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Abstract 

The use of small-world graphs as interconnection networks of multicomputers is 

proposed and analysed in this work. A small-world graph is defined by the super­

position of a network which provides the structure of the graph at a local level, 

and a global network which links remote clusters together. Small-world intercon­

nection networks are constructed by adding (or modifying) edges to an underlying 

local graph. Graphs with a rich local structure but with a large diameter are shown 

to be the most suitable candidates for the underlying graph. Generation models 

based on random and deterministic wiring processes are proposed and analysed. 

For the random case basic properties such as degree, diameter, average length and 

bisection width are analysed, and the results show that a fast transition from a 

large diameter to a small diameter is experienced when the number of new edges 

introduced is increased. This is similar to the average length reduction which has 

been analysed elsewhere. Mathematical models for this transition are derived; and 

existing mathematical models for the average length are modified for an increased 

accuracy in systems of a small size. Random traffic analysis on these networks is 

undertaken, and it is shown that although the average latency experiences a similar 

reduction, networks with a small number of shortcuts have a tendency to saturate 

as most of the traffic flows through a small number of links. An analysis of the 

congestion of the networks corroborates this result and provides a way of estimating 



the minimum number of shortcuts required to avoid saturation. This work shows 

that random small-world interconnection networks with a high enough number of 

shortcuts exhibit rich interconnections and can support traffic very efficiently, with 

a lower latency, and an increased throughput (in the case of constant pin-out). Un­

fortunately such graphs are not regular, provide poor algorithmic properties and 

routing is complicated. 

To overcome these problems deterministic wiring is proposed and analysed. A 

Linear Feedback Shift Register is used to introduce shortcuts in the LFSR graphs, 

and a Hilbert curve is used to construct the Hilbert graph. Both of these graphs 

exhibit the same desirable properties of random small-world graphs, such as a small 

diameter and average length, but present some additional properties, such as regu­

larity, conceptual simplicity and complete determinism. A simple routing algorithm 

has been constructed for the LFSR and extended with a greedy local optimisation 

technique. It has been shown that a small search depth gives good results and is 

less costly to implement than a full shortest path algorithm. The Hilbert graph 

on the other hand provides some additional characteristics, such as support for in­

cremental expansion, efficient layout in two dimensional space (using two layers), 

and a small fixed degree of four. It has been compared with meshes and tori and 

it has been shown that the Hilbert graph provides a reduced diameter and average 

length, at the expense of a more complicated routing. We anticipate that using 

an adequate routing algorithm, larger graphs and better expand ability can be ex­

pected from the Hilbert graph. Small-world hypergraphs have also been studied. In 

particular incomplete hypermeshes have been introduced and analysed and it has 

been shown that they outperform the complete traditional implementations under a 

constant pinout argument, both with a random and a deterministic wiring process, 

since they provide reduced latency, higher throughput, reduced switch complexity 

and a lower cost. Since it has been shown that complete hypermeshes outperform 

the mesh, the torus, low dimensional m-ary d-cubes (with and without bypass chan­

nels), and multi-stage interconnection networks (when realistic decision times are 

accounted for and with a constant pinout), it follows that incomplete hypermeshes 

ou tperform them as well. 
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1. Introduction 

During their relative short life, general purpose computers have experienced speed­

ups of several orders of magnitude. This has been allowed mainly by the creation of 

integrated circuits, which allow an ever increasing number of transistors to be laid 

down and packed in a single silicon chip. The industry has been driven by Moore's 

law, which as originally conceived states that the number of transistors integrated 

in a single chip would roughly double every year (the current estimate is closer to 

18 months) [1]. 

We have become dependent in an ever increasing computing power to solve a large 

amount of every day problems. High performance computers are used for instance 

to predict the weather, real time signal processing (industrial control, radar, video 

processing), image processing (for instance in medical imaging), computer vision, 

ray tracing and in the encryp~ion and decryption of data. They are also used in 

scientific computing, where the main application areas are in fluid dynamics, 2D 

and 3D N avier-Stokes equations, finite element methods, multigrid methods, lattice 

gas methods, climate modelling, Monte Carlo methods, n-body problem, molecular 

modelling, quantum mechanical methods and others. 

Unfortunately it is doubtful that Moore's law can be maintained indefinitely. 

This is due to technological and physical constraints which will eventually limit 

the number of transistors in a single package [2]. A natural solution is to either 

incorporate several processors in a single multiprocessor computer, or to interconnect 

several computers to construct a more powerful multicomputer. Because of the 

difficulties in scaling multiprocessors even to moderate sizes, in this work we will 

only be interested in multicomputer systems. 

The central problem in achieving faster communications in a multicomputer has 

proved to be the way in which the processors are connected together (their topolo­

gies). Vast amounts of research has been focused in providing interconnection net­

works that minimise their cost and complexity, and at the same time provide low 

latency and high throughput. Networks such as the k-ary n-cube, mesh, toroid, 

delta, butterfly, omega, hypermesh, DCSH, star, tree and ring have been proposed, 

analysed and used in different parallel systems. The choice of a particular intercon-

1 



1. Introduction 

nection network depends on several factors, including application, technological and 

economical constrains. Furthermore this work is complicated by the fact that it is 

desirable that the communication structure of the problem to be solved is similar 

to that of the interconnection network in order that the communication costs are 

reduced, although this is not always possible, and some level of non-local communi­

cations must be supported. 

The most popular networks used have been cubes, meshes, trees, tori and hyper­

cubes. Low dimensional structures such as the cubes and tori suffer from a large 

diameter which increases contention and only communication patterns with similar 

topologies can be efficiently accommodated. A significant amount of research has 

focused in extending these low dimensional structures with long range connections 

in order to support more general communication patterns (see for instance [3-6]). 
Despite their shortcomings, these structures remain popular due to their simplic­

ity, low cost and expand ability. Furthermore in a large number of applications the 

communication pattern matches these low dimensional networks. 

Recent developments in graph theory can be used to provide a new approach in 

the design of interconnection networks. These have evolved from research in the 

understanding of complex systems, where a large number of elements interact at 

different levels of locality. Strogatz and Watts proposed a model for understanding 

such systems based on the identification of two length scales in their interconnection 

graphs [7]. At a local level the elements are regular and they form strong local bonds 

(cliques) where local interactions occur. At a global scale the interconnections are 

not regular any more; in fact in Strogatz and Watts models global interconnects are 

random; however, and perhaps because of this reason, they facilitate interchanges 

between distant cliques very efficiently. The model they proposed is based on the 

addition of random edges to a locally well connected deterministic graph (but with 

poor global connectivity). In [8] Newman and Watts show that there exists a small 

crossover point (of the number of additional edges introduced) in which the average 

distance is abruptly reduced, while a given measure of locality shows that the graph 

has not been significantly perturbated in the local level. 

This small-world phenomenon is of paramount importance for this research, as it 

suggests that it is possible to generate interconnection networks with a small average 

length and with a strong local connectivity if a small number of global edges is 

introduced. A large amount of research has been undertaken in understanding this 

phenomenon [9]. In [10] Kasturirangan proposed the Multiple Scale Hypothesis, 

which states that the reduction of average length in the Small-World model is not 

due to the addition of long range edges, but to the fact that the new edges are of a 
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multitude of length scales. 

These two developments provide a solid starting point for the design of new inter­

connection networks. A good interconnection network should be able to efficiently 

exploit the locality present in the communication patterns of the algorithms expected 

to run in it, while at the same time it should be able to support non-local commu­

nications efficiently for cases where the communication pattern does not match the 

topology of the network (or for cases where there is a dynamically changing pat­

tern). A small world network exhibits precisely these characteristics, as it defines 

a length scale where local communications can be exploited (in a clique), whereas 

the global scale is efficient at supporting any non-local communications present in 

the communication pattern of the algorithm, or which might arise artificially by a 

mismatch between the communications and topology of the network. 

On the other hand the multiple scale hypothesis provides an explicit mechanism 

for the construction of the networks which does not necessarily involve the addition of 

randomness into the network, Furthermore it can be used to design networks where 

not only two levels of locality are defined (short and long range), but a diversity of 

different length scales can be introduced and exploited, confining the information in 

all of these levels. 

It is important to note however, that due to technological constrains, the introduc­

tion of edges of different scales will necessarily introduce more complexity into the 

design ofthe system (this is particularly true, but not exclusive, of VLSI). However, 

according to the multiple scale hypothesis it is not only convenient, but necessary 

to introduce these edges in order to reduce the diameter and average length of the 

network. For this reasons the systems proposed in this work are more amenable to 

be implemented using a set of discrete nodes than in VLSI. 

Small-world interconnection networks are introduced, and some basic properties 

are derived in the remainder of this work. In particular, analytical expressions for 

the diameter, degree, bisection width, congestion and a latency model are presented, 

as well as experimental results obtained with the use of a purpose built graph con­

struction, analysis and simulation computer environment. A design methodology 

based on the direct addition of long range edges to an underlying graph is pre­

sented. It will be usually assumed that the underlying graph provides a strong local 

connectivity but exhibits a large diameter (such as a Cartesian product of an array). 

Such work is similar to the proposals of the inclusion of bypass or express channels 

in meshes and cubes, however it provides a more general and powerful method, and 

can be extended to any other graphs as desired. 

Randomness plays an important role in the construction of the proposed intercon-
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nection networks. However, as it is not an absolute requirement for the construction 

of small-world graphs, the construction of small-world deterministic graphs is anal­

ysed, and a family of new deterministic small-world interconnection networks called 

Linear Feedback Shift Register graphs (LFSR) is proposed and analysed. Determin­

ism allows for additional properties, such as the construction of a simple routing 

algorithm and the guarantee of regularity in the graph which is a very desirable 

property. 

Finally an example of a direct construction where no underlying graph is used 

is presented, as well as an extension into small-world hypergraphs which although 

presented towards the end of this work provided the inspiration and starting point 

of this research. 
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2.1. Parallel Computing 

In a parallel system, each processor executes a subset of the original task, and the 

result is a general speed-up of the problem. NaIvely, one might expect the speed­

up to be directly proportional to the number of processors. However in reality 

this isn't the case. There are numerous reasons for this slow down. According 

to Minsky's conjecture as the system grows in size, performance becomes bounded 

by bottlenecks in the communication channels [11]. It is therefore necessary to 

design the communication network very carefully to ensure it can withstand the 

traffic presented to it without saturation. Although the physical construction of a 

parallel system is very important to ensure a speed increase, it is also important to 

note that fundamentally each task has an inherent serial component which cannot 

be parallelised. Amdahl's law provide a bound for the maximum speed-up of an 

algorithm composed of a serial (s) and a parallel (p) fraction as [12]: 

s= s+p 
s+.E.' N 

where N is the number of processors. 

In a multiprocessor several processors share a single memory and other resources. 

Access to the shared memory is carried out using a single shared bus, a crossbar 

switch or an interconnection network (usually a multistage interconnection network). 

Although these systems provide a conceptually simple system, with a single memory 

image which can be accessed in constant time (if no contention occurs) they can only 

be expanded to moderate sizes, since to maintain a good performance the system 

becomes too expensive to build [13-15]. 

A multicomputer on the other hand, is formed by interconnecting a large number 

of computers through a communication medium. Each computer is formed by a 

processing element, where information is processed, and a switching or communi­

cation element, where packets of data are sent or received from other computers. 
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Computers communicate only by the explicit exchange of information through the 

interconnection network [14,16-191. On this work we are interested in the study and 

development of interconnection networks for multicomputers, although some of the 

results can be used to improve the performance of multiprocessor systems. 

The central problem in achieving faster and cheaper communications in a large 

multicomputer has proven to be the way in which the processors are connected 

together (their topologies) [20,211. The most straightforward way of connecting 

them is to simply connect every node to every other node. Unfortunately this total 

connection has some serious disadvantages. For a system with N nodes, it requires 

that N - 1 wires reach every node. Therefore the total number of wires is given as 
N{N - 1) = N 2 - N. Even a moderate network will require far too many wires. 

These reasons make this scheme unpractical and very costly. 

A large amount of research has been focused in providing alternatives, that while 

minimising the cost and complexity, still deliver performance levels comparable to 

this unpractical network. Networks such as the DCSH, k-ary n-cube, mesh, toroid, 

delta, butterfly, omega, hypermesh, star, tree and ring have been analysed and used 

in different parallel systems [15,17,22-25]. 

In a parallel computer the time used to solve a problem isn't reduced in proportion 

to the number of processors, as shown in figure 2.1. There are numerous reasons for 

the mismatch between the maximum speed-up and the real speed-up. These could 

be broadly classified into the following [26]: 

• Algorithmic Overhead. This is due to limitations in the algorithm which pre­

vent it to be parallelised efficiently. They can be divided into the following: 

- Serial Fraction. Some tasks in the algorithm have to be performed before 

others in order for the algorithm to work, and so these tasks cannot be 

parallelised. 

- Work-Imbalance. When partitioning the algorithm in different concurrent 

processes, different work loads may be assigned to every processor. This 

has the effect of wasting computing resources and thus slowing down the 

execution . 

• Interaction Overhead: This is the overhead incurred while executing the algo­

rithm in a real, non-ideal computer. One of the main reasons for this over­

head is the mismatch between the location of the resources in the network 

(Le. topology), and the requirements of the algorithm. This overhead can be 

subdivided into: 
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ProceSSOR 

Figure 2.1.: Typical speed-up in a parallel system. 

- Latency. The actual transmission time of the information from one pro­

cessor to the other. 

- Contention. The time spent while waiting for a resource to become free 

in the network. 

- Others. Synchronisation, scheduling, cache effects, kernel, network inter­

face, shared memory protocols, etc. 

2.1.1. Types of Parallel Computers 

Various classification schemes for parallel computers have been proposed. The most 

widely used is due to Flynn, who classified the systems on the basis of how many 

streams of instructions and data are present in the machine. His classification is as 

follows [27]: 

• SISD (Single Instruction stream, Single Data stream). This is the conventional 

von Newman model. 

• SIMD (Single Instruction stream, Multiple Data stream). The data is stored 

on a vector or a matrix and instructions are executed on the whole array at 

the same time. 

• MISD (Multiple Instruction stream, Single Data stream). In these kind of 

machines, the data is shared between a number of processors, each executing 

a different instruction on it at the same time. This model of computation is 

not widely used, since many algorithms do not map naturally into it. 
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• MIMD (Multiple Instruction stream, Multiple Data stream). In this case 

each processor operates a different set of instructions into different data sets. 

These kind of parallel machines have been proven to be the most general and 

powerful [15]. 

However, this scheme of classification does not provide an adequate and exhaustive 

classification of all systems. Therefore other classification criteria has been proposed, 

based on: 

• Synchronisation. Synchronous systems vs. asynchronous systems. 

• Memory sharing. In a multiprocessor system all the processors physically 

share a main global memory space. In a multicomputer every processor has 

its own memory and cannot access the other processors memory. All informa­

tion exchange between them is carried out by passing messages through the 

interconnection network. 

• Coupling. This term applies only to multiprocessor systems. A tightly coupled 

system has the main memory located at a central location within the machine, 

so the access time for each processor is the same. This is also known as a UMA 

(Uniform Memory Access) or SMP (Symmetric Multi-Processor) machine. On 

the other hand a loosely coupled system places some memory partitions closer 

to some processors than others, and therefore their respective access times 

are different. These machines are also called NUMA (Non Uniform Memory 

Access). 

• Granularity. This refers to the level of parallelism, or the fineness in which 

the data and the algorithm can be distributed among the processing units. A 

coarse-grained system is typically formed by a relatively small number of pre­

cessing units; a fine-grained system is formed by a large number of processing 

units. 

• ECS (Erlangen Classification Scheme) [28], in which an architecture is defined 

as a triplet of numbers representing the number of control units, the number 

of arithmetic units, and the word length respectively. Combinations of triplets 

with some basic operators are allowed, and therefore almost any architecture 

can be defined by some combination of triplets. In this scheme, a conven­

tional von Neumann machine with a 32 bit word size is defined by the triplet 

tconventional = (1, 1,32). 
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2.1.2. Multicomputers and Interconnection Networks 

In this work we are mainly interested in the development and study of intercon­

nection networks for multicomputer systems. Note however that this subject is of 

relevance not only for multicomputer systems, but also for a larger class of systems 

and their modelling. In fact a system is nothing more than a collection of elements 

or nodes, connected together; and its operation is completely determined by the 

operation of the nodes and the topology of the interconnections. For this reason the 

study of interconnection networks is a fundamental problem in the development, un­

derstanding and modelling of systems such as power distribution, social networks, 

disease modelling, communication networks, neural networks, protein reaction net­

works and others. 

A multicomputer system is formed by nodes, which provide computing power, and 

by an interconnection network (which will also be referred to as IN for shortness), 

which links the nodes together.1 The selection and design of the interconnection 

network is one of the most critical issues in constructing a parallel system, since it 

will have a direct impact on its performance [4,29]. An ideal network should have 

the following characteristics: 

• Low diameter: The diameter of a network determines the maximum number 

of hops a packet needs to make to reach its destination. Although wormhole 

and VeT routing techniques have made the fly time of a packet somewhat 

independent of the number of intermediate nodes, networks with small diam­

eters tend to have a smaller latency since packets are less likely to block each 

other. 

• Small, fixed degree: The degree of a network corresponds to the number of 

input-output lines at each node. A small degree leads to reduced costs since 

less wires and I/O controller components are required. A small degree is also 

desirable for VLSI implementation. It is also advantageous to provide an inter­

connection network that can be incrementally extended without increasing the 

degree of individual nodes. This is of special importance for networks formed 

by a collection of discrete components, where each component has a limited 

amount of I/O capacity. 

• Simple Layout: The network should be easy to map into 2 or 3 dimensional 

space, where the computer will be constructed. 

1 For a good review of such systems see [18}. 
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• Fault tolerant: As in a large multicomputer components are likely to fail with 

a given regularity, it is important the the interconnection network can support 

as many faults as possible, without becoming disconnected. 

• Universality: It is desirable that the interconnection network can efficiently 

embed other common topologies, in order to successfully execute algorithms 

designed for these other networks. The topology should easily map the ex­

pected communication pattern of the applications, while at the same time, 

should be flexible enough to accommodate for other patterns. 

• Simplicity and Symmetry: It is desirable that the interconnection network is 

conceptually simple and symmetric, in order to allow for the easy exploitation 

of available architectural and algorithmic properties. 

• Low cost. 

However, in reality it is not possible to provide all of the above at the same time, 

and a compromise must be made. To try to achieve these goals, a great number of 

topologies have been proposed [3-6,17,19-25,27,29--63] and used in parallel comput­

ers. The selection of an interconnection network is perhaps the most critical decision 

in the design process for a parallel system; not only because it is the most determi­

nant factor in the cost, performance and power of the system, but also because the 

comparison of different interconnection networks is an inherently difficult problem, 

since no universally accepted metrics exists. Networks have to be compared in a 

per-application basis, taking into account such diverse issues as previously outlined. 

Obviously this comparison is neither straightforward nor simple [64]. 

Interconnection networks can be modelled as graphs (or hypergraphs),2 in which 

a processor is a vertex and the communication channel is an edge [65]. For this 

reason graph theory is an essential tool for the design and analysis of interconnection 

networks. Furthermore any graph can be thought of as the topological structure of 

an interconnection network. Mathematically there is no difference between the two 

terms, and they can be used interchangeably. 

Interconnection networks can be roughly classified into the following groups [11, 

14,15,17,33]:3 

• Multistage Interconnection Networks (MINs). In these kind of networks the 

distance between any pair of nodes is constant, since each message has to 

2In a graph each edge connects only two vertices; while in a hypergraph a hyperedge can link 
more than two vertices. 

3rt is also possible to have combinations of these classes in a single network. 
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travel a fixed number of stages before arriving at its destination. Examples 

of these networks are the SW-Banyan and relatives (omega, delta, butterfly, 

inverse omega, etc.). These networks cannot be completely modelled with a 

regular graph or a hypergraph, since intermediate elements are not computing 

nodes, but switches [15,17]. 

• Direct, Point to point networks. These networks are modelled as graphs, where 

vertices represent nodes which are linked by edges (wires). Examples include 

the Mesh, toroid, hypercube, star, tree, de Bruijn, ring, k-ary n-cube, and 

others. [15,17-19] 

• Bus networks. In these topologies nodes are linked by one or several buses. 

These networks can be modelled as hypergraphs, where a hyperedge represents 

a bus, and can join several nodes together. Examples of these networks include 

the hypermesh, DCSH [51], WMCH [36,37], and De Bruijn and Kautz bus 

networks [66]. 

In this work we are mainly interested in direct interconnection networks, and up to 

some extent in bus based networks. 

2.2. Graphs 

As previously noted interconnection networks can be modelled as graphs and hyper­

graphs,4 in which the vertices or nodes are the processing elements, and the edges 

are the channels or connections between the processors. 

A direct interconnection network can be modelled as a graph 9 = {V, E, L, r}, 

where V is the set of nodes (a node is the combination of a switching element 

and a processing element), E is the set of edges (Le. connections between the 

processors), and L, r are mappings (called initial and terminal respectively) such 

that t(E), r(E) E V and E -+ V x V. Sometimes the mappings are not specified 

and the graph is given simply as 9 = {V, E}. A vertex connected to an edges is said 

to be incident to that edge and vice-versa. Edges with common incident nodes are 

called parallel, and an edge with the same initial and terminal node is called a loop. 

Graphs with no parallel edges and no loops are called simple. 

The number of vertices N is simply the cardinality of the vertex set IVgl. In this 

work we are mainly interested in undirected graphs; if an edge exists between u, v 

there is also an edge between v, u (there is no directionality associated with t, r). 

4In a graph an edge links only two nodes, whereas in a hypergraph no such restriction exists. 
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These graphs have the advantage of being able to exploit some of the locality of 

information between neighbours; if node u sends data to node v, there is a high 

probability of node v sending information back to node u. 

A path of length n is a sequence of edges Pn such that ((ei) = ((ei+l), ((el) = 
u, ((en) = v for 1 ~ i < n, where ( E {£, r}. The notation ["",V will be used to 

represent the length of the shortest path between nodes u and v. We will call this 

the distance between u and v. Two nodes u, v are said to be neighbours if their 

distance is one, i.e. if lu,v = 1. 

The diameter of the graph is the maximum distance in the graph; that is D = 
max{lu,v} , u, v E V. This is an important measures since it determines the maxi­

mum latency under no load in the network. The degree of a node is the number of 

neighbours it has. The degree of a graph A is the highest degree of any of the nodes 

in the graph, and a graph is said to be regular if all of its nodes have the same de­

gree. The degree is an important measure as it determines the cost of an individual 

node. Furthermore if the graph is regular similar nodes can be used throughout the 

network, which helps to reduce the cost of the system. 

The bisection width is the minimum number of wires cut when the network is 

divided into two equal halves. This measure is of particular importance when the 

network has to be constructed in VLSI, since in such systems the wire density is a 

critical factor [20]. 

A graph can be drawn by representing its nodes with small dots or circles, and 

its edges by arrows or lines (where an arrow is used for directed graphs only). 

Sometimes it is desirable to label nodes or edges in order to reference them directly. 

In general, there is a large number of different drawings and labellings possible for a 

given graph. Any two representations are said to be isomorphic to each other, and 

the set of all possible representations is called an isomorphism class. 

2.3. Direct Networks 

2.3.1. Meshes, tori and others 

Naively one might consider constructing an IN using a complete graph KN , such as 

the one shown in figure 2.2(a). Although such network provides excellent communi­

cation facilities, its cost is too high, even for moderate sizes, as the degree is O(N) 

and the number of edges is O(N2). 

The binary tree depicted in figure 2.2(d) provides an IN with a small diameter, 

simple routing, and a fixed small degree, all of which are ideal qualities for an 
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(a) Complete (b) Ring (c) Torus (d) Binary 
Tree 

Figure 2.2.: Common direct interconnection networks. Figure (a) shows the com­
plete graph K 16 . As expected the degree and number of edges is very 
large. The ring R 1,16 shown in figure (b) is a one dimensional linear 
array with wrap around connections. The two dimensional Cartesian 
product of a ring forms a toroid shown in (c), while in (d) a binary tree 
is shown. 

interconnection network. Unfortunately for generalised communication patterns it 

suffers from congestion close to the root nodes, as a large amount of traffic needs 

to be routed through the root edges. Furthermore it exhibits the minimum fault 

tolerance possible, as it is enough to remove one edge to disconnect the network. 

Variations and augmentations have been proposed to counter this effects, such as 

the fat tree [60], the k-ary N-tree [62], the recursive fat tree [63] and the generalised 

fat tree [57]. 

The linear array, and its Cartesian products are one of the most natural graphs 

to consider for an interconnection network, since they map naturally into space. 

The two and three dimensional products of the linear array are the mesh and cube 

respectively. A linear array with wrap around connections is called a ring or a cycle, 

and the two dimensional product of a ring is a torus. The m-ary d-cube is a d 

dimensional product of an m ring, and is described in the next section. 

The ring makes a poor interconnection network, due to its large diameter and poor 

fault tolerance (two edge or node failures are enough to disconnect the network). 

Chung and others have proposed augmenting the basic ring with one or several non­

crossing arcs (chords) such as the one shown in figure 2.3 [6,67]. The chordal rings 

constructed in such a way preserve most of the desirable properties of the ring, such 

as simplicity, small degree and planarity, while significantly reducing the diameter 

and increasing the fault tolerance of the network. A related network is the circulant 

graph where each node in the ring is extended with shortcuts to nodes with a given 

relative distance, as shown in figure 2.3. In this way the graphs constructed are 
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(a) (b) 

Figure 2.3.: Extended ring graphs. Figure (a) shows a chordal ring graph, while (b) 
shows the circulant graph Ci16 (l, 4). 

regular and symmetric, with a smaller diameter and much improved fault tolerance 

(although they are not planar anymore) [68J. Both of these networks are of particular 

interest to this research as they are predecessors of the small-world interconnections 

networks proposed herein; in particular a chordal graph can be thought of as a 

random small-world interconnection network where the underlying graph is a ring 

(although the small-world graph is not necessarily planar). 

2.3.2. Hypercube and m-ary d-cube 

The hypercube is one of the most popular interconnection networks. It has many 

desirable properties, and a large number of parallel machines have used hypercubes 

as their topology, such as the Cosmic Cube [34], the Connection Machine [29,61J 

and the iPSC/2 [22]. The n dimensional hypercube Qn can be defined as the n­

th Cartesian product of the complete graph K2 • Alternatively it can be defined 

using binary sequences, where two edges are joined iff their binary sequences differ 

in only one location. The hypercube Qn has N = 2n nodes, E = n 2n
-

1 edges 

and diameter n. Furthermore it has simple routing properties, can be recursively 

divided into smaller hypercubes, and can embed other interconnection networks, 

such as rings, meshes, trees and the complete graph Kn+1 (with dilation 2). For 

a review of these and other properties of the hypercube see [17,33, 45J. Despite 

its desirable properties, hypercubes exhibit some drawbacks, such as a large, non-
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fixed degree and a somewhat large diameter. In an effort to reduce the diameter 

several variations have been proposed, such as the twisted cube [30J and the Mobius 

cube [41]. Other variations have been constructed in an effort to provide a bounded 

and small degree, such as the cube connected cycles (CCC) [69J, and the Hierarchical 

Hypercube [50]. 

The m-ary d-cube Q(m, d) is a generalisation of the hypercube, where the vertex 

set is given as V = {XIX2'" Xd, 0 ~ Xi < m}, and two nodes are joined if and 

only if their labels differ in one dimension by one unit; i.e. node XIX2'" Xd is 

connected to the 2d nodes Xl'" Xi ± 1 (mod m)··· Xd. There are N = md nodes in 

the network, with degree 2d and diameter md/2. The m-ary d-cube is isomorphic to 

rings, meshes, binary cubes, tori and Omega networks [20], and allows for a tradeoff 

between network degree, diameter, network size and dimensionality. Simple ordered 

dimensional routing can be used (e-cube routing); however, and particularly for low 

dimensional structures, the diameter obtained is large. In an effort to reduce the 

diameter several bypass strategies have been proposed (see for example [5]). Some 

researchers have advocated for a complete bypass using a bus based network, the 

hypermesh [70]; which drastically reduces the diameter at the expense of using buses 

in the network. 

2.3.3. De Bruijn and Kautz 

The De Bruijn network B(d, n) consists of cr labelled nodes V = {XIX2'" Xn : Xi E 

{O, 1, ... , d-l}, VI < i ~ d}, where for each vertex XIX2" 'Xn there are d incident 

edges to all vertices X2X3'" Xna, where a E {O, 1, ... , d-l}. A De Bruijn graph can 

be thought of as the graph formed by all possible linear feedback shift register states 

of length n and base d. In this work we are mainly interested in the undirected de 

Bruijn graph, which is constructed as before, without assigning any directionality 

to the edges, and by removing loops and parallel edges. Although the directed de 

Bruijn graph is regular, with degree 2d, the undirected version is not regular and 

has minimum degree 2d - 2, maximum degree 2d and diameter n. 

The Kautz network K(d, n) has the vertex set V = {XIX2'" Xn : Xi E {O, 1, ... , d}} 

with, Xi =1= Xi+lJ V 1 ~ i ~ d, and for each vertex XIX2'" Xn there are d incident 

edges to all vertices X2X3'" Xna, where a E {O, 1, ... , d} and a =1= Xn. As it is 

apparent from the definition, Kautz graphs are very similar to de Bruijn networks, 

and retain most of its characteristics, while providing a better connectivity [16J. 

De Bruijn and Kautz networks retain most of the useful properties of the hyper­

cube, such as a simple recursive structure, simple routing algorithm and contain 
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(a) (b) 

Figure 2.4.: De Bruijn Networks. B(2,3) is shown in (a), and B(2, 4) is shown in 
(b). 

(a) (b) 

Figure 2.5.: Kautz Networks. In (a) K(2,3) is shown, and in (b) K(2,4) is shown. 
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other topologies as subgraphs. However both of these networks posses some addi­

tional desirable features. The degree and diameter are independent, allowing for 

large networks with a small degree, and for a tradeoff between diameter and degree. 

Furthermore, the de Bruijn and Kautz networks are more efficient expanders than 

the hypercube, so larger networks with the same degree and diameter can be con­

structed using these networks. Both of these graphs exhibit a unique shortest path 

between pairs of nodes, which provides for simple routing algorithms. However the 

existence of multiple shortest paths in the hypercube can be used as an advantage to 

increase the bandwidth and to support a larger amount of traffic before the network 

saturates by using adaptive routing. 

Due to its desirable characteristics, these networks have been widely studied (see 

[71] for a review) and their hypergraph counterparts have been proposed in [66]. 

2.3.4. Cayley graph 

Cayley graphs, proposed by A. Cayley [72], are a class of graphs defined using group 

theory. It has been shown that large classes of graphs are Cayley graphs, including 

the de Bruijn and Kautz networks, and the complete and circulant graphs [14]. The 

Cayley graph Cr(S) is constructed using the finite group r, with the aid of the 

subset S C r, S f. 0, which does not posses the identity element I of r. The 

vertex set of Cr (S) is V = r and the edge set is: 

E = {(x, y) : x-Iy E SV x, Y E r}. 

The identity element is not allowed in S to avoid loops, as X-IX = I ~ S. The 

Cayley graph is regular, and the determination of the diameter is simple, as it is 

only required to calculate the distance between the identity element and the rest of 

the elements in the group. Cr(S) is connected iff S is a group generator of r. Cayley 

graphs are general enough to be regarded as a design method for interconnection 

networks [14]; and some of the (d, k) graphs shown in table 2.1 have been designed 

using Cayley graphs. 

2.4. Bus Networks 

Several hypergraph based architectures have been proposed, despite the fact that 

current technology seems to favour point to point high speed serial links, such as 

Infiniband and RapidIO (see for instance [75-77]). The use of buses as communica-
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(a) (b) 

Figure 2.6.: Cayley graphs. Figure (a) shows the Cayley graph with generator 
CD7 (7, 1,2,3,4,5,6) where D7 is the Dihedral group with 14 elements, 
and (b) is CA4 (2, 1,4,3) where A4 is the alternating group. See [73,74] 
for details. 

tion channels in interconnection networks provides a way of reducing the number of 

edges in the network and the node degree, while providing a small diameter, which 

makes such constructions very attractive. The interest of hypergraphs in this re­

search is limited to the hypermesh, and in particular the DCSH, which provides a 

very powerful communication structure. 

2.4.1. Hypermeshes 

The hypermesh is a symmetric hypergraph network. Running along each dimension 

there are a number of clusters or hyperedges, which contain k nodes connected 

in a linear array, and routing capabilities amongst those nodes. The Cartesian 

product of n clusters forms an n-dimensional hypermesh. Messages can change 

dimension at any node, and therefore can reach any node in n steps. (See fig. 

6.1). Hypermeshes posses some very desirable characteristics. They have a low 

diameter, high bandwidth, support for efficient broadcast operations, and since they 

can embed meshes, binary trees and hypercubes, applications that map naturally 

into these topologies will also do so into the hypermesh [38], [51]. 

The hypermesh has been studied by different researchers, who have given it differ­

ent names and have proposed different implementations. The use of shared buses, 

fully connected clusters and crossbar switches have been proposed (see fig. 2.8). 
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a) A Cluster b) A 2-D Hypermesh 

Figure 2.7.: Construction of a hypermesh. The 2-D hypermesh (b) is a 2-D Cartesian 
product of a cluster (a). 

a) Using a Non-Blocking 
Switch 

b) Totally Connected c) Using a Distributed 
Crossbar Switch 

Figure 2.8.: Three different implementations of a cluster. (a) Using a centralised 
switch within the cluster. (b) Using complete connections. (c) The 
result of distributing a crossbar switch among the nodes. 

However, these implementations suffer from bandwidth and cost limitations as the 

system is expanded [78]. 

In [3] Dowd et al propose a basic hypermesh architecture called Spanning Multi­

access Hypercube. Szymanski proposes an optical implementation using distributed 

optical crossbar switches and other techniques [46]. However the required technology 

for a full scale system doesn't seem to be available yet. 

In [51] Ould-Khaoua proposes an implementation which doesn't suffer from these 

problems, based in distributing the crossbar switch among the nodes using a lay­

ered construction. He called this architecture DCSH (Distributed Crossbar Switch 

Hypermesh), and it is depicted in figs. 2.8-(c). 

2.4.1.1. Distributed Crossbar Switch Hypermesh 

The DCSH architecture has been introduced by Mackenzie, Khaoua and Sutherland 

in [31]. And subsequently expanded by Khaoua in [51]. In the DCSH a cluster is 

formed by using a distributed crossbar switch, as shown in figs. 2.8{c) and D.l{a). 

The proposed SE structure is shown in fig.D.2 (b) for VCT or Packet switching. 

Contention is minimise in a DCSH because the buses are driven by only one 

node in the system. Initial work for this research focused on an implementation 

of the DCSH and in the I/O mechanisms associated with the construction of the 
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(a) A 3x3 hypermesh. 

JIITID 
~ I 
Q I 

JIITID 

(b) SE design using 
VeT. 

Figure 2.9.: A Hypermesh and its proposed implementation. 

SE interface. Although the DCSH is a very powerful structure it suffers from a 

relatively large node degree, and from the required bus structures. In an effort to 

reduce the node degree of a DCSH the Hamming hypermesh is proposed in Section 

6.2. Further work carried out in this direction is described in appendix C. 

2.4.1.2. Optical Hypermeshes 

Several methods of constructing a hypermesh using optical technology have been 

proposed. Optical connections offer various advantages over electrical ones, such as 

low power, electromagnetic noise immunity, large fanout and very high bandwidth 

[36]. 
In [37J Dowd proposes an optical hypermesh, the WMCH (Wavelength division 

Multiple access Channels Hypercube), and proposes different approaches to imple­

ment the clusters (or as he refers to them, the multiple access channels). The use of 

optical bidirectional buses, dual buses, folded buses and star-coupling are proposed. 
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.. 

.. 
(a) (b) 

Figure 2.10.: Optical Hypermeshes; (a) WMCH cluster and (b) the WMCH archi­
tecture. 

-88 B ¢1:..--4-
-

(a) (b) 

Figure 2.11.: A distributed optical switch hypermesh. (a) Proposed implementation. 
(b) Logical diagram. 

One of the designs uses a star coupler and tunable transmitter at the output of 

the nodes with a fixed frequency filter at the input (see fig. 2.10), joined by a star 

coupler. 

The system is not purely optical, since a packet must undergo optical-electrical 

and electrical-optical conversions (the system is said to be multihop) to achieve 

inter-dimensional routing. In order to improve performance and avoid the hopping, 

in [36] Dowd et al propose a different architecture, called FHA and SWHA. It is of 

interest since it resembles a 1-D RDCSH (which is proposed by the author of this 

work in appendix EA), although the RDCSH has been proposed to solve different 

issues. 

Szymanski proposes an optical hypermesh network, and proposes different im­

plementations for the hyperedges (clusters), such as the use of centralised crossbar 

switches, star coupler using WDM (Wavelength Division Multiplexing) and dis­

tributed optical switching (see fig. 2.11) [46]. 

In [4] Louri et al propose a highly scalable network, the SMHL (Spanning Mul­

tichannel Linked Hypercube), which is formed as the hybrid product of a binary 
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Figure 2.12.: An SMHL network (a). Thick continue lines represent the hypermesh, 
while slim lines represent the hypercube. Dashed lines link nodes which 
are physically the same. (b) Cluster implementation using WDMA and 
an optical MUX-DEMUX. 

hypercube and a hypermesh. An optical implementation using MUX-DEMUX pairs 

and WDMA techniques is proposed by Dowd [37J. The use of the MUX-DEMUX 

simplifies the design of each node since the input filter is no longer required. The 

multiplexer is a k to 1 star coupler, while the demultiplexer is a diffraction grating 

which separates all the frequencies into their respective channels. The network is 

shown in fig. 2.12. 

2.4.1.3. Other Hypermeshes 

Other hypermesh implementations have been proposed and built. In [24], [79J the 

construction and testing of a parallel system named CP-PACS based on a 3D Hy­

permesh is described. The cluster design is based on crossbar switches. Other 

very similar parallel computers have been constructed, the SR2201 [25J and the 

PRODIGY [43J; all based in a 3D crossbar hypermesh. 

2.5. The (D.k) Graph Problem 

A fundamental problem in graph theory is the well known (D, k) problem, which 

emerges naturally in the design and optimisation of interconnection networks [80,81J. 

The problem is to find the largest graph (graph with the largest order) given the 

degree k and diameter D. A related problem is to find a graph that will interconnect 
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N processors with a degree k and the minimum possible diameter. The problem 

emerges naturally in the design of interconnection networks, because the number of 

connections that can be attached to any component is limited, and it is important to 

design networks where packets do not need to traverse a large amount of intermediate 

components before reaching their destination. This problem has received a large 

amount of attention in the scientific community, and some graph families with large 

number of processors for a given diameter and degree have been proposed [80,82-

85], such as Cayley, De Bruijn and Kautz graphs. These networks are interesting 

candidates for use as interconnection networks. The De Bruijn graph has some 

additional properties (such as the ability to embed rings, binary trees and shuffle 

exchange networks) [71]. The Kautz network has a very similar structure to the 

De Bruijn graph, retaining the advantages of the De Bruijn network, with some 

improvements [16]. 

It is easy to show that no (D, k) graph can have a larger order than a Moore 

graph, which is a perfectly expanding graph. Since in a Moore graph all edges are 

spreading into new territory, the number of nodes in a Moore graph is simply: 

NMoore _ k + k(k - 1) + k2(k - 1) + ... + k(k - l)D-l 
k(k - l)D - 2 

k-2 
(2.1) 

Equation 2.1 is called the Moore limit, or Moore bound [86,87]. It is known that 

Moore graphs do not exist except for D = 2,3, 7 and possibly 57 [88,89]. The Moore 

bound has been improved in [90], where it is shown that for k > 3, N ~ N Moore - 2. 

Better bounds have been obtained for specific cases using explicit constructions, and 

up to January 2004, the best such constructions are shown in table 2.1. 

2.6. Routing 

In a multicomputer information is exchanged between the nodes by interchanging 

messages through the interconnection network. The nodes send packets of informa­

tion (which contain routing information and data), that travel through the network 

and arrive at the destination. At each of the nodes they visit, the network has to 

make a routing decision in order to place each packet closer to its destination.S If 

5This is not always the case. For instance for some deadlock avoidance algorithms and some 
adaptive algorithms it is possible for a message to temporarily travel further away from its 
destination; as long as there are other mechanisms in place that warranty that the package will 
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I d\k II 2 3 4 5 6 7 8 9 10 

3 10 20 38 70 132 190 330 570 950 

4 15 41 96 364 740 1,155 3,080 7,550 17,604 

5 24 72 210 558 2,766 5,500 16,956 53,020 164,700 

6 32 110 380 1,395 7,908 19,279 74,800 294,679 1,211,971 

7 50 148 672 2,756 11,220 52,404 233,664 1,085,580 5,311,566 

8 57 253 1,081 5,050 39,672 129,473 713,539 4,039,649 13,964,808 

9 74 585 1,536 7,884 75,828 270,048 1,485,466 8,911,766 25,006,478 

10 91 650 2,211 12,788 134,690 561,949 4,019,489 13,964,808 52,029,411 

11 98 715 3,200 18,632 156,864 970,410 5,211,606 48,626,760 179,755,200 

12 133 780 4,680 29,435 359,646 1,900,319 10,007,820 97,386,380 466,338,600 

13 162 845 6,560 39,402 531,440 2,901,294 15,733,122 145,880,280 762,616,400 

14 183 912 8,200 56,325 816,186 6,200,460 34,839,506 194,639,900 1,865,452,680 

15 186 1,215 11,712 73,984 1,417,248 7,100,796 45,000,618 282,740,976 3,630,989,376 

16 198 1,600 14,640 132,496 1,771,560 14,882,658 86,882,544 585,652,704 7,394,669,856 

Table 2.1.: Largest (k,d) graphs known. Taken from http://www-
mat.upc.es/ grup _ de _grafs/ grafs/taula_ delta_ d.html. 

all processors inject their packets concurrently into an empty network, it is said 

that the injection model is static; otherwise it is dynamic. Static message injection 

is normally found in SIMD machines, where permutation routing is required. In 

permutation routing the goal is to route N packets in parallel (one per processor) 

to different processors as given by a permutation, where only one packet can tra­

verse a link per unit time. If the permutation is known in advance, the routing 

can be optimised at compile time, and is referred to as off-line routing. Otherwise 

the routing is done on-line at execution time. In this work we will focus on on-line 

dynamic routing only, as this is a good model for large multicomputers with random 

communication patterns. 

Routing problems are usually categorised as [92,93]: 

1. Permutation routing: transfer of messages from a set of nodes, into a permu­

tation of the same (or another) set. 

2. Broadcast: transfer of a message from one node to all the nodes. 

3. Reduction: recollection of information from all nodes into a single node where 

eventually reach its destination. If these mechanisms are not in place livelock can occur. This 
is a condition where the message never reaches its destination (or takes an arbitrarily long time 
to do so), and should be avoided in the design of the routing algorithm [91]. 
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the data is reduced with the aid of a combination function (maximum, mini­

mum, etc.). This is the dual problem of broadcast. 

4. Gather: assembly of a local vector from data distributed in a group of nodes. 

5. Scatter: distribution of a local vector into a group of nodes (dual problem of 

gather). 

6. Multinode Broadcast/Reduction: simultaneous broadcast/reduction of all nodes. 

In multinode reduction the result of the reduction is distributed to all proces­

sors (it is equivalent to a reduction followed by a broadcast operation). 

7. Multinode Gather/Scatter: simultaneous gather/scatter from all nodes. 

8. Total Exchange (Gossipping): all nodes send different packets to all other 

nodes. 

Several techniques based on spanning trees can be used to implement efficient algo­

rithms for Broadcast, Multinode Broadcast and Total Exchange (and their duals); 

see [92,94] and references therein. Permutation routing is a very common routing 

problem which arises naturally in a large number of applications, such as multigrid 

methods, matrix problems, finite elements and others [93J. On this work we will 

mainly focus on permutation routing, since this is the most general routing prob­

lem. Although this work will not do so, it is important to analyse the other routing 

problems in the interconnection networks discussed throughout the remainder of this 

work. In particular broadcast and gossipping occur frequently in common applica­

tions, and efficient implementations can be constructed by taking the architecture 

of the network into account (see for example [51,60)). 

In any network, the routing algorithm and hardware have to avoid deadlock (which 

is caused by a cyclic dependency of requested and used resources which prevents mes­

sages to continue their travel), livelock (which is the case where a message never 

arrives at its destination and continues to travel the network indefinitely) and star­

vation (when a node is prevented from injecting messages forever) [95]. 

Routing algorithms can be classified into the following classes [91-93,95]: 

1. Oblivious (static) Routing. The route of the message is determined solely by 

the source and destination addresses of a packet, without any knowledge on 

the conditions of the network. 
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a) Restricted routing. In restricted routing there exists only one path be­

tween a pair of nodes A,B through where information originating in A 

and destined to B can flow. If the routing algorithm brings the packet 

closer to its destination at each hop, then it is also minimal. 

b) Random routing. In this kind of routing there are various paths through 

where information originating in A can travel to its destiny B. However, 

the path selection for a particular message is random, or at least inde­

pendent on the network conditions. 

2. Adaptive Routing. Here the route assigned to each packet is influenced by the 

conditions of the network. 

a) :r,,1inimal Routing. The message is always moved closer to its destination. 

b) Predictive Routing. The message is allowed to travel further away from 

its destination (the message can be miss-routed). 

Oblivious routing strategies are particularly susceptible to faults in the network, as 

messages can only take a predetermined path in their travel. Although it seems 

obvious that oblivious routing is more susceptible to traffic hot-spots, it has been 

argued that adaptive routing techniques are prone to cause the hot-spots in the first 

place [91,93]. 

Randomness plays an important role in the design of efficient routing algorithms, 

since usually the worst case performance of deterministic communication algorithms 

is much worse than the average. In such cases randomisation of the routing problem 

can increase the performance, since the randomised algorithm has a much improved 

worst case performance. This can be done by either introducing randomness into 

the routing algorithm, or directly into the topology of the interconnection network. 

For this reason randomised networks such as the ones proposed in this work can 

prove advantageous. 

2.6.1. Switching 

Messages are transmitted through the network by "jumping" between switches. Each 

message is formed by a number of phits, which is the smallest unit of information 

that can travel the network. The switching method dictates the way phits are 

transfered through the network, and dictates the way flow control is performed. 

Common switching techniques are: 
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1. Circuit Switching (CS) is a method in which a channel between the source and 

the destiny is created when required, and only when the channel is ready the 

transmission starts. No information travels the network before the channel is 

ready. The channel is not liberated until the last phit arrives at its destination. 

2. Message Switching (MS) is a method in which when a packet is received it is 

immediately buffered. Only when the whole packet is buffered at the interme­

di:1te switch, it is forwarded to the next switch, which will in turn buffer the 

p:1,cket again. This method is also known as "store-and-forward" [15], [96]. 

3. Virtual Cu t-Through (VCT) is similar to MS, however when a switch starts 

receiving a packet, it can begin to forward it to the next switch if it is free. 

If not, the message continues to fill the buffer, but as soon as the next switch 

brcomes available, transmission will begin. If the resources continue to be 

occupied, the whole message is buffered (and at the same time the previous 

lin k is removed, therefore freeing network resources) [97]. 

4. \Vormhole Routing (WR) is similar to VCT. However, the packet is divided 

into a llumber of flits, which consist in a small number of phits of data in 

which flow control operates. If the next switch is busy, the message retains 

the switches already gained which can cause blocking [96]. The flit size is 

very small, and therefore only very small queues are required. This makes 

iIll plcmenting \VR less expensive than VCT. 

5. Other. There have been some non-conventional proposals to implement flow 

control. In [95] a scheme called valve routing is discussed. In [31] another 

approach called ELF is discussed. 

2.6.2. Network Interface 

The Net \\'Ork Interface (NI) is responsible for transmitting and receiving informa­

tion between the network and the processing element (be it the memory, caches 

or regh;t('rs inside the CPU). That is, it is responsible for transmitting information 

from th(' source processing element, through the network, and into the destination 

processing clement via its own NI, and vice-versa, 

Currellt designs of NIs are connected to a fast system bus, such as PCI. In this 

arrangcll :cnt, the maximum bandwidth is determined by the bus performance. How­

ever, all communications have to be mediated by the kernel which adds a significant 

overhe;1,l for every transfer (typically this consists of a system call and a memory 
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copy for transmission; and an interrupt, a system call and a memory copy for recep­

tion. E;\ch of these steps increase latency, and since they imply a context switch, 

second ()rder effects such as cache pollution would arise [98]). This overhead im­

poses a very high pcnalty for small transfers, and hence limits its usability to long 

messages (it is suitable only for coarse-grained communications). However, recent 

research in parallel computing suggests that for scientific applications, the average 

messages are small in size (average between 19-230 bytes) [99], and hence this kind 

of applications are severely penalised by the kernel involvement in the transfer, and 

by any ('xtra latency added, i.e .. PCI bus arbitration, message copying, etc. 

Severl alternati\'es have been proposed, such as the use of Coherent Network 

Interfacl:::>, user leyd DMA, block transfer mechanisms and others [26,98-109]. In 

all of them the kernel is removed from the critical path. These new architectures 

provide Uscr Level Communication (ULC), since the messages are transfered directly 

from user space to the NI and vice-versa. 

2.7. Random Topologies 

2.7.1. Random Graphs 

A random graph Gk,N is a graph in which 1', t are functions that map E -+ V 

by choosing a random vertex from the set V = {VI, V2, ... , VN} independently for 

each edge [87]. For our purposes we will impose the condition that self loops and 

redund;\ 'It edges are not allowed. We shall characterise such graphs by their number 

of verti<'I:8 N and the average number of edges per vertex, k, where lEI = kN /2. 
Althollglt random graphs have a small characteristic length, they cannot exploit the 

locality of communications within a cluster. Traffic is not confined at a local level, 

and has to traverse most of the network. For this reason they are not well suited to 

be used as an interconnection network of a parallel system. 

The I )crformance of random graphs as multistage networks has been studied in 

[54,110,: 11]. The results show that random graphs outperform all of the traditional 

network.; studied Ulider an equal hardware cost constrain. FUrthermore this work 

shows t ~ :;\ t nnder fa nlty conditions random graphs outperform traditional networks 

by large lllargins, and that latency and congestion are reduced when random graphs 

are wicd. It is important to note however, that this results holds for multistage 

networLs, "here no locality of information is expected which could be exploited by 

the tra( 1: tional deterministic networks. 

The <:;..tmeter of random graphs has been studied in [87,112-118]. A large amount 
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of this work is foc1\sed in the determination of the diameter close to the phase 

transiti( III undertaken during the emergence of the giant component in the evolution 

of the gr;] ph, as well as in the transition when the graph becomes connected. Most 

of this work is not relevant for the present research, since we are interested in 

estimating the diameter of a well connected random graph. This has been achieved 

by estimating the m'erage size of a nodes' neighbourhood. A lower bound for these 

measures can be obtained by approximating the graph to a Moore graph (a Moore 

graph is a perfectly expanding graph) [87]. Such approximation is valid, because 

if the graph is big enough, then with high probability most of the edges will be 

"spreading" into n('w territory. Using such approximation, the diameter is given 

as [87,118]: 

In (k;;2(n - 1) + 1) 
Dn= In(k-1) +1; (k>2). (2.2) 

The avcr;lge length can be written as [118]: 

k [(k - l)D - D(k - 2) - 1] 
L-g ~ D - (N _ l)(k _ 2)2 ; (k> 2) (2.3) 

When N » k > In(N) » 1, the following approximations can be made: DR ~ 
In(N)J In(k), and Ln ~ Dn ~ In(N)J In(k). It is important to note that no graph 

can have a shorter {I iameter than a Moore graph; and therefore this measure is more 

of a theoretical lim i t than a physical reality. Furthermore very few Moore graphs 

exist, and they cannot be constructed for general cases. 

2.7.2. Pseudo-random graphs 

Random networks have the advantage over regular networks, of having a smaller 

characteristic length and diameter (i.e. only a small number of steps are required 

to reach allY vertex in the network) [119]. On the other hand regular networks 

have the advantage of having a high clustering and can naturally embed regular 

communication patterns. 

In [7] a method of rewiring a deterministic network to generate pseudo-random 

networks which can be "tuned" between both extremes by varying the randomising 

parameter 4'> is proposed. By numerical simulation it is shown that there is a fast 

transition from lar~c characteristic lengths to small characteristic lengths, and a 

slow transition frolll a large to a small clustering coefficient. Therefore there is a big 

interval of probabilities in which the clustering coefficient remains almost as high 

29 



2. Background 

--$--·--e--+-cG·:. ...... ~~ __ -Q 
.-~." .... , 

0.8 

0.6 

0.4 

-+ - Ring Clustering 

0.2 
-+- Ring Length 
-8- Torus Clustering 
-e- Torus Length 
-~ - Mesh Clustering 
+ Mesh Length 

''t::., , 
'.'" ~ 

'. '6)' '. ,\ 
'. \ ' '. \ ' '\\ '-* ',' , 

.~ \ 

~\ " 
\ ' 
\. '" '. \ 

'. \ 

~\ 
\ 
\ 
\ 
\ 
\ 
\ 

+---

o~--~~~~~~~--~~~~--~~~~~~--~~~~~ 

10"" 10-3 10~ 10.1 10° 
Rewiring probability 

Figure 2.13.: Effecls of rewiring Cartesian products of arrays. Different networks 
(N=10:24) are randomly rewired with probability ¢. Note the steep 
descellt of the characteristic length at very small probabilities (a log­
arithmic scale is needed to resolve it). Note also, how the clustering 
coefficient holds until much higher probabilities before falling. All plots 
are normalised to unity at ¢=0.0001. 

as in the regular ndwork while the characteristic length is almost as short as in 

the random case (s(~e fig. 2.13). This phenomenon, the small-world phenomenon, 

is what makes theJll very attractive for their use as the interconnection network 

of a parallel computer (and also for other systems such as computer networks and 

general communications networks.). 

2.8. Small World Networks 

Small world networks have been proposed as a suitable model for a large number of 

complex graphs, such as social graphs, neural networks, disease spreading networks, 

electric grid network and others, which are present in natural or man-made systems 

[7,9,118]. Traditionally large networks have been approximated to random graphs, 
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(a) ¢ = 0 (b) ¢=0.1 (c) ¢ = 1 

Figure 2.14.: Generation of SW Graphs under the conservative model. The regular 
ring where ¢ = 0 corresponds to a large world, highly clustered network 
where L grows linearly with N. On the other hand, ¢ = 1 is a poorly 
clustered network, with a small L (it only grows logarithmically with 
N). It is important to note that with the original rewiring process, 
when q) the resulting graph is not completely random, since the edges 
have selected only one of their endpoints randomly. 

and although they present some resemblance with them, since both have a small 

diameter (and characteristic length), they differ in that the random graph does not 

possess any structur(! at the local level, while small world networks do. For instance 

in a typical social network of human acquaintances, there is a strong local structure, 

since if persons A and 13 know person C, there is a stronger than random chance that 

A and B know each other (Le. social networks are highly clustered). In this sense 

the social network resembles more a regular graph such as a mesh or a ring, than a 

random network. However, the number of mutual acquaintances between any two 

randomly chosen individuals in a social network is typically small, as discovered by 

Milgram's experimellt [120], such as in a random network. 

Early work on the problem was undertake by Chung and Bollobas [67], however it 

was Strogatz and Watts who proposed a model for constructing and analysing such 

networks [7]. Experimental evidence of an abrupt reduction of length is reported in 

their work, while randomising a small subset of edges in an otherwise deterministic 

network. The size of the subset is small enough so that no structural changes at a 

local level are evident. 

Small-world graphs have been produced in [7] using a conservative rewiring process 

as follows. Starting with a ring with N nodes and k connections per node randomness 
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(a) if> = 0 (b) if>= O.l (c) if> = 1 

Figure 2.15.: Generation of SW Graphs under the Additive model. Figure (a) shows 
the original ring. When a small rewiring probability is used as in 
(b), the results are similar to the conservative model , although the 
regularity of the underlying graph is fully conserved. As the rewiring 
becomes large, the graphs diverge from the conservative model as a 
much larger amount of edges are introduced, as shown in figure (c). 

is introduced by rewiring either end of a randomly selected edge with probability ¢ 

(see figure 2.14) to a new (random) destination. When the number of rewired edges is 

small ¢ - ° the network corresponds to a large world, in which the average distance 

between nodes i large, L » Ln. However, crucially when only a small amount of 

the edg are· rewir d 1 » ¢ > 0, the average distance decreases dramatically, 

L - Ln while the graph remains ordered at a local level C - Co » Cn (see figure 

2.13). Thi model has gained acceptance with the scientific community, although in 

a revised form in which edges are added instead of rewired, with probability ¢ to 

the original ring, which will be referred here as the additive ~odel (see fig. 2.15) [9]. 

In a small-world network there are two different length scales [8 ,118] . At a local 

level the graph is ordered within a cluster in a straight resemblance of the underlying 

network. Local edg s within this cluster maintain local connectivity. The long 

range connections which are introduced by random rewiring connect the graph at a 

different level; the global scale, and according to Watts and Strogatz (and others) are 

responsible of providing a mall diameter and characteristic length [7, 118,1211. The 

mechanics of uch a reduction in diameter and length are still a matter of debate, 

although it is clear that they are a direct re ult of the additional (or rewired) edges. 

Kasturiarangan attributes the phenomena to the multiple length scale hypothesis, 

which states that the phenomena is a result of the edges introduced in the rewiring 
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process being of multiple length scales, and is not dependent on whether the edges 

are long or short range [10]. 

Most of the work in small-world has been essentially numerical [7,118,121-123], 

with more analytical work appearing shortly after [8,117,119,121,123, 124J. The 

percolation problem has been solved completely by Moore and Newman [8, 125J, 

and Newman, Jensen and Ziff [126]. 

The average distance between two pairs of nodes in a network is a fundamental 

property of it. This average (also called characteristic length) is simply [7]: 

- 1 ""' L = N(N _ 1) L....J lu,v' 
u,vEV 

(2.4) 

A small characteristic length is desired, since it is critical for a low latency network, 

since this will determine the average number of "hops" a packet has to make to reach 

its destination. 

The average length L and the length distribution has been extensively studied, 

both by numerical and analytical methods, however neither the distribution of path 

lengths, nor the average length (or diameter) has been determined exactly yet [9]. 

2.8.1. Average Length with Underlying Lattices 

For the special case of a small-world network with an underlying lattice several 

results have been obtained: 

Dorogstev and Mendes [127] provide an exact solution on a related model, in 

which all shortcuts arc connected to a central hub. Their results gives: 

LDoro = 2~2 [2p - 3 + (p + 3)e-p
] , (2.5) 

where p = ¢N. The distribution of shortest distances is given as: 

(2.6) 

Newman and Watts [116] and Moukarzel [117] have shown that there is only one 

non-trivial length scale which determines the characteristic length in a SW graph, 

which is given as: 

1 
e = (k¢)l/d. 

(2.7) 

Furthermore, Newman and Watts proved that the scaling function is of the form 
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L = o:F(x), where x is a function ofthe number of shortcuts present in the network. 

Kulkarni et. al. have shown that the average length is related to the distribution of 

path lengths of diametrically opposite nodes in the graph [128]: 

(2.8) 

where (l('T})) is the average minimum distance of nodes with Euclidean distance 

N /2. Unfortunately the distribution of l('T}) is still unknown and evaluating it seems 

to be as complicated as the determination of the average length itself. 

Newman and Watts constructed a third order Pade approximation based on series 

expansion of a one dimensional small world graph, which is given by [8]: 

_ L 1 + 1.825Nk¢ 
LNWP 

- 0 1 + 1.991 Nk¢ + 0.301 (Nk¢)2' 
(2.9) 

where Lo = 1/4. 

Newman and Watts [116] provided another good approximation for the average 

length in a one dimensional lattice using a continuum mean-field model. Their main 

result is: 

L = e tanh-1 1 . 
NW 2kJl + 2e/N Jl + 2e/N 

(2.10) 

Moukarzel [117] provides an analytical approximation for the generalised case (i.e. 

for n-dimensional lattices) using a continuum branching process. His result is: 

(2.11) 

where 

(2.12) 

2.8.2. Clustering Coefficient 

A clique is a subgraph of 9 which has strong local connectivity. To quantify the 

cliquishness of a vertex u in a graph the following expression can be used: 

(2.13) 

where Nu is the neighbourhood of u, and 9' is the subgraph 9 - {u}. This is 

34 



2. Background 

a measure of how well connected a graph is at a local level around node u. The 

clustering coefficient of a graph is simply defined as the average of all the clustering 

coefficients of its nodes C = La Cu/N. 

Note that this definition is different than the one given by Strogatz and Watts 

in [7]. Their definition only takes into account direct connections amongst the 

neighbours of a node, which leads to problems with regular networks such as meshes 

and hypercubes which do not share direct connections amongst the neighbours of a 

node. By taking into account higher order connections we arrive at a more consistent 

and well behaved model. 

The dynamic performance of the network will be affected by modifying its clus­

tering coefficient. By having a high cliquishness, traffic within a cluster can be 

confined at a local level avoiding the need to travel outside of the clique. Recent 

measurements of the communication pattern of different applications confirm this 

idea; processors exchange data more often with their close neighbours than they do 

with far nodes [39,48]. Furthermore, if a node exchanges information with a number 

of neighbours, there is a high probability that the neighbours will exchange data be­

tween themselves, which is facilitated by networks with a high clustering coefficient. 

Some algorithms can benefit particularly well from such a topology, such as Multi­

grid methods where information can be confined at different levels of locality when 

changing the grid size (typical parallel implementations suffer from high communi­

cation costs when cycling through the different grid sizes [129]). Other examples 

include Iterative methods (for instance SOR), Partial Differential Equations (Navier 

Stokes, Fluid Dynamics) [130] and Molecular Dynamics where bonded (local) and 

non-bonded (global) forces need to be calculated (usually a cut-off is applied which 

artificially induces local neighbourhoods of varying scales in the problem) [131]. In 

general any method which involves the use of sparse matrices (usually derived from 

real systems) can benefit from this approach. 
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Networks 

3.1. Introduction 

It has been shown that random networks have the advantage over their deterministic 

relatives in that they present a network with some very desirable properties: shorter 

diameter and characteristic length, higher fault tolerance and very good expand­

ability. However, these advantages are somewhat diminished due to the following 

reasons 

• Routing is complicated and leads to the creation of artificial bottlenecks in the 

network; therefore the available bandwidth is not thoroughly exploited. 

• Their physical and logical layouts are completely independent, leading to com­

plex wiring and construction. Networks have to be physically laid down in 

three dimensional space, which favours Cartesian product networks, such as 

meshes, tori and cubes, since they map naturally into two and three dimen­

sional space. The layout of a higher dimensional network (such as a random 

graph) is much more complicated. 

• All nodes have physical neighbours which arise naturally in the network. Ran­

dom networks completely ignore these neighbourhoods. Furthermore, random 

networks have a low tendency of constructing new neighbourhoods (they have 

a low cliquishness), therefore locality of information cannot be fully exploited. 

• A large number of parallel algorithms are designed with a particular underly­

ing geometry which creates deterministic communication patterns. These are 

difficult to accommodate in a random network, leading to increased traffic. 

• The resulting network is not regular (different nodes have different degrees), 

increasing the cost and complexity of the network. 
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3. Small World Interconnection Networks 

Clearly it is desirable to have a network with the benefits of a random network (low 

diameter and characteristic length and high fault tolerance), but without its draw­

backs. Traditional interconnection networks provide the ability to exploit locality 

of information for a subset of communication patterns; however not all of them can 

efficiently support generalised communication patterns, and those who do tend to 

be too expensive. 

A good alternative is a small-world network, in which the underlying deterministic 

graph provides regularity and the ability to exploit locality of a subset of communi­

cation patterns, while the over-imposed random graph creates an efficient and rich 

interconnection which lowers the diameter and average length, adding support for 

generalised communication patterns. Furthermore these networks scale-up better, 

than their underlying deterministic networks do [8]. 

We know that the small-world phenomenon implies that it is sufficient to add 

a small number of these random shortcuts to a deterministic graph to reduce its 

diameter and characteristic length dramatically. Therefore the structure of the de­

terministic graph will remain largely unmodified and will determine, into a large 

extent, the structure of the resulting small-world graph. 

In this chapter random small-world interconnection networks (RSW graphs) are 

introduced, and some of their basic characteristics are derived. A model of the 

latency under random traffic using shortest path routing is constructed and vali­

dated using computer simulations. The model shows that when a small number of 

shortcuts are present the RS\V networks saturate due to excess contention in them. 

This analysis is completed with the construction and experimental validation of a 

congestion model which corroborates the results. With the aid of these models it is 

possible to estimate the minimum number of shortcuts required to avoid premature 

saturation in the network. Such constructions are demonstrated for the torus and 

the hypercube network, although they are not limited to them. It is important to 

note that the model ignores the propagation delay in the edges, and it assumes an 

equal bandwidth amongst all edges; however due to technical limitations this might 

not be the case, as large wires introduce a larger delay and are more difficult to 

drive at high speeds than shorter wires. 

3.2. Generation Model 

A small-world network is defined in [7] as a network in which its characteristic length 

approaches that of an equivalent random graph L ---+ Ln., while its clustering co-
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efficient is much larger C »Cn . A small world network can be created by the 

superposition of two graphs; a long range graph (which is not necessarily random) 

which joins local clusters, with a second graph, which provides local clusters and or­

der (and which usually is deterministic). This graph will usually have other desirable 

properties, such as regularity and symmetry, as well as a small degree. 

For the purpose of this work we will define a small world graph (or SW graph for 

short) as: 

(3.1) 

where G s is the underlying or local graph, G L is the long range graph, and \l1 is a 

function. These graphs are restricted to the cases where IGswl = IGsl ::; IGLI and 

IEswl ::::; IEsl + IELI (note however that \l1 might exclude edges present in either Gs 

or GL from Gsw. 
By selecting different functions for \l1 several generating models can be defined. 

Two models are particularly interesting, which are defined in the following sections. 

3.2.1. Conservative Model 

Strogatz and Watts used the model described in [7] for generating SW networks, in 

which for each edge of the graph, if a Bernoulli trial with probability ¢ is successful, 

a new randomly chosen vertex is assigned to either of its extremities, with the 

condition that self-loops and redundant links are not allowed (in such eventualities 

another random vertex is chosen). 

The rewiring process corresponds to deletion followed by addition of an edge. 

A graph can be associated to each of this processes, such that deleted edges form 

G L-, and G L+ is formed by the added edges. From this G L' = G L+ - G L- can be 

informally define, and 

(3.2) 

Alternatively \lI is defined as: 

(3.3) 

This generation model has the characteristic of preserving the number of edges in 

the graph. However the structure of G s is not preserved in its entirety. This has 

the disadvantage that some of the useful properties due to the deterministic nature 

of Gs cannot be exploited in Gsw. This is especially important for the routing 
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properties of the network, as will be discussed in section 3.7. These characteristic 

makes networks based on this model less attractive than networks based on the 

additive model. Furthermore, theoretical modelling of these networks has proven to 

be more difficult than in the additive model [9], and most of the later theoretical 

work is based on the additive model [8-10,116,121,124,126-128]. For these reasons 

we will focus on additive networks throughout this research. 

3.2.2. Additive Model 

To overcome the difficulties created by the complete lack of determinism in the 

conservative generation model, the additive model is introduced. This revised model 

was introduced by Newman and Watts for different reasons in [8]. 

The model is simila r to the conservative case; for each edge in Gsa Bernoulli trial 

with probability ¢> is performed, and if successful a new random edge is inserted in 

Gsw. For our purposes, neither self loops nor repeated edges will be allowed. In 

such eventualities a new random edge is selected. 

In this case G L is f( )rmed by all edges to be inserted, and W is simply: 

(3.4) 

The number of edg(~s in G sw is larger than the edges of G s and is given as: 

IEswl = IEsl + IELI = (1 + ¢» IEsl. (3.5) 

3.3. Some Properties of RSW Networks 

The most important properties of RSW networks are their small diameters, small 

characteristic lengths and high clustering coefficients, since they exploit the small­

world phenomenon, as explained before. The following is a characterisation of some 

other important properties. 

3.3.1. Degree and switch complexity 

The degree of a RS\ V will most certainly be higher than that of its underlying 

network Gs , ko. Due to the additive rewiring process an average of € = ¢>koN edge 

ends are created in the network. Assuming that these are distributed evenly through 

the set of N nodes (,rhich is generally true except for a small factor due to the fact 
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that self loops are not allowed), the probability P(ko +~) that the degree of a node 

is increased to ko + D. is given by the binomial distribution: 

( 1)tl. (N l)f-tl. ( ) P(k = ko + D.) = N ; ~. (3.6) 

The average expected degree increase is easily found to be E[~l = fiN, however 

we are more interested in obtaining the expected degree of the graph D.M, which 

is the average of the largest degree over a large number of realisations of the RSW 

graphs. This is easily obtained by noting that the expected number of nodes of 

degree ~ is given by N P(k = ko + ~), and that the largest expected degree will 

have an average mul tiplicity of one over a large set of randomisations. Therefore 

the expected degree of the graph is ko + ~M' which can be obtained from: 

(3.7) 

It is possible to extend this model for the conservative rewiring generation model 

by noting that the process migrates only one of the edge ends, and therefore f = 

¢konl2 in this case. 

Figure 3.1 shows a comparison between the models and experimental data for 

different networks, ill which a good fit between both is seen, except at very large 

values of ¢. This is clue to the fact that at such large probabilities the assumption 

of evenly distributed edge ends does not hold. 

This large degree is perhaps the main drawback of a RSW network, since it implies 

additional complexity and cost, even if only a small number of nodes have a high 

degree. An alternative worth considering is to modify the rewiring procedure and 

constrain the maxim urn degree of a node to a maximum value (the degree of the 

graph). Since only () very small number of nodes exhibit a very high degree, it is 

expected that such process would not disrupt our main results significantly. 

The switch complexity of a node will be approximated as k2, since this is a rough 

estimate of the number of internal routes within the router. The average switch 

complexity will be given as: 

(3.8) 

where Xo is the average switch complexity of the original network. 

These measures arc shown in figure 3.2 for different underlying networks. 
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- Modk=8Add 
---- Mod k= 10 Add 

a Ring k=8 Add 
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(a) Additive Model 
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(b) Conservative Model 
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.. 

Figure 3.1.: Effect of rewiring on the degree of various graphs (N = 1 024). The graphs 
show experimental measurements averaged over 100 realisations next to 
the model predictions. The models shows a good fit of data except at 
very high rewiring probabilities, where the assumption of evenly dis­
tributed shortcut ends does not longer holds. 
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(a) Characteristic length vs. rewiring probability. 

(b) Characteristic length vs. average switch com­
plexity. 

Figure 3.2.: Characteristics of some RSW networks (N= 1024 in all graphs). In (a) 
the haracteristic length of all graphs is lowered with increasing rewiring 
probab i I i ties (downward direction for all graphs). The final value de­
pends on lyon Nand k, since the final graphs are almost completely 
random . ote however that some graphs become disconnected before 
reaching uch a value. The switch complexity is not increased consider­
ably throughout the rewiring process as shown in (b). 
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Graph I Size I Diameter I Reduction 
D-Mesh kD D(k - 1) 0 N 1/ D 

D-Torus kD DI1>1 0 Nl/D 

k-Ring N 1~+*1 O(N) 
D-Hypercube 2D D o (loglogN) 
k-ary D-cu be kD llf- O (loglogN) 

Table 3.1.: Maximum expected reduction in diameter of some popular graphs. 

3.4. Diameter and Average Length in the General 

Case 

Since ¢ will be chosen in a region where L -+ Ln., we will also have D -+ Dn.. That 

is D ~ In(N)J In(k) for N » k > In(N) » 1. This is smaller than the diameter of 

most deterministic graphs. This is a very important characteristic of RSW networks, 

as a small diameter is a desirable characteristic for an interconnection network, since 

it can lead to a small latency. However, when only a small number of shortcuts are 

introduced the effect can be the opposite, as these are likely to become congested, 

and increase the latency or even saturate the network (this behaviour is studied in 

sections 3.8 and 3.9). 

Although an exact expression for the reduction in diameter and average length 

for the general case has proven to be elusive, and has not been derived in this work, 

experimental evidence suggests that this reduction behaves in a similar fashion as 

that of a ring (which is studied thoroughly in this work), as shown in figure 3.2. 

The maximum reduction in diameter and length is much simpler to calculate, as on 

the limit of large 4>, these measures are simply the ratio of the initial diameter and 

average length of a graph with the respective measures of a random graph. 

The maximum expected reduction in diameter is shown in table 3.1 and plotted 

in figure 3.3. As expected graphs with a large diameter (such as arrays, including 

the mesh and ring) benefit the most from the addition of shortcuts, while graphs 

with a relative smaller diameter (such as the hypercube, de Bruijn and others not 

shown), have less to gain from the process (however note that the hypercube suffers 

from a very large degree for such large systems). 

In general not all of the edges in the graph form an efficient expander; and for 

the cases where only a small amount of them will provide the reduction in diameter 

(such as in the deterministic constructions undertaken in the following chapters), it 

is possible to approximate the diameter using a somewhat naive approach, in which 
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Figure 3.3.: Plot of the maximum reduction in diameter of some popular graphs. 

an effective node degree (ke ) for the underlying graph is determined from a Moore 

graph approximation as follows: 

ks(ke - l)DS-l = N - 1, 

which has the approximate solution: 

1 

ke ~ 1 + NDs. 

(3.9) 

(3.10) 

Assuming that edges in GLare very good expanders, the diameter of G s + G L 

can be approximated to that of a Moore graph as: 

and 

logN 
D~----~------1 

log(N Ds + ks¢) 
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3.5. Diameter and Average Length with 

Underlying Lattices 

For the case where the underlying graph is a ring or a lattice, several results re­

garding the average length are known and have been described in section 2.8.1. The 

diameter on the other hand, has received little attention. This is probably because 

the estimation of the diameter is complicated by the fact that it is not only required 

to know the average maximum distance in an average graph, but it is also required to 

determine the distribution of distances within that given graph, since the diameter 

is the largest of such distances. 

3.5.1. Previous Work 

The saturation time of the aggregation of new nodes to the volume of infected nodes 

in several models can be identified to the mean diameter of the graph. Dorogstev and 

Mendes provide the following approximations in a simple mean-field like undirected 

model in [127] for a one dimensional ring (k=1): 

1 1 N-1 
- (DDoro) /2 = -log(1 - ¢} + 2¢ + 2 

1 5 N - 3 (N - 1)2 
log2(1 - ¢) + 4¢ + 2¢ + 4 

{3.13} 

rv 2~ [3 + ¢N - )9 + 2¢N + ¢2 N2] , (3.14) 

where the last approximation is valid for large N. As it is apparent from fig. 3.5, 

equation 3.14 docs not provide a very accurate fit with experimental data for small 

¢. Furthermore this model does not incorporate the effects of a larger degree (k> 1), 

and therefore can only be used for k=1, and for large values of ¢. 
An expression corresponding to the mean diameter is derived by Moukarzel in 

[117], which is given as: 

(3.15) 

This equation provides a good approximation to the diameter of the graph for 

the cases where (2¢rd(d - l)!)-l/d N» 1 (see figs. 3.5 and 3.7); however it starts 

diverging at this point, such that lim~-+o D -+ -00. We are interested in providing 

a better approximation which is well behaved for all values of ¢, and which provides 
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Figure 3.4.: Mean-Field diameter model. Suppose a disease starts spreading from 
the source node (S) with constant velocity through the underlying ring. 
As shortcut ends are reached new secondary infections are created at 
random locations. 

an accurate estimate of the diameter of small graphs (where small means N « 00 

in this context). This is achieved in the following sections. 

3.5.2. Diameter in the mean-field approximation 

In this section "'c provide a simple extension to the Newman and Watts mean-field 

model described in [116], in order to obtain an approximation for the diameter of 

the networks. Supposc a vertex s is randomly selected in the continuum SW graph 

shown in figure 3.4. 

Furthermore, suppose a disease starts spreading from s and travels a distance r 

in all direct ions. The surface area of the disease spread (i.e. the number of nodes 

infected in the interval [r, r + 8rD has been calculated by Newman and Watts, and 

is given by [116]: 

4Nk 
A(r) = 2k + -~- (J.l(r) - J.l(r)2) , (3.16) 

where the normalised number of uninfected nodes is approximated as [116]: 

J.l(r) = ~ [1 + Vi + 2~/Ntanh (tanh-1 1 - 2~r .J1 + 2e/N)] (3.17) 
2 Vi + 2~/N '" 

We are interested in obtaining the maximum distance rsat where all nodes have 

been infected since this corresponds to the diameter of the network. This is given 

by: 
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i T6Bt 

A(r)dr = N. (3.18) 

By evaluating the integral and solving for rsat we get: 

rsat = V ~ (coth-I (VI + 2~/N) ± cosh-I (±Vl + N/(2e))). (3.19) 
2k 1 + 2~/N 

where as usual, trigonometric inverses are represented by functions like COSh-I. 

We are interested in the largest real solution, which is the one with only positive 

signs. The mean diameter is therefore given as: 

(DMF ) = 2kVl ~ 2~/N (cosh-
I 

( VI + N/(2~)) + coth-
I 

( Jl + 2~/N)) . 
(3.20) 

Although this approximation is only exact at the limit of a large system size N » 
l/{k¢) it does provide a well behaved function, and as expected limt/l--+o D = N/(2k), 
as it can be seen in figs. 3.5 and 3.7. 

3.5.3. Forking Process Diameter Approximation 

We are interested in providing a better approximation to the diameter of a graph 

(in particular for small graphs). We will do so by providing an extension to the 

Moukarzcl's model as follows. 

Consider a d-dimensional continuous space where nodes are spread evenly. Sup­

pose that a disease spreads with radial velocity 1 from its randomly chosen source 

(which corrr'sponds to the spread through the llnderlying lattice). The shortcuts 

in the system are distrilmted randomly, such that the density of shortcut ends is 

p = 2¢>. The initial infection will grow as a d-dimensional sphere of surface r dtd-I. 

As new nudes are reached by the sphere, shortcuts will be found at each unit step 

with proLability p and IlCW "secondary" spheres will start to grow at random loca­

tions in slJace (sce fig. 3.6). 

The total infected volume is given by Moukarzel as [117]: 

V(t) = rd it r(d-I) (1 + pV(t - r)) dr, (3.21) 

whose bulution is givell by the rescaled variables V = pV and t = (prd(d _1)!)I/d t 
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Figure 3.5.: Diameter (D) and mean diameter «D> ) of a 128 and a 256 node 
ring. The graph hows measurements, against model predictions for 
the proposed diameter models; the mean-field DMF (eq.3.20) and the 
branching proce s Dss (eq.3.29) as well as the most precise of the 
previously known models, which is Moukarzel's model D MOtl (eq.3.15). 

48 



3. Small World Interconnection Networks 

t-t3 

Figure 3.6.: Moukarzel's branching process model. Suppose a disease starts spread­
ing from the source node (centre of large circle), with a constant radial 
velocity. As the infection grows, shortcut ends are reached with prob­
ability p, alld new "secondary" spheres will start to grow at random 
locations in space. 

as: 

d-l 
- 1",-
V(t) = d ~ elldt 

- 1, 
n=O 

(3.22) 

where J-Ld = e21fi / d • III a finite system, after a certain time the process will stop, 

when all nodes have oecn infected. This time tsat is the same as the mean diameter 

of the network and is gi ven as: 

(3.23) 

As previously noted this expression diverges from the actual value when there are 

a small number of short cuts present, and when the system size is small. Unfortu­

nately as it will be shown in section 3.9, these are precisely the conditions which 

trigger a large congestion in the network, so we are interested in providing a better 

approximation for these cases. 

3.5.3.1. Small Systems Correction 

From eq. 3.21 we see that the total infected volnme at time t has been modelled 

as the sum of the volullle of the primary sphere r d J r(d-l)dr with a contribution 
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of all pV[t - T] spheres born at time T < t. This model is accurate for the cases 

where N -+ 00, however this is not a correct approximation for small system sizes. 

For these systems the number of spheres born at time T is not proportional to 

pV[t - T] because as the infection grows, although new shortcuts are encountered 

at a rate p, the shortcll ts are more likely to lead to an already infected area, in 

which case no new spheres are born. The rate of uninfected shortcuts (where an 

uninfected shortcut is defined as a shortcut leading to an uninfected area) is therefore 

p(N - V[t - T])/N. Furthermore, the growth of the secondary spheres is reduced 

by the same mechanisms, so we can write: 

(3.24) 

We proceed to soh'c cq. (3.24) by changing the integration variable and taking 

the d-derivative witlJ rcspect to t to find: 

(3.25) 

No general solution [or this differential equDt:on has been found by the author 

yet. For the case where d = 1, one can write: 

V' (t) = 2k [1 + pV(t) - ~ V(t)2] , (3.26) 

which has the solution: 

V(t) = ~ + ~ V p~ + ltanh [~Vp~ + 1 (2kt+ N~l)l· (3.27) 

The constant 11:1 cnn be evaluated by taking the derivative of Vet) and evaluating 

it as limt+_o V' (t, 11:1) = 2k, which is the initial rate of growth of the infection. The 

complete solution is therefore: 

Vet) = ~ + ~ V (J~ + 1 tanh [kPtV p~ + 1 + ~COSh-1 ( 1 + p:) 1 ' (3.28) 

The infection will grow until a saturation time, where all nodes have been infected, 

which call be found frolll V(tsat) = L and is given as: 

cosh-1 (1 +~) + 2sech-1 C~) 
(Dss) = tsat = J ' 

2kp p~ + 1 
(3.29) 
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which is the mean diameter of the graph, and provides a much better fit than the 

previous models, as can be seen in figs. 3.5 and 3.7. 

3.6. Bisection Width 

The bisection width of a SW graph depends on both, the original graph, and the 

randomisation process. The main obstacle in determining the bisection width of 

a small-world graph, is that the original network partition where the minimum 

bisection width is obtained is not necessarily the same as the partition where the SW 

bisection width is obtained. Since there is no a priori knowledge of the underlying 

network, the bisection width cannot be determined exactly. However we can estimate 

a higher bound by fixing the partition to that of the original network, where the 

minimum bisection width is obtained. The width of a bisection IBI is defined as the 

minimum number of (~dges linking two partitions G+, G- such that G+ l:J G- = G 

and IGfl = IG-I (pIllS or minus one). The set of edges linking the partitions is the 

bisection set B. Thc bisection width of the underlying network is IBol (or simply 

Bo wheu no confusio1l urise). 

An upper bound f()r the bisection width in the additive model is determined by 

estimating the number of new edges introduced which span the original partitions 

where Do is determilled, G+ and G-. Since the addition of edges is random (except 

for the fact that parallel edges and loops are not accepted), there are cpkN /4 edges 

introduced to il, givillg the bisection as: 

cpkN 
BA = Bo + -4-. (3.30) 

To drtf'rmine the bisection width in the consen"ative model it is required to quan­

tify thc number of edges deleted from B, and tl1c number of new edges in B. The 

randoll. ::;ing procedmc will select new random endpoints for cpBo of the original 

edges ill Bo. Assurll i ng the selection of endpoints for this process is distributed 

evenly through G+ <1lld G-, it follows that cpBo/2 edges will migrate from the bi­

section into G+ or G- (and are therefore deleted from the bisection). 

Initially there are "; - Bo edges not forming part of the partition, which can 

be selecLcd by the rewiring algorithm and migrate into the partition. If we assume 

that tlj(~ new endpoints of the selected edges arc distributed evenly through both 

partitililis then half of them will span both partitions, and therefore the bisection 

width i.): 
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Figure 3.7.: 11ean di8meter model deviations for a 128 node ring (a), and a 256 node 
ring (b). Deviations are shown as percentages for k=l, k=2, k=4 and 
k=8. The newly constructed mean-field, DMF from eq.3.20 and branch­
ing process model, Dss from eq.3.2!J are shown, as well as Moukarzel's 
model D.Hol.l (eq.3.15). 
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( ¢) ¢kN 
Bs :::::: Bo 1 - 2" + -4-' (3.31) 

In general the supposition of evenly distributed endpoints does not hold and a 

better approximation is required (although the errors incurred by it when calculating 

the number of edges coming out of Bo is small, this is no longer the case for the 

large number of edges originally not in Bo). 

A better approximation is derived as follows. Suppose that Bo = {}, which forces 

all nodes in a partition to only have edges within the partition. For each node the 

probability Pk of rewiring each of its k edges to the opposite partition is successively 

evaluated as follows: 

(3.32) 

since there are no edges linking the current node into the opposite partition, the 

factor ¢/2 is due to the fact that edge e is considered twice, once in each endpoint of 

e, (N /2 is the number of possible destinations for an edge in the opposite partition, 

and N - k - 1 is the total number of possible destinations). For the second edge 

the probability is: 

p. ¢ N/2 - PI 
2=2"N-k-1' 

since no repeated edges are allowed. Therefore: 

(3.33) 

(3.34) 

and the total number of edges crossing the partition from the current node is 

given by: 

k [ ,J..] k . N N N-k-1-:t:. 
Bnode = ?= Pi = '2 - '2 N _ k _ 1 2 

1=1 

(3.35) 

Combining this equation with the previously determined expectation of edges 

migrating out of the partition in eq.3.31 yields the expected bisection width as: 

Bs = Bo (1-~) + NBnode. (3.36) 

For both models the bisection width is O{ ¢N) which implies that the networks 

are expandable as they can support (with a constant penalty) the expected traffic 

increase which grows as O(N). 
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3.7. Routing in RSW 

The addition of long range edges introduces a rapid decrease in the diameter and 

average length of the graph [117], which can be exploited by the routing algorithm 

to reduce the delivery time of all packets (provided the conditions described in 

section 3.9 are met). Unfortunately providing minimal routes in the case of random 

small world graphs is difficult. Shortcuts are wasted if the routing algorithm is 

unable to find and exploit them. However there is no simple decentralised routing 

algorithm which provides minimal (or close to minimal) routing. Shortest path 

algorithms (Dijkstra, Bellman Ford), or their decentralised counterparts, can be 

used to provide minimal routing and exploit the small diameter and characteristic 

length. Unfortunately the complexity of these algorithms is high, O(E + V log V) 

and O(min(D, V)E) respectively (where D is the maximal number of edges of any 

shortest path) [132], and it is not plausible to solve this problem on-line for each 

newly arrived packet at an intermediate node. However it is still possible to construct 

off-line routing tables using these algorithms and use them to perform the routing 

functions. In this case, the routing tables are constructed only once when the node 

comes on line, or when the topology of the network changes (perhaps due to a fault). 

Jon Kleinberg analysed the performance of decentralised geometrical aware rout­

ing algorithms in small-world graphs [124], and showed that there is no decentralised 

algorithm capable of providing paths of expected short length for the additive RSW 

graphs. He proceeds to construct a family of graphs, where the expected length 

of shortcuts is proportional to d(u, vtr. He shows that the optimal exponent is 

r = 2 for routing using a decentralised algorithm, and that no other decentralised 

algorithm performs better than the simple geometrical greedy one (where a packet 

is routed to the node closest to the destination, as viewed by the current node, with 

only local information). In this case the expected routing diameter is proportional 

to (log n)2, which is larger than the diameter achievable if minimal routes were as­

signed, which is proportional to log n. This work is based on the assumption that 

no global topological information is available, which can be exploited by the routing 

algorithm. However this is not necessarily the case for RSW graphs. 

It is important to note that a basic requirement for a routing algorithm is to 

be deadlock free [92-94]. Deadlock occurs when packets cannot advance any fur­

ther because the queues are full, and there is a cycle of ungranted requests for 

resources [133,134]. A sufficient condition to avoid deadlock is to avoid cycles in the 

channel dependency graph [133]; however it is not a necessary condition, as deadlock 

free routing algorithms allowing the existence of cycles in the channel dependency 
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graph can be designed, as long as there exists a connected subset of channels free 

of cyclic dependencies [134]. The use of virtual channels can simplify the design of 

deadlock free routing algorithms, since it allows more flexibility in the design [135]. 

For Small-World interconnection networks a deadlock free routing algorithm can be 

constructed by defining a subset of connected channels with no cyclic dependencies 

in the underlying deterministic graph. One possible approach is to identify a virtual 

network with these channels and to allow traffic to be routed amongst all channels, 

with the condition that once a packet traverse a channel which belongs to the cycle 

free subset, it is not allowed to leave that virtual network (otherwise the subset is 

not guaranteed to be cycle free). 

3.7.1. Greedy Geographical Routing 

This routing algorithm is based on routing incoming packets to the closest node 

to the destination, as measured by the underlying graph. Each node needs only 

to know the topology of the underlying graph (which is usually regular), and its 

long range connections; so only local information is used. It is also possible (and 

convenient) to have a routing algorithm for the underlying graph A(Gs ) which can 

be used as an advantage (for instance to help implement deadlock freedom). 

In greedy routing, when node v receives a packet, it extracts the destination 

t from within it. At this point node v calculates the distances lJ;~.t (that is the 

distances between its neighbours and the destination, as seen by the underlying 

graph), and route the packet to node u, where l~f = min{lJ;~,t}. Ties can be broken 

by several means (random, largest ID, smallest ID, A(Gs ) has preference, etc.). 

If a routing algorithm for Gs is available, the assignment can be done using the 

algorithm where the long range connections are used if at each routing step this 

provides an advantage. 

It is obvious that some (or a significant part) of the shortcuts will not be exploited 

by this routing technique; and for this reason we are interested in determining the 

routing distance in order to compare it with that achieved by the full shortest path 

routing algorithm. The distance distribution of graph Gs will be used to determine 

the routing distance. Assuming that the graph Gs is symmetrical the distance 

distribution function is the same for each source node. The set of nodes at distance 

i from node t is given by 'Di(t). The number of nodes at distance i from a given 

node t is simply l'Di(t) I , however 'Di(t) will be used to denote both the set of nodes 

at distance i and the cardinality of this set. It is obvious that L: 'Di(t) = NV t. 

We will consider the path followed by a packet generated by node 8 and consumed 
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by node t. The number of hops for this packet is L = Zc;f if no favourable shortcuts 
I 

are encountered by any node in the path. However an intermediate node j (and 

most certainly all following nodes) can be removed from the route if a previous 

node encounters a suitable shortcut. In such a case, the packet is routed to a node u 

(l1.l
1
t < li,t), which is not part of the path PS,t . However if the network is symmetrical 

it follows that l~f = l~f for a suitable choice of v E PS,t ; furthermore l~f = l~~ for 

all W E V1u,t(t), so the path PSlt can be thought of as a succession of states, where 

state j is formed by all nodes W E V1j,t (t) (the distance between successive stages in 

the path is still monotonically decreasing). Because of these reasons the principle 

of deferred decisions can be applied [1361. The probability that state j is skipped is 

given by the probability that a node at a stage k > j has a shortcut ending in the 

set of nodes with a distance smaller than that of j, provided that node k itself is 

not skipped: 

(3.37) 

(3.38) 

where Xi = L~=o Vj. The derivation of Vj is graph dependent and will not be 

attempted here. The solution of PSj+1,L/PSj ,L leads to a simpler equation which 

can be solved numerically by iteration to obtain PSi, L: 

(
Xj - 1 ¢k ) ¢k 

PSj,L = PSH1 ,L Xj - N Xj - 1 + N Xj - 1 , (3.39) 

with the initial condition PSL,L = 0 (note that the second subscript of PSj,L can 

be dropped in the last two equations). 

The expected number of nodes skipped in the whole path of length L is therefore 

E (Sj'5:L) = 2:;=1 PSj,L , and the expected average length for the routing algorithm 

is given by: 

(3.40) 

Similarly the expected routing diameter is given by: 
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(3.41) 

Since a general analytical solution for eq.3.37 does not exist, an approximate 

solution (in fact an upper bound) can be obtained as: 

which gives: 

and: 

L 

PS. <" A-k
Xj

- 1 
J,L - ~ 'f' N' 

i=j+1 

3.8. Stochastic Performance of RSW 

3.8.1. Latency model 

(3.42) 

(3.43) 

(3.44) 

(3.45) 

We are interested in investigating the impact of the rewiring process to the dynamic 

characteristics of the RSW graphs. In particular, it is expected to see a reduction in 

the average latency of a packet as the average length is reduced, and an increase in 

the maximum throughput of the graphs. A simple analytical model for the additive 

RSW graphs using the simple switch shown in figure 3.8 and under virtual cut­

through switching has been developed to study these effects. 

The model is based in the following assumptions (most of which have been used 

in similar studies [46,78,137,138]): 

1. The rewiring probability ¢ is high enough that at the global scale the network 

can be approximated to a random network, and the network is not subject to 

a premature saturation as described in the next section (3.9). 
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k k 

PE 

Figure 3.8.: Diagram of the switch used in the model and in the simulations. Each 
of the k inputs of rate A as well as the local output from the processing 
element with rate Ao are buffered before entering the multiplexer. The 
output of the multiplexer can be directed to any of the k outputs (of 
rate A), as well as to the local input queue. 

2. Packets are distributed evenly through all edges belonging to a given class in 

the network. 

3. All messages generated are of equal length of B phits. 

4. Each node generates a message by a Poisson process of rate p. The destination 

for each packet is chosen uniformly and independently amongst all possible 

recipients (uniform traffic). 

5. Only one phit per unit time can be sinked by the Processing Element. Sim­

ilarly, only one phit per unit time can be sourced (this is also known as the 

single acceptance model). All information interchange amongst nodes is done 

synchronously at each clock cycle. 

6. Queues are of infinite size. 

7. Messages are routed along the shortest path. 

8. The network uses packet switching, and the switching element shown in figure 

3.8. 

9. Each edge is implemented by two physical wires (one in each direction). 

10. The propagation delay in all wires is ignored, and the bandwidth of all edges 

is the same (regardless of their size). 
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An additive RSW has an average degree of k = ko(1+¢), and kN/2 edges. However 

the network is constructed in such a way that each edge consists of two channels 

(one in each direction), so that there are on average k input channels, and k output 

channels for each node. The traffic rate at each of these channels is Ai, 0 < i ::; k. 

We will assume initially that the traffic in all of the channels is equal. It is important 

to note however, that in general there is no way to determine the distribution of the 

traffic in the edges P.i) without an exact description of the underlying network. We 

will refine the model afterwards by the introduction of two classes of edges, based 

on a small world model. 

'rVe proceed the analysis by noting that the queues are of infinite size, so there 

is no blocking in the network except that which occurs in the input multiplexer 

(see figure 3.8). As previously stated there are k inputs of rate Ai = A to the 

multiplexer. The local output queue is also connected to the multiplexer and has a 

traffic rate AO = Jl phits per network cycle (initially we will assume that unit sized 

packets are used throughout the network; we will extend the model to incorporate 

the effects on non unit packets afterwards). This is also the traffic sinked into the 

local processing element, AL (provided the network has reached a constant steady 

state). A typical packet injected into the network will traverse the multiplexer of 

the node where it was injected, and continue its path which goes through L other 

nodes (and multiplexers), before being consumed at the destination, so in total L+ 1 

nodes are traversed. The traffic coming out of a multiplexer will be ejected into the 

local processing element with probability 1/(L + 1), which implies that the traffic 

at any of the k external inputs is: 

\ = Jl(I + 1) 
A k. (3.46) 

Following the work in [51], we will model the multiplexer as a G/D/l queue with 

n inputs of rates Ai, 0 < i ::; n which gives the mean waiting time as: 

V 1 
W= --

2£(1 - £) 2' 
(3.47) 

where the expectation (£) and variance (V) of the arrival process is given by: 

£ - LAi' 

V - L Ai (1 - Ai). (3.48) 
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An additive RSW graph is not regular, but has a degree distribution which has 

been analysed in section 3.3, and which is given as: 

(3.49) 

The degree of the graph is the maximum expected degree of a node'~M (which 

can be determined from P(k = ko + ~M) = 1/ N). A node with degree k = ko + ~ 
has k input (and output) links, which we assume to be of rate A, and an input from 

the local PE of rate p" so the expectation and variance of the arrival process is given 

as: 

£(k) - kA + P, 

V(k) - kA(1 - A) + p,(1 - p,), (3.50) 

and the waiting time at the multiplexer is simply: 

V(k) 1 
w(k) = 2£(k)(1 _ £(k)) - 2' (3.51) 

The multiplexer will saturate when the expected arrival rate £(k) -+ 1, so the set 

of nodes of degree ko + ~M will form a bottleneck and cause saturation when the 

message probability is: 

ko(l + ¢) 
(3.52) 

The average waiting time at a multiplexer can be calculated from the distribution 

of node degrees as follows: 

AM 

Tmux = L (P(k = ko +~) w(k = ko + ~)). (3.53) 
A=O 

This simple model can be extended to non unit packets by scaling the waiting time 

in the multiplexer w(k) and the message generation probability by B, the message 

length (in phits) [51]: 

p,' - p,B 

w(k)' - Bw(k). 
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.,.,.----

Figure 3.9.: Typical trajectory of a packet in the cave-world model. A typical packet 
will encounter L - l/C shortcuts in its path, and not more than one 
local edge. 

PE 

Figure 3.10.: Diagram of the network switch with non-uniform link utilisation. As 
it is shown there are kL inputs of rate AL (which are the shortcut 
channels), as well as ks inputs with rate As, and the inputs and outputs 
of the local processor. 

Since an average packet traverses L+1 nodes (with an average delay of Tmux each) 

and the service time at the output queue where the message is ejected also causes a 

delay, the total latency is given as: 

T = (L + 1) (Tdec + Tmux) + B, (3.55) 

where Tdec is the decision time at each multiplexer. 

3.8.1.1. Non-uniform Link Utilisation 

The rewiring or addition of edges in a graph introduces a number of shortcuts which 

reduce the average length of the graph. If shortest routing is used, a large number 
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of packets will be attracted to these shortcuts causing an uneven link utilisation 

which can lead to saturation. A characterisation of the conditions which can lead 

into saturation is carried out in the next section. In the mean time we are interested 

in providing a simple extension to the latency model by taking the non-uniform link 

utilisation into account. We will do so based on the previous assumptions extended 

by the following: 

1. The cave world model presented in [118] is an accurate representation for the 

graph (see figure 3.9). 

2. A typical message will exit a node through a shortcut, and will continue to 

travel using only shortcuts until the cluster where the target resides is reached. 

3. Once the cluster where the target node resides is reached the message will 

make one (and only one) additional jump (using normal edges, not shortcuts) 

if it still has not reached its destination. 

4. Each node in the system has at least one shortcut connected to it. 

5. There are only two classes of edges (shortcuts and local edges). 

6. Packets are distributed evenly through all edges belonging to a given class in 

the network. 

Note that assumptions 2 and 3 above, are a consequence of the first assumption 

which states that the cave world model is a correct representation of the graph. 

We begin by noting that there are kL inputs of rate AL (which are the shortcut 

channels), ks inputs with rate As, and the inputs and outputs of the local processor 

with rate AI = Ao = J.L into a multiplexer. The number of these edges in a node are 

given as: 

kL - 1 + ko¢ 

ks - ko - 1. (3.56) 

Note that due to assumption 4 there is at least one shortcut connected to the node 

when ¢ = O. This is necessary to guarantee that the cave-world model is connected, 

and to simplify the analysis. Furthermore note that the total node degree remains 

constant and equal to ko. 
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An average packet will encounter L + 1 multiplexers and L edges in its path (the 

packet arrives at the first multiplexer via an internal link). Therefore according to 

the cave-world model depicted in figure 3.9, a packet will traverse L - 1 shortcuts. 

It follows that the probability that a packet will exit the switch through a shortcut 

is given as: 

L-1 
PL =-=-, 

L 
(3.57) 

and that the probability of a packet being switched to a local exit channel is: 

(3.58) 

where the first term accounts for the probability of a packet not using a shortcut 

channel, and the second term is the probability of a packet having reached its final 

destination (and therefore not requiring an additional hop via a local channel). 

Finally the probability of a packet being ejected into the local processing element is 

simply: 

1 
Po = =--. 

L+1 
(3.59) 

Using these probabilities, one can determine the different traffic rates as follows: 

AL 
AT 

- PL-
kL 

AS - Ps AT 
ks 

Al - Po AT, (3.60) 

where the total traffic at the multiplexer AT is the same as in the uniform link 

utilisation model (since it is a function of the total traffic in the network, which 

remains fixed). Alternatively it can be derived by noting that once equilibrium has 

been reached the injection and ejection rate need to be equal, AO = Al = p" which 

gives the total traffic as: 

AT - kA 

- p,(L + 1). (3.61) 
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We proceed as before, by noting that the degree distribution is given byeq. 3.49, 

and that the expected arrival rate and the expected variance in the arrival process 

for a node of degree ko + ~ (where the additional edges belong to the shortcut class) 

are given by: 

e(ko +~) - (1 + ~)AL + (ko - 1).-\8 + J.L 

V(ko +~) - (1 + ~).-\L(1 - AL) + (ko - I)As(1 - As) + J.L(1- J.L). (3.62) 

The average waiting time at a multiplexer can be calculated as follows: 

AM 

Tmux = L (P(k = ko +~) w(k = ko + ~)). (3.63) 
A=O 

As before, the largest degree (~M) will cause saturation in the network when 

e(ko + ~M) -+ 1, which gives the corresponding message probability as: 

J.Lsat = (L + 1) (~M (L - 1) + L + ko¢)' (3.64) 

The model can be extended to non unit packets by scaling the waiting time in the 

multiplexer w(k) and the message generation probability by the message length (as 

before), giving the total latency as: 

T = (L + I)(Tdec + Tmux) + B. (3.65) 

3.8.1.2. Model Validation 

A discrete event simulator has been created in order to validate the model. The 

simulator has been integrated into the INADS system described in appendix B. The 

simulator has been written in around 2000 lines of C++, and is compatible with the 

assumptions used to derive the model. In particular the following assumptions and 

specifications have been met: 

• The switching method is virtual cut through. The switch can be either the 

multiplexer based switch shown in figure 3.8 or a non-blocking crossbar switch, 

which provides better performance than the multiplexer design. 

• Messages are generated by an independent Poisson process. The destination 

for each packet is selected randomly from all of the possible destinations. 
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• All messages generated are of a fixed length. 

• Messages are delayed by a decision time at each switch they visit. The time 

can be specified by the user. 

• Routing is restricted and follows the shortest path between source and desti­

nation. 

• Simulations are run until the collected statistics converge to a final value with 

a given accuracy. 

• All queues are of infinite size. 

To validate this model, simulations were carried out, and the results show a good 

fit of the data at low transmission probabilities (fig. 3.11). However near saturation 

this is not true. We believe this discrepancy arises from the approximations used 

to determine the characteristic length of the graphs. The model is very sensitive to 

changes in the characteristic length, especially close to the saturation region. 

3.8.2. Discussion 

It is interesting to investigate the effects of varying the rewiring parameter ¢ to the 

latency of the graphs. We will do so using the analytical model derived in section 

3.8.1.1. This is shown in figure 3.12, where the average latency of a 128 node ring 

is shown as a function of the rewiring probability (¢). As it is apparent when the 

message probability is low enough (J.L < 0.004 in the graph) there is a reduction 

of latency as ¢ is increased. For the cases where the message probability is larger, 

the model predicts a saturation for small values of the rewiring probability, while 

for larger values the latency is reduced, as can be seen in the plot. This is due 

to the fact that when the rewiring probability is low, only a very small number 

of shortcuts are present, which can cause saturation if enough traffic is injected; 

however when ¢ is increased and a much larger number of shortcuts appear, latency 

becomes lower. This is experimentally confirmed by the plot of figure 3.13, where 

experimental measurements for the latency and average length of the same graph 

have been obtained, and a similar phenomenon can be observed. 

These results have been derived for networks using the multiplexer switch shown 

in figures 3.8 and 3.10, which suffers from a poor performance when compared with 

other alternatives, such as a non-blocking switch; so it is natural to investigate if 

the same behaviour is observed when using such a switch. These work has been 
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Figure 3.11.: Latency in ring RSW networks. The figure shows experimental values 
obtained from the simulator against the non-uniform link utilisation 
model from equation 3.65. In all graphs Tdec = 1 and B = 32. 
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Figure 3.12.: Analytical Small-World latency plot of a 128 node ring (k=6, Tdec = 1, 
0=32). The figure shows the effect of varying the rewiring probability 
to the average latency of the graph using the analytical expressions for 
average latency (eq. 3.65), and the average length from the Newmann 
and Watts model (eq. 2.10). 

carried out by using the discrete event simulator, and results are shown in figure 

3.14. As shown in the figure, similar results are observed. When the communication 

probability J.l is small, latency is mostly determined by the characteristic length. 

This means that latency is reduced by the rewiring process of the RS\V network. 

However when traffic intensity rises, saturation starts to appear near the centre of 

the graph, and become larger as more traffic is present in the network. 

As the simulations and models show, these "premature" saturations are generated 

when the graphs have only a few number of shortcuts (probably just one); when 

the number of shortcuts rises, there is a steep decrease in latency. By choosing a 

network outside of the saturation region, it is possible to have a network with lower 

latency than the original network; and as figure 3.14 shows, it is even possible to 

have a network with lower latency and a lower saturation threshold than the original 

network. However it is also desirable to choose a network generated with a small 

rewiring probability, as less shortcuts are needed and most of the original network 

structure is maintained. 
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3.9. Congestion 

In the previous section the problem of premature saturation, where traffic flowing 

through a very small number of shortcuts causes saturation, was identified. The 

determination of the exact conditions which lead into this problem are quantified 

in this section. \Vith the aid of the results provided in this section it is possible 

to identify the critical point where premature saturation will occur, and design an 

interconnection network to avoid this problem. 

The congestion of a graph is determined by the routing algorithm, the commu­

nication pattern and the interconnection network itself. An oblivious routing com­

munication algorithm assigns a unique predetermined path for packets with a given 

source and destination. If the path PS -+T is the path followed by packets injected 

at S and consumed at T, then the routing graph for the source node S is simply 

the directed graph Rs = {PS -+TEG }' Note that Rs is in general not simple, since 

multiple edges are allowed. If the routing algorithm is minimal then the routing 

graph can be represented by the weighed spanning tree Ts where the weight of an 

edge is simply its multiplicity in Rs (there are no loops, since a loop would imply a 

packet is misrouted). The congestion of an edge is Ke = I{e = I, IE E(RsEG)}I, 

and the congestion of a graph G is the maximum congestion of any of its edges: 

KG = max {KeEG }. (3.66) 

We are interested in providing a mathematical model of congestion for RSW 

graphs in order to fully understand these effects. \Ve will do so based on the branch­

ing model proposed by Moukarzel as follows. 

Define the volume Vn(t) to be the number of nodes with n shortcuts in their 

shortest paths from the origin. The initial sphere's volume is Vo(t) because paths to 

nodes in it do not traverse any shortcuts. The volume Vn(t) is the sum of all spheres 

stemming from Vn-1(t' < t) (see fig. 3.15). Suppose that we follow the development 

of the set of spheres forming Vn. For all t < n, Vn = 0 since any shortest path 

for a node in Vn needs to contain at least n shortcuts. The sphere starts to grow 

at time t = n, and every time a shortcut is reached, a new sphere is formed at a 

random location, provided the aforementioned location is not already infected (which 

happens with probability Li~n ~(t)/N). This probability is ignored in Moukarzel's 

model, and will also be ignored here in order to simplify the calculation. Therefore 

the volume can be expressed as: 
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VI 

V2 

VI 

Figure 3.15.: Congestion model for a RSW graph. Suppose a disease starts spreading 
from the centre of the large sphere, as discussed previously (fig. 3.6). 
The volume Vo(t) is simply the volume of the large sphere (VO), since 
shortest paths to nodes in VO do not traverse any shortcuts. The 
volume lJi(t) is formed by the spheres labelled VI in the figure, since 
shortest paths between nodes in these spheres and the source node 
traverse one shortcut. 

Vn(t) - rdP it (t - r)d-1Vn_1(r) dr 

~ rdP it (t - r)d-1Vn_1(r) dr, (3.67) 

where the second expression will tend to over-estimate the volume. Noting that 

Vo(t) = rdtd/d and performing the integral it follows that: 

v. (t) ~ rn+lpd (d - 1)!n+l t(n+l)d 
n d ( (n + 1) d)! . (3.68) 

It is apparent that Vn -+ 0 for large n and small p. To make this point more 

precise, note that for t = tsat the ratio Vn+l/Vn is given by: 

Vn+ 1 (t sat) _ (( n + 1) d)! 1 ( r N) d 
- , n Pd. 

Vn(tsat) ((n + 2) d). 
(3.69) 

The traffic injected into the shortcut network is simply: 

D~t.at 

T, = L n Vn(tsat), (3.70) 
n=l 
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which is completely determined by the distribution of Vn , and the diameter of 

the network, tsat . There are two problems for evaluating eq. 3.70. The first one 

is that the expressions for Vn and tsat diverge at the critical point r dP = 1/ N. 
Congestion is likely to be at its largest near this point, since there are a very small 

number of shortcuts present in the network, which attract a large number of routing 

paths. The second reason against the direct evaluation of eqs. 3.68 and 3.70 is 

that the expression for Vn overestimates the volume as previously discussed such 

that L Vn(tsat) > N. This divergence increases with increasing p, since contention 

between all growing spheres (which is ignored in the model) becomes larger. 

These points will be illustrated more clearly for the one dimensional case. The 

volumes are given by: 

Vn(t) = 4k¢> 1t Vn_I(T)dT, 

with Va(t) = 2kt, which has the solution: 

v. (t) = 2k (4k¢>t (t + l)n(t - n) 
n (n + I)! . 

(3.71) 

(3.72) 

The ratio Vn+I(t)/Vn(t) is an important characteristic of the system and is given 

by: 

4k¢>(t + 1)(t - n - 1) 
(t - n)(n + 2) 

'" 4k¢>t/(n + 2), (3.73) 

where the last equation is the asymptotic limit for t » n > 1. Equation 3.73 

implies that there is a critical point for any given n where Vn+l(t) > Vn(t). For the 

final volumes Vn(t = tsat ) the critical point for each n is 4k¢>tsat/(n + 2) = 1, and 

the fundamental critical point is 2k¢>tsat = 1, since at this point the volume Va = VI· 

For values larger than this critical point there is an inversion of the distribution, 

such that Vo < VI < ... < Vn, for a given n' ; in other words there is a transition 

from a large world network into a small world network at this point. The saturation 

time at this point is given as t:at = 1/(2k¢>'), where ¢>' is a function of Nand k. 

The total number of nodes whose shortest path to the destination involves n 

shortcuts is simply Vn(tsat), where tsat is the diameter of the network determined 

for instance in eq. 3.23. It is possible now to apply eq. 3.70 to obtain a rough 

approximation of the traffic through the shortcuts, subject to the divergences dis-
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cussed when deriving equation 3.70. The direct evaluation of the sum is difficult, 

but by noting that the largest congestion is caused when a relatively small number 

of shortcuts are present in the network (Le. k¢ ~ 1/ N), and that at this point of 

operation Vn»l -+ 0 according to eq. 3.73, it follows that it is possible to approx­

imate the traffic by taking the m first few terms of 3.70 (in fact the use of only 

the first term provides an acceptable solution, as will be shown later). Here we will 

try to accelerate the convergence of the approximation by accounting for the nodes 

contained in the rest of the series, by noting that: 

t.at m 

L Vn(tsat ) = N - L Vn(tsat ), (3.74) 
n=m+l n=O 

so the traffic caused by the source node can be approximated as: 

T,m = tv n Vn(t,a') + (m + 1) (N - tv Vn(t,a,») . (3.75) 

The congestion can be estimated by considering that there are a total of N nodes 

in the network, and that each injects Ta paths into the shortcuts network, which 

consists of k¢N edges. The average congestion per link is therefore given as: 

T.m .... _ s 
""m - k¢· (3.76) 

Due to the errors introduced in the derivation of the volumes Vn and in the 

saturation time, and in particular since no contention between growing spheres is 

included in the model, in general E~o Vn(tsat ) > N and the congestion becomes 

negative. 

Quite remarkably, a better approximation can be constructed by only consider­

ing the term Vo to calculate the congestion. This is because the volume Vo(t) is 

determined by an exact expression and there are no errors in its calculation. To 

obtain the traffic, however, Vo(tsat) has to be evaluated, and any divergences in the 

approximation of tsat will be incorporated into the traffic estimate. 

T,J - (N - Vo) 

which gives the congestion as: 

_ N _ prdt~at 
d ' 

73 
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N _ prdt~Qt 
JC= d 

k¢ 
(3.78) 

The resulting model is shown in figure 3.16 , where different expressions for the 

saturation time are used. As it is apparent, the use of the diameter obtained in 

the mean-field approximation provides a well behaved model, although it does not 

provide a good approximation for small values of 1>, since the model diverges at 

these points. The use of the saturation time in Moukarzel's model provides a better 

estimate for the critical region; however it fails to provide a good approximation for 

very small values of ¢. This, however, is of no practical importance, as a designer 

would be interested in evaluating the point where the congestion is lowered to a 

given amount (such as the point of half congestion shown with a small red vertical 

line in the figure). 

The models provide a good fit to the actual values near this point (in particular 

when using the saturation time derived in Moukarzel's model), although some de­

viations are observed in small systems with large degrees (subgraphs g, j and k). It 

is also shown that the best approximations are obtained when the actual diameter 

is used (as measured from the respective graph) as expected; although it is not nec­

essary to resort to experimental data as purely analytical models provide adequate 

results. 

3.10. Conclusions and Summary of Results 

A new family of interconnection networks has been presented and analysed. The 

main advantage of these networks is that they posses a very short diameter and 

average length, while maintaining most of the structure of the original network (and 

therefore providing a deterministic and well organised local network) where locality 

of information can be exploited. These characteristics make them very suitable for 

use as the interconnection network of a multicomputer. Analytical expressions for 

some of the IlS\V graph characteristics have been derived, including diameter, degree 

distribution, switch complexity, congestion, bisection width, latency and routing. 

It has been shown that the IlSW networks are expandable, as for 1> > 0, their 

bisection width grows as O( 1>N) = O(N), which is the same as the expected increase 

in traffic. However there is a constant penalty to be paid and to small values of 1> 
will correspond small values of maximum throughput. 

Through theoretical work and simulations, it has been determined that latency 

can be reduced by the use of IlS\V networks under certain conditions. This is accom-
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plished by introducing a number of shortcuts via random rewiring on the underlying 

network. When the number of shortcuts is lower than a critical limit, congestion will 

occur on them as a large number of packets are diverted towards them. However, as 

the number of shortcuts is increased the traffic is distributed more evenly and since 

the average number of hops is reduced, so is latency. This crossover point has been 

identified, and analytical expressions have been provided. Simulations using random 

traffic have confirmed that premature saturation can occur in a RSW network when 

the rewiring probability is smaller than this critical value. Although it is always 

possible to provide a large enough number of shortcuts to ensure premature satura­

tion does not occur, it is important to keep in mind that in the case of light or spare 

traffic, latency is reduced even with a very small number of shortcuts. Premature 

saturation is a problem if a moderate to large traffic with a general distribution 

is expected. On the other hand for communication patterns with a high degree of 

locality a very small number of shortcuts can prove sufficient to support the small 

inter-cluster traffic, even under large traffic conditions. 

The routing algorithm used in the simulations is based on the shortest path be­

tween source and destination. Since randomness is introduced to the network, it is 

convenient to use a look-up table (LUT) to assign routes to packets. To simplify 

the router design, it is possible to use a pseudo-random number generator or other 

deterministic mechanism to randomise the network. In this way the rewiring is 

done in a deterministic way, and it is not necessary to use a LUT. Such a system is 

described in Section 4.2. 

The main drawback of RSW networks, is their lack of regularity and an increased 

degree. In order to create regular networks, the rewiring process can be modified, 

as described in the next chapter. If an adequate rewiring process is used the main 

results derived in this chapter should still be applicable. It is also possible to generate 

regular graphs by modifying the rewiring process to do so, and indeed in section 6.3 

this approach is used to construct regular clusters. 

An analysis of the fault tolerance of the networks has not been carried out in this 

work. It is expected that the introduction of random shortcuts will significantly 

enhance the fault tolerance of the underlying graph; and that this enhancement 

will mimic the behaviour observed for other small-world characteristics, such as 

the diameter and average length, where the introduction of a very small number 

of shortcuts significantly modifies the characteristic, while gains beyond a certain 

point only provide modest improvements. 
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Superposition 

4.1. I ntrod uction 

According to the multiple scales hypothesis in [10], randomness is not a fundamen­

tal requirement for the construction of small world networks, and it is possible to 

recreate the phenomena with a deterministic process. The construction of determin­

istic small world graphs provide substantial benefits over random implementations 

as regular graphs can be created, efficient routing algorithms can be designed, and 

the network becomes conceptually simpler. 

Random regular graphs are attractive because for a given degree and order they 

provide diameters very close to the theoretical minimum [110,112]. However random 

graphs do not make very good interconnection networks for a number of reasons 

which have already been discussed i.e. they do not provide a way to exploit locality, 

they do not possess useful algorithmic properties and the memory required to store 

a description of the network grows as O(N2). 

Deterministic small-world communication networks have already been proposed 

by Comellas et.al. [139] who proposed a two step construction mechanism. On the 

first step some nodes of the original graph are connected according to an additional 

deterministic graph, and in the second step edges are reconnected according to cer­

tain rules to recreate the regularity. In [140] Comellas et. al. propose a different 

approach in which nodes of the underlying graph are replaced by completely con­

nected graphs, which are in essence product graphs of node symmetric networks 

with complete graphs. 

In this chapter a new class of interconnection networks inspired by the small­

world phenomenon, chordal graphs and the multiple scale hypothesis is introduced. 

Unlike [139,140] the graphs are created by a direct one step process and are not 

product graphs, but still have a fixed degree and a low diameter, and can be scaled 

to large system sizes. The graphs are formed by the additive superposition of two 
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graphs (Cs + Cd. The underlying graph Cs provides a strong local clustering 

(which aids in exploiting the locality of information), while the long range graph C L 

provide an efficient inter-cluster communication medium. C L is constructed with the 

aid of one (or more) functions or algorithms A, where node u is connected to node 

A( u) . Note that using this definition there is one and only one shortcut end assigned 

to each node. Since the critical crossover point where the network changes from a 

large to a small world occurs near the region where there is only one shortcut in the 

network [8], the creation of N shortcuts should guarantee a small diameter. However 

it is important to keep in mind that enough shortcuts need to be introduced not only 

to reduce the diameter of the network, but also to avoid congestion, as described by 

eq. 3.76. In general the traffic increases as a function of the network size which is 

O(N), and since the available bandwidth also grows as O(N) congestion should be 

low (assuming traffic is distributed evenly through the network). 

For A we are interested in functions with the following characteristics: 

1. Multiple scales need to be generated 

2. All networks constructed should be kL regular 

3. Only undirected graphs are considered, which implies that for any two nodes 

u, v the function needs to be symmetrical: A(v) = u ---+ A(u) = v. 

4. A should define a closed group: Vv E C, A(v) E C, and because of (2), A 

needs to be bijective and cover the whole set. 

With the aid of A and C s a very large family of deterministic small-world graphs can 

be defined, QD(CS, A), where the edge set is given as E = Es+{(v, A(v)) : v E Vs}, 

and Es and Vs are the edge and node set of C s respectively. 

A large amount of suitable functions can be constructed, and although it is im­

possible to analyse all of them, it is expected that graphs generated with any such 

function will have similar characteristics as that of a random small world inter­

connection network, with the additional benefit of being deterministic and regular. 

In the remainder of this chapter a suitable function is identified and the graphs 

generated are analysed, and shown to have all of the desirable properties of a ran­

dom small-world network, while providing the additional benefits of a deterministic 

graph. 

Finally it is important to note that since the graphs will be designed to incorporate 

a large number of scale lengths, long wires will be present in the system. The multiple 

length scale hypothesis implies that a collection of wires of all lengths are required 
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(a) Fibonacci 

(b) Galois 

Figure 4.1.: The figure shows the Fibonacci and Galois implementation of a linear 
feedback shift register (LFSR). The two implementations are equivalent 
and will produce the same output sequence, although at a different 
phase. 

to reduce the average length of a graph; unfortunately these have the inconvenient 

of requiring more power to drive and introduce larger delays than short wires (which 

for simplicity have been left out of the models derived in this work). 

4.2. Linear Feedback Shift Register Graphs 

Functions based on linear feedback shift registers (LFSR) are interesting candidates 

for A, as they are commonly used to produce pseudo random numbers. An n­

bit LFSR is composed of an n-bit shift register and a feedback function. In the 

Fibonacci implementation the feedback function is the bit sum of a subset of the 

elements of the shift register. At each clock cycle the contents of the shift register 

is shifted one position, and the empty space is filled with the value produced by 

the feedback function. An alternative implementation is the Galois LFSR, in which 

at each element of a subset of elements of the shift register, and additional sum is 

carried out with the output of the shift register, as it is shown in figure 4.1. 

Doth implementations are equivalent, and will produce the same output sequence 

(at a different phase however). Formally these systems can be described by a state 

vector 8 = (SI' S2,"" sn) and a transition matrix T, such that 8tH = 8t • T 
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(all operations are carried out over the Galois Field GF(2)). Associated with the 

transition matrix there is a generator polynomial G(x) = 2:::0 Cjxi with Cj E G(2). 
The coefficients of this polynomial can be evaluated directly from the subset of 

elements in the feedback function (i.e. coefficient Cj is one if there is a "tap" at 

element i in the Galois LFSR, or at element n - i in the Fibonacci LFSR; and 

Co = en = 1). 

The output of a LFSR is a linear recursive sequence of length 1 < 2n , which 

depends on both, the characteristic polynomial P and the initial state So. When 

the polynomial is primitive meaning it cannot be factored (i.e it is prime), and it 

evenly divides xm + 1 where m = 2n+ 1 the LFSR produces maximal length sequences 

(sequences with 1 = 2n - 1) [141,1421. (This is because consecutive products of any 

of its roots generate all the 2n - 1 non zero elements of G(2n)). 

The complexity of a binary sequence is defined by the amount of the sequence 

required to define the remainders; therefore a maximum length sequence from an n­

stage LFSIl has minimum complexity, however such sequences appear to be random 

[1421. For this reason we will restrict ourselves to maximum length sequences; since it 

is important to recognise that any given sequence can be produced by an appropriate 

linear generator [143-1451. 

4.2.1. Construction and Definition 

An LFSIl graph £(9, P) is formed by the additive superposition of the underlying 

labelled graph 9 (which is usually a regular, symmetric and highly clustered graph 

with a large diameter) with the state transition graph of the maximal sequence 8 

defined by the LFSIl with primitive characteristic polynomial P = xm+am_lXm - 1+ 

... + alX + 1 where 2m+! = 191. The labels for the nodes of 9 will be denoted as 

Vn = {O ... Igl}. Two LFSIl graph implementation are possible: 

Note that both implementations are very similar, since the endpoints of the ad­

ditional edges differ in one unit. Furthermore note that the starting vector 8° is of 

limited importance, as its effect is only to shift the sequence. A complete family of 

LFSIl graphs for g = 'R2,128 is shown in figure 4.2. 

The degree of £, is t:,.c, = t:,.r; + 1, a direct consequence of the maximality of 8 
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(a) P =4 + (b) P= 57+ (c) P = 54+ 

(d) P = 33+ (e) P = 51+ (f) P = 45+ 

(g) P= 4 - (h) P = 57- (i) P = 54-

U) P =33- (k) P = 51- (1) P = 45-

Figure 4.2 .: The family of LFSR graphs with Q = 'R.2,128 · 
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(which of course is a result of the primality of P), and if 9 is regular, 9 will also 

be regular with degree fj.c. Note however that it is possible (and very probable) for 

.c to have repeated edges which can be removed if desired (however then the graph 

will no longer be regular). 

The diameter of .c has the trivial lower Moore bound D > logk N. An upper 

bound can be constructed by noting that no regular connected graph can have a 

diameter lower than that of a k-ring of the same size. Using the upper bound derived 

for ring graphs in section 4.3 (eq. 4.7) it is obvious that D < 4(log2 N -log2 2k - 3) 

for large enough N (this expression is congruent to the one given in [67]). As shown 

in figure 4.5 this is not a tight bound and it should be possible to provide a more 

accurate one. 

4.3. LFSR Ring 

A suitable choice for the underlying graph 9 is the ring Rk,2m, since it provides 

a strong locally connected graph, but it suffers from poor global connectivity. A 

family of such graphs has already been shown in figure 4.2. We will proceed to 

analyse such graphs; we will focus on the properties of the deterministic subgraph 

.c+(nk,2m), from which several properties can be extracted, and a routing algorithm 

can be designed. 

4.3.1. The Subgraph .c,+(Rk,2m ) 

It is obvious by looking at 4.2 that the graphs generated do not appear random. 

The most apparent deterministic feature is an anticlockwise spiral present in all 

graphs. This effect has a very simple explanation; when the most significant bit of 

the shift register is zero, the effect of the LFSR is simply to multiply by two; so for 

all elements Sf = {Si < 2m /2} the next element is determined as Sf+! = 2Sf and 

we have that: 

(21, 41 + 1) E E(C+) 

(21 + 1,41) E E(C-) (4.3) 

Several properties can be derived from this observation. We start by defining 

the subgraph C(n1,2m ) = n 1,2m + {(21, 4f + 1), 0 < 1 < 2m /2}, which is formed 

by the ring and the edges defined in eq. (4.3). .c(R1,256) is shown in fig. 4.3. 
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4. Deterministic Constructions by Superposition 

Figure 4.3.: The graph .c+(R I , 256) . 

Now define th et of int ger number ~ = {x : 2i ~ x < 2i+1, x E Z}. For 

the cas of.c+ w d fine th equence Qi(t) = 2i , 2i + 2, 2i + 4, ... ,2i+1 - 2, with 

1 < i + 1 < m - 1. ote that these are the 2i
-

1 even numbers of~ . For each of 

the numb r h r xi t an dge according to (4.3), who e endpoints are given 

by th qu n Q~ (t) = 2Qi(t) + 1 = 2i+l + 1, 2i+1 + 5, . . . , 2i+2 - 3. Note that 

2i ~ Qi < 2i+l nd al a that 2i+l ~ Q~ < 2i+2. This implies that each of these 

dge ha an ndpoint in ~ and the other in ~+I. Furthermore, note that the 

lement of Q~ r all odd and that Q~ (t + 1) - Q~(t) = 4, for all 2 ~ x < m. With 

th b rvation, th i am rphi m hown in fig. 4.4 can be constructed. Note 

al 0 that if n ighbour nod a = (an, an- I , . . . aI, 0) and b = (bn, bn- I , . .. , bl , 1) 

are can r ct d into a ingl vertex, a panning binary tree can be constructed (with 

a mall app ndix to h root node, node 2) as shown in the same figure . 

Diameter 

The diamet r of h graph i obtain d r cur ively with the aid of the spanning tree 

hown in h fi gur. Fir t we define an as ociated function D~ , 2 ~ i < m to be the 

maximum di an e b tw en all pairs of node in Qi C ~ (these are the nodes that 

are ann ct d to ~+I ). In hear ven and all elements of Q~-l (which are 

the ndpoint of dg from ~-l to ~) are odd (and eparated by four edges) , there 

i alway a pa h of length not xceeding 2 between a node in Qi and some node in 
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4. Deterministic Constructions by Superposition 

(a) 

(b) 

Figure 4.4.: Isomorphisms of .c+(R1,64)' (a) Shows the construction of the sets R.n. 
Note that the diameter of the subgraphs formed by these sets is ~R ::; 
~Rn +2. In (b) the construction of a spanning tree is shown. Note that 
the dashed lines are not edges of the graph, but are used to show the 
structure of the tree. 
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Qi-l (this path is the corresponding edge of the binary tree shown in the figure). 

Therefore: 

(4.4) 

The initial condition of this recursion is taken as the largest D~ such that D~ < 
4 + D~_l. This can only occur when the diameter of the ring ~ is tl~ < 4 + tl~-l' 
which gives: 

(4.5) 

and the initial condition as i = 3 and D; = 4, which gives D;~3 = 4(i - 2). The 

diameter is obtained by noting that the largest distance between a node in Rm-l 
and the closest node in Qm-l is 1 (since Qm-l is formed by the even nodes of Rm-d, 
which would give the diameter tl£(R1,2m) = 4(m - 3) + 2. However this reasoning 

docs not take into consideration nodes in {O, 1, 2, 3}. The largest distance between 

these nodes and Q2 is 4, so the diameter will be dominated by this distance for all 

Ri >2 such that 2(j - 2) + 1 + 4 > 4(j - 2) + 2, which gives the smallest R not affected 

as R4 . However it is also true that the distance between node 6 and the furthest 

node in Rm-l should be larger or equal to the distance [0,6, which gives the critical 

value iaas the smallest solution of: 

which is a tighter bound, and the diameter is: 

tlc'+(n m) = { 2(m - 3) + 5 
1,2 4m - 10 

Some values of eq. (4.7) are tabulated in table 4.1. 

m < ia + 1 

m > ia + 1 

(4.6) 

(4.7) 

This model can be extended for rings with k > 1. Two changes are required 

to determine the diameter of £+(nk>1,2m). The first is a change in determining 

the initial condition of the recursion in eq.4.4. Again it is taken as the largest D; 
such that D~ < 4 + D~_I; however the diameter of the ring ~ is now given as 

tl nk , N = r N / (2k) 1- Therefore the initial condition is the smallest i which satisfies 

tl~ ~ 4 + tl~-I' which gives: 

f2
iC 1 > f2ic

-

1l 2k - 4 + 2k ' (4.8) 
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1
m II k=1 I k=2 I k=4 I k=8 I AI T I A I T I A I T I A IT 
3 5 $5 3 $3 1 <2 1 <1 
4 6 $7 4 $5 2 <4 1 <2 
5 9 $9 6 <7 4 <6 2 <5 
6 13 $14 8 <9 6 <8 4 <7 
7 18 $18 12 $12 9 <10 6 <9 
8 22 <22 16 <16 12 <12 9 <11 
9 26 $26 20 $20 16 <16 12 <12 
10 30 $30 24 $24 20 $20 16 <16 

Table 4.1.: Diameter of C+(Rk,2m). Model predictions (T) are shown next to the 
actual values (A). 

and for k = 2x the initial condition is found at ic =4+log2 k, and D~c = 8,which 

gives the diameter as: 

(4.9) 

This calculation, again, does not take into account nodes {O, 1,2, 3}, which can 

be considered by noting that the largest distance between these nodes and Q2 for 

k > 1 is the diameter of the ring Rk,12 = r6/k 1 (the largest distance between nodes 

in {O, 1,2, 3} and nodes in Q2 is [0,6)' The diameter will be dominated by this 

distance for all Rj >2 such that D; + 2(jc - 2) < r6/k 1, which gives the critical value 

jc as the largest j < a6/k 1 +3)/2. However it is also true that the distance between 

node 6 and the furthest node in Rm-1 should be larger or equal to the distance lO,6 

for eq.4.9 to apply, which gives the critical value id as the smallest solution of: 

(4.10) 

which is a tighter bound, and the diameter is: 

D.C+(Rk 2m) = { 2(m - 3) + r~l 
, 4(m -log2k - 3) 

(4.11) 

A table showing a number of experimental measurements and expected values is 

shown in table 4.1. 
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Figure 4.5.: Diameter of all the graphs in the family £(Rk •2m, P), (k={l, 2, 4, 8}, 
m={ 4, ... ,10}, and all primitive P). The actual values (labelled "Mea­
surement") are plotted against the diameter of the subgraph .c+ (Rk • 2m) 
from eq. (4.11) which is labelled "Upper", the Moore graph labelled 
"Lower", and the expected diameter from eq. 4.12, labelled "Med". 

4.3.2. Diameter of C(Rk,2m , P) 

The diameter of the full LFSR graph C,(Rk • 2m, P), is bounded by the diameter of 

the subgraph c'+(Rk.2m) given in eq. (4.11), which is the upper bound, and by a 

Moore approximation providing a lower bound. We are interested in providing a 

better approximation. This is easily accomplished by use of eq. (3.12), which gives: 

(4.12) 

The different bounds as well as eq. (4.12) are plotted against actual values in 

figure 4.5. 
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4. Deterministic Constructions by Superposition 

4.3.3. Routing 

A simple greedy distributed routing algorithm can be constructed from the obser­

vations made in section 4.3.1 regarding the subgraph £+(Rk,2m). We will construct 

a greedy routing algorithm based on computing the routing distance through the 

underlying ring graph, and through the subgraph £+(Rk,2m). The algorithm selects 

the route based on the shortest distance. However, during this process a number 

of shortcuts are reached; at these points a routing decision is made, and if it is ad­

vantageous packets will be re-routed through the shortcut. Two functions for each 

graph are required to perform the routing task; one which determines the routing 

distance between two nodes d(u, v) and one which determines the exit node of an 

incoming packet, called the continuation function e( w, v), (provided an intermediate 

node w, and the given destination v are known). 

The routing distance between two nodes (rR. (s, d) in Rk,2m is given as 

d<s 

The continuation function for the ring is simply: 

En(S, d) = 

d 

(n+s-k)modn 

(n+s-k)modn 

(s + k)modn 

8n (s, d) :s; 1 

d - s > n - d + s, 8n (s, d) > 1, d 2: s 

s - d < n - s + d, 8'R. (s, d) > 1, d < s 

otherwise 

( 4.13) 

(4.14) 

For the subgraph £+(1~k,2m) we begin by constructing a binary tree as shown in 

figure 4.6. Neighbouring nodes are merged and renamed by simply dropping the last 

bit; node U = (un, Un-I, ... , uo) becomes u' = (un' Un-I, ... , UI). Furthermore, 

nodes 0 and 1 are merged into node u' = 0 and attached as an extra appendix to 

node u' = 1 (which is the base of the binary tree). A simple optimal tree routing is 

used, based on routing packets through the root of the smallest subtree containing 

the current (i) and destination (d) nodes. This function is given as: 
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m > n, VO ~ j ~ n, in - j = dm - j 

otherwise 
(4.15) 

where in = 1 is the most significant bit of i which is equal to one (n = max{n : 

in = I}) and dm = 1 with m = max{m: dm = I}. 
If we call r the base node of the subtree containing i and d. The node r = 

(in, i n - l , ... , ij ), where j = max{j : VO ~ x ~ j, in- x = dm- x}. The distance from 

r to i is simply ir,i = n - j, and similarly ir,d = m - j, which gives: 

OTree(i, d) = m + n - 2j. (4.16) 

To obtain the corresponding expressions for the subgraph £,+ (Rk , 2m) we refer to 

the explicit tree construction shown in figure 4.6. As the figure show, for routing 

purposes virtual nodes with two nodes are constructed. Note that some nodes are 

shown as smaller circles next to a virtual node. In particular, nodes v = 4S + 3 for 

all 0 ~ S < N/4. are of this kind and do not form part of the subgraph £,+(Rk,2m). 

In order to provide a routing path for these nodes we will choose to include them 

in the virtual node 2S + 1, as shown in the figure. Note that other solutions are 

possible (Le. assigning them to the other virtual node; or dynamically assigning 

them to the virtual node which provides the shortest path); however since the final 

version is a greedy routing algorithm which at each step looks for the best path, this 

decision is not important. 

In addition to the tree structure, there is an appendix to the root node, formed by 

nodes zero and one. The virtual nodes are formed according to the following rules: 

io = 0 

i 1 = 0, io = 1 , 

i1 = 1, io = 1 

(4.17) 

where the last rule is used to assign routes for nodes not in the subgraph £,+(Rk,2m). 

Equation 4.16 can be used to obtain the routing distance in the graph. However we 

need to consider the effects introduced by the virtual nodes, and also of the additional 

nodes. If we proceed as before, and call r the base node of the subtree containing i' 

and d', then r = (i~, i~_l' ... ' i~), where j' = max{j : VO ~ x ~ j, i~_x = d'm-x}· 
The distance from r to i' is simply lri' = n' - j', and similarly Lrd' = m' - j'. We are , , 

interested in obtaining the routing distance to get out of the virtual nodes i' and J. 
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1001 1010 

" 
~~~, . '\ 

,:' 0 i \ 
I·. .. 
I ',' I 
, ."', I 0 

• • I 
, :. I .' I 
\."., I 

';.-' 

1011 1100 1101 1110 1111 

Figure 4.6.: Tree construction of the routing graph for the subgraph C+(nk,2m). 
Virtual nodes corresponding to a binary balanced tree are shown as 
dashed ellipses, along their binary labels. Each virtual nodes consist of 
two nodes and are of the form 28, 48 + l(they are the edges from eq. 
4.3), 
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This distance depends on whether we depart the intermediate virtual node from the 

top or bottom nodes, and on whether we arrive at the destination virtual node from 

the top or bottom. The only way for a packet to be routed in the down direction 

from the intermediate node is if the pattern matches; i.e. if n' = /. Similarly, the 

only way for packets to arrive to the destination node from the bottom, is if m' = /. 

The internal routing distance for packets departing from the top of the intermediate 

node, or arriving from the top of the destination node is given by: 

ltop(X) = { ~ Xo = 0 

Xo = 1 
(4.18) 

The internal routing distance for packets departing from the bottom of the in­

termediate node, or arriving through the bottom of the destination node is given 

as: 

X 1... 0 = (0, 1) 

Xo = 0 

Xl...O = (1, 1) 

(4.19) 

The number of complete intermediate virtual nodes traversed by the path is (n' -
/) - 1 + (m' - j') - 1, and in each one there is one (and only one) internal edge 

traversed. Further to this, there is an incomplete virtual node visited (the root 

node), in which no internal edges are traversed. If this node is either the source or 

destination then one additional edge is traversed; otherwise two additional edges are 

traversed. Therefore the total distance is: 

2(n' + m' - 2/ - 2) + 2 + ltop(i) + ltop(d) 

2(n' + m' - 2/ - 2) + 1 + ltop(i) + Ibot(d) 

2(n' + m' - 2/ - 2) + 1 + Ibot(i) + Itop(d) 

Itop(i) + ltop(d) 

n' =f / A m' =I- j' 
, .' A '.../." n =J m rJ 
, .' , .' 

n =fJ Am =J 

n=j A m=j 
(4.20) 

The continuation function is based on pattern matching as in eq. 4.15, however 

it is required to account for the virtual nodes in the network, and of the additional 

nodes. For each kind of node within a virtual node, a specific rule is required. 

Packets will be routed towards the root of the routing tree if the patterns are distinct 

(up direction), and will be routed towards the bottom of the tree when patterns have 

matched (down direction); however packets can only depart from either the topmost 

(if going up), or down-most node (if going down) of a virtual node: 
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d 

up 

top/virtual 

top/virtual 

i n ... 1 = dm ... 1 

io = 0, unmatched 

i1...o = (0,1), unmatched 

il...o = (1,1), unmatched , 

bottom/virtual io = 0, matched 

down il...o = (0,1), matched 

bottom/virtual il...o = (1,1), matched 

which can be rewritten as: 

d i n ... 1 = dm ... 1 

io = 0, unmatched 

il...o = (0,1), unmatched 

(4.21) 

(in, in-I, "', i 2, 0, 1) 

(in, in-I!" ., i I) 

(in. in-I.' ..• i2• iI, 0) 

(in, in-I, "', i o, 1) 

il...o = (1,1), unmatched, (4.22) 

io = 0, matched 

(in, in-I," ., i 2 , dn- m+l , 0) 

(in, in-I"", i 2 , iI, 0) 

i1...o = (0,1), matched 

i1...o = (1,1), matched 

where the strings are matched if'VO ::; x < n, i n - x = dm - x , or if i E {O, I}, 

and unmatched otherwise. Using these expressions, the greedy routing algorithm 

1 can be constructed, where at each intermediate node a routing decision is made 

based on finding the smallest routing distance from the current node, and from its 

neighbours, to the destination. 

This routing algorithm can be extended to search for an optimal route not only 

within the immediate neighbourhood of the intermediate node, but with neighbours 

of neighbours and in general nodes at a depth (distance) h of the intermediate 

node as shown in algorithm 2. It is also possible to use minimal routing by solving 

the single source shortest path problem, which can be done using the Dijkstra or 

Bellman-Ford algorithms. Using the proposed algorithm with a large enough h yields 

the same results, however we are interested in determining if a smaller h can provide 

similar results saving computational effort and resources. 

4.3.4. Discussion 

The routing length and diameter of the the routing algorithms is shown in figure 4.7 

(note that the values have been normalised to the actual diameter and average length 
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Algorithm 1 Greedy Routing in LFSR graphs. 
Greedy LFSR Route (intermediate node z, final node d) 
{ 

JCurr = 00 / /Current minimum distance 
€ = {} / /Node to route to 
iVx=Neighbours(JVx_1 ) 

forall n E iVx 
{ 

} 

if (cfR.(n, d) < JCurr ) 
then { JCurr = In(n, d), € = n } 

if (b.c(n, d) < bCurr) 
then { JCurr = J.c(n, d), € = n } 

Route to f 

} 

Algorithm 2 Greedy Depth Routing in LFSR graphs. 

Greedy LFSR Depth Route (intermediate node i, final node d, depth h) 
{ 

iVa = i 
JCurr = 00 / /Current minimum distance 
f = {} / /Node to route to 
for x=l to h 

{ 

} 

JVx=Neighbours(JVx- 1) 

foral1 n E JVx 

{ 

} 

if (x + cfR.(n, d) < JCurr ) 
then { bcurr = x + c5n (n, d), € = n } 

if (x + c5.c(n, d) < c5curr ) 
then { JCurr = x + c5.c(n, d), € = n } 

Route to € 

} 
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Figure 4.7.: Routing diameter and length normalised to the actual diameter and 
length of the graphs £(Rk•2m, P), (k={l, 2, 4, 8} and P={6, 12, 29, 
54, 123} for m={ 4, 5, 6, 7, 8}(in that order) plotted against the lookup 
depth of the routing algorithm. When the lookup depth is zero, tree 
routing as shown in figure 4.6 and described in eq. 4.22 is used. When 
the lookup depth is one, the simple greedy routing algorithm (algorithm 
1) is used. 
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of the networks). Although simulations were carried out only for modest network 

sizes (up to 256 nodes), some general conclusions can be reached. Networks with 

a relative small degree (compared to the network size) exhibit a slow convergence 

to the optimal value, as shown in (a). In this case there is a large reduction in 

diameter provided by the multiple shortcuts; however it is difficult for the routing 

algorithm to exploit the available shortcuts as only local information is considered. 

As a relative few number of choices are available at each routing step, short paths 

have a small probability of being found. Due to the low convergence rate a full 

shortest path algorithm (Dijkstra, Bellman-Ford) would most certainly be required 

to achieve minimal routing; however it is interesting to note that in the worst case 

the routing diameter is not larger than twice the optimal value. 

These results seem to suggest that for large networks with small degrees there is 

little benefit in using greedy depth routing. However it is also important to note 

that although for these graphs the routing diameter convergence rate is slow, this is 

no necessarily true for the average routing length, where a fast decrease is observed, 

as shown in (b), at least for the modest network size of the graphs analysed. 

For networks with large degrees, the results of figure 4.7 show that a fast decrease 

in routing diameter and average length are observed (sub-figures (e) to (h)), as the 

routing algorithm is able to find shortcuts more efficiently. This seems to suggest 

that a small lookup depth gives close to optimal performance. Larger lookup depths 

give marginal gains, except at the crossover length between large and small degrees, 

where some benefit can be expected, as is evident in sub-figure (c). 

4.4. Conclusions and Summary of Results 

A family of deterministic and regular small-world interconnection networks has been 

introduced. A specific sub-family of parametrised graphs which use a linear feedback 

register as the generator for the shortcuts in the network called the LFSR has been 

proposed. It has been shown that networks in the family have a small diameter. 

An upper bound has been constructed by embedding a binary tree in the graph, 

and shown to grow logarithmically with the size of the graph. However by taking 

measurements directly from ring LFSR graphs the diameter of graphs with a small 

degree in the family has been experimentally shown to be close to the Moore limit. 

Large degree LFSR graphs, on the other hand, posses larger diameters, since much 

of the edges forming part of the underlying graph do not expand as well as the 

additional edges created by the LFSR. Therefore it is expected that networks with 
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a small fixed degree such as the ring, mesh or torus are more suitable to be used 

as underlying graphs than networks with a larger degree, such as the hypercube. 

The LFSR family can be extended to accommodate networks with larger degrees by 

providing a mechanism to introduce a larger amount of additional edges, although 

more research is required to determine the merits of such approach. 

Due to the deterministic nature of the graphs considered in this chapter, sim­

ple decentralised routing algorithms which do not require solving the shortest path 

problem can be constructed. For the LFSR such an algorithm is derived. Unfor­

tunately the present algorithm does not provide minimal routing and makes use of 

a greedy approach in which each routing decision is made selecting the best path 

found at each visited node. The deterministic nature of the network is exploited to 

create a tree embedding which is used as part of the algorithm. The results suggest 

that for large degree networks a small lookup depth gives close to optimal results; 

whereas for networks with a relative small degree it is necessary to use a large 

depth to achieve close to minimal routing, and hence more computational effort and 

resources are required. These results seem to suggest that for the more suitable un­

derlying graphs it is necessary to use a large depth, or possibly to solve the complete 

shortest path problem to obtain a small routing diameter. However it is important 

to note that although there is only a small reduction to the routing diameter, the 

average routing distance experiences a much faster reduction as the lookup depth 

is increased, and that therefore for small degree graphs a small lookup depth might 

provide acceptable results, especially if there is a large enough amount of locality 

in the communication pattern. It is important to note that even if the full single 

source shortest path problem needs to be solved, the memory requirements to do so 

are small since the topology of the network depends only on the polynomial P and 

on the choice of underlying network. The routing algorithm can very easily be ex­

tended to other members of the family. It is expected that better routing algorithms 

can be obtained by working directly in the Galois field representation; however it is 

also possible to solve the shortest paths problem using Dijkstra or other algorithms, 

and that the amount of information to describe the whole network is much smaller 

than in the random case. In particular for the LFSR it is only required to know 

the generator polynomial and the structure of the underlying network, while for a 

random small-world network information of the location of all additional edges is 

required (which grows as O(¢kN)). 

Future work will include the study of other important topological properties such 

as bisection bandwidth, fault tolerance and crossing number. It is anticipated that 

the fault tolerance of the networks is high, as well as the crossing number and the two 
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dimensional layout complexity. These last two undesirable characteristics might be 

offset by the small diameter and degree, the large scalability of the networks, and the 

expected large bandwidth and fault tolerance; in particular in applications requiring 

a fast, low cost and low latency interconnection network for large systems. 
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Constructions 

5.1. Multi-Scale SW Interconnection Networks 

5.1.1. Introduction 

In order to fully exploit the small-world phenomenon, it is necessary to understand 

what is the fundamental mechanisms which cause the small-world behaviour. 'Watts 

and Strogatz used randomness to construct small-world networks in their original 

work. However it is not clear if and to what extent randomness is a fundamental 

requirement for the construction of small world networks. It is made clear that a 

number of shortcuts appear due to the random rewiring process; but is it possible 

to recreate the phenomena with a deterministic process? 

Recently an alternative hypothesis has been put forward by R. Kasturiarangan 

[101. The Multiple scale network hypothesis states that the fundamental mecha­

nism behind the small-world phenomenon is not the interaction between order and 

randomness; but the addition of edges of a multitude of length scales to a graph. 

According to this hypothesis the distribution of the length scales of the new edges is 

more important than whether they are long range, or short range. The hypothesis 

is supported by experimental data and theoretical considerations. 

The understanding of the fundamental mechanisms of the small-world phenomenon 

provides a framework for the construction of deterministic graphs which exhibit the 

small world phenomenon, and the desirable properties of small-world interconnec­

tion networks. Furthermore such graphs can provide better characteristics, such as 

a fixed degree and a more simple routing algorithm. 

The design methodology of such graphs is simple and flexible. The most important 

step is to identify a suitable function or process which can generate a large amount 

of length scales, as measured in a proposed underlying network. This network is 

introduced into the design function or process, and is generated by it. Due to this 

reason the resulting graph is not an overlay of two different graphs, but a single 
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entity, generated by one mathematical process. Obviously a large number of such 

processes can be constructed, and due to the generality of the design methodology, it 

is not possible to derive characteristics common to all of them (of course the general 

characteristics of small-world interconnection networks should apply to them). For 

this reason this chapter is focused on a specific design example, where characteristics 

relevant to the design are analysed. 

5.1.2. Multiple Scale Graphs 

The exposition here follows the work in [10]. Let G be a graph, and lG(u,v) the 

distance between vertices u and v in G. Allow the set of edges H to be added to G 

forming a new graph G' (VH E VG). For each new edge eH the distance lG(e) is the 

distance between the endpoints of e in G. 

Definition 5.1.1 The graph G' obtained by adding edges to the graph G is multiple 

scale with respect to N (denoted G' ~ G) if: 3 r » 0, and length scales Ai, i = 

1,2, ... r such that 0 < Al «A2 ... «Ar «n and Vi: i :::; r, Ai E {lG}' 

Definition 5.1.2 A graph G is a multiple scale graph if it has a subgraph S with 

the same number of vertices, and S ~ G. 

5.2. Hilbert Graph 

The Hilbert graph was explicitly developed to provide a deterministic small-world 

graph by providing a multiple scale deterministic graph. Fractals are natural scale­

free structures, and therefore make excellent candidates for the construction of scale­

free graphs. For this graph, a well known fractal, the Hilbert curve has been used as a 

basis to develop the interconnection. As a result of its small-world scale-free nature 

the Hilbert graph has some remarkable characteristics: a fixed degree, modular 

expansion, ability to exploit the locality of information, an efficient two dimensional 

layout and a diameter that scales almost as well as that of a random graph. 

The Hilbert curve is a Lindenmayer system (L-system) defined by the initial string 

L, with the replacement rules (L -+ +RF-LFL-FR+, R -+ -LF+RFR+FL-). In the 

limit of recursion the Hilbert Curve is a two dimensional space filling curve. 

The Hilbert curve can also be defined recursively as follows. Co is a line segment. 

Cn+l is formed by the union of four copies of Cn arranged in a square, where the 

upper left copy is rotated 900 and the lower left copy is rotated -90oas shown in figure 

5.1. The first few recursions are shown in figure 5.2. 
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5. Deterministic Direct Constructions 

Figure 5.1.: Recursive construction of Hilbert graphs. 

(b) HI (c) H2 (d) H3 

Figure 5.2.: Construction of Hilbert Curves. 
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5.2.1. Definition 

The Hilbert graph is a 4-regular graph formed by the superposition of a Hilbert 

Curve with an extended mesh. Nodes are placed along the middle of a segment in a 

Hilbert curve, as shown in figure 5.4. The extended mesh is created by joining nodes 

with the same horizontal or vertical position, such that the additional connections 

are perpendicular to the Hilbert curve as they arrive at the nodes, and the degree of 

any node is fixed at four. The Hilbert graph can be in either of two states. It is in 

the closed state if edges at one side are allowed to loop back and connect with nodes 

on the opposite side, and an additional node. Otherwise it is in the open state. 

Usually it is not necessary to make an explicit distinction between them; when the 

Hilbert graph is referred on its own, as could be used in a real system, it is assumed 

to be a closed Hilbert graph. 'When a Hilbert graph is referred to in the context of 

a recursive construction, it will be assumed to be open. \Vhen necessary the status 

of the graph will be included in the description to avoid confusions. 

Two equivalent constructions which will act as extended definitions are provided 

for the Hilbert graph: 

Geometric Definition: An open Hn>o Hilbert graph is formed by placing N = 
4n -1 equally spaced nodes across a en Hilbert curve, with each node in the middle 

of a line segment. For each node a new line perpendicular to the segment of the 

Hilbert curve containing it is drawn, and extended until it reaches another node 

(or until it loops back to the origin, in the case of the closed Hilbert graph). The 

graph whose edges are identified to the segments drawn is the Hn Hilbert graph. 

Furthermore, the closed Hilbert graph has an additional node joined to the start 

and end nodes of the graph (open circles in the figure), 

Recursive Definition: The Hilbert graph is defined recursively (in a similar way 

as the Hilbert curve is) as follows. Ho is a line segment with a node in the middle. 

Hn+l is formed by the union of four rotations of Hn as defined by the operator shown 

in figure 5.3. The top level graph from this recursion can be closed, as shown in the 

figure. The first few recursions are shown in figure 5.4. 

5.2.2. Diameter 

The length and diameter of a Hilbert graph have not been calculate exactly in this 

work. However some bounds and approximations have been established, which are 

discussed in this section for the diameter, and in the next section for the average 

length. 
An upper bound for the open case can be constructed as follows. Define the 
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Figure 5.3.: Recursive construction of a Hilbert graph. The Hn+l Hilbert graph 
consists of four Hn graphs rotated as shown in (a). The letter 'A' is 
used as an orientation marker. Extensions are connected to adjacent 
graphs internally, and are grouped together externally to form the new 
graph. The top level graph can be closed by looping back the extensions 
as shown in (b). 

(a) HI (b) H2 (c) H3 

Figure 5.4.: Construction of Hilbert Graphs. 
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Figure 5.5.: Recursive construction of a Hilbert graph from sixteen Hn- 2 subgraphs. 

diameter D~ as the largest minimum distance between any pair of nodes in the 

open Hilbert graph Hn. The largest minimum distance separates the graphs H;:_1 

in opposite quadrants. Since the graph Hn is horizontally symmetrical the results 

are equally valid for both quadrants. Since the asymptotic behaviour of distances 

within the H;:_2 modules is not known at this stage, we will assume without any loss 

of generality that any distance traversed within the module is larger than a given 

constant. \Vith this assumption the minimal route shown in figure 5.6 is constructed, 

and its length can be written as: 

D~ ~ 2D~_2 + 8 + E;;_2' (5.1) 

where the minimum distance between the start and end nodes of a Hilbert graph is 

approximated following the path shown in the figure, and is given as E;; ~ 2Dn - 2+3. 

These equations, with the appropriate set of initial conditions taken from table 5.1 

give the diameter as: 

n 

112 (7 + 13J3) (1 + J3) 2 - 13
1 + 

n 

112 (7-13J3) (J3-1)2 (-Iff 

!!±! 
~ (5 + 3J3) (1 + J3) 2 _ ~1_ 

!!±! 
~(3J3-5)(J3-1) 2 (-1)~ 

103 

!! EN 
2 

n+l E IN 
2 

(5.2) 



1 
''7 • 

, .... 

E' 

.......... , 
I 
i 

5. Deterministic Direct Constructions 
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Figure 5.6.: Paths for calculating D~. The path shown with a discontinuous line is 
not smaller than the diameter of the network. The minimum length of 
the path labelled E is analysed in the next level of recursion and shown 
in this diagram by the thick line (marked E'), and the two small paths 
F (which are approximated simply as the diameter of their respective 
blocks). 

104 
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where the limit is valid for n > 4 since eq. 5.1 is only valid for such cases (it 

depends on the value of the diameter D~_4)' These can be rewritten as: 

(5.3) 

A less formal approach yields a good approximation from the recursive construc­

tion of the Hn Hilbert graph based on the Hn- 2, as shown in figure 5.5. Since it 

is known that at least one edge connects each Hn- 2 graph to its nearest neighbour 

(effectively forming a two dimensional mesh), the diameter can be written as: 

(5.4) 

where the condition n > 1 has been included because for n = 1 the diameter 

of the modules D~ has been effectively increased in the construction due to the 

introduction of the additional nodes, where for larger values of n this effect can 

be ignored. Note that this expression ignores the length of the path required to 

switch between the horizontal and vertical extensions. Solving eq. with the initial 

conditions D? = 4 and D? = 9 gives the diameter as: 

which is shown in figure 5.7. 

A good approximation for the diameter of the open Hilbert graph can be estimated 

using the same procedure. Due to the wrap around connections effectively a two 

dimensional torus is formed, so the diameter is given by: 

(5.6) 

which can be solved as: 

n 
< 42"2 - 4. (5.7) 

As expected O(Dn) = O(D~) = O(2n/2), since only the uppermost level of re­

cursion is different in both graphs; all other internal distances remain the same and 

should exhibit the same asymptotic behaviour. 

A better approximation can be constructed numerically by assuming that the di-
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Figure 5.7.: Diameter of the open Hilbert graphs H~. The figure shows experimen­
tal measurements taken directly from the graphs (squares), the upper 
bound (eq. 5.2), and the approximated diameter from equation 5.5. 
The figure shows results for graphs up to 16383 nodes (H!() , and as 
shown eq. 5.5 is a good approximation to the diameter. 
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ameter can be calculated recursively, and that therefore an x-order difference equa­

tion provides a good estimate. The first few of such equations are: 

D(l) 
n+l - o:D~l) + (3 

D(2) 
n+2 - o:D(2) + (3D(2) + , n+l n 

D(3) 
n+3 - o:D(3) + (3D(3) +,D(3) +8 

n+2 n+l n 

.. (5.8) 

\Ve will use D2 = 4, D3 = 7 and D4 = 11 as the initial conditions for solving 

these equations, which are direct measurements taken from the graphs (see table 

5.1). The first equation has the solution: 

D(I) 
D 20:n+l + ((3 - D2)o:n - (30: 2 

(5.9) -
0:2(0: - 1) n 

- o (an-I) (5.10) 

:::;;; D n-l 2a (5.11) 

Where the last approximation is valid for large 0: and n. The parameters 0: and 

j3 can be evaluated from D3 = 7, D4 = 11, which gives 0: = 4/3, {3 = 5/3, and the 

diameter as: 

(4)n-2 
- 9 3 - 5. (5.12) 

- 0 [m n-l] (5.13) 

Repeating this process for D~2) one obtains 0: = -4, (3 = 7, , = 11 and the 

diameter as: 

D~2) _ 539 ~n+2 ((2 (/11- 2) ) n (5907 + 1781/11) + 

(( JU + 2) - 2)n (5907 -1781/11) - 59292n+1) 
:::;;; ~ (3n / 4 - 1) . (5.14) 

2 

107 



- Upper Bound 
Upper Bound (approx) 

40 Dl 
....... D2 

t) 30 .... 
o a 
~ .-
020 

10 

n 

Figure 5.8.: Diameter of the closed Hilbert graphs Hn. The figure shows measure­
ments taken directly from the graphs (circles), the upper bound (and 
its approximation) from eq. 5.7, and the numerical approximations D~l) 
(eq. 5.12) and D~2) (eq. 5.14, approximation). The figure shows results 
for graphs up to 16384 nodes (H7), with a good fit of the data. 

These are shown in figure 5.8, and it is clear that the actual diameter cannot be 

derived from any difference equation of order less than three. 

It is possible to continue to determine ever more precise approximations, as long 

as enough measuremrnts are accumulated. To determine the m-th approximation, 

D~m), 2m + 1 measurements are required: m to obtain the form of the function, 

and a further m + 1 to estimate the corresponding parameters (a, (3, I, .. . ). Un­

fortunately to determine the diameter of a graph it is necessary to determine the 

shortest path between all pairs of nodes. The single source shortest path problem 

can be solved using the Dijkstra or Bellman-Ford shortest path algorithms. The 

worst running time for the most efficient implementation of the Dijkstra algorithm 

is O(E + V log V) [15,1321, and it is required to run it V times (one for each source 

node), so the running time for the all-pairs shortest path algorithm is O(V E log V). 

The number of nodes in Hn is 4n, so the complexity of the algorithm is O(n42n). 

Therefore to determine D~m) using this method, it is required to execute O(m 16m
) 

operations, which limits its usability to the first few m. 
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Figure 5.9.: Recursive construction used to obtain the average length of Hn. 

5.2.3. Average Length 

It is difficult to find an exact expression for the average length of a Hilbert Graph. 

Trivially the upper bound for the diameter (eq. 5.7) is also an upper bound for the 

average length, as the latter cannot be larger than the former. 

We proceed to calculate the distance between the large node highlighted with a 

dashed arrow in figure 5.9, to all the nodes within the Hn- 2 open subgraphs in the 

recursive construction shown in the same figure. To do this, assume that D~_2 » 1, 

so effectively the goal is to minimise the number of Hn - 2 subgraphs for all paths. 

The minimum distances are shown in the figure, and obtaining the average over 

all distances, it is possible to write: 

La = 7L~_2 + 11 
n 4' 

which has the solution: 

L~= I 
This can be rewritten as: 
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" Il 
, 

1 4 1 12 1 1 12 1 
2 16 4 522 2.175 4 506 2.4095 
3 64 7 14762 3.6612 9 16380 4.1935 
4 256 11 379458 5.8128 14 437066 6.7480 
5 1024 16 9314098 8.8913 21 10639480 10.1764 
6 4096 24 216854718 12.9287 30 244507642 14.5845 
7 16384 33 4836402154 18.0181 42 5383471668 20.0587 

Table 5.1.: 11easured parameters for a Hn graph. The table shows the diameter, 
average length and sum of all lengths (LHn lu,v) for graphs up to 16384 
nodes (n=7). 

La (v'7) n (35728 + 13205v'7 + (-I)n (35728 - 13205v'7)) _ lL .1 ) 
n - 2 20580 3' 5 7 

_ e [(v'7)n (35728 + 13205v'7) - ~l (5.18) 
2 20580 3 

- 0 [ ( ~rl (5.19) 

The average length can also be approximated by using the same numerical method 

as described in section 5.2.2. The average length is given by N(~-l) LH lu,v, and 

it is obvious that 2 Lulu,v E N. The numerical data is shown in table 5.1 . For 

L~l) the solution has the same form as eq. 5.9 (we work with the sum and divide 

the result by 4n(4n - 1) at the end of the process to determine the average length). 

For large n and a the solution can be approximated as L2 an
-

2. Evaluating L~l) one 

finds a = 45587/1780, (3 = 1239973/890, and the average length is given as: 

L(l) 1 (211 445
4 

(45587) n 2479946) (5.20) - 4n (4n - 1) 43807455872 1780 43807 n 

- o [ (2~.:2) n] (5.21) 

,.." (25) n (5.22) ,.." 

16 ' 

where the approximation is derived from L2a n - 1/4n . For L~2) the following ap­

proximate solution can be found: 
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Figure 5.10.: Average length of Hilbert graphs. The figure shows experimental data 
(circles) against the average expressions obtained in the text where LN 
is the analytical average length determined in eq. 5.18, L1 and -L1 are 
the numerical approximations of order 1 (and its approximation) shown 
in eq. 5.20 and eq. 5.22, and L2 is the second order approximation 
derived in eq. 5.23. 

(5.23) 

(5.24) 

The previous expressions are plotted against measured values in figure 5.10. 

5.3. Bisection Width 

The bisection width of the open Hilbert graph can be established by noting that 

nodes in a Hilbert graph are placed in the middle of a section of a Hilbert curve (at 

),,/2, where).. is the length of the sections) and that additional horizontal or vertical 

extensions forming an extended mesh are connected to these nodes. Since every 

change of direction in the Hilbert curve introduces an offset of ),,/2 to each coordinate, 

it follows that all nodes with horizontal extensions will have coordinates of the form 
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(x,X + 'x/2, y,X), and all nodes with vertical extensions will be at (x,X, y,X + 'x/2). 

Therefore all horizontal/vertical extensions will exist at evenly spaced ,X units in the 

vertical/horizontal direction covering all the space. It follows that the bisection with 

the least number of extensions sectioned is obtained from a horizontal or a vertical 

cut, and since the minimum bisection width of the Hilbert curve is obtained when 

a horizontal cut through the middle of the graph is made, it follows that this is also 

the case for the Hilbert graph. 

The number of edges through the bisection is given as: 

Ell;: = EVn- 1 + ElIn- 1 + 2, (5.25) 

where EVn is the number of external vertical extensions of a lIn graph, and Elln 
is the same for the horizontal extensions which is given as: 

EVn - 1 + 2EVn - 1 

Elln - 1 + 2ElIn- 1 

EVn = E lIn - 2n - 1, 

which gives the bisection width simply as: 

(5.26) 

(5.27) 

In the closed Hilbert graph there are additionally EVn extensions that loop back 

which need to be considered, as well as 3 new edges created by the insertion of the 

last node as shown in figure 5.3 which also needs to be considered, so the bisection 

width can be written as: 

5.4. Scalability 

Elln - BH;: + EVn + 3 

_ 2n+1 + 2. (5.28) 

The Hilbert graph provides an incrementally scalable network with a constant de­

gree; and in principle there is no limit to the scalability of the network, as graphs 

of any size can be constructed (ideally the size of the graph should be of the form 
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Figure 5.11.: One of several possible 2D layered Hilbert graph implementations. 

N = 4n , but it is possible to construct incomplete Hilbert graphs which are not dis­

cussed in this text). Furthermore the Hilbert graph can be constructed in a simple 

two dimensional layered implementation as shown in figure 5.11, which makes it easy 

to construct them in a modular fashion. Locality of information can be exploited 

thanks to the presence of the ring interconnection backbone, and also because the 

hierarchical approach to its construction provides the means of constraining traffic 

to local clusters. 

It is unavoidable to compare the Hilbert graph with the two dimensional torus 

and with the mesh, since they possess some of the same characteristics, such as the 

same fixed degree, a similar bisection bandwidth and a similar complexity for laying 

down in an essentially two dimensional medium, such as in VLSr. Although the torus 

and the mesh have the advantage of providing a simpler interconnection, the Hilbert 

graph makes use of the available wiring much more efficiently and exhibits a shorter 

average length as will be shown. Furthermore the Hilbert graph can exploit locality 

more efficiently since traffic can be confined at local clusters and the inter-cluster 

distance is small. 

The torus network can be identified with the closed Hilbert graph, as both exhibit 

wrap-around connections; while the open Hilbert graph is similar to the mesh, since 

no wrap-around connections are present. To ease the comparison the two dimen­

sional torus Tn and mesh Mn are defined, such that the number of nodes of both 

graphs is N = 4n (Le. there are 2n nodes per side). The bisection width is given as: 
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(5.29) 

which are almost exactly the same as the corresponding expressions for the Hilbert 

graph. However the average length is given as: 

LTn - 2n 

LM - ~ (2n - 21n) , (5.30) 

which grow as O(2n), which is larger than that of the Hilbert graph given as 

O(2n/2). For this reason latency under light load and uniform traffic distribution 

will be reduced in a similar way in the Hilbert network. It is not clear however, 

that this will also be the case as traffic is increased, since the routing algorithm can 

introduce artificial bottlenecks in the network. 

Although a routing algorithm has not been attempted in this work, we can proceed 

by providing a higher bound on the congestion of the network under uniform traffic 

by showing that there exists a non-minimal routing algorithm which exhibits the 

same contention (up to a constant factor) as any routing algorithm in a torus or 

mesh. 

The recursive construction of the Hilbert graph implies that every Ho subgraph has 

a direct connection with all of its horizontal and vertical neighbouring Ho subgraphs 

(with wrap-around connections for the closed Hilbert graph), Figure 5.12 shows the 

connections between lIo subgraphs in a Hilbert graph. If the four nodes of a Ho 

subgraph are contracted into a single virtual node the result is a mesh (or a torus) 

network with an order equal to one quarter of the original Hilbert graph, where 

each node injects four time as much traffic into the network (again for a uniform 

traffic distribution). Several routing algorithms exist for the mesh and torus, which 

could be used in the contracted Hilbert network. Assuming that a routing algorithm 

is such that traffic is distributed evenly amongst the interconnections in the mesh 

(or torus), it is possible to estimate the average congestion in the networks. The 

congestion in a network with evenly distributed traffic is given by: 

C = p,NL 
E' 
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Figure 5.12 .: Contracted Hilbert graph. 

For a two dimen ional me h and torus the congestion can be found to be: 

CT 

- ~J-LNI/2 - 0(1) 
3 
J-LNI/2 

2 
(5.32) 

In both c e it follow hat the congestion for the contracted Hilbert graph (where 

the number of node is one quarter of the original and traffic has increased four 

time) i exactly the doubl of these expressions and exhibits the same asymptotic 

behaviour. ote howev r that using this routing technique only a subset of edges is 

us d; in particular in ther are N /4 nodes in the contracted Hilbert graph, and 

th number of internal dg in each virtual node is four, it is easy to show that only 

half of the dg are u ed and one would expect that the congestion figure would 

improve if all dge wer u ed. 
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5.5. Conclusions and Summary of Results 

The Hilbert graph has been proposed as an example of a fully deterministic intercon­

nection network motivated by the small-world phenomenon and the multiple-scale 

hypothesis. These principles can be used to construct similar networks, where a va­

riety of length scales are purposely introduced in order to provide a small diameter. 

At a local level the Hilbert graph is regular and simple, where locality of informa­

tion can be exploited, as one can expect from a small-world graph; while providing 

a reduced world, where a small distance exists between different nodes. 

The diameter and average length of the graph has been determined, and shown 

to be small (growing logarithmically with the number of nodes). Furthermore the 

graph is regular with a fixed and small degree. Since the degree is four, it is only 

natural to compare this graph against the torus and mesh, which also have a fixed 

degree of four. Furthermore the Hilbert graph is 2-planar (it can be laid down in 

two layers), which is similar to the torus and mesh. The bisection width of the 

Hilbert graph has been determined, and shown to be very similar to that of the 

mesh and torus. However the Hilbert interconnection makes a much better use of 

the available wiring, and since it provides a much reduced diameter, it exhibits a 

reduced latency (under light traffic) and it can exploit locality more efficiently. Due 

to its incremental expansion capabilities, the Hilbert graph provides the same ease of 

expansion as a mesh. We have shown that congestion exhibits (in the worst case) the 

same asymptotic behaviour as in a mesh or torus as the system is expanded; however 

we expect that the use of a purposely designed routing algorithm will provide a much 

better performance. 

It is expected that other graphs constructed with the multiple-scale hypothesis, 

and the small-world phenomenon in mind will retain most of the good properties 

of the small-world interconnection networks analysed in this work, and will provide 

the same desirable properties as the Hilbert graph does. 
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Networks 

6.1. I ntrod uction 

Hypermeshes have been shown to be good candidates for interconnection networks 

of parallel systems. Their main advantage is that they present a low diameter, 

high bandwidth, low latency network, which can naturally embed a wide range of 

communication patterns [46,51,146]. Furthermore, low dimensional hypermeshes 

lend themselves to natural implementation in space, where the wiring complexity is 

contained within the clusters running along each dimension. 

Current technology seems to favour multi-package implementations where sev­

eral computers are connected in a SMP /multiprocessor fashion in a single board 

or package. These packages are then linked through an interconnection network in 

a multicomputer fashion. For the remainder of this chapter we will consider the 

SMP /multiprocessor board as a single node, as we will concentrate solely on the 

multicomputer interconnection network design. Such multi-package implementa­

tions are pin-out rather than wire density limited [147], since the dominating cost 

is that of the I/O channels and connectors, and not of the interconnection com­

plexity (this is especially true for the low dimensional hypermeshes, which contain 

all the wiring complexity along the clusters, which are naturally embedded in three 

dimensional space). Due to this reason networks in this chapter will be compared 

under the equivalence of a constant pin-out by noting that it is possible to increase 

the pin-out of a network by inserting additional channels running along the original 

channels (it makes no difference if the channels are serial or parallel). When the 

degree of both networks is made equal, the total bandwidth (the product of channel 

bandwidth and degree) of both networks will be equal. Therefore we will use total 

bandwidth as the equivalence between networks, comparing large pin-out structures 

with narrow channels, against low pin-out structures with wide channels. 

Similar studies have been carried out between hypermeshes, meshes, torus, low 
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dimensional k-Ary n-Cubes (with and without bypass channels), and multi-stage 

interconnection networks, and showed that the hypermesh outperform the other 

networks when realistic decision times are accounted for [70,78,148,149]. 

In this chapter we introduce a number of small-world hypermeshes, which are 

incomplete hypermesh interconnections (Le. not all nodes in a cluster are joined by 

a hyperedge); however other incomplete implementations are possible. We will study 

the networks under the assumption of restricted routing and wormhole switching. 

The structure chosen has a rich connectivity and low pin-out, in an attempt to 

enhance the performance of the network. As an additional benefit it provides reduced 

switch complexity and an increase in the maximum throughput. 

6.l.l. Hypergraphs 

Traditionally interconnection networks have been modelled as directed or undirected 

graphs, in which the vertices V are the nodes or processors, and the edges E are 

communication channels which connect the processors. Networks such as the k-ary 

n-cube, mesh, toroid, tree and ring are example of graph based networks. In a graph 

an edge always connects two vertices, and networks such as a simple bus cannot be 

constructed. This is a serious handicap, since a bus architecture can provide several 

benefits; including a small diameter and reduced costs. A hypergraph provides a 

more general model, in which several nodes can be connected together by a single 

edge (a hyperedge); and can therefore represent buses and any other interconnection 

structure. 

Unfortunately hyperedges are susceptible to access contention, where transmis­

sions from several nodes collide in the single channel. To alleviate this problem, the 

hyperedges can be organised in such a way that only one node is allowed to trans­

mit in a given hyperedge. In this paper we are only interested in networks of this 

kind, which will be modelled as directed hypergraphs (we have assigned a direction 

to the links), and therefore connections based on multiple access buses will not be 

considered. 

A directed hypergraph 1t{V, E) is formed by a set of vertices (nodes) V, and a 

set of hyperedges (wires, connections, or simply edges, when no confusion arises) 

E which link several nodes together [65]. Each hyperedge has a set of input t(e), 
and output w{e) nodes. We are only interested in networks with only one input per 

hyperedge, so we will fix I t{ e) I = 1. The indegree of node v, 6, (v) is the number of 

hyperedges whose set of output nodes include v; that is 6,{v) = I{ e E E : w(e) = v}l· 
The outdegree of a node is similarly defined as 6w{v) = I{e E E : v E t{e)}l. The 
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degree of a node, 6 (v), is simply the sum of its indegree and outdegree, and the degree 

of a hypergraph is the maximum degree of any node; 6H = max{6(v), v E V}. 

A path of length I is a list of hyperedges, Puv = {el' e2, ... ,ez} such that V 0 < 
i < i, t(eHd E w(ei) and t(ed = u, w(el) = v (which are called the source and 

the target respectively). The distance between two nodes is duv = min IPuvl. The 

diameter of a hypergraph is the length of the longest distance in the graph, D = 

max{ duv , u, v E V}, and is an important measure since it is the largest number of 

hops a message will need to make to reach its destination. The average number of 

hops is given by the average length, which is defined as L = IVI(I~I-l) L: du,v, where 

the summation is done over all pairs of nodes. The factor IVI- 1 accounts for the 

fact that nodes do not reference themselves. 

Each channel entering a node has a bandwidth of W bits/sec. When comparing 

two different networks (say A and B), the constant pin-out argument states that 

the total bandwidth entering a node is the same for both networks, therefore: 

(6.1) 

In general ~VA and ~VB are technology dependent, so we are more interested in the 

quantity LlW = WA/~VB = 6B/6A. A packet of length B bits, will present an aspect 

ratio 'f/B = B /~V B in network B; however the same packet will have an aspect ratio 

of 'f/A = B/~VA = 'f/B/Ll~V in network A. If we assume LlW > 1, then it is clear 

that it will travel faster through network A than through network B, at least when 

no other traffic is present. 

6.1.2. Hypermeshes 

The hypermesh is a symmetric hypergraph network. Running along each dimension 

there are a number of clusters, which contain /'i, nodes in a linear array, along an 

interconnection network which links these nodes together. The Cartesian product 

of d clusters forms ad-dimensional hypermesh [46,51]. 

Several implementations have been proposed which can be divided in two groups; 

those with centralised switching or shared buses (such as the crossbar switch hyper­

mesh and the spanning bus hypercube) and those with distributed switching (such 

as distributed \VDM [46] and DCSH [51]). Hypermeshes from the first group suffer 

from very poor performance under the constant pin-out constrain, because the cen­

tralised switch or bus forms a bottleneck which affects the rest of the system, and 

will not be considered any further (however they have the advantage of requiring 

shorter wires which can be driven at a higher speed than the longer and more com-
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DODD 
a) A Cluster b) A 2-D H ypermesh 

Figure 6.1.: Construction of a hypermesh. The 2-D hypermesh (b) is a 2-D Cartesian 
product of a cluster (a). 

plex wires of the second group). The second group will be referred here as complete 

hypermeshes, since each node in a hyperedge is connected to every other node. We 

will compare these networks against the Hamming hypermesh. 

Hypermeshes posses some very desirable characteristics. They have a low di­

ameter, high bandwidth network, support for efficient broadcast operations, and 

since they can embed meshes, binary trees and hypercubes, applications that map 

naturally into these topologies will do so as well in the hypermesh [38,51,146]. 

In a hypcrmcsh the total number of nodes is given as N = /'i,d, and the average 

distance between any two nodes is: 

L = {3d'" - 1 N 
/'i, N-l' 

(6.2) 

where /'i, is the number of nodes in a cluster (hyperedge), and {3 is the inter-cluster 

distance ({3 = 1 for the complete hypermesh). 

6.2. Hamming Hypermesh 

The Hamming hypermesh is formed by the Cartesian product of the hamming clus­

ter, which is constructed by joining nodes whose hamming distance is one. For­

mally, an a-hamming cluster is constructed by a set of /'i, = 20: labelled nodes, 

V = {VO,Vl, ••• ,v,,-d, and a set of /'i, labelled directed hyperedges (one for each 

node), E = {eo, el, ... ,e,,-d, such that t(ex ) = {vx }, and w(ex ) = {vy E V : 

1ix ,y = 1 V 1i,,-x,y = I}, where 1ix ,y is the hamming distance between x and y. In-
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IJilllI 11111 T 1111I r 111111I1111I IIIII~ 111111I11I11 
LJ~L...---. I~ I~ I~ I~ I~ ~ I 

Figure 6.2.: A 3-Hamming cluster. For clarity, only one hyperedge is shown in the 
drawings. The rest of the hyperedges in the Hamming cluster are equiv­
alent. 

formally, we can say that the cluster is constructed by joining nodes whose modulus 

K absolute distance is a power of 2 {2i = {I, 2, 4, 8", " K/2}). A hamming cluster 

is shown in fig. 6.2. The indegree of this hypergraph is given as 6, = 2a - 1, and 

the total degree is 6 = 2a. 

The d dimensional Cartesian product of an a-Hamming cluster defines an Hd,Q 

hamming hypermesh, with N = 2Qd nodes. The degree of such a graph is (consid­

ering all dimensions and output channels): 

(6.3) 

This is substantially less than the complete hypermesh, whose total degree is Dc = 
d $, and allows the hamming hypermesh to have much wider channels ~ W HC = 

2~ot;N = 0 ( $), and an equal static throughput increase (the maximum transfer 

rate under no load, sec fig. 6.9(0)). 

Of course the main drawback is a reduced connectivity; messages need to traverse 

several channels before reaching their destination within the same cluster. However 

as we will show, this deficiency is more than compensated by the wide channels. 

6.2.1. Diameter and average length 

To calculate the diameter and average length of this hypergraph we start by con­

structing an equivalent graph (Hamming graph) G such that VG = VH , and EG = 

{euv : v E W JI (I) /\ u = til (I), fEE H } • Note that this construction does not 

require a directed graph, due to the symmetric nature of the Hamming cluster. An 

example of this graph is shown in figure 6.3. Next we proceed to label the edges 

going out of a given node, such that the edge labelled ai spans 2Q; nodes, as shown 

in the figure. Note that there are some repeated edges with such labelling (i.e there 

are two a - 2 edges). \Vhen necessary they will be referred to as ai Left and ai 

Right to avoid confusions. 

\Ve are interested in computing the average number of links traversed by an aver-
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Figure 6.3.: Example of an equivalent Hamming graph (left), and edge labelling 
(right). 

age packet. \\'e group the diffrrent routing possibilities by allowing certain edges to 

be traversed only at some given time. Note however that this timing will most likely 

be different to the actual timing experienced by a packet. \Ve start by supposing 

node Vo sends a packet and considering the routing possibilities at the initial time, to. 

At this time the packrt may wish to travel through edges Q' - 1 or Q' - 2. Of course, 

it could also travel through other edges, but we consider this at the next time step. 

Thus, at the Ll'ginning of tl the packet may be located at nodes V2o-1, V2o-2, VK_2o-2 

or Vo. These noell's define four sets as shown in the figure. Each set has 1 + ",/4 

nodes, since each of the dividing nodes is in two sets. However for routing purposes 

the two dividing nodes are collapsed into a single node, since the routing decision 

was taken at a previous time strp (and this was an optimal decision). Therefore 

each set is logically rquivall'nt to the Hamming subgraph Ga - 2 , and the sum of all 

distanc('s can be wri t ten as: 

(6.4) 

where 2Ca - 3 is the number of destination nodes that do not require to route at 

to (that is the nodes that can be reached from Vo by the edges Q' - 3, Q' - 4, etc.), 

and is given hy: 

{ 
L~/2 2 a - 2i 

Q' -+ even &=0 

Co - (6.5) 
L~a-l)/2 2a-2i Q' -+ odd &=0 
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__ 2°_+2 _ 3 - (-It 
6 3 

(6.6) 

The solution of the difference equation 6.4, with its proper initial conditions (So = 

1, 8 1 = 3) is: 

(6.7) 

and the average length is: 

(J - So-1 _ '" (a 1- (-~r) 
J{-",-I-",-I"3+ 9 . (6.8) 

From the preceding argument, it is obvious that the diameter is simply t, the 

number of recursive graphs traversed. At time to we have a edges, and at each step 

two edges are removed. Therefore the diameter is given as: 

6.2.2. Routing 

DJ{ = { I 
0+1 
-2-

a - even 
(6.9) 

a-odd 

Routing in a complete hypermesh is quite simple. Packets are routed in strict 

dimensional order to avoid deadlocks (also known as e-cube routing). Since the 

Hamming cluster is not fully connected, routing in a Hamming hypermesh is more 

complicated, as messages might need to experience multiple hops within a cluster 

before being routed to other dimensions. In this section we introduce an optimal 

deadlock and livelock free routing algorithm for the Hamming hypermesh. 

It is well known that dimensional ordered routing in a hypermesh is deadlock 

free. Therefore we only require to provide a intra-cluster routing algorithm, since 

messages can switch between clusters in strict dimensional order in an optimal and 

deadlock-free fashion. Several intra-cluster routing algorithms are possible. Here we 

present a distributed routing algorithm in which each node only needs to know the 

current and the destination node to make a routing decision. This class of routing 

algorithm is known as N x N - C, and can be easily implemented in hardware 

(either as a lookup table or using logic circuits) [133,134]. 

The routing algorithm should provide deadlock (and livelock) avoidance. Dead­

lock occurs when messages are blocked from advancing because channel buffers are 

full, and a circular dependence exists between those packets. A simple approach to 
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avoid deadlocks consists on restricting routing so that there are no cyclic dependen­

cies between channels [133]. Livelock occurs when new messages are forbidden to 

enter the network. This occurs when existing packets do not advance any further 

towards their destination, but are continually deflected. The routing algorithms 

considered here are livelock free since packets will always advance closer to their 

destination with each routing decision. 

Packets switching within a Hamming cluster will do so following an acyclic path 

R. We will assume that R is a minimal path; that is the length of R is as small as 

possible. This supposition will turn out to be true for the routing algorithm chosen. 

The following theorems follow: 

Theorem 6.2.1 The path R has maximum length a and traverses an edge spanning 

211 nodes at most one time. 

Proof \Ve will prove the second part of the theorem first. Suppose there are two or 

more edges spanning 211 nodes in R. Two of these edges can be replaced by a single 

edge spanning 211+1 nodes. However this contradicts the initial assumption that R 

is optimum, since the new path is shorter, and therefore an edge spanning 211 nodes 

is traversed at most one time in R. Since the edges of the Hamming cluster span 

2i nodes where i E {O, 1, ... , a-I}, and by the first part of this theorem, it follows 

that the maximal length of R is a. I 

Theorem 6.2.2 Any routing algorithm for a Hamming cluster which assigns edges 

to all R such that R = {el,e2, ... ,en} with le}1 > le21 > ... > len I or with led < 
le21 < ... < lenl, where lei is the number of nodes spanned by edge e, is deadlock free. 

Proof Construct an a dimensional space where all edges with lei = i are mapped 

at dimension i. In such space deadlock is not possible, since all paths traverse the 

dimensions in strict increasing or decreasing order. I 

Corollary 6.2.3 Any distributed routing algorithm for a Hamming cluster is dead­

lock free if for a packet arriving via channel ej it assigns the outgoing channel ei 

where i < j, and the local edge labelling is such that ek spans 2k nodes (from the 

current node). 

6.2.2.1. Routing Algorithm 

From the previous set of theorems it is simple to construct a deadlock free distributed 

routing algorithm. Referring to fig. 6.3, it is clear that packets travelling in an 
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I Target I Channel " Target I Channel I 
0 local 8 3 
1 OR 9 3 
2 lR 10 3 
3 2R 11 2L 
4 2R 12 2L 
5 2R 13 2L 
6 3 14 1L 
7 3 15 OL 

Table 6.1.: Routing table for a 16 node Hamming Cluster. 

optimal path through edge a - n (right) are destined to a node within the interval 

(all labels are relative to the current node): 

[2Ck - n _ 2o- n- 2 _ 2Ck - n- 4 _ ... , 

(6.10) 

and packets travelling through edge a - n (left) are destined to nodes in the 

interval: 

R" [2Ck _ 2o - n _ 2o - n- 2 _ 2Ck - n - 4 - ••• , 
Ck-n -

2Ck _ 2Ck - n + 2Ck - n- 2 + 2o - n- 4 + ... J. 
(6.11) 

vVith this intervals it is possible to construct a routing table for the switches. As 

an example a routing table for a 16 node Hamming cluster is shown in table 6.1. 

Since the table is constructed from an optimal path, and assigns routes as required 

by corollary 6.2.3, it provides deadlock free routing. A complete routing algorithm 

(which may be modified to use the lookup table) is as follows: 

6.2.3. Hardware Complexity 

\Ve are interested in providing a means of comparing the intrinsic cost of different 

interconnection networks. Traditionally the bisection width and node degree have 
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Distributed routing algorithm. 
D=Current dimension of router 
C=Distance between destination and current node at dimension D 
#First route within a cluster# 
if (C =I 0) then #intra-cluster routing required# 

for (i=a - 1 downto 0) 
if C E R~_n route to a - n (right) of dim D 
else if C E n:_n route to a - n(left) of dim D 

endfor 
else 
if (D-1=0) Consume packet 
else Send packet to router at dim D-l 

been used for this objective. The bisection width metric is adequate when the 

network has to be constructed in an essentially two dimensional medium, such as 

VLSI. However for a network constructed in three dimensional space it is not a very 

appropriate metric. For networks constructed with discrete packages, the cost of 

wires and channels is a fraction of the cost of the transceivers, couplers, modulators, 

switches, packaging and integration, at least for current technologies. For this reason 

we argue that pin-out is a much better metric of complexity, since it reflects the costs 

of the internal switches, couplers and other expensive equipment. 

Since we are maintaining constant the pin-out of the networks, under this metric 

all of them have the same cost (we are making equal the cost of the transceivers, 

couplers, modulators and other equipment associated with the input and output 

stages). However it can be argued that the switch complexity is not the same for 

all graphs, since the complexity of a switch is more a function of the number of 

channels and less dependent of the channel width. The number of internal routes 

grows as the square of the former (here we are only considering direct connection 

non-blocking switches, although it is possible to construct indirect switches with 

0(", log2 "') internal routes, at an additional latency cost [110]). This observation 

leads to an alternative measure of complexity which is useful for cases where the 

cost of the switch is a significant factor in the total cost. 

6.2.3.1. Switch Complexity 

As we have stated, the complexity of a switch is proportional to the number of in­

ternal routes X = 0(82), where 8 is the degree of the cluster. Since each route has 

W wires, the switch com plexi ty will be measured as S = d W 82. Figure 6.4 and ta­

ble 6.2 shows the switch complexity, and the complexity reduction for the complete 
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Network I S\V. Complexity I Reduction I 
Complete dK,~ -
Hamming 2dK, log2 K, o (K,) 

Table 6.2.: Switch complexity . 
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Figure 6.4.: Switch complexity for the complete and the Hamming cluster. 

(6 = K, = .:tN) and the Hamming (6 = 210g2 K,) hypermeshes. Note the linear re­

duction in complexity for the incomplete network (with respect to the cluster size). 

If we were to change our constant pin-out argument for a constant switch complexity 

argument, the incomplete networks would exhibit an even better performance. 

6.2.4. Stochastic Performance Model 

6.2.4.1. Latency 

Latency is a very important metric for interconnection networks, especially for net­

works designed for parallel computing, since it limits the speed of fine grain compu­

tations. Here we develop a model to study latency in wormhole switched hypermesh 

nctworks (using restricted routing). To simplify the analysis, the following assump­

tions are made (most of which have been used in similar studies [46,78,137,138]): 

1. Each node generates a message by a Poisson process of rate Jl packets per 

cycle. The destination for each packet is chosen uniformly and independently 

amongst all possible recipients (uniform traffic). 

2. Packcts are distributed evenly through all edges belonging to a given class in 

the network. 
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DIMd 

S 

DIM 1 

PE 

Figure 6.5.: Switch structure used for the complete, random and Hamming hyper­
mesh. 

3. Packets visit dimensions in order; i.e. once a packet switches from dimension 

i + 1 to i, any further switching will be done only to dimensions i, i - 1, .. ,0 

(the fictitious dimension 0 is the input to the local processing element). 

4. All messages generated are of equal length of B phits. 

5. One phit per dimension can be sinked in a cycle by the Processing Element 

(multiple acceptance model); however only one phit can be sourced. All infor­

mation interchange amongst nodes is done synchronously at each clock cycle. 

6. Queues are of finite size and can hold only a few number of flits. 

7. Messages are routed along the shortest path. 

8. The network uses wormhole switching and the switch shown in figure 6.5. 

This analysis is similar to that in [20,51]; however unlike [51] we need to account for 

intra-dimensional routing, since packets can travel several nodes within a dimension 

before switching to a lower dimension; and although the model in [20] does take into 

account intra-dimensional routing, it needs to be extended to include the effects of 

contention from this traffic arriving at different network channels and competing for 

access at each successive node, and also to include the effects of the decision time. 
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\Ve will develop a model for latency based on the intra-cluster distance {3, the 

packet size B (measured in phits), the channel width ~V (which is equal to one 

phit), the number of nodes N, the dimension of the network d and the decision time 

Tdec ' \Vhere we compare networks with different channel widths, we will measure 

the packet size as well as the channel size in phits referred to the complete network, 

denoted as phitsfCJ. In this way we can draw general conclusions without requiring 

any further technological assumptions. 

6.2.4.2. Static Latency 

\Ve start by computing static latency (i.e. latency under no load conditions). In this 

case latency is determined by two factors; the time required for a B phit packet to 

go through the switch-processor channel, and the time required for a phit to travel 

through the network. The former is given by: 

(6.12) 

(since packets are serviced as soon as they are received), and the latter is: 

(6.13) 

where TJ = B/lV is the packet aspect ratio, and L is the average length between 

any two nodes, given by eq. 6.2. Therefore in this case latency is given by: 

LatenCY(static) = Tnode + T net . (6.14) 

This is an adequate approximation for the cases where the network traffic consists 

of short bursts of activity, with interleaved long periods of inactivity. However when 

the traffic in the network increases, queueing and contention will severely degrade 

its performance and this model is no longer valid. 

6.2.4.3. Dynamic Latency 

This is a more general model than static latency, since we make no assumptions on 

the traffic level J-L. \Vhen J-L -+ 0 latency is equal to the static case; however when 

the traffic is increased so is latency. To compute the latency in this case, we will 

begin at the output node and work our computation backwards to the point where 

the packet was injected into the network. Latency at the output node (dimension 

0) is the same as in the previous case, and is given as: 

129 



6. Hypergraph Small- ~Vorld Networks 

Figure 6.6.: Latency in a dimension. 

To = 1] + Tdec' (6.15) 

To find out the latency entering the previous dimension, we will consider a single 

dimension i as shown in fig. 6.6. Packets entering dimension i have two components; 

those who passed through the previous dimension to correct their spatial coordinates 

(Ap), and a fraction a = N- 1/ d which were already at the correct coordinate and 

skipped from routing in that dimension (AS), These streams are further divided 

according to packets that will route through or skip dimension i, as shown in the 

figure (the first letter in the subscript is for dimension i + 1, while the second one is 

for dimension i ). 

Latency due to contention where different streams compete for access, can be 

computed for each stream, by multiplying the probability of a collision with the 

expected delay due to the collision. For example latency seen by component ApS 
is given by the multiplication of the collision probability ASS Ii, with the expected 

delay 1';.12 (the collision delay has a uniform distribution from 0 to Ii). 
All messages increase their latency when switching to a lower dimension, because 

they have to compete for access to the new dimension. However packages needing 

to pass through the dimension will gain an additional overhead due to contention, 

TRi• Since the average number of nodes traversed through a dimension is {3, packets 

will go through one entering channel, and a = {3 - 1 continuing channels (see fig. 

6.7). 
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••• 

Figure 6.7.: Routing within a dimension. 

The traffic rate at each continuing node is Ac, therefore at each input a packet 

has to compete for access with 8 - 1 other inputs with traffic rate Acl8 (denoted in 

the figure as A/), and with one input of rate Ap. Traffic A/ and AO is traffic that is 

also routing within the dimension, but follows different routes. This traffic has to 

compete for access at each continuing node. Since at each node 11(3 packets route 

to a lower dimension, the traffic at each continuing channel is Ac = (J Ap. 

To compute TRi we will work out from the output and propagate the computation 

towards the input. The service time at the last continuing channel is Ii. The 

additional time due to contention for the rest of the channels is given as: 

(6.16) 

where 1i~/2 is the average collision cost, and the term in parenthesis is the collision 

probability. Repeating this calculation for the (3 - 1 continuing channels gives: 

(6.17) 

The solution to this equation is given as (ignoring the unrealistic larger solution): 

T.. 
" (3=1 

1io= (6.18) 
1-
----''-----'-;--"''''1''''7~:_;__--, (3 > 1 

The possibility of a collision in the input channel also needs to be considered in 

the computation of TRi : 

(6.19) 
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Taking all these components into account, the latency seen entering dimension 

i + 1 is given by: 

Ii+! = Ii + Tdec + (1 - o:)TRi + 0:3(1 - o:)>"Tl 

+0:(1 - 0:)3 >"(Ii + TRi)2. 

(6.20) 

If enough queueing is provided the service time remains constant, and the previous 

equation can be rewritten as [201: 

Ii+! = Tj + Tdec + (1 - o:)TRi + (0:3(1 - 0:) 

+0:(1 - 0:)3)>..To. 

(6.21) 

Finally the queueing time at the source node has to be included, to give the 

total latency this can be modelled as an M/M/1 queue with an average service time 

Td [51,1371: 

Td 
Latency = ---

1- /-LTd 
(6.22) 

A computer simulator was written and used to validate this model. The simula­

tor has been integrated into the INADS system described in appendix B, and has 

been written in around 2000 lines of C++. The simulator is compatible with the 

assumptions used to derive the model. In particular the following assumptions and 

specifications have been met: 

• The switching method is wormhole routing, and uses the switch shown in figure 

6.5. 

• A user selectable number of flits can be stored at the input queues. For the 

simulations a queue size of three flits has been used. 

• Messages are generated by an independent Poisson process. The destination 

for each packet is selected randomly from all of the possible destinations. 

• All messages generated are of a fixed length. 

• Messages are delayed by a decision time at each switch they visit. The time 

can be specified by the user. 
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• Routing is restricted and follows the shortest path between source and desti­

nation . 

• Simulations are run until the collected statistics converge to a final value with 

a gIven accuracy. 

The results can be seen in fig. 6.8, for the complete, Hamming and random hyper­

mesh (described in the next section). 

6.2.4.4. Throughput 

The throughput of a network is the average number of packets which reach their 

destination within a cycle. Since this measure is dependent on the the network size, 

perhaps a better measure is the throughput per node, which is simply the total 

throughput divided by the number of nodes. 

'When the network is not loaded, no contention occurs, and the throughput per 

node (or simply throughput from now on) is given by the traffic coming out of a 

node: 

(6.23) 

This is also the case for all traffic levels below saturation. However, when the 

injection rate increases above the saturation point, throughput will remain constant, 

or fall, depending on the network design. The saturation point can be found by 

setting the injection node service time equal to the inverse of the injection rate, and 

solving the equation for msat: 

1 
(6.24) /-Lsat = T. ( ) . 

d J.L = /-Lsat 

At this point of operation the network is ill behaved; latency becomes infinite and 

queues are marginally stable. However the maximum throughput is achieved at this 

point and is useful for theoretical considerations: 

emax = /-Lsat B . (6.25) 

6.2.5. Results 

We focused on the two and three dimensional hypermeshes because they map nat­

urally into space 1701. Two different packet sizes were used; 32 and 128 phits (a 

phit is a word of size equal to the network channel). This packet sizes were chosen 
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Figure 6.9.: Static performance for different networks with a 32 phit[C) packet size 
and a decision time of one cycle. In (A) a plot of static latency against 
network size for two dimensional networks is shown, and fig. (B) shows 
the normalised maximum static throughput (which is equal to the nor­
malised channel width increase, ~W). 

to represent a short and a normal size packets respectively, and have been used in 

similar studies [20,701. 

6.2.5.1. Static Performance 

The static performance of the network characterises it under a no load condition (no 

other traffic, or almost no other traffic exists in the network, except the one we are 

deliberately introducing). This is a useful metric for cases where the traffic is low 

or intermittent, or when a pair of nodes generate most of the traffic in the network 

(such as in hot-spot traffic). 

The latency of a network under no load, is determined by eq. 6.14. Figure 6.9(A) 
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shows static latency for two dimensional networks with a 32 phit[C) packet size. 

Latency can also be seen in figure 6.10 when the traffic level approaches zero. 

Note that latency in the incomplete networks actually lowers when the network 

size is increased. This is due to the increase in channel width .6.W for larger net­

works. As it is shown, the incomplete network exhibit a lower static latency. This 

is to be expected, since incomplete hypermeshes have wider channels and a smaller 

message aspect ratio. The situation is even better when the packet size is increased 

(not shown in the figure). 

The maximum static throughput is simply the bandwidth coming out of a channel 

(~V), as fig. 6.9{B) shows. As seen in the figure static throughput increases for 

incomplete networks with the network size. This is due to their wider channels 

which are a result of the constant pin-out argument. Note that the increase is almost 

linear for the Hamming hypermesh. However for the optimised random hypermesh 

the throughput increase is not linear. This is particularly true for large clusters, and 

is due to the fact that at this operation region the aspect ratio of the packets is very 

small, and the networks cannot exploit their wide networks to their advantage. For 

this reason the optimised random hypermesh reacts by trading channel width for a 

bet ter connecti vi ty. 

6.2.5.2. Dynamic Performance 

latency The dynamic latency of different network configurations was evaluated 

using the model developed in section 6.2.4, and the results are shown in fig. 6.10. 

Figure 6.10{A,B) shows the comparison between a small two dimensional complete 

hypermesh (N =256) and its incomplete counterpart. As it is shown the Hamming 

hypermesh outperform the complete one under all conditions, and have the ad­

ditional benefit of providing much wider channels (which leads to a much higher 

throughput; see fig. 6.17). 

A much larger two dimensional network is shown in figures 6.10{C,D), where the 

network size has increased to 4096 nodes; but perhaps more importantly, the cluster 

size is K, = 64. This large cluster size forces the Hamming hypermeshes to have 

very wide channels, since their pin-outs are much lower than 8c . Unfortunately 

this increases the inter-cluster travelling distance, {3. Packets need to make a large 

number of hops within a cluster, which can lead to a large latency and saturation, 

as they remain a long time in the network. 

As it is shown in the figure, when the packet size is large incomplete hypermeshes 

outperform complete ones by a large margin. However when the packet size is small 
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and the decision time is large the margin is reduced, especially in networks with a 

large cluster size as can be seen in figs. 6.10(C,E). 

This is due to the fact that smaller packets have short aspect ratios, and networks 

cannot benefit from their wide channels. Since the Hamming hypermesh has a fixed 

connectivity and cannot trade channel width for a shorter diameter, it will saturate 

sooner than the complete hypermesh under this conditions. It would be interesting 

to create a new hypermesh which could react by trading channel width for a short 

diameter. A similar result can be found for the networks shown in fig. 6.10(E,F). 

It is worth noting that although Hamming hypermeshes saturate sooner than 

their complete counterparts when small packets, large decision times and large clus­

ter sizes are used, for the networks shown, they provide a smaller latency for all 

operating conditions except when traffic is close to saturation. For example the two 

dimensional Hamming hypermesh shown figure 6.10(C) provides a lower latency 

even when the decision time is two cycles. Although this network saturates faster 

than the complete hypermesh, it would still provide a better performance, as it pro­

vides a lower latency for the majority of the packets, except when the traffic rate is 

close to saturation (which should be avoided anyway). However if the cluster size is 

increased further, we speculate that the saturation point of the Hamming network 

might prove to be too premature and the complete network would be a better choice. 

Throughput The maximum dynamic throughput for different networks was eval­

uated using the model derived in section 6.2.4, and the results are shown in figure 

6.17. The throughput is mca.c;ured in phits per cycle referred to the complete network 

(see section 6.2.4.1). 

The throughput of the Hamming hypermesh is shown plotted against the parame­

ter Q (the cluster size is K = 2G). As it is shown, the Hamming network outperforms 

its complete counterpart when large messages are used (see figs. 6.17(B,D)). When 

small packets are used, and especially when the decision time is large, the opposite 

occurs. This is due to the fact that in the first case, the Hamming hypermesh can 

use its wide channels to its advantage; large packets present shorter aspect ratios 

in the Hamming hypermesh than in the complete one. However in the second case 

packets are already short, and the benefit of reducing their aspect ratio even further 

are marginal. The travel distance becomes the dominating factor, and the Hamming 

hypermesh with its larger diameter keeps more messages in-flight at a given time, 

which causes contention and the earlier saturation of the network. 

The two dimensional Hamming hypermesh, if the decision time is kept short, will 

outperform its complete counterpart under all circumstances when the cluster size is 
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equal to or less than 128 nodes (which corresponds to a network size of 16K nodes). 

If the decision time is larger, or if the cluster size is larger, then the maximum 

throughput of the hypermesh will be smaller than the maximum throughput of the 

complete network, when small packets are used. However it is important to note that 

for such cases the Hamming hypermesh will still provide a shorter latency for most 

packages (see figs. 6.1O(C,E) with the two cycle decision time), unless the network 

is operated close to the saturation point (which should be avoided anyway). For 

extremely large clusters (or very short packets) and with large decision times this 

will cease to be valid, since the large diameter of the Hamming clusters will impose 

a large penalty. 

Similar results are obtained for the three dimensional case, but the effects are 

more pronounced. 

6.3. Random Hypermesh 

6.3.1. Random Cluster 

Random graphs are very efficient expanders as the number of new nodes reached in 

a given number of steps is very high. This characteristic makes them very attractive 

for pin-out limited networks, since they can achieve very rich connectivities with low 

pin-outs. 

A random cluster QK,O, is a directed hypergraph formed by IV(Q)I = K, labelled 

nodes (Vl) and IE(Q)I = K, labelled hyperedges (el), such that Vel, t(ez) = vl A 

Jw(el) = J - 1, and the output neighbourhood of a hyperedge is chosen randomly. 

A random cluster is shown in fig. 6.2(B). We have imposed a fixed degree J for all 

nodes, since we are interested in exploiting the available pin-out of a node (as to 

exploit the available bandwidth); otherwise the node with the largest degree becomes 

a bottleneck which affects the rest of the system. 

This hypergraph can be constructed from a random graph as follows. We start 

by randomly choosing a graph FK,O-l from the set of graphs: 

{F E GU 
: IV(F)I = K, A Vv E V(F), b(v) = J - I}. (6.26) 

Based on this graph we construct QK,O such that V(Q) = V(F) and E(Q) is 

formed by the hyperedges hi, such that hu. E E(Q) iff t(hu.) = Vu. A w(hu) = NF(vu.), 

where N F( Vu.) is the neighbourhood of node Vu. in F. 

Note that this class of hypergraphs are symmetrical in the sense that euv E E 
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Figure 6.12.: Average length for different random clusters. The points are mea­
surements taken from networks constructed with the previous algo­
rithm. The lines are model predictions (using the simple model, 
,B ~ In K / In 8). 

implies evu E E (it would be interesting to investigate the effects of asymmetrical 

random hyperedges). \Ve want this graph to be connected, so we impose the condi­

tion 8Q -1 > In K, since this is the threshold for connectedness in random graphs [87] 

and 8min = 1 + In K. 

A random hypermcsh Rd,,,,o, is constructed by the d-dimensional Cartesian prod­

uct of the random cluster Q"o' The total number of nodes in this hypermesh is 

N = Kd, and the total degree is given as 8R = d8Q, where 1 + Int < 8Q :::; ¢'lV. The 

random hypermesh is able to tune itself between a wide channel, ~WRC ~ d~m = 
o ( :tN) large diameter network, and a narrow channel ~WRC = 1, low diameter 

network (,Bn = 1), by varying the parameter 8Q• 

The ability to trade channel width for smaller inter-cluster distances allows the 

random hypermesh to optimise its performance for a given operating regimen. 

6.3.1.1. Diameter and average length 

Messages will need to route through several nodes within the same cluster before 

routing to a lower dimension. This distance is given as the average length of a 

random graph, which has already been studied and can be written as [118]: 

8Q [(8Q - l)DQ - DQ(8Q - 2) - 1] 
,BQ ~ DQ - (K _ 1)(8Q _ 2)2 ' (6.27) 

where the diameter of the cluster DQ is given by [87,118]: 
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Figure 6.13.: Switch complexity for different cluster implementations. The random 
cluster is shown at its minimum complexity (6 = 1 + In 1'\:). The maxi­
mum complexity for the random cluster is equal to that of the complete 
hypergraph. 

In (o~~ 2 (I'\: - 1) + 1 ) 
DQ = In(6

Q 
_ 1) + 1; (6Q > 2). (6.28) 

When I'\: » 6Q > In(l'\:) » 1, the following approximations can be made: DQ ~ 

In(l'\:)j In(6Q), and (3Q ~ DQ ~ In (I'\:) j In(6Q). These approximations will be generally 

used throughout this chapter. 

6.3.2. Switch Complexity 

As we have stated, the complexity of a switch is proportional to the number of 

internal routes X = 0(62
), where 6 is the degree of the cluster. Since each route 

has W wires, the switch complexity will be measured as S = d ~V 62• Figure 6.4 

and table 6.2 shows the switch complexity, and the complexity reduction for the 

complete (6 = I'\: = ~), hamming (6 = 2log2 1'\:) and random (1 + In 1'\::5 6 ~ 1'\:) 
hypermeshes. Note the linear reduction in complexity for the incomplete networks 

(with respect to the cluster size). Ifwe were to change our constant pin-out argument 

for a constant switch complexity argument, the incomplete networks would exhibit 

an even better performance. 

6.3.3. Random Cluster Optimisation 

As we have stated when comparing different networks we will maintain constant the 

total pin-out. Since the random cluster is able to trade channel width for length 
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Figure 6.14.: Latency of random hypermeshes with different degrees (N=4096, d=2, 
B=128 phits[C), Tdec=2 cycles). 

reduction, it is desirable to calculate at what connectivity level is the optimum 

performance achieved. It is obvious that under no load the maximum throughput 

is achieved when the network has the widest possible channels; while the smallest 

latency is realised when the diameter is small; that is when the channels are not 

very wide and the connectivity is high. 

In a more realistic scenario, when the network is loaded the situation is different; 

narrow channels and large diameters lead to contention and eventually saturation. 

The effects of varying the connectivity of a random hypermesh can be seen in figure 

6.14. As it is shown small connectivities result in early saturation. Large connec­

tivities also suffer from poor performance due to large packet aspect ratios; packets 

spend more time in the network (despite the fact that they need to traverse short 

routes), increasing both, latency and contention, which leads to saturation. A sim­

ilar situation is observed for the maximum throughput (see fig. 6.17). 

We are interested in obtaining the optimum connectivity 6opt, which is defined as 

the connectivity which provides the largest saturation traffic, f.1sat. The maximum 

throughput is also achieved with this connectivity. This is obtained from: 

(6.29) 

The optimum value of some networks is shown in figure 6.15. 

6.3.4. Latency 

The dynamic latency of different network configurations was evaluated using the 

model developed in section 6.2.4, and the results are shown in fig.6.16. The connec-
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tivity of the random hypermeshes shown is the optimum (6 = Oopt). 
As it is apparent the random hypermesh outperforms the others under all condi­

tions showed. \Ve believe this is a consequence of the superior expander properties 

of random graphs, which allow them to use their available wiring very efficiently. 

For small networks (A,D in the figure) similar results as before are found, where 

the incomplete implementations outperform their complete counterparts, providing 

the additional bonus of wider channels and therefore throughput. 

For larger networks, and especially with large decision times, the random hyper­

mesh shows a definite advantage over the other implementations, as the Hamming 

cluster can become too large and suffer from large latencies when small packets and 

large decision times are used. In this case the random hypermesh reacts by trading 

channel width for a shorter diameter (i.e. in fig. 6.10(C), for the two cycle decision 

time OJlamm = 12 and OR = oopt = 19, while for the one cycle decision time bR = 16), 

and manages to outperform both, the complete and the Hamming hypermesh (see 

figures 6.10(C,E)). A similar result can be found for the networks shown in fig. 

6.10(E,F). 

6.3.5. Throughput 

The dynamic maximum throughput for different networks was evaluated using the 

model derived in section 6.2.4, and the results are shown in figure 6.17. The through­

put is measured in phits per cycle referred to the complete network (see section 

6.2.4.1). 

The throughput of the random hypermesh is shown plotted against its connectiv-
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Figure G.lG.: Latency comparison of random incomplete hypermeshes against other 
implementations with a decision time of one cycle (thick lines), and 
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d=3) with short (E) and large (F) packets are shown (short packets 
are 32 phitslCJ long, and large packets are 128 phits[C] long). For the 
random hypermeshes 0 = oopt. 
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Figure 6.17.: Maximum throughput of different random hypermeshes against their 
connectivities (c5R ), with a decision time of one cycle (thick lines), and 
two cycles (thin, grey lines). The Hamming and complete hypermeshes 
are also include in the plot, although their connectivity is fixed. A 
small network (N=256, d=2) with short (A) and large (8) packets, a 
large network (N=4096, d=2) with short (C) and large (D) packets 
and a very large network (N =32K, d=3) with short (E) and large (F) 
packets are shown. Short packets are 32 and large packets are 128 
phits[C] long. 
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ity. The peak of this curve is obtained when the connectivity is optimum 6R = 60pt 

(see section 6.3.3). \Vhen the connectivity is less than the optimum (6R < 6opt ), 

packets travel large distances; and although they have a small aspect ratio (the 

network has wide channels), contention will cause early saturation (see fig. 6.14), 

and will limit the maximum throughput. On the other hand when the connectivity 

is larger than the optimum (8R > 6opt), channels are narrow, and although pack­

ets traverse only short distances, the large packet aspect ratio will lead into early 

contention and saturation, and will limit the throughput. 

In figure 6.17 we see the same effects as discussed in the previous section; incom­

plete hypermeshes outperform complete ones by a wide margin when large packets 

are used, and the hamming hypermesh is outperformed by its complete counter­

part when large clusters, large decision times and small packets are used (see figs. 

6.17(C,E)). 

Random hypcrmeshcs outperform the other implementations under all conditions, 

and in some cases provide twice the throughput of the complete hypermesh. 

6.4. Conclusions and Summary of Results 

The Hamming hypermesh has been introduced and some basic characteristics have 

been analysed such as the diameter and average length. Furthermore a routing 

algorithm has been provided, and a model describing the latency and throughput 

of the network has been constructed. It has been shown that the Hamming hy­

permesh outperforms complete hypermeshes under the constant pin-out argument, 

using wormhole switching and deterministic routing, except when used in large clus­

ters with small packets and large decision times. When they operate away from this 

condition, they provide lower latency, higher throughput, lower cost and simpler 

switches. The reason for this is that due to its low pin-out, the inter-cluster travel 

distance becomes too large, leading into saturation when the traffic level is high. We 

speculate that an extended hamming connection which could trade channel width 

for a better connectivity would perform much better, when large clusters, small 

packets and large decision times are used. 

\Vith large packets or moderate cluster sizes, the Hamming hypermesh clearly 

outperforms their complete counterparts, and as they posses much higher band­

widths and their switch complexity is lower, they provide much larger throughputs 

and reduced costs. 

Random hypermeshes outperform all other hypermeshes under the constant pin-
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out argument, using wormhole switching and deterministic routing. They provide 

lower latency, higher throughput, lower cost and simpler switches. The same is true 

for the Hamming hypermesh, except when used in large clusters with small packets 

in which case it can be outperformed by the complete hypermesh. 

Since it has been shown that complete hypermeshes outperform the mesh, the 

torus, low dimensional k-ary n-cubes (with and without bypass channels), and multi­

stage interconnection networks (when realistic decision times are accounted for), it 

follows that incomplete hypermeshes outperform them as well. 

The main disadvantage of using random interconnections is that a routing table 

or other sophisticated mechanisms are required for the router design, therefore it 

would be very beneficial to provide a deterministic network with the ability to tune 

its degree and diameter, so that the performance can be optimised according to the 

network variables (decision time, cluster size, etc.). To this effect the use of other 

clusters could be investigated, such as LFSR and extended Hamming 

The use of the random network is also beneficial as a design tool. Once the op­

timum connectivity is established (according to the design criteria), a deterministic 

network with similar characteristics can be used in place of the random network. 

Since it has been shown that complete hypermeshes outperform the mesh, the 

torus, low dimensional k-ary n-cubes (with and without bypass channels), and multi­

stage interconnection networks (when realistic decision times are accounted for), it 

follows that incomplete hypermeshes outperform them as well. Furthermore incom­

plete hypermeshes posses much higher bandwidths and their switch complexity is 

lower, leading to reduced costs and better performance. 

Although these results were derived for networks using wormhole switching, we 

speculate that the main results will still hold with different switching methods. 
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7. Conel usions 

An efficient interconnection network should be capable of exploiting the locality of 

information present in the set of expected communication patterns, while at the same 

time accommodate other general communication patterns as efficiently as possible. 

Small-world graphs provide a communication model where traffic at a local level is 

confined at a local cluster of the underlying graph, and long range traffic is supported 

by a set of shortcuts present introduced in a network, and thus are a natural option 

for the construction of efficient interconnection networks. 

The original construction methodology proposed by Strogatz and Watts where a 

subset of the edges are randomly rewired with a given probability has been super­

seded by an additive construction method in which edges are added with the same 

probability, and the structure of the underlying graph is preserved intact. This 

is important in order to exploit some of the useful properties of the determinis­

tic underlying graph; for instance it is possible to construct deadlock free routing 

algorithms by exploiting this property. 

Random SmalI-\Vorld (RS\V) interconnection networks based on both construc­

tion methodologies have been introduced in the present work, and some of their 

basic properties have been analysed. It has been shown that RSW graphs are good 

candidates for the construction of interconnection networks, as they can exploit the 

locality of information, and due to their small diameter and high connectivity, can 

efficiently support random traffic if enough shortcuts are introduced. 

A simple mathematical model for the diameter and average length of a RSW graph 

has been constructed; and it has become apparent that the most suitable underlying 

graphs for a RSW interconnection network have a strong local connectivity but suffer 

from a weak global level connectivity characterised by a large average length and 

diameter. 

For the special case of an underlying array an expression for the diameter has 

been constructed by extending the average length Mean-Field like model proposed 

by Newman and \Vatts, and the forking process model proposed by Moukarzel. The 

models have been validated with the aid of a custom graph construction and analysis 

computer program, where a large number of RSW graphs have been constructed and 
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direct measurements have been taken from them. The models corroborate the fact 

that a fast transition from a large world to a small world is undertaken as soon as 

a large enough set of shortcuts is available, and that the diameter experiments this 

fast transition in a similar way as the average length does. Although models for the 

average length had already been constructed, a correction for systems of small size 

has been undertaken both for the average length and the diameter, and the results 

have been corroborated with experimental data. It follows that latency is reduced 

in the same way, at least for systems with low or sporadic traffic. 

The degree distribution has also been studied, and a model has been constructed 

and verified wi th experimental data. The degree increase of a node follows a binomial 

distribution, from which the maximum expected degree has been calculated and 

verified against measurements taken directly from RSW graphs. As expected the 

degree of the rewired graphs is increased with the addition of shortcuts; however 

the maximum degree is only increased significantly for large rewiring probabilities, 

so there exists a large interval of probabilities where the maximum degree is kept 

small while the diameter has been reduced significantly. 

As expected the bisection width is also increased and it is shown that this increase 

is linear with the number of edges introduced, and hence with the rewiring proba­

bility, and also with the number of nodes. Since the expected traffic increase with 

an increase in network size is proportional to the number of nodes, such an increase 

in bisection width is necessary to support traffic as the system is expanded. 

A latency model for array RS\V interconnection networks with random traffic and 

with shortest path routing has been presented and corroborated against simulations 

carried out with a purpose built discrete event simulator integrated into the graph 

construction and analysis program. It has been shown that latency is reduced in a 

similar fa"hion as the average length and diameter and throughput is increased if 

enough shortcuts are present. Otherwise the network can easily saturate if random 

traffic is present. 

To providc a bettcr characterisation of this "premature" saturation, congestion 

in RS\ V graphs has been analysed and an analytical model has been provided. 

The model corroborates the existence of the premature saturation, and provides a 

mechanism to calculate the number of shortcuts required to avoid it. Furthermore 

it is shown that a sterp decrease in congestion occurs beyond a critical point, and 

therefore a large boost in performance can be expected beyond it. 

Lack of regularity and a large degree are the most important drawbacks of RSW 

graphs. In order to improve both, deterministic small-world graphs have been in­

troduced. Deterministic S\V graphs constructed by superposition are a natural 
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extension of RS\V graphs where the rewiring process is deterministic (and restricted 

to produce regular networks). An example of such a network is the family of Linear 

Feedback Shift Register graphs (LFSR). These graphs retain most of the properties 

of RS\V which have already been analysed, while providing a deterministic network 

and a regular graph. The determinism in the graphs can be exploited to produce 

simple routing algorithms, as has been done for the ring LFSR graph. The amount of 

information required to create a representation of the network is reduced from O(N) 

to 0(1), which aids in the exploitation of algorithmic properties of the network. 

The family of ring LFSR networks has been analysed and shown to provide very 

desirable characteristics, such as regularity, small degree, diameter and average 

length. The reduction in length and diameter is achieved by the introduction of 

shortcuts, and since in LFSR graphs of small degree the ratio of shortcuts to normal 

edges is larger than for LFSR with a large degree, it follows that LFSR networks 

with a small d('gree are better expanders, and have a diameter and average length 

close to the ~foore limit. On the other hand, large degree LFSR graphs can exploit 

locality more efficiently, and a natural tradeoff between cost and support for locality 

is created. 

An n-Ievcl recursive greedy routing algorithm for the LFSR graphs has been pro­

vided using a tree embedding. It has been showed that for most graphs a small 

lookup drpth gives close to optimal results, with the added advantage of requiring 

only local information to work. Large networks with a small degree require a large 

lookup depth in order to reduce the routing diameter significantly. However it is 

important to note that the diameter with a small lookup depth in these networks is 

already close to the optimal value. Furthermore, although the diameter experiences 

a slow decay in these networks, the average length is reduced much faster, which 

signifies that contention can be reduced very effectively by using such an algorithm. 

If on the other hand the communication patterns expected have a large amount 

of locality and make use of sporadic long range communications, a small lookup 

depth may be more efficient and provide better results (as the computational effort 

is reduced). 

Deterministic S\V graphs have also been constructed by a direct method, in which 

a suitable deterministic function generates a local structure, and shortcuts of a 

large variety of lengths, which according to the multiple scale hypothesis reduce 

the average length of the graph. A particular generating function based on the 

Hilbert curve has been used to construct the Hilbert graph, as an example of this 

design method. It has been shown that the Hilbert graph posses some remarkable 

characteristics; such as modular expandability, small fixed degree, two layered planar 
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implementation, simple recursive structure, small bisection bandwidth, it can exploit 

the locality of information in an application and it exhibits a small logarithmic 

diameter and average length. Due to its fixed degree of four, it is only natural to 

compare this graph against the torus and mesh, which also have a fixed degree of 

four. The bisection width of the Hilbert graph has been determined, and shown to 

be very similar to that of the mesh and torus. However the Hilbert interconnection 

makes a much better use of the available wiring, and since it provides a much reduced 

diameter, it can provide a reduced latency. It is expected that much larger systems 

with an equal diameter can be accommodated using a Hilbert graph than with a 

mesh or torus, provided an adequate routing algorithm can be designed. 

The work has been extended to hypergraph interconnection networks, and in par­

ticular to the lIypermesh. \Vhile for graph networks the construction methodology 

has been based on adding or modifying the connections in them, for hypergraphs 

the construction goal is to reduce the degree of a node while maintaining a good 

connectivity. Traditional hypermeshes (such as the DCSH) already provide an ex­

cellent connectivity. However it has become evident that the degree can become 

too large making the network too expensive to implement. In this work incom­

plete clusters based on random connections and on a deterministic process have 

been introduced and analysed. These implementations have been compared using a 

constant pinout metric. Deterministic (Hamming) hypermeshes are shown to out­

perform the traditional (complete) implementation and provide a lower latency and 

higher throughput except when used in large clusters with small packets and large 

decision times. \Vhen they operate away from this condition, they provide lower 

latency, higher throughput, lower cost and simpler switches. 

For the case of random hypermeshes it is shown that they outperform all other hy­

permeshes under the constant pin-out argument, and provide lower latency, higher 

throughput, lower cost and simpler switches. Since it has been shown that complete 

hypermeshes outperform the mesh, the torus, low dimensional m-ary D-cubes (with 

and without bypass channels), and multi-stage interconnection networks (when real­

istic decision times are accounted for), it follows that these incomplete hypermeshes 

outperform them as well. 

It is expected that future work will include the fault tolerance analysis of the 

networks presented in this work, and that at least for the case of random small­

world networks, the introduction of non-determinism will increase the fault tolerance 

significantly. Furthermore new routing algorithms need to be developed for the 

LFSR and Hilbert graph to provide better and simpler routing. 

Since it is expected that for some of the graphs introduced in this work the 
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large bisection width will create difficulties for the physical layout of the networks, 

the use of Cartesian products of small-world arrays is proposed. In such a system 

the complexity of the interconnection can be hidden by constraining it along the 

vertical, horizontal or n-dimensional arrays. The resulting topology will resemble 

the incomplete hypermeshes proposed in this text; and it is expected to exhibit some 

of the same characteristics. 

Fractals provide a natural scale free structure which can be used to generate small­

world networks such as the Hilbert graph. It is expected that further work in this 

area can provide a more general design methodology for graphs which exhibit the 

same desirable characteristics as the Hilbert graph. Furthermore it is possible to 

fix the dimensionality of the network by this method and hence provide networks 

which are simple to construct. 

The small-world model of graphs, where the structure is conceptually divided into 

a local level (with a strong local cluster) and a global level which provides inter­

cluster communications, is of general applicability. As such, the work undertaken in 

this work can be extended into other areas of knowledge. In particular the model 

for the diameter of the network can be used instead of the average length in a large 

variety of settings, including disease spreading, neural networks, social networks and 

others. Previous work has used numerical simulations and mathematical models 

for the average length, where the reduction of average length is one of the most 

important characteristics under study. Although this is valid for some systems, the 

congestion model developed in this work shows that there is a fundamental limit in 

the rate of flow through the network. This work can be extended to provide more 

accurate model of complex systems where interchange of fluids or information can 

cause edge saturation. 
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A. Recent Parallel Systems 

The following table is a list of some recent commercial parallel computers. 
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Name J 11achine Type I 
Cpp Gamma II SI~ID 

Compaq GS S~IP 

Compaq AlphaServer SC S~IP /!\U1IA 

Cray SVlex S~1 Vector /~U11A 

Cray T3E (1350) NUUA 

Cray MTA-2 NU11A 

Fujitsu AP3000 S1IP/NU11A 

~uj.Siem. PRIMEPO\VER SMP 

Fujitsu VPP5000 NUMA/Vector 

~ Hitachi SR8000 SMP/NUMA 

ft'p 9000 SuperDome SMP 

IBM RS/6000 SP SMP/NUMA 

NEC Cenju-4 NUMA 

NEC SX-5 NUMA / Vector 

Quadrics Apemille SIMD/Array 

SG I Origin 3000 SMP/NUMA 

SUN EI0000 Starfire SMP 

Connection Structure 

2D ~lesh Extended 

4 nodes/board - xbarup to 8 boards - xbar(hierarchical xbar) 

4 nodes/board - xbarBoards - Fat tree 

4 CPUs/board - xbar4-8 boards/cabinet - xbar4 Cabinets - Giga Ring 

3D Torus 

3D Torus w /reduced connectivity 

2 CPUs/board - xbar SMPboard - 2D Torus 

xbar 

Distributed xbar 

8 CPUs/board - xbar SMP?Nodes- Multi -Dimensional xbar 

2 level xbar 

4-16 CPUs/board - xbarboards - omega switch 

multistage xbar 

multistage xbar 

3D Torus 

2-4 CPUs/board - xbarboards - hypercube 

(64x64) xbar 

Processors 

4096 

32 

512 

128 

2176 

256 

1024 

128 

128 

512 

64 

2048 

1024 

512 

2048 

512 
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B. Integrated network analysis 

and design system (INADS) 

A system for studying graphs and interconnection networks has been developed as 

part of this research. The program allows the user to interact, simulate and study 

the networks in an intuitive fashion. The program is written in approximately 

20000 lines of C++ code, and is built around the LEDA library from the Max­

Planck-Institut flir Informatik in Saarbriicken [132] available from http://www.mpi­

sb.mpg.de/LEDA. The following is a list of the system capabilities: 

• Graphical editing of networks and graphs. 

• Saving, loading, printing and other utilities. 

• Automated graph creation and modification: 

- Creation of meshes, k-ary n-cubes, rings, complete graphs, random graphs 

(unconstrained, bipartite, triangulated, planar), Hilbert, LFSR Ring, de 

Bruijn, Kautz and others. 

- Random Rewiring, normal and true random distributions, as well as sup­

port for deterministic rewirings, such as LFSR. 

• Basic graph algorithms: 

- Test if the graph is connected, simple, bipartite, planar, etc. 

- Diameter, degree and average length. 

- Shortest path algorithms (Dijkstra, Bellmon-Ford). 

- Cut-width measurement using the chacos library available at http://www. 

cs.sandia.gov /CRF /chac.html. 

• Small-world graph utilities: 
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Figure B .1. : IN ADS Screenshot 
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B. Integrated network analysis and design system (INADS) 

- Measurements (length, cliquishness, sampled length, sampled cliquish­

ness) 

- Small-world plot (by automatically rewiring the graph and evaluating 

successive levels of randomness) 

• Graph evolution using genetic algorithms (constraints of complexity, connec­

tivity, wire density and connectivity matrix can be specified, and the evaluation 

parameters can be dynamically changed) 

• Discrete event simulation to evaluate the performance of a given architecture. 

Automated measurements are available (latency vs. message probability plot). 

Support for different routing algorithms (including shortest path), as well as 

direct specification of a routing graph . 

• Complex utilities, such as small-world latency plot (latency vs. rewiring prob­

ability), 3-D graph visualisation, spring embedding and others. 

A screenshot of the system is shown in fig. B.1. 
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c. Fastrack System Integration 

The starting point of this research project was to address the system integration of 

the ongoing Fastrack project, as described in [150]. The tasks involved in this work 

were to: 

1. Provide operating system support for the computer to achieve the project goals 

as specified in [150], which are the experimental validation of the conclusions 

arrived at [51], [31] by Mackenzie et al and Ould-Khaoua. 

2. Identify, quantify and address the problems that arise from the interaction 

between the network interface (NI), the computer and the software. 

3. Determine the appropriate test algorithms and programs. 

The aim of the fast rack project is to construct and test a DCSH architecture using 

PowerPC computers as the nodes. It was decided to construct a network interface 

card with connections to the PCI bus. This card would use packet switching, but 

could also support virtual cut-through and wormhole routing. This is shown in 

figure D.2. The high speed electrical links were designed using Motorola's Autobahn 

technology. However due to the complications encountered during the construction 

of the card it was never finished. The project was continued by I3eeley in his Design 

And Construction Of A IIypermesh Interconnection Parallel Computer project. Due 

to the similarity of both projects they will be referred by the same name in this 

document (Fastrack). To simplify the design, it was proposed to modify the original 

design so that each SE has less inputs, and multiplexing is done externally to the SE 

[150], using a non-blocking switch. To further simplify the design Beeley proposed 

to partition it into two different network interface cards for each SE. Each card has 

an input and an output, which can be connected to different dimensions (Le. one 

will be connected to the X cluster, and the other to the Y cluster). Only one of 

the cards is required to have routing capabilities to implement a restricted routing 

scheme, however both cards can share the same design, as shown in figure D.3, and 

other routing strategies could be tested. 
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Figure C.1.: Current NIC partition of the Fastrack project. 

C.O.!. Selection of an operating system 

The selection of an operating system is fundamental in designing a computing sys­

tem, since it will influence the power, usability, reliability and security of the whole 

system. In selecting the operating system, the following criteria was used. 

• Availability. The computing nodes of this system will be Apple Power-PC 

computers, and the operating system has to be available for this platform. 

• Maturity. It is desirable to have a mature and proven system, instead of an 

experimental or development one. 

• Open system. It would prove advantageous to work with an open system, since 

we could modify or construct features on top of the operating system. Also it 

is very useful to work on an open system to evaluate different features of the 

interaction between the operating system, the applications and the network 

interface. 

• Documentation. Since we will have to write drivers for the network interface 

card, documentation should be available to help during the development. 

• Parallel systems support. 'Ve need tools to provide support for a multicom­

puter system. 'Ve need to have applications and libraries, so it is possible to 

use them. 

A subjective evaluation of the currently available operating systems was performed 

and summarised as follows. MacOS is not used mainly because it is not an open 

system but also because its multicomputer applications support is not as good as 

in the other choices, as evidenced in [151). BeOS is not a proven system and the 
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PowerPC version seems to be almost extinct. Mach lacks multicomputer software 

for this platform. All of the applications that run under Mach do so under another 

operating system running over Mach. 

Linux on the other hand has very good software and support for multicomputer 

and is an open system. It has vast documentation, although the documentation spe­

cific to PowerPC systems is not as abundant and organised. Although the PowerPC 

implementations are not a completely mature product they work very well, and they 

are fast, reliable and generally compatible with UNIX systems. 

MKLinux runs on top of the Mach micro-kernel, and therefore it is slower than 

LinuxPPC. The rest of the operating system is almost identical. The only important 

difference being that LinuxPPC does not run in non-PCI computers. However since 

the whole network interface design is based on the PCI bus, this is not important. 

For these reasons the operating system chosen was LinuxPPC, which was installed 

in two computers to test and evaluate. 

C.O.2. Defining the features of the operating system 

It might be tempting at first to provide all of the functionality described in C.O.l. 

However most of it is unnecessary to achieve the goals of the project (C). Further­

more, some of these are very difficult to implement, and they are more research 

material than a physical reality.1 

In deciding the required support that the OS should provide, it is important to 

keep a minimalistic approach, and provide only what is strictly required. 

To provide a testing platform, the operating system is required to be able to: 

1. Send and receive packages of information. To do this the first thing required is 

support for the PCI card (see C.O.3). It is also required that a communication 

library with basic communication primitives is constructed. It must also pro­

vide support for the link establishment, link maintenance and error detection 

and correction so as to provide the applications with an error-free link (for 

applications that require it). 

2. Time stamp the packages in order to measure latency. There are two issues 

required to perform this service. First it is necessary to establish a global 

synchronised clock to be able to measure time differences in different places. 

To provide a global clock there are different techniques that can be used [153]. 

However this will depend on the error tolerance required. When a message 

1 None of the existing operating systems at the time of writing provides all of these features [152]. 
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arrives it has to be time stamped. The error introduced in the time stamping 

will not only depend on the clock error, but also on the (variable) time taken for 

the operating system to respond to that event. The corresponding mechanism 

is discussed in C.0.3. 

3. Provide a means of running "real" parallel software. Most of this software uses 

communication libraries that provide the communication primitives required 

to run in a particular machine. In some instances these libraries are embed­

ded in the corresponding platform and they are invoked automatically by the 

compiler.2 In other software, the libraries used are open and well documented 

(Le. MPI and PVM) [154], [155]. 

4. It was decided to use PVM and MPI as the standard libraries to allow parallel 

software to run; since if these are used, many applications written for these 

libraries could run in the system. 

The libraries were installed and tested. The source code was obtained and analysed. 

The modifications required are to transfer all the communication calls from the 

local network, into the new interface. However, it is also required to provide a 

reliable channel since these libraries do not provide these facilities. In fact, it is 

necessary to implement all of the OSI layers [156] up to the transport layer for the 

proposed network interface, and then link this layer with the corresponding calls of 

the libraries. 

The pel support is straightforward. It is only needed to develop a driver for the 

card. The development of this driver was planned until the network interface card 

was available to allow testing it. However it is necessary to understand how the NI 

works, and what mechanisms should be used to transfer information between the 

computer memory and the NI. The next section address these issues. 

C.O.3. Analysis of the current network interface 

The Network Interface (NI) is responsible for transmitting and receiving informa­

tion between the network and the processing element (be it the memory, caches 

or registers inside the CPU). That is, it is responsible for transmitting information 

from the source processing element, through the network, and into the destination 

processing element via its own NI, and the other way around. 

2These are closed libraries such as NX from Intel and Vertex from nCUBE. 
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In the current design the NI is connected to the PCI bus, which limits bandwidth 

and increases latency. Furthermore, all communications have to be mediated by the 

kernel which adds a significant overhead for every transfer (typically this consists of a 

system call and a memory copy for transmission; and an interrupt, a system call and 

a memory copy for reception. Each of these steps increase latency, and since they 

imply a context switch, second order effects such as cache pollution would arise). 

This overhead imposes a very high penalty for small transfers, and hence limits its 

usability to long messages (it is suitable only for coarse-grained communications). 

However, recent research in parallel computing suggests that for scientific applica­

tions, the average messages are small in size (average between 19-230 bytes) [99], 

and hence this kind of applications are severely penalised by the kernel involvement 

in the transfer, and by any extra latency added, i.e .. PCI bus arbitration, message 

copying, etc. 

This makes the NI unsuitable for building high performance parallel systems. 

Even in a coarse-grained system, applications will transfer small messages, and if the 

NI is unsuitable for this purpose, latency will be added, with the result of a general 

slow down. This will also ill effect the experimental measurement of latency, since a 

received message can only be time stamped when the system has acknowledge the 

interrupt, adding uncertainty into the measurement. An alternative is to use polling 

to receive messages; however in this case it is difficult to test different algorithms 

running in the nodes, since the processor will be busy polling the NI. 

Several alternatives have been proposed, such as the use of Coherent Network 

Interfaces [1091, User Level DMA [1001 and block transfer mechanisms. In all of 

them the kernel is removed from the critical path. The new architecture will be 

referred here as User Level Communication (ULC), since the messages are transfered 

directly from user space to the NI and vice-versa. In this architecture, the NI or 

the user process has to access each others memory directly. If the NI is able to 

access the user space directly, it needs to know the physical address of the user 

space. This poses some problems, since normally processes deal only with virtual 

addresses and physical addresses are only known by the operating system and are 

not made available to them. In all of the previous solutions either special software 

techniques and/or custom hardware have been developed to provide a mechanism 

for the translation of the virtual address to a physical address. However, I will 

argue that none of these mechanisms are strictly necessary at least for the DCSH 

Supercomputer. 
Due to the problems explained in this section, a new network interface design 

was proposed. However since it requires additional hardware, and since it is more 
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complex than the current NIC, it was decided not to modify the current NIC. For 

these reasons it was decided to suspend the development of the system integration 

of the Fastrack project, since if the issues outlined here aren't solved, the test-bed 

provided by the Fastrack project would be useless for fine grain tests which are 

necessary for this research. Also it was shown that the Fastrack project would 

provide a very inflexible test-bed in which new architectures and routing schemes 

could not be analysed. 

C.O.4. Design guidelines for a new network interface 

The proposed architecture is based on the concept of virtual channel communication. 

The NI provides a number of virtual channels used to transfer data through these 

channels directly into user space. Each channel is assigned to a process through 

an operating system call. This call assigns physical memory for buffering incoming 

packages of this channel. The channel is assigned to the process by writing the 

physical address of this memory space into a table in the NI. Once the channel 

is assigned all interaction between the NI and the user is carried out without any 

further intervention of the OS. \Vhen a message form the Network arrives at a NI, its 

channel ID (Which is included in the header of the message) is read by a controller, 

the physical address assigned to that channel is looked up in the table (contained 

in the NI controller), and the NI transfers the package directly to the user memory 

space. After the transfer is finished, the NI will update the channel's associated 

physical address register to point to the next free byte. This effectively acts like a 

circular buffer in user space. 

Once the package is in user space, interrupts or polling can be used to notify the 

process of its arrival. Interrupts will not be used since they have to be handled by the 

kernel, thus providing a large overhead (108J, [101J. Furthermore, since interrupts 

are handled by the kernel, a change of context would be necessary, and second order 

effects such as cache pollution would arise [98], causing the system to slow down 

even more. For these reasons, the user process will use polling to determine when a 

new package arrives. 

Depending on the application, some of these packages will need to be copied to 

another location, since if they are left in the circular buffer long enough they would 

be overwritten. However this copy can be issued by a block movement instruction 

and will use the high bandwidth main bus. These memory movement instructions 

can be minimised by adding system memory, or removed by assigning a separate 

buffer for every non-erasable data transfer. When the buffer is full, the user process 
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issues an OS call which will assign another memory area for that channe1.3 The old 

memory area would still be accessible to the process. 

It is also important to note that the memory used for the receiving buffers will 

be "pinned" so it cannot be replaced by the operating system virtual memory man­

agement. This means that this physical memory will not be used by anything else, 

and should be considered part of the NI, and not part of the main memory. In the 

proposed implementation, the user process is also responsible of packetising the in­

formation, and assigning checksums and headers. However, this could be performed 

by a more advanced NI. 

\Vhen a process wants to send information it has to packetise and copy it to the NI. 

To allow this, the operating system should provide the process with a virtual address 

which points to the network interface (this will require some modifications to the 

operating system). Normally these transfers are implemented with a DMA engine. 

However it is argued here that this isn't strictly necessary. All the data that will be 

transferred by an application can be either a result of a calculation, or the result of a 

block device access (i.e. hard-disk). If it is a result of a calculation, this information 

would have to be copied from the internal CPU registers to main memory before 

issuing the DMA cycle. This adds unnecessary latency. If the information will not 

be required afterwards, this copying can be eliminated by simply writing directly to 

the NI. It is only necessary to assure that data is sent to the PCI bus fast enough so 

as to originate burst transfers (this attains the maximum performance of the PCI 

bus). Since the PCI bus is much slower than the main bus, this is not difficult [157]. 

If the data that has to be sent comes from a block access device, then it has to 

be copied to main memory and later on, copied to the NI. However this can't be 

avoided until these devices are optimised to use a similar scheme in which data is 

delivered directly into user space, or NI's space (or another block device for that 

matter). 

The only real benefit of using DMA would be that it would allow at least to 

some extent overlapping of the memory transfers with computation. However, since 

in a normal OS a DMA transfer has to be mediated by the kernel, and since this 

adds too much overhead, a mechanism to allow User Level DMA would have to 

be implemented, as in SHRIMP's UDMA [1001. However this is very costly and 

requires new hardware. Another option is to use a processor which allows efficient 

user block transfers like the SPARC does. 

3It will also have to un-pin the previously used memory. The process of pinning and unpinning 
memory pages is a costly one. However, this will only have to be done when a non-erasable 
input buffer is full. If enough memory is provided, this would be a rare event. 
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Memory protection is enforced by this scheme, since the physical addresses of the 

receiving channels, and the output virtual addresses are assigned by the operating 

system. Any non-authorized access will be trapped by the memory management 

unit. 

Ideally, the same concept of virtual channels should apply also for the output 

mechanisms. That is, each process asks for a unique output channel and writes into 

its own memory location. Unfortunately this is very difficult to implement in the 

NIC hardware, since it would require too much memory, and far too much logic (or 

a dedicated processor). In order to keep the design manageable, other mechanisms 

have to be developed to ensure the integrity of the information. 

The problem is as follows; suppose a process is writing data into the NIC, and the 

operating system decides to preempt it to run another process. If the new process 

starts writing data into the NIC as well, the data would be mixed up. This is due to 

the fact that data transfers to the NIC are not done in an atomic fashion. To alleviate 

this situation, the operating system scheduler can be modified, so that data transfers 

are made atomically. Also, it is possible to enforce atomicity by using a software 

semaphore. Normally semaphores are mediated by the operating system. However 

it is theoretically possible to implement a semaphore without kernel involvement by 

assigning virtual addresses to all processes which point to the same physical address, 

and warrant atomicity by using a read-modify-write cycle. This would only be an 

issue if two or more processes are running, and so only to provide the capability of 

multiprogramming it would have to be solved. There are other issues to be solved 

for multiprogramming, such as synchronous scheduling algorithms. 
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This document describes a new hardware proposal to implement the Network Inter­

face (NI) of the DCSH Supercomputer. This design will allow for higher bandwidth 

and lower latency, and it supports User Level Communication. Other Nls to be used 

in the DCSH project have been proposed and constructed. The disadvantages of this 

designs have been exposed in other documents [150] [158] and will not be repeated 

here. This design will try to overcome any limitations and use the experience gained 

in the previous work. 

D .1. I ntrod uction 

The goal of this project is to build and test a DCSH Supercomputer. This Super­

computer will be constructed with Macintosh PowerPC nodes running a version of 

the LINUX operating system (LINUXPPC). The nodes will be linked together by 

a DCSH network, formed by a central switch and Nls connected to the PCs via the 

PCI bus. In this paper I will concentrate on the design of the NI. 

0.1.1. The Problem 

In a modern computer the Network Interface (NI) is responsible for transmitting 

and receiving information between the network and the processing element (be it 

the memory, caches or registers inside the CPU). That is, it is responsible for trans­

mitting information from the source processing element, through the network, and 

into the destination processing element via it's own NI, and the other way around. 

However, trivial as this might seem, most of the modern computers and supercom­

puters are severely penalised in their performance due to poor design of the NI. This 

is one of the most critical design issues for future computers. Traditionally a NI is 

connected to the low performance I/O bus (in our design this is the PCI bus), which 

limits bandwidth and increases latency. Furthermore, all communications are me­

diated by the kernel which adds a significant overhead for every transfer (typically 

this consists of a system call and a memory copy for transmission; and an interrupt, 

167 



D. DCSH Hardware Proposal 

a system call and a memory copy for reception). This overhead imposes a very high 

penalty for small transfers, and hence limits it's usability to long messages (it is suit­

able only for coarse-grained communications). However, recent research in parallel 

computing suggests that for scientific applications, the average messages are small 

in size (average between 19-230 bytes) [159], and hence this kind of applications 

are severely penalised by the kernel involvement in the transfer, and by any extra 

latency added in the transfer, i.e. PCI bus arbitration, message copying, etc. 

This makes traditional NIs unsuitable for building high performance parallel sys­

tems. Even in a coarse-latency grained system, applications will transfer small 

messages, and if the NI is unsuitable for this purpose, latency will be added, with 

the result of a general slow down. 

D.1.2. Proposals 

Several alternatives have been proposed, such as the use of Coherent Network Inter­

faces [160], User Level DMA [100] and block transfer mechanisms. In all of them the 

kernel is removed from the critical path. The new architecture will be referred in 

this paper as User Level Communication (ULC), since the messages are transfered 

directly from user space to the NI and vice-versa. In this architecture, the NI or the 

user process has to access each others memory directly. If the NI is able to access 

the user space directly, it needs to know the physical address of the user space. 

This poses some problems, since normally processes deal only with virtual addresses 

and physical addresses are only known by the operating system and are not made 

available to them. In all of the previous solutions either special software techniques 

and/or custom hardware have been developed to provide a mechanism for the trans­

lation of the virtual address to a physical address. However, I will argue that none 

of these mechanisms are strictly necessary at least for the DCSH Supercomputer. 

D.1.3. New Proposal 

The proposed architecture is based on the concept of virtual channel communication. 

The NI provides a number of virtual channels used to transfer data through this 

channels directly into user space. Each channel is assigned to a process through 

an operating system call. This call assigns physical memory for buffering incoming 

packages of this channel. The channel is assigned to the process by writing the 

physical address of this memory space into a table in the NI. Once the channel 

is assigned all interaction between the NI and the user is carried out without any 
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further intervention of the OS. When a message form the Network arrives at a NI, it's 

channel ID (Which is included in the header of the message) is read by a controller, 

the physical address assigned to that channel is looked up in the table (contained 

in the NI controller), and the NI transfers the package directly to the user memory 

space. After the transfer is finished, the NI will update the channel's associated 

physical address register to point to the next free byte. This effectively acts like a 

circular buffer in user space. 

Once the package is in user space, interrupts or polling can be used to notify the 

process of it's arrival. Interrupts will not be used since they have to be handled 

by the kernel, thus providing a very big overhead [108] [101]. Furthermore, since 

interrupts are handled by the kernel, a change of context would be necessary, and 

second order effects as cache pollution would arise [98], causing the system to slow 

down even more. For this reasons, the user process will use polling to determine 

when a new package arrives. 

Depending on the application, some of these packages will need to be copied to 

another location, since if they are left in the circular buffer long enough they would 

be overwritten. However this copy can be issued by a block movement instruction 

(if available) and will use the high bandwidth main bus. These memory movement 

instructions can be minimised by adding system memory, or removed by assigning a 

separate buffer for every non-erasable data transfer. When the buffer is full, the user 

process issues an OS call which will assign another memory area for that channell. 

The old memory area would still be accessible to the process. 

It is also important to note that the memory used for the receiving buffers will 

be "pinned" so it cannot be replaced by the operating system virtual memory man­

agement. This means that this physical memory will not be used by anything else, 

and should be considered part of the NI, and not part of the main memory. In the 

proposed implementation, the user process is also responsible of packetising the in­

formation, and assigning checksums and headers. However, this could be performed 

by a more advanced NI. 

\Vhen a process wants to send information it has to packetise and copy it to the 

NI. To allow this, the operating system should provide the process with a virtual 

address which points to the network interface (this will require some modifications 

to the operating system). Normally these transfers are implemented with a DMA 

engine. However I argue that this isn't strictly necessary. All the data that will be 

1 It will also have to un-pin the previously used memory. The process of pinning and unpining 
memory pages is a costly one. However, this will only have to be done when a non-erasable 
input buffer is (u11. IC enough memory is provided, this would be a rare event. 
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transferred by an application can be either a result of a calculation, or the result of a 

block device access (i.e. hard-disk). If it is a result of a calculation, this information 

would have to be copied from the internal CPU registers to main memory before 

issuing the DMA cycle. This adds unnecessary latency. If the information will not 

be required afterwards, this copying can be eliminated by simply writing directly to 

the NI. \Ve only have to assure that data is sent to the PCI bus fast enough so as to 

originate burst transfers (this attains the maximum performance of the PCI bus). 

Since the PCI bus is much slower than the main bus, this is not difficult [157]. 

If the data that has to be sent comes from a block access device, then it has to 

be copied to main memory and later on, copied to the NI. However this can't be 

avoided until these devices are optimised to use a similar scheme in which data is 

delivered directly into user space, or NI's space (or another block device for that 

matter). 

The only real benefit of using DMA would be that it would allow at least to 

some extent overlapping of the memory transfers with computation. However, since 

in a normal OS a DMA transfer has to be mediated by the kernel, and since this 

adds too much overhead, a mechanism to allow User Level DMA would have to 

be implemented, as in SHRIMP's UDMA [100]. This is not an easy task, and I 

don't think it's justifiable for our project, since what we want is to evaluate the 

performance of the network. However this would have to be solved to implement 

a real high performance system. One option is to use a processor which allows 

efficient block transfers (i.e. SPARC). Another way of going around this is to use a 

mechanism as SHRIMP's UDMA or a similar one. 

Memory protection is enforced by this scheme, since the physical addresses of the 

receiving channels, and the output virtual addresses are assigned by the operating 

system. Protection is achieved by the same mechanisms that enforce normal memory 

protection. 

Ideally, the same concept of virtual channels should apply also for the output 

mechanisms. That is, each process asks for a unique output channel and writes into 

its own memory location. Unfortunately this is very difficult to implement in the 

NIC hardware, since it would require too much memory, and far too much logic (or 

a dedicated processor). In order to keep the design manageable, other mechanisms 

have to be developed to ensure the integrity of the information. 

The problem is as follows; suppose a process is writing data into the NIC, and the 

operating system decides to preempt it to run another process. If the new process 

starts writing data into the NIC as well, the data would be mixed up. This is due to 

the fact that data transfers to the NIC are not done in an atomic fashion. To alleviate 
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Figure D.l.: A 3 x 3 nCSH Network. 

this situation, the operating system scheduler can be modified, so that data transfers 

are made atomically. Also, it is possible to enforce atomicity by using a software 

semaphore. Normally semaphores are mediated by the operating system. However 

it is theoretically possible to implement a semaphore without kernel involvement by 

assigning virtual addresses to all processes which point to the same physical address, 

and warrant atomicity by using a read-modify-write cycle. This would only be an 

issue if two or more processes are running, and so only to provide the capability of 

multiprogramming it would have to be solved. There are other issues to be solved 

for multiprogramming, such as synchronous scheduling algorithms. 

D.2. N I Design 

The general architecture of the DCSH [511 is shown in figure D.l. Each node in the 

network will be formed by a PowerPC and a Network Interface Card (NIC). The NIC 

will use packet switching, but could also support virtual cut-through and wormhole 

routing. This is shown in figure D.2. The main difference between this design and 

the one that uses wormhole routing is the size of the queues. This means that we 

can also test wormhole routing by varying their size. It is intended to implement 

most of this design using programmable logic, so it is easy to modify. 

To simplify the design, it was proposed to modify the original design so that each 

SE has less inputs, and multiplexing is done externally to the SE [1501, using a non-
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Figure D.2.: SE design using Packet or VC switching. 

blocking switch. To further simplify the design James Beeley proposed to partition 

it into two different network interface cards for each SE. Each card has an input 

and an output, which will be connected to different dimensions (Le. one will be 

connected to the X cluster, and the other to the Y cluster). Only one of the cards 

is required to have routing capabilities. However both cards will share the same 

design, the only difference being the code loaded into the programmable logic (and 

only if this proves to be strictly necessary). This is shown if figure D.3. 

Since the limitation of our NI design is the PCI bus (it would be very interesting for 

further work to place the NI closer to the CPU, obtaining a much higher bandwidth 

with less latency), it is a good place to start the design. 

The maximum throughput of the PC's PCI bus is 132 MB/s when used in burst 

transfer mode. However, it is not possible to maintain this transfer rate for long 

periods, since other devices are connected to the bus, and to warrant a fair access 

for every device the PCI specification doesn't allow long sustained transfers. A 

more realistic value would be somewhere around 100 MD/s, which is the goal of this 

design. 

Since the PCI bus is 32 bits wide, and uses a clock of 33 MHz, it would be 

advantageous to maintain this wide data-path to minimise the speed requirements 

within the card. This will be another design goal. 

A general diagram of the design is shown in figure DA. 

For a clearer explanation, the following design discussion will be divided into 

output, input, PCI interface and control sections. 
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0.3. Output 

The packets to be transmitted are queued at the output queue. They are either local 

packets which come from the PCI bus, or they are routed packages. The input to 

the queue is fitted with a multiplexer which selects the source, and restricts transit 

to complete packages only (so different flits/packages are not mixed). Achieving 

this is not a simple task, since the NIC must have enough intelligence to determine 

where a package starts, and where it ends. There are different alternatives: 

1. The use of special "markers" to determine the header and the trailer. This spe­

cial markers are supported by the hardware so they differ from normal infor­

mation transmission. The problem of using this technique is that the hardware 

extensions do not map naturally into the PCI bus, and therefore special trans­

mission techniques have to be developed (like writing into privileged registers 

before writing the header or trailer). This is a hardware intensive solution, 

and hence it is difficult to implement. 

2. The use of logic and counters to determine the length of the packet, and hence 

where it starts and ends. 

3. The use of certain patterns as identifiers. In this approach the naturally occur­

ring patterns have to be specially coded to avoid misinterpretation. For this 

reason this scheme is more suitable for pure software solutions. This solution 

can make the hardware very simple (depending on what pattern is chosen). 

4. The use of a fixed size packet. Using a fixed size, it is simple to determine 

where a packet starts and ends. This approach is a variant of (2), in which the 

size of the transfer is not present in the package itself, but is known beforehand 

by the hardware. 

Any of the above could be used, however since one of the design goals is to make 

simple hardware, we will use initially the fixed packet approach. This is not the 

simplest approach, however it is still very simple, and will make software much 

simpler. Once the card is running smoothly, it would be desirable to change it to 

allow dynamic variable length packets. The only modification needed would be to 

change the logic of the PLDs to accommodate for this. 

Since the output of the NI will be a high speed serial link, it is essential to 

maintain a zero DC level on it. To do this, the information will be coded using a 

balanced 8B/10B code. This means that the transceiver bit rate should be 10 times 
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the incoming byte rate (10 X 100 = 1000 Mbps). There are numerous transceivers 

designed to work at this speed, since they are used in gigabit ethernet cards.2 The 

obvious advantage is that they are and will continue to be readily available. However 

a major disadvantage of this circuits is that they don't incorporate an 8B/10B 

coder/decoder, and hence this logic will have to be implemented in another device. 

Alternatively 4 parallel connected TAXI chips could be used. However, they would 

use too much real estate (8 chips per card), and require 4 connectors for each link. 

Also the link would be slower (70 MB/s). 

D.4. Input 

The receiver chip will recover the clock and the data. The output is 20 bits of 8B/lOB 

coded data, which must be decoded and de-multiplexed to form one long word (32 

bits wide). The receiver will output this 20 bit words with a frequency of 62.5 

MHz, and after they are decoded and assembled into long words, the frequency will 

decrease to 31.25 MHz. Since this logic must operate at a relative high frequency, 

it could prove useful to implement it with a single dedicated PLD. This logic is 

also in charge of providing the flow control signals which will be embedded in the 

communication (they will use some of the unassigned 8B/10B codes). By using this 

codes, flow control can be achieved without the use of an external control link. 

Once data is recovered it is routed towards the proper queue (assuming it ar­

rives in a Routing NIC). If the destination is to the other dimension cluster, the 

packet is stored in the proper queue, and when the output arbiter permits, it will 

be transmitted to its final destination. 

On the other hand, if the destination is the local PE, the packet enters the queue, 

and at the output, the local controller reads the virtual channel number from the 

header of the packet, and checks its local table to find out the physical address 

of the destination. Then the packet is sent to the PCI interface chip, and finally 

transmitted to the appropriate physical address. After finishing the transfer, the 

table is updated. 

The number of entries in the table will determine the maximum number of input 

channels available. This table and the controller will be implemented with a fast 

micro-controller. The technology of this implementation will determine the number 

of virtual channels (this is not a very critical factor, since the optimum value will be 

2Gigabit ethernet uses a bit rate of 1.25 Gbps, to achieve a 1 GB/s throughput. By using this 
bit rate, the speed would be 125 MB/sj that is 25 % faster than the required 100 MB/s. 
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system dependent, and remains an open issue. It would be convenient to provide a 

reasonable number of channels, to allow further research). 

0.5. PCI 

The PCI controller provides the bridge between the local processor (PE) and the 

NIC. The PCI controller must support certain operation modes in order to be able 

to work in this design. First of all, it should be capable of acting as a master, since 

it will trigger a memory transfer when a data packet arrives at the NIC. 

It is also necessary that it supports the write and invalidate transaction as an 

originator (the S5933 doesn't). There are two different commands for transferring 

data between the PCI bus and the main bus. They are the write transaction and 

the write and invalidate transaction. The main difference between them, is how the 

cache reacts to the transfer. In a normal system, when data is transferred from a 

master other than the CPU, the cache snoops the transaction to determine if any of 

the data it holds should be modified by the transaction. If the destination address 

is currently cached, it forces the current memory cycle to abort, writes the modified 

line into main memory, and resumes the previous bus cycle (if it didn't do this, data 

coherency could be lost). The problem is that this sequence of events slow down the 

transfers, and lower the data throughput. 

For this reason, data transfers should be done using the write and invalidate 

command. In this way, although the cache might have a snoop hit during the 

transfer, it doesn't force an abort and save operation, since all the cache line is 

rewritten (as opposed to just a subset as in the previous case). This maximises 

throughput. However, all data transfers should consist of multiples of the cache line 

size (32 bytes) [157]. If a packet is smaller than this, it could be transferred with 

a normal write cycle, or using the 32 bytes cache line transfer wasting some of this 

bytes. 

An alternative to the write and invalidate transaction would be to mark the 

receiving buffer memory locations as non-cachable. However this would cause a big 

slow down of the process when accessing the newly arrived data. If the received 

data is copied to a new cachable memory location to accelerate its access, the result 

is added latency and poor use of memory. 

Not all PCI transactions will be destined to the network. Some of them will be 

control sequences to load the ULC table. The PCI controller must allow writing this 

configuration information, through special mailboxes or other transfer mechanisms. 
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Normally this is not a problem since the PCI bus differentiates between configuration 

and data space, and PCI controllers support this. 
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network. 

The issues of designing and constructing a coarse grain DCSH network have been 

reviewed extensively in the Fastrack project. However no work has been done in a 

fine grain DCSH network. In this section those issues are analysed, and alternative 

implementations are proposed. 

The main problem of designing a network for a parallel computer is to assign finite 

resources to an otherwise unrestricted problem. There is a wide range of design 

choices, which must be balanced to obtain the best network possible. However, it is 

not straightforward, if possible at all, to give a weight or marking to the different 

alternatives. What might prove very convenient for a specific topology, might be 

completely useless in another. In [51J, Ould-Khaoua gives an example in which 

two authors arrive at opposite conclusions on the performance of a network, simply 

because they had different technological assumptions. 

In constructing a large scale DCSH network a number of problems have to be 

addressed. All of the previous work in DCSH networks has been focused towards 

coarse grained systems, and some of the previous results cannot be directly applied 

into a large scale, fine grained system. 

What follows is a discussion of some of these issues. 

E.!. Pin-Out 

The technology used to construct the DCSH will dictate various design parameters; 

such as maximum wiring density, and if the network is partitioned in different chips, 

also the pin-out of these chips. However, even in the case where the network is 

entirely implemented in a single chip, the number of channels connected to a node 

will be limited by technological factors. It is therefore important to minimize the 

number of channels arriving at a node, specially since it could be particularly high 

for certain combinations of cluster size and network dimensions. 
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In his work, Ould-Khaoua proposes a scheme in which pin-out and wiring density 

constrains are minimised by implementing the DCSH in a layered fashion. His 

method is based in using slices carrying the communication channels and a sub­

partition of the SE called CIU. The processing layer is "sandwiched" between these 

clusters which run in different directions (one direction for each dimension). The 

pin-out is minimised because only a small number of channels have to emerge to 

connect the PE, and also because the cluster is formed from a number of slices; so 

each CIU chip can effectively be reduced in size since it doesn't have to deal with 

all the wires, but just a subset of them. 

However this scheme is not well suited to be used in a large network. First of all, 

because this partitioning cannot be carried out in an essentially two dimensional 

medium, such as VLSI, and also because this scheme is only suitable for 2-D or 3-D 

systems, since these are the ones that map naturally into space. 

In an n-dimensional regular DCSH architecture with k nodes per side, the network 

size is given by N = kn. Thus, the number of channels arriving to a SE in the 

network is given by 1 = nNl/n, which can be substantial for large values of N. It 

seems obvious that if a high number of nodes is to be linked, a high dimensionality 

network must be employed to minimize the number of channels arriving to the nodes. 

The minimum number of channels arriving at a SE, is given when n = In N, and 

lopt = elnN (E.!) 

E.2. Switch Complexity 

Since the network is going to be formed by a large number of nodes, it is important 

that their complexity be kept low. Part of the cost of the node has already been 

analysed and minimised (pin-out), but perhaps the switch complexity is a more 

important parameter in the network, since its size impact the total cost directly. 

The switch complexity can be estimated using the number of internal routes 

through it, and for the restricted routing case it is given by 

1 In reality k, n E ~, so they have to be approximated to an integer value. Also, since in general 
there are no n, kEN that satisfy kn = N, then 

1 n 

i' = - """ kxo n L.J • 
x=l 

However min i ~ min i' and therefore i' is at least equal to e In N. 
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n-l 

Cse = n + nk + Link (E.2) 
i=l 

We want to minimise the total switch complexity, that is 

n-l 

C = NCse = N[n + nk + Link] (E.3) 
i=l 

The minimum is obtained when n = nopt which can be approximated as 

nopt~ 2+3~n N (EA) 

and is given by2 

n3 - n2 + n t ltnopt 

C - opt opt op N n t 
opt - op 

2 
(E.6) 

The switch complexity per node rises as the cube of the logarithm of the size of the 

network for large values of N. This means that the resulting network is expandable, 

although it might be difficult or costly to implement, specially if it is compared 

against simpler and less powerful networks. The resulting cluster size grows slowly 

and tends to e3 ~ 20 when N -+ 00. This seems like a very reasonable size.3 

The average distance between any pair of nodes, again for N -+ 00 is given by 

d= InN 
3 

(E.7) 

This is a very important metric, since it will affect directly the latency and the 

traffic in the network; and as it is shown, it only grows as the logarithm of the 

network size. 

Although this network has very good characteristics, it has the drawback of a 

complex switching element. In some cases, to sacrifice some power in order to gain 

simplicity might prove to be advantageous, specially if that power is not strictly 

required to begin with. 

For this situations, a new class of network, namely a recursive DCSH (RDCSH) is 

2This equation can be approximated for large values of N as 

(E.5) 

3It is important that the cluster size is limited, since it is necessary to send the address of the 
recipient in each message, and if the cluster size was allowed to grow, then it would increment 
the header size of the packages, and hence the traffic and complexity of the network. 
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n 

o 

Figure E.l.: Latency in the network for a 32 flits message size, with m= O.Ol. The 
line show the case where the switch complexity is minimum (n = nopt). 

propo ed. The emphasis of this architecture is to allow for simpler DCSH-like net­

works which maintain some of the advantages of the DCSH network while providing 

the flexibility to choose between performance and cost. 

E.3. Latency 

Th latency of the DCSH network has been extensively studied in [51] . The optimal 

routing algorithm is virtual cut-through (VCT) , specially if the dimensionality of 

the network i high, so we will ba e our analysis on it. As fig. E.1 shows, the latency 

i minimum for very low values of n, but of course, the switch complexity is very 

larg for this values. 

As it i shown, the corresponding latency for the optimised network is almost at 

the p ak of th graph. Neverthel ss, the latency is almost the same as that of a 2-D 

or a 3-D hypermesh, since these choices lie almost at the peak of the graph as well 

(nopt(N = 15000) ~ 3.5). Lower latency values can be obtained by migrating the 

network towards a higher dimen ionality, at an increased system cost. 

E.4. Recursive DCSH (RDCSH) 

To allow for a flexible architecture that can trade off performance for simplicity as 

desired, this new architecture is proposed. The main motivation to propose this ar­

chitecture is that although the DCSH provides excellent performance, its complexity 

can be too much for some applications. For example, in a two dimensional DCSH, 
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Figure E.2.: A 2D RDCSH. 

k = v'Fi and the switch complexity is Cse = 2v'Fi. The complexity is high due to 

the fact that all the k nodes in the adjacent clusters have a direct connection to the 

node. In E.2 it is proposed to rise the dimensionality of the network to provide a 

less complex switch, but the minimum obtained can still be substantial. 

In the RDCSH one cluster is partitioned in a number of sets, each forming a 

DCSH. Then these sets are equipped with a SE, and are viewed as a PE/SE node 

for the next recursion level, and they are connected in a DCSH fashion. This process 

can be repeated several times, increasing the level of recursion (see fig.E.2). 

In this architecture, a new variable is defined, r which is the number of recursive 

levels in the network. When r = 1 the normal DCSH is obtained. 

E.4.1. Switch Complexity 

There are two different types of switches in the RDCSH: 

• Normal PE/SE switches (present only in the first level of recursion) 

• Recursive switches which are those that permit communication between the 

different recursion levels. 

The number of normal PE/SE switches in the network Sse is the same as N, the 

number of processors, and is given by 

(E.8) 
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\Vhere n is the network dimension, and k is the cluster size, which are the same 

for every level of recursion. The complexity of these switches is given by 

o _ { nk T = 1 
se - n(k + 1) T > 1 

(E.g) 

Where k + 1 accounts for the fact that there is an added channel which connects 

the nodes to the recursive switches. 

The number of recursive switches is given as 

r-l 

Sfs =nLpn (E.10) 
x=l 

The upper limit of eq. E.10 is T - 1, since these switches are not present on 

the top recursion. The number of connections to the lower side of these switches 

is (k + l)kn-l, since there are kn- 1 clusters connected to it, and each cluster has 

k + 1 channels. On the other side of the switch, there are k + 1 channels (the whole 

lower-recursive layer can be viewed as a normal PE/SE in the next recursive layer). 

Therefore the complexity of the recursive switches is 

(E.ll) 

The total complexity can be written as 

{ 

nkn+l r = 1 

Of = n(k+ 1) [knr+ kn-l(kt~~~nr-kn)] r> 1 
(E.12) 

However, a more interesting measure is the complexity per PE, defined as the 

ratio between the total complexity and the number of PEs which yields4 

{ 

nNl+~ r = 1 
- -L n-I 1 -L 

Of - n(l+Nnr) [N + Nnr(N-Nr)(l+Nnr)] r> 1 
N Nf-l 

(E.13) 

The minimum switch complexity is obtained when n = 1 and r = ropt.5 For this 

values, the switch complexity is approximated by 

4Substituting k - N:r from eq.E.8. 

&There are no analytical solutions to dCf);-1 = o. However ropt can be approximated by ropt = t V1 . The exact solution is given by the most positive real root of 2N~ + 2N(N-: - N:)­
In 1+ 2) 

N-~ -N~ +4N -4 = O. This approximations, and the values thereof are accurate for relatively 
large values of N (approx. N> 15). 
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(E.14) 

Compare this value to that of eq. E.5. The switch complexity has been made 

independent of the number of processors. 
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F. Characteristics of some 

I nterconnection Networks 

Graph I Size I Degree Length Diameter I Bisection \Vidth I 
D-Mesh kD k= VN ~ (k - U -If-l D(k - 1) kD 1 

D-Torus kD k = !(jN Dk N 
DJhl 2kD- 1 

TN-I 
k-Ring N 2k ~+~ I ;-k:! + ~J k(k + 1) 

D-Hypercube 2u D ~N=r D 2u " -1. "!f 
k-ary D-cu be kD 2D ~N Dk kD/2-1 _ 2N 

]i[-l T -J£... 

Table F.l.: Characteristics of some interconnection networks. 
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