the
eight categories, four (those consisting of symmetric periodic orbits) are
of interest in this thesis, while the other four categories (consisting of
asymmetric periodic orbits) will not be considered. In principle, the
orbits of actual astronomical systems would be more accurately approximated
by asymmetric than by symmetric periodic orbits; however, from the computat-
ional point of view, it is much easier to determine symmetric orbits, and it
is reasonable to suppose that we may arrive at general conclusions with
regard to orbital stability of natural systems by investigating symmetric
periodic orbits alone, The definition (2:1) of periodicity is the most
general statement of the property, and applies to both symmetric and
asymmetric orbits, as well as to both planar and three-dimensional orbits,
and to both thé circular and elliptic versions of the restricted problem.

We shall see in the next section that symmetric periodic orbits are a special
case with the additional property of symmetry, just as planar orbits are a
special case where the motion is confined to the horizontal plane, and the
circular problem is a special case where the eccentricity of the primary
orbit is zero; each of these special cases has particular properties which
do not apply in the more general case, such as the Jacobi integral of the

circular problem.

Mn important and useful property of periodic orbits is that the various
categories defined above are not disjoint, but are connected together
through certain orbits (bifurcation orbits) which are effectively common to
two (or possibly more) different.categories. In subsequent chapters we
shall see how families of planar and families of three-dimensional periodic
orbits connect through vertical bifurcation orbits, and how families of
periodic orbits in the circular and elliptic cases of the restricted problem
. connect through commensurable orbits. Since this thesis is concerned only,
with symmetric periodic orbits, bifurcations of families of symmetric with
asymmetric periodié¢ orbits, and of families of different categories of
asymmetric orbits, will not be considered. Recent contributions have been
made on these topics by Message (1970), Message and Taylor (1978), Taylor
(1979), and Markellos (1977a, 1977b, 1978).

2.3 Periodicity Conditions

In the previous section, the basic definition of a periodic orbit
(Equation (2:1)) was stated in terms of the position vector r of the massless

body. Since a unique solution of the equations of motion is specified by
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the initial values (xo,yo,z ,xé,ya,zé) of the position and velocity vector
components, the problem of the numerical determination of a periodic orbit
is equivalent to that of finding a set of initial conditions go, such that
upon integration of Equation (1:42) from 6 = OO to @ = OO 4+ T, for some

positive T, the state vector satisfies

B} (.3.05 B0 9°+T) - 3% = Q. (2-11)

The six components of Equation (2-11) form a system of six simultaneous
equations in the six unknown initial conditions, and the period, also
unknown; hence, this system is underdetermined, with one degree of freedom,
and we may apply an arbitrary constraint, such as fixing the value of one
of the initial conditions. A great deal of effort has been devoted to the
problem of solving the system (2:11) and to.ways of simplifying it. One
obvious simplification is to consider only planar periodic orbits, reducing
the dimensionality from 3 to 2, so that Equation (2+11) becomes a fourth-
order rather than a sixth-order system; indeed, most of the literature of
periodic orbits is congerned with planar periodic orbits, almost entirely
in the circular restricted problem, Another important simplification of
the problem is achieved by making use of the symmetry properties of solutions
of the restricted three-body problem, as we shall see.

The relationship between symmetry and periodicitj in the general N-body
problem can be expressed in terms of "mirror configurations", as defined
by Roy and Ovenden (1955). There are two kinds of mirror configuration,
one associated with reflection in a plane, which we denote type (P), and the
othér associated with feflection in an axis, which we denote type (A4).
These two types of mirror configuration can be defined as configurations
in the 6N-dimensional phase space which are invariant under certain trans-
formations., A type (P) mirror configuration is invariant under the trans-
formation which.reflects the N position vectors and N velocity vectors in
an arbitrary plane in three-dimensional coordinate space and reverses the
signs of the velocity components; a type (A) mirror configuration is
invariant under the transformation which reflects the position and velocity
vectors of all N particles in an aroitrary axis, and again reverses the
signs of the velocity components. In a type (P) mirror configuration,
therefore, all of the N particles lie in a common plane, with every velocity
vector normal to the plane; in a type (A) mirror configuration, all of the
bodies lie on a common axis, with their velocity vectors all perpendicular

to the axis (but not necessarily parallel). The two types of mirror
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configuration are depicted schematically in Figures 2.1 and 2.2, Note that
only the directions of the velocity vectors are constrained, and not their

magnitudes,

It can be shown, by a simple argument, that the orbits of the N bodies
prior to the occurrence of a type (P) mirror configuration are the mirror
images of the orbits after the epoch of the mirror configuration, under
reflection in the plane of the mirror configuration; similarly, the orbits
before and after the occurrence of a type (A) mirror configuration are images
of one another under reflection in the axis of the mirror configuration.

The Periodicity Theorem of Roy and Ovenden (1955) states that any solution
of the equations of motion of an N-body system in which two mirror config-
urations occur at distinct epochs is periodic, This sufficient (but not
necessary) condition for periodicity also confers symmetry on the orbits

of the N bodies beéause of the "mirror image" property; the type of symmetry
depends on which of the two possible kinds of mirror configuration occur

in the orbits that is, whether they are both of type (P), both of type (A),

or one of each type.

Having discussed mirror configurations and periodicity in the context
of the general N-body problem, let us now apply these considerations to
the determination of periodic orbits of the restrictggiﬁgang%.' First of
all, we state the conditions which must be satisfied for the occurrence of
each type of mirror configuration. From the specifications of the two
possible types of mirror configuration already given, these conditions may

be stated as follows:

Type (P) A type (P) mirror configuration occurs if and only if the

massless particle of the system of three bodies is in the
(x,z)-plane (the plane defined by the line joining the two
massive primaries and the axis about which the primaries
‘revolve in their orbit), with its instantaneous velocity
vector perpendicular to that plane; in addition, if the
relative orbit of the primaries is elliptic, with eccent-
ricity e » O, the primaries must be located at either

periapsis or apoapsis.

Type (A) A type (A) mirror configuration occurs if and only if the
massless particle is on the x-axis (the axis of the primaries),

 with its instantaneous velocity vector perpendicular to
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Figure 2.1 : Schematic representation of a type (P) mirror configuration.
The N particles all lie in a common plane (x,z), with their

velocity vectors normal to the plane,

Figure 2.2 : Schematic representation of a type (A) mirror configuration.
The N particles all lie on a common axis (x), with their

velocity vectors perpendicular to the axis.’
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that axis; again, if the primary orbit is non-circular,
the primaries must be located at one or other of the apses

of their relative orbit.

It shouid be noted that the two types of mirror configuration in the restricted
tnree-body problem differ only in terms of the position and velocity of the
massless third body. For both types of mirror configuration, the instant-
aneous velocity vectors of the primaries with respect to their centre of mass
must be perpendicular to the axis joining them, in order to satisfy the
perpendicularity requirement on the velocity vectors of all three bodies.

In the case of a circular relative orbit of the primaries (the circular
restricted problem), the orbital velocities of the primaries are always at
right angles to their radius vectors, and so this requirement is satisfied

at all epochs; in the case of elliptic motion of the primaries, the velocities
are perpendicular to the radius vectors only at the instants when the

primaries are at periapsis or at apoapsis.

There is no distinction between the two types of mirror configuration in
the planar restricted problem; a mirror configuration occurs when the third
body is located on the axis of the primaries, with its velocity vector
directed at right angles to the axis (that is, in the y-direction). In
the planar case of the_elliptic regtricted problem, the requirement that the

primaries be located at either periapsis or apoapsis still applies.

The conditions stated above for the two types of mirror configuration
in the restricted problem can be expressed in terms of the components

(x,y,z,x',y',z')_of the state vector‘E, as follows:

Type (P) mirror configuration : y = x' = z' = 0; (212)

x' = 0. (213)

U}
]

Type (A) mirror configuration : y = 2z

In both cases, the remaining three components of s (x,z and y' for type (P);
X,y and z' for type (A)) are not constrained byithe mirror configuration
conditions, and may therefore have arbitrary values. The additional
requirement that the primaries must be located at periapsis or apoapsis in
the elliptic restricted problem can bé expressed in terms of the true

anomaly © of the primaries:

B = K, ' “(2-14)



- 37 -

where K is an integer.

In the planar restricted problem, we have z & z' = 0 by definition, and

the conditions (2:12) and (2-13) reduce to

y=x'=0, (2-15)

the remaining non-zero components x and y' of the state vector being uncon-

strained.

From Equations (2¢12) and (2-13), we can write down the form of the

initial conditions corresponding to the two types of mirror configuration:

= (x40,2.,0,5:,0)  [meeE (2)]); o (2416)

Zo
8o = (x40,0,0,0,20)  [rere (4] (2:17)
For an elliptic orbit of the primaries, a mirror configuration can only
occur at the initial epoch if the corresponding value of the true anomaly

satisfies )
6, = Ko, (2-18)

where K is an integer, which can, without loss of generality, be taken to
be either K= 0 (periapsis) or Ky=1 (apoapsis). The initial value of ©
can be taken to be GO = 0 in the circular restricted problem, again without

loss of generality, by an appropriate choice of the direction of the x-axis,

By the Periodicity Theorem, an orbit with initial conditions satisfying
either Equation (2-16) or Equation (2-17), witn an appropriate value of QO,
will be periodic if at some later epoch (the "final" epoch) the state vector
again satisfies the conditions for a mirror configuration (Ehuation (2'12)
or (2-13)), the true anomaly 6, of the primaries at the final epoch al so
satisfying Equation (2-14) if the orbital eccentricity of the primaries is
non-zero. Referring to the fact that in the circular problem there is no
constraint on 90 and Ol (except that 91#=90 ), while in the elliptic problem
6, and 8, mst be integer miltiples of T , Broucke (1969) calls the
condition for periodicity in the circular case the "weak periodicity
criterion", and that for the elliptic case the "strong periodicity criterion".
Writing the formal solution of the equations of motion (1:42) (in state

vector notation) as

o~

S= 5(5;0058), (219)



- 38 -

and taking the initial conditions 2y in the form (2¢16) or (2-17), the
"weak periodicity criterion" for a symmetric periodic orbit of the circular
restricted problem can be stated as either

5(;8,9}90;9.) = (%0 2, 0;:3')0), (2+20)
or

S (36560 &) = (%0,00,4,%), (2-21)

depending on the type of mirror configuration occurring at the final epoch,
with 00= 0 and 917 0. The "strong periodicity criterion" for a symmetric
orbit of the elliptic restricted problem consists of the weak periodicity

criterion plus the requirements

9°=0 OFTr,

6 = Bot km, (2+22)

where k = K - K is a positive integer.

0

(Note: In subsequent chapters of this thesis, the term "periodicity

conditions" will be used in preference to "periodicity criterion").

2.4 Symmetry Classes

In the previous section, . the existence of different classes of three-
dimenéiongl symmetric periodic orbits in the general N-body problem,
according to the types of mirror configuration occurring at the "initial"
and "final" epochs, was alluded to., We shall now examine the classification
of symmetry properties on this basis in more detail, confining our attention

to the particular case of interest, namely the restricted three-body problem.,

By the Periodicity Theorem, an orbit of the'pestricted problem is both
symmetric and periodic if it satisfies the conditions for a mirror config-
uration at two distinct epochs. There are four ways in which this can be
achieved, corresponding to the four combinations (P) - (P), (A) - (4),

(P) - (A) and (A) - (P) of types of mirror configuration occurring at the
twolepochs. We have already seen that any orbit in which a type (P) mirror
configuration occurs is symmetrical with respect to the plane of the mirror
configuration (the (x,z)-plane), and that similarly any orbit in which a
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type (A) mirror configuration takes place is symmetrical with respect to
the axis of the mirror configuration (the x-axis). An orbit in which both
types of mirror configuration take place must, therefore, possess symmetry
with respect to both the (x,z)-plane and the x-axis (and consequently the
(x,y)-plane, as well). Thus, three classes of symmetric periodic orbits
can be distinguished, corresponding to the combinations of mirror configur-
ations .

(1) (?) - (P)

(i1) (a) - (8)

(ii1) (P) - (&) and (&) - (P).

(Symmetry classes (i),(ii) and (iii) listed here correspond respectively to
the classes (A),(B) and (C) defined by Goudas (1961)). Orbits of class (i)
are called "plane symmetric", and orbits of class (ii) "axisymmetric"; the
orbits belonging to classes (i) and (ii), which possess only one type of
symmetry, are collectively referred to as "simply symmetric". There is no
essential difference between orbits for which the sequence of mirror
configurations is (P) ~ (A) and those for which it is (A) - (P) (the choice
of "initial" mirror configuration is an arbitrary one); consequently, both
of these cases are taken together in class (iii) of "doubly symmetric"
periodic orbits. (since this class of orbits actually possesses three kinds
" of symmetry - symmetry with respect to the (x,y)- and (x,z)-planes, and the
x-axis - it should strictly be termed "triply symmetric"; but the term
"doubly symmetric" is the conventional one).

Because of the fact that there is no distinction between the two types f
of mirror configuration in the planar restricted problem, there is only one
type of symmetry, namely symmetry with respect to the x-axis; this is the
degenerate form of all three kinds of three-dimensional symmetry when the
motion of the third body is confined to the plane of the primaries. This
general property of symmetry with respect to the x-axis should not be confused
with the special symmetry, with respect to the y-axis, of a certain class of
periodic orbits of the Copenhagen problem (F‘E'%, that is, the case of
equal masses of the primaries) which no longer holds for values of R #%.

From the computational point of view, symmetric periodic orbits have the
convenient property that they can be determined by numerical integration over
only half or quarter of the orbital period, rather than requiring integration
over the full period, thus saving a substantial amount of computer time,

In order to show this, let us denote by qo and Cy respectively the mirror
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configurations occurring at 6= q)and e ='01 (the initial and final epochs),‘
defining a certain periodic orbit. (Note that it is assumed that Cl is the
first mirror configuration to be encountered after the system has passed
through configuration Co). For orbits of simple symmetry'(mirror configur-
ations C0 and C1 of the same type), the motion following configuration C1 is
simply the mirror image, in either the (x,z)-plane or the x-axis, as approp-
riate, of the part of the orbit between Cy and C,. The massless body will

1

therefore return to the original configufation C ., completing one orbital

0
period, after a further interval equal to that between CO and Cl, and so the

period of the orbit is given by

T= 2(8-00) [SimeLE SYM METRY | ; (2-23)

in other words, the interval ©.- 8 _ between successive mirror configurations

in a periodic orbit of simple iymmglry is equal to half the orbital period.
For a doubly-symmetric orbit, the situation is slightly different. If we
assume, without loss of generality, that C,is a type (4) and ¢, a type (P)
mirror configuration, it is clear that the segment~Cocl of the orbit has
mirror image C,C, in the (x,2)-plane, where C another mirror configuration
occurring at a further ;nterval Ql - Ooafter Cl’ is the image of the starting
configuration Cy in the (xyy)-plane, Since Cy and C, differ in the sign of
the z-velocity of the massless particle, they are not identical,and so
periodicity is not achieved. In fact the orbit is described over one full
grbital per%od only after a further interval,equal to the interval from QO

to 02, vhen the particle returns to the starting configuration GO. In one
complete description of the orbit, four different mirror configurations take
place at intervals of one quarter of the period: two of these are of type
(P) and the other two of type (A), the members of each pair of mirror config-
urations being ;mages of one another under reflection in the (x,¥)-plane

(the plane of the primaries). Thus the period of a doubly-symmetric periodic

orbit is given by

T= 4(8i-6) [poveie symrerry] | (2-24)

and the interval between mirror configurations_c()and C1 s defining the orbit,

is equal to a quarter of the period.

For symmetric'periodic orbits of the elliptic restricted problem, the

interval 01 - Oobetween successive mirror configurations must be equal to

an integer multiple of ¥ , as was shown in Section 2.2, Equations (2-23)
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and (2.24) SHow that simply-symmetric periodic orbits of the elliptic problem
have periods of 2kn (k = 1,2,3,...), while doubly-symmetric periodic orbits |
can only have periods equal to 4kw (k =1,2,3,...). This means that periodic
orbits of class (iii) (double symmetry) are less common in the elliptic
problem than in the circular case; this will be discussed further in

another chapter.

Since only "simple" symmetry, with respect to the x-axis, is found in the
planar restricted problem, mirror configurations always occur af intervals
of half the orbital period. In the planar elliptic case, there exist sym-
metric periodic orbits with periods of 2k® for all positive integral values
of k.

2.5 Families of Periodic Orbits

So far in this chapter, we have been discussing the properties of
individual periodic orbits, with reference to broad classification schemes.
In this section, we shall consider an important aspect of the structure of
symmetric periodic orbits, namely their occurrence in infinite numbers as
members of continuous sets in which a smooth transition of characteristic
properties (for example, initial conditions, period, stability) is evident
between neighbouring orbits. We shall see that these sets, of FAMILIES
(or in some cases, SERIES) are, for a fixed value of the mass parameter of
the primaries, monoparametric: in other words, a member of a given family
of periodic orbits can be uniquely specified by the value of a single para-
meter. Although only symmetric periodic orbits will be considered, the

argument can easiiy be generalised to include'asymmetric periodic orbits.

It will be found very useful in this section and elsewhere to employ a
uniform notation for the periodicity conditions of a symmetrié periodic
orbit, Equations (2:16) and (2-17), giving the form of the initial condi-

. = - Vgt ot ;
tions g (801,802,803,804,805,806) (xo,yo,zo,xo,yo,zo) for a mirror
configuration of type (P) and of type (A) respectively, can be written in

the common form _ o
So = (Soi) Soss Soi.) y ‘ (2-25)

where the subscript i = 3 for a type (P) and i = 6 for a type (A) mirror
configuration at the initial epoch, and the zero components of‘go have been

.omitted. Similarly, Equations (2-:12) and (2-13) can be combined in the form

S2= Sy = 5j =0, . (2-26)
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where j = 6 for a type (P) and j = 3 for a type (A) mirror configuration.
In this notation, the periodicity conditions (2+20) and (2+21) for a

symmetric periodic orbit (in the'weak" form) can be expressed as

SQ_ (Sm)SoS)Soi}Bo} 9‘) = O)
Sy (Sot) Sos) Soij Doj ) = O, - (2-27)

Sd (5'01)505)30&}90)'9|) = 0,

Let us first of all consider the system of equations (2+27) as applied
to periodic orbits of the circular restricted problem. In this case, as
we have seen, Gb can be taken to be zero and, from the discussion of the
previous section, Ol must be equal to half or quarter of the orbital
period T, according as the orbit is simply or doubly symmetric. The
periodicity conditions (2-27) therefore form a system of three simultaneous
505,501), and @
or, equivalently, the period T. Now for a given value of the mass

equations in four unknowns: the initial conditions (qOI’ 10
parameterxr s in the circular restricted problem, the values of 801’805 and
B (the other three initial conditions having the value zero),and of T,
specify a unique periodic solution of the equations of motion; these
four unknowns are subject to three constraints (Equations (227)), and
therefore have one degree of freedom. Since all four of these quantities
may vary in a continuous fashion (by the continuity property of the
solutions of the differential equations of motion), we conclude that

solutions of the periodicity conditions occur in monoparametric sets.

Periodic orbits of the elliptic restricted problem must satisfy the
"strong" periodicity conditions, and so0 the. values of Oo and 91 in Equations
(2-27) are subject to the constraints (2-22). By the continuity property
of solutions of the differential equations of motion, and therefore of
solutions of Equations (2-27), it is clear that periodic orbits of the
elliptic problem represented by neighbouring points in the phase space
- mast have the same values of 00 and 91. In other words, since the period
of a periodic orbit in the elliptic problem can only have the discrete
values 2k (k =1,2,3,...) and cannot vary in a continuous fashion as
in the circular problem, once the values of p and e have been specified

the non-zero initial conditions (301, i) are uniquely determined by

8.5
05’0
Equations (2:27). This means that for given values of the parameters
P.and e, periodic orbits occur as discrete entities and not in continuous
families, as in the circular problem. However, if only the mass paraméter

’.1 is kept fixed and the eccentricity e of the orbit of the primaries is



allowed to vary, we see that families of periodic orbits can be said to
exist in the elliptic problem, parametrised by the eccentricity of the
primaries, The foregoing discussion shows that if we take the restricted
three-body problem in the general sense, rather than in a particular
application corresponding to given values of the parameters p and e, the
structure of symmetric periodic solutions is characteristically biparametric.
In the circular restricted problem, the two parameters controlling the

structure are P.and T, and in the elliptic problem they are B and e,

No specific mention has been made so far in this section of planar
periodic orbits. If the periodicity conditions (2-27) are applied to
planar orbits, we automatically have goi = 0 and sj = 0. Thus, one of
the three periodicity conditions disappears, while one of the unknowns
(BOi) assumes a fixed (zero) value; there is no net effect on the number
of degrees of freedom of the system of equations, The conclusions
presented above are therefore equally valid in the planar and three-
dimensional versions of the restricted problem, as might be expected,
since the planar restricted problem is simply a special case of the more

general three-dimensional restricted problem.

2.6 Str¥mgren Classification

In the 1920's and 1930's a very thorough investigation of the periodic
orbits of the planar circular restricted problem, mainly in .the so-called
Copenhagen case (p = %), was carried out by Strdmgren and his co-workers
at the Copenhagen Observatory. Str8mgren (1933) introduced a classification
of the main families of periodic érbits of Poincaré's first generafion
("premiére genre"), consisting for the most part of simple-periodic (one-
revolution) orbits. This classification is widely used in the liferature
of periodic orbits, and will be employed frequently in this thesis; it
is therefore worthwhile including a brief discussion of the schemé for

reference purposes.

The-Strdﬁgren classification is based on two simple characteristics of
the generating orbits from which the various families of periodic orbits
can be obtained, The generating orbits are either infinitesimal orbits
about one of the primaries or one of the five equiliBrium points, or two-
body orbits around both of the primaries, and can be either direct (having
the same sense of rotation as the orbit of the primaries) or retrograde

(having the opposite sense of rotation to that of the primaries). For a
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typical orbit of one of StrYmgren's families, the definitions o6f the two
characteristics "centre of orbital motion" and "sense of rotation" are
not always clear-cut, and apply rigoréusly only to the generating orbits
themselves; thus Strdmgren's simple classification does not truly reflect
the complexity of the structure of periodic orbits of the planar circular
problem, but is, nevertheless a useful scheme which can be successfully
applied (with slight modifications) in cases other than the Copenhagen

(’A = %) case of the restricted problem.

With the notation of Figure 1.4 for the Lagrange equilibrium points
(section 1.6), the most important Strémgren classes are as follows:

(a) refrograde periodic orbits around Li (direct orbits non-existent)

(b) retrograde periodic orbits around L, (direct orbits non-existent)

(¢) retrograde periodic orbits around L, (direct orbits non-existent)

(d) periodic orbits around L, (non-existent for p= %)

(e) periodic orbits around Lg (non-existent for p = %)

(f) retrograde periodic orbits around m,

(g) direct periodic orbits around m,,

(h) retrograde periodic orbits around m

(i) direct periodic orbits around m,

(k) periodic orbits around both primaries : synodically direct

(1) periodic orbits around both primaries': synodically retrograde,
gidereally direct

(m) periodic orbits around both primaries : retrogradé with respect to

both rotating and fixed axes.

All of these classes, with the exception of d and e, congist of periodic
orbits symmetrical with respect to the x-axis. The distinction between
classes k,1 and m arises from the fact that the éense of rotation of the
massless particle is not necessarily the same with respect to the fixed
(or "sidereal") coordinate system OXYZ and the rotating (or "synodical")
coordinate system Oxyz. If the mean motion of the primaries about the
barycentre, with respect to the fixed axes, is denoted by Ny, and that of
the third body in its two-body generating orbit around the two primaries
is denoted by n, then classes k,1 and m correspond to the cases nZng,
0< n< ng and n < 0, respectively.

Because of the invariance of the equations of motion of the planar

restricted problem under the exchaxige ’1(——7 1l- }i, combined with a 180°
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rotation of the x and y coordinate axes about the origin 0, several of the
Str¥mgren classes of periodic orbits are not independent, but have a pair-
wise correspondence under this transformation. It is easily seen that
families a and b, d and e, f and h, and g and i, are essentially identical
apart from a 180° rotation of the coordinate system, if the mass parameter
R is considered to take all possible values between O and 1. It is
possible to distinguish between families a and b, f and h, and g and i if
p is taken to be less than %, so that m, can be chosen as the
less massive of the two primaries; families d and e, however, are always
equivalent, because as a result of the symmetry property of the restricted
problem, asymmetric periodic orbits occur in mirror image pairs

with respect to the x-axis,

Among the twelve "natural" classes of periodic orbits listed above, our
attention in later chapters will be focused particularly on the "retrograde
satellite orbits" of family f, and to a lesser extent on the "direct satellite
orbits" of family g. (The primary m, is usually taken to be the less |
massive of the two, as remarked earlier, and for small values of the mass
‘parameter u, the orbits of family f correspond to periodic satellite orbits
around a planet; the more massive primary m then represents the Sun).

Family f, especially in the Sun-Jupiter case (H = 0+00095) of the restricted
problem, is of interest for a number of reasons: for example, it has been

found (e.g. Hénon, 1965b; Markellos, 1974b; Benest, 1976,1977) that the orbits
of family f remain stable at large distances from the primary Moy unlike

the orbits of class g, and this may be related to the observation that Jupiter's
outermost group of satellites, which experience very large solar pertur-

- bations, all have retfograde motion, while all of the direct satellites have
much smaller orbits (e.g. Hunter, 1967).

The study of the periodic orbits of the Copenhagen category begun by
Str¥mgren and his school was continued by Hénon (1965a,b), resulting in the
discovery of several new classes of periodic orbits. Hénon (1969) also
explored the periodic orbits of Hill's problem (F-= 0), which bear a close
resemblance to certain classes of periodic orbits of the restricted problem
- for sma}l values of Ps and investigated the stability properties of periodic
orbits of the main families of the restricted problem for all values of the
mass parameter (Hénon and Guyot, 1970; Hénon, 1973a, 1974).
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3. STABILITY, SELF-RESONANCE AND BIFURCATION

3.1 Introduction

In this chapter, some properties of periodic orbits, both individually
and collectively, will be discussed. The discussion centres around the
question of the variation in a given periodic orbit resulting from a small
change in its initial conditions; as we shall see, this is closely connected
with the usual definition of stability (in the linear sense) in dynamics
and in mathematics, and also has an important bearing on the structure of

periodic orbits, through the phenomenon of bifurcation.

The main objective of research into the restricted problem is not only
to map out the global set of solutions, but also to determine their stability
properties, and the importance of stability in the overall structure of
periodic orbits is underlined by the predictions of linearised analytical
theory, confirmed by extensive numerical investigations, of the occurrence
of bifurcations for particular values of the linear stability indices (see
Section 3.5).

The concept of stability with respect to small disturbances, or
perturbations, is a natural one. A dynamical system is said to be in a
stable configuration if, upon being subjected to a small external disturbance,
it tends to return to the original configuration; an unstable configuration,
on the other hand, is one in which a small disturbance leads to greater and
greater departures from the original configuration. This definition is
most easily thought of in terms of stétic configurations, or states of
equilibrium; for example, a disc lying flat on a table (stable equilibrium)
or standing upright on its edge (unstable equilibrium). More generally,
we can define stability with respec£ to small perturbations for dynamical
systems constantly in motion;l we then have to measure the departure from

a reference orbit (or solution), rather than a fixed configuration, resulting

. from an imposed perturbation at some epoch. In practice, this can only"

be done for a periodic orbit, from which the departure of a perturbed orbit

over arbitrary time intervals can be determined by considering the departure

over a finite interval (the orbital period).

In Section 3.2, the variational equations are obtained: these describe,
to first order, the effect of a small perturbation on a given solution of

the equations of motion. The first-order variational equations are applied



to the question of linear stability in Section 3.4. Section 3.3 deals with
variations with respect to the parameters R and e of the restricted problem,
which although not connected with the discussion of stability, are important
in the determination of families (or series) of periodic orbits in which

one or both of these parameters vary; this will be taken up in Chapter 4.
Section 3.5 gives an outline of the phenomenon of bifurcation, in general
terms, with reference to bifurcations of planar periodic orbits with three-
dimensional periodic orbits ("vertical" bifurcations). This type of
bifurcation is discussed in some detail for the case of symmetric orbits

in Section 3.6.

Throughout this chapter, it is important to r%g%gger that a linear
stabiiity analysis of a nonlinear system neglectslof second- and higher orders
in the Taylor series expansion, on the assumption that these are small
compared with the first-order terms. This assumption can be examined either
by actually calculating the higher-order contributions or by comparing the
linear theory with the results of numerical integrations., For example, the
prediction of the orcurrence of a bifurcation for certain values of the
linear stability parameters can be tested by attempting to find numerically
a periodic orbit belonging to the bifurcating family, and indeed there is
ample evidence (such as that offered in this thesis) that the linear approxi-
mation is valid. However, it is known (e.g. Bray and Goudas, 1967) that
periodic orbits found to be linearly stable may in fact be unstable because
of third- or higher-order terms in the initial perturbation., References
to stability of periodic orbits in this thesis should always be taken to

mean linear stability.

3+2 Variational Egquations

The equations of motion of the restricted problem can be written, as we

saw in Section 1.4, in the state-vector form (Equation (1-42))

s'= £0s9) (3-1)
with fofmal solution (Equation (2:19))

<= 5 (%5; 90)9') . (3-2)

Suppose that the solution corresponding to initial conditions § =

) at © = 9, , as given by Equation (3-2), is known;

(301’502’503’504’505'306 0
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this will be referred to as the "unperturbed" solution, or orbit. Let us
consider an orbit in the neighbourhood of the known orbit, with initial

conditions (at @ = 90) given by

38 = S+ 85, (3+3)
where the perturbation 830 has components 550 = (5501,5502,5503,3804,85
which are all assumed to be small. The perturbed orbit is given by

s*¥ = 5(s550.,0). (3+4)

The right-hand side of Equation (3+4) can be expanded in Taylor series
about the unperturbed solution; if &50 is sufficiently small, terms in
the expansion of second and higher order in the components of Jgo may be

neglected, and to first order we have
¥ .n . . .
S¥ = 3(8078;0) + V(356;6) s (3+5)

where the Jacobian matrix V is gifen by

V(%j6:50) = [vil.. (36)
and
0S; .
5T sy (hi=120) . C(3+7)

The partial derivativezvi:j are fo be evaluated on the unperturbed orbit at

true anomaly ©. Defining the "variation" vector

ds, = s¥ -3, ' (3-8)

~

we have, by Equation (3-5)

=V O o
0= Vs (3+9)

Differentiating Equatidn (3-9) with respect to the independent variable

8, we obtain

05°? 8506 ,
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ds! = Vds. (3-10)

the elements of V' are, by Equations (3-1) and (3-2),
o ‘

v = Z of; 9sy
L .
hy K sy

b
= kz 'F:k VU (i)J::‘)Q).-. 6) )
= :

where fi is the ith component of the vector function x,(given by Equations

(1+43)) and

(3-11)

- Eﬁ_ (bk=‘2-né .
-Fik T s, 7 ) (3-12)

In matrix form, Equations (3:11) can be written

vi=fv | (3-13)

where
F= [wc;k] e - ; (3-14)

Using Equations (3-9) and (3-13), Equation (3:10) becomes
ds’/ = Fds . . (3-15)

The vector equations (3+15) are known as the VARIATIONAL EQUATIONS of the

unperturbed orbit, and have solutions given by Equations (3-9).

The matrix F is easily calculated from Equations (1-43) and (1-.44),

and is given by

oooloo\

o (o) (o) o | o0
o O o o o | [} (3-16)
F = )
T f fg 0o 2 ©
f5p b fss 2 © O
)

-F6| -sz _'&3 6 O
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vhere

b= E [A-l— 3(!—/~)(531+/~)" + p(sipet "] ,

S 6,5

1

fa

IEs, :(l ~) (?*H . /*(Sﬁ:—l)] )

S o7

tis = 3E s r@)g*ﬂ‘k /“_(_LZ:_)_S;S" },
J 2

‘FS\ - ‘FW_) \ (3-17)
3MSE | Aus?
5 E[A+ _EL_O_IS + 3 ]
Psy = 3Es,53 [lg,ﬁ_‘: -l‘ﬁ; )
P = R
o = ‘Lsa)
' 3(~-m)sf ISt
R =S

The functions A(SI’SZ’SB) and E(0) are given by Equations (1-44). The
matrix F is a function of the coordinates (81,52,83) = (x,y,2) and of the

Y

L

independent variable 6, and is evaluated on the unperturbed orbit.

It is clear from Equation (3+13) that each of the six column vectors of
the matrix V is a solution of the variational equations (3-15). At the
initial epoch (0 = 90) the elements of V are given by

| 8y (= 1u0),

S:
Vij (305 00 8o) = (_S'L) -
6=6, (3:18)

oSy
where Slj is the Kronecker delta, and so
V (50,6,56) = L¢,  (319)

where I, is the 6x6 unit matrix; The column vectors of V are initially
linearly independent, and therefore comprise a fundamental set of linearly
independent solutions of the Qariational equations. The matrix V is
therefore a fundamental matrix, known as the "variational matrix", or as

the "principal fundamental matrix" (because it corresponds to thé particular
Bet of initial conditions (3-19))and is characteristic of a given solution

of the equations of motion. The system (3:13) of thirty-six simultaneous
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first-order ordinary differential equations can be numerically integrated
in conjunction with the equations of motion (3-1). The variational matrix
V of a periodic orbit is of central importance in the determination of its
.stability properties,as we shall see in Section 3.4, and is also required
in differential corrector and predictor schemes for establishing families

of periodic orbits; this latter application will be dealt with in Chapter 4.

In the foregoing discussion, no assumptions were made about the periodicity
or otherwise of the unperturbed orbit, and the results are applicable to
general non-periodic motion, The case of periodic motion will be examined

further in Section 3.4, in connection with the stability of periodic orbits,

3,3 Variations With Respect to the Parameters

The variational‘equations (3-15) discussed it the previous section,with
solutions (3-9), involve the variation Sg, in an orbit resulting from a
small change Sgo in the initial conditions 8y In this section, we
consider variations in an orbit resulting from small changes in the values
‘of the mass parameter-y‘and orbital eccentricity e of the primaries, the
initial conditions being kept fixed. The variations with respect to these
two parameters are important in the analytical and numerical continuation
of periodic orbits,and will be used in subsequent chapters in differential
predictor/corrector methods for the numerical determination of periodic
orbits belonging to families, or series, along which one or both of the

parameters Ps€ varies in a continuous fashion,

We begin by writing Equation (1:42) (the equations of motion in state
vector form) more fully to show the explicit dependence of function f upon'
the parameters‘P and €, as given by the Equations (1+43) and (1-44):

;il=:_p s:B:mse
T (U Mje), (3-20)
This'has the formal solution
again with explicit dependence upon P and e.

Let us consider the effect of a small increment Qf in the mass parameter

upon an orbit given by Equation (3-21), with initial conditions 8, at @ =8,.



The "varied" orbit is given by

* . o0 - .

S = :5,(.‘5,0)90)9),"""8/")9') ) (3-22)
and assuming 3}1 to be sufficiently small, expansion about the original
orbit to first order in J}a gives

-
=S

5* = 5(%; B;05p5e) + Sp j’}- 3 (5056, 6; je). (3-23)

The variation in the orbit is

ds = g*—é = Yudpm, (3-24)

where the vector x}" stands for d_g/d}x, evaluated on the original orbit.

The corresponding equation for the variation resulting from an increment
§e in the primary eccentricity is

03 = Yele,

(3-25)
. where Yo = dg/de, again evaluated on the original orbit. The components
of vectors y_ and v, are
Vip = gd‘ S (é’f)'@o)ﬁi/'ﬁ?/) '
/* . (i';‘)i)n'b) ]
ol : . (3-26)
Vie= 5 50 (307685 p5¢)

Using Equations (3+1) and (3+2), the total derivatives of v and v, with
respect to 6 are

[
V‘I_:_Z_M:éi .4,2&\ |
w £ ’355 d/& a/A . )
J=t } (L:')l)...é),
, A
ro_ U@ ds; 2 (3-27)
ie= 2. Sl v B
J=!

The quantities 3f;/?s; (i) =1,2,...6) in Equations (3-27) are the

elements fij of the matrix F, given by Equation (3'16). If the terms

’afi/'b),z and afi/ 9e (i =1,2,...6), arising from the explicit dependence
of f upon the parameters, are denoted by the elements fi and fie (i=1,2,...6)



of column vectors £ and £e » then Equations (3+27) can be written in the

matrix form

-
Y= Fyor b
,,\,’e.’ = er + P (3-28)

which differ from the variational equations (3-15) only in the terms £ and
~e

From Equations (1+43), the partial derivatives of the components of vector
function f, with respect to the parameters ) 2 and e (the components of

vectors £P and £e)’ are giyen by

By = b -P

,I-

L 3_(_'2&‘7_‘1 3u(s4p-)
= —_—— = +
o [ o o & ﬂ(}d?_l]' (3+29)
-l—-— (" $1+ _
I‘)‘= [‘3 62-1— + s+|];
-F.e = 'Fle = -[:3& = O;
b = — E%sb [s.—_zi(_smﬂ _ g(s,,»,_,_q])
-63_3
Po = — AE's,cas8, -
(3-30)

It is clear that f and f are functions only of the coordinates
(s 1980953 ) = (x,¥,2), the mdependent variable @, and the parameters p and e,
The vectors v and Y, can be computed by numerical integration of Equations
(3-28), in conjunction with the equation for the variational matrix V, and

the equations of motion. Since the initial conditions g, are independent

0
of R and e, the initial values of 3}‘ and ve are
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Vo (B = 90)

"
O

(3-31)

[\®)

Ve (B=0-) =

3.4 Stability

It was shown in Section 3.2 that the variation in an orbit (not necessarily

periodic) due to a small change 5@0 in the initial conditions is, to first
order in ago (Equation (3-9))

§3 = V(%%)6:;6) 9%, (332)
where the variatioﬁal matrix V is given by (Equation (3.13))
v/ =Fv, | (3+33)

and the matrix F depends only on the coordinates r = (xy¥,2) and the
independent variable © (and the parameters R and e). If we take the
unperturbed orbit to be a periodic orbit of period T, satisfying Equation
(2+3) (not necessarily symmetric), then we have the important property that
the matrix F is also periodic, with period T (recall that in the elliptic
problem, T = 2kw for some integer k).

The periodicity property of the matrix F for a periodic orbit implies
that V(SO;QO ; 6 4 T) is a solution of Equation (3+33). But as we saw in
Section 3.2, the variational matrix is a fundamental matrix of the

variational equations; we may therefore write
V(%05 00;0+T) = V(5;8,50) M, (3+34)

vwhere M is a non-singular constant matrix for a .given periodic orbit.

o in Equation (3+34), we obtain

M = V(%005 0.+T) . O (3+3)

The matrix M, equal to the variational matrix computed over one orbital

period (from 6 = Qo to 6 = Oo + T), is termed the MONODROMY MATRIX of the

fundamental matrix V (Wintner, 1946).
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Repeated application of Equation (3-34) shows that
V(556 04 mT) = V(s 6 0)M™ (556

and so, by Equation (3-32), the departure of the varied orbit from the
unperturbed periodic orbit after m orbital periods (@ ==90 4 mT) is

Ism = M" S5 . (3+37)

The matrix M is characteristic of a particular periodic orbit, and is
independent of the choice of initial conditions 8, or the corresponding
value of the independent variable QO; the same matrix is always obtained
by integrating Equation (3-33) over one orbital period, starting from an
arbitrary point on the orbit. In the seéuel, it will be found convenient

to employ the notation

V() = V(5066 Batal) (3-38)

in which the initial.conditions %) at @ = Gb are understood to be those

of an arbitrary point on the periodic orbit of interest,

Equation (3+37) shows that the monodromy matrix M = V(T) governs the
behaviour of the varied orbit over arbitrary intervals of time. It is clear
that if any one of the eigenvalues Xi (i=1,2,...6) of M is greater than
unity in absolute value, the vector ng will increase in magnitude (with
respect to some appropriate norm) as m increases. The criterion for linear

stability of the periodic orbit is therefore

\Xi\ < | (i=0)2,...¢). (3-39)

It can be shown that one of the properties of the monodromy matrix M
is that its eigenvalues occur in reciprocal pairs (see, e.g. Pars, 1965;

Katsiaris, 1973): :
Ay = /N
As = V/h,
N = 1/

Thus, the stability criterion (3-39) can only be satisfied if all of the

I

(3-40)



eigenvalues lie on the unit circle in the complex plane; if any pair of

eigenvalues does not lie on the unit circle, the orbit is linearly unstable, -

In the circular restricted problem, one pair of eigenvalues of the

monodromy matrix has the value unity (see, e.g. Bray and Goudas, 1967, Sect. V).

This property follows from the existence of the Jacobi integral, and from
the fact that the equations of motion of the circular problem are autonomous
(do not explicitly contain the independent variable ©). The stability of
a periodic orbit of the circular problem therefore depends upon the values
of the remaining two pairs of eigenvalues. The equations of motion of the
elliptic regtricted problem are non-autonomous, with the result that the
Jacobi integral does not exist, and in general there is no longer a pair of

unit eigenvalues.,

Mn alternative, -and generally more convenient, way of expressing the
stability criterion (3+39) uses the three "stability indices" kl’k2 and k

instead of the three pairs of eigenvalues of the monodromy matrix. The

3
stability indices are defined (following Katsiaris, 1973) by

k= — Ovtdy) = = (A 1/N)

by = — (Aaths) = = (hat k) |

ks = — (Ms+ )‘b) = — (/\34' l/)\;;) ) | (3-41)

]

and the criterion for the stability of a periodic orbit can be stated as:

" k,) ko) ks ol REAL
"‘il"<22 e=1,2,3. | (3-42)

Because of the property (3+40) of the eigenvalues, the stability indices
can be calculated directly from the coefficients of the sixth-order

characteristic equation of the monodromy matrix,

det M~-\L,) = O, | (3+43)

without the necessity of computing the eigenvalues themselves (see, e.g.
Katsiaris, 1973). The coefficients of the characteristic equation may be

obtained by calculating the traces of successive powers of the monodromy

matrix, and since the roots Xi (i = 1,2,,,.6) of Equation (3.45) form
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reciprocal pairs, only Tr(M), Tr(Mz) and Tr(MB) need be evaluated, In the
circular restricted problem the stability index corresponding to the pair of -
unit eigenvalues ()\3 and A , say) has the value k3 = -2; the cubic equation
in the k's then reduces to a quadratic whose coefficients can be found from
Tr(M) and Tr(MZ) only. The stability of a periodic orbit in the circular
problem depends on the values of the two remaining stability indices k1 and
k, (or p and q, in the notation of Bray and Goudas, 1967), the roots of the

quadratic,

The stability properties of a planar periodic orbit can be determined
by the general method described above, in terms of the stability indices p
and q (in the circular problem) or k) »k, and k3 (in the elliptic problem),
but as we shall see, it is possible to treat the planar case of the restricted
problem in a way which exploits the special properties of a planar orbit,
and particularly of its monodromy matrix, and allows the stability of the
orbit with respect to perturbations in the plane of the primaries, and
perpendicular to the plane, to be examined separately. The stability
indices calculated in this way will be used extensively in the subsequent
chapfers of this thesis, and in particular, the "vertical" stability index,
measuring the stébility of a periodic orbit with respect to perturbations
acting out of the plane of the primaries, will be employed in connection
with bifurcations of planar with three-diménsional periodic orbits, It is
therefore worthwhile to examine the special case of planar orbits in more
detail,

It can easily be shown that for planar periodic orbits (z(8) = z'(e) = 0),
the variational matrix has the form
Vﬁ %1 10 Viy s Q
Vaa Vaz O vy v O
V(G) =10 O vu O O w, |, (3-44)
| ik i O Vg Vis O
Ve Vs O oy Ves O
\O O Vs O o0 W
In this form, V can be separated into two submatrices, Vh(4x4) and V§(2x2),
the former, comprising the sixteen non-zero elements of rows 1,2,4 and 5,
corresponding to horizontal variations (due to perturbations acting in the

plane of the primeries), and the latter, comprising the elements v33,v36,v63

and Ve6? corresponding to vertical variations (due to perturbations acting per-

pendicularly to the plane of the primaries). Equation (3-13) can be



rewritten in terms of the two decoupled submatrices V. and V&, to give

h
([ _
Vk = Fkvk (3+45)

and

(3-46)

where

(3-47)

"

Vi Vae
V., ) )

. Vs Yo (3-48)

and Fh and Fv are the two decoupled submatrices of matrix F given by

O O | O
o O o |
fy fo 0 2
{5 I -2 O

Fi

"

(3-49)
and

o |
F\/ - —ﬁ(os O (3'50)

The initial values of the horizontal and vertical variational matrices
are given by

(3+51)

whe're’I4 and 12 are respectively the 4x4 and 2x2 unit matrices,

The two stability indices k1 and k2 corresponding to the horizontal part

of the variational matrix are solutions of the quadratic equation
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kl — otk + (5'?‘) = O) (3+52)

where

X = -—TT‘[M;J)
6 = . (T(*’-EM;\] _ T- [“ﬁ]), (3-53)

and ﬂh is the horizontal part of the monodromy matrix M:

M, = Vi (T) | (3-54)

(see Broucke, 1969; note the sign difference in the definition of the
stability indices k1 and k2). For planar orbits of the circular restricted
problem, the two unit eigenvalues of the full variational matrix V appear
in the horizontal submatrix V., and so one of the roots of Equation (3+52)

must be equal to -2. The remaining root is

k=2 -T[M] . | (355)

The horizontal stability of a planar periodic orbit of the circular problem

is therefore characterised by one sfability index and in the elliptic
problem by two stability indices., An alternative definition of the stability
index k is given by Whittaker (1904) in . terms of '"normal displacements"

from a periodic orbit. It is more usual, however, to employ the index

a= ¢k = "i'rf‘[”k]" | . | (3-56)

This definition of the horizontal stability index is equivalent to that
given by Hénon (1965b), in terms of the "surface of section" method. The

criterion for horizontal stability, in terms of the index a, is

lal < 1. ' (3-57)

Until relatively recently, the discussion of stability of periodic
orbits of the planar circular restricted problem concerned only what we
call horizontal stability, that is, stability with respect to perturbations
acting in the plane of motion., Hénon (1973a,b) has pointed out that in
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real situations where the planar restricted problem is a satisfactory model,
it is necessary to take account of the effect of perturbations acting out
of the plane of the primaries, and overall stability of a planar periodic
orbit is obtained only when the orbit is both horizontally and vertically

stable, Let us therefore consider now the question of vertical stability.
Denoting the elements of Mv s, the vertical part of the monodromy matrix
=V, (T)
My = W (3-58)
by
“ ay by
v - C‘V dv
(in the notation of Henon, ob. cit.), the characteristic equation of Mv is

N = ()X + (avdh—bie) =00 (560

(3+59)

The roots .>\1, )\2 of this quadratic form a reciprocal pair and so the
constant term is equal to unity (this is a particular case of the general
"volume-preserving" property of the variational matrix, det V = 1; see,
e.g. Siegel and Moser, 1971, p.142). The criterion for vertical stability
( ’)£| ='|X1\f= 1 ) can thérefore be expressed, following Zagouras and
Markellos (1977), as

s <1 (3-61)

where

SV' = —%(Qv’*‘dv) o (3.62)

(The stability parameter s, should not be confused with the components Sy
8oy +e8g of the state vector‘g).

The vertical éfability criterion (3+61) is applicable to planar periodic
orbits of either the circular or elliptic cases of the restricted problem,
and to both symmetric and asymmetric orbits. Since we are concerned only

with the symmetric orbits, which have the special property

ay = dy (3-63)
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(Hénon, 1973b), the vertical stability criterion can be written as
lov < 1. | (3-64)

In the sequel, the elements a, ,bv ’C,, and dv of matrix Mv will be referred
to as the "vertical stability indices"; the expression "vertical stability

index", in the singular, will normally mean the index a .
3.5 Bifurcation

The phenomenon of bifurcation is characteristic of nonlinear systems,
and can be defined as the occurrence of a gqualitative change in the topological
aspect of the phase trajectories representing the solutions of the
differential equations at a critical or "bifurcation" value of some parameter
(see, e.g. Chapter 7 of Minorsky, 1962). In the restricted three-body
problem, bifurcation in this general sense occurs with the mass parameterfl
of the primaries as the "bifurcation parameter". In this section, however,
we shall deal with bifurcations of families of periodic orbits, for fixed
values of P associated with critical values of the linear stability indices.
A general discussion of this phenomenon is given in this section, with
reference to the particular‘example of interest in this thesis, namely the
bifurcation of families of planar with three-dimensional periodic orbits
("vertical" bifurcation). This latter topic will be explored in greater
detail, in the case of symmetric periodic orbits, in Section 3.6.

~ We begin our discussion by considering solutions of the restricted threé4
body problem in the neighbourhood of a periodic solution of the most general
type (three-dimensional, circular or elliptic case, not necessarily symmetric).
In Section 3.4, the important result was established that after m periods
of an unperturbed periodic orbit, the variation resulting from a small |
perturbation Jéo in the initial conditions is, to first order, given by

. (Equation (3+37))

S5m = M5, | (3:65)

vwhere M, the monodromy matrix of the variational matrix V, is given by
Equation (3+35). Since the unperturbed orbit, with basic period T, also
has period mT, we see that in the linear approximation, the perturbed orbit

wili also be periodic, with period mT, if and only if
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SSm = 950) (3-66)

or, by Equation (3-65),

M"-Te) 850 = Q- (3-67)

Equation (3+67) shows that there exists, in the neighbourhood of the
unperturbed periodic orbit, a periodic orbit of period mT, with initial
conditions gg

= £0 + 850 s, if and only if there exists an eigenvector Jgo
of Mm‘corresponding to a unit eigenvalue. The two orbits will not be

distinct, however, if Jg is an eigenvector corresponding to one of the pair

(¢]
of unit eigenvalues of M which always exist in the circular case of the
restricted problem, neither of which results in a bifurcation. One of
these unit eigenvalues arises, as has already been remarked, from the fact

that the system is autonomous, and the corresponding eigenvector simply

. introduces a "phase shift" along the original orbit; the other unit eigenvalue

arises from the existence of the Jacobi integral (e.g. Bray and Goudas, 1967;
see also Markellos, 1974a). Those periodic orbits of the circular restricted
problem for which M" has a unit eigenvalue distinct from the pair just
mentioned, and all periodic orbits of the elliptic restricted problem for
which the monodromy matrix satisfies Equation (3:67), are referred to as
"bifurcation orbits", because of the fact that it is possible to continue
such an orbit in more than one direction, resulting in a bifurcation or
"branching" of families of periodic orbits. The eigenvalues of the mono-
dromy matrix M occur in reciprocal pairs, and so unit eigenvalues of Mm,

if such exist, also appear in pairs. Consequently, a bifurcation orbit

can always be continued in two periodicity-preserving directions different
from that corresponding to continuation along the basic family to whicﬁ it

belongs.

The bifurcation condition (3:67) is satisfied if M has a pair of eigenvalues
xa-and. Xb, say, in a reciprocal relatiqnship, which are mthxbots of

unity:

-t . aminfm
Aa=d =€ 70, (5-69)



where n is any integer such that O<ngm. By Equation (3-41), the

corresponding stability index, ka say, is given by

ke = — O+ = —-lw(g-’,f\l)' (3+69)

Let us now consider the particular case of planar bifurcation orbits.
As we have seen, the variational matrix V of a planar periodic orbit can
be split into horizontal and vertical submatrices; planar orbits therefore
exhibit two types of bifurcation, corresponding to the decoupled horizontal
and vertical parts of the variational equation. Horizontal bifurcation,
as the term implies, takes place in the plane of the primaries, the bifur-
cating families consisting only of planar periodic orbits. This phenomenon
has been investigated by Markellos (1974a,b, 1975), in connection with
the "horizontal branches" of family f in the Sun-Jupiter case of the
restricted problem., Vertical bifurcation, involving vertical variations
of a planar periodic orbit, is the bifurcation of a family of planar
periodic orbits with a family (or families) of three-dimensional periodic
orbits (see, e.g. Markellos and Kazantsis, 1977). This latter type of
bifurcation is clearly of great importance in the overall structure of

periodic orbits, and it is on this type that we shall concentrate in the

remainder of this section.

The vertical part of the variational equations (3-15) can be written as

A é\s 3 / | 833

Sso| Fv\ds, ) ) (3-70)

where Qs, and 5s6 are the "vertical" components dz and Jdz' of the

3

variation vector 5§, and the matrix Fv is given by Equation (3-50).
The solution of Equation (3-70) is

35\ = v, (F

Jfb ' 5306 ’

(3-11)

where §803 and 6506 are the vertical components 820 and 526 of the

initial perturbation ébo; the remaining components of which are taken

to be zero.
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Because of-the decoupling of the horizontal and vertical variational
equations, the vertical perturbations 5803 and 8806 do not cause any
horizontal variation from the unperturbed periodic orbit.

Applying the general argument outlined above to the case of vertical
bifurcation, the condition that a planar periodic orbit is a vertical

bifurcation orbit is

m &03 = O) )
(MV - I?.) 3306 O (3:72)

where Mv is the monodromy matrix of V&(G), and m is g positive integer;
the perturbed orbit is then a three-dimensional periodic orbit (with
small departures from the horizontal plane, to permit the use of
linearised equations) of period mT, where T is the period of the

unperturbed planar orbit. A non-trivial solution ( JEO and 8506.

3
not both zero) of Equation (3:72) exists if and only if the two eigen-
values )‘l and )\2 of Mv are mth roots of unity. The condition for

vertical bifurcation is therefore

(3-73)

vhere s is given by Equation (3+62). A planar periodic orbit

satisfying Equation (3-73) will be referred to as "vertical self-resonant".
Clearly, ali vertical self-resonant orbits are vertically'stable; those
orbits for which s, =+1(m= n=1) and s, =1 (m=2,n=1),
corresponding to the boundaries between the vertically stable and unstable
segments of a family of planaﬁr orbits, will be referred to as "vertical-

critical",

For a symmetric planar periodic orbit we have SV'=:8V, and the vertical

self-resonance condition is

(3-74)
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3.6 Vertical Bifurcations of Symmetric Periodic Orbits

The discussion in the previous section concerning the bifurcation of
periodic orbits did not involve any assumptions about symmetry proberties.
In this section we shall consider the phenomenon of vertical bifurcation
of symmetric orbits in more detail, referring particularly to the
relationships between the vertical stability indices of a vertical bifur-
cation orbit, and the symmetry properties of the three-dimensional
periodic orbits generated from the bifurcation. The central idea in
this discussion is the use of the variational matrix evaluated at the
half-period (6 = 90 4+ T/2) of the planar periodic orbit, rather than at
the full period (0 = 90'+ T, that is, the monodromy matrix), combined

- with the application of the Periodicity Theorem; this approach is based

on the work of Hénon (1973b) and of Markellos (1980).

We begin by considering a symmetric periodic orbit of the planar
restricted problem (circular or elliptic case), of period T; if the
primary orbit is elliptic then T = 2k for some positive integer k.

Let the two distinct mirror configurations of this orbit, that is,
successive perpendicular crossings of the x-axis, occurring at 6 = ©
and @ = 6, + T/2, be denoted C, and C, respectively. By Equation (2-15),

0
the initial conditions at 8 = %) satisfy

So = (51)0,0,0, ses, 0). - (3-75)

Let us now consider the orbit resulting from small vertical perturbations
5503 and 6506 in this planar periodic orbit. The initial conditions

of the perturbed orbit are

g = (So|)0; 880'3)0) SoS ) SSQ(,)_ (3-76)

In terms of the horizontal components (31,82,54,85) of the state vector,
the perturbed orbit is identical to the unperturbed one, while to first
order in the perturbations, the Qertical components of the state vector
are given by Equations (3-71) and (3-48):

6‘33) _ (Vas Vi | [dSes

536

Vo Vou | \Ssa (3-77)



We seek to establish periodicity conditions for the perturbed orbit
in terms of the Periodicity Theorem, as in Section 2.3, From Equations
(3+76)y (2-16) and (2-17), the initial conditions of the perturbed orbit

correspond to a mirror configuration if and only if
85, = O (Thee (P))v (3+78)

or

Sses = O (Tyee (A)).

.

(3-79)

The perturbed orbit resulting from initial perturbations (<5503, 6506)‘
satisfying either of these conditions will be periodic if, at some later
epoch O'= 91 say, another mirror. configuration is obtained. In the
elliptic restricted problem, 01 must also satisfy Equation (2:22).

Since the horizontal part of the motion is (to first order) unaffected,

it is clear that a mirror configuration can only take place at those epochs
corresponding to the occurrence of a mirror configuration in the unper-

turbed planar periodic orbit, that is, for values of © given by
T
6=20,+N (y_) ) (3-80)

where N is some positive integer. (Note that the condition (3-80) auto-
matically satisfies Equation (2:22)). The further requirement which
must be satisfied involves the vertical motion: by Equations (2:20) and

(2¢21), we must have either
=0 (Tye (®), (3-81)

or

hé\ss " ° (T (A)) . (3-82)

Combining Equations (3-77) - (3-82), we see that the periodicity conditions

of the perturbed orbit can be written in the form

&; = vy (NT/2)&,= 0, (3-83)

where i = 3 for a type (P) and i = 6 for a type (A) mirror configuration
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at the initial epoch, while j = 6 for a type (P) and j = 3 for a type (4)
mirror configuration at the final epoch (as in Section 2.5); JEOi is
therefore the non-zero initial perturbation in each case ( 5501 = 0 is
the trivial solution corresponding to the unperturbed orbit). Equation
(3-83) shows that there exists a three-dimensional symmetric periodic
orbit bifurcating from the planar periodic orbit if and only if one of

the four elements (v3 6’v63’v66) of Vv(NT/2) vanishes, for some

3V3

positive integer N. The four possible cases of vertical bifurcation are
listed in Table 3.1.

Table 3.1
Type of Mirror Configuration at: Symmetry .
Case Initial Epoch(OO) Final Epoch(Gl) ~ Class i j Period
1 P P Plane symmetric 3 6 NT
2 A A axisymmetric 6 3 NT
3 A P } doubly- 6 6 ONT
4 P A symmetric 3 3 2NT

The table shows, for example, that a family of plane symmetric three-
dimensional periodic orbits bifurcate from a planar periodic orbit for
which v63(NT/2) z 0 for some N. The final column of the table gives the
period of the three-dimensional orbits in the neighbourhood of the bifur-
cation, as given by Equations (2-23) and (2-24), with @, = QO+NT/2
(Equation (3.80)). '

1

As we saw in Section 3.4, the matrix V&(Q) has unit determinant for all
values of ©:

Vay Veo — V3o Vi3 = [, : (3-84)

The terms v33v66 and v36v63 of this equation cannot both vanish, and so

 zero elements of V& can only exist either singly, or as one of the diagonal

pairs (v33,v66) or (v36,v63). Table 3.1 shows that in consequence qf this
fact, a vertical bifurcation orbit can only give rise either to a single
family of three-dimensional orbits, corresponding to‘one and oniy one of
Cases 1 - 4 of the table, or else to two families of three-dimensional
orbits, corresponding to Cases 1 and 2 or to Cases 3 and 4 (that is,

one family of plane symmetric and one of axisymmetric
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orbits, or two families of doubly-symmetric orbits).

We recall the definition of the vertical stability indices (Equations
(3-58) and (3-59)):

v, (1) = o dv) (3-85)

Let the elements of the vertical variational matrix evaluated at the
hal f-period (8 = Oo + T/2) of the planar periodic orbit be denoted

v, (T/2) = c '  (3ee6)

It is easily shown, using the symmetry property of the planar orbit,
that the elements of Vv at the full period are related to those at the
half-period by '

a, by\ _ AyD,+ B, Cy 28, D,
(cv dy 2A,C, AvDy + 8, Cy (3-87)

(e.g. Hénon, 1973b).. The important property a = d _of a symmetric orbit
has already been mentioned in the previous section, Using Equation (3v34)
(as applied to the vertical part V& of the variational matrix V), the
vertical variational matrix computed at @ = 90 + NT/2 can be expressed

in terms of its value at the half-period and at the full period., The
resulting expression for V&(NT/2) depends on whether N is odd (N = 2r + 1)

or even (N = 2r): : ‘

N=o2 &1 VV (NT/?_) = ‘/V (T/?.'fY‘T) = VV .(le)[VV(T)]r (3-88)
| (T‘=°JB2;-") >

v, (NTf2) = V, 6T) = [v, (1) (3:69)
(P-‘- 0) l)'l) ) .

=
"
R

Let us first of all suppose that one of the elements of V;(T/Q) vanishes
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(that is, taking N = 2r 4+ 1 with r = 0). By Equation (382), Cases 1 - 4

of Table 3.1 correspond respectively to

cy=0 ; B,=0; Dv=0 Ar=0. (3+90)
Now from Equations (3-84) and (3+87), the vertical stability index a,

is given by

= 28Dy -1 = 28,0+ 1, (3-91)

In each of the cases (3-90), ‘av| = 1 : the planar orbit is vertical-
critical, In the first two cases (cv =0and B = 0), a_ has the

value +1, This corresponds to the values m = 1, n = 1 in Equation

(3+74), and will be referred to as a "simple bifurcation". The quantities
Bv and Cv are independent, and in general, when one of these parameters

is zero, the other will be non-zero; thus, a vertical-critical planar
periodic orbit with a, = 41 generally gives rise to just one family of
simply-symmetric three-dimensional periodic orbits, the symmetry class
depending on which of Bv or Cv vanishes (axisymmetric or plane symmetric,
respectively). Table 3.1 shows that in the neighbourhood of the
bifurcation, the period of the three-dimensional orbits is (to first order) -
equal to T, the period of the planar orbit; in the elliptic problem

the entire family of three-dimensional orbits has period exactly equal

to T.

In the second two cases of (3-90), A =0 and D; = 0, Equation (3-91)
shows that a, = -1,'corresponding to the values m = 2, n = 1 in Equation
(3+74): this is referred to as a "double bifurcation". The three-
dimensional periodic orbits in the neighbournood of the bifurcation
have double the period of the planar orbit, and so also double the multi-'
plicity (the multiplicity of an orbit being defined as half the number
of crossings of the (x,z)-plane occurring in one period). Since Av '
and Dv are independent, there is in general.only one bifurcating family
of doubly-symmetric periodic orbits originating from a vertical-critical
.orbit with a, = -1, If Dv = 0, then the orbits near the bifurcation
have their type (A) mirror configuration close to the configuration Cs
of the planar orbit; if Av = 0, then the type (A) mirror configuration
is close to the configuration C1 of the planar orbit. The geometry of
bifurcation from a vertical-critical orbit, in each of the four possible

cases listed above, is depicted schematically in Figure 3.1.
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Let us now suppose that all of the elements Av’Bv’Cv and Dv of
VV(T/Q) are non-zero, but that one of the elements of V_ (NT/2) vanishes,
for some N>1, FEquation (3-91) shows that a, cannot be equal to
unity: we are no longer dealing with vertical-critical orbits, but
with the more general vertical self-resonant orbits for which a, is
given by Equation (3-70), with m>2. It is easily shown by induction

that the vertical variational matrix Vv, computed at 8 = 6, + NT/2

0
(N =0,1,2,3,...) satisfies the following two eguations:

A AV ﬁr 8V

Vv (T/Z-FPT) = @(\ CV Ae DV

where of_ and (& are functions of A, B, C_ and D ;
r r . v v v v

| e 25¢ 8/Dy
T) = (¢ 20) -
Vy (€ ) 28 AvCy I ) (3093

where } and d_ are functions of A y B, C and D, We may therefore
r r v v v v
state the following: '
If the elements A , B, C_and D_of VV(T/Z) are all non-zero,
then for all values of N1, VV(NT/2) has either no zero elements,

or exa.étly two zero elements on the same diagonal.

This follows from Equation (3-84), together with Equation (3-93) for
odd values of N '(= or +1, r =1,2,3,...), and Equation (3+94) for even
values of N (= 2r, r = 1,2,3,...), the important point being the appear-
ance of the common factors (®¢) ﬁr ), (d’r)'d\r) in the diagona.l pairs
of elements; since Av, Bv’ ~Cv and Dv are assumed to be all non-zero,

an element of VV(NT/Z) can only vanish if one of the functions K, ﬁ ’

T
d’r or 51- is zero.

We therefore have.. the important reéult that families of three-dimensional
periodic orbits bifurcating from a vertical self-resonant periodic orbit
for which N>1 (that is, excluding vertical-critical orbits) always
occur in ‘pairs, and as we have already seen, both families must consist

either of simply-symmetric or of doubly-symmetric orbits.

Using Equations (3-34), (3-85) and (3-87), together with Equations

(3+92) and (3-93), pairs of simultaneous recurrence relations can easily
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be established for the functions o<r, @r’ ’Vr and gr:
) *
Br = “vﬁr-—l + (O‘V"' |)°(P—l (3:94)
= oy fomr + (ar=1) O ‘
de vie ( . (3-95)

S¢ Ay J¢_| + fea

1}

Since lavj #1, the @'s can be eliminated from Equations (3-94), and
the §'s from Equations (3-95), giving

O(r.;..l - 2aV°<(‘ + ey = O}

Yeri — 2ap Yo + 4o = O. (3-96)

The general solutions of these two identical second-order recurrence

relations are
: -
o = Ae't 4+ Be Tt

Yo = Celf® 4 De7i™ | G

where

cos § = @y, | (3+98)

and A,B,C,D are constants to be determined from theinitial conditions

(3-99)
3’0 = ‘ ) Xl = Qa, .
(3-100)
Calculation of the four constants yields
sin (c+1)$ — Sinrd

X = .
Sind (3-101)

{f‘ = Cos (‘4)) .

(3-102)
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and the associated solutions for é <’ §r are

_ Sia (c4+1)d+ Sin o )
& Sad | (3-103)

sin
gr = *

sind : | (3-104)

Let us consider the conditions for the occurrence of a pair of zero
elements of the matrix VV(NT/2), for odd values of N=2r +1 (r =1,2,3,...).
It is clear from Equation (3¢92) that this is the case if either o<
or ﬂr vanishes, for some r>0. By Equation (3:101), the function oL

is equal to zero if and only if

sin(e+) ¢ = Snrd (3-105)
and
Sn¢ # O, (3+106)
which is satisfied for
_ (2Kl £
=\~ J .
¢ (QM, ) (3-107)

-where k is an arbitrary integer, such that (2k + 1),(2r 4+ 1) is not an

integer. Substitution of the solutions (3-107) into Equation (3-98)

gives

Q‘V= COS(———’Qk+')Tr)

Qe+l (3-108)

with valid solutions for O k<r: this yields the complete set of r
roots of o(r, which is a polynomial: in a, of degree r. (A duplicate
set of r solutions is obtained for r<k €2r). . The zeroes of the
function @r are given by

sa (c4)$ = —3hed, (5.109)
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such that
Sin o
$ #0, a0
with solutions
¢ - 2k ,
24| (3-111)

where k is once again an arbitrary integer. The corresponding values

of the vertical stability index are

‘2'1(1) (3-112)

a, = CoS
v (Q.r—H

with valid solutions for 0<k<&r, giving the complete set of r roots of

'31_-

We now consider the conditions for the occurrence of a bifurcation
for even values of N = 2r (r =1,2,3,...), that is, for the appearance
of a pair of zero elements of Vv(rT). This requires that either ¢
or _Sr vanishes, for some rz1l. The first condition ({r = 0) can,
by Equation (3+102), be written

Cos r¢ = O, | (3-113)

with solutions

[ 2k+1 '

where k is an arbitrary integer and we take 0K k<r, giving the complete
set of r roots of the polynomial Xr' The corresponding values of the

vertical stability index are

(3-115)

From Equation (3:104), the condition that Jr vanishes is
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¢ = k1r/t‘ ) (3+116)

such that k/r is not an integer; thus

ay = cos(k—;-r) . (3-117)

The complete set of roots of the polynomial Jr, of degree r-1 in a_,

is given by 0<k<r,

Let us now relate‘ these results to the vertical bifurcation condition

(3-74) given in the previous section, namely

2
Qy = w(":—:\—)) (3-118)

where m and n are taken to be mutually prime integers with O<ngm.

The case n = m (aV = 4+1) is at once excluded from this discussion, since
this is the case of a vertical-critical orbit, which has already been
dealt with. From Equations (3-108), (3-112), (3-115) and (3-117), the
condition for the occurrence of a bifurcation associated with the vanishing

of one of the functions o(r, @ ’ fr and Jr (a.nd therefore of one of

r
the pairs of elements (v33,v66), (V36’v63) of the matrix Vv) can be
expressed in the form (3-118), with the values of the integers m and n

in each case as given by the following table.

Table 3.2

Function m n
o 2(2r +1) %k + 1
@r 2r +1 k
Yr 4r 2k +1
A‘rr 2r k

The final entry of Table 3,2, corresponding to Jr = 0, is essentially
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redundant, since all the possible combinations of values of m and of n

can be constructed from the entries correspondipg to the cases o, = 0

and 5; = 0, This ;edundancy of solutions reflects the fact that a
doubly-symmetric periodic orbit can -be regarded as simply-symmetric if

one of its symmetries is ignored; the bifurcation of doubly-symmetric
orbits corresponding to v33(NT/2) = v66(NT/2) = 0, for some N 71 (o(r

or J_ equal to zero), automatically gives v36(N'T/2) = v63(N’T/2) = 0,
where N' = 2N is even (that is, éﬁ = 0). The occurrence of a bifurcation
of genuinely simply-symmetric orbits is associated with the vanishing

of the function @r, for some r>1.

The possible values of the integer m in Equation (3:118) in each case
of Table 3.2 (with r = 1,2,3,...) are

HKe=O; M=0 10 Ity o ..
Be=0: m=3,57,...
Iy 8)12). ..

(3-119)

)]

Je=2Oi m

which together acéount for all integer values greater than 2; the values
m=1and m = 2 apply to vertical-critical orbits. It is evident that
an even value of m corresponds to the case of doubly-symmetric three-
dimensional bifurcating orbits (v33 = Vés = 0), while an odd value of m
corresponds to a bifurcation with a family of simply-symmetric orbits

(v36 = Vs = 0). The following conclusion may therefore be stated:

A vertical self-resonant ofbit,‘with vertical stability index a,
given by Equation (3-118),gives rise to one family of axisymmetric
and one of plane symmetric three-dimensional orbits if m is odd,

and to two families of doubly-symmetric orbits if m is even,

Numerical examples of the different types of vertical bifurcation

predicted by the first-order theory are given in Chapter 5.
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4. NUMERICAL TECHNIQUES

4.1 Introduction

In Chapters 1 and 2, emphasis was placed on the fact that the restricted
three-body probiem is non-integrable, in the sense that there is an
insufficient number of integrals of the motion to allow a general
solution to be expressed solely in terms of the values of the integrals,
determined from the initial conditions, In practice, therefore, we
must resort to numerical methods of integration in order to obtain a
solution with arbitrary initial conditions. Numerical integration,
nowadays performed with the aid of a digital computer, essentially
involves.replacing the exact differential equations of motion, of
variation, etc. by finite difference equations approximating the exact
equations to an accuracy which is usually controlled at each step of
the integration. The overall accuracy of the numerical solution
cannot normally be checked directly (except in the case of known analytical
solutions, such as the Lagrange equilibrium solutions), although indirect
tests can be carried out, the commonest method being to monitor at
various points in the integration the value of the quantity C in the
Jacobi invariant relation (Equation (1-47)), which is invariant along
an exact solution of the elliptic restricted problem,.and the first
(and only) integral of the circular problem. It is important to note
that satisfaction of this latter accuracy test is a necessary But not

-sufficient condition for overall accuracy of the solution.

In the essentially theoretical subject of the restricted three-body
problem, thé development of computer programs is analogous to the
design of new equipment in an ekperimental field of research, and is
worthy of attention in its own right; & substantial part of the present
work was indeed concerned with program development and refinement.,

- This chapter is concerned with a number of computational techniques
and algorithmé wnich can be used in the determination of families of
symmetric periodic orbits, and in calculating orbital stability. The
numerical integration itself will not be discussed in detail. The
numerical results presented in this thesis were obtained using the
methods described in this chapter, in conjunction with the EPISODE
numerical integration package developed by Hindmarsh and Byrne (1975),

based on a variable-step, variable-order Adams method, and adapted to
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deal specifically with the integration of orbits by Dr. Paul Rosenﬁerg

of the University of Glasgow Computing Service.

In common with the majority of numerical integration facilities,
the EPISODE package is designed to integrate systems of simultaneous

first-order ordinary differential eguations of the form
[ _ -
s/ = £.(5;0) (i=02,...n) , (4-1)

where © is the independent variable, and § is an n-dimensional vector

of the quantities to be integrated. The eguations of motion in terms
of the state vector, and the equations of variation, can all be combined
in this form. The first six components of the vector S were taken

to be the components of the state vector g, and other components were
used for the elements of the variational matrix V, the components of
vectors v and.xé, and the Jacobi invariant.C, the total number of

elements being n = 6 + 36 + 6 + 6 + 1 = 55,

In the circular restricted problem, and in the integration of planar
orbits, the system of differential equations is simplified, and n can
be reduced from this maximum value. The various programs written for
the determination of families of periodic orbits called the EPISODE
integration package to generate a numerical solution of Equations (4.1)

in the form

Si= Si(Se5% ;) (4-2)

where S, = (501’50
of §, and QO’ Of are respectively the initial and final values of the

2”'°SOn) is the set of initial values of the components

independent variable in the differential eguations. - Thé value of a
parameter designated "EPSY, which controlled the local truncation

error in the first three components of §,(that is, the coordinates of
the massless particle with respect to the rotatingapulsating éoordinate
system), was assigned at the outset, the most coﬁhonly—used value being
10-11. All calculations were carried out in Fortran double precision

arithmetic, yielding an accuracy of approximately 16 decimal places.

jany of the numerical procedures described in this chapter are not
only efficient for the determination of entire families of symmetric

three-dimensional periodic orbits, but can easily be modified to be
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applicable in the case of asymmetric periodic orbits of the planar
restricted problem, which present the same degree of complexity in

so far as numerical determination is concerned. As we ghall see in
a subsequent chapter, the algorithms can also be modified to allow
the numerical determination of series (as opposed to families) of
periodic orbits: that is, monoparametric sets of periodic solutions
of the restricted problem in which the mass parameter, rather than
being kept fixed, is allowed to vary, and some characteristic of the
orbits is kept constant instead. In particular, we shall discuss in
Chapter 7 the determination of series of vertical bifurcation orbits,

having a fixed value of the vertical stability index av.

4.2 Calculation of the Variational Matrix

It was shown in Chapter 2 that a symmetric periodic orbit can be
computed by integrating over only a half or a quarter of the orbital
périod, according as the symmetry is simple or double, respectively.
As we shall see in this section, orbital symmetry can also be employed
in calculating the variational matrix V after one orbital period (in
other words, the monodromy matrixAM), from its value at the half-
period or quarter-period, as appropriate, without the need to integrate
over the whole orbit. This well-known property of the variational
matrix results in a 50% or even T5% saving in the computer time
required to determine a symmetric periodic orbit and its stability
properties (see, e.g. Bray and Goudas, 1967; Katsiaris, 1972; Zagouras
and Markellos, 1977).

The transformations discussed in Section 2.3, associated with the
two possible types of mirror configuration, can be represented by the

diagonal matrices
P=olg {1) =1, 1,1, 1, “"}, (4-3)

ohﬁa i’l)"h"l)-*l) ') I}’

=
o

operating on the state vector s. The matrix P has the effect of

reflecting the position and velocity vectors of the massless particle
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in the (x,z)-plane, ‘and changing the signs of the velocity componerts;
the matrix A reflects in the x-axis, and reverses the velocity. A
type (P) mirror configuration corresponds to invariance under the trans-

formation represented by matrix P, that is
5= Ps, (4-4)

which gives Equation (2.16), while in a type (A) mirror configuration

the state vector must satisfy

s=Ahs, (4+5)

giving Equation (2-17). The two mappings represented by matrices P
and A transform the variational matrix V to ' '

W= pve (4-6)

and

= AV
W= AVR, (4.7)

respectively; Because of the symmetry properties of the -equations of
motion of the restricted problem, the transformed variational matrices
U and W still satiéfy Equation (3+13), with the independent variable

6 replaced by 208.- 6. Thus, for a periodic orbit which has a type (P)

0

mirror configuration at 6 = GO (that is, Pg, = 50), the matrices U

0
and V are related by

wy) = v(-+), | (4-8)
where the shorthand notation V(s ;90;904'W) = V() is once again
employed for convenience. Equation (4-6) then gives

V(-+) = PV (¥)P. (4-9)

Now Equation (3-34), with ® = -T/2, can be written as

v(T) = v (-T/2) v (T/2) ; (4+10)

using Equation (4-9) with 4 = T/2, and the propertyP-1 = P, we
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obtain

V(—r} = P\/" ('r/?.) PVCT/Q) . (4-11)

For a periodic orbit which has a type (A) mirror configuration at 6 = %’
the analogous expression to Equation (4-9) is

V(-+)= ARV(VA, (4-12)

and since Al= A, we have

v(T) = v (2 AV (T/2), (413)

Equations (4:11) and (4:13) can be used to determine the monodromy
matrix M = V(T) from V(T/2), calculated over half of an orbit, for
periodic orbits of simple symmetry (ﬁlane symmetric and axisymmetric,
respectively). For doubly-symmetric periodic orbits, either Equation
(4+9 ) or Equation (4-12) applies, depending on whether the initial
mirror configuration is of type (P) or (A) respectively. 1In addition,
because the half-period configuration in a doubly-symmeiric orbit is
identical to the initial configuration, apart from a reflection in the

horizontal plane, the variational matrix satisfies

V(ﬂf-%"r/l) '-;. DV(“") DV(T/Q.) ) | (4-14)

where D = diag (},1,-1,1,1,-1} is the matrix representing refiection
in the (x,y)-plane. FEquation (4:14), with Af= -T/4, gives ‘

v (T/i) = DV (=T/6) DV (T/2), (415)
and the value of V(-T/4) can be obtained from.either of Equations (4-.9)
or (4-12), as appropriate, with ¥ = T/4. This establishes a relation-
ship between V(T/2) and V(T/4) which, together with the relationship
(4-11) or (4-13), as appropriate, between V(T) and V(T/2), and the

properties of matrices A, P and D

A=DA=p
fD - DP= A

4P = PA =D (4-6)
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yields the following expressions for the monodromy matrix V(T) in
terms of V(T/4):

Type (P) initial mirror configuration:
‘ a :
V (T) = [PV"(T/#) AV(T/IF)] ; (4+17)

Type (A) initial mirror configurations

V (T) = [A-V_I (’r/ll—) PV (—r/l")]z . (4-18)

4.3 Differential Correction

Numerical integration of the equations of mofion of the restricted
three-body problem, from an arbitrary set of initial conditions, is an
example of what is usually termed an initial-value problem, The numerical
determination of a periodic orbit (symmetric or asymmetric), on the
- other hand, is an example of a boundary-value problem: that is, the
problem of finding a set of initial conditions which, upon integration,
yields a solution satisfying certain boundary conditions - in the case
of a periodic orbit, the periodicity conditions, One of the most
commonly-used methods of tackling a boundary-value problem is the
differential correction approach; which assumes to start with that
approximate values of the desired initial‘conditions are known, If
the estimated values are sufficiently accurate, the departure of the
corresponding solution from the exact boundary conditions will be
small, and approximately linearly dependent upon the errors in the
initial conditions, The sjstem of linear equatibns expressing this
dependence can be solved to provide estimated values of the errors
in the initial conditioné, which can then be "corrected" accordingly;
the procedure is repeated in an iterative fashion until the boundary
conditions are satisfied within some prescribed accuracy. In this
section we examine how the differential correction.method is applied
in the numerical determination of symmetric periodic orbits, firstly
in the circular restricted problem and secondly in the eiliptic restricted

problem,

In the circular restricted problem, the "weak" form of the periodicity

conditions (Equation (2-27)) is applicable, and can be written as
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51'(Sau)sog,soa 51.’) =0, .
Sy (el Ses) Soi j £) = O (4.19)
SJ (SOI)SO.';) Soi}f) = O)

where the quantity 90, which as we have seen can always be taken to
be zero in the circular problem, has been omitted for clarity, and

the symbol t has been used instead of Gl' We recall that for orbits
of simple symmetry, the integration interval between successive mirror
configurations is t = T/2, and for doubly-symmetric orbits, t = T/4,
where T is the orbital period. The values of the subscripts i and j
depend on the symmetry class, as in Table 3.1; the value of the mass

parameter M is assumed to be fixed.,

Suppose (sgl,sgs,sgi) and t* are approximate values of the initial

conditions and integration interval of the sought periodic orbit,

differing from the exact solutions (901,805,301,1:) of Equation (4-19)

by the amounts '

330| = Sa— So*l-

3805= Sos— 57;5

3501, = Soi —Shi (4-20)
&=+t -F

which are assumed to be small. Approximate values for the "corrections®

5801’ 5305, GSOi and dt are now sought.,
. . . s c s s ® ) ¥
Numerical integration from initial conditions (501,905,501) (the

remaining three taken to be zero, as usual) at © =0 up to 6 = t*

yields final conditions

% *
s¥ = 50 (s S5, 65 5 +¥)
S,f = Sy (Sg(;) Sos ) Sou 3 'l’f*) (4-21)
x— *
SJ = S (So;l") 305')50;‘5} **) .

Using Equations (4-20), the periodicity conditions (4-19) can be written

as
Sy = Sa (Soy + oy S35 +3ses ) 5X + 5 ;6¥+E) = 0
Sp = Sy (Sof + s £§+é‘sog, s}-f+é‘.¢oi;f*+&)= 0 (4+22)
¥
S5 = 55 (5% + 8%y 55+8s) Soi + i ; 7 +3t) = 0.
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Fxpanding the right-hand sides of Equations (4+22) in Taylor series,

to first order in the corrections, we obtain, using Equations (3-5)
S+ vy 850+ VsSS0s + Vi 856t + £,dE =0
Sf + vy O+ Viysses + Vii OSo; + ,Cq_Jt: 0 (4+23)
§f3F Vi OSo; + Vjs5 8505 + P3L5365~F £j55'='C))

where the v's are elements of the variational matrix V, given by Equation
(3+13), and the f's components of vector f, that is, the derivatives
dsk/dg, all evaluated at 0 = tx.in the trial integration from initial
conditions (ég;,égé,sgi); the values of thege coefficients are therefore
known. :

The system (4:23) of three simultaneous equations, in the four
unknowns 5801, 5555, EéOi and 5%, is the basic form of the differential
corrector for the circular restricted proovlem, The system is under-
determined, with one degree of freedom, allowing a furtner arbitrary
constraint to be applied. This is usually done by setting one of
the four corrections to zero, and solving for the other three, The
choice of wnich of the c&rrectors to set to zero, that is, which of

the initial parameters (s or t) to fix in value when the

01*%05* ®0i
corrector is applied, can have an important effect on the convergence

of the solution, This question is connected with the choice of "family
parameter" in the predictor algorithm, and will be discussed further

in Section 4.5. For the time being, in order to introduce the con-
vention of interchangeable subscripts, allowing flexibility in the
choice of the fixed parameter, let us rewrite Equations (4-23) in the

- form ‘
V,, SSok 4 Vor SSel 4 Vopy o + Hdt = —s¥

Vq,K(;\SoK + Vq,LJSOL + Vim JSO'M + -&J{r = - lf (4-24)
VJKJSOK 4+ VJL&OL + VJM é\gOM + _EJ- é\t = --S’d*'

The three subscripts K,L and M can be selected as any permutation of
1,5 and i (recall that i = 3 or 6, depending on the type of initial
mirror configuration, as in Table 3.1), Since K can always be selected

appropriately, we can, without loss of generality, set

Ssox =90 (4+25)
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thus keeping s, fixed at the value é*' in the corrector. The system

0K 0K
(4+24) can then be solved for the corrections JEOL’ ééOM and Ot, and
and t obtained from Equations

improved values of the parameters SoL’ Som

(4-20). Integration from the corrected initial conditions up to the

corrected final epoch yields a new system of equations of the form
»* b3
appearing on the right-hand side, if application of the corrector has

(4-24), with smaller absolute values of the quantities s

been successful, The whole procedure is repeated in an iterative
fashion until the final conditions satisfy the periodicity conditions
within some specified accuracy. A suitable form of periodicity

criterion is

l/ .
YR ¥ x2\2
(s¥-+sp +5 ) < €&, (4-26)

where € is some (small) constant. (The results presented in this
thesis were computed with a "periodicity accuracy" € = 10-8).
Quadratic convergence of the corrector is obtained for sufficiently
small periodicity errors (that is, each application of the corrector
results, approximately, in a squaring of the error); starting with
initial estimates of the orbital parameters with an accuracy of a
few per cent, two or three applications of the corrector are usually
sufficient, unless numerical difficulties associated with a highly

unstable orbit or a close approach to one oi the primaries‘arise.

The application of differential correction method to the determination
of periodic orbits of the elliptic restricted problem is formally
very similar to that for the circﬁlar case, The méin difference
is that the period of a periodic orbit in the elliptic proolem can
only take certain discrete values (equal to an integer multiple of
the period of the primaries), and so must be kept fixed in the corrector
process, With the addition of this constraint, the system of corrector
equations (4+23) becomes completely determined, and unique solutions
are obtained., In practice, eétimates for the initial conditions of
arbifrary periodic orbits of the elliptic problem are not available;
however, as we saw in Chapter 2, families of periodic orbits can be
established with either the mass parameter p or eccentricity e of thé

primaries as the parameter of the family.

We consider now the diffefential corrector algorithm which can be

used to determine a periodic orbit belonging to a family parametrised
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by the primary eccentricity, the mass parameter being kept fixed, as

before. The periodicity conditions (2:27) are written in the form

S’L(SOI)SOS)Soi)‘e_) =0
Sl‘. (SOI)SDS')SOI) e,) = O (4.27)

Sd (Sol) Sos) Soi j &) =0 )

indicating the explicit dependence upon the parameter e, which is
allowed to vary. It is assumed that the (fixed) values of 6, and 8;
are known a priori, and these are therefore omitted from Equations (4-27).
The analogy between Equations (4.19) and (4-27) is obvious, and the
corrector equations for the elliptic restricted problem may therefore be

written
Vi 8Sal + Vig 0505 4 Vi; 050 + Ve de = -3k

(4-28)
Vji 95o) 4+ VjsdSos + Vji 955 + vjede = -sff .
The quantity de is the difference
¥
de= e — € - (4+29)

between the exact and estimated values of the eccentricity in the sought
solution of Equations (4.27). The coefficients V2e’v4e
in Equations (4-28) are the components of the vector Yo defined in Section
3.3 (that is, the derivatives dsz/de, ds 4/de, dsj/de), evaluated at the

final epoch (O = Ol), and are calculated from Equations (3-25). The

and v. of Jé
Jje

same considerations apply to the solution of Equations (4-28) as to
Equations (4-23), and in the interchangeable-subscript notation, Equation
(4-28) becomes '

Vo SSok + Vo o+ Vam Som + Voede = —5§

VjK Sk 4+ Kﬂ.531.+' Khﬂ‘ﬁbw\-# bﬁe}§é-== __jgp.

The selection of one of the parameters (SOI'SOS’BOi’e) to be kept fixed
in the corrector is associated, as we have seen, with the choice of family
parameter for the family of periodic orbits to be determined. If, as is

fregquently the case, a family of periodic.brbits of the elliptic problem



is to be established by continuation from the circular problem, the
primary eccentricity e is chosen as the parameter of the family, and we
take

Se = O (4+31)

in Equations (4-30). In other circumstances, such as in tracing out a
family of three-dimensional periodic orbits bifurcating from a planar
orbit (a "vertical branch"), it is more appropriate to fix one of the
initial conditions, and Equation (4.25) is applicable. This will be

discussed in Sections 4.5 and 4.6.

4.4 Predictor Algorithms

By means of the differential correction method described in the previous
section, the initial conditions and period (in the circular case) or the
primary eccentricity (in the elliptic problem) of a three-dimensional
symmetric periodic orbit can be found arbitrarily accurately in principle,
on the assumption that the values of these parameters are known in the
first place. The use of the corrector algorithm alone is sufficient to
allow a number of representative periodic ordbits to be found at intervals
along a famlly, by incrementing one of the parameters (801’505'801 t) by a
fixed amount between successive orblts, and taking the values of the other
three parametersfor the orbit Just found as estimates for those of the
next orbit. To start the whole process, the parameters of one orbit
belonging to the family must. be approximately known. This procedure,
involving the use of the unal tered parameters of the previous orbit, is
referred to as the "zeroth-order predictor" scheme. It is an inefficient
procedure for tracing out a family of periodic orbits, usually reguiring

many'iterations of the corrector in order to satisfy the periodicity
.criterion, and the interval between successive orbits along the family

usually has to be made quite small to ensure convergence of the corrector.

At little cost in program complexity, and using information which is
already available, a first- or second-order predictor scheme can be set up
to produce accurate estimates of the initial conditions and period
(eccentricity) for the next orbit along the family. Predictors of higher
order than the second result in more accurate estimates of these parameters,

reducing and sometimes eliminating the need for a corrector step, but have



- 88 -

‘the disadvantage of requiring either higher-order variations to be

calculated, or more complicated starting procedures to be devised (see,
e.g. lFarkellos et al., 1978). In this section, the first- and second-
order predictors employed in obtaining the results given in this thesis
are described., As in the previous section, we deal first of all with
the circular restricted problem, and then make the necessary alterations

for the elliptic case.

The first-order (linear) predictor algorithm is based on a slight

modification of the differential correction method. Let us assume that
s s 1 1 1 1

the initial conditions (SOI’SOS’SOi) and period T of an orbit satisfying

the periodicity criterion (4-26) have been found; then, to an accuracy €,

we have .
S3 = S2(Sol ) Se5, 801 3¢') =
S¢ = Sy (S0 ) Ses ) So 34') =
SJ' =S (Soll) sq’Y)So'i )"f-") e

(4-32)

© 0 O

)

where as usual t1= T}2 or T&A, depending on the orbital symmetry, Let
(sgl,sgs,sgi; t2) be the corresponding parameters of a neighbouring orbit
of the same family, such that the quantities

DSy = S = Sai

Dsos = S5 "5:!5
BSo, = Sex — Si
Ay = - ¢

(4-33)

are small., The periodicity conditions for the second orbit can be'written
2= S, (So1+ A% ) Ses+D505 ) Sob + 0503 ; £+ BE) = O
SE =5y (o1 + D61 Sck + o5 &:'1+Arot3‘f'+6") =0 (4-34)
SJ7'= Sj (so‘,-lfAs‘o,) Sof;{rAyos) so';-lfAyo;; -b’+A-b) =0 .

Expanding in'Ta_ylor seriés to first order in the A's, and using Equations

(4+32), ‘we obtain the basic form of the linear predictor for the circular

restricted problem:
Vy BSop + Vs BSes+ V85 + LD =0
Viy D01 + Vyg BSas + Vi Bsi+ f Bt =0
Vst DSoy+ Vjs Dses + Vji Dsoi + -{.’JA-L':'- o .

(4+35)
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The elements of the variational matrix V and components of the vector
function f appearing as coefficients in these equations are those for

the "known" orbit (superscript "1"), evaluated at © = tl,

The system of three simultaneous equations (435) differs from the
corrector equations (4+23) only in that the quantities corresponding to
52*, 94* and sj* are zero; this is because both the "original' and
"modified" orbits, in the present case, are periodic, Like the corrector
system, Equations (4-35) have one degree of freedom, allowing an arbitrary
constraint to be applied; this is usually done by assigning a fixed non-
zero value to one of the A's. (Note that choosing any of the A's to
be zero would result in the trivial solution A,SOI = ASO5 = ASOi = At =0,
merely reflecting the property of periodicity of the known orbit, except
when the matrix of coefficients of the other A's is singular, in which
case no solutioh exists). The parameter to which a fixed increment is
given is termed the "family parameter". The choice of this parameter,
from 801,305,SOi
meter has an extremum over the family being traced, so that the correspond-

and t, can be important; if the selected family para-

ing system of equations becomes singular or nearly-singular, the predictor-
corrector scheme will break down completely and have to be restarted with
a new choice of family parameter. In the next section, aAsimple criterion
will be given for selecting the family parameter on a "local" basis, in

such a way that these difficulties are avoided.

It will be found convenient in the sequel to rewrite Equations (4-35)

in terms of fhe variable subscript notation introduced in the previous

‘section:

Vox DSok + Vo BSol + Vapm BSom + J, Bt =0
Viik DSok + Vi Bsor + Vigm DSom + —ﬂ,, At =0
Vik DSox + V4L Dsop + ViM DSom + .EJA{: =0.

(4-36)

As before, the subscripts K,L and M can be any permufation of the set
(1,5,i). By suitably defining K we can, without loss of generality in
the choice of family parameter among the three non-zero initial conditions,
g and solve Equations (4+36) for

and Mt. This linear predictor algorithm has the advantage

specify the value of the increment Aso

A SoL? Asom

that knowledge of only one previous orbit of the family is required, and

in some circumstances, as we shall see later, it is the only one usable.,
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It is often the case, however, that more than one orbit has previously
been determined, and it is then possible to employ the more accurate

second-order (guadratic) predictor, which we now consider,

The equation of the "family characteristic", defined as a curve in the

four-dimensional space of the initial conditions (so i) and integ-

1*%05° %
ration interval t, each point of which represents an orbit belonging to

the family, can be written in parametric form

Sot = Sl (w)
o= % () (4-37)
Soi = Soi (W) | *?

=t

with respect to some parameter u. Suppose that two neighbouring orbits

belonging to the family, corresponding to the wvalues uO and vy of the

parameter u, are known, such that

AM: U.l’uo (4'38)

is small, Expanding the right-hand side of the first of Equations (4-37)
to second order in Au, we may write

: o/ '//
Sgl N SO'I '—AMSQ| + %'_AL‘?'SO‘ ) (4.39)

0 1 ' . . o
vhere s, = 501(u0), o1 = 801(u1)’ and the primes denote differentiation

with respect to the parameter u, with similar expressions for sO 0

0 > 05’ ®0i
and t°, The initial condition So1 of the orbit corresponding to
n = u‘). = M‘| -‘»’Al& (4 .40)

is given, to second order in Au, by

, / (7
Soq[ = .30|| ‘l"AuSr':l + ‘:",AuLSN ) (4+41)

2

with similar expressions for s and t°.  From Equations (4-39) and

(4+41) we have

2 2
05’ ~0i
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/
{
S& = Soi + 2D8u 8o

/
S;g = sos+1AuS‘<'as
Sf{ = Sm +'2Au$oi , ' (4'4.2)

/
£ = £° +2nut!’

2
05’801) and

J_ntegratlon interval t2 of the third orbit accurate to second order in

yielding predicted values for the initial conditions (s

the parameter increment Du.

Now for each of the three orbits, corresponding to parameter values

Uity and u,, we have periodicity conditions of the form
o A R et ) =
3. = S:L(Sol) Sas) Soi ; t ) =0

X S oL, ) |
L o L . —
Sd =SJ(So|; 5(5)5;% )‘L"’{) = 0,
where « takes the values 0, 1, 2. The right-hand sides of Equations (4-43)
for orbits O and 2 can be expanded in Taylor series, to second order in

Du, avbout orbit 1:

/
P = 5! = du (v s +V155 {+ vy S+ Lt )
LA [ OPse PRs, (4-44)
P (Tl v Ta e ),

N,
= 83+ Du (v Sy +vas 505 + vy Sol. + 'fz‘k'/)

2s i Vi .
+ _IiAuL (_5_‘;:2; s.(:l 7)13‘9_ Sl + ) ) '(4 45)

0 -2

with similar expressions for s0 i,sj and Sj . Subtraction of Equation

4*°
(4-44) from (4-45) yields

sy —s2 = m“("u Sof 4"’25 4’ Vai sa + £t ) O) (4-46)

with similar expressions for the other two components, s, and s.. For

4
‘the three orbits to be distinct, we must have Au # 0; comparison of

Equation (4-46), and the corresponding equations for the 4 and j components,
with Fquations (4.36), shows that the two systems of equations are identical.

Solution of the system of linear equations (4+36), with known coefficients,
1/ 1! 11 and tll

therefore yields the derivatives 801’ s05,

along the family
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characteristic, The values of the derivatives are accurate to second
order, and can be substituted into Equations (4-:42) to yield predicted
values of the initial conditions and integration interval of orbit 2
accurate to O(l)uz). This quadratic predictor algorithm requires only

& 80 0 to) of orbit 0, together

the values of the 1n1tia1 f?raTiteij ( Ol’SOS’SOi’
with the derivatives s01,305,30i,t calculated from the elements of the

variational matrix of orbit 1, and which are needed in the linear pre-

dictor anyway.

Since the quadratic predictor achieves an improved accuracy for the
predicted initial parameters of the next orbit along a family at virtually
no cost in terms of extra calculations, it is clearly preferred over the

linear predictor. However, the quadratic predictor requires that:

(i) two previous orbits must be known;
(ii) the interval in the parameter u between orbits 0 and 1, and

between orbits 1 and 2, must be equal.,

The first requirement fails to be satisfied only when the second orbit
of a family is sought. The second requirement ensures that the terms
involving Au® in Equations (4-44) and (4-45) cancel in Equation (4-46),
so that second derivatives of the_form ?Fsu /‘ZSOQBSQ]' (the elements
of the second-order variational matrix) do not have to be computed. As
we shall see in the next section, the occurrence of an extremum in the
family parameter may prevent requirement (ii) from being satisfied. 1In

either case, the linear predictor has to be used as a starting procedure.

The parameter u introduced in Equations (4-37) has been taken to be
arbitrary; it is usual (although not necessary) to identify u with cne
of the initial conditions (Sox' where K = 1,5 or i) or the integration
interval t. In Section 4.5 a criterion is described for selecting the

family parameter on a "local" basis.

The construction of linear and quadratic predictor algorithms applicable
to the elliptic case of the restricted problem follows the analogy employed
in Section 4.3. The orbital period T has a fixed value along a family
of periodic orbits in the elliptic problem, and instead we consider the
eccentricity e of the primaries to vary, the mass parameter R being held

fixed. The linear and gquadratic predictors of the elliptic restricted
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problem are therefore obtained by replacing ( At, f2,f4,fj) in the predictor

equationsg of the circular problem by (Ae’v2e’v4e’vje

4.5 Selection of Familv Parameter

In the previous two sections, the importance of the family parameter
in the numerical determination of a family of symmetric periodic orbits
of the restricted problem was discussed. We recall that for a fixed
value of the mass parameter, families of periodic orbits in the circular
problem are monoparametric, and that in the elliptic problem it is
possible to speak of monoparametric families of periodic orbité if the
primary eccentricity is considered to vary along such families, In
principle, an arbitrary parametrisation may be adopted, but it is often
convenient, and in some circumstances necessary, to choose as family
parameter one of the non-zero initial conditions of the orbits, denoted
by SoK in the variable subscript notation, where X is equal to 1,5 or i;
this particular component of 5o is then incremented by some previgusly-
specified amount between successive orbits along the family being traced
out, and fixed in value when the corrector is applied. Difficulties
arise, however, when an extremum in the chosen family parameter is
encountered: the systems of predictor and corrector equations become
néar-singula.r, so that 'Ehe predictor may "overshoot", and the corrector
may converge slowly or not at all. Since it is often the case that
each of the three non-zero initial conditions possesses at least one
extremum at some point along a family, and invany case the occurrence
of an extremum is not'readily fdreseen, it is not generally possible
to trace out an entire family using the same family parameter through-
out. It would clearly be advantageous to be able to select the most
suitable family parameter on a local basis at various stages in the
numerical determination of a fémily of periodic orbits, so that break-

down of the predictor-corrector scheme does not occur.

The strategy ehployed in the determination of the various families

presented in this thesis was to select as "local" family parameter the

most rapidly-varying of (sOl’SOS’SOi) at each newly-computed orbit
belonging to the family being traced out. We saw in Section 4.4 that
. . . . . !/
in the circular restricted problem, the derivatives 301, 905 and Soi

with respect to the parameter u, commponents of the tangent vector to the
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family characteristic, satisfy the system of eguations (in matrix form)

/
Var Vas Vay 5;“ O
£ Ses | =
“ I sdt

noovs va &\

Vi Vs Vi * (4-47)

o O

Defining the following determinants involving the elements of the matrix

appearing in this equation:

vy Vas b |

D| = Vi V‘£5A ‘(:q. ) (4-48)
i vis 4

D = iy Wi £

Di = s Vi Fg| (4-50)

Vig Vs Vii| 7 | (4-51)

501:5’05:30/1:{’*—‘ Dl:Dgzb;:D . (4-52)

The four determinants Dl, D5’ Di and D can be evaluated from the variational
matrix and derivative of the state vector at the final epoch (6 = t) of
a periodic orbit; Equation (4-52) then shows that the most rapidly-

varying of So1? so5 and Soi along the family is that associated with the

determinant Dl’ D5 or Di having the largest absolute value. If the
subscript K is chosen accordingly and the initial condition SoK incremented
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by some fixed amount As the corresponding solutions of Equations (4+36)

oK’
are

AsoL = Dsog D [Dic
Asem = Bsox Dy /DK

(4-53)
At = Dsex D /D¢
These values can then be used to predict either linearly or quadratically

the parameters (501,5 Oi’t) of the next orbit of the family., These

’S
predicted values are SZfined by iterative application of the corrector,
with SoK kept fixed; once the periodicity criterion is satisfied, the
determinants Ql, DS’ Di and D are re-computed from the new variational
matrix and derivative of the state vector. If the relative values of
‘Dl\, lDSl and IDil are now such that a change of family parameter is
necessary, the subscript X in the predictor-corrector scheme is redefined,
The whole procedure is repeated as each new orbit is obtained, with
changes of family parameter oécurring as often as necessary to ensure
that the orbits are in a geometrical sense more or less evenly-spaced
along the family characteristic, and avoiding entirely the difficulties

associated with extrema in the initial conditions.

The increment applied to the local family parameter for the prediction
of a new orbit is most conveniently taken to be some "round" number,
such as 0.001 or 0-005. If this value is retained when the family
parameter is changed, it will not in general be equal to the interval
in this parameter between the ﬁrevious two orbits. This means that
the quadratic predictor cannot be used immediately foliowing a change of
family parameter; the linear predictor must be used instead, for just
one step, and thereafter the quadratic pregictor may be used until
another change of family parameter becomes necessary to take account of”
variations in the relative rates of change of the initial conditions

along the family,

The criterion for the selectidn’of the family parameter described
above is readily implemented in a computer program for the determination
of families of periodic orbits. " The criterion has been described in
the context of the circular restricted problem, with the integration
interval t (equal to half or quaiter of the period, depending on the
symmetry) varying along the family. In the elliptic problem, as we have
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seen, t is replaced by e, and the derivatives f2, f4, fj by Voe! v4e, vje’
respectively; with this substitution, the criterion is applicable in the
elliptic case as well as in the circular case of the restricted problem.
It has been found that this automatic selection criterion, together with
intesration to a specified epoch (the predicted value of t) rather than
to a given crossing of the (x,z)-plane, to avoid difficulties associated
with multiplicity changes along a family, can result in an entire family
of periodic orbits being obtained, without interruption, in a single run

of the computer program,

4.6 Numerical Determination of Vertical Branches

The computational techniques describéd up to now in this chapter are
of generai application in the numerical determination of symmetric
periodic orbits of the restricted three-body problem, In this section
we confine Bur attention to the problem of determining the "vertical
branches" of a family of planar periodic orbits, that is, the familiés
of three-dimensional periodic orbits which originate through vertical
bifurcation from a member of a planar family; and in particular, we
consider how suitable starting orbits may be found for the various types
of vertical branches, As in previous sections, we deal first with the
circular case of the restricted problem, and then indicate the differences

that arise in the elliptic case.

Suppose that the symmetric planar periodic orbit with initial conditions
(SOI’O’O’O’SOS’O) and period T, has vertical stability index a  satisfying

the self-resonance condition

- ’_llrg,) .
Qv = “S(m Y (4+54)

for some integers m and n (mutually prime, with m71l, 0< ngm). In the
cases a = 1'1 (vertical-critical), as we saw in Chapter 3, there is in
general only one vertical branch,consisting of orbits of simple symmetry
for m=1 and of double symmetry for m=2, the exact symmetry class depend-
ing on which of the elements of V&(TO/Z) is zero. Let us consider the
more general case of an m-tuple vertical bifurcation with m<y2, where-

there are two vertical branches.

If m is odd (m = 3,5,7,...), one of the two vertical branches consists
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of axisymmetric orbits and the other of plane symmetric orbits, The
expressions "axisymmetric family", "plane symmetric family" or "doubly-
symmetric family" will be used in the sequel to mean "a family consisting
of axisymmetric (plane symmetric, doubly-symmetric) periodic orbits".

In the linear approximation, the initial conditions of the orbits of the
plane symmetric family in the neighbourhood of the bifurcation are given
by

S0 = (So1) 0y dse3) D) So05,0) (4-55)

and for the axisymmetric family,

So = (So1) 9 0, 0 Sos)é‘sog) ) (4-56)
where 5303, éboé are small., Because of the decoupling of the horizon-
tal and vertical parts of the variational equation, the ccmponents So1
and 805 of the state vector, to first order in 6501, do not vary along
the family. For the same reason, for small values of 5305 and 5806’
the orbits of both families have period .

T=mT,. (4+57)

Numerical determination of the two branches commences with estimated
initial conditions and period given by Equations (4-:55) or (4-56) with
a suitable value of‘&g, and (4-:57). In the predictor-corrector scheme,
it is essential to choose Spj 28 tﬁe local family paraméter at the -
beginning of each family (i = 3 for the plane symmetric and i = 6 for
the axisymmetric family), in order to ensure that the process does not
revert to an orbit (describéd m times) of the planar family to which the

vertical self-resonant orbit belongs; the value ds.. is fixed in the

corrector, so that a genuinely three-dimensional pegiodic orbit will be
obtained, and subsequent orbits of the vertical branch are computed with
803 increased by some fixed amount. The selection criterion described
in the previous section will automatically choose S0i as family para-
meter, because to first order in 5501, the tangent to the family
characteristic in the vicinity of the bifurcation is in the "wvertical™

direction, tnat is, parallel to the SOi-axis.
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For m-tuple bifurcations with m even (m = 4,6,8,...), there are two
doubly-symmetric branches, In order to obtain the initial conditions
of suitable starting orbits for the two branches, it is necessary to

consider separately the cases distinguished in Table 3,2:

(2) m = 4r ( =4,8,12,...),
(b) m=2(2r+1) (=6,10,14,...), (4-58)

corresponding to J&_= 0 and cxr = 0, respectively. The period of a
three-dimensional orbit in the neighbourhood of the bifurcation is given
by Equation (4.57), and the interval t between successive mirror config-
urations is t = T/4; in case (a) above

t=rcTo, (4+59)

wnile in case (b)

t=@e+) o /1. (460)

Let the two distinct mirror configurations of the planar bifufcation orbit

be denoted C0 and Cl. A doubly-symmetric three-dimensional periodic

orbit belonging to one of the vertical branches can be generated from
initial conditions satisfying either Equation (4:55) (type (P) mirror
configuration) or Equation (4-56) (type (A) mirror configuration), the

horizontal components So1 and 505 of the state vector corresponding to '

either Cy or C the four possibilities may be denoted by CO(P), CO(A),

13
Cl(P) and CI(A)‘ Two of these four cases correspond to the initial and
final conditions of the same orbit, according to the value of m, as

shown in the following table,

Table 4.1
Case m Initial Mirrér-Configuration Final Mirror Configuration
)
(a) 4r Co(4) ¢y (P)
c, (4) ¢, (p)
(v) 2(2r +1) CO(A) , Cl(P)

cy(a) Co(P)
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In all cases, the initial and final mirror configurations are of different
type, as they must be for a doubly-symmetric orbit, In case (a), Equation-
(4+59) shows that the interval t between successive mirror configurations
of the threc-dimensional orbits is an integer multiple of the period TO
of the planar orvit; thus, in the linear approximation, the horizontal
components of the state vector at each thnree-dimensional mirror config-
uration are the same, and correspond to either Co or Cl' In case (b),
the interval t between successive three-dimensional mirror configurations
is, by Equation (4.60), an odd multiple of the half-period of the planar
orbit, so that the horizontal components of the state vector alternate

between configurations Co and C,, at each three-dimensional mirror config-

1
uration,

There is no real distinction between the "initial" and "final"
configurations of a periodic orbit, since we can always choose the
starting point of the integration arbitrarily; thus, entries in the
last two columns of Table 4.1 can be interchanged at will. It can be
seen that in both cases (a) and (b) (that is, for all even values of m72),
the orbits of the two bifurcating families are distinguished in the
location of the type (4) mirror configuration (or, alternatively, the
type (P) mirror eonfiguration), If we choose always to commence the
integration of a doubly-symmetric periodic orbit from a type (A) (on-
axis) mirror configuration, then starting orbits for the two vertical
branches arising from a vertical self-resonant orbit for which m is even
can be determined from initial conditions of the form (4:56), with the
components s., and s correspondihg to each of the two distinect mirror

- 01 05
configurations C., and-C, of the planar orbit., The two starting orbits

could equally wegl be fiund using initial conditions of type CO(P) and
Cl(P)’ rather than CO(A) and Cl(A), but it is often advantageous to use
on-axis initial conditions because the two vertical branches are more
readily distinguished according to which side of one or other of the
primaries their perpendicular intersections witn the x-axis take place;'
the points of perpendicular intersection with the (x,z)-plane may .
migrate from one side to another as a vertical branch is traced out,
whereas the points of perpendicular intersection with the axis are unable
to move from one side of a primary to another, unless a collision takes
place. It should be noted that in case (b) of Tanle 4.1, starting orbits
for both branches can be obtained using only configuration CO’ giving the

mirror configurations CO(A) and CO(P), or alternatively using only
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configuration C In case (a), however, both of configurations CO and C

1'
must be used to obtain the two branches.

1

The situation in the elliptic réstricted problem is very similar to
that in the circular case. First of all, the vertical branch orbits all
have period given (exactly) by Equation (4-57). In the linear approx-
imation, the value of the primary eccentricity for the three-dimensional

orbits in the vicinity of the bifurcation is

e = e’ (4-61)

wnere eo is the value for the planar bifurcation orbit. The initial
conditions of suitable starting orbits for the numerical determination
of the vertical branches are as given above for the circular restricted

problem, The component s.. of the initial state vector should always

0i
be taken as the family parameter at the beginning of a vertical branch,
to ensure that the predictor-corrector process does not revert to planar

periodic motion,
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5. VFRTICAL BRANCHES OF FAMILY f IN THE SUN-JUPITFR CASE OF THE
CIRCULAR RESTRICTED PROBLEM

5.1 Introduction

In this chapter, results are presented of a numerical investigation of
the vertical branches of Str8mgren's family f (retrograde orbits about
the less-massive primary m2) in the Sun-Jupiter case (u = 0+00095) of
the three-dimensional circular restricted problem. The object of this
investigation was twofold: firstly, to verify in this particular case
the predictions of the linear theory of vertical bifurcation discussed
in Chapter 3, and secondly, to explore three-dimensional periodic orbits
resembling the motion of Jupiter's outermost natural satellites, a

project suzgested by the work of Hunter (1966).

We begin by considering the orbits of family f of retrograde planar

satellite orbits around the primary m,, which for the value F’= 0.+00095

2
of the mass parameter represents the planet Jupiter, if my is taken to

be the Sun (the effects of the other planets are of course negiected in
the model of the restricted three-body problem). The orbits of the

part of family f in the vicinity of the primary m, are simple-periodic

2

(completing a single revolution about m, in one orbital period) and

2

roughly circular, centred on m Each orbit crosses the x-axis perpend-

20
icularly twice in one period, one crossing corresponding to a conjunction
configuration, with the massless particle located between the two
primaries, and the other to an opposition configuration, with the mass-

less particle on the far side of m, from mlg these will be referred to

2
as the "conjunction crossing" and "opposition crossing" respectively.

In order to determine the vertical bifurcation orbits of family f in

the vicinity of m,, the family was traced out, and the vertical stability

2’
index a, of the orbits calculated, starting from small, nearly circular

two-body orbits around m, and continuing to orbits of iﬁcreasing size,
In Figure 5.1, a, i; plotted against X the x-coordinate of the con-
Junction crossing, between X & 0.9 (dimensionless units: Sun-Jupiter:
distance = 1) and X = 1'-P = 0.99905, the x-coordinate of the primary

m,, represented by the letter "J". We see that to the right of the

2

minimum of the vertical stability curve, where av¢= 0.08, xlﬁf 0.93, a,

increases monotonieally with X ; as x ‘approaches the singularity at

1
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x=1 - P the orbits of family f shrink to zero size, tending towards
exactly Keplerian motion; it is easily shown that in the limit, the
vertical stability index has the critical value a, = +1. Thus, the
predicted vertical bifurcation orbits of the part of family f in the

vicinity of m, are those for which

2

_ m)
Qv = C'OS( m/) (5-1)

for some integers m, n, such that
\0.03 £ ay < |. (5-2)

This inequality can only be satisfied for values of m > 4, and in
particular, no vertical-critical orbits (m = 1 or 2) are found. We
shall consider the vertical bifurcation orbits corresponding to the four
lowest possible values of m (5,6,7 and 8), with n = 1, This choice
includes at least one value from each of the three possible cases listed
in Equations (3-i19), and therefore includes vertical branches of all

possible symmetry classes.

The four vertical bifurcation orbits corresponding to the values n = 1,
m=5,6,7 and 8, with vertical stability indices a, = cos 2w/5 (& 0-30902),
a, = cos /3 (= 0-5), a, = cos 2w /7 (= 0+62349) and a, = cos r /4
(220+70711) are represented by points marked on the vertical stability
curve (Firure 5.1), and by pairs of points, corresponding to the two
intersections of eacn orbit with the x-axis, on the projection of the
family characteristic in the (x,C)-plane (Fizure 5.2), C being the Jacobi
constant, Each vertical self-resonant orbit is desifmated according
to the formula finm: tne letter "f" indicates the generating family in
Str¥mgren's notation, the subscript "v" is to distinguish vertical from
horizontal self-resonant orbits (orbits of the planar circular restricted
rroblem for which the horizontal stability index a = cos(2wn/m), for
some m, n), and the integers m and n are those appearing in the vertical
self-resonance conditionr(5-1). The superscript "i" (not to be confused
with the subscript i employed in previous chapters) is hecessary to
distinguish between vertical self-resonant orbits having the same values
of m and n in Equation (5:1); it is assigned the value i = 1 for the first

orbit having a given value of a, as the family evolves from its point of
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Characteristics in the (x,C)-plane of the families

f, g and g, of plane periodic orbits, in the vicinity
of m, (P = 0-00095). The continuous heavy lines
correspond to the positive crossings of the axis of

the primaries (that is, in the positive y-direction),

. and the broken lines to the negative crossings. The

hatched areas are the "forbidden regions" bounded by

~the zero-velocity curves. The points marked on the

family characteristics represent the vertical self-
resonant orbits at which the vertical branches of
fahily f intersect the plane families. The line
—e+—e—e~ indicates the position of m, (Jupiter) at

x = 1-p = 0-99905.
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origin, subsequent orbits having the same self-resonant value of the
vertical stability index being labelled i = 2,3,... etc. For the part
of family f under consideration, that is, in the vicinity of Mo and to
the right of the minimum in Figure 5.1 (x17 0+93), we have the i =1

orbits.
. . 1 . : . 1 1
The four pairs of vertical branches bifurcating from orbits fvlS’ fv16’
f£17 end fils fall naturally into two groups, depending on the symmetry

class of the branch orbits: for odd values of m (m = 5,7) the branch
orbits are simply symmetric, and for even values (m = 6,8), doubly
symmetric, Since the bifurcation orbits are simple-periodic, that is,
of multiplicity 1, the branch orbits in the neighbourhood of the bifur-
cation have multiplicity m, and we can distinguish the two groups of
vertical branches according to whether the orbital multiplicity of the
branch orbits is initially odd or even, As we shall see, the property
of evenness or oddness of the orbital multiplicity is not necessarily
preserved along a vertical branch; however, the symmetry property of the
orbits is invariant along a given branch, and is characterised by the

multiplicity of the orbits at the beginning of the branch,

The notation finm for the vertical self-resonant orbits can be extended
to allow the vertical branches to be designated according to the formula
Eié;): the Str8mgren classification of the generating family is capital-
ised to indicate the three~dimensionality of the orbits belonging to the
branch, and the superscript (x) is used to distinguish between the two

branches which (for m»2) arise from each vertical bifurcation orbit.

. For example, for odd values of m, the designations Fiii) and Figi) might

be used to indicate the axisymmetric and plane symmetric branches,

respectively; this notation will be employed for the branches bifur-
1

cating from orbits fvl5 and fil?' The two families of doubly—s&mmetric
orbits bifurcating from each of fi16 and filB will be distinguished
according to whether the type (A) mirror configuration of each orbit
(that is, the perpendicular crossing of the x—akis) occurs at .conjunction

(x< 1—).!) or at opposition (x?l-}t), the superscripts (c) ‘and (o) bein

(a

used to indicate this, Thus, the simply-symmetric branches are FJ'15 ’

and Fl(p), and the doubly-symmetric branches are Fl(c

vli5 * 417 V17 v16 °?
RONE(C RSO}

The existence of the four pairs of vertical branches predicted by the
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linear theory was verified by the computational methods described in the
previous chapter, and the results of the numerical investication will be
dealt with in Sections 5.2 and 5.3. 1In Section 5.4, the stability

properties of the three;dimensional branch orbits are briefly discussed,

and the chapter is concluded with some remarks in Section 5.5.

5.2 Simply-Symmetric Branches

. 1(a)
5.2.,1 Family Fv15

This family of axisymmetric three-dimensional periodic orbits branches
from family f at the vertical self-resonant orbit filS’
initial x-coordinate, corresponding to the conjunction crossing, is s., &

o1~
0.952, the initial y-velocity s

for which the

0'564 0+200, and the Jacobi constant C&3-0044.

The non-zero initial conditions (s 6)' period T, Jacobi constant

01? %05’ ®0
C and multiplicity m (half the number of crossings of the (x,z)-plane in

one orbital period) of representative orbits belonging to this branch are
listed in Table 5.1. It is seen that as the family branches upward from
the plane and the initial z-velocity (306) increases, the orbits contract
05)

decreases monotonically. The initial velocity vector at the conjunction

inwards towards the primary m, (s01 increasing), and the y-velocity (s

crossing, decreasing slowly in magnitude, becomes procsressively more
steeply inclined to the horizontal plane, and this behaviour is maintained

as s.. decreases towards zero, 806 increases steadily, the period T

05
increases, the Jacobi constant increases monotonically and the orbits
continue to become smaller. Eventually, the vertical component of
velocity S06 reaches a maximum value of about 0:173 and pegins to decrease.
As 305

the orbital multiplicity is reduced from 5 to 4; then, after a short-

passes through zero, one of the loops of the orbit disappears, and

interval, the final y-velocity s corresponding to the opposition

?
croésing of the x-axis, also passes through zero, this time from negative
to positive values, resulting in the disappearance of another loop, and

a further reduction in the orbital multiplicity m from 4 to 3. ’ As we
trace the family further, the size of the orbits (indicated by the value
of SOl) continues to decrease, and the angle of inclination of the initial
velocity vector also decreases steadily as s._ becomes more and more

05

negative, while s 6 continues to become smaller in value, The multi-

0
plicity remains unchanged at m = 3 over the remainder of the family as
806 decreases towards zero and the orbits become flatter in character,

the scnse of orbital motion, originally retrograde with respect to the
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Table 5.1: Family Figg)/ Ggii%

‘0 %05 06 T c m
0.951982 0.199771 0.005 8.527992 3.004LLY 5
0.952009 0.199526 0.01 8.516937 3.004482 5
0.952116 0.198545 0.02 8.473496 3.00L4633 5
0.952528 0.194587 0.0k 8.311018 3.005226 5
0.954000 0.178091 0.08 7.790756 3.007485 5
0.956194 0.146902 0.12 T.1776k42 3.011175 5
0.959557 0.084317 0.16 6.521408 3.01735L 5
0.962546 0.013698 0.173014 6.126857 3.02317h 5
0.963138 -0.001302 0.172k06 6.066102 3.02L294 L
0.964178 -0.026302 0.169123 5.976L432 3.026075 3
0.969812 -0.086302 0.165598 5.717008 3.029878 3
0.973415 -0.116302 0.167475 5.531260 3.031697 3
0.978654 -0.176302 0.160732 5.255900 ' 3.034653 3
0.980581 -0.206302 0.150640 5.1595T7h 3.035809 3
0.983336 -0.261302 0.114048 5.028337 3.037521 3
0.984528 -0.291332 0.073921 4.973970 3.038283 3
0.98484G - -0.30025L 0.053921 };.95958L 3.038491 3
0.985052 -0.306108 . 0.033921 }.950533 3.038623 3
10.985157  -0.309211 0.013921 }.9L45854 3.038691 3
0.985177 -0.309783  0.003921  L.94L999 3.03870L 3
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rotating coordinate system, having become direct. The branch terminates
back in the horizontzl plane at the vertical self-resonant orbit ggv13

of family €5 (one of the two families of direct satellite orbits, denoted
& and 89 which exist for small values of m, corresponding to family g
of Str8mgren's classification in the Copenhagen problem, "= 1), This
orbit, for which a, = cos 2T /3 = -0.5, 5015‘ 0.935, so5 22 -0+310 and

C ~« 3.0387, is marked on the characteristic of family 8, in the (x,C)-
plane in Figure 5.2.

From this identification of the termination orbit of the vertical
branch Fi§g), we conclude that the family is also the vertical branch
Ggsig of family 85 The choice of designation for the family is arbit-
rary, since there is no obvious boundary where the two branches meet;
there is a kind of "no man's land" segment where a short bridge of
guadruple orbits, which cannot be definitely assigned to either branch,
joins together the quintuple (m = 5) "retrograde" and triple (m = 3)
"direct" regimes. The safest course would pérhaps be to classify the
entire family as "F£§§)/G§$i%".

The phenomenon of the diect linking together of two planar families
(such as, in this case, f and g2) by a family of three-dimensional orbits
which branches vertically from the two generating families, reported by
Zagouras and Markellos (1977), and Zagouras and Kalogeropoulou (1978),
in the case of branches arising from vertical-critical (av = £1) planar
orbits, appears to be most common in the general case of bifurcations
from vertical self-resonant orbits, and as we shall see, both families
of three-dimensional orbits generated from a given vertical self-resonant
orbit may terminate in the same planar orbit. All of the families given
in this chapter, with a single exception, commence and terminate in the
horizontal plane at intersections with planar orbits; a vertical branch
may, however, effectively terminate in a three-dimensional orbit without
returning to the horizontal plane, as will be seen in the next section.
1(a)

15

Typical orbits of the family Fv are plotted in Figures Al - A9,

in the Appendix.
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5.2.2 Family F‘lfg’)

This is the other member of the pair of branches which bifurcate from
the vertical self-resonant orbit filS’ and consists of plane symmetric
orbits. Representative orbits of the branch are given in Table 5.2.
The branch exhibits generally more complicated behaviour in its develop-
ment from the bifurcation than any of the other branches discussed in
this chapter; the period T and Jacobi constant C do not vary monoton-
ically along the branch, both of these parameters possessing two turning
points, and the branch has no less than four different multiplicity
regimes. The feature of family Fi§§) which distinguishes it from the
other seven branches given in this chapter, however, is that it effect-
ively terminates in three dimensions, rather than back in the horizontal

plane,

The initial condition 803’ which (for plane-symmetric three-dimensional
orbits) confers the property of three-dimensionality on the branch orbits,
increases monotonically as the branch evolves from its bifurcation with

farily f. At the same time, s decreases monotonically, altnough the

y-velocity never becomes negatigz, so that the branch consists entirely
of what might loosely be termed "synodically retrograde" orbits (insofar
as the term can be applied to the complicated motion involved in the
majority of cases). The initial‘ condition So1 shows a general trend
towards higher values, passing through first a maximum and then a minimum
in the early stages of the branch. The trends in T and C are respect-
ively towards decreased and increased values as the branch evolves, a

pattern common to all eight branches under discussion.

The bulk of the orbits of the family retain the initial multiplicity
of five; this drops to three, briefly increases to four, and finally
decreases again to two. The reductions-of two in the multiplicity
(from 5 to 3 and from 4 to 2) occur when t#o loops of the orbit, mirror
images of each other with respect to the plane of symmetry (the (x,z)-
plane), migrate away from the plane so that they no longer intersect it.
The increase in multiplicity from 3 to 4 occurs‘through the formation of
a cusp in the transition orbit, with its vértex in the plane of symmetry.

This cusp occurs at the final epoch when the final y-velocity s_ passes

5

though zero from negative to positive values; consequently, at the vertex

the instantaneous velocity of the massless particle with respect to the
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Table 5.2:  Family -Fiig)
_ SOl 8.03 SOS T C m
-952359  0.005 0.199526  8.505618 3.004521 5
+953530 0.01 0.198536 8.427558 3.004796 5
.9583719  0.02 0.19Lk222 8.117607 3.005996 5
.956833  0.039158 0.169505 8.985683 3.00517h 5
.970833 0.0LL4L57 0.161227 8.584528 3.00752k 5
.985833 0.048168 0.150268 8.229079 - 3.010729 5
.992672 0.049L 3y 0.143539 8.120409 3.012304 5
.002156  0.051581 0.129539 8.0027k49 3.01L539 5
.005978  0.052804 0.121539  7.947346 3.015475 5
.011451 0.054889 .0.107539 T.8373L4k 3.016912 5
.013858 0.055859 0.100539 T.-TT4735 3.017596 5
017957 0.057473  0.087539 T.649209 3.018836 5
.019708  0.058138 0.081539 7.5899L44 3.019390 5
.023205 0.059455 0.068539 7.467896 3.020501 3
.024923 0.060127 0.061539 7.4098k45 3.021026 3
.027838  0.061359 0.048539  T.322457 3.021820 3
.029281 0.062022 0.0L41839 7.287356 3.022143 3
.031590  0.063145 0.029539  7.2Lk6L01 3.02252L 3
.032321  0.063510 0.025539 7.237926 3.022603 N
.034k22  0.064553 0.013547  7.227158 3.02270% 2
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coordinate system is zero,

As the branch develops towards the effective termination point in
three dimensions, along the final double-periodic (m = 2) phase, the two
perpendicular crossings of the (x,z)-plane (that is, the two mirror
configurations) move more and more closely together, until they eventually
coincide exactly at the termination orbit, This orbit, whose parameters
are apnroximately those given for the last orbit of Table 5.2, is a plane
symmetric simple-periodic orbit (multiplicity m = 1) described twice, and

is a member of a family of such orbits which bifurcates with the bvranch

#(p)

V15 in three dimensions. (The results of a further numerical investi-

~gation to identify this family of simple-periodic orbits will be discussed

in a later chapter). The intersection orbit of the two families also

(p)
15’
continue the branch beyond this orbit with any choice of family parameter,

represents.a "point of reflection" of Fi since as we attempt to
we simply retrace the branch in the opposite direction - that is, back

towards the starting point in the horizontal plane.

One interesting feature of the family Fi§§), a short interval over
which the orbits are distinctly stable, will be described in Section 5.4.
Typical orbits of the family are plotted in Figures A10 - Al6, in the
Appendix,

5.2.% Family F}’]%)

Family Fi§$) bifurcates from its generating family (f) at the Qertibal
self-resonant orbit fil? for which the initial conditions at the con-
junction crossing are 301-’!0-966, 50510-208 and the Jacobi constant
C«3.0151, The general features of this family are very similar to
those of the family Fi§§) described above. Representative orbits are
given in Table 5,3, The.branch consists of axisymmetric orbits, the
multiplicity being initially m = T, As the branch develops from the

bifurcation, the sizes of the orbits become smaller (s.. increases) and

the initial velocity, decreasing gradually in magnitudgf rotates around
the x-axis from the (x,y)-plane towards the (x,z)-plane. The period
decreases monotonically, and the Jacobi constant increases monotonically'
from beginning to end of the family. Shortly after the initial z-
component of velocity éttains the maximum value so6ﬁ50-186, the y-

component s

05

passes through zero from positive to negative values and the



- 112 -

Table 5.3:  Family Fi:(L?r) / Giii%

801 so5 806 T C m
0.96624)4 0.207918 0.005 T.405761 3.015110 T
0.966248 0.207708 0.01 7.403231 3.015130 7
0.966267 0.206867 0.02 T.393133 3.015208 7
0.966342 0.203L65 0.04 7.353133 3.015521 7
0.966659 0.1892L6 0.08 7.1987L0 3.016810 T
0.9672L9 0.162700 0.12 6.956258 3.01912k T
0.968262 0.114524 0.16 6.622982 3.0230L49 7
0.969173 0.066281 0.18 6.377806 3.026683 T
0.969630 0.039683 0.185 6.267931 3.028580 7
0.969953  0.019683 0.186245  6.194281 3.029961 T
0.970259 -0.000317 0.185372 6.127086 3.03131k 6
0.970333  -0.005317 0.184819  6.111187 3.0316L7 5
0.970547  -0.020317 0.182336  6.065443 3.03263L 5
0.971295 -0.080317 0.158320 5.906783 3.036LL43 5
0.971633 -0.119810 0.12L4564 5.817877 3.038876 5
0.971604  -0.147330 0.07956L 5.757591 3.0Lk06kL2 5
0.971229 ~ -0.157420 0.03956L 5.728629 3.0k1k62 5
0.971019 -0.158999 0.019564 5.720388 3.0L41669 5
0.970953 -0.159287 0.009564 5.718166 3.0L41721 5
0.970936 -0.159349 5.T17612 3.04173L -5

0.00L456L4
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multiplicity changes from 7 to 6 as one of the loops of the orbit
disappears., At this point, the final y-velocity has a small negative
value and is approaching zZero; as we continue along the family, 35 al so
passes through zero and the multiplicity drops from 6 to 5. From here,
the initial velocity vector, having passed through the (x,z)-plane,
continues rotating around the x-axis towards the (x,y)-plane, but now
having a negative y-component, corresponding to direct orbital motionj

the final velocity vector continues rotating in the opposite direction,

The orbits now become "flatter" as the branch evolves back towards the
horizontal plane, the orbital multiplicity remaining at m = §; Jjust before

the family terminates, s., reaches a maximum value of about 0-972 and

01
starts to decrease. Termination in the horizontal plane occurs at the

vertical self-rescnant orbif‘g%vl5 of family 8 for which a, = cos 27 /5
& 0.30902, 801'2 0971, s..% -0-159 and Cx3+0417., This orbit is marked

05
on the characteristic of family gi in the (x,C)-plane in Figure 5.2.

We see that family Fi§?) acts as a three-dimensional link betveen the
planar families f and 8 and is identical with the vertical branch Gisis
of family g - Note that branches Fi§§) and Fii;) terminate on different
planar families, g, and & respectively, While both € and g consist of

direct satellite orbits around the less massive primary m,, they are quite

_ 2’
distinct (Markellos et al., 1975a) for all values of the mass parameter
'except in Hill's case (P = 0) of the restricted problem, when they inter-

sect (Hénon, 1969).

5.2.4 Family Figg)

Fl(a)

This is the plane symmetric branch which, together with V17,
bifurcates from family f at the vertical self-resonant orbit fi17.
Numerical data for the family are given in Table 5,4. As the family
branches vertically out of the plane, and the initial z-coordinate s03
o1 05° the initial

y-velocity, decreases. The multiplicity retains its initial value m = 7

increases, the orbits become smaller (s.. increases) and s
throughout the first part of éhe branéh; the period decreases monotoni-
cally and the Jacobi constant increases monotonically over the whole

family. The perpendicularvcrbssing of the plane at the initial epoch
migrates upwards and towards the primary m2 (at x = 0-99905), and then
begins to move back down towrds the horizontal plane on the other side

of My that is, the opposition side, Shortiy after the extrerum in s

03
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Table 5.4: Family Fii$) / Giii%

801 803 s 05 T C m
0.966260 0.001 0.207973 7.405867 3.015110 7
0.966313 0.002 0.207929 7.403649 3.015127 T
0.966525  0.00k 0.207751  T.394761 3.015195 T
0.967118 0.007 0.20725)4 7.370149 3.015387 T
0.969377 0.013 0.205373 7.27830k4 3.016130 T
0.971136 0.016 0.203922 7.208931 3.016721 T
0.973k431 0.019 0.202045 7.121124 3.017509 T
0.9793k42 0.024217 0.197311 6.908370 3.019629 7
0.985342 0.027356 0.192654 6.710559 3.021919 T
0.9913L42 0.029017 0.188152 6.529215 3.02L4351 7
0.9973k2 0.029439 0.183815 6.362710 3.026932 7
1.000342 0.029205 0.18171k 6.284558 3.028281 T
1.0033k42 0.028665 0.179662 6.209571 3.029669 5
1.0093k42 0.026575 0.175737 6.068402 3.032569 5
1.012342 0.024933 0.17389L 6.00184T 3.03L086 5
1.018292  0.01997h 0.170676 5.876512 3.0372L6 5
1.022%07 0.01397k 0.169591 5.7920L46 3.039625 5
1.02443Y 9.007974 0.171352 5.7T43972 3.041039 5
1.024816 0.00L9Th 0.173296 5.728817 3.0k1458" 5
1.024913 0.00197L 0.175150 5.719411 3.0k1692 5
1.024917  0.00097k 0.175489  5.717933 3.0bk1726 5.
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has been reached, the multiplicity drops from 7 to 5, this value being
maintained as the branch evolves towards its termination back in the

horizontal plane; s., continues to increase, while the y-velocity s

(02
attains a minimum value of about 0.170 and then begins to increase.

05

The branch terminates at the vertical self-resonant orbit g%vlS belonging
to family s which, as we have seen, is also the termination orbit of
the branch Fi{? . Comparison of Tables 5.3 and 5.4 snows that although
the initial conditions at the beginnings of both the axisymmetric and
plane symmetric branches correspond to the conjunction crossing of the
vertical bifurcation orbit fi17, the initial conditions at the termin-
ation of family Fi§?) correspond to the conjunction crossing of g%vls ’
while at the termination of family Fi§$) the initial conditions correspond
to the opposition crossing of that orbit. This is because the type (&)
mirror configurations of "the axisymmetric fahily, constrained to move

only along the x-axis, do not pass through the singularity at m,, while

2
the tyve (P) mirror configurations of the plane symmetric family, with
two degrees of freedom in the (x,z)-plane, are able to avoid the

singularity.

5.3 Doubly-Syrmetric Branches

5.3,1 Family Fi§g)

Tnis family is one of the pair of doubly-symmetric branches which
bifurcate from family f at the vertical self-resonant orbit fi16' for
which a, = cos ¥ /3 = 0+5 and the Jacobi constant C%3.0103, The two

mirror configurations of this orvit are given by

1% 0-961, sos'x 0-203 (conjunction crossing)

&1.038,  s,.#-0.202 (opposition crossing).

05
The orbits of family F£§g) are those which have their.type-(A) (on-axis)

%0
So1

mirror configuration at conjunction, and the other member of the pair,
Fi§2), comprises those orbits which have their axis-crossings at oppo-
sition, The initial conditions of representative orbits of family
Fi%E) given (together with the other parameters) in Table 5.5, are those

for the type (A) mirror configurations of the orbits.

Tne behaviour of the initial conditions (501,505,5067'33 the family
evolves from the bifurcation is very similar to that exhibited by the

initial conditions of the oranches FiA2) and FL{3). A the initial



- 116 -

Table 5.5: Family

5.451658

v1é 2vik

501 805 806 T c n
0.960903 0.202786 0.005 7.768097 3.010288 6
0.960912 0.202563 0.01 T.763612 3.01031L 6
0.960949 0.201669 - 0.02 T.745780 3.01041% 6
0.961095 0.198055 0.0} 7.676075 3.010816 6
0.961705 0.182945 0.08 7.419880 3.012L47 "6
0.962793 0.15hk532 0.12 7.051156 3.015313 6
0.964290 0.110066 0.155 6.652516 3.019381 6
0.965770 0.057581 0.175 6.334946 3.023697 6
0.966509 0.0273k2 0.178983 6.196L64 3.026002 6
0.966890 0.010568 0.179040 6.129494 3.027233 6
0.967344  -0.010570 0.176928 6.053228 3.0287L0 L
0.967729 -0.029511 0.172892 5.991LLY 3.03005L4 L
0.968179 -0.052960 0.16L851 5.922218 3.031634 Y
0.968547 -0.0731k49 0.154851 5.868134 3.032958 L
0.969324  -0.117005 0.119851 5.765421 3.035716 L
0.976955 -0.198339 0.082300 5.553752 3.038516 L
0.978980 -0.22801k 0.0k 5.470898 3.039450 L
0.979326 =-0.233753 0.02 5.456139 3.039621 L
0.979408 -0.235142  0.01 5.452629 3.039662 L
0.979431 -0.235528  0.00k 3.039673 4

ty ta 12 1 1 T W
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z-velocity 06 increases to a maximum value of about 0-179, s increarces

steadily, with the result that the overall sizes of the orbitglberome
smaller, and so5 decreases monotonically, passing through zero after

the maximum in 506 and assunming negative values, Associated with the
change of sign of the initial y-velocity, there is a drop in the orbital
multiplicity from 6 to 4, through the simultaneous disappearance of two
loops cutting the (x,z)-plane, which, because of the double symnetry of
the orbits, are mirror images of one another in that plane, The orbital
symnietry remains m = 4 as the branch evolves back towards the horizontal
plane, So1 continuing to increase and so5 becoming more negative, As
usual, the period is monotonic decreasing, and the Jacobi constant
monotonic increasing. The branch terminates in the horizontal plane

at the vertical self-resonant orbit ggvl4 of family 859 for which'av =0,
a1 o 0979, s05¥ -0+236 and C & 3.0310; we therefore conclude that the
vsrtical branches Filg) and Ggsfz are identical. The termination. orbit
g;vl4 is marked on the characteristic of family g, in the (x,C)-plane

in Fipure 5.2.

Typical orbits of family Figg) are plotted in Figures Al7 - A22, in
the Appendix.

5.3.2 Family Flv§2)

This is the other memver of the pair of branches of doubly-symmetric
orbits bifurcating from family f at filé' The initial conditions
ccrresponding to the perpendicular crossing of the x-axis (occurring at
oyﬁosition throughout the branch) and other parameters of representative
orhits are given in Table 5.6. The orbital multiplicity, initially.

m= 6, drops to m = 4 as the initial y-velocity s.. passes through zero

05

from negative to positive values. The maximum value of 306’ approxi-
metely 0-178, is.very nearly the same as that for family v§g)’ and

, 1is attained just before the multiplicity change. The multiplicity
reaches a minimum value of about

- remains quadruple as s.. decreases; s

0o 01 .
1030 and starts to increase, end the branch eventually terminates back
-ix the (x,y)-plane at the vertical self-resonant orbit g§v14, the
iritial conditions corresponding to the opposition crossing of ‘the

X-axis.

We conclude that the pair of branches Fi§g) and F%&Z) not only
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Femily Fi£2) /G

2(o)
2v1lh

- 5.1452675

SOl 805 SO6 T C m
1.037500 -0.201469 0.003632 7.768784 3.010285 6
1.037478 -0.20117h 0.010909 7.762293 3.010321 6
1.037404  -0.200162 0.021919 7.740325 3.010k445 6
1.037168 -0.196806 0.040779 T.670487 3.010849 6
1.036220 -0.181203 0.082771 7.394357 3.012624 6
1.035071 -0.156718 0.118252 7.069467 3.015152 6
1.033255 ~0.100918 0.16039L 6.583780 3.020217 6
1.032780 -0.081762 0.168295 6.463212 3.021809 6
1.032321 -0.0610L49 0.174096 6.349708 3.023468 6
1.031877 -0.038705 0.17T7471 6.242791 3.025197 6
1.031k47  -0.01L654 0.177948  6.142026 3.026998 6
1.031030 0.011181 0.17L48%0 6.04701k 3.028871 4
1.030F2k 0.0317Th 0.1695k49 5.979317 3.030325 L
1.030k425 0.053441 0.161001 5.91452L 3.031821 L
1.029780 0.108779 0.120015 5.772498 3.035518 in
1.033248 0.11150k .0.080294 5.670506 - 3.037257 Y
1.036641 0.105860 0.0L0TL3 5.513805 3.038963 Y
1.037492  0.104951 = 0.019207  5.465535 3.039512 4
1.037667 0.104783 0.010102 5.45537h 3.039630 y
'1.037713  0.10hT7LO 0.005605 ' 3.039662 L
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originate from the same vertical bhifurcation orhit of family f, but also
terminate at the same orbit of family €55 we can also identify Fi12 with
the branch GS&;Z. As usual, the period is a monotonic decreasing function
and the Jacobi constant monotonic increasing along the branch, in the

direction from f to 8y

]
Typical orbits of family F;§Z) are plotted in Figures A23 and A24, in
the Appendix.

) (e)
5¢3¢3 Family FilB

This family has many characteristics in common with Fi§g), It is one
of the pair of doubly-symmetric branches bifurcating from family f at
£l g for which a_ = cos /4 %0+70711 and C « 3.0194, the perpendicular

crossings of the x-axis being given by

8o, = 0°970, s 2 0+214 (conjunction),

05
~ 1.028, 505

As indicated by the superscript (c), the branch with vhich we are

So1 « -0+213 (opposition).

concerned here is the one whose orbits all inersect the x-axis at
conjunction; numerical data for the family are given in Table 5.7. The
usual pattern of behaviour of the initial conditions is found in the

development of the family: decreases monotonically from positive

)
05
to negative values, a drop in the multiplicity from 8 to 6 occurring as

the sign of the y-velocity changes; s

06

Jjust before fhis'happens, and then decreases towards zero. The resulting

rises to a maximum of 0.194

rotation of the initial velocity vector through half a revolution about
the x-axis from beginning to end of the family changes the sense of
motion from synodically retrograde to direct (although these terms can
be applied meaningfully only.to orbits at either end of the branch,

where the motion is more nearly confined to 2 common plane). The initiel
condition So1 increases to a maximum value of about 0.974 just before

the branch terminates, and then decreases slightly. The familiar
monotonic behaviour of fhe period and Jacobi constant is apparent. The
branch terminates at the vertical self-resonant orbit giv16 of family &)
for which a, = cos T /3 = 0.5, the Jacobi constant C X 3.0447, and the

& 0.974, s _& -0.173. Family Fi:f;)

is therefore identical to the vertical branch G1v16 of &) ° The

conjunction crossing is given by s

termination orbit giv16 is marked on the characteristic of family 8 in

Figure 5.2.
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Table 5.7: Family Fiig) / Gii;%

501 8'05 806 T () m
0.969965 0.213616 0.005 7.188209 3.019407 8
0.969968 0.213416 0.01 7.186556 3.019%23 8
0.969979 0.212616 0.02 T.179954 3.019L487 8
0.970025 0.209384 0.0k4 T7.153648 3.019745 8
0.970218 0.195906 0.08 7.049825 3.020811 8

.970580 0.170971 0.12 6.879715 3.02273h 8
.971207  0.127298 . 0.16 6.63555h 3.025953 8
971727 0.089138 . 0.18 6.1463596 3.028622 8
. 972165 0.05486L4 0.19 6.333291 . 3.030919 8
.972689 0.010452 . 0.193566 6.190106 3.0337T70 8
.972914  -0.010152 0.1917TkL 6.131537 '3.035051 6
.973024  -0.0206L47T 0.19 6.103327 3.035694 6
.973355 -0.05L4550 0.18 6.0187k41 3.03773h 6
.973671L -0.091943 0.16 5.935203 3.039927 6
.973932  -0.134017 0.12 5.850409 3.042355 6 -
.973991 -0.157386 0.08 5.805840 3.043716 6
.973970 -0.169632 0.0k 5.782423 3.04hL451 6
.973957 =-0.172506 0.02 5.776826 3.0LL4629 6
.973952 -0.173213 0.01 5.775439 3.044673 6
.973951 -0.173389  0.005 5.775093 '3.04468) 6

o O O O O O O O O 0O 0O o o o o
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: (o)
5.3.4 Family FilB

This the family of doubly-svnmetrlc orhits starting from the x-axis at
opposition, and together with F;L forms the pair of branches bifurcating
from family f at the vertical self—resonant orbit f v18* Representative
orbits are listed in Table 5.8, Owving to the fact that both branches
consist of relatively small orbits about My, they are almost mirror images
of one another with respect to the plane' passing through M, parallel to
the (y,z)-plane, and this is apparent in the comparison of the various
orbital parameters listed in Tables 5.7 and 5.8. It can be seen from
Figure 5.1 that as the branch multiplicity m increases and a, approaches
unity, the vertical bifurcation orhits become smaller and, as a result,
more nearly symmetrical with respect to the axis passing through Moy
parallel to the y-axis. This special kind of symmetry is characteristic
of Hill's problem, which is a fairly good approximation in the case of
small orbits about My for small values of the mass parameter F;(see, €.8
Hénon, 1969, 1970). We would tnerefore expect that the two members of
a pair of doﬁbly-symmetric branches be more nearly symmetrical to one

another as the multiplicity m increases,

The initial z-velocity 806 for famllv Fl§8) has a maximum value of

about 0193 (compared with 0-194 for F’1 ; after this value is attained,
passes through zero, and the mu1t1p11c1ty is reduced from 8 to 6.

05 ,

Througnout the branch, 501 T and C all vary monotonically. The branch
. g . . c

terminates at the same orbit, 814160 25 its "twin" Fi§8); thus the three

pairs of branches of family f of initial multiplicities 6, 7 and 8 form
twofold connections between three vertical self-resonant orbits of family

2
fl(fv16’1fi17’ f 8) and the three vertical self-resonant orbits g2v14,
giv15’ 8vi6 ?elonglng to families 85 and 8+

5.4 Stability of Branch Orbits

In this section we deal briefly with the stability of the three-
dimensional orbits belonging to the eight vertical branches of family f
given in Sections 5.2 and 5.3. For each orbit, the stability indices

p and q defined in Section 3.4 were calculated from the eguations

- L («+0B) 1= (&), (5:3)
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Table 5.8: Family ,Fz;gg) / Giw(rﬁé

_801 .8.05 8'06 T C m
1.028278 -0.212692 0.005 7.188201 3.019L07 8
1.028273 -0.212500 0.01 T7.186528 ' 3.019423 8
1.028254  -0.211730 0.02 7.1798k44 3.019L488 8
1.028180 -0.208619 0.0L 7.153270 3.019749 8
1.027891  -0.195597 0.08 7.049182 3.020818 8
1.027k24  -0.171335 0.12 6.880437 3.022726 8
1.026854 -0.135225 0.155135 6.6737L6 3.025409 8
1.026348 40.096225 0.177582 6.492206 3.028151 8
1.025908 -0.056225 0.189787 6.337656 3.030838 8
1.025709 -0.036225 - 0.19251k 6.269615 3.0321 8
1.025520 -0.016225 0.193155 6.206672 3.0334k21 8
1.024340  0.003775 0.191739  6.1L8217 ~ 3.034679 6
1.024996 0.043775 0.182521 6.042852 3.037135 6
1.024610 0.088775 0.160395 5.939737 3.039803 6
1.024190 0.132711 0.121170 5.852337 3.0L42298 6
1.023876 . 0.1587Th 0.081170  5.806242 3.04370L 6
1.023658  0.173219 0.041170 5.782597 3.044446 6
1.023598 0.176794 0.021170 5.TT696T 3.04462L 6
1.023581  0.177715  0.011170  5.775530 3.0LL670 6
1.023577' 0.177962 0.006170 5.775146 3.0L4L4682 6
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where
A= ot - ‘-(-(6"2)

6 = 4 (o(’--l—?.-Tr (M")) , (5+4)

and M is the monodromy matrix of the variational matrix V, that is,

M = V(T) (e.g. Bray and Goudas, 1967). The relations given in Section
4.2 were used to compute V(T) in terms of V(T/2) (for the simply-symmetric
orbits) or V(T/4) (for the doubly-symmetric branches),

The results of the stability calculations indicated that the vertical
branch orbits are mostly unstable, although there exist intervals where

the stanility criterion
Az20
fel< 2

la} < 2

is marginally satisfied: that is, both stability parameters are real

(5+5)

(A7 0), one being distinctly within the stable zone between the values
-2 and 42, while the other is very close to either 1limit of this zone,
Since no numerical checks were made on the accuracy of calculation of
the stability indices, such cases of marginal stability are somewhat
uncertain, and in Tables 5.1 - 5.8 only those orbits which appear to
he definitely stable have been marked with the letter "S".  The
absence of the letter S from a given entry should not, therefore, be
taken to \imply that the corresnonding orbit is necessarily unstable,
although any stable orbits not so marked would possess marginal (very
nearly critical) stability. Orbits of all eight branches in&olving
.significant departures from the horizontal plane, indicated by large
values of sy or of sy¢, were found to be definitely unstable, the
decree of instability (as indicated by the values of the stability
indices) tending to increase with increasing orbital inclination to

the horizontal plane.

The only two of the eight branches contalnlng deflnltely stable orbits,
asilndlcated in the tables, are Fl(p) and FJ(6 (Tables 5.2 and 5.5).
In the latter case, the stablllty 1s still somewhat marginals q is
never further from the critical value of -2 than ~1.995, In the
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Figure 5.3 : Stability curve in the (p,q)-plane of part of the vertical branch

F$§§) containing distinctly stable orbits. The hatching marks

part of the stable region defined by |p]< 2, ‘q] <2.
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former cace, the short segment of definitely stable orbits, rerresented
by a single orbit in Table 5.2, has been surveyed in greater detail, and
a plot of q against p for a part of family Fi§g) including the stable
segment is given in Figure 5.3, In this figure, the hatching indicates
the part of tne (p,q)-plane in which the stability criterion (5.5) is

satisfied,

In conclusion, it would appear that the vertical branches of family f
are, for the most part, unstable, although the instability is often mild,
particularly near the beginning and end of a branch wnere the orbits are
moderately inclined to the horizontal, and cases of nearly-critical values
of either p or g (or both) are very common. The general trend towards
greater instability as the orbits become more inclined to the horizontal
plane is in agreement with previous work, such as that of Halioulias et

al . (1976)0

5.5 Remerks

(1) The following table lists the vertical self-resonant orbits of
families f, g and & at which the vertical branches of family f

discussed in this chapter commence and terminate:

Table 5.2
Branch Starting Orboit Termination Orbit
(a) 1 ' 2

Fils £ €ov13

1(c) 1(o) 1 : 2

Fae Fi16 fae 8oy

A@) @2 al .

vli7® “v17 v17 1v1l5
(c) (o) 1 1

FilB’ F%as fae . 81v16

Recalling that the vertical branch orbiés in the neighbourhood of a
simple-periodic vertical bifurcation orbit finm have multiplicity m,

we see from this table (and from Tables 5.1 - 5.8) that the multiplicity
of the termination orbit of family g, .or &, is two less than that of the
starting orbit of family f. This pattern has been found to apply also

to higher-multiplicity branches of family f not discussed in this chapter,
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and appears to be a general feature of the three-dimensional branches

which connect the retrograde family f with the direct families gl and gy

(2) As can also be seen from Table 5.9, the multiplicity 5 and 6
branches of family f (with the exception of Fi§g) terminate on 8o while
those of multiplicity 7 and 8 terminate on Gi' Figure 5,2 shows that
this seguence of termination orbits occurs in the sense of increasing
values of the Jacobi constant C, the jump between families £y and &
taking place in the vicinity of the narrow '"neck" where the two family
characteristics in the (x,C)-plane approach most closely (and where the
two curves actually intersect in Hill's case, p= 0). There seems to
be a general trend in tne termination points of vertical branches of f
in the vicinity of the primary My indicated by the four multiplicity
cases given here, whereby those (higher-multiplicity) branches starting

from the neighbourhood of fi and fi16 connect with Eo wvhile those

15

1
beyond fv

17 end up on 8+

(3) As many authors have pointed out, the circular restricted problem
may not be an adequate model for studies of certain astronomical systems,
such as the Earth-loon or outer Jovian satellite systems, in which the
non-zero eccentricity of the orbit of the primaries may have important
dynamical consequences, particularly with regard to capture and escape
‘mechanisms. It may therefore be desirable to investigate such systems
in the framework of the elliptic restricted problem, The determination
of vertical branches in the circular problem is a useful starting point
for finding symmetric periodic orbits in the three-dimensional elliptic
problem, for these branches contain infinite numbers cf isclated ortits
whose periods are commensurable with the period of the primaries, and
can therefore be continued into the elliptic problem, with either the
mass parameter \ or eccentricity e of the primaries as family parameter.
This possibility will be discussed in Chapter 6, and results obtained
by this method, using commensuravle orbits of the vertical branches of

family f will be presented,

(4) It should be emphasised that the generation of families of three-
dimensional periodic orbite from the vertical-critical (av = +1) orbits
of simple-periodic planar families is a special case providing the

simpler form of three-dimensional periodic orbits, namely the cases of

miltiplicity 1 or 2, and these forms occur in a finite and relatively
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small number .of instances. In this thesis we have described the mechanism
of generation of three-dimensional periodic orbits in the general case
where the generating planar orbit is vertical self-resonant and the multi-
plicity of the resulting orbits can be any integer m» 2. The work pre-
sented in this chapter exemplifies the behaviour of the great abundance of
the three-dimensional periodic orbits of the circular restricted problem;
for, even if we confine ourselves to the vertically stable segments of
simple-periodic (one-revolution) planar families, there are many infinities
of families of three-dimensional periodic orbits of arbitrary multiplicity
that can be found to arise as a result of vertical bifurcation, in the way
described, by taking sufficiently large values of the integers m and n in
Equation (5-1).

(5) Because the equations of motion of the restricted three-body problem
are symmetrical with respect to the horizontal plane, any solution (x(8),
y(8),2(8)) always has a mirror image (x(0),y(©),-2(8)) in that plane. 1In
particular, any vertical branch always has a "mirror image" consisting of
orbits which are the images under reflection in the (x,y)-plane of the
orbits belonging to the first branch. The existence of pairs of vertical
branches resulting from this symmetry of the problem is quite different to
the occurrence of pairs of branches arising from vertical self-resonant
orbitsudue to the vanishing of pairs of elements of the matrix V&; thus we
should really speak of pairs of branches generated-from vertical-critical
orbits, and sets of four branches arising in the more general fype of
vertical bifurcation orbit. The expression "termination orbit" has been
employed in this chapter to mean the planar orbit at which a three-dimen-
sional family generated from a vertical bifurcation again intersects a
planar family, although this is not strictly a termination of the famiiy’

in the sense that it is possible to continue beyond it; the orbits thus

obtained belong to the "mirror image" branch.

(6) The linking together of distinct families of planar periodic orbits
via bifurcating families of three-dimensional orbits appears to be a
rather common feature; examples of this behaviour of vertical branches
have been given by Zagouras and Markellos (1977) and by Zagouras and
Kalogeropoulou (1978), in the case of the planar families € and m, The
results of Sections 5.2 and 5.3 establish a "three-dimensional™ link be-
tween families of retrograde and direct orbits in the ﬁlane, in addition

to the "planar" link (involving periodic orbits of Poincaré's second kind)

established by Schmidt (1972).
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6. CONTINUATIOR OF PFiIODIC ORBITS FROM TIE CTIRCILAR INTO THR FLTLIPTIC
RESTRICTED PXO~LEM

6.1 Introduction

In previous chapters, we have considered the continuation of periodic
oroits of the planar restricted problem into tne more general three-
dimerisional case, through the phenomenon of vertical bifurcation. In
this chapter, we shall examine the continuation, for fixed values of the
mass parameterfy of periodic orbits of the circular case of the
restricted problem into the elliptic case, the eccentricity of the
primeries being increased from zero to non-zero values. The po=sibility
of these two types of continuation is of key importance in the structﬁre
of éymmetric periodic orbits of the restricted problem; both methods
of continuation allow the extensive results of explorations of periodic
motion in the planar cirvcular restricted pronlem to be generalised,

resulting in an improved correspondence with actual physical problems.

It was shown in Chapter 2 that every mewber of a family of periodiec
oroits of the elliptic restricted problem (an "elliptic fanily") has the

same period, T say, which must satisfy
T = 2km (6-1)

for some positive integer k. In the case of a family parametrised hy

the eccentricity e of the primaries, the orbit corresponding to the valne
e = 0 (if such an orbit ‘exists) is a periodic orbit of the circular .
restricted provlem, with period enual to an integer multiple of the period
of the primaries, In general, the e ® 0 orbit of the ellintic family
may be eguivalent to an n-fold description of an orpit of the circular
problen (of basic pefiod T., say) where n is again a positive integer;
-thug, T & nTO, and from Fguation (6-1) we have the "commensurability
condition”

1;»: 21rl</t\ (6-2)

for the continuation of a periodic orbit of the circular problem into the
elliptic problem. In order to ensure that T is the basic reriod of the

starting orbit of the elliptic family and not an integer multiple thereof,



- 129 -

we reqguire that the integers k and n be mutually prime; ine value of TO
given by Equation (6-2) will be referred to as the k/n commensurability,
Equation (6:2) can be regarded as a nifurcation condition, in the sense
that those orbits of the circular proolem with periods satisfying the
commensuraoility condition mey he continued into the elliptic prohlem,
periodicity being preserved as e is increased from zero to non-zero
values, Thus, s commensurable orbit of the circular pronlem is tne
intersection of a farily of periodic ornits of the circular pronlem with
a fanily of the elliptic case, Jjust as a vertical self-resonant orbit

is the intersection of a family of planar orhits with a family of three-
dimensional orbits. (In fact, as we shall see, just as a vertical self-
rescnant orvit gives rise to a pair of vertical branches, two families

of periodic or»its of the elliptic problem can always be senerated by

continuation from a commensurable orhit of the circular problem).

The continuation of a commensurable periodic orbit can be effected in
the particular case of symmetric orbits by means of the linear predictor
algorithm, described in €hapter 4, for the determination of families of
periodic orbits of the elliptic problem. The e = 0 orbit of the élliptic
family has non-zero initial conditions (Sol'SOB’SOi) identical to those
for the commensurable orbit of the circular case, and the changes (ASOI,
ASOS’ ASOi) in these quantities corresponding to an increment Qe in-

the primary eccentricity are given, to first order in e, by the matrix

equation ' .
Vy, Vas Vai [ B Vae
= —De
V|+ 1 Vq.s Vl{-i. 6305 : vl"‘e ’ .
. : Ve (6-3)
Vil Vs Vit Dsel Je

The velues of the subscripts i and j depend on the types of mirror
confijurations occurring at the initial (e = QO) and final (9 = 91)
epochs, as in Table 3.1. The v's appeering on oboth sides of Egquation
(6:3) are evaluated at @ = 6, on the e = 0 orbit, vhere 8, = 6, + T/2
in the case of an orvit of simple symmetry, and Ol = 90 + T/4 for a
doubly-symmetric orvit. (The question of symmetry properties will be
considered in more detail in a later section). As long as the matrix
appearing on the left-hand side of Fguation (6-3) is non-=singular, the
system of equations can be solved and continuation to non-zero values

of e is therefore possible,
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The simplest type of commensurability is that for which n = 1, so that
TO = 2kW for some positive integer k, and the e = 0 orbit of the elliptic
family is identicel to the commensurable orbit of the circular case,
described once, In this special case, the elements of the matrix on the
left-hand side of Fquation (6-3) have the same values as in Eguation (4:35);
tnis shows that the matrix is singular only at an extremum in the orhital
period along the family of periodic orbits of the circular restricted
problem ("circular family") to which the commensurable orbit belongs.
The numerical continuation of commensurable pericdic orvits of the
circular problem in the case n = 1 has been investigated by Broucke (1968,1969)
(planar periodic orbits) and by Xatsiaris (1973) (three-dimensional

periodic orbits).

The most general type of commensurability is that for which n mey
have any positive integer value, and the e = 0 orbit of the elliptic
family is equivalent to the commensurable orhit of the circular family
described n times. The argument stated above for the casen =1 is
easily reneralised to values of n greater than unity, since an orbit of
basic period T*, say, also has period nix; thus the ccndition for the
continuation of a commensurable periodic orbit of the circular restricted
prohblem is that its period does not correspond to a maximum or rninimum
value along the family to which it belongs.  Shelus and Kumar (1970)
and Shelus (1972) have done some preliminary work on the continuation-
of commensurable periodic oroits into the planar elliptic restricted
pfoblem, both in the case n =1 and for n>»1, starting with circular
orbits of the restricted two-body problem (P.a 0), and increasing the
mass parameter, as well as the eccentricity of the primaries, from zero
to non-zero values., I'arkellos (1975) has riven some examples of the
~ continuation of periodic orbits of the second generation into the planar

elliptic pronlem.

It is our object in the remainder of tnis chapter to consider the
continuation of commensuradle symwetric periodic orbits of both the
planar and three-dimensional cases of the restricted problem, for
commensurabilities k/n where k and n are arbitrary positive integers;
we shall deal particularly with symmetry properties and the classifi-
cation of families of periodic orbits ohtained by numerical continuation
into the elliptic problem. The case of planar orbits is discussed in
Section 6.2, and three-dimensional orbits in Section 6.3. Numerical

results to illustrate the disciussion are given in Section 6.4, with an
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example of the continuation into the elliptic problem of each category of
commensurable, symmetric periodic orbits. A number of concluding remarks

are presented in Section 6.5.

6.2 Planar Orbits

In this section, we shall consider the continuation into the elliptic
restricted problem of symmetric, planar periodic orbits 6f the circular
restricted problem, commensurable in period with the period of the primaries;
that is, with period TO satisfying Equation (6-2). As already stated,
the integer n in the commensurability condition may have any positive value,
It is assumed throughout this chapter that the mass parameter P.is kept
fixed, the commensurable orbit being continued into the elliptic case (e70),
resulting in a family of periodic orbits parametrised by the eccentricity
of the primaries; however, as we shall see in Chapter 7, the same con-
clusions with regard to symmetry and classification are arrived at if the
mass parameter is allowed to vary and another orbital parameter (the vertical
stability index av) is fixed in value instead.

Let us as usual denote the two distinct mirror configurations of a
planar periodic orbit of the circular problem by CO and Cl; the interval
between successive mirror configurations is equal to half the (basic)
orbital period TO. Now if the period TO is commensurable, satisfying
Equation (6-2), this orbit, as we have already seen, if described n times,
is a symmetric periodic orbit of the planar elliptic restricted problem
for zero eccentricity of the primaries. Successive mifror 6onfigurations

in this orbit of the elliptic problem occur at intervals of
o2 = kr. (6-4)

This form of Equation (6-2) shows that the massless particle makes per-
pendicular crossings of the x-axis at the instants when the primaries are
at one or other apse in their elliptic orbit, as required by the "strong

periodicity criterion".

In order to continue the e = 0 orbit to some small non-zero value of
the eccentricity of the primaries, either of the two perpendicular inter-
sections of the orbit with the x-axis can be chosen as the starting point

of the massless particle, while the primaries may be initially at either

periapsis (@ = 0) or at apoapsis (8, = M), e initial state of the
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system is therefore one of four possible mirror configurations, which we
denote by Cg; Cg, C;.and C;, the "#" and "X" superscripts indicating that
the primaries are at periapsis and apoapsis, respectively. The next

mirror configuration occurs when the true anomaly of the primaries is
B= 0,+ kr = Oo+nTo/2; (65)

at this final epoch, the primaries will have performed k/2 revolutions in
their elliptic orbit, while the massless particle will have followed an
orbit which (for sufficiently small e) is essentially n/2 descriptions of
the commensurable orbit of the circular problem, The final mirror con-
figuration must also be one of the four possible kinds listed above; the
relationship between the initial and final types of mirror configuration
depends solely on the values of k and n, and in particular on their even-

ness or oddness, as shown in Table 6.1.

Table 6.1
Case k n Mirror Configuration Occurring at:
Initial Epoch Final Epoch

. .

1 even odd (a) c5 of

& ]

(v) C5 o

w ol

2 . odd odd (a,) Co cl

“ T

(b) Co o]

3 odd ~ even (a) Co Co

T «

(v) o] c;

- The last two columns of Table 6.1 are interchangeable, since the two
distinct mirror éonfigurations defining a symmetric planar periodic orbit
occur alternately and either may be taken to be the initial state of the
system. In each of the three cases disted in the table, there are two
and only two different ways of continuing a commensurable orbit of the
planar circular problem into the elliptic problem, resulting in exactly
two distinct families of periodic orbits as e is increased from zero to

non-zero values,
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In his paper on the stability of periodic orbits in the (planar) elliptic
restricted three-body problem, Broucke (1969) stated that "for every sym-
metric periodic orbit with e = 0, there are two ways of prolongating it to
the elliptic problem". Broucke distinguished between the two resulting
families of periodic orbits of the elliptic problem ("elliptic families")
according to whether the initial states of the orbits correspond to peri-
apsis (OO = 0) or apoapsis (Oo = W) of the primaries, and referred to
"periapsis orbits" and "apoapsis orbits". Examination of Table 6.1 shows
that Broucke's classification is applicable in Cases 1 and 2 (that is,
for odd values of n) since it is possible to distinguish between the
different types of orbits according to the state of the primaries at the
initial epoch, if the massless particle is startedvat either CO or Cl’
as appropriate; the numerical results given by Broucke (1968, 1969) are
for commensurabilities k/n with n = 1, which belong to Cases 1 and 2 of
the table. In Case 3, however (that is, for even values of n), the
periapsis/apoapsis classification is not applicable: having chosen either
CO or C1 as the starting point of the massless particle, the same family
of periodic orbits will be obtained whether the primaries are initially
taken to be at periapsis or apoapsis, and in order to determine both

families in this case, both of the configurations Co and C, of the commen-

1
surable orbit have to be used, the initial state of the primaries being

unimportant.

When Broucke's classification is applied to the two families of periodic
orbits arising from a commensurability corresponding to Case 2 of Table 6.1,
it is important to specify which of the configurations CO or C1 is adopted
as the starting point of the massless particle, in order to avoid ambiguity.
Only in Case 1 is there a clear, unambiguous distinction between the
"periapsis" and "apoapsis" orbits, as the former have mirrer configurations
only at periapsis, and the latter only at apoapsis. The most obvious
wéy to classify the two families of periodic orbits arising from a Case 3
commensurability would be in terms of the perpendicular axis-crossings of
the commensurable orbit from which the orbits of the massless particle are
commenced in each case (either Cy or Cl)' For example, for simple-
periodic orbits of Str¥mgren's classes f or g (retrograde or direct

satellite orbits), the points C0 and C1 correspond to conjunction and

- opposition with respect to the primaries.
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6.3 Three-Dimensional Orbits

Many features of the continuation of symmetric planar periodic orbits
from the circular into the elliptic restricted problem, discussed in the
previous section, are applicable to the continuation of three-dimensional
periodic orbits; the main difference is that there is only one kind of
orbital symmetry in the planar restricted problem, while as we saw in '
Section 2.4, symmetric periodic orbits of the three-dimensional problem
can be classified into those of simple and those of double symmetry.

The imporfance of the symmetry classification is that there exist doubly-
symmetric periodic orbits of arbitrary period in the circular restricted
problem, while in the elliptic problem the period must be an even multiple
of 2w , the period of the primaries; thus, when a doubly-symmetric periodic
orbit is continued into the elliptic problem, the property of double
symmetry (symmetry with respect to both the x-axis and the (x,z)-plane) is
preserved only if the commensurability k/n is such that k is an even number,
while if k is odd there must be a loss of one of the symmetries. This
question of symmetry and classification is the main theme of the present

section,

Any commensurable, symmetric periodic orbit of the three-dimensional
circular restricted problem can be placed in one of the following three
categories, according to the symmetry class and the commensurability relation:

(1) simply-symmetric A

(ii) doubly-symmetric (k odd)

(iii) doubly-symmetric (k even).

It is convenient to deal with each of these three categories in turn.
(i) -Simply-symmetric

This category of commensurable three-dimensional periodic orbits can be
" treated in much the same way as the symmetric planar periodic orbits dis-
cussed in the previous section. It is clear that the symmetry type of
the commensurable orbit (axisymmetric or plane symmetric) will be carried
over into the orbits of the elliptic problem generated by continuation to
non-zero values of the parémeter e, since only one type of mirror configu-
ration, either type (4) or type (P), can take place at both the initial
and final epochs, The classification of the different types of commen-

surability k/n given in Table 6.1 is applicable, except that the two
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distinct mirror configurations CO and C1 of the commensurable orbit are
no longer simply perpendicular crossings of the x-axis, but are true
"three-dimensional” mirror configurations; in particular, in each of the
three cases listed in the table, there are always exactly two ways in
which the commensurable orbit may be continued, with the result that
there are two, and only two, families of periodic orbits of the elliptic
problem arising from a commensurable periodic orbit of simple symmetry.
The orbits belonging to both of these families must, of course, have the

same type of symmetry.

(ii) Doubly-symmetric (k odd)

Mirror configurations of alternate type take place at intervals of a
quarter of the basic period of a doubly-symmetric orbit of the circular
restricted problem. If the period is commensurable, satisfying Equation
(6-2), such that k is an odd number (k =1,3,5,...), then the 2™ mirror

configuration of the commensurable orbit will occur at
O < B+ nTo/l = Bo+kr(2. (6+6)

Since Oo must be equal to an integer multiple of M, and k is odd, this
value of the true anomaly does not correspond to either of the apses of
the primary orbit, and so the strong periodicity criterion is not satisfied.
The next true mirror configuration, satisfying the requirement that the

primaries be located at either periapsis or apoapsis, does not occur until
B=DotnTof2 = Ootkm, C(67)

and since the interval between successive mirror configurations is a
multiple of the half-period (TO/2), rather than the quarter-period (TO/A),
these mirror configurations must both be of the same type. Thus, a
doubly-symmetric periodic orbit of the circular restricted problem
satisfying the commensurability k/n, such that k is odd, may be regarded
as either an axisymmetric or a plane symmetric orbit of the elliptic
restricted problem for e = 0, according to the choice of starting point
on the orbit. For zero eccentricity of the primaries, these two orbits
are essentially identical, but as the eccentricity is increased to non-

zero values, distinct orbits of different symmetry classes will be obtained.‘

It is easily shown that, once again, there are two and only two ways in



- 136 -

which a commensurable periodic orbit of this category can be continued into
the elliptic problem, one family of simply-symmetric orbits arising from
each of the "axisymmetric" and "plane symmetric" forms of the commensurable
orbit. The reason for this is that as we saw in Section 2.4, the two
mirror cénfigurations separated by half of the period in a doubly-symmetric
orbit are mirror images of one another in the (x,y)-plane. The configu-
rations C, and C, are therefore essentially identical (apart from a
reflection in the horizontal plane) and the pairs of families corresponding
to the various combinations of mirror configurations in Cases 2 and 3 of
Table 6.1 are images of one another in the (x,y)-plane: this is the

universal property of three-dimensional periodic orbits mentioned earlier.
(iii) Doubly-symmetric (k even)

For even values of k (k = 2,4,6,...), the value of the true anomaly ©
given by Equation (6-6) is an integer multiple of W, and therefore corres-
ponds to one or other of the apses of the primary orbit when the eccent-
ricity e is increased to non-zero values. Moreover, since the integers
k and n in the commensurability condition (6:2) must be mutually prime,
n is necessarily odd for this category of commensurable orbits: this
means that successive mirror configurations of the e = O orbit of the
elliptic problem must be of opposite type, and the orbital symmetry is
therefore double. The two families of doubly-symmetric periodic orbits
of the elliptic restricted problem arising from this category of commen-
surable orbit can be classified as consisting of "periapsis orbits" and
"apoapsis orbits", according to the location of the primaries at'a'given

mirror configuration (the type (A) configuration, say).

Few results have been published on the numerical continuation of three-
dimensional symmetric periodic orbits into the eiliptic restricted problem.
Katsiaris (1973) offers some results on the continuation of simply- |
symmetric orbits, while the case of doubly-symmetric periodic orbits has
been explored by Macris et al. (1975). In the next section, numerical
examples are given for each of the three categories.of symmetric commen-

surable orbits listed above.

6.4 Numerical Examples

In this section, numerical results are presented to illustrate the
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continuation of three-dimensional periodic orbits of the circular restricted
problem into the elliptic case: firstly, categories (i) and (ii) of
commensurable, symmetric periodic orbits, both of which give rise to
simply-symmetric orbits of the elliptic restricted problem, and secondly,

category (iii), giving rise to doubly-symmetric orbits.

Examination of Tables 5.1 - 5.8 shows that, with the exception of
family Fi§§), each of the vertical branches of family f given in the
previous chapter contains an orbit of period T = 2w (& 6.283): that
is, in the commensurability 1/1 with the period of the primaries. We
take the T = 27 orbits of the families FJ( 2) and Fl(c) as starting points
for numerical continuation into the three- dlmen31onal elliptic restricted
problem, to exemplify the two possible ways in whiéh families of simply-
symmetric periodic ofbits, parametrised by the eccentricity of the
primaries, may be established. The orbit of period T = 12T /5 belonging
to the family Fl§6) is used as an example of a category (iii) commensur-
ablllty, from which two families of doubly-symmetric periodic orbits
_of the elliptic restricted problem can be established.

(i) Continuation of the 1/1 Commensurable Orbit of Family Fiig)

Family F£§§> consists of axisymmetric periodic orbits, and so those
orbits of this family with commensurable periods belong to category (i)
(simply-symmetric) of commensurable, symmetric periodic orbits, and can
be classified into Cases 1, 2 and 3 of Table 6.1 according to the
commensurability k/n.. The 1/1 commensurability, in particular, comes
under Case 2: the two families of axisymmetric periodic orbits which are
obtained by continuation of this orbit into the elliptic problem are
distinguishable according to the location of the massless particle at
periapsis of the primaries. This is perhaps the most convenient classi-
fication, since the mirror configurations of all of the orbits established
by numerical continuation are of type (A) (on-axis), and the two perpen-
dicular axis crossings occur at conjunction and at opposition relative
to the primaries. We therefore have a "conjunction" family and an
"opposition" family: the former results from taking the massless particle
to be at the conjunction axis-crossing at periapsis, and the latter from
taking the particle to be at the opposition crossing when the primaries
are at periapsis. (The alternative classification, that of Broucke,

would be to specify whether the primaries are at periapsis or at apoapsis
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Table 6.2 : Conjunction Family Generated from the 1/1 Commensurability

of Family Fi§§) (p = 0-00095)

e 01 %05 %06 m
0 0-961227 0-046428 0-170391 5
0-005 0:961156 0-046575 0+170053 5
0-01 0-961088 0-046713 0+169730 5
0-05  0:960679 04047552 0.167685 5
0-1 0-960482 0-048074 0166252 5
0-2 0-960949 0-047675 0-165938 -5
0-3 0.962306 0045368 0-167965 5
0+4 0-964360 0042674 0171657 4
0-5 0.966764 0-043908 0-175895 4
0-6 0-969095 0-053580 0178901 4
0-7 0-971096 0-075153 0-177527 4
0-8 0-972519 0-114708 0162577 4
0-9 0-972653 0-189644 . 0-077942 - 4

Table 6.3 =‘0pposition Family Generated from the 1/1 Commensurability
of Family Fi§g) (p = 0-:00095)

e So1 505 o6 n
0 1-036944 -0-048406 0-168970 5
0-005 1-037017 -0-048474 .0-168645 5
0-01 1-037086 -0-048533 0168339 5
0-05 - 1-037488 -0+048692 0-166508 5
0-1 1-037618 -0-048232 0165561 5
0.2 1036807 -0+045621 0166797 5
0-3 1-034930 -0-041379 0-170721 5
0.4  1-032385 -0-038369 0-176126 4
0-5 1-029809 -0-042788 0+180966 4

0-6 1027689 -0-057885 0182663 4
0.7 1-026180 -0-084616 0177447 4
0-8 1-025573 -0-126738 0+155008 . 4
0-89  1-026493 -0-187517 0-075217 4
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at the instant the massless particle was at, say, conjunction).

Numerical data for the conjunction family generated from the 1/1
commensurability of family Fi§§) are given in Table 6.2, and for the
opposition family in Table 6.3. The on-axis initial conditions (801, 805,
806) for the e = 0 members of the two families are, naturally, those for
the conjunction and opposition axis-crossings of the commensurable orbit.
The initial conditions given for each orbit of both families correspond
to periapsis of the primaries (00 = 0), and the period of each orbit is,
of course, T = 27, Since the e = 0 orbit is equivalent to a single
description of the commensurable orbit of the circular problem (n = 1),
the multiplicity m is initially equal to that of the commensurable orbit,
that is, m = 5; this falls to m = 4 at about e = 0-36 for the conjunction
family, and e = 0-34 for the opposition family. The orbits of both
families remain distinctly three-dimensional in character throughout, the
initial z-component of velocity 506 retaining a non-zero value, and
showing little variation except at values of the parameter e above about
0-8. Numerical continuation of the orbits beyond e« 0.9 was found to
be increasingly difficult because of numerical difficulties associated
with high orbital instability. Indeed, calculation of the indices kl'
k2 and k3 by the methods described in Chapters 3 and 4 indicated that the
orbits of both families are entirely unstable, the instability increasing

with the eccentricity e of the primaries.

" Typical orbits of both the conjunction and opposition families are

plottéd in Figures A25 - A36, in the Appendix.
(ii) Continuation of the 1/1 Commensurable Orbit of Family Fiég)

The orbit of period T = 27 (the 1/l commensurability) belonging to
family Figg) of doubly-symmetric orbits is an example of category (ii)
(doubly-symmetric, k odd) of commensurable symmetric periodic orbits of-
the circular restricted problem. This orbit can therefore be continued
into the elliptic problem to produce two families of simply-symmetric
periodic orbits, one consisting of axisymmetric orbits and the other of
plane symmetric orbits. Numerical daté for these two families are given
in Tables 6.4 and 6.5.

The initial conditions given in each of the tables correspond to



Table 6.4 : Axisymmetric Family Generated from the 1/1 Commensurability -
(p = 0-00095)

of Family Fi{§)
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€ So1 %05 B06 -
0 0+966039 0046917 0176984 6
0.005 0-965892 0047043 0176269 6
001  0-965746 0-047165 0175568 6
0.05 0-964612 0048029 0-170478 6
0-1 0-963368 0-048779 0165578 6
0.2 0-961870 0-048837 0160690 6
0-3 0-961859 0046073 0-160905 6
0-4 0-963215 . 0-039465 0-164738 6
0-5 0-965776 0-030820 0-171315 5
0-6 0-968776 0-030328 0-178633 5
0-7 0971196 0047742 0-182769 5
0-8 0-972722 0-086331 0175945 5
0-9 0-972503 0160158 0121971 5

Table 6.5 : Plane-Symmetric Family Generated from the 1/1 Commensurability

of Family F%{E) (p = 0-00095)

e SOl 303 805 m
0 0-997095 0-032160 0174842 6
0-005 0-997077 0-032283 -0-174148 6
0-01  0.997057 0-032405 -0-173461 6
0-05  0-996855 0-033419 -0-168086 6
01  0-996452 © 0-034853 -0-161261 6
0.2 0:994896 0-039218 -0-144135 6
0-3  0-993624 0-047659 -0-121075 6
0.4  0-995270 0-057763 -0-104231 6

05 0-997441 0-068109 ~0-092587 6
0-6  0-998367 0-079869 -0-081706 6
0-7 0997325 0-094350 -0-069553 6
0-8 0-995343 0-113703 -0-057558 6
0-9 0-997193 0-141005 -0-054317 6
0-98  0-998515 0-187258 0052248 6
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periapsis of the primaries (OO = 0), and the orbital period is once again
in every case T = 21, The orbital multiplicity m, initially equal to
that of the commensurable orbit (m = 6), drops to m = 5 for the axisymmetric
family at about e = 0.40, but retains its initial value throughout the
plane symmetric family. The orbits are again distinctly three-dimensional,
the initial z-velocity 806 for the axisymmetric family and the initial
z-component 503 for the plane symmetric family remaining non-zero through-
out. The orbits of both families were found to be entirely unstable,

the plane symmetric orbit for a given value of the primary eccentricity
being somewhat less unstable than the corresponding axisymmetric orbit.

For this reason, it was possible to trace the plane symmetric family to a
higher value of the eccentricity, before numerical difficulties associated

with highly unstable orbits made further progress impractical.

Typical orbits of both the axisymmetric and plane symmetric families
are plotted in Figures A37 - A48, in the Appendix.

(iii) Continuation of the 6/5 Commensurable Orbit of Family Fiig)

Two families of doubly-symmetric periodic orbits of the elliptic restricted
problem are now presented to illustrate the continuation of a commensurable
orbit of category (iii) (doubly-symmetric, k even) as the eccentricity
of the primaries is increased from zero to non-zero values. The doubly-
symmetric orbit chosen for this purpose was the T = 127 /5 (& 7:540) member
of family Figg), corresponding to the 6/5 commensurability; this in fact is
the lowest-order commensurability with an even value of k of any of the
four doubly-symmetric vertical branches given in Chapter 5. Since the
commensurable orbit of the circular family has multiplicity six, and the

e ¥ 0 orbit of the elliptic family is equivalent to a five-fold description
of this orbit, the orbits of the elliptic families are of multiplicity
m = 30,

As was shown in Section 6.3, the two families of periodic orbits arising
from a commensurability of category (iii) can be classified as the "peri-
apsis" and "apoapsis" families. In the numerical determination of both
families generated from the 6/5 commensurability of family Fi§g), the same
starting point was chosen for the massless particle, namely, the type (A4)
mirror configuration, corresponding to conjunction with the primaries;

the periapsis and apoapsis families were established by taking the primaries
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Table 6.6 : Periapsis Family Generated from the 6/5 Commensurability
X (c) -
of Family Fi16 (F = 0-00095)

€ o1 505 f06 m
0 0-961406 0+190405 0-063836 30
0005 0961216 0-189915 0-063524 30
0.01 0:961023 0.189423 0-063233 30
0.05 0-959406 0.185423 0-061648 30
0.1  0:957178 0-180388 0-061261 30
0.2 0:952063 0-170975 0-064230 30
0.3  0:946458 0163439 0-070107 30
0-4  0-941078 0-157554 0-078320 30
0.5 0936537 0-151298 0-090172 30
0-6  0-931126 0-147843 0-102295 30

Table 6.7 : Apoapsis Family Generated from the 6/5 Commensurability
of Family Figg) (p = 0-00095) '

8 : 5

¢ So1 %5 06 n
0 0-961406 © 0:190405 0-063836 30
0-005 0-961593 0-190893 0-064171 . 30
0-01 0-961779 0-191377  0-064528 30
0-05 0-963186 0-195128 0068203 30
0-1  0-964758 0-199398 0-074876 30
0-2  0-967408 0-206203 0-094807 30
0-3  0-969738 0-211083  0-123109 30
0-4  0-971969 0214877 0-159830 30
0-5 0974049 0.218833 0205257 30
0-6  0-975956 0229213 0-260065 30
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to be initially at periapsis (QO = 0) and apoapsis (90 =T ), respectively.
Numerical data for the two families of doubly-symmetric orbits are given
in Tables 6.6 and 6.7.

The common period of the orbits of the periapsis and apoapsis families
is T = 121; the orbital multiplicity retains the initial value m = 30
for all of the orbits which have been determined. The orbits of both
families become generally more inclined to the horizontal plane with

increasing eccentricity of the primaries, the initial z-velocity s_, showing

a trend towards increased values. Calculation of the stability iggices
indicates that the orbits are without exception unstable, the degree of
instability becoming extremely high at values of the eccentricity of about
0.3 or 0-4 (the magnitude of one of the stability indices for the final
orbit of Table 6.6 is of order 108); because of this, the orbits could
not be continued to such large eccentricities as those of the previous
section, A smooth transition is evident in the initial conditions
(801,505,806) between the periapsis and apoapsis families across the

e = 0 orbit, which is common to both families; this behaviour will be

_discussed further in the next section.
6.5 Remarks

(1) An important feature of the continuation of symmetric periodic orbits
into the elliptic problem, discussed in Sections 6.2 and 6.3, is that

there are exactly two ways in which any commensurable periodic orbit of

the circular restricted problem can be continued, so that each such orbit
always gives rise to two (and only two) families of periodic orbits of the
elliptic restricted problem, parametrised by the eccentricity of the

primary orbit. As we saw in Chapter 3, this is also a characteristic _
feature of the continuation of vertical self-resonant (not vertical-critical)
orbits of the planar into the three-dimensional case of the restricted
problem. Indeed, an analogy can be drawn between the continuation of a
vertical self-resonant orbit of the planar restricted problem into the
three-dimensional restricted problem, and the continuation of a commensurable
orbit of the planar circular restricted problem info the elliptic problem,
involving the classifications of the pairs of families generated in each

case, as we now show,.

Families of symmetric periodic orbits can be classified in terms of the
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types of mirror configurations defining each member orbit. The pair of
vertical branches arising from each type of vertical bifurcation orbit
can be classified, according to the value of the integer m in the self-

resonance condition (4-.54), as follows (see Table 4.1):

Table 6.8

Case m m/2 : Initial Mirror Final Mirror
Configuration Configuration

1 odd - (a) c,(P) cl(P)

(v) co(2) o)

2 even odd (a) CO(P) Cl(A)

(®) Co(4) ¢, (P)

3 even even (a) CO(P) CO(A)

(b) ¢, () o, (4)

The corresponding classification for the pairs of families of periodic
orbits generated from a commensurable orbit of the planar circular problem
has already been given in Table 6.1 (Section 6.2). Comparison of Tables
6.1 and 6.8 shows a direct one-~to-one correspondence between the types of
mirror configuration characterising each family in the various categories
of vertical self-resonant and commensurable orbits. (It is important

to remember, however, that in Table 6.8 the mirror configurations are
"three-dimensional"™, while in Table 6.1 the mirror configurations are
confined to the horizontal plane and are distinguished according to the

state of the primaries at the epoch).

(2) As Broucke (1969) found in the case of planar periodic orbits of
the elliptic problem, the periapsis and apoapsis families originating
from the same commensurable orbit of the planar circular problem connect
together smoothly and continuously at the common e = O orbit. A further
illustration of this property in the case of three-dimensional orbits is
given in Figure 6.1, which shows the continuous variation of the initial

conditions (so 06) between the periapsis and apoapsis families

1750575
given in Tables 6.6 and 6.7.
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6/5 commensurability of family vlg .
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The reason for this lies in the fact that the equations of motion of
the elliptic restricted problem with respect to the rotating-pulsating
coordinate system and with the true anomaly © as the independent variable
(Equations (1:38)), contain the eccentricity e and true anomaly © of the
primaries only in the form of a multiplying factor

e(8) = (H—-eus&)_l) | (6-8)

which is invariant under the transformation
el= —e

o!l= G- (6-9)

The equations of motion are formally identical whether expressed in terms
of (8,e) or (6',e'), and an orbit starting at apoapsis (OO = T) of the
primaries for some given value of e can equivalently be integrated with
a change of independent variable from O to @' (since d@' = d0), starting
at 96 = 0, and with the primary eccentricity having the new value e'.

The periapsis and apoapsis families can therefore be regarded as the two
segments of a single family, corresponding to e 70 and e <0 respectively,
90 being kept fixed at zero. As the two segments are connected at e = 0
and the eccentricity varies continuously from one orbit to the next, the
periapsis and apoapsis families must connect in a continuous fashion,
through the continuity properties of the solutions of the differential
equations of motion., This is evidently a general property of those pairs
of families (or series) of symmetric periodic orbits of the elliptic
restricted problem (planar and three-dimensional) which have a common

e = 0 member; further examples of this will be given in the next chapter.

(3) 1o the previous section, attention was drawn to the fact that the
orbits of all six families obtained by numerical continuation from three-
dimensional periodic orbits of the circular restricted problem remain
distinctly three-dimensional in character as the eccentricity of the
primaries is increased, and there is no indication that any of these
families is directly conhected with a family (or families) of planar
periodic orbits of fhe elliptic problem through a vertical bifufcafion
orbit (this also appears to be the case with the family given in Table I
of Katsiaris, 1973). It seems 1ike1y that families of three-dimensional

symmetric periodic orbits generated by the two methods described in this
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thesis, namely (a) by continuation of commensurable periodic orbits of
the three-dimensional circular problem into the elliptic case, and (b) by
continuation of vertical self-resonant orbits of the planar elliptic
problem into three dimensions (Chapter 7), may be unconnected, at least
for a fixed value of the mass parameter. This would imply that the
supposition that all families of three-dimensional periodic orbits can

be generated from vertical self-resonant orbits of the planar restricted
problem (e.g. Zagouras and Kalogeropoulou, 1978) cannot be extended from
the circular to the elliptic restricted problem. (A possible exception

to this rule in the circular problem will be discussed in Chapter 8).
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7. VERTICAL BIFURCATION SERIES

7.1 Introduction

In previous chapters, the important class of periodic orbits known as
vertical bifurcation orbits has been discussed, with particular reference
to the continuation of such orbits from the planar reétricted problem
into three dimensions. The discussion has been based on the assumption
that the mass parameter }l‘is fixed, and vertical bifurcation orbits have
been identified as discrete members of the various families of planar

periodic orbits satisfying the vertical self-resonance condition (Equation

(4-54))

a, = CoS (QTT'\/M) (701)

for some integers m and n. In this chapter, we examine the possibility
of determining avcontinuous series of vertical bifurcation orbits over a
range of values of the mass parameter: in other words, a special kind of
family of planar periodic orbits for which the vertical stability index .
a s rather than the mass parameter . is a constant. This will be
referred to as a "vertical bifurcation series". (The numerical deter-
mination of vertical bifurcation series consisting of asymmetric vertical-
critical orbits has been discussed by Markellos (1977b)). ’

The practical usefulness of vertical bifurcation series, and the
importance of their role in the structure of symmetric'periodic orbits
of the restricted problem (over the range of all possible valges Of,F)
is evident, since every orbit belonging to such a series is the intersection
of a family of planar periodic orbits with either one or two families of
three-dimensional orbits. As well as providing an ipfinité number of
starting orbits for continuation into three dimensions, a vertical
bifurcation series also yields information on the stability properties
of the three-dimensional orbits, at least in the neighbourhood of the
bifurcation. Series of vertical self-resonant orbits, and particularly
vertical-critical orbits, are also useful for distinguishing the verfically
stable from the verticaily unstable segments of a family of planar
periodic orbits (for.fixed.fd, as has been shown by H&non (1973a).

A vertical bifurcation series of the planar circular restricted problem
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congsists of orbits whose initial conditions (xo,yo,xé,yé)satisfy the
conditions of periodicity and vertical self-resonance. Since we are
concerned only with symmetric periodic orbits, the periodicity conditions
have the form (2.15), the initial conditions ¥, and x} being equal to zero.

0
The periodicity conditions may therefore be written as

J (xo;ﬂolBT/Zj/") =0

I [, . _ (7-2)
X' (%,39d57/2;5 p) = 0,
vhere T is the orbital period, and the dependence on the mass parameter‘F

is indicated explicitly; the values of the true anomaly @ at the initial
and final epochs are 8, = 0 and @, = T/2, respectively.

We saw in Chapter 3 that the vertical stability index a, of a symmetric
periodic orbit is related to the elements (AV,BV,CV,DV).of the vertical
variational matrix Vv evaluated at the half-period (@ = T/2) by (Equation
(3-87))

a, = ﬁvDV"f‘BV Cv. \ (7-3)

Since VV(T/2) depends only on the initial conditions and period, we may

vrite .
, . ’

a, = ay (%er ¥4 37725 4), (7-4)

where once again the mass parameter appears explicifly;-‘this is necessary

because we wish to vary the value oi"x. The vertical self-resonance

condition can therefore be expressed in the form
'5TI25pm) = @ '
oav(%e)Ye 5 TIZ; 1) = vo, N CEY

where

Oyp = CoS (2Tr'n/m) . . (1-6)

Together, Equations (7-2) and (7-5) form a system of three simultaneous
equations in the four unknowns (xo,yé,T,p); this system is underdeter-
mined, with one degree of freedom, and so solutions occur in continuous
monoparametric sets, The situation in'the planar elliptic problem is

very similar: the periodicity conditions (7-2) become
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Y (%) 4o 5 ) @) =0
xl (XO)HO‘)/A) e) = O) . (7-7)

vhere e is the eccentricity of the orbit of the primaries, and the vertical

self-resonance condition (7-5) becomes

av (%o Ye j M e) =ayo) (7-8)

with a_, given by Equation (7+6), as before., The primary eccentricity e
replaces the orbital period T as a variable parameter along the series,

and once again we have a continuous monoparametric set of solutions.

Notice that both of the parameters }1 and e vary along a vertical bifurcation

series of the elliptic restricted prbblem.

In Section 7.2, predictor-corrector algorithms for the numerical deter-
mination of vertical bifurcation series of both the circular and elliptic
problems are developed, and numerical examples are given in Sections 7.3
(circular problem) and 7.4 (elliptic problem). The chapter is concluded

with a number of remarks in Section 7.5.

T.2 Numerical Determination

7.2.1 Circular Restricted Problem

The system of three simultaneous.equations defining a vertical bifurcation
orbit (Equations (7-2) and (7-5)) in'the circular restricted problem is
formally very similar to the system of eqﬁations (4-19), the periodicity
conditions for a three-dimensional symmetric periodic orbit of the circular
restricted problem; the methods described in Chapter 4 for the numerical
determination of families of three-dimensional periodic orbits can easily
be modified for the numerical determination of vertical bifurcation series,
as we now show. (The determination of vertical bifurcation series of
the elliptic restricted problem will be dealt with later). For convenience,
the state vector notation (s1 =Xy 8, =Y, etc.) will be used.

Suppose that approximate values sgi,sgé,t*'of the initial conditions
and half-period (T/2) of a vertical self-resonant orbit of the circular

restricted problem, corresponding to the value R = f of the mass parameter,
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are known., In order to improve the accuracy of these estimated values,

a differential corrector algorithm is required; this is constructed in
much the same way as that described in Section 4.3. If the "errors"

3801, 5605, dt and (ﬂp, that is, the differences between the estimated
and exact solutions of Equations (7:2) and (7+5), are sufficiently small

for second and higher orders in the Taylor series expansion to be neglected,

we may write

ﬁ :So| + ESLJSQS + %Sf:(ﬂ:‘-f-" %A}(:-—Si‘

0Soy '3305
By G 4+ O Ko+ Buogp 4 5'!3—‘*5/4 - -5
Wor A5 dt dp (7-9)

vy &'m + %Jsos-l’ DL:_‘YJ‘L’ + %{l&a}" ;d‘@—af)

0ot ¥es o M
where (s’;, s::,a:) are the final conditions and vertical stability index
evaluated at © = t* on the orbit with initial conditions (é*. s*'), and

01’ 05’
with the value Fr'of the mass parameter, This is the basic form of the

differential corrector equations for a vertical bifurcation series of the
circular restricted probleh ("circular series"). The quantities on the
right-hand sides of Equations (7-9) are calculated by trial integration;

to allow the system of corrector equations to be solved, the various -
coefficients appearing on the left-hand sides must also be evaluated. The
coefficients on the left-hand sides of the first two of Equations (7-9) are
already known: these are the elements \L v25, v41 and v45 of the A

variational matrix V, the components f2 and f4 of the vector function g,

and the components v, _ and V4F of the vector y_, all of which have been

defined in Chapter 3. "It remains only to obtain expressions for the four

010 92,/ 9305,

third of Equations (7-9), in a form suitable for numerical integration.

coefficients aav/ 9s dav/dt and dav/d}l appearing in the

We recall that the vertical stability index a, of a symmetric periodic

orbit is given by
a, = Avbv4'evcv) (740)

vhere Av’ Bv’ cv’Dv are the elements of the vertical variational matrix V&
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evaluated at the half-period (6 = t). We may therefore write

oy _ vy, 4, WD, 28 2
0So) ol vk Wo) ¥ 20, G + 6, 38:1 J (7-11)

with similar expressions for 'bav/ Os dav/dt and dav/dp.. The values

05’
of Av, Bv’ Cv and Dv are known from the numerical integration, and we
require to evaluate their derivatives with respect to o1 ? SOS' t and B
Differentiating Equation (3-46) with respect to 301, we obtain
v\ 9F W,
= X VV"}’ FV had A (7-12)

’aso‘ %l B.S‘o‘

with similar expressions for the derivatives of matrix Vv with respect to
the parameters 305, s the derivative with respect to t is given directly
by Equation (3-46). For a planar periodic orbit of the circular restricted
problem, the matrix Fv is given by

0 |
F=\a o] (7-13)

where A is a fungtion only of the coordinates (-81’52) and the mass parameter

,1, given by Equation (1-44). In order to numerically integrate Equation
. 505 and dVv/dF,
expressions for the derivatives of the function A with respect to the

(7-12), and the corresponding equations for ‘BVV/ ?

initial conditions (801’805') and the mass parameter R must be found. The

required expressions are

h_ M, W

ESOI ‘33] .aS°| ‘35‘9_ ?80]
= hvy + vy, (7412)

QW _ PRI} 2R 2

Vo 5 %5 05y 905

)

Mvis + Rovas . (7-15)
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A

Ak a.ﬁd_&_+lp££z+2i

= A Vin + A:LV')?M + pf,u ) (7-16)
where
A = 3('7‘)5(8'47") + 3p (s,— | +u) M
Ly o>
= (7-17)
A= 3 (';"? 4*-513) S, >

o= o) Bty L L
Si o> -073 % J

The matrix equation (7-12) can be written in component form

Vaa / - '3vg3
0Soy

(7-18)

of

f .
(.3_‘/&) = ?—4' \,36+ (A"") ’% .

This system of four simultaneous ordinary differential equations can be
integrated numerically along with the equations of motion and the equations

for the variational matrix. The initial conditions for these equations

?l’é:i) =(1Vm,_ =(3@) =(?;@) -0,
Ao [ ASo) o 0ol /o LY o

are

(7-19)
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Two similar systems of equations can be written down for the elements of
EVQ/ 3805 and dVv/dP, the initial values of each element being zero.
Numerical integration of a trial solution starting from the estimated
s%*l,s'z)('s) up to the estimated half-period @ = H* yields
the quantities needed in the corrector equations (7-9), which can then be

initial conditions (

solved by setting one of the quantities 5501, 5505, 8t or é)l to zero,

according to the choice of series parameter.

Corresponding to the system (7:9) of corrector equations, we may write

down the (linear) predictor equations

0s) Dsey + 95 DSos +-ﬁé¢’+ﬂ bu =0
By pgy + B Age + A Ay g oy Au=0 (7-20)
aSo) os dt ofu

doy " ola
dt op =

Wy Doy + Wy Ases +
ol

?sbl W5

The predictor is applied by assigning a fixed (small) increment to the
series parameter (P,say) and solving for the corresponaing increments in
the other three quantities., The methods described in Chapter 4 for
quadratic prediction and, if desired, selection of the "local" series

pardmeter, can easily be adopted to suit the present problem.

The prediétor and corrector algorithms are uséd together to trace out
a series of vertical bifurcation orbits parametrised by (say) J» the
mass parameter of the primaries, in an analogous way to the determination
of a vertical branch of a planar family. In order to start the procedure,
approximate values of the initial conditions and period of a vertical

self-resonant orbit, with vertical stability index given by Equation

a
vO
(7-6) for given m and n, corresponding to a particular value of ’1, mst

be known.

7.2.2 Elliptic Restricted Problem

The main difference between a vertical bifurcation series of the
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elliptic restricted problem ("elliptic series") and a circular series is
that the eccentricity of the primary orbit replaces the orbital period

of the massless particle in the periodicity and self-resonance conditions.
The system of equations (7+7) and (7-8) is formally very similar to the
system (4:27) of periodicity conditions for a three-dimensional periodic
orbit of the elliptic problem, and the analogous corrector eguations can

immediately be written as

3% Sio 4 22 S5+ Y g o+ B Jo = —5F
aso,sl ’DSosqs %u—/‘ ole 2

P

ol ®es i dle- (7-21)
Wy Sy + DY g 4 S I+ EA'%L Jo = oyg—a/,
35p) ¥Se5 el

where the starred quantities are those computed at the half-period on the
orbit with initial conditions (s01, 05) approximately satlsfylng the
periodicity and vertical self-resonance conditions for values /f*and e

of the mass parameter and eccentricity of the primaries. The orbital
period is, of course, constant along any éeries, and must be equal to an

integer multiple of the period of the primaries.

With the excéption of the quantity dav/de, all of the coefficients on
the left-hand sides of Equations (7-21) are known: these include the
components Voe and v4e qf the vector Ye defined in Section 3.3, and the
derivatives of a_ with respect to So1°? so5 and s for whith expressions
have already been obtained in this sectionts, The coefficient dav/de can

be calculated from

éy_ DMVDV G‘Dy+ olBV Cv+ edev

-—

de de Vide de (7.22)

where the derivatives on the right-hand side of Equation (7:22) are the

solutions of the differential equations

131nce E is no longer equal to unity, however, the quantlty A in these expressions
must be replaced by the product AE.

v’
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(7-23)
olvag

[
(E‘l’@_) = %(AE)\@ + (fe-1) ==
e

e

(@;)’ - (ae)y, + (AE—I)%:E-@
de '

evaluated at the half-period, starting from initial conditions
i) _ (A =(0‘Vas) - [da) < o
d o \de/o ~ \oe/ de /, (7-24)

Note the appearance of the function E in Equation (7-:23): for e>0, E(e,Q)
is no longer equal to unity, as in the circular problem. From Equations

(1-44), we have oft ds A s JE
£ _— 2 b
'j’:(ﬂe) %8|7Q,L+ s, de,)+ h oe

|

= € (A'V“?f+ AaVae HEW&) : (7-25)
Once again, the system (7:23) of four simultaneous differential equations
can be integrated numerically, and the values obtained at the half-period
substituted into Equation (7-22), together with the values of the elements
of V& at the same epoch, to give dav/de. In the corrector equations (7-21),
the chosen series parameter (P.or e, say) is kept fixed and the corrections
in the remaining three quantities computed; the corrector is applied
iteratively, uﬁtil the periodicity and self-resonance errors satisfy some

appropriate criterion.

The predictor equations for the elliptic case are the same as for the
circular restricted problem (Equations (7-20)), except that the eccentricity

e replaces the half-period t.

Suitable starting orbits for the determination of vertical bifurcation



- 157 -

series can be found in a number of different ways, such as

(i) by tracing out a family of planar periodic orbits of the elliptic
problem 91 fixed, e varying), and identifying those orbits which

satisfy the vertical self-resonance condition for some integers m, n;

(ii) vy establishing a vertical bifurcation series of the circular
restricted problem, and identifying those orbits which have commen-
surable periods, and can therefore be continued into the elliptic

problem, .

Numerical examples of vertical bifurcation series started from commen-
surable, vertical self-resonant orbits of the circular restricted problem

(method (ii)) are presented in Section 7.4.

7.3 Results: Circular Restricted Problem

In this section, numerical results are presented to illustrate the
foregoing discussion of vertical bifurcation series of the planar circular
restricted problem. Four series have been determined over all possible
values O<}1<1 of the mass parameter; for P<% the orbits of these series
belong to Str¥mgren's class f (retrograde satellite orbits), and for
}17% to class h (retrograde planetary orbits). These distinctions are,
of course, somewhat arbitrary, and the two designations will be used

interchangeably.

The four series comprise simple-periodic, vertical self-resonant orbits
having values of the vertical stability index a, = cos 21r/5 (~0-30902),
a, = cos T /3 ( = 0.5), a, = cos 27 /7 (2 0-62349) and a, = cos T /4
(2 0-70711), respectively. ©Each series was started from the known orbit
corresponding to the Sun-Jupiter value P.= 0-00095.of the mass parameter;
these orbits were used in Chapter 5 in the determination of the vertical
branches of family f, and designated f},15, f}d 6 fil,( and f}rla. The
designation of each of these four starting orbits will be applied to the

entire series to which it belongs: thus, we refer to the series fv15 ’
a particular orbit of that series being designated, for example, the

R= 0-1 orbit Of-serles_f$15'

Numerical data for the four vertical bifurcation series are given in
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Tables 7.1 - 7.4, and the characteristics of each series are projected in
the gu,x)-plane in Figure 7.1. The limiting orbit of each series,
corresponding to the value p= 1 of the mass parameter, is a retrograde
circular Keplerian orbit; it can be shown that the limiting orbit of

series fl has radius
vnm X

_1/,
m
R= (7\_ - ') (7+26)

(e.g. Hénon and Guyot, 1970 and Hénon, 1974)' -

Figure 7.1 shows that the sizes of the orbits decrease very slowly with

P until the mass parameter reaches a value of about 0-025,'when a rapid
contraction of the orbits becomes apparent with decreasing P As PH?O,

the orbits tend towards vertical self-resonant orbits of Hill's problem.

In addition to the vertical stability index a, of the orbits belonging
to the four series, the horizontal stability index a was calculated; it
was found that all four series consist entirely of stable orbits. It
is therefore possible that the vertical branches which bifurcate from
planar orbits belonging to these series consist at least partly of stable
three-dimensional periodic orbits (although for the value P = 0-00095 of
the mass parameter, numerical results indicate that the three-dimensional

orbits are mainiy unstable, as we saw in Chapter 5).

For the 1limiting value P = 1 of the mass parameter, the synodic orbital
periods (that is, with respect to the rotating coordinate system)

corresponding to the radii ¢ given by Equation (7-26) for each series are
T = 2m/m (7-27)

wneren =1, and m = 5, 6, 7 or 8, respectively. Examination of Tables
7.1 - 7.4 shows that as P decreases along each series, the orbital period
increases from this n/m commensurability, and it is found that for non-
Zero masses .of the two primaries (O<P <1), the lowest-order commensur-

is

ability occurring in series fvlm

T = 2nf (m-1). | - (7-28)

The commensurabilities 1/(m-1) belong to either Case 2 or Case 3 of
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98k251

Table 7.1l:. Series ftis
H %1 05 T
0.001 0.951115 0.203315 1.706373
0.002 0.9377k2 0.256463 1.706849
0.005 0.913402 0.348768 1.707213
0.01 0.887k460 0.Lkho2h)k 1.706527
0.02 0.851337 0.555872 1.703339
0.05 0.777173 0.756677 1.688785
0.1 0.685609 0.954894 1.659508
0.2 0.537331 1.202704 1.598875
0.3 0.406570 1.373969 1.542060
0.4 0.283836 1.507955 1.49037k
0.5 0.165668 1.618813 1.443455
0.6 0.050381 1.713359 1.Lk00612
0.7 -0.062987 1.795369 1.361138
0.8 -0.175049 1.867072 1.324381
0.9 -0.286229 1.929796 1.289T740
1.0 -0.396850 1. 1.256637
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Table 7.2: Series f}rlG
H o1 ®05 T
0.001 0.960195 0.206371 1.294937
0.002 0.949158 0.260235 1.294965
0.005 0.928835 0.353715 1.294727
0.01 0.906812 0.446285 1.293939
0.02 0.875517 0.563250 1.291822
0.05 0.809217 0.766511 1.283996
0.1 0.T724403 0.967827 1.269461
0.2 0.582603 1.221396 1.239593
0.3 0.k454943 1.398365 1.210675
0.h4 0.333956 1.538030 1.183288
0.5 0.216900 1.654570 1.15748k
0.6 0.102420 1.754872 1.133158
0.7 -0.010273 1.8L42804 1.1101Lk9
0.8 -0.121685 1.920729 1.088277
0.9 -0.232171 1.990139 1.067357
1.0 -0. 341995 2.051971 1.047198
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Table 7.3: Series ftl?

v o1 505 .
0.001 0.965628 0.211584 1.058086
0.002 0.955989 0.266763 1.058047
0.005 0.938069 0.362482 1.057785
0.01 0.918392 0.k457227 1.057173
0.02 0.890004 0.576895 1.055708
0.05 0.828543 0.784827 1.050660
0.1 0.748137 0.990912 1.041590
0.2 0.611145 1.251090 1.023095
0.3 0.486278 1.433362 1.005021
0.4 0.367175 1.577809 0.987650
0.5 0.251513 1.698894 0.971033
0.6 0.1381k0 . 1.803657 0.9551L5
0.7 0.026387 1.896081 0.939930
0.8 -0.084177 1.978630 0.925319
0.9 -0.193850 2.052907 0.911235
1.0 -0.302853 2.11997h4 0.879598
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Table T.4: Series fwi;lB
H 01 ®0s T
0.001 0.969L414 0.217375 0.898593
0.002 0.960749 0.274032 0.8985Lk
0.005 0.9u44507 0.372284 0.898318
0.01 0.926472 0.469505 0.8978L49
0.02 0.900124 0.592262 0.896780
0.05 0.842088 . 0.805505 0.893228
0.1 0. 764875 1.016876 0.886959
0.2 0.631525 1.283972 0.8T74239
0.3 0.508907 1.h71443 0.861753
0.4 0.391411 1.620353 0. 849660
0.5 0.276988 1.74552L 0.837993
0.6 0.164629 1.854177 0.826748
0.7 0.0537L6 1.950417 0.815900
0.8 -0.056037 2.036801 0.805418
0.9 -0.16L4981 2.11501)k 0.795264
1.0 -0.273276 2.186207 0.785398
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Table 6.1, depending on the value of m: for series fils and fi17 the
lowest-order commensurabilities are 1/4 and 1/6, respectively (Case 3),
and for series f$16 and fil& the lowest-order commensurabilities are
respectively 1/5 and 1/7 (corresponding to Case 2), These four commen-
surable, vertical self-resonant orbits (one from each of the four
circular series) were used as starting-points in the determination of
vertical bifurcation series of the elliptic restricted problem; the

results of this procedure are discussed in the next section.

7.4 Results: Elliptic Restricted Problem

The results given in this section illustrate the technique of estab-
lishing vertical bifurcation series in the elliptic restricted problem
by continuation of commensurable, vertical self-resonant orbits of the
circular restricted problem to non-zero values of the eccentricity of
the primaries. The starting orbits chosen for this purpose were the
four lowest-order commensurabilities from each of the four circular series
given in the previous section: as we have just seen, this is the 1/(m-1)
m,.where m=5, 6, 7and 8, Since the

orbits of the four circular series are all simple—periodic, that is,

commensurability of series fil

crossing the x-axis twice in each orbital period, the corresponding orbits
of the elliptic problem for zero eccentricity of the primaries have

multiplicity equal to m-1, and period 2w,

The vertical stability index for the orbits of series film is given by
a, = cos(2m[m) ; - (7-29)

thus the value of a, for the e = 0 orbit equivalent to an (m-1)-fold
description of the commensurability 1/(m-1) orbit is

Q, = Ceos 2——(——” | = QOS('Z—TT—) .
‘ m m

(7-30)

The orbits of the elliptic series obtained by continuation from the e = 0
orbits therefore have, in this particular case, the same value of the
vertical stability index as the orbits of the circular series from which
they originate. (This is not the case in general for elliptic series

generated from other commensurabilities).

It was shown in Chapter 6 that there are always two distinct ways of



- 165 -

continuing a commensurable orbit of the planar circular case of the
restricted problem into the elliptic case, giving rise to two families of
periodic orbits. It is found that this is still the case when instead
of fixing the mass parameter‘P, we allow'P to vary and keep the vertical
stability index a, constant, as confirmed by the results of numerical
continuation. The two series of vertical self-resonant orbits of the
elliptic problem generated from each of the four commensurable orbits
already mentioned can be classified as consisting of "conjunction" and
"opposition" orbits, according to whether the massless particle is at the

conjunction or opposition axis-crossing at periapsis of the primaries,

Representative orbits of the eight elliptic series are given in Tables
7.5 - T.12. Those marked with the letter "S" satisfy the stability
criteria in terms of the (horizontal) stability indices p and q, as
defined in Chapter 3 (the orbits are, of course, automatically vertically
stable since they are vertical self-resonant). The characteristics of
the eight series are projected, in four pairs, in the (P,e)-plane in
Figures 7.2 - 7.5; it is seen that in each of the four projections,
the two curves representing the two series originating from the same
commensurable orbit are distinct, and only intersect at the starting
point on the p-axis. Of the eight series investigated, one (the oppo-
sition series arising from the 1/4 commensurability of series fvlS) has
been determined in its entirety, starting and finishing at e # 0 in
commensurable orbits of the circular restricted problem. The termination
orbit of this series, corresponding to the last entry of Table 7.6, has
been identified as a verticai self-resonant quadruple-periodic orbit,
of period 2+, belonging to the horizontal branch h14
FE:O-798528. This orbit is in the commensurability 1/1,'and S0

corresponds to Case 2 of Table 6.1; by contrast, the starting orbit

of family h, for

of the series is in the commensurability 1/4 and so comes under Case 3,
From the considerations of Section 6.2, the termination orbit of the
opposition series generated from the 1/4 comménsurability of series fils
must also be the termination of another vertical bifurcation series of

the elliptic restricted problem: .it can be predicted that the orbits of
this second series will be quadruple-periodic (that is, of multiplicity
four), of period 21, and have vertical stability index a, = cos(2w .4/5)

= cos 2w /5.

The remaining seven of the eight vertical bifurcation series have not



Table 7.5:

Conjunction series generated from 1/4 commensurability

. 1
of series fv

15
u e sOl s05
0.24k8314 o 0.472798 1.291561 S
0.248534 0.01 0.472271 1.290604 S
0.253802 0.05 0.464037 1.294139 S
0.270107 0.1 0.440868 1.3147ko S
0.331k98 0.2 0.3613k49 1.398568 S
0.k421149 0.3 0.260280 1.517923 S
0.535145 0.4 0.161182 1.688813
0.7 0.4898k40 0.115764 2.293181
0.8 0.496910 0.1L46384 L. 436017
0.831 0.479279 0.147331 7.167914

Table'z.é: .bﬁposition series generated from 1/4 commensurability

of series fil5
H e o1 05
0.248314 0 1.047901 -1.230261
- 0.248533 0.01 1.053509 -1.220206
0.253362 0.05 1.074192 -1.191696
0.266002 0.1 - 1.096202 -1.178297
0.309967 - 0.2 . 1.13341k -1.202L482
0.456048 0.4 1.221498 -1.37L554
0.689678 0.6 0.974782 -1.577h432
0.894119 0.703k4 0.668962 -1.751216
0.925561 0.6 0.481090 -1.904443
0.890170 0.k 0.397658 -2.1515u47
0.835776 0.2 0. 368427 -2.536875
0.811982 0.1 0.347668 -2.913524
0.803765 0.05 0.330110 -3.232135
0.799349 0.01 0.311161 -3.621237
0.798528 0 0.305617 -3.750011
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Table 7.7: Conjunction series generated from 1/5 commensurability
of series f\];16

s e o1 %05
0.142845 0 0.660935 1.091047 s
0.143088 0.01 0.660367 1.090470 S
0.148663 0.05 0.650949 1.098563 S
0.164358 0.1 0.625321 1.125512 S
0.219340 0.2 0.540274 1.215449 s
0.302355 0.3 0.42550L 1.338987 S
0.411266 0.h4 0.299819 1.h95404 S
0.6 0.512910 0.17hk536 1.922996
0.6504 0.523302 0.173432° 2.218021
Table 7.8: Opposition series generated from 1/5 commensurability

of series fth

u e v ‘301 . "So5
0.1k2845 0 1.061117 . -1.056091
0.143088 0.01 1.064847 - -1.0L5897 -
0.148591 0.05 1.078101 - -1.019868
0.163173 0.1 1.091611 —1.013o9o>
0.210321 0.2 1.113007 -1.049783
0.381515 0.4 1.158275 -1.244332
0.586859 0.6 1.253105 -1.523084
0.92 0.775348 . 0.656820 -1.757868
0.922962 0.6 0.1416882 -1.98k4365
0.868000 0.h4 0.357k62 -2.324362
0.8096L9 0.2 0.317321 -3.127789
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Table 7.9: Conjunction series generated from 1/6 commensurability

. 1
of series fvl

1
u e 301 805
0.069361 0 0.795600 0.876150 S
0.069578 0.01 0.794735 0.874771 S
0.074683 0.05 0.784126 0.886270 S
0.089797 0.1 0.756k446 0.929417 S
0.1L4050 0.2 0.665299 1.057728 S
0.225641 0.3 0.540810 1.202762 S
0.331432 0.4 0.398821 1.36004k S
0. 466610 0.5 0.257891 1.568840
0.63 0.561323 0.192168 2.142006

Table 7.10: Opposition series generated from 1/6 commensurability

of series fl

vi7
" So1 505
0.069361 0 - 1.069040 -0.857718
0.069578 0. 1.071215 -0.850049
0.074680 0. 1.079156 -0.837612
0.08965h4 0. 1.087714 -0.852733
0.1%1306 0. 1.100785 -0.928530 .
0.321767 0. 1.120038 -1.150328
0.566843 0. 1.218315 -1.455623
0.935 0 0.668607 -1.760727
0.918617 0. 0.373237 -2.069433
0.854023 0.4 0.320618 -2.572262
0.801126 0.2 0.266733 -4.287916




Table 7,11:

Conjunction series generated from 1/7 commensurability

of series fl
v

18
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8

01 05
0.012k455 0] 0.919231 0.505337 S
0.012682 0.01 0.918101 0.505891 S
0.017989 0.05 0.902066 0.558251 S
0.033579 0.1 0.864799 0.674571L S
0.089559 0.2 0.760036 -0.905602 S
0.172819 0.3 0.626392 1.096608 S
0.279054 0.4 0.472538 1.266789 S
0.407365 0.5 0.315317 1.450562 S
0.6 0.593254 0.191352 1.928257
Table 7.12: Opposition series generated from 1/7 commensurability
of series V18
s € So1 05
0.012455 0 1.056653 ~0.50021k
0.012682 0.01 1.057739 -0.498882
0.017989 0.05 1.065536 -0.541214
0.033572 0.1 1.077258 -0.637357
0.089010 0.2 1.091487 -0.813790
0.276286 0.k 1.095355 -1.082563
0.5k44082 0.6 1.160130 -1.386880
0.95 0.855548 0.666145 -1.771335
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been completely determined, because of numerical difficulties resulting

> It is thought

likely that the "opposition" series terminate at e = 0 without passing

from close approaches of the orbits to the primary m

through collision orbits, although very close approaches to the primary
m, may occur. By contrast, all four of the "conjunction" series appear
to terminate at non-zero values of the eccentricity in collision orbits
with m,3 continuation of these series through the collision would require
regularisation of the equations of motion and the vertical stability
equations.

Representative orbits of the conjunction and opposition series generated
from the 1/4 commensurability of series fils are plotted in Figures A49 -
A56, in the Appendix. |

7.5 Further Results

The elliptic series discussed in Section 7.4 were obtained by
continuing commensurable, vertical self-resonant orbits of the circular
restricted problem into the elliptic problem, starting from e = 0 and
progressing to non-zero values of the eccentricity of the primaries.

This technique has the limitation that it can only be used to establish
elliptic series which have members corresponding to e = 0; we now
offer an example of a vertical bifurcation series of fhe elliptic restricted
problem which has no e = O orbit, and is therefore not directly accessible
from the circular restricted problem. The starting orbit of this series,
cor:esponding.to the value p= 0.5 of the mass parameter, and ea0-43,
was computed by Dr. V, Markellos as a result of his work in the general
three-body problem. The series is designated (%v because it is uniquely
linked with the vertical-critical orbit €SV of the planar circular
problem for‘p = 0.5 (Henon, 1973b) via the vertical bifurcation series
er of the general three-body problem (Markellos, 1980).

The series comprises orbits of Strdmgren's class {, that is,'orfits
7 around both primaries, the sense of motion being retrograde with respect
to the rotating frame and direct with respect to the inertial frame;
numerical data are given in Table T.13. The orbits are simple-periodic
and have period T = 41, corresponding to the 2/1 commensurability with
the period of the primaries, and since the mirror configurations always

occur at periapsis of the primaries (OO = 0), this is a "periapsis" series.
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Table 7.13: The vertical bifurcation series 2'3'v
ifv = 41) of the elliptic restricted problem

u e 301 : 505
0.0005 0.L47h482 -3.676L45% 3.296529
0.001 0.474381 ~ -3.675084 3.295131
0.005 0.473651 -3.66L4845 3.28k4699
0.01 0.472755 -3.652185 3.271796
0.02 0.470998 -3.627222 3.246337
0.05 0.466000 " -3.554960 3.172L487
0.1 0.L458544 -3.h42727 3.057261
0.15 0.L45210L -3.33967k 2.950737
0.2 0.446620 -3.244768 2.851826
0.25 ~ 0.Lk2obLk -3.157139 2.759591
0.5 0.438341 -3.076047 2.6732k45
0.35 0.435485 -3.000858 2.592067
0.4 0.433457 -2.931017 2.515438
0.L5 0.432245 -2.866038 2.442796
0.5 0.431842 -2.805485 2.373630
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The vertical stability index has the constant value a, = 41 along the
series, and the parameter Bv is zero; thus, a single family of axisymmetric
periodic orbits of the three-dimensional elliptic restricted problem

branches from each orbit of the series (see Section 3.6).

It can be seen from Table 7.13 that over the entire range of values of
the mass parameter from almost zero to p= %, the eccentricity e of the
primaries varies only slightly between about 0-43 and 0:47 (see also
Figure 7.6); in particular, as already emphasised, since e never reaches
zero, the series does not connect directly with the circular problem via
a commensurable, vertical-critical orbit. The special symmetry property
of the orbits of Str¥mgren's class € in the planar circular problem,
whereby the orbits for }17% are identical (apart from a 180° rotation
about the origin) to those for m<3 (Hénon and Guyot, 1970), applies also
in the elliptic restricted problem, and the p= % orbit of the series is

symmetrical with respect to both coordinate axes.

The termination orbit of the series {3V’ corresponding to F.S 0, is an
elliptical orbit of the two-body problem, of period 4% ; we conclude that
the series comprises orbits of Poincaré's second kind. Calculation of
the stability indices showed that the series consists entirely of horizon-
tally unstable orbits. :

The determination of a series of vertical self-resonant orbits in
either the circular or elliptic cases of the restricted problem allows an
infinite number of families of symmetric three-dimensional periodic orbits
to be found, since a vertical branch can be started from any member orbit
of the series. This can be done by keeping the mass parameter fixed along
a given branch and allowing the orbital period or eccentricity of the

primaries to vary, using the numerical techniques described in Chapter 4.

In the determination of three-dimensional periodic orbits of the elliptic
restricted problem, the continuation of vertical bifurcation orbits into
three dimensions is an alternative approach to that described in Chapter 6,
in which commensurable three-dimensional orbits of the circular problem
are continued into the elliptic problem by increasing theAeccentricity e
from zero to non-zero values, In order to illustrate the continuation
of periodic orbits of the planar elliptic problem into three dimensioﬁs,

two orbits belonging to the series {sv were selected and the initial
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Table 14: The femily of three-dimensional periodic orbits of

. the elliptic restricted problem branching from series

L v for ¥ = 0.01.

-3
e So1 805 06
0.472753 -3.652176 3.271788 0.001
0.472750 -3.652151 3.271765 0.002
0.472736 -3.652050 3.271672 0.004
o.h72714 -3.651881 3.271517 0.006
0.472682 -3.651646 3.271301 0.008
0.k4726L41 -3.6513L3 3.27T1023 0.010
Table - 7,15: The family of three—dimensional periodic orbits of the
. elliptic_restricﬁed problem branching from series £3v-
for p = 0.k.
o o1 | So5 - Spg
0.433U56 : -2.931013 2.515435 - 0.001
0.L43345) -2.931000 2.515425 0.002
0.433kLY -2.930951 2.515384 0.004
~ 0.L433428 -2.930869 2.5¥5316 0.006 -
0.433405 -2.93075L 2.515220 0.008
0.433376 -2.930606 2.515098 - 0.010
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segment of the vertical branch arising from each orbit was determined.
The two orbits used were those corresponding to the values p = 0-01 and
p= 0+4 of the mass parameter (see Table 7.13); numerical data for the

two branches are presented in Tables 7.14 and 7.15.

Since the vertical stability index of the orbits of series {gv is
a, = +1l, we have a "simple bifurcation": the three-dimensional orbits
are of the same multiplicity as the planar orbits, and are therefore
simple-periodic. The orbital period is also the same as that of the
vertical-critical orbits, equal to 41 . The branch orbits have their
perpendicular crossings of the x-axis (type (A) mirror configurations)
when the primaries are at periapsis, as is the case for the planar orbits.
Both of the vertical branches were traced out of the horizontal plane
by using the initial z-velocity Spg 88 the family parameter, to ensure
that genuinely three-dimensional orbits were obtained. Stability
calculations for the three-dimensional orbits indicated that these are
all unstable, as would be expected from the fact that the bifurcation

orbits are unstable.
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8. BIFURCATION IN THREE DIMENSIONS

8.1 Introduction

The major part of the work presented in this thesis is concerned with
the phenomenon of vertical bifurcation: that is, the bifurcation of
planar with three-dimensional periodic orbits of the restricted problem,
Analytical and numerical study of vertical bifurcation is greatly
facilitated by the special property of separability of the variational
matrix into "horizontal" and "vertical" parts and the corresponding
decoupling of the variational equations. This particular type of
bifurcation is also important because it leads to the generalisation into
three dimensions of existing numerical results in the planar restricted
problem, and allows genealogical relationships to be established between
.families of three-dimensional. periodic orbits and the planar families
from which they may be generated. A study of the stiucture of periodic
solutions of the restricted problem would be incomplete, however, without
some mention being made of the more general type of bifurcation of families
of symmetric periodic orbits, that is, bifurcation in three dimensions.

In this chapter we present some preliminary numerical results illustrating

the occurrence of this type of bifurcation.

The two examples of three-dimensional bifurcafion discussed in the
next section were discovered as a result of numerical investigations of
the family Fi§§), one of the vertical branches of family f discussed in
Chapter 5. This family has the peculiar property of turning back on
itself at a certain boint in three dimensions, ratner than returning to
the horizontal plane and connecting with a family of planar orbits, as
do the other branches described in Chapter 5. The effective termination
orbit of the branch was found to be a twofold description 6f a plane
symmetric, simple-periodic orBit, belonging to an unknown family of
such orbits bifurcating with the family Fi§§) in three dimensions. It
was decided to investigate this family numerically with a view to its
identification; ‘the results of this investigation are presented in the

next section, . ‘

The general condition for the occurrence of a bifurcation of two

families of periodic orbits was given in Section 3.5 as (Equation (3.69))



- 179 -

k = —2.cos (2“-“/"\)) (8-1)

where k is one of the linear stability indices, and m, n are integers.
In the gresent case, we have a double bifurcation: the termination orbit

(p
of Fils

cation orbit. This corresponds to the values m= 2, n = 1 in Equation

has double the multiplicity and twice the period of the bifurs

(8-1), giving k = +2; direct calculation of the stability indices of
the simple-periodic bifurcation orbit gave a value of one of the indices
in agreement with this prediction. (One of the stablllty indices of
the termination orbit of the vertical branch Fll? was found to be equal
to -2, as would be expected from Equation (3-:67), with m = 2), The use
of Equation (8-1) in identifying probable three-dimensional bifurcation

orbits will be discussed further in Section 8.3.

8.2 Numerical Results

The three-dimensional bifurcation orbit corresponding to the termination
of the vertical branch Fiég) was continued numerically in order to trace
out the family of plane symmetric orbits to which it belongs. Since
this orbit is somewhere in the "middle" of the family, it was necessary
to continue it in two opposite directions so that the two "ends" of the
family could be found, Numerical daté for the family are given in Table
8.1; the bifurcation orbit with family Fl(5 , correspondlng approximately
to the entry marked with an asterisk, is plotted in Figure A60 in the
Appendix (see also Figure 8.1).

It was found that continuation.along the family from the bifurcation
towards lower values of the orbital period T results firstly in an
increase in the multiplicity ffom 1 to 3, and shortly after in .a drop in
maltiplicity from 3 to 2.. Continuing in this direction, a "reflection"

orbit is encountered: that is, the family begins to turn back on itself,

“the turning point or "reflection" occurring when the two type (P)_mirror

configurations deflnlng the orbits become exactly coincident. As in
the case of family Fl (Sectlon 5.2), this indicates a bifurcation
with another family of three-dimensional periodic orbits. The ter-
minstion orbvit at this bifurcation, corresponding approximately to the
first entry of Table 8.1, is a twofold description of a simple-periodic,

plare symmetric orbit. Investigation showed that this orbit belongs
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Family Fi§g) in Three Dimensions

Table 8,1 Family of Plane Symmetric Periodic Orbits Bifurcating with
(u = 0-00095)

501 503 so5 T C m
1005886 0-074370 -0+021505 2:635984 3016876 2
1-019954 0-073142 -0+019252 2-T40713 3.018044 2
1032667 0-066788 0-000597 3276811 3.021852 3
1-034431 0-064560 0-013472 3613052 3.022704 1

- 1022965 0-066370 0-063599 4847426 3017639 1
1.012989 0-068787 0-084693 5417080 3013106 3
0-959727 0.111152 0-136418 10-002877 2.985634 3
0-903315 0-376199 0-145344 12-304728 2-840827 4
0.860711 0470564 0-181885 12-416191 2-TAT747 4
0-723696 0-666794 0-310978 12-511294 2459661 4
0.292082 0:942179 0-735518 12-555049 1-571928 4
0-008672 0-986447 1-017379 12-561477 0-992779 4

-0+440717 0+880630 1466559 12-566355 0-075419 4

-0-802063 0-560049 1.832139 12-571112 -0-667305 4

-0-626735 0-764444 . 1.648865 14-291673 -0+301416 4
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to a vertical branch of the planar family a (periodic orbits around the
Lagrange collinear equilibrium point Ll). The vertical bifurcation
orbit of family a from which this branch is generated was found to be
the vertical-critical orbit &y (in the notation of Hénon, 1973b), that
is, the first vertical-critical orbit of family a to be encountered as
1; the vertical
branch was therefore designated Alv’ following the notation of Zagouras
and Markellos (1977).

the family evolves from infinitesimal orbits around L

Numerical data for the family Alv are given in Table 8.2; the letter
"S" indicates orbital stability, and the entry marked with an asterisk
corresponds approximately to the bifurcation orbit, whiéh once again has
a stability index equal to +2 (double bifurcation). The bifurcation
orbit is plotted in Figure A57 in the Appendix. The family Alv appears
to terminate in a collision orbit with the primary m, shortly after this
bifurcation; it is interesting to note that the highly-inclined, highly-
eccentric orBits of the final segment of family Alv are linearly stable,

despite the close approach to the primary m,.

On continuing the first (as yet unidentified) family in the other
direction from its bifurcation with the vertical branch Fi§§ towards
increased values of the orbital period, two further multiplicity regimes
(multiplicity 3 and 4) are encountered. There is a radical change in
the characteristics of the orbits along the family, as illustrated by
the series of orbit plots at intervals along the family given in Figures
A58 - A69 in the Appendix; this can also be seen from the entries of
Table 8.1. Beginning with essentialiy satellite orbits around the
less massive primary'm2 (Jupiter), these éventually become orbits of the
planetary type about the more massive primary my (Sun); the motion in
these later orbits is very nearly circular Keplerian motion except for
a short interval of each orbit in which the massléss particle has a close
encounter with the primary m, and experiences a significant perturbation.
As the family evo}ves towards termination, the orbits develop two dis-
tinct parts, one very nearly planar and the other three-dimensional (see
Figure A69). The massless particle, initially in an almost planar orbit,
has a close appioaéh above the primary m2, which sends it into a highly-
inclined orbit about m (rather reminiscent of an out-of-ecliptic mission

orbit). The three-dimensional part of the orbit comprises three loops,

one above and two below the horizontal plane, connecting together close
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Table 8.2 Family A  of Plane Symmetric Orbits (P = 0-00095)

801 505 505 T C
1.077821 0-002685 -0-063143 3+223310 3034961 1
1.077724 0-007685 -0+064083 3.221611 3.034687 1
1-075305 0-032685 -0-077965 3186339 3-029728 1
1-060668 0071685 -0-099939 2:925641 3-013929 1
1.038612 0084742 -0-086509 2.220504 3.008201 1
1-015666 0:080156 = -0-045509 1.551854 3-013027 1
1-005699 0-:074365 ~-0.021443 1.317964 3;016876 1
1-003954 0-072271 -0.016831 1263272 3.018046 1
1.000240 0-060880 -0.006112 1.007276 3.024640 1
0+999723 0055880 -0.004299 0.898827 3.028026 1

nw un n X

Table 8.3 Family of Plane Symmetric Periodic Orbits Generated from

Quadruple Bifurcation with Family A (F.= 0-00095)
So1 . 503 s05 T C
1-000115 0:059951 -0-005711 '~ 3.948288 3.025239 4
1-000215 0:059952 -0-005688 3+948255 3.025239 4
1-000415 0-059955 -0-005643 3948314 3025239 4
1.000823 0-059958 -0-005549 3948429 3+025241 4
1-001619 0:059956 -0-005362 3.948926 3025247 4
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to the primary m Eventually, the massless particle has another close

2.
encounter with m, which renders the motion once again very nearly planar,
It seems likely that the family terminates in a planar collision orbit

with my3 the termination orbit has not been identified.

Calculation of the stability indices of the orbits of this unident-
ified family indicated that they are all unstable, the degree of

instability becoming very high towards the termination orbit.
8.3 Remarks

(1) The numerical results given in the previous section illustrate the
importance of three-dimensional bifurcation in the structure of periodic
orbits. We saw in Chapter 5 that the planar families f, & and g2 are
connected through vertical bifurcation with families of three-dimensional
periodic orbits; the link between families f and a discussed in the
previous section, however, involves both vertical and three-dimensional
bifurcations. The unidentified family which bifurcates with the vertical
branches Aiv and Fi§g) cannot be established from a vertical self-
resonant orbit, and it seems likely that this is merely one example of a
whole class of such families generated from bifurcations in three
dimensions. There is clearly a great deal of scope for further investi-

gation in this area.

(2) The families mentioned in Section 8.2 all consist of plane
symmetric orbits. It is easy to see that in a bifurcation of two
families of three-dimensional syhmetric periodic grbits, the symmetry
properties of the orbits of both families must be the same,. since the
type of mirror configuration cannot alter. Thus, a family of plane .
symmetric orbits can only bifurcate with another plane symmetric family,
and an axisymmetric family with another éxiéymmetric family; one of the
families, however, may have additional symmetry, and bifurcations of
simply-symmetric with doﬁbly—symmetric families would appear to be

possible,

(3) The first-order treatment of bifurcation outlined in Section 3.5

predicts the occurrence of infinite numbers of bifurcations along those
segments of families of three-dimensional périodic orbits for which one
of the stability indices satisfies the stability criterion, Note that

this does not require actual stability of the orbits, since the other
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indices need not satisfy the stability criterion (for example, in the
special case of vertical bifurcations, a family of three-dimensional
orbits can arise from a horizontally unstable planar orbit). The
denseness of bifurcations of periodic orbits, related to Poincéré's
famous conjecture (Vol. I of "Méthodes Nouvelles"), has been discussed
by Katsiaris and Goudas (1973).

(4) The results presented in this chapter are of a preliminary nature,
providing numerical evidence for the occurrence of families of symmetric
periodic orbits in three dimensions. Clearly, an analytical theory

of three-dimensional bifurcation is required, and there is a large amount
of scope for numerical investigation of the phenomenon. The general
bifurcation condition (Equation (8-1)) can be used to identify probable
bifurcation orbits, and indicates the order of the bifurcation (that is,
the value of the integer m); the bifurcation condition is not specific
to symmetric periodic orbits, however, and an analysis similar to that
of Section 3.6, exploiting the property of orbital symmetry, would allow
detailed predictions about the mechanism of bifurcation in the case of

symmetric orbits.

The possibility of the occurrence of bifurcation of higher order than
the second, that is, bifurcation from a self-resonant, non-critical orbit
with one stability index satisfying Equation (8-1) for m72, was invest-
igated numerically. An orbit belonging to the family A (Table 8.2)
with one stability index equal to zero (m = 4, n = 1 in Equation (8-1))
waé chosen for this purpose. This orbit belongs to the stable final
segment of the family, and falls between the last two entries of Table
8. 2. Attempts to establish numerically a family of quadruple-periodic
plane symmetric orb;ts in the neighbourhood of the predicted bifurcation
yielded the results given in Table 8.3, which contains orbits belonging
to the initial segment of the family in the neighbourhood of the bifur-
cation. In order to check that this family does in fact originate from
a Bifurcation in -three dimenéions, the family was traced back towards
the startiné orbit. The characteristic "reflection'" phenomenon was
once again encountered, the parameters of the reflection orbit corres-
ponding closely to those of the bifurcation orbit of family Alv; this .
was considered to be a satisfactory confirmation of the occurrence of

the bifurcation.

. The final orbit of Table 8.3 is plotted in Figure AT0, in the Appendix.
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9, SUGGESTIONS FOR FURTHER WORK

(1) As has already been pointed out, the planar case of the restricted
problem has been explored much more extensively than the three-dimensional
case, A ¢reat deal of work remains to be done in the generalisation of
existing numerical information on the periodic orbits of the planar
circular problem into three dimensions, by tracing the vertical branches

of families of planar orbits,

There is a similar paucity of numerical results on the periodic orbits
of the elliptic restricted problem, particularly in the three-dimensional
case, and it is clear from the discussion of Chapters 6 and 7 that there
is an abundance of suitable starting orbits for coﬁtinuation from the
circular into the elliptic problem, and from the planar to the three-
dimensional elliptic problem. A major computational effort is required
to map out the families of periodic orbits obtainable by these methods,

and to survey the stability and other properties of the orbits.

(2) The possibility of establishing series of periodic orbits para-
metrised by the mass parameter P,has been dealt with in Chapters 3 and 7,
but has not been discussed in detail. Hénon and Guyot (1970) have
presented a survey of the (horizontal) stability of planar periodic orbits
of the circular restricted problem for all possible values of the mass
parameter O(Pgl, and other authors (e.g. Benest, 1976, 1977; Broucke,
1968, 1969; Shelus, 1972; Hénon, 1973a; Katsiaris, 1972; Markellos et al.,
1974, 1975a, b) have considered the effect of varying the mass parameter
on the structure and stability of periodic orbits. This is another
important area for numerical exploration; the significance of the mass
parameter in the overall structure of the solutions of the restricted
problem is underlined by the existence of certain critical values of}l

at which changes in the topology of the solution space take place (see,
e.g. Markellos et al., 1974).

(3) Markellos (1974a, b, 1975), Markellos and Zagouras (1977) and
Benest (1976, 1977) have investigated the relationship between linearly
stable regions of families of periodic orbits and the stability properties

(in a more general sense) of semi-periodic motion. close to the periodic

orbits, Further work (numerical and/or analytical) would be of great

value in the application of results on the stability of periodic orbits
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to real astronomical problems, such as the stability of the outer Jovian
satellite system, An outstanding question worthy of some attention
concerns the results reported by Hunter (1967) on the anomalous relation-
ship between stability and inclination of retrograde satellites of

Jupiter.

(4) The numerical computations presented in this thesis were performed
using non-regularised equations, with the result that it was not possible
to continue certain families and series of periodic orbits as far as or
beyond collision with one of the primaries. In most cases, this is not

a serious disadvantage, since a collision orbit represents a natural
termination of a family of periodic orbits, and from the practical point
of view, collision or near-collision orbits are of limitéd interest.

From the mathematical poinf of view, however, it is important to establish
connections between various families (or different phases of the same
family) via collision orbits, and this necessitates the use of regularised
equations. There is a substantial literature on the subject of regulari-
sation; a detailed discussion of various methods, including regularisation

techniques for the variational equations, has been given by Taylor (1979).

(5) The identificétion of the‘P,= 0 termination orbit of the vertical
bifurcation series er of the elliptic restricted problem, described in
Section 7.5, with an elliptic orbit of the two-body problem having a
period commensurable with that of the primaries, and an eccentricity of
about 0:47, raises the question of the continuation of elliptic Keplerian
orbits into the restricted three-body problem, the mass parameter being
increased from zero to non-zero values, in order to generate a series of
vertical bifurcation orbits, The case of circular orbits has been
considered by Hénon and Guyot (1970) and Hénon (1974); the four vertical
bifurcation series of the circular problem given in Section 7.3 were
found, in the 1limit yfal, to be vertical ‘self-resonant circular orbits

of the two-body problem. Commensurable elliptic two-body orbits,

giving rise to periodic orbits of Poincaré's second kind, are known to

be of critical stability and would therefore result in series of vertical-
critical orbits upon continuation into the restricted problem. Further
study of this type of analytical continuation would be an interesting and
worthwhile exercise, leading to the possibility of establishing a
connection between elliptic two-body orbits and three-dimeﬁsional periodic

orbits of the elliptic restricted problem.
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(6) The preliminary results of Chapter 8 indicate that three-dimensional
bifurcations of families of periodic orbits are of great importance in
the structure of symmetric periodic solutions of the restricted problem.
Numerical and analytical work in this area would almost certainly lead
to an improved understanding of the structure of periodic orbits (see

the discussion of Section 8.3).

(7) A growing body of literature on the periodic orbits of the general
three-body problem has appeared in recent years. One of the ways of
determining such periodic orbits is by numerical continuation from the
restricted problem, the mass of the third body of the system being
increased from zero to non-zero values; results obtained by this method
have been given by, for example, Hadjidemetriou and Christides (1975).
This technique can be regarded as a further generalisation of ther
periodic orbits of the planar and three-dimensional cases of the
restricted problem, in both the circular and elliptic cases, and there

is again plenty.of scope for further work.
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11, APPENDIX: ORBIT PLOTS

This Appendix contains computer plots of representative periodic orbits
belonging to the new families and series given in Chapters 5 - 8; reference
should be made to the relevant text in each case. The figures are num-

bered A1, A2, A3 ..., and are arranged by chapter into four groups as follows.

Group (a) : Figures Al - A24 (Chapter 5)
Group (b) : Figures A25 - A48 (Chapter 6)
Group (c) : Figures A49 - A56 (Chapter 7)
Group (d) : Figures A57 - A70 (Chapter 8)

The figure captions are given at the beginning of each group of figures.
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Group (a): Figures Al - A24

In Figures Al - A24, orbits representiné various parts of the vertical
branches of family f described in Chapter 5 are plotted with respect to
coordinates (X,Y,2) (not to be confused with the inertial coordinate
system used in Chapter 1) defined by

X=x- (1-p) = x - 0-99905
Y=y

1}

Z =z,
where (x,y,z) are the usual barycentric coordinates rotating with the
primaries, with unit of length equal to the distance between the primaries
("rotating-pulsating" coordinates). Thus, the origin of the plot coord-
inates is located at the primary m, (Jupiter) (x = l-P). The scale of
the plots is such that the length of the positive half of each axis is 0-1,
in units of the Sun-Jupiter distance. The orbits are projected orthogo-
nally on the (X,Y), (X,2) and (Y,2) planes. Figure Al6 is an isometric
projection, that is, an orthogonal projection on a plane perpendicular
to the vector (1,1,1); the positive half of the Z-axis in this case has
length 0.1, while the positive X and Y half-axes are longer by a factor

2//3.

Figures Al - A9: Typical orbits of family Figg). Figures Al - A3 are
projections, in the (X,Y), (X,2) and (Y,2) planes, of
an ‘orbit belonging to the m = 5 segment of the family;
Figures A4 - A6 are the three projections of a
representative quadruple (m = 4) member, and Figures
A7 - A9 the projections of a representative triple-

periodic (m s 3) member.

Figures Al0 - Al6: Typical orbits of family F$§§). _ Figures Al10 - Al2 are
the (X,Y), (X,2) and (Y,2) projections of an orbit be-
longing to the m = 5 segment, and Figures Al3 - Al5 are
the projections of a representative orbit of the m = 3
segment. Figure Al6 is a "three-dimensional™ isometric
projection of a double-periodic orbit near the

termination of the family.

Figures Al7 - A22: Typical orbits of family Fi§g). Figures Al7 - Al9 and
A20 - A22 are the three plane projections of orbits
representing the m = 6 and m = 4 segments of the family,

respectively.
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A typical orbit of the m = 6 segment of family F}ég),
in (X,Y) and (X,2) projections, This orbit is almost
the mirror image in the (Y,2) plane of the orbit
belonging to F}ég) plotted in Figures Al7 - A19. The
orbits of the quadruple segment of F}éz), not plotted
here, are similarly almost mirror images of those

belonging to the corresponding part of F’;Lég).
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Figure Al
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Figure A2



- 197 -

Figure A3
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: Figure A4
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Figure A5
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Figure Al3
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Figure Al5 '
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Figure Al18
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Figure Al9
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Figure A20
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Figure A24
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Group (b): Figures A25 - A48

Computer plots of representative periodic orbits of the three-
dimensional elliptic restricted problem obtained by continuation of
commensurable orbits of the circular problem to non-zero values of
the primary eccentricity e. Each orbit is plotted in (X,Y), (X,Z)
and (Y,Z) projections. The plot coordinates (X,Y,2) are the same
as those for the previous group of plots: that is, with origin at
m,, (Jupiter) and rotating with the primaries. The plotted orbits

can be identified from the following table:

Figﬁres Table Primary Eccentricity
A25 - A27 6.2 0.1
A28 - A30 6.2 0.7
A3l - A33 6.3 0.1
A34 - A36 6.3 0-7
A37 - A39 6.4 0-1
AQ0 - A42 6.4 0-7
AA3 - A4S 6.5 0-1

A6 - A48 6.5 0.7
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Group (c): Figures A49 - A56

Representative vertical self-resonant orbits of the planar elliptic
problem, belonging to the conjunction and opposition series generated
from the 1/4 commensurability of series filS (Section 7.4). The plot
coordinates (X,Y) are identical to the coordinates (x,y) of the rotating-
pulsating system, with origin at the centre of mass of the primaries.

The ticks on the X-axis indicate the positions of fhe primaries m (on
the left, X = -}1) and m, (on the right, X = l-}l).

Figure A49 : Starting orbit for both series, the 1/4 commensurability

of circular series fl .
~vl5
Figures A5S0 - A52: Evolution along the conjunction series.,

Figures A53 - A55: Evolution along the opposition series.

Figure A56 : Termination orbit (e = 0) of the opposition series.
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Group (d): Figures A57 - A70

Figures A57 - A69: A series of orbit plots illustrating the evolution of
the family of plane symmetric orbits generated ffom a
bifurcation in three dimensions with the family Alv
and terminating in a planar orbit about the primary ml,
with consecutive collisions with m,e

The orbit plotted in Figure A57 is the bifurcation
orbit of the vertical branch Alv from which the family
originates; the orbit plotted in Figure A60 is near
the bifurcation with the vertical branch Figg), and
Figure A69 shows an orbit near the termination of the

A fémily.

A1l of the orbits, with the exception of that in
Figure A69, are plotted with respect to coordinates
centred on the primary m, (Jupiter) and rotating with
the primaries; in the final plot the origin is shifted
to the primary m (sun). Whenever the other primary
is within the scope of the plot, its position is
indicated by a tick on the X-axis,

Note that different scales have had to be used because
of the large variations in the sizes of the orbits along
the family, The following table indicates the scale -
in terms of the length of the positive half of the Z-

axis, in units of the distance between the primaries,

Figures Scale
AS5T7 - A60 0.1
A6l - A63 0.2
A64 - A66 ‘1.0

A6T7 - A69 2.0

Figure AT70 Isémetric projection of a representative orbit belonging

to the family of plane symmetric orbits generated from a
quadruple bifurcation in three dimensions with the family
AL The parameters of this orbit are given by the final
entry of Table 8.3. The origin of the coordinate system
is at the primary m, (Jupiter), and the scale of the plot
is O-1, ' '
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Abstract. The mechanism by which ‘vertical’ branches consisting of symmetric, three-dimensional
periodic orbits bifurcate from families of plane orbits at ‘vertical self-resonant’ orbits is discussed, with
emphasis on the relationship between symmetry properties and multiplicity, and methods for the
numerical determination of such branches are described. As examples, eight new families of all symmetry
classes which branch vertically from the family f of retrograde satellite orbits in the Sun-Jupiter case of the
restricted problem (i =0.000 95), are given in their entirety; these branches are found, as expected, to
occur in pairs, each pair arising from the same self-resonant orbit, and their symmetry properties followirl g
the predicted pattern, The stability and other properties of the branch orbits are discussed.

1. Introduction

In the planar restricted three-body problem, the ‘horizontal branches’ of a family of
symmetric simple-periodic orbits are families of symmetric multiple-periodic orbits
of the second generation (Poincaré’s ‘deuxiéme genre’) which bifurcate from the
generating family of simple orbits. Each horizontal branch intersects the generating
family at a horizontal self-resonant orbit, where the horizontal stability parameter a
satisfies the condition a =cos (27wn/m) for some positive integers m and n, the
branch consisting of orbits of multiplicity m. Markellos (1974, 1975) has found many
of the horizontal branches of family f (retrograde satellite orbits around the
less-massive primary) for the Sun-Jupiter value u =0.000 95 of the mass parameter.

When the restricted problem is extended into three dimensions it is found that the
planar families also have ‘vertical branches’, which bifurcate from the generating
families at vertical self-resonant orbits, where the vertical stability parameter a,
satisfies the condition a, = cos (27n/m), and which consist of symmetric multiple-
periodic orbits. The multiplicity of the branch orbits is initially equal to m. All the
orbits of a given vertical branch have the same type of symmetry; the characteristic
symmetry properties of a vertical branch depend solely on the value of m, and in
general vertical branches of all possible types of symmetry (axisymmetric, plane
symmetric, doubly-symmetric) may occur. The importance of second-generation
solutions in the planar restricted problem is well known, and we may reasonably
expect that investigation of the vertical branches of planar families will yield valuable
information in the more general case of three-dimensional motion of the massless -
third body.

Celestial Mechanics 21 (1980) 395-434. 0008-8714/80/0214-0395 $06.00. °
Copyright © 1980 by D. Reidel Publishing Co., Dordrecht, Holland, and Boston, U.S.A.
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This paper deals with the vertical branches of family f in the vicinity of the
less-massive primary (Jupiter) for u = 0.000 95. Eight vertical branches in four pairs
of initial multiplicities 5, 6, 7 and 8 are presented; these are the lowest-multiplicity
vertical branches since as will be seen below family f possesses no vertical branches of
multiplicity four or less in the vicinity of Jupiter. This group of eight vertical branches
comprises three-dimensional periodic orbits of all possible symmetry types. Each of
the branches is completely determined here, starting with the bifurcation from family
f and finishing at the branch termination orbit, which in every case but one is once
again in the horizontal plane.

The dimensionless barycentric rotating coordinate system (x; =x, x2 =1y, x3=2z)
with Jupiter at x;=1-u=0.99905, x,=x3=0, is employed, the velocity
components along the three axes being denoted by x4 (= ¥1), x5 (= X2) and x6 (= £3).
The unit of time is such that the period of the primaries is 27. The Jacobi constant C
used is that defined by Szebehely (1967) so that C =3 for a particle at rest at an
equilateral triangle equilibrium point. For definitions of the horizontal and vertical
stability parameters of a symmetric plane periodic orbit we refer to Hénon (1965,
1973).

2. Determination of Vertical Branches

2.1. SYMMETRY PROPERTIES AND PERIODICITY CONDITIONS

Methods of tracing families of symmetric three-dimensional periodic orbits have
been discussed by various authors (e.g. Zagouras and Markellos, 1977). The search
for an orbit belonging to such a family is simplified by applying the well-known
Periodicity Theorem of Roy and Ovenden (1955). The theorem is valid in the general
n-body problem and states that any solution in which two mirror configurations occur
at distinct epochs is periodic. The problem of determining a symmetric three-
dimensional periodic orbit in the restricted three-body problem therefore reduces to
that of finding a set of initial conditions (xo1, X02, X03, Xo04» Xos, Xos) Satisfying a mirror
configuration, which, upon integration of the equations of motion, yields a second
mirror configuration at a later epoch. ;

In the restricted three-body problem there are two possible types of mirror
configuration, which we denote by (A) and (P). A type (A) (on-axis) mirror
configuration is one in which the massless third body is located on the x;-axis, the axis
of the primaries, with its instantaneous velocity vector perpendicular to the axis. In a
type (P) (in-plane) mirror configuration the particle is located in the (x;, x3)-plane
with its instantaneous velocity vector normal to the plane. Various combinations of
these two types of mirror configuration occurring at the two epochs result in periodic
orbits having different symmetry properties. If the two mirror configurations are of
the same type the orbit is simply-symmetric: an orbit in which two type (P) mirror
configurations occur successively possesses symmetry with respect to the (x;, xs3)-
plane (plane symmetric), while an orbit in which two type (A) mirror configurations
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occur successively is symmetrical with respect to the x;-axis (axisymmetric). If both
kinds of mirror configuration occur at different epochs in the same orbit, that orbit is
said to be doubly-symmetric, because of its symmetry with respect to both the
(x1, x3)-plane and the x;-axis.

Clearly in order to find orbits belonging to a vertical branch of a family of plane
periodic orbits by making use of the Periodicity Theorem, we need to know which
types of mirror configuration have to be satisfied at the initial and final epochs; i.e. we
must know the symmetry class to which the branch orbits belong. It is known (Hénon,
1973) that the symmetry properties of a vertical branch consisting initially of simple
or double orbits (m = 1 or 2) may be inferred from the values of the vertical stability
parameters b, and c, of the vertical critical orbit at which the branch bifurcates from
the generating family of plane orbits. In a recent paper, Markellos (1980) investi-
gated the mechanism of vertical bifurcation more generally, to include cases where
the branch multiplicity is initially greater than two, and reached the following
conclusions:

(i) A vertical self-resonant orbit for which m=1 or m=2 (a,==1, ie. a
vertical-critical orbit) is the point of bifurcation of one and only one vertical branch,
which consists of orbits of simple or double symmetry respectively, the exact type of
symmetry depending on the values of b, and c,.

(i) Exactly two vertical branches bifurcate from the generating family at a vertical
self-resonant orbit for which m >2. When m is odd, one branch consists of
axisymmetric orbits and the other of planesymmetric orbits; when m is even, both
branches consist of doubly-symmetric orbits.

Owing to the symmetry of the restricted problem with respect to the (x, x,)-plane,
for every vertical branch there is a ‘mirror image’ consisting of orbits which are the
images under reflection in the (x;, x,)-plane of the orbits belonging to the first
branch. The above statements are made without regard to this duplicity of vertical
branches; we consider only one member of each mirror-image pair.

The relationships between orbital multiplicity, symmetry classes and types of mirror
configuration are summarised in Table I.

TABLE 1
Fraction

Type of mirror of the

Multiplicity configuration at; Symmetry period
Case m Initial Epoch  Final Epoch class elapsed i i
1 Odd P P plane symmetric T/2 3 6
2 Odd A A axisymmetric T/2 6 3
3 Even A P }doubly T/4 6. 6
4 Even P A symmetric T/4 3 3

We see from Table I that the interval of time between successive mirror configura-
tions, that is the interval over which we require to perform trial integrations in order
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to determine a branch orbit, is equal to half the orbital period T for orbits of simple
symmetry and only a quarter of the period for doubly-symmetric orbits.

In a type (A) mirror configuration the state vector x = (x1, x2, X3, X4, X5, X¢) has the
form

X=(X1, 0’ 07 0) X5, xé) (2'1)

where x,, x5 and x¢ may have any values. In a type (P) mirror configuration the state
vector has the form

X= (xla 0, X3, Os X5, 0) (2'2)

where the components x;, xs and xs may have any values. Omitting the zero
components, the initial conditions of a symmetric periodic orbit starting from a
mirror configuration may therefore be written as (xo1, xos, X0:), Where the subscript
i =3 for atype (P) and i = 6 for a type (A) mirror configuration at the initial epoch. If
we integrate the equations of motion with these initial conditions up to epoch ¢, say,
the final state vector may be expressed as

X = X(Xo1, Xos, X0i3 ) . (2.3)

Since the initial conditions have been chosen to satisfy a mirror configuration, the
orbit will be periodic if at some epoch ¢ # 0 the final conditions also satisfy a mirror
configuration. Thus the ‘periodicity conditions’ are

x2(x01, Xos, X0i3 £) =0

x4(X01, Xos, X0i3 1) =0 . (2.4)

xj(Xo1, Xos, Xo0i3 1) =0

where j = 3 for a type (A) and j = 6 for a type (P) mirror configuration at epoch . The
remaining three final conditions may have any values.

Trial integration up to a specified epoch (as employed in this and later sections) is
usually preferable, from the computational point of view, to the alternative method
of integration to a specified crossing of the (x1, x3)-plane, when vertical branches
such as those described in this paper are being traced. This is because of the frequent
occurrence of multiplicity changes as the branches evolve, causing breakdown of
predictor-corrector algorithms based on the latter procedure; by contrast with the
discrete nature of the multiplicity, the orbital period is a continuous variable along
any branch, and by integrating to the epoch using the procedures described below, it
is possible to trace an entire family without any interruption.

2.2. CORRECTOR ALGORITHM

The periodicity conditions (2.4) present formally the problem of determining a

symmetric periodic orbit in three dimensions; the equations can be applied to orbits
of any symmetry class by suitable choice of the subscripts i and j (see Table I).
Equations (2.4) can be solved numerically to an arbitrary accuracy by an iterative
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procedure in which the results of trial integrations are used to compute corrections in
the initial conditions and the period. The corrector algorithm is derived from the
periodicity conditions as follows.

Suppose (x&1, x&s, x3;) and ¢* are approximate values of the initial conditions and
integration interval of the sought branch orbit, differing from the exact solutions
(xo01, X05, X0;, t) Of (2.4) by the amounts

— %
0X01 = X01—Xo1

8X05 = Xo5— X1
2.5)
8X0i = Xoi — Xo;

St=t—1r*

which are assumed to be small. We seek an algorithm allowing the ‘corrections’ 8xo1,
8xo0s, 6xp; and 8t to be determined, ¢ being equal to half or quarter of the period T
depending on the symmetry of the orbit.

Numerical integration from initial conditions (x$;, x&s, xg;) up to epoch ¢* yields
final conditions

= x2(x31, X0s, X3 £¥)
o1, X5, X015 £F) (2.6)

X; A(x1, Xbs, X515 1%) .

%
2
xF =x4lx
%
1
Using Equations (2.5) we may write the periodicity conditions as

X2 =x2(x6"1 +6x01, xB"s +6x05, xB",- +83C0;; t*+3t) =0
X4= x4(x3‘1 +0x01, XE)ks + 8x0s, le)‘,' + &x0i; t* +51) = (27)

Xj =x,-(x3‘1 +6Xx01, x3‘5 +6xps, XZ)ki + 6x0:; t*+ 5!) =0.

Expanding the right-hand sides of Equations (2.7) in Taylor series, to first order in
the corrections, we obtain

0x2 0Xx2 0X2 dx,
X3 +—=6x01+——8x05+ Oxo; + ot=0
2 9X01 ot 9Xos 03 0X0; ° dr
ox ox ax dx
x¥ + =2 8x01 + —8x05 + ——= Sx0; + —— 6t =0 (2.8)
6x01 axOs ain dt
ox; ax; ox; dx;
* i § j
+——8x + 8xos+—06x0; +—90t=0.
3%or o1 %o o5t Yo P

The partial derivatives dx;/dxo; are known as the first-order variations, and are
denoted by vy The matrix of first-order variations V = (vi)exs is calculated by
integrating the equations of variation simultaneously with the equations of motion.
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The time derivatives dx,/d¢ are denoted by fi. Rewriting Equations (2.8) in terms of
these quantities, we have

Ua1 8x01 + Uss 6x05+ Uj; Sxo,- +f2 ot= —x;k
Va1 5x01 + Uas 8x05+ Uy SX(),' +f4 ot = —xi‘ (2.9)
Un SX()l + Ujs 6X05 +Uﬁ SXO,' +f, ot = —x}" .

In these equations the first order variations v,; and time derivatives f;, have the
values calculated at epoch ¢* in the trial integration from initial conditions
(xgl, ng, x(’?!:i)-

This system of three simultaneous equations, in the four unknowns 8x1, 8x0s, 8xo;
and é¢, is the basic form of the corrector algorithm. The system is underdetermined,
with one degree of freedom, allowing a further arbitrary constraint to be applied.
This is usually done by setting one of the four corrections to zero and solving for the
other three. The choice of which of the corrections to set to zero, i.e. which of the
initial parameters to fix in value when the corrector is applied, can have an important
effect on the convergence of the solution. This question is connected with the choice
of ‘family parameter’ in the predictor algorithm, and will be discussed in Section 2.3,
For the time being, in order to introduce the convention of interchangeable
subscripts allowing flexibility in the choice of the fixed parameter, let us rewrite
Equations (2.9) in the form

U2k (SXQK' +vyr 6x0L+U2M SJCQM +f2 St= —x%‘

Vakx 0Xog + Uar 6xor. + Vaps OXone +f4 ot= —x,’f (2.10)

Uik dxox + vir Oxor + Uim OXom +fj5t = —x}k .

The three subscripts K, L and M can be selected as any permutation of 1, S and i
(recall that i =3 or 6 depending on the symmetry class of the orbit as in Table I).
Since K can always be selected appropriately we can, without loss of generality, set
dxox =0, keeping x{x fixed in the corrector process, and then solve for the
corrections 8xor, 6xoar and 8. A new integration is started with the corrected initial
conditions up to the corrected final epoch and the whole procedure repeated in an
iterative fashion until the final conditions satisfy those of exact periodicity within
some specified accuracy. A suitable form of periodicity criterion is

\/(x§+x§+x,?)<s, (2.11)
where ¢ is some small constant. (The orbits presented in this paper were computed

with a ‘periodicity accuracy’ e = 107°%).

2.3. PREDICTOR ALGORITHMS

The corrector algorithm described in the previous section allows the initial condi-
tions and period of a three-dimensional branch orbit to be found arbitrarily
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accurately in principle, assuming that the values of these parameters are known
approximately in the first place. The use of a corrector alone is sufficient to allow a
series of orbits at intervals along the branch to be found, by incrementing one of the
parameters (xp1, Xos, Xo:; t) by a fixed amount between successive orbits and taking
the values of the other three parameters for the orbit just found as estimates for those
of the next orbit. The whole process is started with the known initial conditions and
period of the vertical self-resonant orbit from which the branch bifurcates (the period
of a branch orbit close to the bifurcation point being approximately m times that of
the vertical self-resonant orbit). This ‘zeroth order predictor’, however, is inefficient,
requiring many iterations of the corrector for the periodicity criterion to be satisfied;
and the interval between successive orbits along the branch usually has to be made
quite small to ensure convergence of the corrector. At little cost in program
complexity, a first or second order predictor can be set up to produce accurate
estimates of the initial conditions and period of the next orbit on the family.
Predictors of higher order than the second result in more accurate estimates of these
parameters, reducing and sometimes eliminating the need for a corrector step, but
have the disadvantage of requiring either higher-order variations to be calculated, or
more complex starting procedures to be devised. In this section, the first and second
order predictors used in obtaining the results given in this paper are described. In
addition, a simple criterion is given for selecting the most suitable ‘family parameter’
at any point along a family of symmetric three-dimensional orbits.

The linear predictor algorithm, like the corrector, is based on first-order Taylor
series expansion of the periodicity conditions. Let us assume that the initial condi-
tions x o1, Xos, Xo; and period T of an orbit satisfying the periodicity criterion (2.11)
are known. Then, to accuracy ¢, we have

1 1 1 1 1
x2=x2(x01, X0s, X0i3 ¢ )=0
x4=x4(X01, X0s, X0i3 1) =0 (2.12)

1 1 .1 1., _
x; = x;j(x01, Xos, X0i3 ¢ )=0

where t' is the epoch of the second mirror configuration (i.e. t'=T"/2 or T"/4
depending on the orbital symmetry). Let (x(_zn, X3s, Xa:3 1) be the corresponding -
parameters of another orbit of the same family in the neighbourhood of the known
orbit, such that the quantities

2 1
Axo1=x01 —Xo1
2 1
Axos=Xgs —Xos (2 13)

2 1
Axo; =X0i—Xo:

Ar=t*—¢!
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are small. The periodicity conditions for the second orbit can be written
X3 =x3(x01 + Axo1, Xos +AXos, Xoi + Axoi; '+ A) =0
x5 =x4(x51 + Axo1, Xos + Axos, Xo: + Axoi; t'+ A1) =0 (2.14)

x,? =Xj(X(1)1 + Axo1, )Cés + Axgs, X(1)1+Ax01; t1+At) =0.

Expanding in Taylor series to first order in the A’s and using Equations (2.12), we
obtain the basic form of the linear predictor algorithm:

V21 Ax()l + Va5 AXQs + vy; Axm +f2 A4r=0
Va1 Axo1+ Vs Axos+ 04;4x0; +f4 At=0 (215)

Vi1 Axm +v;s AXQ5 + v, Axo,- +f,- At=0,

The values of the first-order variations vy and time derivatives f, appearing as
coefficients in the equations are those for the known orbit.

The system of three simultaneous Equations (2.15) is formally very similar to the
corrector algorithm (2.9); in particular, like the corrector, it has one degree of
freedom, allowing an arbitrary constraint to be applied, for example by assigning a
value to one of the A4’s. The trivial solution Axo; = Axes = Axg; = 4t =0 merely
reflects the property of periodicity of the known orbit. The parameter to which a
fixed increment is given is termed the ‘family parameter’. The choice of this
parameter from xo1, Xos, Xo; and ¢ can be important; if the selected family parameter
has an extremum over the branch being traced, the predictor-corrector scheme will
break down completely and will require to be restarted with a new choice of family
parameter.

To overcome this difficulty, we rewrite Equations (2.15) in terms of the variable
subscript notation introduced in the previous section:

Vax Axox +Var Axor + Vo AXom +f2 A4r=0
Vax Axox + Var Axor + Vars Axons +f4 At=0 (216)
Uik AXOK + Ujr, Ax0L+ UjMAX()M +f;- At =0,

As before, the subscripts K, L and M can be any permutation of the set (1, 5, i). By
suitable definition of K we can, without loss of generality, specify the value of the
increment Axox and solve for Axgr, Axoar and At from

Uar Axor + vap Axons + fo At = —vox Axox
Var Axor + vam Axor +fa At = —vax Axox (2.17)
v AxOL + UiMm AXOM +f} Ar= —Uix Axox .

A criterion for selecting the family parameter on a ‘local’ basis, i.e. for selecting K
from the set (1, 5, i) each time the predictor is to be applied, can be established in
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terms of the determinants

V2; U2s fz

Di=|v4a; vas fa ‘ (2.18a)
vi Ui fj
U221 Ui fz

Ds=|va v4 f4 (2.18b)
vin Vi
Uas Va1 fz

D;=|v4s va1 fa|. 7 (2.18¢)
vis vi1 fi

It can be shown that these determinants are proportional to the direction cosines of
the tangent to the family characteristic in the space of initial conditions (x¢1, Xos, Xo0:)
at the point (x(ln, xos, x(l),-), and thus the parametric equation of the tangent can be
written as

Xo01(s) = x01 +5D;
Xos(s) = x05 + 5D (2.19)
in(S) = X(l),' +SD,' .

In principle we could arrange, by assigning an appropriate value to the parameter s,
that the predicted initial conditions (x31, x3s, x5:) be the coordinates of a point some
specified interval along the tangent from the point representing the known orbit. This
choice of arbitrary constraint on the system (2.15) would ensure that the branch
orbits determined by application of the predictor and corrector algorithms were in a
geometrical sense evenly spaced on the family characteristic. Another method would
be to fix the increment Af in the parameter f, to generate orbits equally spaced in
terms of the orbital period; this suffers from the disadvantage that the method breaks
down at an extremum in the period.

The strategy adopted by the authors was to select as the local family parameter the
initial condition xox corresponding to the determinant Dx having the largest
absolute value among the set (D, Ds, D;). This is equivalent to specifying a fixed
increment in the most rapidly-varying initial condition, thus ensuring that difficulties
associated with extrema in the initial conditions along the branch are avoided.
Having chosen the value of the subscript K according to this criterion, Axox is
assigned an appropriate value and Equations (2.17) solved for Axoz, Axoar and At
(the subscripts L and M being defined as the remaining two from the set (1, 5, #)).

Solving Equations (2.17) we obtain

Axor = AxOKDL/ Dy
AxOM =Ax0KDM/DK (220)
At = AxoxD/Dx
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where

V21 Uzs Uz
Va1 U4s5 Uy -
U1 Ujs Uji

D= (2.21)

The predicted values of the parameters (x31, x5, x5;) and ¢” are then obtained from
Equations (2.13). When the corrector algorithm is applied to improve the accuracy of
these parameters, the local family parameter xox is kept fixed, K having been
selected on the basis of the predictor criterion. This ensures that the corrector will
converge successfully to the sought orbit. By testing the relative absolute magnitudes
of the three determinants defined in Equations (2.18a—c) every time the predictor is
used, and redefining K, L and M as necessary, we can proceed along the branch
identifying orbits at roughly equal intervals without the interruptions caused by
extrema when the family parameter is fixed.

The quadratic predictor differs from the linear predictor described above in that it
requires that two orbits of a branch are known, in order to predict the initial
conditions of a third.

Suppose (x01, X0s, X0i5 ), (xd1, X0s, x0:3 t') are the parameters of the two known
branch orbits, such that

Axox = Xox — X0k (2.22)

is equal to the fixed increment in the family parameter, the subscript K being one of
(1, 5,7) as usual. Let v, and f; be respectively the first-order variations and time
derivatives of the final conditions for the orbit indicated by the superscript ‘1°.

The equation of the branch characteristic in the space of parameters (xor, Xoas, ¢)
may be written in parametric form with xox as the (local) family parameter:

XoL = xOL(xOK)
XomMm = xOM(xOK) (2-23)
t= t(xOK) .

It can be shown by means of second-order Taylor series expansions of the periodicity
conditions for orbits 0 and 2 with respect to orbit 1 that if

x%K—xéK=x(1)K—ng=Ax0K . (2.24)
then

X(Z)K = ng +2 AX()K

x%L = ng +2 Axor.
) 0 (2.25)
XoM = x0M+2 Axom
=142 4r

where Axor, 4xopr and At are given by Equations (2.20).
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Equations (2.25) are correct to the second order in Axok, higher orders in the
Taylor series expansions being neglected. The quadratic predictor is therefore more
accurate than the linear one and the requirement for smallness of Axqx is not as
severe. It cannot be used, however, either (a) at the beginning of a branch when
we seek to predict the parameters of the second orbit with only one previous
orbit known, or (b) immediately following a change of family parameter, when
Equation (2.24) is not satisfied due to unequal intervals in the initial conditions
between the two pairs of orbits. In both these circumstances the linear predictor
is used.

The criterion described above for selecting the local family parameter can still be
applied when the quadratic predictor algorithm is in use. If the criterion indicates
that a change of family parameter is required, the subscripts K, L and M can be
suitably redefined so that the new value of K corresponds to the new family
parameter; by means of appropriate program logic the next orbit is predicted linearly
rather than quadratically, the quadratic predictor being applied for subsequent orbits
until another change of family parameter becomes necessary to take account of
variations in the relative rates of change of the initial conditions along the branch.

It has been found by the authors that by combining integration to a specified epoch
with automatic selection of the family parameter based on the criterion described in
this section, difficulties in tracing families of three-dimensional orbits arising from
multiplicity changes, and extrema in the initial conditions, are avoided. As a rule an
entire family of three-dimensional periodic orbits, from its beginning at a plane
self-resonant orbit to its termination at another such orbit, is obtained from a single
run of the computer program.

3. Vertical Branches of Family f

Having dealt with the general problem of numerical determination of the vertical
branches of families of plane periodic orbits, we now confine our attention to one
particular value of the mass parameter, u = 0.000 95, one particular family of planar
periodic orbits, family f, and one particular part of that family, that for which x, is
greater than about 0.93 at the conjunction crossing of the axis of the primaries. We
refer to this part of family f as being ‘in the vicinity of Jupiter’. The significance of this
part of the family in relation to the vertical branches can be seen from Figure 1, in
which the vertical stability parameter a, for family f is plotted against xo;, the
x1-coordinate at conjunction, for x = 0.000 95. The vertical stability curve reaches a
minimum value a, =0.08 at xo; =0.93; to the right of this minimum, a, increases
monotonically, approaching the limit @, =+1 at the singularity xp1=1-u =
0.999 05, where the retrograde orbits of family f shrink to zero size. Between these
two points a, assumes all intermediate values and consequently a manifold of
vertical branches representative of all multiplicities m =5 (and all types of sym-
metry) is generated from this part of the family. The vertical branches of family
f in the vicinity of Jupiter are interesting because it is in this region that
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Fig. 1. Vertical stability curve of family f near the less massive primary (Jupiter) for u =0.000 95.

three-dimensional periodic motion most closely resembling the motion of the natural
satellites is to be expected.

Since a, never quite reaches zero at any point in Figure 1, no vertical branches of
family f of multiplicity four or less occur in this part of the family, although all
multiplicities higher than four are represented. This paper deals with vertical
branches of multiplicities 5, 6, 7 and 8, the four ‘simplest’ cases; these occur in four
pairs bifurcating from the four vertical self-resonant orbits for which a, = cos 27/5
(=0.309 02), a,=cos w/3 (=0.5), a,=cos2#w/7 (=0.623 49), and a, =cos 7/4
(==0.707 11). These four orbits are represented by points marked on the vertical
stability curve (Figure 1), and by pairs of points, corresponding to the two inter-
sections of each orbit with the x;-axis, on the family characteristicin the (C, x;)-plane
(Figure 2). Each vertical self-resonant orbit is designated according to the formula
fonme The letter ‘f’ indicates the generating family according to Strémgren’s
classification, the subscript ‘v’ is to distinguish vertical from horizontal self-resonant
orbits, and the integers m and n define the value a, = cos (27n/m) of the vertical
stability parameter. The superscript ‘i’ is necessary to distinguish between self-
resonant orbits having the same value of a,; it is assigned the value i = 1 for the first
orbit having a given value of a, as the family evolves from its point of origin,
subsequent orbits having the same value of vertical stability being labelled i =2, 3 . ..
etc. For the part of family f in the vicinity of Jupiter (xo; > 0.93) we have the i =1
branches.

This notation for the vertical self-resonant orbits can be extended to allow the
vertical branches themselves to be classified. Since the vertical branches of family f
are of quintuple or higher multiplicity, we can conclude from Markellos’ results on
vertical bifurcations (Section 2.1) that these occur in pairs bifurcating (or more
accurately, ‘trifurcating’) from the same plane orbit. Any vertical branch of family f
can therefore be uniquely specified by identifying the vertical self-resonant orbit



NUMERICAL DETERMINATION OF THREE-DIMENSIONAL PERIODIC ORBITS 407

305

WSW{

3-03 —

302

3-0l

05 X,

Fig.2. Characteristicsin the (C, x,)-plane of the families £, g, and g, of plane periodic orbits in the vicinity

of Jupiter. The continuous heavy lines correspond to the positive crossings of the axis of the primaries. The

broken lines correspond to the negative crossings. The hatched areas are the ‘forbidden regions’ bounded

by the zero-velocity curves. The points marked on the family characteristics represent the vertical

self-resonant orbits at which the vertical branches of family f intersect the plane families. The line—- —- —
indicates the position of Jupiter at x; =1—u =0.999 05.

from which it bifurcates out of the plane, and distinguishing it from the other member
of the pair. The superscripts (p) and (a) are added to the designation F,,, of the
self-resonant orbit in the cases where m is odd, to distinguish between the plane
symmetric and the axisymmetric branches bifurcating therefrom, and the capital
letter F is used instead of f to clearly indicate the three-dimensionality of the orbits
of the branch. When m is even both the branches consist of doubly-symmetric orbits;
one branch consists of orbits which intersect the x;-axis at conjunction, and the other
of orbits which intersect the axis at opposition. The superscripts (¢) and (o) can



408 I. A. ROBIN AND V. V. MARKELLOS

therefore be used to distinguish between the two branches according to this property,
which is invariant along any branch as long as collisions with Jupiter do not occur.

The four pairs of branches presented in this paper fall naturally into two groups
depending on the symmetry class. Group (i) comprises the four families F Ma) i)
FX® and F1% ; these are all of simple symmetry, and are discussed in Section 4.
Group (ii) comprises the four doubly-symmetric families F o) pLo) F1 and F14.
This group is dealt with in Section 5. The stability properties of all of these vertical
branches are discussed in Section 6.

4. Results: Odd-Multiplicity Branches

4.1, FamLy FX®

This family of axisymmetric orbits branches from family f at the vertical self-
resonant orbit fois for which xo;=0.952 and C=3.0044. The nonzero initial
conditions (xo1, Xos, Xos), period T, Jacobi constant C and multiplicity m of
representative orbits belonging to this branch are listed in Table 1 (see the Appen-
dix). It is seen that as the family branches upward from the plane and the initial
‘z-velocity’ (xo¢) increases, the orbits contract inwards towards Jupiter (xo; increas-
ing) and the ‘y-velocity’ at the axis crossing (xos) decreases monotonically. The initial
velocity vector, decreasing slowly in magnitude, becomes progressively more steeply
inclined to the horizontal plane. This behaviour is maintained as xos decreases
towards zero, xos increases steadily, the period T increases, the Jacobi constant
increasing monotonically and the orbits continuing to become smaller. Eventually
the vertical component of velocity xo6 reaches a maximum value of about 0.173 and
begins to decrease. When x,s reaches zero one of the loops of the orbit vanishes, and
the orbital multiplicity (defined as half the number of crossings of the (x1, x3)-plane
occurring in the full period) is reduced from 5 to 4. After a short interval the final
‘y-velocity’ x5 also passes through zero from negative to positive values, resulting in
the loss of another loop at the second perpendicular crossing of the axis, and a further
reduction in the orbital multiplicity m from 4 to 3. As we trace the family further the
size of the orbit (indicated by the value of x;) continues to decrease, and the angle of
inclination of the initial velocity vector also decreases steadily as xos becomes more
and more negative while xo¢ continues to become smaller in value. The multiplicity
remains unchanged at m =3 over the remainder of the family as xo¢ decreases
towards zero and the orbits become ‘flatter’ in character, the sense of orbital motion,
originally retrograde with respect to rotating axes, having become direct. The branch
terminates back in the horizontal plane at the vertical self-resonant orbit g%,,m of
family g,, for which a, =cos 27/3 = —0.5, x01 =0.935 and C =3.0387. This orbit is
marked on the characteristic of family g, in the (C, x;)-plane in Figure 2.

From this identification of the termination orbit of the vertical branch F1{% we

conclude that the family is also the vertical branch G3%; of family g,. Classifi-

cation of the family as either FLi% or G357, is arbitrary since there is no obvious
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boundary where the two branches meet; there is a kind of ‘no man’s land’ segment
where a short bridge of quadruple orbits, which cannot be definitely assigned
to either branch, joins together the quintuple ‘retrograde’ and triple ‘direct’
regimes. The safest course would perhaps be to designate the entire family as
“Fi/GE ",

The phenomenon of the direct linking together of two planar families (such as, in
this case, f and g,) by a family of three-dimensional orbits which branches vertically
from the two generating families, is most common, though not universal. As will be
seen below, all the families given in this paper, with one exception, begin and
terminate in the horizontal plane at intersections with planar families. A vertical
branch may, however, effectively terminate in three dimensions, as will be seen in the

a)

next section. Typical orbits of F 149 are given in Figures 4(a)—(i).

4.2. FaMILY F!{®

This is the other member of the pair of branches which bifurcate from the vertical
self-resonant orbit f,5, and consists of plane symmetric orbits. Representative orbits
of the branch are given in Table 2 of the Appendix. The branch exhibits generally
more complicated behaviour as it evolves than any of the other branches discussed in
this paper. The orbital period T and Jacobi constant C' do not vary monotonically
along the branch, both of these parameters possessing two turning points. The
branch has altogether four different multiplicity regimes. The characteristic of family
FX® which distinguishes it from the other branches given in this paper, however, is
that it effectively terminates in three dimensions, rather than back in the horizontal
plane. .

The initial condition xo3, which (for plane symmetric 3D orbits) confers the
property of three-dimensionality on the branch orbits, increases monotonically as
the branch evolves from its bifurcation with family /. At the same time x,s decreases
monotonically, although never becoming negative, so that the branch consists
entirely of what might loosely be termed ‘synodically retrograde’ orbits (insofar as
the term can be applied to the complicated motion involved in the majority of cases).
The initial condition xo; shows a general trend towards higher values, passing
through first a maximum and then a minimum in the early stages of the branch. The
trends in T and C are respectively towards decreased and increased values as the
branch evolves, a pattern common to all the branches given in this paper.

The bulk of the family retains the initial multiplicity of five; this drops to three,
briefly increases to four, and finally decreases again to two. The reductions of two in
the multiplicity (from 5 to 3 and from 4 to 2) occur when two loops of the orbit,
images of one another with respect to the plane of symmetry (the (x;, x3)-plane)
migrate away from the plane so that they no longer intersect it. The increase in
multiplicity from 3 to 4 occurs through the formation of a cusp with its vertex in the
plane of symmetry. This cusp occurs at the final epoch when the final ‘y-velocity’
x5 passes through zero from negative to positive values; consequently at the vertex
the instantaneous velocity with respect to the rotating coordinate system is zero.
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As the branch evolves towards the effective termination point in three dimensions
along the final double-periodic (m = 2) phase, the two perpendicular crossings of the
(x1, x3)-plane move more and more closely together, until they eventually coincide
exactly at the termination orbit. This orbit, whose parameters are approximately
those given for the last orbit of Table 2, is a plane symmetric simple-periodic orbit
described twice, and is a member of a family of such orbits which bifurcates with the
branch F.{% in three dimensions. (This family of simple orbits has not been
identified). The intersection orbit also represents a ‘point of reflection’ of F1{% since
as we continue to trace the branch with any choice of family parameter, we simply
retrace the branch in the opposite direction. One interesting feature of the family
F ,1,(1%), a short interval over which the orbits are distinctly stable, is described in

Section 6. Typical orbits of family F 1® are given in Figures 5(a)-(g).

4.3, FamiLY F.%

Family F 1) bifurcates from its generating family (f) at the vertical self-resonant
orbit f 1 7 for which xo; = 0.9661, C =3.0151. Its general features are very similar to
those of the family F.1% described above. Representative orbits are given in Table 5.
The branch consists of axisymmetric orbits, the multiplicity being initially m = 7. As
the branch evolves out of the horizontal plane the orbits shrink (x,; increases) and
the initial velocity vector, decreasing gradually in magnitude, becomes more and
more inclined to the horizontal. The period decreases monotonically and the Jacobi
constant increases monotonically from beginning to end of the family. Shortly after -
the initial ‘z-velocity’ xos reaches a maximum value of about 0.186 and begins to
decrease, the initial ‘y-velocity’ passes through zero from positive to negative values.
When this happens the multiplicity changes from 7 to 6 as one of the orbit loops
disappears. At this stage the final ‘y-velocity’ xs has a small negative value and is
approaching zero. As xs passes through zero and becomes increasingly positive, the
multiplicity again drops from 6 to 5, as another loop vanishes. From here the initial
velocity vector, still decreasing in magnitude and now corresponding to direct orbital
motion, becomes less inclined to the horizontal, while the orbits continue to become
smaller. Just before the family returns to the plane, however, xy; reaches a maximum
value of about 0.972 and starts to decrease. The orbital multiplicity remains
unchanged at m =5 as the branch evolves, and eventually terminates back in the
horizontal plane at the vertical self-resonant orbit gi,1s of family gy, for which
a, =cos 27/5=0.309 02, x0; =0.971 and C =3.0417. This orbit is marked on the
characteristic of family g; in the (C, x)-plane in Figure 2. Family F,% therefore acts
as a three-dimensional link between the planar families f and g, and is identical with
the vertical branch G135 of family g;. Note that the branches F.,% and F.%%
terminate on different planar families, g, and g; respectively. While both g; and
g> consist of direct satellite orbits around the less massive primaries, they are
quite distinct (Markellos et al., 1975) for all values of the mass parameter except
in Hill’s case (u =0) of the restricted problem, when they intersect (Hénon,
1969).
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4.4, FaMILY F.{?

This is the plane symmetric branch which, together with F 1) bifurcates from family

f at the vertical self-resonant orbit f3,7. Numerical data for the family are given in
Table 6. As the family branches vertically out of the plane, and the initial ‘z-
coordinate’ xq3 increases, the orbits become ‘smaller’ (xo; increases) while xgs, the
initial °‘y-velocity’, decreases. The multiplicity retains its initial value m=7
throughout the first part of the branch; the period decreases monotonically and the
Jacobi constant increases monotonically over the whole branch. The perpendicular
crossing of the plane at the initial epoch migrates upwards and towards Jupiter in the
xo1-direction, until xo3; reaches a maximum of about 0.029 almost directly above
Jupiter (at x; = 0.999 05), and then begins to curve back down towards the horizontal
plane on the other side of Jupiter, i.e. the opposition side. Shortly after the extremum
in xo3 has been reached, the multiplicity drops from 7 to 5, this value being
maintained as the branch evolves and xo3 decreases towards zero; xqo; continues to
increase while x¢s reaches a minimum of about 0.170 and then begins to increase.
The branch terminates in the horizontal plane at the vertical self-resonant orbit g{,, 15
of family g, which is also the termination orbit of the branch F;% (Section 4.3).

5. Results: Even-Multiplicity Branches

5.1. FamiLy Fi{

This family is one of the pair of doubly-symmetric branches which bifurcate from
family f at the branch orbit frii6, for which a, =cos 27/6 =0.5 and the Jacobi
constant C =3.0103. The two intersections of the branch orbit occur at x; =0.961
(conjunction crossing) and x; =1.038 (opposition crossing), and the two branches
consist of orbits which have their type (A) mirror configuration, or crossing of the
x1-axis, at conjunction (family F 1)) or at opposition (family F 12). In establishing
the doubly-symmetric branches of family f it was found most convenient to integrate
the orbits starting from the axis; thus the initial conditions of representative orbits
from each family are those for a type (A) mirror configuration, although in-plane
initial conditions could equally well have been used. The data for family F.i2 are
given in Table 3.

The initial conditions (xo1, Xo0s, X0s) €volve in much the same way as those for
branches Fii% and F1i%. As the initial ‘z-velocity’ xos increases to a maximum value
of about 0.179, xo; increases steadily (with the result that the orbits become smaller
overall) and xos decreases monotonically, passing through zero after the maximum in
xos and becoming negative. Associated with this change of sign of the initial
‘y-velocity’ there is a drop in the orbital multiplicity from 6 to 4. This arises through
the simultaneous disappearance of two loops cutting the (x;, x3)-plane; owing to the
double symmetry of the orbits these two loops are images of one another with respect
to the (x1, x3)-plane. The orbital multiplicity remains m =4 as the branch evolves

back towards the horizontal plane, x; continuing to increase and x,s becoming more
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negative. As with other vertical branches, the period is a monotonic decreasing, and
the Jacobi constant a monotonic increasing function, as the family evolves. The
branch terminates in the horizontal plane at the vertical self-resonant orbit g%um of
family g,, for which a, =0, x0; =0.979 and C =3.03097; we therefore conclude
that the vertical branches F12 and G35, are identical. The termination orbit g2, 14
is marked on the characteristic of family g, in the (C, x;)-plane in Figure 2. Typical

orbits of F.{ are given in Figures 6 (a)~(f).
5.2. FaMILY F1Q

This is the other member of the pair of branches of doubly-symmetric orbits
bifurcating from family f at f,¢. The initial conditions at the perpendicular crossing
of the x;-axis (occurring at opposition throughout the branch) and other parameters
of representative orbits are listed in Table 4. The orbital multiplicity is initially m = 6
and maintains this value as the initial ‘z-velocity’ xo¢ increases to a maximum of
about 0.178 and starts to decrease, while xo; decreases slightly and x5 increases
steadily from its maximum negative value at the beginning of the branch. The orbits
become quadruple when x¢s passes through zero to take on increasingly positive
values. The branch returns to the horizontal plane as x(s decreases towards zero; xo;
reaches a minimum value of about 1.030 and starts to increase until the branch
terminates at the vertical self-resonant orbit g3,14 (the orbit being started from the
opposition rather than the conjunction crossing). We conclude that the pair of
branches F. % and F.% not only start from the same vertical self-resonant orbit of
family f, but finish at the same orbit of family g,; we can also identify F,{ with the
branch G%f,"f;,. As usual, the period is monotonic decreasing and the Jacobi constant
monotonic increasing along the branch, starting from family f and ending on family

g2. Typical orbits of family F.% are given in Figures 7(a) and (b).

1
5.3. FamiLy F1{)

This family has many characteristics in common with F;3. It is one of a pair of

doubly-symmetric branches bifurcating from family f at f..s, for which a, =
cos 27r/8=0.707 11 and C=3.0194, the crossings of the x;-axis occurring at
x1=0.970 (conjunction), x, = 1.028 (opposition). As indicated by the superscript (c),
the branch with which we are concerned here is the one whose orbits all intersect the
x1-axis at conjunction. Numerical data for the family are given in Table 7. The usual
pattern is found in the evolution of the initial velocity vector: xos decreases
monotonically from positive to negative values, a drop in the multiplicity from 8 to 6
occurring as the sign of xos changes; xo¢ rises to a maximum of about 0.194 just
before xqs reaches zero, and then decreases towards zero. This rotation of the initial
velocity vector through half a revolution about the x;-axis changes the sense of
motion from synodically retrograde to direct (although these terms can only be
applied meaningfully to orbits at either end of the branch where the motion is more
nearly confined to a common plane). The initial condition x; increases to a
maximum value of about 0.974 just before the branch terminates, and then decreases
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slightly. The familiar monotonic behaviour of the period and Jacobi constant is
apparent. The branch terminates at the vertical self-resonant orbit g}, of family g,
for which a, =cos 2#/6 =—0.5, the Jacobi constant C =3.0447, and the con-
junction crossing occurs at x; =0.974. Thus family F.:% is identical to the vertical
branch G199 of g1. The orbit gi,,ls is marked on the characteristic of family g; in

Figure 2.

1
5.4. FAMILY FX9)

This is the family of doubly-symmetric orbits starting from the x,-axis at opposition,
which together with F.$3 forms a pair of branches bifurcating from family f at the
vertical self-resonant orbit fs. Representative orbits are listed in Table 8. Owing to
the fact that both branches consist of relatively ‘small’ orbits, they are almost mirror
images of one another with respect to the plane parallel to the (x,, x3)-plane passing
through Jupiter, and this is apparent in the comparison of the various orbital
parameters listed in Tables 7 and 8. It can be seen from Figure 1 that as the branch
multiplicity m increases and a, approaches unity, the vertical self-resonant orbits
become smaller and, as a result, more nearly symmetrical with respect to the axis
passing through Jupiter parallel to the x,-axis. We would therefore expect greater
symmetry between the two members of a pair of even-multiplicity branches as the
multiplicity increases.

The initial ‘z-velocity’ x¢¢ increases to a maximum value of about 0.193, then starts
to decrease just before xos passes through zero and becomes increasingly positive;
the change of sign of xos is marked, as in family F.{%, by a drop in the orbital
multiplicity from m =8 to m =6. Throughout the branch, x; decreases steadily,
while T and C also vary monotonically. The branch terminates at the same orbit,
g 1 16, as its ‘twin’ F13. Thus the three pairs of branches of multiplicities 6, 7 and 8
form twofold connections between three vertical self-resonant orbits of family f
(fa16, fo17, fo18) and the three self-resonant orbits g3,14, 81015, 81v16 Of families g,
and g;.

6. Stability

6.1. CALCULATION OF THE STABILITY PARAMETERS

In order to calculate the stability parameters p and q of a periodic orbit in the
three-dimensional circular restricted problem, the matrix of first-order variations
V(T), computed at the full period T of the orbit, is used. The stability parameters are
then given by

p=ia+Va), q=Ha-Va) (6.1)
where

A=a’-4(8-2)

a=2-Tr(V) (6.2)

B=3a’+2-Tr(V?)
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(e.g. Zagouras and Markellos, 1977). The criterion for stability can then be stated in
terms of p and q; three conditions must be satisfied:

(i) p and q both real (4=0)
(ii) ‘ p| <2.
(iii) lgl<2.

We note that in the three-dimensional case p and g are determined indis-
criminately as the two roots of the quadratic

vV —av+(B-2)=0; (6.3)

if the orbit is plane the variational equations decouple into two sets, one referring to
‘horizontal’ variations and the other referring to ‘vertical’ variations, and each of the
two roots is now determined uniquely from the linear equation arising from the
corresponding submatrix of the variational matrix. If the roots arising from the
‘horizontal’ and ‘vertical’ submatrices are called p}, and p;, respectively, then the
following relations with the horizontal and vertical stability parameters a and a, are
easily seen to hold:

pr = —2a, Py =—2a,. (6.4)

When we are dealing, as in this paper, with symmetric orbits, it is not necessary to
integrate the equations of variation for the full period in order to determine p and q.
By making use of the symmetry properties of an orbit it is possible to relate the
variational matrix V(T) at the full period T, to its value at 7/2 or T/4, according to
whether the orbit is of simple or double symmetry; that is, at the epoch of the second
mirror configuration. Defining the 6 X 6 diagonal matrices L and M by

L =diag{l,-1,1,-1,1, -1}

(6.5)
M =diag{l,-1,-1,-1,1, 1}

we obtain the following formulae for V(T') for each of the four cases listed in Table I.
Case 1 (Plane Symmetric Orbits): V(T)=LV Y(T/2)LV(T/2) (6.6a)
Case 2 (Axisymmetric Orbits): V(T)=MV (T/2)MV(T/2)  (6.6b)

Case 3 (Doubly Symmetric Orbits,
starting from axis): V(T) =MV (T/4LV(T/4)]* (6.6c)

Case 4 (Doubly Symmetric Orbits,
starting from plane): V(T)=[LV (T/4MV(T/4)T (6.6d)

These relationships result in an economy of computing effort in the determination of
the stability of an orbit.
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6.2. STABILITY OF THE VERTICAL BRANCHES OF FAMILY f

In this section we deal briefly with the stability of the orbits belonging to the vertical
branches of family f given in Sections 4 and 5.

It was found that, in general, the bulk of the vertical branch orbits are unstable
according to the criterion of Section 6.1, although there exist intervals where the
conditions are marginally satisfied: that is, both stability parameters are real, one
lying distinctly within the ‘stable zone’ between =2, and the other very close to the
limit of this zone. Since no numerical checks were made on the accuracy of
calculations of the stability parameters, we have marked as ‘stable’ (by the letter §
appearing on the right-hand side of the entries in Tables 1-8) only those orbits which
certainly satisfy all three of the conditions of Section 6.1. The absence of the letter ‘S’
from a given entry in one of the tables should not therefore be taken to imply that the
corresponding orbit is necessarily unstable, although any stable orbits not so marked
would possess only marginal stability.

Only two of the vertical branches given in this paper contain definitely stable
orbits: these are F1%% and F12 (Tables 2 and 3). In the latter case the stability is still
somewhat marginal; while p varies between about —1.36 and +1.86, clearly within
the limits of condition (ii), g is never further from the boundary value —2 than
—1.995. Inthe former case (fam'ily F$2), however, there exists a definitely stable part
represented by one orbit in Table 2. This part of F,{% has been surveyed in more
detail, and a plot of q versus p for a part of the branch including the stable segment is
shown in Figure 3. In this figure the hatching marks the part of the diagram in which
the stability criterion is satisfied.

We conclude, therefore, that apart from marginal cases where one of the stability
parameters is very close to the stability limit, the vertical branches of family f given in
this paper are generally unstable. This is particularly true of those orbits which
involve significant departures from the horizontal plane (i.e. large values of xos or
X06)-

7. Remarks

(1) The following table lists the vertical self-resonant orbits of families f, g; and g, at
which the vertical branches of family f given in this paper start and finish:

TABLE II
Branch / Starting orbit Termination orbit
4
1 1 2
F‘f?": g f'x’ls 82013
< o
F]v(lG)s Fv]lG . f?16 g%u14
F,\5F (1‘2;)1 fo17 8115

1(0) | g 1 1
Fvls -Fplog): fulB 81v16
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Fig. 3. Stability curve in the (p, q)-plane of part of the vertical branch F1{2 containing distinctly stable
orbits. The hatching marks part of the stable region defined by |p| <2, |q|<2.

We see from this table that the multiplicity of the termination orbit is two less than
that of the starting orbit. This pattern has been found to apply also to higher-
multiplicity branches of family f not discussed in this paper. This appears to be a
general feature of the three-dimensional branches which connect the retrograde
family f with the direct families g; and g».

(2) Ascan also be seen from Table II, the multiplicity 5 and 6 branches of family f
(with the exception of F.{?) terminate on g,, while those of multiplicity 7 and 8
terminate on g;. Figure 2 shows that this sequence of termination orbits occurs in the
sense of increasing C, the jump between families g, and g, taking place in the vicinity
of the narrow ‘neck’ where the two family characteristics in the (C, x;) plane
approach most closely (and where the two curves actually intersect in Hill’s case,
u = 0). There seems to be a general trend in the termination points of vertical
branches of f in the vicinity of Jupiter, indicated by the four multiplicity cases
examined, whereby those branches starting from the neighbourhood of f515s and fa16
connect with g,, while those beyond f},n end up on g;.

(3) As many authors have pointed out, the circular restricted problem may not be
an adequate model for studies of certain astronomical systems, such as the Earth-
Moon or outer Jovian satellite systems, in which the non-zero eccentricity of the orbit
of the primaries may have important dynamical consequences (particularly with
regard to capture and escape mechanisms). It may therefore be desirable to
investigate such systems in the framework of the elliptic restricted problem. The
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determination of vertical branches in the circular problem is a useful starting point
for finding symmetric periodic orbits in the three-dimensional elliptic problem, for
these branches contain isolated orbits whose periods are commensurable with the
period of the primaries, and can therefore be used to establish families of periodic
orbits in the elliptic problem with either the mass parameter w, or eccentricity e of the
primaries, as the family parameter. A natural continuation of the present work would
be to use commensurable orbits of the vertical branches of family f to obtain
three-dimensional symmetric periodic orbits in the elliptic problem for the Sun-
Jupiter case (u = 0.000 95) in the vicinity of Jupiter, with a view to application to the
problem of the outer retrograde satellites of Jupiter. '

(4) It must be stressed that the generation of three-dimensional periodic orbits
from the vertical-critical orbits (a, = +1) of simple-periodic plane orbits is a special
case providing the simpler form of three-dimensional periodic orbits, namely the
cases of multiplicity 1 or 2, and these forms occur in a finite and relatively small
number of instances. The present work describes the mechanism of generation of
three-dimenstonal periodic orbits in the general case where the generating plane
orbit is vertically self-resonant and the multiplicity of the resulting orbits can be any
integer m > 2. Thus, this work exemplifies the behaviour of the great abundance of
the three-dimensional periodic orbits of the problem. For, even if we restrict
ourselves to the vertically stable segments of simple-periodic (one-revolution) plane
orbits, there are many infinities of families of three-dimensional periodic orbits of
arbitrary multiplicity that can be found to bifurcate therefrom in the way described.

(5) The numerical procedures described here are not only efficient for the
determination of entire families of three-dimensional periodic orbits, but can easily
be modified to be applicable in the case of asymmetric plane periodic orbits which
present, in so far as numerical determination is concerned, the same degree of
complexity as the symmetric three-dimensional orbits.

Appendix
Tables 1-8 and Figures 4-7

In Figures 4-7, orbits representing various parts of the families described in Sections
4 and 5 are plotted with respect to coordinates (X, Y, Z) defined by

X=x1—(1-up)=x,—0.999 05
Y=X2
Z=X3 .

Thus the origin of this coordinate system is at Jupiter (x; =1—u). The scale of the
plots is such that the length of the positive half of each axis is 0.1 (in units of the
Sun-Jupiter distance). The orbits are projected orthogonally on the (X, Y), (X, Z)
and (Y, Z) planes. Figure 5(g) is an orthogonal projection on a plane perpendicular
to the vector (1, 1, 1).
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TABLE 1
Family F :1;(1?/ G%E;“I)s

Xo1 Xos Xo6 T C m
0.951 982 0.199 771 0.005 8.527 992 3.004 444 5
0.952 009 0.199 526 0.01 8.516937 3.004 482 5
0.952116 0.198 545 0.02 8.473 496 3.004 633 5
0.952 528 0.194 587 0.04 8.311 018 3.005 226 5
0.954 000 0.178 091 0.08 7.790 756 3.007 485 .5
0.956 194 0.146 902 0.12 7.177 642 3.011175 5
0.959 557 0.084 317 0.16 6.521 408 3.017 354 5
0.962 546 0.013 698 0.173 014 6.126 857 3.023 174 5
0.963 138 —0.001 302 0.172 406 6.066 102 3.024 294 4
0.964 178 —-0.026 302 0.169 123 5.976 432 3.026 075 3
0.969 812 -0.086 302 0.165598 5.717 008 3.029 878 3
0.973 415 —0.116 302 0.167 475 5.531260 3.031 697 3
0.978 654 —-0.176 302 0.160732 5.255900 3.034 653 3
0.980 581 —0.206 302 0.150 640 5.159574 3.035 809 3
0.983 336 —0.261 302 0.114 048 5.028 337 3.037521 3
0.984 528 -0.291 332 0.073 921 4.973 970 3.038 283 3
0.984 849 —-0.300254 0.053 921 4.959 584 . 3.038491 3
0.985 052 —0.306 108 0.033 921 4,950 533 3.038 623 3
0.985 157 -0.309 211 0.013 921 4,945 854 3.038 691 3
0.985177 —-0.309 783 0.003 921 4.944 999 3.038 704 3
TABLE 2

Family F.{2
Xo1 Xo3 Xos T C m
0.952 359 0.005 0.199 526 8.505618 3.004 521 5
0.953 530 0.01 0.198 536 8.427 558 3.004 796 5
0.958 379 0.02 0.194 222 8.117 607 3.005 996 5
0.956 833 0.039 158 0.169 505 8.985 683 3.005174 5
0.970 833 0.044 457 0.161 227 8.584 528 3.007 524 5
0.985 833 0.048 168 0.150 268 8.229 079 3.010729 5
0.992 672 0.049 434 0.143 539 8.120409 3.012304 5
1.002 156 0.051 581 0.129 539 8.002 749 3.014 539 5
1.005 978 0.052 804 0.121 539 7.947 346 3.015475 5
1.011 451 0.054 889 0.107 539 7.837 344 3.016 912 5
1.013 858 0.055 859 0.100 539 7.774 735 3.017 596 5
1.017 957 0.057473 0.087 539 7.649 209 3.018 836 5
1.019 708 0.058 138 0.081 539 7.589 944 3.019 390 5
1.023 205 0.059 455 0.068 539 7.467 896 3.020501 3
1.024 923 0.060 127 0.061 539 7.409 845 3.021 026 3
1.027 838 0.061 359 0.048 539 7.322 457 3.021 820 3
1.029 281 0.062 022 0.041 539 7.287 356 3.022143 3
1.031 590 0.063 145 0.029 539 7.246 401 3.022 524 3
1.032 321 0.063 510 0.025 539 7.237926 3.022 603 4
1.034 422 0.064 553 0.013 547 7.227 158 3.022 704 2
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TABLE 3
Family F,{3/ G311

Xo1 Xos Xo6 T C m
0.960 903 0.202 786 0.005 7.768 097 3.010288 6
0.960 912 0.202 563 0.01 7.763 612 3.010314 6
0.960 949 0.201 669 0.02 7.745 780 3.010414 6
0.961 095 0.198 055 0.04 7.676 075 3.010816 6
0.961 705 0.182945 0.08 7.419 880 3.012 447 6
0.962 793 0.154 532 0.12 7.051 156 3.015313 6
0.964 290 0.110 066 0.155 6.652 516 3.019 381 6
0.965 770 0.057 581 0.175 6.334 946 3.023 697 6
0.966 509 0.027 342 0.178 983 6.196 464 3.026 002 6
0.966 890 0.010 568 0.179 040 6.129 494 3.027 233 6
0.967 344 -0.010 570 0.176 928 6.053 228 3.028 740 4
0.967 729 —-0.029 511 0.172 892 5.991444 3.030054 4
0.968 179 —0.052 960 0.164 851 5.922 218 3.031634 4
0.968 547 —0.073 149 0.154 851 5.868 134 3.032958 4 S
0.969 324 —0.117 005 0.119 851 5.765421 3.035716 4 S
0.976 955 —0.198 339 0.082 300 5.553752 3.038516 4 S
0.978 980 -0.228 014 0.04 5.470 898 3.039450 4 S
0.979 326 —0.233 753 0.02 5.456 139 3.039621 4 S
0.979 408 —0.235 142 0.01 5.452 629 3.039 662 4 S
0.979 431 —0.235 528 0.004 5.451658 3.039673 4 S
TABLE 4

Family F,9/ G374
Xo1 Xos Xo06 T C m
1.037 500 —0.201 469 0.003 632 7.768 784 3.010 285 6
1.037 478 -0.201 174 0.010909 7.762 293 3.010321 6
1.037 404 -0.200 162 0.021 919 7.740 325 3.010445 6
1.037 168 —0.196 806 0.040779 7.670 487 3.010 849 6
1.036 220 —0.181 203 -0.082 771 7.394 357 3.012 624 6
1.035071 -0.156 718 0.118 252 7.069 467 3.015152 6
1.033 255 —-0.100918 0.160 394 6.583 780 3.020217 6
1.032 780 —0.081 762 0.168 295 6.463 212 3.021 809 6
1.032 321 —0.061 049 0.174 096 6.349 708 3.023 468 6
1.031 877 —0.038 705 0.177 471 6.242 791 3.025197 6
1.031 447 -0.014 654 0.177 948 6.142 026 3.026 998 6
1.031 030 0.011 181 0.174 840 6.047 014 3.028 871 4
1.030 724 0.031774 0.169 549 5.979 317 3.030325 4
1.030 425 0.053441 0.161 001 5.914 524 3.031821 4
1.029 780 0.108 779 0.120 015 5772498 3.035518 4
1.033 248 0.111 504 0.080294 5.670 506 3.037 257 4
1.036 641 0.105 860 0.040 743 5.513 805 3.038963 4
1.037 492 0.104 951 0.019 207 5.465 535 3.039512 4
1.037 667 0.104 783 0.010102 5.455374 3.039630 4
1.037 713 0.104 740 0.005 605 5.452 675 3.039 662 4

419
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TABLE 5
Family F,%7/G1%s
Xo1 X0s Xo06 T C m
0.966 244 0.207 918 0.005 7.405 761 3.015110 7
0.966 248 0.207 708 0.01 7.403 231 3.015130 7
0.966 267 0.206 867 0.02 7.393 133 3.015208 7
0.966 342 0.203 465 0.04 7.353133 3.015521 7
0.966 659 0.189 246 0.08 7.198 740 3.016 810 7
0.967 249 0.162 700 0.12 6.956 258 3.019124 7
0.968 262 0.114 524 0.16 6.622 982 3.023 049 7
0.969 173 0.066 281 0.18 6.377 806 3.026 683 7
0.969 630 0.039 683 0.185 6.267 931 3.028 580 7
0.969 953 0.019 683 0.186 245 6.194 281 3.029 964 7
0.970259 —0.000 317 0.185372 6.127 086 3.031314 6
0.970 333 —0.005 317 0.184 819 6.111 187 3.031 647 5
0.970 547 —0.020 317 0.182 336 6.065 443 3.032 634 5
0.971 295 —0.080 317 0.158 320 5.906 783 3.036 443 5
0.971 633 —-0.119 810 0.124 564 5.817 877 3.038876 5
0.971 604 —0.147 330 0.079 564 5.757 591 3.040 642 5
0.971 229 —-0.157 420 0.039 564 5.728 629 3.041462 5
0.971019 —0.158 999 0.019 564 5.720 388 3.041 669 5
0.970953 —0.159 287 0.009 564 © 5,718 166 3.041 721 5
0.970936 —0.159 349 0.004 564 5.717612 3.041734 5
TABLE 6
Family F,5/G1A
Xo1 Xo3 Xo05 T C m
0.966 260 0.001 0.207973 7.405 867 3.015110 7
0.966 313 0.002 0.207 929 7.403 649 3.015127 7
0.966 525 0.004 0.207 751 7.394 761 3.015195 7
0.967 118 0.007 0.207 254 7.370 149 3.015 387 7
0.969 377 0.013 0.205373 7.278 304 3.016 130 7
0.971136 0.016 0.203 922 7.208 931 3.016 721 7
0.973431 0.019 0.202 045 7.121124 '3.017 509 7
0.979 342 0.024 217 0.197 311 6.908 370 3.019 629 7
0.985 342 0.027 356 0.192 654 6.710 559 3.021919 7
0.991 342 0.029 017 0.188 152 6.529 215 3.024 351 7
0.997 342 0.029 439 0.183 815 6.362710 3.026 932 7
1.000 342 0.029 205 0.181714 6.284 558 3.028 281 7
1.003 342 0.028 665 0.179 662 6.209 571 3.029 669 5
1.009 342 0.026 575 0.175737 6.068 402 3.032 569 5
1.012 342 0.024 933 0.173 894 6.001 847 3.034 086 5
1.018 292 0.019974 0.170 676 5.876 512 3.037 246 5
1.022 407 0.013974 0.169 591 5.792 046 3.039 625 5
1.024 434 0.007 974 0.171 352 5.743 972 3.041 039 5
1.024 816 0.004 974 0.173 296 5.728 817 3.041458 5
1.024 913 0.001974 0.175150 5.719411 3.041 692 5
1.024 917 0.000974 0.175 489 5.717 933 3.041726 5
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TABLE 7
Family F53/G1s

o

Xo1 Xos Xo6 T m
0.969 965 0.213 616 0.005 7.188 209 3.019 407 8
0.969 968 0.213 416 0.01 7.186 556 3.019423 8
0.969 979 0.212 616 0.02 7.179 954 3.019 487 8
0.970 025 0.209 384 0.04 7.153 648 3.019 745 8
0.970218 0.195 906 0.08 7.049 825 3.020811 8
0.970 580 0.170971 0.12 6.879 715 3.022734 8
0.971207 0.127 298 0.16 6.635 554 3.025 953 8
0.971 727 0.089 138 0.18 6.463 596 3.028 622 8
0.972 165 0.054 864 0.19 6.333 291 3.030919 8
0.972 689 0.010452 0.193 566 6.190 106 3.033770 8
0.972914 —0.010 152 0.191774 6.131 537 3.035051 6
0.973 024 —0.020 647 0.19 6.103 327 3.035694 6
0.973 355 —0.054 550 0.18 6.018 741 3.037734 6
0.973 671 -0.091 943 0.16 5.935203 3.039927 6
0.973 932 —-0.134 017 0.12 5.850 409 3.042 355 6
0.973 991 -0.157 386 0.08 5.805 840 3.043716 6
0.973 970 —0.169 632 0.04 5.782 423 3.044 451 6
0.973 957 ~0.172 506 0.02 5.776 826 3.044 629 6
0.973 952 -0.173 213 0.01 5.775 439 3.044 673 6
0.973 951 —0.173 389 0.005 5.775 093 3.044 684 6
TABLE 8
Family F3{3/ G1%s
Xo1 Xos Xo6 T C m
1.028 278 -0.212 692 0.005 7.188 201 3.019 407 8
1.028 273 —0.212 500 0.01 7.186 528 3.019 423 8
1.028 254 -0.211730 0.02 7.179 844 3.019488 8
1.028 180 —-0.208 619 0.04 7.153270 3.019 749 8
1.027 891 -0.195 597 0.08 7.049 182 3.020 818 8
1.027 424 -0.171 335 0.12 6.880437 3.022 726 8
1.026 854 —0.135 225 0.155135 6.673 746 3.025 409 8
1.026 348 —0.096 225 0.177 582 6.492 206 3.028 151 8
1.025908 —0.056 225 0.189 787 6.337 656 3.030 838 8
1.025 709 —0.036 225 0.192514 6.269 615 3.032 141 8
1.025 520 —0.016 225 0.193 155 6.206 672 3.033421 8
1.024 340 0.003 775 0.191 739 6.148 217 3.034 679 6
1.024 996 0.043 775 0.182 521 6.042 852 3.037 135 6
1.024 610 0.088 775 0.160 395 5.939737 3.039 803 6
1.024 190 0.132 711 0.121 170 5.852 337 3.042298 6
1.023 876 0.158 774 0.081 170 5.806 242 3.043704 6
1.023 658 0.173 219 0.041 170 5.782 597 3.044 446 6
1.023 598 0.176 794 0.021170 5.776 967 3.044 624 6
1.023 581 0.177715 0.011 170 5.775530 3.044 670 6
1.023 577 0.177 962 0.006 170 5.775 146 6

3.044 682

421
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Fig. 4(a).

Fig. 4(b).

Figs. 4(a)-(i). Typical orbits of family FX@. Figures 4(a)~(c) are projections, in the (X, Y), (X, Z) and

(Y, Z) planes, of an orbit belonging to the m =5 segment of the family; Figures 4(d)—(f) are the three
projections of a representative quadruple (m =4) member, and Figures 4(g)-(i) the projections of a
representative triple-periodic (m = 3) member.
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Fig. 4(e).

Fig. 4(f).
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Fig. 4(g).

Fig. 4(h).
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Fig. 5(a).

Figs. 5(a)-(g). Typical orbits of family F 12 Figures 5(a)~(c) are the (X, Y), (X, Z) and (Y, Z)

projections of an orbit belonging to the m =5 segment, and Figures 5(d)—(f) are the projections of a

representative orbit of the m =3 segment. Figure 5(g) is a ‘three-dimensional’ projection of a double-
periodic orbit near the termination of the family.
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Fig. 6(b).

Figs. 6(a)—(f). Typical orbits of family F 1) Figures 6(a)—(c) and 6(d)—(f) are the three plane projections
of orbits representing the m = 6 and m =4 segments of the family, respectively.
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Figs.7(a)-(b). A typical orbit of the m = 6 segment of family F,1%, in (X, Y) and (X, Z) projections. This

orbit is almost the mirror image in the (Y, Z) plane of the orbit belonging to F.{2 plotted in Figures
6(a)—(c). The orbits of the quadruple segment of F1'%, not plotted here, are sxmllarly almost mirror-images
of those belonging to the corresponding part of F' ,],(1‘5
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