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Abstract

The Stable Marriage problem (sm), the Hospitals/Residents problem (hr) and the Sta-

ble Roommates problem (sr) are three classical stable matching problems that were first

studied by Gale and Shapley in 1962. These problems have widespread practical applica-

tion in centralised automated matching schemes, which assign applicants to posts based

on preference lists and capacity constraints in both the UK and internationally. Within

such schemes it is often the case that an agent’s preference list may be incomplete, and

agents may also be allowed to express indifference in the form of ties. In the presence

of ties, three stability criteria can be defined, namely weak stability, strong stability and

super-stability. In this thesis we consider stable matching problems from an algorithmic

point of view. Some of the problems that we consider are derived from new stable match-

ing models, whilst others are obtained from existing stable matching models involving

ties and incomplete lists, with additional natural restrictions on the problem instance.

Furthermore, we also explore the use of constraint programming with both sm and hr.

We first study a new variant of the Student-Project Allocation problem in which each

student ranks a set of acceptable projects in preference order and similarly each lecturer

ranks his available projects in preference order. In this context, two stability definitions

can be identified, namely weak stability and strong stability. We show that the problem

of finding a maximum weakly stable matching is NP-hard. However, we describe two

2-approximation algorithms for this problem. Regarding strong stability, we describe a

polynomial-time algorithm for finding such a matching or reporting that none exists.

Next we investigate sm with ties and incomplete lists (smti), and hr with ties (hrt),

where the length of each agent’s list is subject to an upper bound. We present both

polynomial-time algorithms and NP-hardness results for a range of problems that are

derived from imposing upper bounds on the length of the lists on one or both sides.

We also consider hrt, and sr with ties and incomplete lists (srti), where the preference

lists of one or both sets of agents (as applicable) are derived from one or two master lists

in which agents are ranked. For super-stability, in the case of each of hrt and srti with

a master list, we describe a linear-time algorithm that simplifies the algorithm used in

the general case. In the case of strong stability, for each of hrt and srti with a master

list, we describe an algorithm that is faster than that for the general case. We also show

that, given an instance I of srti with a master list, the problem of finding a weakly stable

matching is polynomial-time solvable. However, we show that given such an I, the problem
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of finding a maximum weakly stable matching is NP-hard.

Other new stable matching models that we study are the variants of smti and srti

with symmetric preferences. In this context we consider two models that are derived from

alternative ways of interpreting the rank of an agent in the presence of ties. For both

models we show that deciding if a complete weakly stable matching exists is NP-complete.

Then for one of the models we show that each of the problem of finding a minimum

regret and an egalitarian weakly stable matching is NP-hard and that the problem of

determining if a (man,woman) pair belongs to a weakly stable matching is NP-complete.

We then describe algorithms for each of the problems of finding a super-stable matching

and a strongly stable matching, or reporting that none exists, given instances of srti and

hrt with symmetric preferences (regardless of how the ranks are interpreted).

Finally, we use constraint programming techniques to model instances of sm and hr.

We describe two encodings of sm in terms of a constraint satisfaction problem. The first

model for sm is then extended to the case of hr. This encoding for hr is then extended

to create a model for hrt under weak stability. Using this encoding we can obtain, with

the aid of search, all the weakly stable matchings, given an instance of hrt.
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Chapter 1

Review of Stable Matching

Problems

Matching problems can be found at the heart of a wide variety of important large-scale

practical applications. In a matching problem we seek to assign a set of agents to one

another, typically subject to constraints involving preference lists and capacities. The

preference list of an agent contains the set of agents, listed in order of preference, that he

is prepared to become assigned to. The capacity of an agent is the maximum number of

agents that he can become assigned to. Stability of a matching is widely accepted to be a

desirable property [63], and ensures that no two agents would rather be assigned together

than remain with their current assignees. A matching that satisfies a stability criterion is

said to be a stable matching. Example real-world instances of stable matching problems

include assigning medical students to hospital posts, assigning children to schools and in

kidney exchange schemes.

In this chapter we discuss several stable matching problems. We define in Section

1.1 the Stable Marriage problem, the first stable matching problem to be formally stud-

ied in the literature. The Stable Marriage problem involves two sets of agents, namely

men and women, where the men rank the women in strict order of preference, and simi-

larly the women rank the men in strict order of preference. We then describe in Section

1.2 the many-to-one generalisation of the Stable Marriage problem known as the Hospi-

tals/Residents problem. Here we have a set of residents, each of whom seeks to be assigned

to a hospital post, where a hospital may have multiple posts. In this case we require a

matching (i.e. each resident is assigned to at most one hospital and no hospital is over-
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subscribed) that is stable. Next we introduce in Section 1.3 the Student-Project Allocation

problem, a generalisation of the Hospitals/Residents problem. An instance of the Student-

Project Allocation problem consists of a set of students, a set of projects, and a set of

lecturers. In the model that we describe in this chapter, each student ranks a subset of

the projects offered by the lecturers in strict order of preference, and each lecturer ranks

in strict preference order the appropriate set of students. Additionally, each project has

a capacity indicating the maximum number of students who can undertake the project,

and each lecturer has a capacity indicating an upper bound on the number of students he

wishes to supervise. Finally, we review in Section 1.4 the Stable Roommates problem, the

non-bipartite generalisation of the Stable Marriage problem. An instance of the Stable

Roommates problem consists of a set of agents, each of whom rank one another in strict

order of preference.

For each of the stable matching problems that we discuss, we define the problem

formally, give an example instance, and then state the key algorithmic results concerned.

The discussion of stable matching problems as presented in Sections 1.1-1.4 then leads to

a review in Section 1.5 of the problems that we consider in subsequent chapters, including

a summary of the main contributions of this thesis.

1.1 Stable Marriage Problem

1.1.1 The Gale-Shapley algorithm

In 1962 David Gale and Lloyd Shapley published their paper ‘College admissions and the

stability of marriage’ [18]. This paper was the first to formally define the Stable Marriage

problem (sm), and provide an algorithm for its solution. An instance I of sm involves n

men and n women, each of whom ranks all n members of the opposite sex in strict order

of preference. In I we denote the set of men by M = {m1,m2, . . . ,mn} and the set of

women by W = {w1, w2, . . . , wn}. In sm the preference lists are said to be complete, that

is each member of I ranks every member of the opposite sex.

We seek to find a matching M (a bijection from M to W) from the men to the women.

If (m,w) ∈ M , we say that a man m is matched to a woman w in M and w is matched

to m in M . Also if (m,w) ∈ M , we say that w is m’s partner in M and m is w’s partner

in M . An assignment A is a set of (man, woman) pairs (m,w) ∈ M×W; we note that

an assignment need not be a matching. Similar to the notation used with a matching, if

2
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(m,w) ∈ A we say that m is assigned to a woman w in A and w is assigned to m in A.

Again if (m,w) ∈ A we say that m is w’s partner in A and w is m’s partner in A. Let

A(p) denote p’s partners in A, where p ∈ M ∪ W. If A(p) 6= ∅, then we say that p is

assigned in A, otherwise p is unassigned in A.

A pair (m,w) ∈ M × W blocks a matching M , or is a blocking pair , if m prefers w

to M(m) and w prefers m to M(w). A matching is stable if there exists no blocking

pair. Stability as a criterion for a matching ensures that no party can seek to improve

outside of the matching scheme, as there is no incentive for any one agent to improve.

We also say that (m,w) are a stable pair if m and w are matched to one another in

some stable matching. An example instance of sm is shown in Figure 1.1 (we use the

convention that preference lists are ordered from left to right in decreasing preference

order throughout this thesis). One possible stable matching in instance I1 of Figure 1.1 is

M = {(m1, w1), (m2, w3), (m3, w2)}.

Men’s preferences Women’s preferences

m1 : w1 w3 w2 w1 : m1 m3 m2

m2 : w1 w2 w3 w2 : m3 m1 m2

m3 : w2 w1 w3 w3 : m1 m2 m3

Figure 1.1: Instance I1 of sm.

The algorithm presented by Gale and Shapley for finding a stable matching uses a

simple “deferred acceptance” strategy, comprising proposals and rejections. There are two

possible ‘orientations’, depending on who makes the proposals, namely the man-oriented

algorithm and the woman-oriented algorithm. In the man-oriented algorithm, each man m

proposes in turn to the first woman w on his list to whom he has not previously proposed.

If w is free, then she becomes engaged to m. Otherwise, if w prefers m to her current

fiancé m′, she rejects m′, who becomes free, and w becomes engaged to m. Otherwise

w prefers her current fiancé to m, in which case w rejects m, and m remains free. This

process is repeated while some man remains free. For the woman-oriented algorithm the

process is similar, only here the proposals are made by the women.

The man-oriented and woman-oriented algorithms return the man-optimal and woman-

optimal stable matchings respectively. The man-optimal stable matching has the property

that each man obtains his best possible partner in any stable matching. However, while

each man obtains his best possible partner, each woman simultaneously obtains her worst

3
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possible partner in any stable matching. Correspondingly, when the woman-oriented algo-

rithm is applied, each woman gets her best possible partner while each man get his worst

possible partner in any stable matching.

Consider the sm instance I2 of size 4 shown in Figure 1.2. Two possible matchings for

instance I2 are:

M0 = {(m1, w4), (m2, w1), (m3, w2), (m4, w3)}

and,

Mz = {(m1, w2), (m2, w1), (m3, w4), (m4, w3)}

Matchings M0 and Mz denote the man-optimal and woman-optimal stable matchings for

instance I2 respectively. For instance I1 shown in Figure 1.1, the man-optimal stable

matching and the woman-optimal stable matchings are the same, namely:

M0 = Mz = {(m1, w1), (m2, w3), (m3, w2)}

and hence M0 = Mz is the unique stable matching in I1.

Men’s preferences Women’s preferences

m1 : w1 w4 w3 w2 w1 : m2 m3 m4 m1

m2 : w1 w3 w4 w2 w2 : m1 m2 m4 m3

m3 : w1 w2 w4 w3 w3 : m4 m2 m3 m1

m4 : w1 w4 w3 w2 w4 : m2 m3 m1 m4

Figure 1.2: Instance I2 of sm.

In [18] Gale and Shapley indicated that their algorithm involved at most n2 − 2n + 2

stages. However, it was not until 14 years later that Knuth [48] showed that the time

complexity of the Gale-Shapley algorithm is indeed O(n2). It is natural to consider the

possibility of obtaining an improved lower bound. However, Ng and Hirschberg [59] showed

that Ω(n2) is, in fact, a lower bound for sm. This is shown in the following theorem.

Theorem 1.1.1. Any algorithm to find a stable matching or to check if a given matching

is stable or to determine whether a given pair is stable requires Ω(n2) time in the worst

case, even when both the preference lists and ranking arrays are given as input.

1.1.2 Extended Gale-Shapley algorithm

To exploit the many structural properties of sm, an extended version of the Gale-Shapley

algorithm (EGS algorithm) was developed that ‘reduces’ the preference lists of each
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man/woman by making deletions from them [26, Section 1.2.4] (entries are only ever

deleted from the preference list if they cannot be involved in a stable matching). The ex-

tended version of the Gale-Shapley algorithm is shown in Algorithm 1. Again the algorithm

has two orientations, the man-oriented EGS (MEGS) algorithm and the woman-oriented

EGS (WEGS) algorithm (the MEGS algorithm is shown in Algorithm 1). In Algorithm 1

“delete the pair (m,w)” is the operation of deleting both m from w’s list and w from m’s

list.

Algorithm 1 Extended-GS
1: assign each person to be free;

2: while some man m is free do

3: w := first woman on m’s list;

4: if some man p is assigned to w then

5: assign p to be free;

6: assign w to m;

7: for each successor m′ of m on w’s list do

8: delete the pair (m′, w);

During the EGS algorithm all proposals are accepted. To understand why this can be

done, suppose that some man m proposes to a woman w, with w currently being engaged

to m′. Then she must prefer m to m′, for otherwise the pair (m,w) would previously have

been deleted.

When the algorithm terminates, i.e. when a matching has been found for a given

instance, the reduced preference lists form what are known as the man-oriented Gale-

Shapley lists, abbreviated to MGS-lists (all executions of the algorithm give the same

MGS-lists). Similarly, the reduced preference lists obtained using the woman-oriented

Gale-Shapley algorithm are known as the woman-oriented Gale-Shapley lists, or WGS-

lists. Taking the intersection (i.e. the entries that are common to both lists) of the MGS-

lists and the WGS-lists yields the GS-lists. The theorem below, taken from [26], provides

a summary of the properties of the GS-lists.

Theorem 1.1.2. For a given instance of the stable marriage problem:

(i) all stable matchings are contained in the GS-lists;

(ii) no matching contained in the GS-lists can be blocked by a pair that is not in the

GS-lists;

5
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(iii) in the man-optimal (respectively woman-optimal) stable matching, each man is

partnered by the first (respectively last) woman on his GS-list, and each woman by

the last (respectively first) man on hers.

1.1.3 Optimal Stable Marriage problems

In this section we define two variants of sm in which we seek to find a stable matching

that is “optimal” in a precise sense.

We define the rank of an agent p on an agent q’s list, denoted by rank(p, q), to be the

position of q on p’s list. Let I be an instance of sm, where M is the set of men and W
is the set of woman in I. Let M be a stable matching in I, and let p be some agent in

I. We define the cost of p with respect to M , denoted by costM (p), to be rank(p,M(p)).

Furthermore we define the regret of M by:

r(M) = max
p∈M∪W

costM (p).

We say that M has minimum regret if r(M) is minimised over all stable matchings in I.

Gusfield [25] described an O(n2) algorithm that finds a minimum regret stable matching

given an instance of sm.

We now define the cost of a matching M by:

c(M) =
∑

p∈M∪W

costM (p).

An egalitarian stable matching M is a stable matching such that c(M) is minimised

over all stable matchings in I. The problem of finding an egalitarian stable matching was

first posed by Knuth [47], with Irving et al. [37] describing an O(n4) algorithm for the

problem. Feder [14] later described the fastest current algorithm for finding an egalitarian

stable matching, which runs in time O(n3).

1.1.4 Stable Marriage with Incomplete Lists

In the context of sm, it is possible that an agent may find a member of the opposite sex

unacceptable, and hence this person does not appear on their preference list. If a woman wj

appears on a man mi’s list, then we say that mi finds wj acceptable (and vice-versa). This

gives rise to the Stable Marriage problem with Incomplete lists, or smi for short. Consider

the instance of smi shown in Figure 1.3.

6
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Men’s preferences Women’s preferences

m1 : w1 w3 w1 : m1 m2

m2 : w2 w3 w1 w2 : m2

m3 : w3 w3 : m1 m2 m3

Figure 1.3: smi instance I1.

In Figure 1.3 man m1 finds w2 unacceptable, and as a result w2 does not appear on

the preference list of m1. However m2 finds all the women acceptable, while m3 finds only

w3 acceptable. In general, preference lists are consistent if q is deleted from p’s preference

list implies that p is also deleted from q’s preference list. In an smi instance I we assume

that the preference lists in I are consistent.

A matching M is a partial injective function from M to W such that (m,w) ∈ M

only if m and w find each other acceptable. Let M(p) denote p’s partner in M , where

p ∈ M∪W. If M(p) 6= ∅, then we say that p is matched in M , otherwise p is unmatched

in M .

Allowing unacceptable partners means that the definition of stability for smi has to be

altered slightly from the case of sm. A pair (m,w) blocks a matching M , or is a blocking

pair of M , if:

(i) m and w are not matched in M , but m and w find each other acceptable.

(ii) m is either unmatched in M , or prefers w to his partner in M .

(iii) w is either unmatched in M , or prefers m to her partner in M .

The EGS algorithm described Section 1.1.2 can easily be adapted to handle an instance

of smi. However it is possible that in a stable matching with respect to a given instance

of smi, a man or woman may be unmatched. This leads to an interesting result due to

Gale and Sotomayor [19], shown below.

Theorem 1.1.3. In an instance of smi, the same set of men and women are matched in

all stable matchings.

1.1.5 Stable Marriage: a constraint programming approach

Appendix A gives an overview of constraint programming (CP) and indicates that CP can

be useful when dealing with problems that are known to be computationally hard. As

7
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we have seen, finding a stable matching for an instance of sm is polynomial-time solvable

using the Gale-Shapley algorithm. However, there has also been interest in obtaining a

similar bound to that achieved by the Gale-Shapley algorithm using arc consistency (AC)

applied to a CSP encoding of sm. Furthermore, there are many variants of sm that are

NP-hard [54, 60, 62], and the encodings described here could potentially be extended to

solve such variants.

Two encodings for an instance I of smi are presented in [20]. The first encoding uses a

set of ‘conflict’ matrices to represent the constraints. This model produces O(n2) conflict

matrices, each having size O(n2), giving the encoding an overall size of O(n4), where n

is the number of men and women. The authors also show that after AC propagation the

variables’ domains correspond, in a precise way, to the GS-lists of I. However, the size

of the encoding means that forcing AC propagation is achieved in O(n4) time, resulting

in a poorer time complexity than running the Gale-Shapley algorithm on the original sm

instance.

The second encoding presented in [20] takes the form of a Boolean encoding (an encod-

ing where the domains of the variables are 0 and 1). The encoding itself is more complex

than the conflict matrices approach, however this results in a more compact model using

O(n2) space, and AC is established in O(n2) time. Thus the encoding is asymptotically

optimal. In contrast to the conflict matrices encoding, the variables’ domains after AC

propagation do not, in general, correspond to the GS-lists. Instead, the domains corre-

spond to a weaker structure called the Extended GS-lists, or XGS-lists. The XGS-list of

person p contains all persons on p’s preference list between his partners in M0 and Mz

(inclusive), i.e. it yields the bounds on the GS-lists. In general the XGS-lists are supersets

of the GS-lists and need not be consistent.

1.1.6 Stable Marriage with Ties

In this section we consider the effects of allowing an agent to be indifferent between two or

more agents; indifference here takes the form of preference lists with ties. When the lists

are complete we denote this variant of sm by smt. Consider the instance of smt shown

in Figure 1.4. Here m1 is indifferent between w1, w2 and w3, whilst m3 strictly prefers w3

to each of w1 and w2, whom he is indifferent between.

The introduction of ties in a participant’s preference list gives rise to three definitions

of stability, namely weak stability, strong stability, and super-stability. The different ver-

8
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Men’s preferences Women’s preferences

m1 : (w1 w2 w3) w1 : (m1 m2) m3

m2 : w1 w3 w2 w2 : m2 (m3 m1)

m3 : w3 (w1 w2) w3 : m1 m2 m3

Figure 1.4: smt instance I2.

sions of stability describe, as their names suggest, how resistant a matching is to being

undermined by pairs of participants. Definitions are now given for a blocking pair for each

form of stability. A pair (m,w) is said to block a matching M , and is called a blocking

pair if:

• weak stability – both m and w strictly prefer each other to their partners in M .

• strong stability – Either:

(i) m strictly prefers w to his partner in M , and w either strictly prefers m to her

partner in M or is indifferent between them, or

(ii) w strictly prefers m to her partner in M , and m either strictly prefers w to his

partner in M or is indifferent between them.

• super-stability – each of m and w either strictly prefers the other to their partner in

M or is indifferent between them.

Let M be a matching. If there exists no blocking pair with respect to M , then M

is said to be weakly stable, strongly stable and super-stable with respect to the above

definitions. We also observe that a super-stable matching is strongly stable and a strongly

stable matching is weakly stable.

Allowing an agent to be indifferent between a set of agents brings with it many new

and interesting problems. With the classical Gale-Shapley algorithm, a stable matching

can always be found given an instance of sm and smi. However, with regards to strong

stability and super-stability, it is possible that a strongly stable matching or a super-

stable matching need not exist, given an instance of smt. For example, Figure 1.5 shows

an instance of smt where no strongly stable or super-stable matching exists. A weakly

stable matching can always be found for an instance of smt simply by breaking the ties

arbitrarily and applying the Gale-Shapley algorithm to this derived instance I ′ of sm. This

produces a matching that is weakly stable in the original instance with ties.

9
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Men’s preferences Women’s preferences

m1 : w1 w2 w1 : (m1 m2)

m2 : w1 w2 w2 : (m1 m2)

Figure 1.5: smt instance I.

An alternative way of describing the above stability criteria is given below. Let M be

a matching for an instance I of smt. Then:

• weak stability – M is weakly stable if and only if M is stable in some instance of sm

obtained from I by breaking the ties.

• strong stability – M is strongly stable if and only if:

(i) There is some instance I ′ of smt obtained from I by breaking the ties on the

men’s side, such that for every instance of sm obtained from I ′ by breaking the

ties (on the women’s side), M is stable, and

(ii) There is some instance I ′ of smt obtained from I by breaking the ties on the

women’s side, such that for every instance of sm obtained from I ′ by breaking

the ties (on the men’s side), M is stable.

• super-stability – M is super-stable if and only if M is stable in every instance of sm

obtained from I by breaking the ties.

Irving [35] describes an O(n4) algorithm that finds a strongly stable matching, or

reports that no such matching exists, and an O(n2) algorithm that finds a super-stable

matching, or reports that no such matching exists. Both algorithms use a similar “deferred

acceptance” strategy to that used in the extended Gale-Shapley algorithm. The super-

stability algorithm is a straightforward extension of the Gale-Shapley algorithm, whilst the

strong stability algorithm is more elaborate than its super-stable counterpart. Detailed

discussions of these algorithms are deferred until Section 1.2.5, where more general versions

of these algorithms are presented, with respect to the so-called as the Hospitals/Residents

problem.

1.1.7 Stable Marriage with Ties and Incomplete Lists

By combining the extensions smi and smt of the classical stable marriage problem, we

obtain the Stable Marriage problem with Ties and Incomplete lists, or smti for short.

10
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A blocking pair in the context of smti is defined by combining the definitions given

in Sections 1.1.4 and 1.1.6. Again for strong stability and super-stability, a matching

satisfying either of these criteria still need not exist. Manlove [53], however, describes two

polynomial-time algorithms to determine if a strongly stable or a super-stable matching

exist, and to find such a matching if one does.

Theorem 1.1.3 shows that, given an instance of smi, all stable matchings have the same

size. Similarly, for any instance I of smt, all weakly, strongly and super-stable matchings

have the same size. However, in the case of smti, this is no longer true for weak stability.

For example, consider the instance I1 shown in Figure 1.6. Here two possible weakly stable

matchings M = {(m1, w1), (m2, w2)} and M ′ = {(m2, w1)} have different sizes. It is worth

noting that all strongly stable matchings for an smti instance have the same size, as is

the case with all super-stable matchings [53], should such a matching exist.

Men’s preferences Women’s preferences

m1 : w1 w1 : m2 m1

m2 : (w1 w2) w2 : m2

Figure 1.6: Instance I1 of smti with weakly stable matchings of different cardinality.

With the possibility of weakly stable matchings having different sizes for a given smti

instance, it is natural to consider the problem of finding a weakly stable matching with

maximum cardinality; we denote this problem by max-smti. The decision problem for

max-smti is defined below.

Name: max-smti-d

Instance: An smti instance I, and integer K.

Question: Does I have a weakly stable matching of size ≥ K?

It is known that max-smti-d is NP-complete, even if the ties are at the tails of the

lists and on one side only, there is at most one tie per list, and each tie is of length two.

This result, proved by Manlove et al. [54], gives a strong indication that the existence of

an efficient algorithm for finding a maximum cardinality weakly stable matching for an

instance of smti is unlikely.

It is also useful to consider the problem of finding a complete weakly stable matching.

That is, finding a weakly stable matching in which every man and every woman is matched

– we assume that the number of men and women are equal in this case. We denote this

11
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problem by com-smti, and note the fact that the NP-completeness proof for max-smti

holds even if K = n, and therefore also shows-that com-smti is NP-complete. The

problem is now defined formally below.

Name: com-smti

Instance: An smti instance I.

Question: Does I have a complete weakly stable matching?

As a result of the NP-hardness of max-smti it is natural to consider the use of ap-

proximation algorithms. We use the following notation when discussing approximation

algorithms: let OPT (I) denote the value of an optimal solution for some instance I of

an optimisation problem X, and let A be an approximation algorithm for X. We denote

by A(I) the value of a feasible solution returned by A for instance I. Then A has a

performance guarantee of c, for some c ≥ 1, if:

• X is a minimisation problem, and A(I) ≤ c × OPT (I) for all instances I, or

• X is a maximisation problem, and A(I) ≥ (1/c) × OPT (I) for all instances I.

In each of these cases A is said to be a c-approximation algorithm.

For max-smti, a 2-approximation algorithm was given by Manlove et al. [54] for the

general case. Recently improved performance guarantees have been presented for various

cases of max-smti [28, 29,43], with the best currently standing at 1.875.

The inclusion of both ties and incomplete lists has added some interesting behaviour to

the stable marriage problem. Firstly, an instance of smt/smti may not admit a strongly

stable or super-stable stable matching. Secondly, although a weakly stable matching can

always be found for an instance I of smti, two weakly stable matchings may be of different

sizes and it is NP-hard to find the largest weakly stable matching. In later sections we

will see that this is also the case for many other stable matching problems.

1.2 Hospitals/Residents Problem

In their seminal paper [18], Gale and Shapley introduced a many-to-one generalisation

of sm called the Hospitals/Residents problem (hr). At the time this was known as the

College Admissions problem, but latterly has become known as the Hospitals/Residents

problem. This section discusses hr in further detail.

12
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1.2.1 Introduction

As mentioned above, hr is a many-to-one generalisation of sm. The problem takes its name

from the application of assigning graduating medical students (residents) to hospital posts.

In a number of countries this task is carried out using a centralised matching scheme that

has at its heart an algorithm for hr. The US has one of the largest such automated

schemes, namely the National Resident Matching Program (NRMP) [61]. This allocates

around 31,000 residents to hospital posts every year. In Scotland, the Scottish Foundation

Allocation Scheme (SFAS) is also used to allocate graduating medical students to hospital

posts [36,68].

The algorithm employed at the heart of the NRMP is essentially an extension of the

Gale-Shapley algorithm. Given that the NRMP has been in existence since 1952, its

algorithm therefore pre-dates the Gale-Shapley algorithm for sm by 10 years. This was

noted by Roth in [63].

To further understand why stability and centralised matching schemes are important,

we consider an alternative system whereby we have an informal “free-for-all”, where stu-

dents must approach a hospital and negotiate undertaking an available post at the hos-

pital. It is known that a “free-for-all” approach may not be to the benefit of all students

and hospitals, as this strategy typically involves a race for hospital posts. As such, this

approach quickly descends into chaos: many hospitals are faced with the problem of a

student accepting a post it offers, which the student later rejects if they discover a post at

another hospital that they prefer. This leads to an undesirable process whereby students

are continually accepting and rejecting post until no further switches arise, and such a

process is clearly undesirable.

In hr, each hospital has one or more posts that it requires to fill, and a preference list

ranking a subset of the residents. Similarly, each resident has a preference list ranking a

subset of the hospitals. The capacity of a hospital is its number of available posts. We

require to match each resident to at most one hospital such that no hospital exceeds its

capacity, whilst observing the appropriate stability criterion to be defined. An instance of

hr is defined formally as follows:

• set of residents R = {r1, r2, . . . , rn}.

• set of hospitals H = {h1, h2, . . . , hm}.

• preference list for all ri ∈ R, each of whom ranks a subset of H in strict order.

13
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Residents’ preferences Hospitals’ preferences

r1 : h1 h3 h1 : (2) : r3 r7 r5 r2 r4 r6 r1

r2 : h1 h5 h4 h3 h2 : (3) : r5 r6 r3 r4

r3 : h1 h2 h5 h3 : (1) : r2 r5 r6 r1 r7

r4 : h1 h2 h4 h4 : (1) : r8 r2 r4 r7

r5 : h3 h1 h2 h5 : (1) : r3 r7 r6 r8 r2

r6 : h3 h2 h1 h5

r7 : h3 h4 h5 h1

r8 : h5 h4

Figure 1.7: hr instance I1.

• preference list for all hj ∈ H, each of whom ranks its applicants, the residents who

find that particular hospital acceptable, in strict order.

• list of capacities cj (1 ≤ j ≤ m) for each hospital.

We say that a resident ri finds a hospital hj acceptable if ri’s preference list contains

hj , and hj finds ri acceptable if hj ’s preference list contains ri. An assignment M for an

instance I of hr is a set of (resident,hospital) pairs (ri, hj) ∈ R×H such that (ri, hj) ∈ M

only if ri and hj find each other acceptable. If (ri, hj) ∈ M , we say that ri is assigned to

hj , and hj is assigned ri. For any p ∈ R∪H, we denote by M(p) the set of assignees of p

in M . If M(p) 6= ∅ we say that p is assigned in M , otherwise r is unassigned in M . Where

there is no ambiguity we use M(ri) to denote the single hospital assigned to ri in M .

Let M be an assignment for an instance I of hr. We say that a hospital hj ∈ H
is under-subscribed, over-subscribed or full in M when |M(hj)| < cj , |M(hj)| > cj , or

|M(hj)| = cj respectively.

A matching M in the context of hr, is a set of (resident, hospital) pairs such that no

resident is assigned to more than one hospital and no hospital is over-subscribed.

In hr instance I1 shown in Figure 1.2.1, R = {r1, r2, . . . , r8}, H = {h1, h2 , . . . , h5},
and the capacity of each hospital is indicated in parenthesis.

A pair (r, h) ∈ R×H is said to block a matching M for an instance of hr, and is called

a blocking pair , when all the following conditions are satisfied:

• h and r find each other acceptable;

14
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• either r is unmatched, or prefers h to M(r);

• either h is under-subscribed, or h prefers r to at least one of M(h).

A matching is stable if it admits no blocking pair.

M = {(r1, h3), (r2, h1), (r3, h1), (r4, h2), (r5, h2), (r6, h2), (r7, h4), (r8, h5)} is a match-

ing for instance I1. In M it can be seen that (r5, h3) blocks M as h3 prefers r5 to its worst

assignee, namely r1. A stable matching for instance I1 is M ′ = {(r2, h1), (r3, h1), (r4, h2),

(r5, h3), (r6, h2), (r7, h5), (r8, h4)}. The stability of M ′ can be easily verified.

1.2.2 The resident-oriented algorithm

Algorithm 2 Resident-oriented algorithm for hr

1: M = ∅
2: while (some resident r is free) and (r has a non-empty list) do

3: h := first hospital on r’s list; /** r ‘proposes’ to h */

4: M = M ∪ {(r, h)};
5: if h is over-subscribed then

6: r′ := worst resident assigned to h;

7: M = M\{(r′, h)};
8: if h is full then

9: r′ := worst resident assigned to h;

10: for each successor s of r′ on the list of h′ do

11: delete the pair (s, h);

In this section we present an algorithm similar to that used by the NRMP. The algo-

rithm, originally presented by Dubins and Freedman [11], is shown in Algorithm 2 and is

called the resident-oriented (RGS) algorithm for hr. The algorithm uses an apply oper-

ation similar to a proposal step in the Gale-Shapley algorithm. While some resident r is

free, he applies to the first hospital h on his list, and becomes provisionally assigned to h.

If h becomes over-subscribed as a result of this assignment, the worst resident r′ assigned

to h is identified, and r′ is assigned to be free. If hospital h is full, we again identify h’s

worst assigned resident r′. Then for each successor s of r′ on h’s list the pair (s, h) is

deleted. Here “delete the pair (s, h)” means that s is deleted from h’s list and h is deleted

from s’s list. The resident-oriented algorithm always terminates with a matching.

The RGS algorithm finds the resident-optimal stable matching M0. In M0 each resident

is matched to its best possible hospital in any stable matching. In addition to this, the
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deletions that occur as part of the RGS algorithm result in a reduced set of preference

lists called the RGS-lists.

The resident-oriented algorithm, if implemented with suitable data structures, runs in

time linear in the input size, i.e. O(λ), where λ is the total length of the preference lists.

Applying Algorithm 2 to instance I1 shown in Figure 1.2.1, generates the matching

M0 = {(r2, h1), (r3, h1), (r4, h2), (r5, h3), (r6, h2), (r7, h4), (r8, h5)}. The stability of M0 can

be easily verified.

1.2.3 The hospital-oriented algorithm

The hospital-oriented (HGS) algorithm (shown in Algorithm 3) again uses a similar strat-

egy to the EGS algorithm. While some hospital h is under-subscribed and there exists a

resident on h’s list who is not already assigned to h, we choose the first such resident r on

h’s list. If r is already assigned, we break this assignment, and provisionally assign r to h.

At this point r cannot obtain a hospital h′ worse than h on his list, hence we can delete

the pair (r, h′) for any such hospital h′. Here “delete the pair (r, h′)” means delete h′ from

r’s list and r from h′’s list. The reduced preference lists after termination of Algorithm

3 are known as the HGS-lists (Hospital Gale-Shapley lists). As in the case of sm, the

intersection of the RGS-lists and the HGS-lists yields the GS-lists.

Algorithm 3 Hospital-oriented algorithm for hr

1: M = ∅;
2: while (some hospital h is under-subscribed) and

(h’s list contains a resident r not provisionally assigned to h) do

3: r := first such resident on h’s list;

4: if r is already assigned, say to h′ then

5: M = M\{(r, h′)};
6: M = M ∪ {(r, h)};
7: for each successor h′ of h on r’s list do

8: delete the pair (r, h′);

The matching generated by Algorithm 3 is simultaneously the best possible stable

matching for all the hospitals [63]. It is known as the hospital-optimal stable matching,

denoted by Mz. In the hospital-optimal stable matching, each under-subscribed hospital

is assigned to all the residents on its reduced list, and each fully subscribed hospital with

q places is assigned to the first q residents on its reduced list. Once again, as is the case
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for the Gale-Shapley algorithm, if implemented with suitable data structures the hospital-

oriented algorithm runs in time linear in the input size, i.e. O(λ), where λ is the total

length of the preference lists.

For hr instance I1 shown in Figure 1.2.1. The hospital-optimal stable matching is

Mz = {(r2, h3), (r3, h1), (r4, h2), (r5, h1), (r6, h2), (r7, h5), (r8, h4)}.

1.2.4 The Rural Hospitals Theorem

An interesting and important result with significant practical consequences is the Rural

Hospitals Theorem for hr. The name arises from a pattern that developed when the NRMP

matching scheme was run: hospitals in rural areas were more likely to be under-subscribed.

This was due to residents finding hospitals in rural areas unattractive compared to those

in cities, hence these hospitals typically appear at the tail of a resident’s preference list

or are even considered unacceptable. As a result of this the administrators of the NRMP

wondered if changing the algorithm used, to find a different stable matching, could push

more people into rural hospitals. However, it was shown that no matter what stable

matching algorithm the NRMP had chosen, each under-subscribed hospital would end up

with the same set of residents. This result is known as the Rural Hospitals Theorem, and

is shown in Theorem 1.2.1.

Theorem 1.2.1. For a given hospital’s/resident’s instance:

(i) each hospital is assigned the same number of residents in all stable matchings;

(ii) exactly the same residents are unassigned in all stable matchings;

(iii) any hospital that is under-subscribed in one stable matching is assigned precisely the

same set of residents in all stable matchings.

The results that make up the Rural Hospitals Theorem were proved by Gale and

Sotomayor [19] (parts (i) and (ii)) and Roth [64] (part (iii)).

1.2.5 Hospitals/Residents with Ties

Just as ties were introduced to an instance of sm, we also consider an instance of hr in

which agent’s preference lists may contain ties, obtaining the Hospitals/Residents problem

with Ties (hrt). Again a matching is stable if it admits no blocking pair, and we can define

a blocking pair for an instance of hrt with respect to the three levels of stability introduced

in Section 1.1.6.
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A pair (r, h) ∈ R × H is said to block a matching M for an instance of hrt, and is

called a blocking pair when:

• weak stability

(i) r, h find each other acceptable;

(ii) r is either unassigned or strictly prefers h to his assigned hospital in M ;

(iii) h either is under-subscribed or strictly prefers r to its worst assigned resident

in M .

• strong stability

(i) r, h find each other acceptable;

(ii) either,

(a) r is either unassigned or strictly prefers h to his assigned hospital in M ,

and h is either under-subscribed or strictly prefers r to its worst assigned

resident in M or is indifferent between them; or

(b) r is either unassigned or strictly prefers h to his assigned hospital in M

or is indifferent between them, and h is either under-subscribed or strictly

prefers r to its worst assigned resident in M .

• super-stability

(i) r, h find each other acceptable;

(ii) r is either unassigned or strictly prefers h to his assigned hospital in M or is

indifferent between them;

(iii) h is either under-subscribed or strictly prefers r to its worst assigned resident

in M or is indifferent between them.

A matching is said to be be weakly stable, strongly stable or super-stable if it admits

no blocking pair with respect to the relevant definitions above.

As hrt is a generalisation of smti, the NP-hardness result for finding a maximum

weakly stable matching generalises to the case of finding a maximum weakly stable match-

ing for an instance of hrt. However, once again finding a super-stable matching and a

strongly stable matching, if such a matching exists, is polynomial-time solvable, as dis-

cussed in detail in the following sections.
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hrt under super-stability

Algorithm 4 hrt-super-res

1: M = ∅;
2: for each h ∈ H do

3: full(h) := false;

4: while some resident r is free and has a non-empty list do

5: for each hospital h at the head of r’s list do

6: M = M ∪ {(r, h)};
7: if h is over-subscribed then

8: for each resident s′ at the tail of h’s list do

9: if s′ is provisionally assigned to h then

10: M = M\{(s′, h)};
11: delete the pair (s′, h);

12: if h is full then

13: full(h) := true;

14: s := worst resident provisionally assigned to h;

15: for each strict successor s′ of s on h’s list do

16: delete the pair (s′, h);

17: if some resident is multiply assigned or

(some hospital h is under-subscribed and full(h)) then

18: no super-stable matching exists;

19: else

20: M is a super-stable matching;

The algorithm used for smt under super-stability, discussed in Section 1.1.7, has been

superseded by an algorithm for hrt under super-stability. Algorithm 4 shows algorithm

hrt-super-res presented in [39] for finding a super-stable matching, or reporting that

none exists, given an instance of hrt.

The algorithm proceeds as following: while some resident r is free and has a non-empty

list, he becomes provisionally assigned to the set of hospitals H at the head of his list. Let

h ∈ H. Then if, as a result of these provisional assignments, h becomes over-subscribed,

then each resident s′ tied at the tail of h’s list is identified, and we break any provisional

assignment between s′ and h and delete the pair (s′, h). Here “delete the pair (s′, h)” means

to delete s′ from h’s list and vice-versa. Furthermore, if h becomes full as a result of these

provisional assignments, the worst resident s assigned to h is identified, and we delete the

pair (s′, h) for each strict successors s′ of s on h’s list. If a hospital becomes full during
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the execution of the main while loop, and this hospital is subsequently under-subscribed

on termination of this loop, then no super-stable matching exists. Also on termination

of the main while loop, a check is made to ensure that there are no residents who are

multiply assigned. If this is the case no super-stable matching exists for this instance of

hrt. Otherwise the assignment relation output is a super-stable matching.

Resident’s preferences Hospital’s preferences

r1 : h1 (h2 h3) h1 : r1 r2 r3 (r4 r5)

r2 : (h2 h3) h1 h2 : (r4 r5) (r1 r2) r3

r3 : h3 (h1 h2) h3 : r2 (r1 r3) (r4 r5)

r4 : h2 h3 h1

r5 : h2 (h1 h3)

Hospital capacities: ci = 2, for 1 ≤ i ≤ 3

Figure 1.8: hrt Instance I3.

Consider the hrt instance I3 shown in Figure 1.8. When algorithm hrt-super-res is

applied to instance I3, the following matching is generated:

M = {(r1, h1), (r2, h3), (r3, h3), (r4, h2), (r5, h2)}.

If implemented with suitable data structures (as described in [39]), algorithm hrt-

super-res runs in time linear in the input size, i.e. O(λ), where λ is the total length of

the preference lists for an hrt instance.

Strong stability in hrt

In [40] a polynomial-time algorithm is presented for strong stability. This algorithm finds

a strongly stable matching, or reports that none exists, in time O(λ2), given an instance

of hrt, where λ is the total length of the preference lists.

An improvement on the algorithm presented in [40] was given by Kavitha et al. [45].

The running time of the algorithm is O(Cλ), where C is the sum of the hospitals’ capacities.

1.3 Student Project Allocation Problem

As part of the senior level of many undergraduate degree courses, students are required to

undertake project work. A lecturer typically publishes a set of projects that he is willing
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to supervise, and each student lists the projects that he finds acceptable. Often a lecturer

may be constrained to supervising a certain number of students, and as such, a lecturer

may have an associated capacity. A project may also be available to be undertaken by

more than one student, but may have an upper bound on the number of students who can

be assigned to it. We refer to the problem of assigning students to projects, subject to

these preference lists and capacity constraints, as the Student-Project Allocation problem

(spa) .

Currently there is a growing trend for centralised matching schemes in the context

of student-project allocation. Examples of such schemes can be found in Department of

Computer Science at the University of York [12, 46, 70], the University of Southampton

[7, 31] and elsewhere [69]. The rising number of such allocation schemes motivates the

search for efficient algorithms for spa.

This section discusses the spa model presented by Abraham et al. [3].

1.3.1 Introduction

An instance I of spa consists of:

• set of students S = {s1, s2, . . . , sn};

• set of projects P = {p1, p2, . . . , pm};

• set of lecturers L = {l1, l2, . . . , lq};

• list of project capacities cj , for 1 ≤ j ≤ m;

• list of lecturer capacities dk, for 1 ≤ k ≤ q.

Let Ai denote the set of projects that a student si finds acceptable, and let Pk denote

the set of projects offered by lecturer lk, where P1, . . . ,Pq partitions P (i.e. each project is

offered by exactly one lecturer). Each student si ranks a subset of P (namely Ai) in strict

preference order, and each lecturer has a preference list Lk ranking in strict order the

students that find a project offered by that lecturer acceptable. We also denote by Lj
k the

projected preference list of lk for pj , where lk ∈ L and pj ∈ Pk – this is obtained by removing

all students from Lk that do not find pj acceptable. Each project pj offered has a capacity

cj , which indicates the maximum number of students allowed to undertake that project.

In addition to this, each lecturer lk also has a capacity dk, which indicates the maximum

number of students he is willing to supervise. It is assumed that max{cj : pj ∈ Pk} ≤ dk.
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Student preferences Lecturer preferences

s1 : p1 p3 p5 l1 : s1 s3 s2 s4 l1 offers p1, p2, p3

s2 : p1 p4 l2 : s1 s2 s4 l2 offers p4, p5

s3 : p1 p2

s4 : p3 p1 p5

Project capacities: c1 = 2, ci = 1 (2 ≤ i ≤ 5)

Lecturer capacities: d1 = 2, d2 = 2

Figure 1.9: Instance I1 of spa.

An assignment M for an instance I of spa is a set of (student,project) pairs (si, pj) ∈
S × P such that (si, pj) ∈ M only if pj ∈ Ai. If (si, pj) ∈ M , and lk is the lecturer who

offers pj, we say that si is assigned to pj and lk, and each of pj and lk is assigned to si.

For any r ∈ S ∪P ∪L , we denote by M(r) the set of assignees of r in M . If M(r) 6= ∅ we

say that r is assigned in M , otherwise r is unassigned in M . Where there is no ambiguity

we use M(si) to denote the project that si is assigned to, for an assigned student si.

Let M be an assignment for an instance I of spa-p. We say that a project pj ∈ P
is under-subscribed, over-subscribed or full in M when |M(pj)| < ck, |M(pj)| > ck, or

|M(pj)| = ck respectively. Similarly a lecturer lk ∈ L is under-subscribed, over-subscribed

or full in M when |M(lk)| < dk, |M(lk)| > dk, or |M(lk)| = dk respectively.

Also, M is a matching if |M(si)| ≤ 1 for all si ∈ S, |M(pj)| ≤ cj for all pj ∈ P, and

|M(lk)| ≤ dk for all lk ∈ L. That is, each student is assigned to at most one project in M ,

and no project or lecturer is over-subscribed in M .

An example spa instance I1 is shown in Figure 1.9. This instance has the set of students

S = {s1, s2, s3, s4}, set of projects P = {p1, p2, p3, p4}, and the set of lecturers L = {l1, l2}.
A blocking pair in the context of spa is now defined. A (student,project) pair (si, pj)

blocks a matching M , or is a blocking pair of M , if:

(i) si finds pj acceptable;

(ii) Either si is unassigned in M , or si prefers pj to M(si);

(iii) Either

(a) pj is under-subscribed and lk is under-subscribed, or
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(b) pj is under-subscribed, lk is full, and either si ∈ M(lk) or lk prefers si to

the worst student in M(lk), or

(c) pj is full and lk prefers si to the worst student in M(pj);

where lk is the lecturer who offers pj.

A matching is said to be stable if it admits no blocking pair.

hr as presented in Section 1.2 is a special case of spa in which m = q, cj = dj

(1 ≤ j ≤ m) and Pk = {pk}, for each lk ∈ L, and hence projects and lecturers are

essentially indistinguishable.

1.3.2 The student-oriented algorithm

Algorithm spa-student shown in Algorithm 5 is known as the student-oriented algorithm

for spa [3]. For an instance I the algorithm returns the student-optimal stable matching,

in which each student is simultaneously assigned to the best possible project he could

obtain in any stable matching [3].

In Algorithm spa-student we use an apply operation similar to the proposal step in

the Gale-Shapley algorithm. While some student si is free and has a non-empty list, si

applies to the project pj at the head of his list, and becomes provisionally assigned to

pj. If some project pj becomes over-subscribed, then the worst student sr assigned to pj

is identified, and the provisional assignment between sr and pj is broken. Similarly if lk

(the lecturer who offers pj) becomes over-subscribed, then the worst student sr assigned

to lk and his associated project pt is identified, and the assignment between sr and pt is

broken. If a project pj is full, then the worst student st assigned to pj is identified, and

pj is deleted from the list of each student who lk ranks below st; in addition to this, st

can also be deleted from Lj
k. Similarly if lk becomes full, each student st whom lk ranks

lower than his worst assigned student is identified, and each project pu offered by lk is

removed from st’s list; the relevant students are also deleted from Lu
k . In spa-student,

the operation “delete the pair (st, pu)” is used to denote the deletion of pu from st’s list

and the deletion of st from Lu
k.

The student-optimal stable matching for instance I1 (shown in Figure 1.9) is M =

{(s1, p1), (s2, p4), (s3, p1), (s4, p5)}. We verify the stability of this matching by inspecting

the preference list of each student. Both s1 and s3 have their first choice project, so there is

no blocking pair involving s1 or s3. Student s2 prefers p1 to his assigned project. However
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Algorithm 5 spa-student
1: assign all students to be free;

2: assign all projects and lecturers to be totally unsubscribed;

3: while (some student si is free) and (si has a non-empty list) do

4: pj := first project on si’s list; /** si apples to pj */

5: lk := lecturer who offers pj ; /** and to lk */

6: provisionally assign si to pj ;

7: if pj is over-subscribed then

8: sr := worst student assigned to pj;

9: break provisional assignment between sr and pj;

10: else if lk is over-subscribed then

11: sr := worst student assigned to lk;

12: pt := project assigned to sr;

13: break provisional assignment between sr and pt;

14: if pj is full then

15: sr := worst student assigned to pj;

16: for each successor st of sr on Lj
k do

17: delete the pair (st, pj);

18: if lk is full then

19: sr := worst student assigned to lk;

20: for each successor st of sr on Lk do

21: for each project pu ∈ Pk ∩ At do

22: delete the pair (st, pu);
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Student preferences Lecturer preferences

s1 : p2 p1 l1 : s1 s2 l1 offers p1

s2 : p1 p2 l2 : s2 s1 l2 offers p2

Project capacities: c1 = 1, c2 = 1

Lecturer capacities: d1 = 2, d2 = 2

Figure 1.10: Instance I2 of spa.

l1 (who offers p1) is full and prefers all his assignees to s2. Lastly, s4 has his worst project.

Once again l1 (who offers s4’s two preferred projects) is full and prefers all his assignees

to s4. Hence M is indeed a stable matching for instance I1.

It can be shown that, when implemented with suitable data structures (as described

in [3]), the algorithm spa-student runs in time linear in the input size, i.e. O(λ) where λ

is the total length of the preference lists [3].

1.3.3 Properties of spa

The Rural Hospitals Theorem (Theorem 1.2.1) provides some useful structural properties

in the context of hr. Its counterpart in the context of spa, proved in [3], is as follows:

Theorem 1.3.1. For a given spa instance:

(i) each lecturer has the same number of students in all stable matchings;

(ii) exactly the same students are unassigned in all stable matchings;

(iii) a project offered by an under-subscribed lecturer has the same number of students in

all stable matchings.

It should be noted that Theorem 1.3.1 is not an exact counterpart to the Rural Hos-

pitals Theorem (Theorem 1.2.1). More details of this can be found in [3].

1.3.4 The lecturer-oriented algorithm

In addition to the student-oriented algorithm, Abraham et al. [3] present a lecturer-oriented

algorithm. As expected, this algorithm generates (in linear time) a stable matching that

is simultaneously the best possible for all lecturers. The algorithm, correctness proof and

optimality criteria can be found in [3].
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1.4 Stable Roommates Problem

1.4.1 Introduction

In their seminal paper [18] Gale and Shapley presented the Stable Roommates Problem

(sr), a non-bipartite generalisation of sm. An instance of sr involves set of agents P =

{p1, p2, . . . , p2n}, each of whom ranks the others in strict order of preference. In this

context a matching is a set of n disjoint pairs of agents. A pair {pi, pj} blocks a matching

M , or is a blocking pair , if pi and pj prefer each other to their actual partners in M . A

matching is said to be stable if there are no blocking pairs.

p1 : p3 p2 p4

p2 : p1 p3 p4

p3 : p2 p1 p4

p4 : arbitrary

Figure 1.11: sr instance I1.

The most notable difference between sm and sr is that an instance of sr need not

admit a stable matching. An example to show this was presented by Gale and Shapley

in [18], and is shown in Figure 1.11. In instance I1, if any of {p1, p4}, {p2, p4}, {p3, p4} are

involved in a matching M , then M will be blocked by the pairs {p1, p2}, {p2, p3}, {p3, p1}
respectively.

Knuth conjectured [47] that the problem of deciding whether a stable matching exists,

given an instance of sr, is NP complete. However, Irving provided a linear-time algorithm

that finds a stable matching or reports that none exists [34]. Irving’s algorithm operates

in two distinct phases, each of which we now describe in the following sections.

1.4.2 Stable Roommates algorithm phase 1

Algorithm 6 shows phase 1 of the Stable Roommates algorithm. While some free agent

pi has a non-empty list, we find the first agent pj on pi’s list. If pj is already semi-assigned

to some agent pk, then the semi-assignment between pj and pk is broken, and pi becomes

semi-assigned to pj. We note that the semi-assignment relation is not symmetric, that is,

if pi is semi-assigned to pj, it need not be the case that pj is semi-assigned to pi; pj may

still be free or semi-assigned to someone else. For each successor pl of pi on pj’s list we
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Algorithm 6 Phase 1 Stable Roommates
1: assign each agent to be free;

2: while some free agent pi has a non-empty list do

3: pj := first agent on pi’s list;

4: if some agent pk is semi-assigned to pj then

5: assign pk to be free;

6: assign pi to be semi-assigned to pj ;

7: for each successor pl of pi on pj ’s list do

8: delete the pair {pl, pj};

then delete the pair {pl, pj}, which entails deleting pl from pj ’s list and deleting pj from

that of pl.

On termination of phase 1 the reduced preference lists generated by the algorithm

are known as the phase 1 table. In order to define this term, we require some additional

notation and terminology. Firstly, to describe the set of preference lists before, during, and

after deletions have taken place, the term preference table is used. Let T be a preference

table. Then:

• fT (pi) denotes the first entry on pi’s list in T ;

• lT (pi) denotes the last entry on pi’s list in T ;

• sT (pi) denotes the second entry on pi’s list in T , undefined if fT (pi) = lT (pi);

• nT (pi) denotes lT (sT (pi)).

A stable preference table (often shortened to stable table) satisfies the following prop-

erties.

1. pj = fT (pi) if and only if pi = lT (pj);

2. the pair {pi, pj} is absent if and only if pi prefers lT (pi) to pj or pj prefers lT (pj) to

pi;

3. no person’s list is empty.

If some agent’s preference list after phase 1 is empty, then no stable matching exists.

Otherwise, the preference table after phase 1 is a stable table, which is known as the phase

1 table [26, Lemma 4.2.2].

Figure 1.13 shows the phase 1 table for instance I2 shown in Figure 1.12.
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p1 : p3 p2 p4

p2 : p4 p1 p3

p3 : p2 p4 p1

p4 : p1 p2 p3

Figure 1.12: sr instance I2.

If each agent’s list is a single entry after phase 1, then we have found a stable matching.

However, in general, it may be the case that no agent has an empty list and not all agents’

lists consist of a single entry. In this case we run phase 2 of the algorithm.

1.4.3 Stable Roommates algorithm phase 2

In phase 2 of the algorithm for sr, the preference lists are continually reduced by elimi-

nating rotations. Informally a rotation is a cycle of ordered pairs. A rotation ρ has the

form:

ρ = (p0, q0), (p1, q1), . . . , (pr−1, qr−1),

where pi and qi, for 0 ≤ i ≤ r − 1, are agents in the sr instance, with qi = fT (pi) and

qi+1 = sT (pi). A rotation ρ exposed in a table T can be eliminated. The table arising

from the elimination of ρ is denoted by T/ρ and is formed by deleting, for 0 ≤ i ≤ r − 1,

all pairs {qi, z} such that qi prefers pi−1 to z.

The algorithm for phase 2 of sr is shown in Algorithm 7. The algorithm continually

eliminates rotations from the phase 1 table until either all lists have one entry, indicating

that a stable matching has been found, or an agent’s list becomes empty, in which case no

stable matching exists for this instance.

From the phase 1 table T0 shown in Figure 1.13, we identify the following rotation

ρ = (p3, p2), (p4, p1) in T0 – details of how we find such a rotation can be found in [26,

Section 4.2.3]. The elimination of ρ moves p3 down to p1 and p1 up to p3, as a result of

p1 : p3 p2 p4

p2 : p4 p1 p3

p3 : p2 p1

p4 : p1 p2

Figure 1.13: Phase 1 table T0 of sr instance I2.
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Algorithm 7 Phase 2 Stable Roommates
1: T := T0;

2: while (some list in T has more than one entry) and (no list in T is empty) do

3: find a rotation ρ exposed in T ;

4: T := T/ρ;

5: if some list in T is empty then

6: output no stable matching exists;

7: else

8: output T , which is a stable matching;

which {p1, p2} and {p1, p4} are deleted. Similarly, the rotation also moves p4 down to p2

and p2 up to p4, which results in the deletion of {p2, p3}. After the above deletions, each

person has only one element left on their reduced list. This signals the termination of the

algorithm and also indicates that we have found a stable matching for sr instance I2.

Irving proved that the algorithm has O(n2) worst-case complexity for an instance

involving 2n people. As in the case of sm we denote an instance of sr with incomplete

preference lists by sri, and note that the algorithm by Irving can easily be adapted to

handle this case [26, Section 4.5.2].

The following theorem, also presented in [26], states that, given an sm instance, we can

construct an sr instance such that the stable matchings are in one-to-one correspondence.

Theorem 1.4.1. Given an instance I of sm involving n men and n women, there is an

instance J (in fact there are many instances) of the sr involving those 2n agents such that

the stable matchings in J are precisely the stable matchings in I.

Theorem 1.4.1 allows us to apply the Ω(n2) lower bound result described in Section

1.1.1 (Theorem 1.1.1) to sr. Therefore the algorithm given by Irving for sr is asymptoti-

cally optimal.

1.4.4 Stable Roommates Problem with Ties and Incomplete Lists

As in the case of sm and hr, sr can be generalised to include the possibility of ties in

the preference lists. This extension of sr is denoted by srt. The three stability criteria

introduced in Section 1.1.7 can be easily adapted to the Stable Roommates case and are

given below.

A pair {x, y} is said to block a matching M for an instance of srt, and is called a

blocking pair when:
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• weak stability – both x and y strictly prefer each other to their partners in M .

• strong stability – x strictly prefers y to his partner in M and y either strictly prefers

x to his partner in M or is indifferent between them.

• super-stability – each of x and y either strictly prefers the other to his partner or is

indifferent between them.

A matching M is said to be weakly stable, strongly stable or super-stable respectively,

if there exists no blocking pair in M with respect to the above definitions. An instance

of sr with both ties and incomplete lists is denoted by srti, and the stability definitions

above can easily be extended to the case of srti.

Weak stability

For instances of smt and hrt, it is easy to find a matching that is weakly stable by simply

breaking the ties arbitrarily, and running the appropriate algorithm for finding a stable

matching, which is also stable in the original instance. However, as already discussed in

Section 1.4.1, there is no guarantee that an sr instance admits a stable matching even

without the presence of ties. Hence breaking the ties arbitrarily in an srt instance gives

no guarantee that a stable matching will be found. To complicate matters further, there

are exponentially many ways of breaking the ties. Ronn [62] showed that the problem of

deciding whether an instance of srt admits a weakly stable matching is NP-complete.

p1 : p4 p3

p2 : p4

p3 : p1

p4 : (p1 p2)

Figure 1.14: srti Instance I3.

Irving and Manlove [38] further explored weak stability in srt and srti. In addition to

providing a simpler NP-completeness proof compared to that found in [62] for the problem

of deciding if a weakly stable matching exists for an instance of srt, they showed that

weakly stable matchings for an instance of srti may have different sizes. Figure 1.14

shows an instance I3 of srti that admits weakly stable matchings of sizes 1 ({{p1, p4}})
and 2 ({{p1, p3}, {p2, p4}}). Given that weakly stable matchings may be of different cardi-

nalities, it is natural to pose the question as to whether we can efficiently find a maximum
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cardinality weakly stable matching. As described in Section 1.1.7, the problem of deciding

if an instance of smti admits a weakly stable matching M , with |M | ≥ K for some K,

is NP-complete. This result carries over to srti, using an analogue of Theorem 1.4.1 for

smti under weak stability. The NP-hardness of finding a maximum cardinality weakly

stable matching in an instance of srti also holds by restriction to the case that K = n

and all preference lists are complete, using Ronn’s result stated earlier.

Due to these NP-hardness results, it is natural to consider the approximability of the

problems concerned. Irving and Manlove [38] proved that a maximum cardinality weakly

stable matching is approximable within a constant factor of 2.

Super and strong stability

An algorithm for finding a super-stable matching, if it exists, was presented by Irving

and Manlove [38]. The algorithm works in two phases which are similar to those found

in Irving’s algorithm for sr. The algorithm and correctness proofs can be found in [38].

There is also a detailed analysis section showing that the algorithm has complexity O(n2)

for a given srti instance with 2n people.

Scott [67] presents an O(λ2) algorithm for the problem of finding a strongly stable

matching, or reporting that none exists, for an instance of srti, where λ is the total

length of the preference lists. Once again the algorithm involves a two-phase process, and

is slightly more complex than the algorithm given for super-stability in [38].

1.5 Contribution of this thesis

The main results obtained in this thesis relate to the problems described in the preceding

sections of this chapter. In this section we describe the thesis contribution in greater detail

and we also outline the structure of the following chapters.

In Chapter 2 we present an alternative to the spa model introduced in Section 1.3.

In our model students have preferences over projects, however, in contrast to the model

described in Section 1.3, lecturers also have preferences over projects. The new model

gives rise to two stability definitions, namely weak stability and strong stability. For weak

stability we show that weakly stable matchings may be of different sizes, and we present

an NP-completeness result for the problem of finding a complete weakly stable matching.

Given that the problem of finding a maximum weakly stable matching is NP-hard in
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this setting, we present two 2-approximation algorithms (each of which satisfy different

additional criteria) for the problem of finding a maximum weakly stable matching. In

contrast to weak stability, we prove that all strongly stable matchings have the same size,

but also show that a strongly stable matching need not exist. However, we give a linear

time algorithm that finds a strongly stable matching, or reports that none exists.

In Chapter 3, we consider restrictions on instances of both smti and hrt, where the

preference lists on one or both sides are bounded in length (here we assume the length of

an agent pi’s preference list is the number of agents who appear on pi’s list). We show

that, in contrast to the general case, the problem of finding a maximum weakly stable

matching is polynomial-time solvable, given an instance of smti, where the men’s lists are

of length 2 and the women’s lists are of unbounded length. A faster algorithm is then given

for the special case of finding a complete weakly stable matching, or reporting that none

exists, given an instance of smti, where the men’s lists are of length 2 and the women’s

lists are of unbounded length. Next we show that if the men’s lists are of length 3 and the

women’s lists are of length 4, the problem of finding a maximum weakly stable matching

is NP-hard. We then consider the problem of deciding whether a complete weakly stable

matching exists, given an instance of hrt where the residents’ lists are of length 3 and the

hospitals’ lists are of unbounded in length, and show that this problem is NP-complete.

In Chapter 4 we consider the restrictions of hrt where an agent’s list is derived from

a master list in which a set of agents are ranked according to some (possibly objective)

criteria such as academic merit. Given an instance of hrt where the residents’ lists are of

length 3 and the hospitals’ lists are of unbounded length, we show that, even in the presence

of a master lists on both sides, the problem of deciding whether a complete weakly stable

matching exists is NP-complete. We then describe a simpler algorithm, compared to that

shown in Algorithm 4 for the general case of hrt, for the problem of finding a super-stable

matching, or reporting that none exists, given an instance of hrt where the hospitals’ lists

are derived from a master list of residents. Furthermore, we show that if a super-stable

matching exists, then this matching is in fact the unique super-stable matching. We then

present a faster algorithm, compared to that for the general hrt case [45], for the problem

of finding a strongly stable matching, or reporting that none exists, given an instance of

hrt where the hospitals’ preference lists are derived from a master list of residents.

In Chapter 5 we consider both sri and srti with a master list of agents. For the

case of sri, we describe an algorithm that finds a stable matching without the need
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for the two-phase approach described in Section 1.4. Then, in contrast to the general

case, we show that finding a weakly stable matching is polynomial-time solvable and

describe an algorithm to find such a matching. However, we also show that weakly stable

matchings may have different sizes, and that the problem of finding a maximum weakly

stable matching is NP-hard. As in the case of hrt, we present an algorithm that is simpler

than that for the general srti case [38], which finds a super-stable matching, or reports

that none exists, given an instance of srti with a master list of agents. Again we prove

that a matching returned is in fact the unique super-stable matching. We then describe

a faster algorithm, compared to that for the general srti case [67], for the problem of

finding a strongly stable matching or reporting that none exists, given an instance of srti

with a master list of agents.

We then consider, in Chapter 6, stable matching problems where the agents’ preference

lists are symmetric (that is pi ranks pj in kth place if and only if pj ranks pi in kth place).

In this setting we identify two models, based on the interpretation of an agent’s rank. We

show that, regardless of the model under consideration, the problem of finding a weakly

stable matching, given an instance of srti with symmetric preferences, is polynomial-time

solvable. An example that illustrates weakly stable matchings may have different sizes,

given an instance of srti with symmetric preferences, is then presented, and it is shown

that for both models the problem of determining if a complete weakly stable matching

exists is NP-complete. For one of the models we also show that each of the problems

of finding an egalitarian weakly stable matching and a minimum regret weakly stable

matching, given an instance of smti with symmetric preferences, is NP-hard. For the same

model we also show that the problem of determining if a (man,woman) pair belongs to a

weakly stable matching is NP-complete. We then describe two polynomial-time algorithms

that simplify the algorithms given for the general case [38,39], for each of the problems of

finding a super-stable matching, or reporting that none exists, given an instance of hrt

and srti with symmetric preferences. Finally, two faster algorithms, compared to the

best-known algorithms for the general case [45, 67], for each of the problems of finding a

strongly stable matching, or reporting that none exists, given an instance of hrt and srti,

are presented.

In Chapter 7 we focus on modelling smi using constraint programming. We extend

the models discussed in Section 1.1.5 to obtain two new CSP encodings for smi. The first

encoding is both simple and elegant and returns the GS-lists after forcing AC propagation.
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In this model AC can be established in time O(n3) (here, for simplicity, we assume the

number of men = the number of women = n). The second encoding improves on the per-

formance of the first encoding, and the GS-lists are obtained after forcing AC propagation.

AC propagation in the second encoding can be established in O(n2). For both encodings

we show that all the stable matchings can be enumerated without failure during search.

The first CSP encoding for smi is then extended to the case of hr, and subsequently

hrt under weak stability, in Chapter 8. In our hr encoding we show that AC can be

established in time O(n3) and that the variables’ domains correspond to the GS-lists of

the original hr instance. We then extend this encoding to hrt under weak stability, and

prove that if a matching is output by this encoding, then the matching is weakly stable.

However, in contrast to the other encodings presented, the weakly stable matchings cannot

be enumerated in a failure-free manner during search.

34



Chapter 2

Student-Project Allocation with

Preferences over Projects

2.1 Introduction

We recall from Section 1.3 that stability has previously been considered in the context of

spa by Abraham et al. [3]. In this model lecturers rank the students in order of preference,

a task that is often difficult, and as a result rankings tend to be based on academic merit.

This strategy for ranking the students often results in students who appear lower down

the merit list being less likely to be matched with the more popular projects, should they

rank them higher on their preference list. Additionally a lecturer may not have specific

preferences over students who find a particular project acceptable, but instead they may

have preferences over projects that relate to their current research interests. It is therefore

natural to investigate a model whereby both the students and lecturers have preferences

over projects.

In this chapter we consider this variant of the spa model, denoted by spa-p. With

respect to an instance of spa-p, two stability definitions naturally arise, namely weak

stability and strong stability. We denote these two versions of spa-p by spa-pw and spa-

ps respectively. The terminology arises from similarities between the weak stability and

strong stability concepts in instances of hrt and spa-p.

The remaining sections are structured as follows. In Section 2.2.1 we give a formal

definition of spa-pw, and show that for an instance of spa-p, weakly stable matchings

can have different sizes. However, in practical situations, we aim to match as many

students as possible, and in Section 2.2.2 we show that the problem of finding a maximum
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cardinality weakly stable matching is NP-hard. In Sections 2.2.3 and 2.2.4, we give two

approximation algorithms with performance guarantee 2. Both algorithms return a weakly

stable matching for an instance of spa-p, however the matchings constructed have different

additional properties. Finally, in Section 2.3, we present a linear-time algorithm for the

problem of finding a strongly stable matching, if one exists, given an instance of spa-p.

2.2 Weak Stability

In this section we formally define the spa-pw model introduced above, and also define the

concept of weak stability in this context.

2.2.1 Definition of spa-pw

An instance I of spa-p involves a set of students S, a set of projects P, and a set of

lecturers L. Each student si ∈ S ranks, in strict order of preference, an acceptable set

of projects Ai ⊆ P. In addition, each lecturer lk ∈ L supplies a set of projects Pk that

they are willing to supervise. Lecturer lk ranks Pk in strict order of preference. Implicitly

each lecturer is indifferent amongst all students who find a given project acceptable. Each

project pj ∈ P has an associated capacity cj , which indicates an upper bound on the

number of students that may undertake pj. Similarly each lecturer lk has a capacity dk,

which indicates an upper bound on the number of students that lk is willing to supervise.

Figure 2.1 shows an example spa-p instance I1, with S = {s1, s2, s3, s4}, P = { p1, p2,

p3, p4 }, and L = {l1, l2}.

Student preferences Lecturer preferences

s1 : p1 p3 p2 l1 : p1 p2

s2 : p1 p4 p3 l2 : p4 p3

s3 : p2 p4

s4 : p3 p1 p2 p4

Project capacities: c1 = 2, c2 = 1, c3 = 1, c4 = 1

Lecturer capacities: d1 = 2, d2 = 2

Figure 2.1: An instance I1 of spa-p.

We use the notation and terminology defined for an instance of spa as described in
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Section 1.3 throughout this section. That is, notation and terminology defined previously

in terms of instances and matchings in the spa context are also valid in the spa-p context.

However blocking pair and stability concepts will be specifically defined for an instance of

spa-p in this section.

We now define a blocking pair with respect to M . The pair (si, pj) is said to block M ,

or to be a blocking pair of M , if each of conditions 1, 2 and 3 are satisfied as follows:

1. pj ∈ Ai (i.e. si finds pj acceptable).

2. Either si is unassigned in M or si prefers pj to M(si).

3. pj is under-subscribed and one of

(a) si ∈ M(lk) and lk prefers pj to M(si), or

(b) si /∈ M(lk) and lk is under-subscribed, or

(c) si /∈ M(lk) and lk is full and lk prefers pj to his worst non-empty project,

holds, where lk is the lecturer who offers project pj.

A matching is weakly stable if it admits no blocking pair.

The motivation behind Conditions 2 and 3 above is now given (Condition 1 is straight-

forward). Let (si, pj) be a blocking pair, and let lk be the lecturer who offers pj. Condition

2 states that si would rather be matched than unmatched, and if si is matched and prefers

pj to M(si), then si would rather reject M(si) and become assigned to pj. Condition 3

models the conditions under which a lecturer can improve with respect to M . Here lk

would not strictly improve by rejecting a student from a project that was already full,

and hence pj must be under-subscribed. Then Condition 3(a) states that if si is already

assigned to a project pz offered by lk, but lk prefers pj to pz, then lk would improve by

allowing si to move from pz to pj. Condition 3(b) states that lk would “improve” by tak-

ing on an additional student in an under-subscribed project, if lk is also under-subscribed.

Finally, Condition 3(c) states that if lk prefers pj to his worst non-empty project pz, then

lk would improve by rejecting a student from pz and taking on si to do pj.

In addition to being weakly stable, we may also seek to find a matching that is coalition-

free. A matching M is said to be coalition-free if there exists no exchange-blocking coalition

〈si0 , si1, . . . , sir−1
〉, where si prefers M(si+1) to M(si) (0 ≤ i ≤ r− 1), with addition taken

modulo r. If such a coalition exists in a matching M , and each student si switches from
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Student preferences Lecturer preferences

s1 : p1 p2 l1 : p1 p2

s2 : p2 p1

Project capacities: c1 = 1, c2 = 1

Lecturer capacities: d1 = 2

Figure 2.2: An instance I2 of spa-p.

Student preferences Lecturer preferences

s1 : p1 p2 l1 : p1

s2 : p1 l2 : p2

Project capacities: c1 = 1, c2 = 1

Lecturer capacities: d1 = 1, d2 = 1

Figure 2.3: An instance I3 of spa-p.

M(si) to M(si+1), it can be seen that no lecturer becomes worse off, since a lecturer is im-

plicitly indifferent among the students, and moreover the same number of students remain

assigned to each project and lecturer following such a switch. For example, in instance

I2, shown in Figure 2.2, one possible weakly stable matching is M1 = {(s1, p2), (s2, p1)}.
However, we can identify a matching M2 = {(s1, p1), (s2, p2)} that is weakly stable but

also coalition-free.

It turns out that weakly stable matchings may have different sizes for an instance of

spa-p. To see this, consider instance I3 shown in Figure 2.3. Two possible weakly stable

matchings for I3 are M1 = {(s1, p2), (s2, p1)} and M2 = {(s1, p1)}. As weakly stable

matchings may have different sizes for the same spa-p instance, it is natural to investigate

the problem of finding a weakly stable matching that matches the largest number of

students. In the following sections we present some algorithmic results for this problem.

2.2.2 NP-hardness of finding a maximum weakly stable matching

Denote by max-spa-pw the problem of finding a maximum weakly stable matching, given

an instance of spa-p. In this section we show that max-spa-pw is NP-hard. This follows

immediately from the NP-completeness of com-spa-pw, which is the problem of deciding,

given an instance of spa-p, whether a complete weakly stable matching exists (i.e. a
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matching in which all students are assigned).

In order to prove that com-spa-pw is NP-complete we reduce from a problem related

to matchings in graphs. A matching M is said to be maximal for a graph G = (V,E) if,

for every edge e ∈ E \M , M ∪{e} is not a matching. Let β−(G) denote the minimum car-

dinality of a maximal matching in G. Then min-mm is the problem of computing β−(G),

given a graph G. The decision version of min-mm is shown below:

Name: min-mm-d

Instance: A graph G and an integer K.

Question: Does G have a maximal matching M with |M | ≤ K?

The NP-hardness of min-mm was established by Yannakakis and Gavril [74]1. Horton

and Kilakos [33] showed that min-mm-d is NP-complete for cubic graphs, furthermore they

showed that the same is true for subdivision graphs2 [33], and NP-completeness also holds

for subdivision graphs of cubic graphs [27]. In the following lemma (due to Abraham et

al. [1]) we show that, even for subdivision graphs of cubic graphs, the problem exact-mm

of finding a maximal matching of size K in G, for a given integer K and a graph G, is

NP-complete. First we formally define exact-mm.

Name: exact-mm

Instance: A graph G and an integer K.

Question: Does G have a maximal matching M with |M | = K?

Lemma 2.2.1. exact-mm is NP-complete, even for subdivision graphs of cubic graphs.

Proof. Clearly exact-mm is in NP. To prove that exact-mm is NP-hard we reduce from

min-mm-d. Let G be a subdivision graph of some cubic graph and let K be a positive

integer, forming an instance of min-mm-d. We claim that G has a maximal matching M

with |M | ≤ K if and only if G has a maximal matching M ′ with |M ′| = K ′.

Suppose that G has a maximal matching M with |M | = k ≤ K. If k = K then we

are done. Therefore suppose k < K. Let β(G) denote the size of a maximum matching

in G. Then without loss of generality k < K ≤ β(G). Since maximal matchings satisfy

1In fact Yannakakis and Gavril showed that the minimum edge dominating set problem (min-eds) is

NP-hard. However it is known that min-eds and min-mm are polynomially equivalent.
2The subdivision graph of a graph G is a graph G

′ in which we replace every edge in G by a path of

length two.
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the interpolation property [30] (i.e. G has a maximal matching of size j, for each j such

that k ≤ j ≤ β(G)), G has a maximal matching of size K. The converse can be easily

verified.

We note that in this chapter we only require that exact-mm is NP-complete for

subdivision graphs. However, in later chapters we require the NP-completeness of exact-

mm restricted to subdivision graphs of cubic graphs.

We now use the NP-completeness of exact-mm to establish the NP-completeness of

com-spa-pw.

Theorem 2.2.2. com-spa-pw is NP-complete.

Proof. Clearly com-spa-pw belongs to NP. To show NP-hardness, we transform from

exact-mm restricted to subdivision graphs, which is NP-complete by Lemma 2.2.1. Hence

let G (a subdivision graph of some graph G′) and K (a positive integer) be an instance

of exact-mm. Then G is a bipartite graph (since G is a subdivision graph, and therefore

cannot have an odd cycle), so that G = (U,W,E), where without loss of generality all

vertices in U have degree 2. Suppose that n1 = |U | and n2 = |W |. Again, without

loss of generality assume that K ≤ min{n1, n2}. Let U = {u1, u2, . . . , un1
} and W =

{w1, w2, . . . , wn2
}. For each ui ∈ U , let wji

and wki
be the two neighbours of ui in G,

where ji < ki.

We construct an instance I of com-spa-pw as follows: let U ∪ U ′ ∪ V be the set of

students, where U ′ = {u′
1, u

′
2, . . . , u

′
n1
} and V = {v1, v2, . . . , vn2−K}; let P∪Q∪R∪S be the

set of projects, where P = {p1, p2, . . . , pn2
}, Q = {q1, q2, . . . , qn2

}, R = {r1, r2, . . . , rn1
}

and S = {s1, s2, . . . , sn1−K}; and let W ∪ X ∪ Y be the set of lecturers, where X =

{x1, x2, . . . , xn1
}, and Y = {y1, y2, . . . , yn1−K}. Each project and lecturer has capacity 1.

The preference lists in I are shown in Figure 2.4. These preference lists also indicate the

acceptable projects for each student, and the projects offered by each lecturer. In a given

preference list, projects within square brackets are listed in arbitrary strict order at the

point where the symbol appears. We claim that G has a maximal matching of size K if

and only if I admits a weakly stable matching in which all students are assigned.

For, suppose that G has a maximal matching M , where |M | = K. We construct

a matching M ′ in I as follows. For each edge {ui, wj} in M , if j = ji, then we add

(ui, pji
) and (u′

i, ri) to M ′. If j = ki, then we add (u′
i, pki

) and (ui, ri) to M ′. There

remain n2 − K lecturers in W who are under-subscribed in M ′. Denote these lecturers
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Student preferences:



















ui : ri pji
pki

[S] (1 ≤ i ≤ n1)

u′
i : ri pki

(1 ≤ i ≤ n1)

vi : [Q] (1 ≤ i ≤ n2 − K)

Lecturer preferences:



















wj : pj qj (1 ≤ j ≤ n2)

xj : rj (1 ≤ j ≤ n1)

yj : sj (1 ≤ j ≤ n1 − K)

Figure 2.4: Preference lists for the constructed instance of com-spa-pw.

by wtj (1 ≤ j ≤ n2 − K). Add (vj , qtj ) to M ′ (1 ≤ j ≤ n2 − K). Similarly there remain

2(n1 −K) students in U ∪U ′ who are unassigned in M ′. Denote these students by uzi
, u′

zi

(1 ≤ i ≤ n1 − K). Add (uzi
, si) and (u′

zi
, rzi

) to M ′ (1 ≤ i ≤ n1 − K). Clearly M ′ is a

matching in I in which all students are assigned.

No project in Q ∪ R ∪ S can be involved in a blocking pair of M ′, since each member

of W ∪R∪ S is full in M ′. Hence no student in U ′ ∪ V can be involved in a blocking pair

of M ′, since every student is assigned in M ′. Finally, no pair (ui, pj) /∈ M ′ blocks M ′,

where ui ∈ U and pj ∈ P . For if this occurs, then (ui, sl) ∈ M ′ for some sl ∈ S, and pj is

under-subscribed. Thus no edge of M is incident to ui or wj in G. Hence M ∪ {{ui, wj}}
is a matching in G, contradicting the maximality of M . Thus M ′ is weakly stable.

Conversely, suppose that M ′ is a weakly stable matching in I in which all students

are assigned. For each rj ∈ R, it follows that rj is assigned either uj or u′
j , for otherwise

(uj , rj) blocks M ′, a contradiction. Hence

M =
{

{ui, wj} ∈ E : (ui, pj) ∈ M ′ ∨ (u′
i, pj) ∈ M ′

}

is a matching in G. Now each student in V is assigned in M ′ to a project in Q, so n2 −K

projects in Q are full in M ′. Hence at most K projects in P are full in M ′, since each

lecturer in W has capacity 1. Now in M ′, at most n1 − K students in U are assigned to

projects in S. As already observed, exactly n1 students in U ∪ U ′ are assigned in M ′ to

projects in R. Hence at least K students in U ∪ U ′ are assigned in M ′ to projects in P ,

so that |M | = K.

Suppose that M is not maximal. Then there is some edge {ui, wj} in G such that no

edge of M is incident to ui or wj . Thus (u′
i, ri) ∈ M ′, so that (ui, sl) ∈ M ′ for some sl ∈ S.

Also either wj is under-subscribed, or (vk, qj) ∈ M ′ for some vk ∈ V . Hence (ui, pj) blocks
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M ′, for pj is under-subscribed. This contradiction to the stability of M ′ implies that M

is indeed maximal.

The following corollary is an immediate consequence of Theorem 2.2.2.

Corollary 2.2.3. max-spa-pw is NP-hard, even if each project and lecturer has capacity

1.

2.2.3 Coalition-free approximation algorithm for spa-pw

Overview of the algorithm

Due to the NP-hardness of max-spa-pw, we consider the problem of finding a weakly

stable matching that is close to optimal. In this section we present a 2-approximation

algorithm for max-spa-pw. In addition the weakly stable matching produced by the

algorithm is coalition-free.

Consider the algorithm spa-pw-approx1 shown in Algorithm 8. The algorithm uses a

series of apply and delete operations to obtain a weakly stable matching that is at least

half the size of an optimal weakly stable matching. At each iteration of the algorithm,

some free student si with a non-empty preference list applies to the first project pj on his

list. If pj is full, then pj is removed from si’s list. If lk is full, and lk’s worst non-empty

project pz is the same as pj, then pj is also removed from si’s list. Otherwise si becomes

assigned to pj . If lk becomes over-subscribed as a result of this assignment, the algorithm

identifies an arbitrary student sr assigned to pz, assigns sr to be free, and deletes pz from

sr’s list. At this point if lk is full, each project pt that lk finds less desirable than his

worst non-empty project is deleted from the preference list of each student that finds pt

acceptable.

We will now prove that on termination of spa-pw-approx1 the algorithm always outputs

a matching M (Lemma 2.2.4), and that the matching is weakly stable (Lemma 2.2.5 and

2.2.6) and coalition-free (Lemma 2.2.7).

Correctness and performance guarantee of the algorithm

Lemma 2.2.4. spa-pw-approx1 returns a matching.

Proof. Clearly the while loop terminates. For, at the beginning of some loop iteration, let

si be a student who is free and has a non-empty list, and let pj be the first project on

42



2.2 Weak Stability Chapter 2. SPA with Preferences over Projects

Algorithm 8 spa-pw-approx1

1: M := ∅;
2: while some student si is unassigned and si has a non-empty list do

3: pj := first project on si’s list;

4: lk := lecturer who offers pj ;

5: pz := lk’s worst project;

6: if lk is assigned at least one student then

7: pz := lk’s worst non-empty project;

8: /** si applies to pj */

9: if pj is full or (lk is full and pj = pz) then

10: delete pj from si’s list;

11: else

12: M := M ∪ {(si, pj)};
13: /** si provisionally assigned to pj and lk */

14: if lk is over-subscribed then

15: sr := arbitrary student assigned to pz;

16: M := M\{(sr, pz)};
17: delete pz from sr’s list;

18:

19: if lk is full then

20: pz := lk’s worst non-empty project;

21: for each pt ∈ {successorslk(pz)} do

22: for each student sr who finds pt acceptable do

23: delete pt from sr’s list;

24: return M ;
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si’s list. If si does not become provisionally assigned to pj during the same loop iteration,

then pj is removed from si’s list. If si becomes provisionally assigned to pj then some

student sr may become free – if this is the case pj is always deleted from sr’s list. Hence,

eventually, we are guaranteed that each student is either assigned to some project or has

an empty list. Let M be the assignment relation upon termination of spa-p-approx1. It

is immediate that each student is assigned to at most one project in M , whilst no project

or lecturer is over-subscribed in M .

Lemma 2.2.5. Suppose that some project pt is deleted from a student sr’s list during

an execution of spa-pw-approx1. Then (sr, pt) cannot block a matching output by spa-p-

approx1.

Proof. Let E be an execution of the algorithm during which pt is deleted from sr’s list.

By Lemma 2.2.4, let M be the matching output at the termination of E. Suppose for a

contradiction that (sr, pt) blocks M . We consider four cases.

Case (i): pt was deleted from sr’s list as a result of pt being full during E. Since

(sr, pt) blocks M , pt is under-subscribed in M . Hence pt changed from being full

during E to being under-subscribed, which can only occur as a result of some lecturer

lk being over-subscribed during E, where pt was lk’s worst non-empty project at that

point. Thus lk is full in M , and lk’s worst non-empty project is either pt or better.

Hence (sr, pt) does not block M in this case.

Case (ii): pt was deleted from sr’s list as a result of lk being full during E, and pt

was lk’s worst non-empty project. Clearly on termination of E, lk is full, and lk’s

worst non-empty project is pt or better. Hence (sr, pt) does not block M in this case.

Case (iii): pt was deleted from sr’s list as a result of lk being over-subscribed during

E. Then just before the deletion occurred, pt was lk’s worst non-empty project. Now

lk is full in M , and lk’s worst non-empty project is either pt or better. Hence (sr, pt)

does not block M in this case.

Case (iv): pt was deleted from sr’s list as a result of lk being full during E. Then

lk is full in M , and lk prefers his worst non-empty project to pt. Hence (sr, pt) does

not block M in this case.

Lemma 2.2.6. spa-pw-approx1 returns a weakly stable matching.
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Proof. Let E be an execution of the algorithm, and by Lemma 2.2.4, let M be the matching

output upon termination of E. Suppose that (si, pj) blocks M . By Lemma 2.2.5, pj is

not deleted from si’s list during E. Hence si’s list is non-empty upon termination of E.

If si is unassigned in M then the while loop would not have terminated, a contradiction.

Hence si is assigned in M and prefers pj to pr = M(si). But when si applied to pr, it

follows that pr was the first project on si’s list, a contradiction to the fact that (si, pj) has

not been deleted. Hence M is weakly stable.

Lemma 2.2.7. spa-pw-approx1 returns a matching that is coalition-free.

Proof. By Lemma 2.2.4, let M be the matching output by an execution E of spa-pw-

approx1. Suppose, for a contradiction, that there exists an exchange-blocking coalition

〈si0 , si1, . . . , sir−1〉 with respect to M . Then (sit ,M(sit+1
)) is deleted during E for each t

(0 ≤ t ≤ r − 1), where addition is taken modulo r. Let (sij ,M(sij+1
)) be the first such

pair to be deleted during E. Let pz = M(sij+1
) and let lk be the lecturer who offers pz.

We consider the following four cases.

Case (i): pz was deleted from sij ’s list when pz became full during E. Then sij+1

must have applied to pz after sij did. Suppose that this is not the case. Then

sij+1
was already assigned to pz when sij applied to pz. Hence M(sij+2

) must have

already been deleted from sij+1
’s list, a contradiction to the fact that (sij , pz) is

the first such deletion of the form (sit ,M(sit+1
)) (0 ≤ t ≤ r − 1) to take place.

Therefore pz must have gone from being full to being under-subscribed during E.

This can only happen if lk became over-subscribed during E, and pz was lk’s worst

non-empty project at that point. Thus when sij+1
applies to pz, it follows that pz is

still lk’s worst non-empty project, and lk is full. Therefore lk rejects sij+1
from pz, a

contradiction.

Case (ii): pz was deleted from sij ’s list at line 10, when lk became full during E and

pz was lk’s worst non-empty project. As in Case (i), sij+1
must apply to pz after sij

does. Furthermore, lk remains full at every subsequent iteration of E. Therefore at

the iteration where sij+1
becomes assigned to pz, it follows that lk’s worst non-empty

project is pz or better. In either case the pair (sij+1
, pz) is deleted, a contradiction.

Case (iii): pz was deleted from sij ’s list when lk became over-subscribed during E,

and pz was lk’s worst non-empty project. As in Case (i), sij+1
must have applied to
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pz after sij did. The rest of the proof for this case is identical to Case (ii).

Case iv: pz was deleted from sij ’s list when lk became full during E, and lk’s worst

non-empty project was better than pz. At this point pz is removed from sij+1
’s list

as well, a contradiction.

The next result shows that spa-p-approx1 has a performance guarantee of 2.

Theorem 2.2.8. spa-pw-approx1 is an approximation algorithm for max-spa-pw with a

performance guarantee of 2.

Proof. Let I be an instance of spa-p and let M be a weakly stable matching of maximum

size in I. By Lemma 2.2.6, let M ′ be a weakly stable matching output by spa-p-approx1

as applied to I, and suppose for a contradiction that |M ′| < |M |/2. Let X (respectively

Y ) be those students who are assigned in M but not M ′ (respectively M ′ but not M),

and let Z be those students who are assigned in both M and M ′. Then

|X| = |M | − |Z| > 2|M ′| − |Z| = 2|Y | + |Z| ≥ |M ′|. (2.1)

Now suppose that the students in X are collectively assigned in M to projects P ′ =

{p1, . . . , ps} offered by lecturers l1, . . . lt. Suppose that P ′
1, . . . , P

′
t is a partition of P ′ such

that lecturer lk (1 ≤ k ≤ t) offers the projects in P ′
k. Similarly let S1, . . . , St be a partition

of X such that each student in Sk is assigned in M to a project in P ′
k (1 ≤ k ≤ t).

Now let k be given (1 ≤ k ≤ t) and let pj be any project in P ′
k. Then there is some

student si ∈ Sk who is assigned to pj in M but unassigned in M ′. Hence in M ′, either (i)

pj is full, or (ii) lk is full (or both), for otherwise (si, pj) blocks M ′. It follows that, in M ′,

either (a) all projects in P ′
k are full, or (b) lk is full (or both). Hence

|M ′| ≥
t

∑

k=1

min



dk,
∑

pj∈P ′

k

cj



 . (2.2)

Since no project or lecturer is over-subscribed in M , it follows that, for each k (1 ≤ k ≤ t),
∑

pj∈P ′

k

cj ≥ |Sk| and dk ≥ |Sk|. Hence Inequality 2.2 implies that |M ′| ≥
t

∑

k=1

|Sk| = |X|,

which is a contradiction to Inequality 2.1. Thus |M ′| ≥ |M |/2 as required.

46



2.2 Weak Stability Chapter 2. SPA with Preferences over Projects

Additional properties of spa-pw-approx1

This section contains a series of properties of spa-pw-approx1. The first property shows

that there exists an instance I of spa-p and a weakly stable matching of maximum size

Mmax in I, such that every execution of spa-pw-approx1 applied to I will output a weakly

stable matching M such that |M | < |Mmax|. Thus for this instance, no execution of spa-

pw-approx1 finds a maximum weakly stable matching. We also show that, the performance

guarantee cannot be improved by comparing the larger of the matchings output when the

students apply in increasing indicial order and when the students apply in decreasing

indicial order.

Proposition 2.2.9. There exists an instance I of spa-p and a weakly stable matching

Mmax of maximum size in I such that every execution of spa-pw-approx1 applied to I

will output a weakly stable matching M such that |M | < |Mmax|.

Proof. Consider instance I with S = {s1, s2, s3}, P = {p1, p2, p3}, and L = {l1, l2}. Then

we define the student and lecturer’s preference lists, and capacities, as follows:

Student preferences Lecturer preferences

s1 : p2 p1 l1 : p1 p2

s2 : p1 p3 l2 : p3

s3 : p1

Project capacities: c1 = 2, c2 = 1, c3 = 1

Lecturer capacities: d1 = 2, d2 = 1

In I there exists a maximum weakly stable matching Mmax = {(s1, p1), (s2, p3), (s3, p1)}.
However regardless of the order in which the students apply, it is easy to verify that

algorithm spa-pw-approx1 always returns a matching of size two.

Now consider a variant of algorithm spa-pw-approx1 as shown in Algorithm 9.

Proposition 2.2.10. spa-pw-approx1-reverse performs no better than spa-pw-approx1 in

general.

Proof. Consider instance I with S = {s1, s2, s3, s4}, P = {p1, p2, p3, p4}, and L = {l1, l2}.
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Algorithm 9 spa-pw-approx1-reverse

1: M1 := spa-pw-approx1(); /** Students apply in increasing indicial order */

2: M2 := spa-pw-approx1(); /** Students apply in decreasing indicial order */

3:

4: if |M1| > |M2| then

5: output M1;

6: else

7: output M2;

For each student and lecturer the preference lists and capacities are defined as follows:

Student preferences Lecturer preferences

s1 : p2 p1 l1 : p1 p2

s2 : p1 p3 l2 : p3 p4

s3 : p1 p4

s4 : p2 p1

Project capacities: c1 = 2, c2 = 1, c3 = 1, c4 = 1

Lecturer capacities: d1 = 2, d2 = 2

First, it can be easily verified that Mmax = {(s1, p1), (s2, p3), (s3, p4), (s4, p1)} is a

maximum weakly stable matching in I. Now consider the application sequence s1 →
s2 → s3 → s4; this yields the weakly stable matching M1 = {(s2, p1), (s3, p1)} of size two.

Reversing this application sequence, we obtain the weakly stable matching M2 such that

M1 = M2. Therefore both M1 and M2 are half the size of the maximum weakly stable

matching Mmax. Hence, in general, algorithm spa-pw-approx1-reverse performs no better

than spa-pw-approx1.

2.2.4 A Generalised Approximation Algorithm for spa-pw

Overview of the algorithm

In Section 2.2.3, approximation algorithm spa-pw-approx1 was presented that finds a

weakly stable matching for an instance of spa-p. As illustrated by Proposition 2.2.9, there

exists an instance of spa-p for which all executions of spa-pw-approx1 fail to find a weakly

stable matching of maximum size, regardless of the order in which the students apply. In

this section we present a second 2-approximation algorithm, spa-pw-approx2, that finds a

weakly stable matching for an instance of spa-p. We show that, for a given instance I of
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spa-p, there is an execution of spa-pw-approx2 that will find a maximum weakly stable

matching in I. The algorithm consists of two phases: the first phase, spa-pw-approx2-

phase1, as shown in Algorithm 10, finds a weakly stable matching M . However, M may

admit exchange-blocking coalitions. A second phase of the algorithm, spa-pw-approx2-

phase2, is then used to eliminate exchange-blocking coalitions, without affecting the weak

stability or cardinality of M .

Phase 1

The algorithm uses a similar apply and delete strategy to spa-pw-approx1. However in

spa-pw-approx2-phase1, if a student si applies to a project pj then si immediately becomes

assigned to pj. If as a result of this assignment pj becomes over-subscribed, pj is removed

from the list of some arbitrary student sr assigned to pj. Otherwise pj must be full or

under-subscribed. If lk is now over-subscribed, lk’s worst non-empty project pz is identified,

and pz is deleted from the list of some arbitrary student sr assigned to pz. Finally if lk

is full, lk’s worst non-empty project pz is once again identified, and each project pt that

appears below pz on lk’s list is deleted from the list of each student who finds pt acceptable.

It can be shown that the matching output by spa-pw-approx2-phase1 is weakly stable

using a similar argument to that in Section 2.2.3. Furthermore, spa-pw-approx2-phase1

has a performance guarantee of 2, which follows directly from the proof of Theorem 2.2.8.

In the following lemma we show that for a given instance I of spa-p there always exists

an execution of spa-pw-approx2-phase1 that finds a maximum weakly stable matching in

I.

Lemma 2.2.11. If an instance I of spa-p admits a stable matching of size K, then there

exists an execution of spa-pw-approx2-phase1 that finds a weakly stable matching of size

≥ K.

Proof. Let MK be a weakly stable matching of size K. Without loss of generality, we

assume MK(si) = pri
(1 ≤ i ≤ K) for some sequence r1, . . . , rk, and that students

sK+1, . . . , sn are unmatched in MK . We construct an execution E of algorithm spa-

pw-approx2-phase1 by deleting preference list entries using the following strategy. If a

project py becomes over-subscribed, student sx is rejected from py, where sx /∈ MK(py).

Similarly if a lecturer lk becomes over-subscribed, and py denotes lk’s worst non-empty

project, student sx is rejected from py, where sx /∈ MK(py). We claim that such a student
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Algorithm 10 spa-pw-approx2-phase1

1: M := ∅;
2: while some student si is unassigned and si has a non-empty list do

3: pj := first project on si’s list;

4: lk := lecturer who offers pj ;

5: /** si provisionally assigned to pj and lk */

6: M := M ∪ {(si, pj)};
7: if pj is over-subscribed then

8: sr := arbitrary student assigned to pj ;

9: M := M\{(sr, pj)};
10: delete pj from st’s list;

11: else

12: if lk is over-subscribed then

13: pz := lk’s worst non-empty project;

14: sr := arbitrary student assigned to pz;

15: M := M\{(sr, pz)};
16: delete pz from sr’s list;

17: if lk is full then

18: pz := lk’s worst non-empty project;

19: for each pt ∈ {successorslk(pz)} do

20: for each student sr who finds pt acceptable do

21: delete pt from sr’s list;

22: return M ;
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can always be found. Suppose that this is not the case. Let z′ denote the first itera-

tion during E in which lk is over-subscribed and lk’s worst non-empty project py satisfies

M ′(py) ⊆ MK(py), where M ′ is the assignment at this iteration just before any deletions

occur. Hence there exists a project pz on lk’s list such that |M ′(pz)| > |MK(pz)|, otherwise

lk is over-subscribed in MK . Then pz is under-subscribed in MK , and moreover lk prefers

pz to py, since py is lk’s worst non-empty project at this point and |M ′(py)| ≤ |MK(py)|.
Now let st be a student assigned to pz in M ′, but not in MK . We firstly note that if st

is unassigned in MK , then (st, pz) blocks MK , a contradiction. Hence (st, prt) ∈ MK . We

now prove that at every iteration prior to z′ where deletions are made, the algorithm never

deletes a pair of the form (si, pri
) (1 ≤ i ≤ K), and as such st strictly prefers pz to prt .

Suppose that this is not the case. Let z′′ < z′ be the first iteration during E in which a

pair of the form (si, pri
) (1 ≤ i ≤ K) is deleted. Consider the following three cases.

Case (i): pri
is deleted from si’s list when pri

becomes over-subscribed. This cannot

happen as st is matched to pri
in MK , and hence the deletion strategy does not allow

this.

Case (ii): pri
is deleted from si’s list when lw, the lecturer who offers pri

, becomes

over-subscribed. Once again this cannot happen using the above deletion strategy,

by choice of z′.

Case (iii): pri
is deleted from si’s list when lw, the lecturer who offers pri

, becomes

full with projects he prefers to pri
. Let M ′′ be the assignment just before this deletion

takes place during iteration z′′. At this point lw is full in M ′′, and there exists a

project pb with fewer assignees in MK than in M , for otherwise lw is over-subscribed

in MK , since (si, pri
) ∈ MK \ M . Hence choose sa ∈ M(pb)\MK(pb). Now pb is

under-subscribed in MK – moreover lw prefers pb to pri
. Hence if sa is unmatched in

MK , (sa, pb) blocks MK , therefore sa must be matched in MK . Since MK is weakly

stable, sa prefers pra to pb. Therefore MK(sa) must have been deleted before the

z′′th iteration, a contradiction to the choice of (si, pri
) as the first pair to be deleted

prior to iteration z′′. Hence pri
is not deleted from si’s list in this case.

Therefore either st is unassigned in MK or st prefers pz to prt. Also lk prefers pz to py,

hence as pz is under-subscribed in MK , it follows that (st, pz) blocks MK , a contradiction.

This completes the construction of E; we note the order in which the students apply is

unimportant.
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Let M be the matching output by spa-pw-approx2-phase1 on termination of E. We

claim that if (si, pri
) ∈ MK , for each i (1 ≤ i ≤ K), then during E, the algorithm never

deletes pri
from si’s list. To prove this result, the steps required are identical to those

used in the three cases above (in Case (ii), we no longer need to refer to z′, since it has

already been established that the deletion strategy is well-defined; as before, z′′ is the first

iteration during E in which a pair (si, pri
) is deleted). Thus |M | ≥ |MK |. Hence if I

admits a weakly stable matching of size K, the algorithm is capable of finding a matching

of at least this size.

Phase 2

In contrast to spa-pw-approx1, the matching output by spa-pw-approx2-phase1 may not

be coalition-free. This is illustrated by the proof of the following proposition.

Proposition 2.2.12. A matching output by spa-pw-approx2-phase1 need not be coalition-

free.

Proof. Consider instance I with S = {s1, s2, s3, s4, s5}, P = {p1, p2, p3}, and L = {l1, l2}.
For each student and lecturer the preference lists and capacities are defined as follows:

Student preferences Lecturer preferences

s1 : p1 l1 : p2 p1

s2 : p1 p3 l2 : p3

s3 : p2

s4 : p2

s5 : p3 p1

Project capacities: c1 = 2, c2 = 2, c3 = 1

Lecturer capacities: d1 = 3, d2 = 1

Consider the following sequence of events that can occur during an execution of spa-

pw-approx2 applied to instance I (we use → to indicate a student applying to a particular

project).

Step 1 2 3 4 5 6 7

s1 → p1 s2 → p1 s3 → p2 s4 → p2 s2 → p3 s5 → p3 s5 → p1
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At steps 4 and 7, lecturer l1 became over-subscribed and rejected students s2 and s1 re-

spectively. At step 5, p3 became over-subscribed and rejected s5. Therefore on termination

of spa-pw-approx2, matching M = {(s2, p3), (s3, p2), (s4, p2), (s5, p1)} is output. From this

we can see that s2 prefers M(s5) to M(s2), and that s5 prefers M(s2) to M(s5). Hence

the algorithm outputs a matching containing an exchange-blocking-coalition 〈s2, s5〉.

The second phase of the approximation algorithm, spa-pw-approx2-phase2, is shown in

Algorithm 12. Algorithm spa-pw-approx2-phase2 first creates a network G = 〈V,E, c, w〉
(constructed using Algorithm 11) corresponding to the matching M output by spa-pw-

approx2-phase1, where V is the set of vertices, E is the set of directed edges, c : E → N

is a capacity function, and w : E → N is a cost function. The algorithm then finds a

minimum cost maximum flow f in G, and outputs a coalition-free weakly stable matching

corresponding to this flow.

Algorithm 11 ConstructNetwork(M)

Require: Matching M output by spa-pw-approx2-phase1.

1: add vertices u,t to G; /** the source and the sink */

2: for each (si, pj) ∈ M do

3: add vertex si and edge (u, si) of cost 0 and capacity 1;

4: add vertex pj and edge (pj , t) of cost 0 and capacity |M(pj)|;
5: for each pj ∈ P such that si prefers pj to M(si) or pj = M(si) do

6: /** rank(si, pj) denotes the rank of pj on si’s list */

7: add edge (si, pj) to G with cost rank(si, pj) and capacity 1;

8: return G;

Algorithm 12 spa-pw-approx2-phase2

Require: Matching M output by spa-pw-approx-phase1.

1: G := ConstructNetwork(M);

2: f := Find minimum cost maximum flow in G;

3: M ′ := {(si, pj) : si ∈ S ∧ pj ∈ P ∧ (si, pj) ∈ E ∧ f(si, pj) = 1}
4: return M ′;

Lemma 2.2.13. Let M be a matching output by spa-pw-approx2-phase1, and let f be a

minimum cost maximum flow returned by spa-pw-approx2-phase2. Then val(f) = |M |.

Proof. For any flow in the network G constructed using Algorithm 11, it follows by con-

struction of the network that val(f) ≤ ∑

pj∈P
|M(pj)|. Conversely we can achieve a flow
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of value |M | by pushing a flow of 1 along edge (u, si), where (si, pj) ∈ M .

Remark 2.2.14. Let M be the matching returned by spa-pw-approx2-phase1, and M ′ be

the assignment returned by spa-pw-approx2-phase2. Then each project and lecturer has

the same number of assignees in M as in M ′. Hence M ′ is a matching.

Lemma 2.2.15. The matching returned by spa-pw-approx2-phase2 is coalition-free.

Proof. Let M ′ be the matching returned by spa-pw-approx2-phase2, and f be the flow

corresponding to M ′ with respect to the network G constructed by Algorithm 11. Suppose

that M ′ admits a coalition 〈si0 , si1 , . . . , sir−1
〉, for some ij (0 ≤ j ≤ r−1). Then sij prefers

M ′(sij+1
) to M ′(sij ), for each j (0 ≤ j ≤ r − 1), where addition is taken modulo r. Let

M ′′ be the matching obtained by each student sij switching to student sij+1
’s project, i.e.

M ′′ =
(

M ′\{(sij ,M
′(sij )) : 0 ≤ j ≤ r − 1}

)

∪ {(sij ,M
′(sij+1

)) : 0 ≤ j ≤ r − 1}.

We show that the size of the flow f ′ corresponding to M ′′ in G is the same as flow f .

We then show that the cost of f ′ is smaller than f , contradicting the fact that f is a

minimum cost maximum flow. First let si ∈ S. Clearly the same set of students are

matched in M ′ as in M ′′. Therefore f ′(u, si) = f(u, si). Hence val(f ′) = val(f). However

cost(f ′) < cost(f), as at least two students obtained a better project in M ′′ to that in M ′,

whilst no student is worse off in M ′′ as compared to M ′, a contradiction. Therefore M ′ is

exchange-coalition-free.

Lemma 2.2.16. spa-pw-approx2-phase2 returns a weakly stable matching.

Proof. Let M ′ be the matching returned by algorithm spa-pw-approx2-phase2. Now sup-

pose (si, pj) blocks M ′. Either si is unmatched in M ′, and so unmatched in M (where

M is the matching returned by phase 1 of the algorithm), or si prefers pj to M ′(si) (and

hence to M(si)). Also pj is under-subscribed in M ′, and hence in M by Remark 2.2.14.

Since (si, pj) does not block M , lk must be full in M , and lk’s worst non-empty project in

M is pj or better. By Remark 2.2.14, lk is assigned the same number of students in M as

in M ′, and has the same number of assignees to all of his projects in M and M ′. Hence lk

must be full in M ′, and lk’s worst non-empty project in M ′ is pj or better. Thus (si, pj)

cannot block M ′, and so M ′ is weakly stable.

We bring together the lemmas from above into the following theorem.
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Theorem 2.2.17. For a given spa-p instance I:

(i) spa-pw-approx2 returns a coalition-free weakly stable matching in I;

(ii) spa-pw-approx2 has a performance guarantee of 2;

(iii) there exists an execution of spa-pw-approx2 that returns a coalition-free maxi-

mum weakly stable matching.

2.3 Strong Stability

The NP-completeness of max-spa-pw naturally leads us to consider an alternative notion

of stability (an analogue of strong stability) that is obtained by altering the blocking pair

definition. This model is denoted by spa-ps. We note that strong stability is a more

robust form of stability. To understand why, we observe that under weak stability if a

lecturer has a fully-subscribed project then a student not assigned to it could attempt to

convince the lecturer to reject a student from the project in his favour.

2.3.1 Definition of spa-ps

An instance of spa-p is identical to that described in Section 2.2.1 for spa-pw, with the

definition of stability changing as follows.

A blocking pair relative to a matching M is defined to be a (student,project) pair

(si,pj) such that each of conditions (i), (ii) and (iii) are satisfied:

(i) pj ∈ Ai (i.e. si finds pj acceptable),

(ii) Either si is unmatched in M or si prefers pj to M(si),

(iii) Either

(a) pj is under-subscribed and lk is under-subscribed, or

(b) |M(pr)| > 0 for some project pr, where lk prefers pj to pr, or pj = pr,

where lk is the lecturer who offers pj.

Again with this blocking pair definition the choice of terminology is by analogy with

the corresponding term in the context of hrt.

A matching is strongly stable if it admits no blocking pair. Informally, the motivation

for considering this blocking pair definition is that a student who wants to become assigned
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to a full project pj could try to tempt lecturer lk to switch si for some student already

assigned to pj. Again this allows for the possibility that si was already assigned to some

project offered by lk.

We consider the motivation for Condition 3 in greater detail. Suppose that si prefers a

project pj offered by lk. If pj has some assignee st then lk would be no worse off by rejecting

st and taking on si instead – Condition 3(b). Otherwise suppose that pj is empty. If lk is

under-subscribed then both pj and lk have a free place for si – Condition 3(a). Otherwise

lk is full. If lk prefers pj to some project pr with at least one assignee st, then lk could

improve by rejecting st from pr and taking on si to do pj instead – Condition 3(b).

2.3.2 Student-oriented Algorithm for spa-ps

The student-oriented algorithm spa-ps-student, is shown in Algorithm 13. First we set

M to be the empty matching, and over(lk) to be false for every lecturer lk ∈ L. While

some student si is free and has a non-empty list, si applies to the first project pj on his list,

with all applications being provisionally accepted. During the execution of the algorithm,

entries are progressively deleted from the students’ lists until the termination condition is

met. If at some iteration of the main while loop a lecturer becomes over-subscribed, then

his worst project pr with at least one assignee is identified. Then for pr and each successor

of pr on lk’s list, a set T is constructed which contains, for each such project pv, the set

of (student,project) pairs of the form (st, pv), where (st, pv) is in M . We then remove the

set of the pairs in T from M . Finally we “delete pv” for each such pv, i.e. we delete pv

from the list of every student who finds pv acceptable. Similarly if a project pr becomes

over-subscribed at some iteration of the main while loop, then for pr and each successor

of pr on lk’s list we carry out the process described above. Finally, if on termination of

the main while loop a lecturer lk is under-subscribed and over(lk) is true, then (as we will

show) no strongly stable matching exists, otherwise M is a strongly stable matching.

2.3.3 Correctness of Algorithm spa-ps-student

The following lemmas are used to prove the correctness of the algorithm spa-ps-student.

Lemma 2.3.1. Algorithm spa-ps-student terminates with a matching. Further, if the

algorithm reports that the assignment relation M is a strongly stable matching then M is

indeed such a matching.
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Algorithm 13 spa-ps-student

1: M := ∅;
2: for each lecturer lk do

3: over(lk) := false;

4:

5: while some student si is free and has a non-empty list do

6: pj := first project on si’s list;

7: lk := lecturer who offers pj ;

8: M := M ∪ {(si, pj)}; /** si becomes provisionally assigned to pj */

9:

10: if lk is over-subscribed or pj is over-subscribed then

11: over(lk) := true;

12: if lk is over-subscribed then

13: pr := lk’s worst project with ≥ 1 assignee;

14: else

15: pr := pj ;

16:

17: for each pv ∈ {pr} ∪ {successorslk(pr)} do

18: T := {(st, pv) : st ∈ S ∧ (st, pv) ∈ M};
19: M := M \ T ; /** break assignments */

20: delete pv;

21:

22: if some lecturer lk is under-subscribed and over(lk) then

23: no strongly stable matching exists;

24: else

25: M is a strongly stable matching;
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Proof. Each iteration of the main while loop involves a free student si applying to the

next project on his list. No student can apply to the same project twice, as when the

assignment between (si,pj) is broken, pj is removed from si’s preference list. The number

of iterations is therefore bounded by the length of a student’s preference list. Thus the

main while loop terminates. Also, each student is assigned to at most one project, as we

only ever consider free students. Furthermore, it is clear that no project or lecturer is

over-subscribed, hence M is a matching.

Lemma 2.3.2. If a pair (si,pj) is deleted during an execution E of spa-ps-student, then

the pair cannot block a matching generated by the algorithm.

Proof. Let M be a matching output by spa-ps-student. Now suppose the pair (si,pj) is

deleted and that (si, pj) blocks M . Let lk be the lecturer who offers pj . Then (si,pj) is

deleted at some iteration z when either (i) some project pr becomes over-subscribed where

pj is a successor of pr or pj = pr, or (ii) lk becomes over-subscribed.

Case (i): Since a matching was output, it follows that lk must be full in M , as

over(lk) was set to true at iteration z. Therefore (si,pj) does not satisfy Condition

3(a).

Also lk must prefer pr to pj or pr = pj. In either case pr, and all its successors, are

deleted from every student’s preference list and all relevant (student,project) pairs

are removed from M . Hence in M there exists no (student,project) pair (st, pv), such

that lk prefers pr (and therefore pj) to pv, and so (si,pj) does not satisfy Condition

3(b).

Case (ii): A similar argument to Case (i) can be used to prove that (si,pj) does not

satisfy Condition 3(a).

For Condition 3(b) it can be seen that when lk becomes over-subscribed, the worst

non-empty project pr is identified from lk’s current list of assignees. Then for each

successor pv of pr on lk’s list (including pr itself), pv is removed from the list of each

student that finds pv acceptable and all relevant (student,project) pairs are removed

from M . Therefore in M it follows that lk cannot supervise pr or a project he ranks

lower then pr, hence (si, pj) does not satisfy Condition 3(b).
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Lemma 2.3.3. If on termination of spa-ps-student a matching M is output, then M is

a strongly stable matching.

Proof. Suppose for a contradiction that M is not strongly stable. Hence there exists a

pair (si, pj) that blocks M . By Lemma 2.3.2 the pair has not been deleted. Furthermore

si must be assigned in M to a project pr, for otherwise the algorithm would not have

terminated, contradicting Lemma 2.3.1. Therefore as (si, pj) blocks M , it follows that si

prefers pj to pr. However as si always applies to the first non-empty project on his list, it

also follows that (si, pj) was deleted, a contradiction.

Lemma 2.3.4. Algorithm spa-ps-student never deletes a pair that belongs to a strongly

stable matching.

Proof. Let E be an execution of spa-ps-student and let M be a strongly stable matching.

Now suppose for a contradiction that (si, pj) ∈ M and that (si, pj) is deleted at some

iteration z of E. Let lk be the lecturer who offers pj and let M ′ denote the matching

at line 10 during iteration z. Without loss of generality suppose that (si, pj) is the first

strongly stable pair to be deleted during E. Then (si, pj) is deleted when either (i) some

project pr ∈ Pk becomes over-subscribed, where pr appears before pj, or pr = pj, on lk’s

list, or (ii) lk becomes over-subscribed.

Case (i): There exists a student su assigned to pr in M ′ but not in M , as pr cannot

be over-subscribed in M . First suppose either su is unassigned in M or assigned in

M to a project px worse than pr. Then as lk prefers pr to pj, or pr = pj, and since

|M(pj)| > 0 (as (si, pj) ∈ M), it follows that (su, pr) blocks M , a contradiction.

Hence su is assigned in M to a project pv that he prefers to pr. However when su

became assigned to pr during E, pr must have been at the head of su’s list. Therefore

(su, pv) was deleted at an iteration prior to z, contradicting the fact that (si, pj) was

the first strongly stable pair to be deleted during E.

Case (ii): Since lk is not over-subscribed in M , there exists a pair (su, pv) ∈ M ′ with

(su, pv) /∈ M . As in Case (i) su cannot obtain a project better than pv in M . Hence

either su is unassigned in M or obtains a project worse than pv in M . However as

(si, pj) is deleted at iteration z, either pj = pv or lk prefers pv to pj . In either case

(su, pv) blocks M , a contradiction.
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Lemma 2.3.5. Let M be the assignment relation on termination of the main while loop

and let M ′ be a strongly stable matching in I (assuming that one exists). Then |M(lk)| =

|M ′(lk)| for each lecturer lk ∈ L.

Proof. Let lk ∈ L. We first claim that if lk is full in M then lk is full in M ′. For, if not then

|M(lk)| = dk > |M ′(lk)|, i.e. lk is under-subscribed in M ′. For every pj ∈ Pk and every

(si, pj) ∈ M , it follows that (si, pj) ∈ M ′. Suppose that this is not the case. Then there

exists some pj ∈ Pk, and some (si, pj) ∈ M \ M ′. Then si prefers M ′(si) to pj, as (si, pj)

blocks M ′ otherwise. However when si became assigned to pj during the while loop, pj

must have been the first project at the head of si’s list. Hence the pair (si,M
′(si)) was

deleted, contradicting Lemma 2.3.4. Hence lk is full in M ′ after all. By a similar argument

it follows that if lk is under-subscribed in M then lk fills at least as many places in M ′.

Hence

|M(lk)| ≤ |M ′(lk)| (2.3)

for each lk ∈ L.

Now let S1 denote the set of students provisionally assigned to a project in M and let

S2 denote the set of students assigned to a project in M ′, i.e. |S1| = |M | and |S2| = |M ′|.
By Lemma 2.3.4 we have that every student who is unassigned in M is also unassigned in

M ′, and so |S1| ≥ |S2|. Considering the lecturers lk ∈ L we have,

∑

lk∈L

|M(lk)| = |S1| ≥ |S2| =
∑

lk∈L

|M ′(lk)|

Thus by inequality 2.3 above, |M(lk)| = |M ′(lk)|, for each lk ∈ L.

Lemma 2.3.6. If on termination of the while loop in algorithm spa-ps-student some

lecturer lk is under-subscribed and over(lk) is set to true, then I admits no strongly stable

matching.

Proof. Let M ′ be a strongly stable matching in I and suppose that on termination of the

main while loop some lecturer lk is under-subscribed and over(lk) is set to true. Let M

be the assignment relation on termination of the main while loop.

Now as lk is under-subscribed in M , but over(lk) is true, if follows that either (i) lk

became over-subscribed, or (ii) some project pv offered by lk became over-subscribed.
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Case (i): There must exist a (student,project) pair (su, pv) that was deleted from M

during the while loop and (su, pv) /∈ M ′, for otherwise lk is over-subscribed in M ′.

Now using an argument similar to that in the proof of Case (i) of Lemma 2.3.4, we

have that su cannot obtain a partner better than pv in M ′. By Lemma 2.3.5, lk is

under-subscribed in M ′, and so it follows that (su, pv) blocks M ′, a contradiction.

Case (ii): Similarly suppose that pv is a project that became over-subscribed during

an iteration of the while loop. Then there exists a (student,project) pair (su, pv)

that was deleted during this iteration such that (su, pv) /∈ M ′. Again using a similar

argument to Case (i) above, it is easy to verify that (su, pv) blocks M ′.

Corollary 2.3.7. All strongly stable matchings have the same size.

Collectively, Lemmas 2.3.2 to 2.3.6 to prove the following theorem.

Theorem 2.3.8. For a given instance of spa-p, algorithm spa-ps-student returns the

student-optimal strongly stable matching or reports that none exists.

2.3.4 Properties of spa-ps

We now describe some properties of strongly stable matchings with respect to an instance

of spa-p.

Theorem 2.3.9. For a given spa-p instance I:

(i) each lecturer is assigned the same number of students in every strongly stable

matching.

(ii) the same set of students are matched and unmatched in every strongly stable

matching.

(iii) each lecturer lk who is under-subscribed in one strongly stable matching obtains

exactly the same set of students in every strongly stable matching.

(iv) if a lecturer lk is under-subscribed in some strongly stable matching in I (and

hence in every strongly stable matching in I by Part (iii)) and pj ∈ Pk, then pj

obtains the same number of students in every strongly stable matching.

Proof. Let M ′ be the student-optimal strongly stable matching and let M be any other

strongly stable matching in I.
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(i) Follows directly from Lemma 2.3.5.

(ii) By Lemma 2.3.4 we have that each student who is unassigned in M ′ is also

unassigned in M , and by Part (i) it follows that in every strongly stable matching

the same number of students are matched. Thus, the set of students assigned in M

and M ′ is the same.

(iii) Suppose that lk is assigned a different set of students in M ′ to that in M . By

Part (i), lk is assigned the same number of students in M ′ as in M , hence there exists

a student si ∈ M ′(lk)\M(lk). By Part (ii) si must be assigned in M . However, since

M ′ is the student-optimal strongly stable matching, it follows that si prefers M ′(si)

to M(si). Therefore as lk is under-subscribed in M , the pair (si,M
′(si)) blocks M .

(iv) Suppose |M ′(pj)| > |M(pj)|. Therefore pj is under-subscribed in M and there

exists a pair (si, pj) ∈ M ′ \ M . Since M ′ is the student-optimal strongly stable

matching, either si is unmatched in M or prefers pj to M(si). Thus as lk is under-

subscribed in M , it follows that (si,pj) blocks M . Hence, |M(pj)| ≥ |M ′(pj)|. Now

suppose that |M(pj)| > |M ′(pj)|. By Part (i), lk is assigned the same number of

students in M ′ as in M , hence there exist a project pl 6= pj such that |M ′(pl)| >

|M(pl)|. Using a similar argument to earlier, it follows that (si, pl) blocks M , a

contradiction. Hence |M(pj)| = |M ′(pj)|.

The theorem above is not an exact counterpart to the Rural Hospitals Theorem. In

particular not every project obtains the same number of students in all strongly stable

matchings.

To see why this is true consider Figure 2.5. Here two possible matchings are:

M = {(s1, p1)} M ′ = {(s1, p2)}.

Clearly each project does not obtain the same number of students in both M and M ′.

2.3.5 Analysis of algorithm spa-ps-student

To show that the spa-ps-student algorithm can be implemented with worst case time-

complexity O(λ), where λ is the total length of all the preference lists, it is necessary to

show how certain operations can be implemented efficiently. The non trivial steps in the

algorithm are:
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Student preferences Lecturer preferences

s1 : p1 p2 l1 : p2 p1

Project capacities: c1 = 1, c2 = 1

Lecturer capacity: d1 = 1

Figure 2.5: A spa-p instance I2.

(i) obtaining all successors of a specific project in a preference list;

(ii) checking in constant time if a student finds a project acceptable;

(iii) deleting projects from lecturers’ and students’ lists;

(iv) finding the worst project with ≥ 1 assignee.

The representation of the lecturer and student preference lists must allow for the lookup

of an element in constant time. With the student preference lists matters are further

complicated by the fact that deletions take place at unpredictable locations. To represent

the lecturer preference lists a simple array-based approach is all that is required. However,

student preference lists require a more elaborate structure. An effective way to represent

a student’s preference list is by means of a doubly-linked list embedded inside an array.

This allows for the lookup of project in constant time, but also provides an efficient means

of deleting a project. It is also required that we are able to lookup a project’s position

in both the student and lecturer preference lists in constant time. For example, this is

required when deleting an element in a student’s preference list or finding the successors

of a particular project on a lecturer’s preference list. To allow us to look up these details,

the students and lecturer preference lists are used to construct rank arrays. A rank array

contains an entry for each project pj that holds an integer value indicating the position of

pj in the appropriate list; the value may be zero in a student’s rank array if he finds pj

unacceptable and zero in a lecturer’s rank array if pj /∈ Lk. These two structures allow for

the efficient handling of (i), (ii), and (iii) above.

To address item (iv), a lecturer lk has to be able to identify his worst project pr with

at least one assignee in constant time. This is required in order to delete each successor

of pr when lk becomes over-subscribed. However, rather than keep track of pr explicitly, a

pointer is maintained to the last project pz on lk’s list. The list can then be traversed in
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reverse from pz to pr when the appropriate deletions are to be carried out. To identify pr

the assignment relation is used. This is an array that maps a project to a set of students

assigned to that project; the set of students can be implemented as a linked list with an

element count. So for each project found during the traversal, a check is made against the

assignment relation to see if any students are assigned to that particular project, with the

traversal ending when the first project with at least one assignee is found.

2.4 Conclusion and Open Problems

Below we reflect on some of the issues with the strong stability model presented and give

a selection of open problems for spa. We describe open problems both for the spa model

presented in this chapter and also for the model described by Abraham et al. [3].

2.4.1 Strong stability

With respect to the blocking pair definition given in Section 2.3.1 for strong stability, we

can identify issues with regards to a student switching projects supervised by the same

lecturer. For example, consider instance I3 shown in Figure 2.6.

Student preferences Lecturer preferences

s1 : p1 p2 l1 : p2 p1

Project capacities: c1 = 1, c2 = 1

Lecturer capacity: d1 = 2

Figure 2.6: A spa-p instance I3.

Here M = {(s1, p2}} is not a strongly stable matching as (s1, p1) blocks M . However if

s1 switches to p1, the matching is strongly stable, but l1 becomes worse off. On the other

hand if such a situation is seen to be undesirable, we observe the following alternative

definition of a blocking pair for strong stability.

A blocking pair relative to a matching M is a (student,project) pair (si, pj) ∈ (S×P )\M
such that conditions 1, 2 and 3 are satisfied:

1. pj ∈ Ai (i.e. si finds pj acceptable).

2. Either si is unmatched in M or si prefers pj to M(si).

3. One of,
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(a) si ∈ M(lk) and pj is under-subscribed and lk prefers pj to M(si), or

(b) si /∈ M(lk) and pj is under-subscribed and lk is under-subscribed, or

(c) si /∈ M(lk) and lk prefers pj to his worst non-empty project pr, or pj = pr,

holds, where lk is the lecturer who offers pj.

The intuition behind Conditions 1 and 2 are as before. We now consider Condition

3. Firstly suppose that si was already assigned to a project pr offered by lk. If pj was

full then lk must reject a student from pj before taking on si. In this case the number of

students assigned to lk would decrease by 1, so we assume that lk would not agree to the

switch. Hence pj is under-subscribed. Moreover lk would only let si change projects from

pr to pj if he prefers pj to pr – Condition 3(a). Secondly suppose that si was not already

assigned to a project offered by lk. If pj has some assignee st then lk would be no worse

off by rejecting st and taking on si to do pj instead – Condition 3(c). Otherwise suppose

that pj is empty. If lk is under-subscribed then both pj and lk have a free place for si –

Condition 3(b). Otherwise lk is full. If lk prefers pj to some project pr with at least one

assignee st, then lk could improve by rejecting st from pr and taking on si to do pj instead

– Condition 3(c).

Consider the instance I4 of spa-ps as shown in Figure 2.7.

With respect to the revised definition of strong stability, each of the following matchings

is strongly stable: M1 = {(s1, p1), (s2, p2)}, M2 = {(s1, p2), (s2, p1)}. Since p1 has capacity

1, there is no student-optimal strongly stable matching in I4.

From the example above, it can be seen that preventing a student from switching

projects supervised by the same lecturer brings with it problems. Thus it motivates our

consideration of the original blocking pair definition for strong stability, as the problem

can be solved in linear time and several structural results exist.

We leave the following open problems for the revised definition of strong stability.

Student preferences Lecturer preferences

s1 : p1 p2 l1 : p2 p1

s2 : p1 p2

Project capacities: c1 = 1, c2 = 1

Lecturer capacity: d1 = 2

Figure 2.7: An instance I4 of spa-p.
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• Is it possible that strongly stable matchings could be of different sizes with respect

to the above definition?

• Are there any other properties of the “Rural Hospitals Theorem” that do not hold

under this revised definition?

• Can the algorithm for finding a strongly stable matching be adapted, or does it

become NP-hard to determine whether a strongly stable matching exists?

2.4.2 Improved approximation algorithm for spa-pw

In Section 2.2.3 and Section 2.2.4 we presented two approximation algorithms with per-

formance guarantee 2. Also in [55] it is shown that the problem of finding a maximum

weakly stable matching, given an instance of spa-pw, is not approximable with δ, for some

δ > 1, unless P=NP. Is it possible to find an approximation algorithm with improved per-

formance guarantee or to establish a stronger lower bound on the inapproximability of this

problem?

2.4.3 spa with preference over (student,project) pairs

A model that generalises both spa-p, and the model given in [3], is one in which lecturers

have preferences over (student,project) pairs. For such a model, can we construct an

appropriate stability criterion, and is there an efficient algorithm to find a stable matching

under this criterion? For further discussion of this problem see Abraham et al. [4].

2.4.4 spa with ties

Much of the focus in the literature in recent years has been concerned with finding stable

matchings where indifference is allowed in the preference lists. It is therefore natural to

investigate the effects of introducing ties in the preference lists of the various spa models.

2.4.5 spa with lower bounds

For both spa-p and the model presented in [4], we can introduce the idea of a lower

bound zj on a project pj, where zj ≤ cj . We can identify two models to consider. In

the first model a matching M must satisfy the condition that zj ≤ |M(pj)| ≤ cj , for each

such pj . In the second model we allow the possibility that a project can be empty, i.e.

|M(pj)| ∈ {0} ∪ {k : zj ≤ k ≤ cj}. The value of 0 indicates that a project need not run,
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otherwise it requires at least zj participants in order to be viable. Clearly in both cases

a stable matching that satisfies all the upper and lower bounds need not exist. Is the

problem of finding a stable matching, if one exists, polynomial-time solvable under these

conditions?
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Chapter 3

Stable Matching Problems with

Bounded Length Preference Lists

3.1 Introduction

In practice, there are many applications in which we seek to find a maximum weakly

stable matching. In particular, in the Scottish Foundation Allocation Scheme (SFAS), each

hospital ranks the medical students in order of preference, where a hospital’s preference list

may include ties. Additionally, each student ranks at most six hospitals, where students’

preference lists do not contain ties. With such a scheme it is desirable to match the largest

number of students possible subject to weak stability.

However, the existence of NP-hardness results indicates that efficient solutions for

solving this problem are unlikely. This leads us to consider the complexity of the problem

when imposing certain restrictions on the instance. For example, we may know that the

length of an agent’s preference list is bounded (as in the case of SFAS). In this chapter we

look at such restrictions of the problem.

We recall from Section 1.1.7 that com-smti, the problem of determining if a complete

weakly stable matching exists, given an instance of smti, is known to be NP-complete

and therefore that max-smti is NP-hard. Counterparts of both problems can also be

defined for hrt. We denote the problem of finding a complete weakly stable matching

for an instance of hrt by com-hrt; a matching is said to be complete if all residents are

matched and each hospital is full. Similarly, we denote the problem of finding a maximum

weakly stable matching for an instance of hrt by max-hrt.

This chapter is structured as follows. Section 3.2 recalls some definitions and introduces
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new terminology. Section 3.3 presents a polynomial-time algorithm for max-smti, where

the preference lists of both men and women contain ties, the men’s lists are of length at

most 2 and the women’s lists are of unbounded length. We then present a faster algorithm

than that given in Section 3.3 for com-smti, where the men’s preference lists are of length

at most 2, and the women’s preference lists are of unbounded length. In Section 3.5 we

present an NP-hardness result for max-smti, where each man’s list has length at most 3

and each woman’s list has length at most 4. Finally, in Section 3.6, we present an NP-

completeness result for com-hrt where each resident’s list has length at most 3, and each

hospital’s list is unbounded in length.

3.2 Definitions

We recall that an instance of smti consists of a set of men M = {m1,m2, . . . ,mn1
} and

a set of women W = {w1, w2, . . . , wn2
}. Additionally, each man in M ranks in order of

preference a subset of the women in W and each women in W ranks in order of preference

a subset of the men in M, where both the men’s and women’s lists may contain ties.

Similarly, an instance of hrt consists of a set of residents R = {r1, r2, . . . , rn1
} and a

set of hospitals H = {h1, h2, . . . , hn2
}. Each resident in R ranks in order of preference a

subset of the hospitals in H and each hospital in H ranks in order of preference a subset

of the residents, where both the resident’s and the hospital’s lists may contain ties.

In this chapter we consider restrictions on the preference lists and, in particular, upper

bounds on their length. To represent this restriction on an instance of smti we use notation

of the form (a,b)-smti, where a ∈ N indicates the upper bound on the men’s lists and

b ∈ N indicates the upper bound on the women’s lists. When the men or women’s lists are

unbounded in length we use the value ∞ to represent this, e.g. (2,∞)-smti. This notation

may also be used for describing restrictions on an hrt instance (with the first parameter

referring to the residents’ lists and the second to the hospitals’ lists). An example instance

of (3,4)-smti is shown in Figure 3.1.

We may also wish to restrict max-smti to an instance of (a, b)-smti. In this case

we denote the problem of finding a maximum weakly stable matching given an instance

of (a, b)-smti by (a, b)-max-smti. The problems (a, b)-com-smti, (a, b)-max-hrt, and

(a, b)-com-hrt are similarly defined.
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Men’s preferences Women’s preferences

m1 : (w1 w2) w3 w1 : (m1 m2)

m2 : w2 (w1 w3) w2 : m2 m1

m3 : w3 w3 : (m1 m2) (m3 m4)

m4 : (w3 w4) w4 : m4

Figure 3.1: (3,4)-smti instance I.

3.3 (2,∞)-MAX-SMTI

In this section we present a polynomial-time algorithm for max-smti where the preference

lists of both men and women contain ties, the men’s lists are of length at most 2 and the

women’s lists are of unbounded length.

Consider the algorithm (2,∞)-max-smti-alg shown in Figure 14. The algorithm con-

sists of three phases, where each phase is highlighted in the figure. We use the term reduced

lists to refer to participants’ lists after any deletions made by the algorithm. Phase 1 of

(2,∞)-max-smti-alg is a simple extension of the Gale-Shapley algorithm, and is used to

delete certain (man,woman) pairs that can never be part of a weakly stable matching.

Here to “delete the pair (mi, wj)”, we delete mi from wj ’s list and delete wj from mi’s list.

Phase 1 proceeds as follows. All men are initially unmarked. While some man mi remains

unmarked and mi has a non-empty reduced list, we set mi to be marked – it is possible

that mi may again become unmarked at a later stage of the execution. If mi’s reduced

list is not a tie of length 2, we let wj be the woman in first position in mi’s reduced list.

Then, for each strict successor mk of mi on wj’s list, we delete the pair (mk, wj) and set

mk to be unmarked (regardless of whether or not he was already marked). Here a person

being marked is analogous to that of a proposal in the Gale-Shapley algorithm.

We remark that the following situation may occur during phase 1. Suppose that some

man mi is indifferent between two women wj and wk on his original preference list, and

suppose that during some iteration of the while loop he becomes marked. We note that

the algorithm does not delete the strict successors of mi on wj’s list at this stage. Now

suppose that, during a subsequent loop iteration, the pair (mi, wk) is deleted. Then mi

becomes unmarked, only to be re-marked during a subsequent loop iteration. This re-

marking results in the deletions of all pairs (mr, wj), where mr is a strict successor of mi

on wj ’s list, as will be required.
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Algorithm 14 Algorithm (2,∞)-max-smti-alg.

1: /** Phase 1 */

2: set all men to be unmarked;

3: while some man mi is unmarked and mi has a non-empty reduced list do

4: set mi to be marked;

5: if mi’s reduced list is not a tie of length 2 then

6: wj := woman in first position on mi’s reduced list;

7: for each strict successor mk of mi on wj ’s list do

8: set mk to be unmarked;

9: delete the pair (mk, wj);

10:

11: /** Phase 2 */

12: G := BuildGraph();

13: MG := minimum cost maximum matching in G;

14:

15: /** Phase 3 */

16: M := MG;

17: while there exists a man mi who is assigned to his second-choice woman wk in M and

his first-choice woman wj is unassigned in M do

18: M := M \ {(mi, wk)};
19: M := M ∪ {(mi, wj)};

20: return M ;

Algorithm 15 Algorithm BuildGraph.
1: V := M∪W ;

2: E := ∅;
3: for each man mi ∈ M do

4: for each woman wj on mi’s reduced list do

5: E := E ∪ {(mi, wj)}
6: cost(mi, wj) := rank(wj , mi);

7: G := (V, E);

8: return G;
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In phase 2 we construct a weighted bipartite graph G and find a minimum cost max-

imum matching in G using the algorithm in [17]. The graph G is constructed using

algorithm BuildGraph shown in Algorithm 15. That is, each man and woman is repre-

sented by a vertex in G, and for each man mi on woman wj’s reduced list, we add an

edge from mi to wj with cost rank(wj ,mi), where rank(wj ,mi) is the rank of mi on wj ’s

reduced list (i.e. 1 plus the number of strict predecessors of mi on wj ’s reduced list). We

then find a minimum cost maximum matching MG in G.

In general, after phase 2, MG need not be weakly stable in I. In particular, some

man mi who has a reduced list of length 2 that is strictly ordered may be assigned to

his second-choice woman wk in MG, while his first-choice woman wj may be unassigned

in MG. Clearly (mi, wj) blocks such a matching. To obtain a weakly stable matching M

from MG we execute phase 3. Initially, M is set to be equal to MG. Next, we move each

such mi to his first-choice woman. We note that mi must be in the tail of wj ’s reduced

list (this is the set of one or more entries tied in last place on wj ’s reduced list) since mi

must have been marked during phase 1, causing all strict successors of mi on wj ’s list to

be deleted. Further, we note that there may exist more than one such man in wj ’s tail

who satisfies the above criterion. Moreover when mi moves to wj , wk becomes unassigned

in M . As a result, there may be some other man mr (who strictly ranks wk in first place)

who now satisfies the loop condition. This process is repeated until no such man exists.

Upon termination of phase 3 we will show that the matching M returned is a maximum

weakly stable matching.

We begin by showing that the algorithm (2,∞)-max-smti-alg terminates. It is easy

to see that phase 2 terminates. For phase 1, we observe that during an iteration of phase

1 some man becomes marked and if a man becomes unmarked, then at least one entry

is deleted from his list, so the termination condition of the loop is bound to be satisfied.

Hence phase 1 also terminates. The following lemma shows that the same is true for phase

3.

Lemma 3.3.1. Phase 3 of (2,∞)-max-smti-alg terminates.

Proof. We show that the while loop terminates during an execution E of phase 3. For,

at a given iteration of the while loop of phase 3, let mi be some man assigned to his

second-choice woman wk in M and suppose that his first-choice woman wj is unassigned

in M , where mi’s reduced list is of length 2 and is strictly ordered. Then during E, mi

switches from wk to wj . Hence each such mi must strictly improve (in fact mi can only
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improve at most once). Therefore since the number of men is finite, phase 3 is bound to

terminate.

We next show that phase 1 of (2,∞)-max-smti-alg never deletes a weakly stable pair,

which is a (man,woman) pair that belongs to some weakly stable matching in I.

Lemma 3.3.2. The algorithm (2,∞)-max-smti-alg never deletes a weakly stable pair.

Proof. Let (mi, wj) be a pair deleted during an execution E of (2,∞)-max-smti-alg such

that (mi, wj) ∈ M , where M is a weakly stable matching in I. Without loss of generality

suppose this is the first weakly stable pair to be deleted during E. Then mi was deleted

from wj’s list during some iteration z of the while loop in phase 1 during E. This deletion

was made as a result of wj being in first position on the reduced list of some man mr,

where mr’s reduced list was not a tie of length 2, and wj prefers mr to mi. Then in M , mr

must obtain a woman ws whom he prefers to wj , otherwise (mr, wj) blocks M . Therefore

during E, (mr, ws) must have already been deleted before iteration z, a contradiction.

We prove that the matching returned by (2,∞)-max-smti-alg is weakly stable in I.

Lemma 3.3.3. The matching returned by algorithm (2,∞)-max-smti-alg is weakly stable

in I.

Proof. Suppose for a contradiction that the matching M output by the algorithm (2,∞)-

max-smti-alg is not weakly stable. Then there exists a pair (mi, wj) that blocks M . We

consider the following four cases corresponding to a blocking pair.

Case (i): both mi and wj are unassigned in M . Then mi is unassigned in MG, and

either wj is unassigned in MG or becomes unassigned during phase 3. First suppose

that wj is unassigned in MG. Then the size of the matching MG could be increased

by adding the edge (mi, wj) to MG, contradicting the fact that MG is a maximum

matching. Now suppose that wj became unassigned as a result of phase 3. Let mp1

denote wj’s partner in MG. Then during phase 3, mp1
must have become assigned

to his first-choice woman wq1
. Suppose wq1

was unassigned in MG. Then we can

find a larger matching by augmenting along the path (mi, wj), (wj ,mp1
), (mp1

, wq1
),

contradicting the fact that MG is a maximum matching. Therefore wq1
must have

been assigned in MG and became unassigned as a result of phase 3. Hence the

man mp2
, to whom wq1

was assigned in MG, switched to his first-choice woman
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wq2
. Using an argument similar to that above for wq1

, we can show that wq2

must be assigned in MG. Therefore some man switched from wq2
during phase

3 to his first-choice woman. If we continue this process, since each man must

strictly improve and the number of men is finite, there exists a finite number of

women that can become unassigned as a result of phase 3. Hence at some point

there exists a man mpr who switches to his first-choice woman wqr and wqr was

already unassigned in MG. We can then construct an augmenting path in G of

the form (mi, wj), (wj ,mp1
), (mp1

, wq1
), (wq1

,mp2
), (mp2

, wq2
), . . . , (mpr , wqr), which

contradicts the fact that MG is a maximum matching.

Case (ii): mi is unassigned in M and wj prefers mi to her assignee mk in M . Then

mi is unassigned in MG. Suppose that wj is assigned to mk in MG. As wj prefers

mi to mk, we could obtain a matching with a smaller cost, but with the same size,

by removing (mk, wj) and adding (mi, wj) to MG, a contradiction. Now suppose

that wj is not assigned to mk in MG. Then wj is either unassigned in MG or wj is

assigned in MG to mr, where mr 6= mk and mr 6= mi. If wj is unassigned in MG, we

contradict the fact that MG is a maximum matching. Now suppose wj is assigned to

mr in MG. Then since wj is no longer assigned to mr in M , mr must have switched

to his first-choice woman ws during phase 3. Therefore either ws is unassigned in

MG or ws became unassigned as a result of some man switching from ws to his

first-choice woman. Again, using a similar argument to that in Case (i), we obtain

an augmenting path that contradicts the fact that MG is a maximum matching.

Case (iii): mi is assigned to ws in M and mi prefers wj to ws and wj is unassigned

in M . Thus clearly mi’s list is of length 2 and does not contain a tie, and wj is

mi’s first-choice woman. In this situation the loop condition of phase 3 is satisfied.

Therefore since the algorithm terminates (Lemma 3.3.1) this situation can never

arise.

Case (iv): mi is assigned to ws in M and mi prefers wj to ws, and wj is assigned to

mr in M and wj prefers mi to mr. Thus again mi’s list cannot contain a tie, and wj

is his first-choice woman. Therefore either mi proposed to wj during phase 1 or wj

was deleted from mi’s list. Hence in either case, mr would have been deleted from

wj ’s list during phase 1, so it is then impossible that (mr, wj) ∈ M .
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Since phase 1 of the algorithm never deletes a weakly stable pair (by Lemma 3.3.2),

a maximum weakly stable matching must consist of (man,woman) pairs that belong to

the reduced lists. Furthermore we note that G is constructed from the reduced lists, and

since we find a maximum matching in G, the matching output by the algorithm must

indeed be a maximum weakly stable matching (by Lemma 3.3.3, and since phase 3 does

not change the size of the matching output by the algorithm: every man matched in MG

is also matched in M).

The time complexity of the algorithm is dominated by finding a minimum cost max-

imum matching in G = (V,E). The required matching in G can be constructed in

O(
√

|E||V | log |V |) time [17]. Let n = |V | = n1 + n2. Since |E| ≤ 2n1 = O(n), it

follows that (2,∞)-max-smti-alg has time complexity O(n
3

2 log n).

We summarise the results of this section in the following theorem.

Theorem 3.3.4. Given an instance I of (2,∞)-smti, algorithm (2,∞)-max-smti-alg

returns a weakly stable matching of maximum size in O(n
3

2 log n) time, where n is the

total number of men and women in I.

3.4 (2,∞)-COM-SMTI

In this section we present a polynomial-time algorithm for (2,∞)-com-smti. The time

complexity of the algorithm is an improvement over that of the algorithm described in

Section 3.3.

Algorithm (2,∞)-com-smti-alg shown in Algorithm 16 determines if a complete weakly

stable matching exists for an instance I of (2,∞)-smti and outputs such a matching should

one exist. The algorithm iterates over each man mi ∈ M: if mi’s preference list does not

contain a tie, we identify mi’s first-choice woman wj , and delete each strict successor mr

of mi on wj ’s list. In the algorithm “delete the pair (mr, wj)” refers to deleting mr from

wj’s list and wj from mr’s list. Next we build the underlying graph G = (V,E), where

V = M∪W and E is constructed by adding an edge from each man in mi ∈ M to each

woman that remains on mi’s list after any deletions are made. Finally G admits a perfect

matching M if and only if there is a complete weakly stable matching in I.

We prove, using the following lemmas, that if (2,∞)-com-smti-alg returns a matching,

for an instance I of (2,∞)-smti, then the matching is complete, and weakly stable. In
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Algorithm 16 (2,∞)-com-smti-alg

1: for each man mi ∈ M do

2: if mi’s preference list does not contain a tie then

3: wj := mi’s first-choice woman;

4: for each strict successor mr of mi on wj ’s list do

5: delete the pair (mr, wj);

6: build underlying graph G;

7: if G admits a perfect matching M then

8: output M ;

9: else

10: output “no complete weakly stable matching exists”;

addition we also show that if no matching is output, then no complete weakly stable

matching exists for I.

Lemma 3.4.1. If a matching M is output on termination of (2,∞)-com-smti-alg, then

M is weakly stable.

Proof. Let E be an execution of the algorithm that outputs a matching M on termination

of E. Suppose that M is not weakly stable, and that (mi, wj) blocks M . Then mi’s list

cannot contain a tie. Let mk denote wj ’s assignee in M ; hence wj prefers mi to mk.

Therefore (mi, wj) cannot have been deleted during E, for otherwise (mk, wj) would also

have been deleted. As M is complete, mi must be assigned in M to his second-choice

partner. However, wj must be matched in M to a man no worse than mi in M , as all

successors of mi on wj’s list were deleted prior to finding the matching. Hence (mi, wj)

cannot block M and therefore M is weakly stable.

Lemma 3.4.2. If on termination of (2,∞)-com-smti-alg the algorithm reports that no

complete weakly stable matching exists, then indeed no complete weakly stable matching

exists.

Proof. Let E be an execution of the algorithm that outputs the message that no complete

weakly stable matching exists for an instance I of (2,∞)-smti. Now suppose that M is a

complete weakly stable matching in I. Let G be the graph constructed from the reduced

preference lists. Then G admits no perfect matching. We observe that no weakly stable

pair is ever deleted by the algorithm. For, suppose that a pair (mi, wj) ∈ M ′ for some

weakly stable matching M ′ and the pair is deleted by the algorithm. Then some man mr,
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whose preference list is not a tie of length 2, has wj as his first-choice and wj strictly prefers

mr to mi. Hence (mr, wj) blocks M ′, a contradiction. Since no weakly stable pair is ever

deleted, we can form a perfect matching in G by matching together each (man,woman)

pair in M to form a perfect matching in G, contradicting the fact that G admits no perfect

matching. Hence no weakly stable matching exists in I.

We now analyse the running time of (2,∞)-com-smti-alg. We note that the overall

complexity of the nested for loops is O(|E|) = O(n1) since each man’s preference list is of

length ≤ 2, thus it follows that the complexity of the algorithm is bounded by the time

taken to find a maximum cardinality matching in the underlying graph. The Hopcroft-

Karp algorithm for finding a maximum cardinality matching in a graph G = (V,E) has

time complexity O(
√

|V ||E|) [32]. Since each man’s preference lists is of length ≤ 2,

|E| = O(n1). Hence in this case we can find a maximum cardinality matching in the

graph in O(
√

n1 + n1n1) = O(n
3

2 ) time. We summarise this result and the others in this

section in the following theorem.

Theorem 3.4.3. Given an instance I of (2,∞)-smti, algorithm (2,∞)-com-smti-alg

returns a complete weakly stable matching, or else reports that no such matching exists, in

O(n
3

2 ) time.

3.5 (3,4)-MAX-SMTI

In this section we show that, in contrast to (2,∞)-max-smti, (3,4)-max-smti is NP-hard,

and hence that (k,l)-max-smti is NP-hard for any k ≥ 3 and l ≥ 4. The decision version

of (3,4)-max-smti is shown below.

Name : (3,4)-max-smti-d

Instance: An smti instance I where each man’s list has length

at most 3 and each woman’s list has length at most 4,

and an integer K.

Question: Does I have a weakly stable matching of size ≥ K?

We prove, in the following theorem, that (3,4)-max-smti-d is NP-complete by reducing

from min-mm-d, which as noted in Section 2.2.2 of Chapter 2 is NP-complete, even for

subdivision graphs of cubic graphs.
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Theorem 3.5.1. (3,4)-max-smti-d is NP-complete

Proof. Clearly (3,4)-max-smti-d is in NP. To prove that (3,4)-max-smti-d NP-hard we

reduce from min-mm-d, restricted to subdivision graphs of cubic graphs. Let G be

the subdivision graph of some cubic graph G′ and let K (a positive integer) be an in-

stance of min-mm-d. Then G is a bipartite graph G = (U,W,E), where without loss

of generality each vertex in U has degree 2 and each vertex in W has degree 3. Let

U = {m1,m2, . . . ,mn1
} and W = {w1, w2, . . . , wn2

}. Without loss of generality we may

assume that K ≤ min{n1, n2}. For each mi ∈ U , let Ui denote the two vertices that are

adjacent to mi in G. Similarly for each wj ∈ W , let Wj denote the three vertices that are

adjacent to wj in G.

We construct an instance I of (3,4)-max-smti-d as follows: let U ∪X be the set of men

and W ∪ Y be the set of women, where X = {x1, x2, . . . , xn2
} and Y = {y1, y2, . . . , yn1

}.
The preference lists of the men and women in I are shown in Figure 3.2. In a given

preference list, entries that appear within round brackets are tied. Let K ′ = n−K, where

n = n1 +n2. We claim that G has a maximal matching of size ≤ K if and only if I admits

a weakly stable matching of size ≥ K ′.

Men’s preferences Women’s preferences

mi : (Ui) yi (1 ≤ i ≤ n1) wj : (Wj) xj (1 ≤ j ≤ n2)

xi : wi (1 ≤ i ≤ n2) yj : mj (1 ≤ j ≤ n1)

Figure 3.2: Preference lists for the constructed instance of (3,4)-max-smti-d.

Suppose that G has a maximal matching M , where |M | = t1 ≤ K. We construct a

matching M ′ in I as follows. Initially let M ′ = M . There remain n1 − t1 men in U that

are unmatched in M ′; denote these men by mki
(1 ≤ i ≤ n1 − t1), and add (mki

, yki
) to

M ′. Finally there remain n2 − t1 women in W that are unmatched in M ′; denote these

women by wlj (1 ≤ j ≤ n2 − t1), and add (xlj , wlj ) to M ′. Clearly each man in M ′

is only matched to a single woman, and vice-versa. Hence M ′ is a matching in I, and

|M ′| = t1 + (n1 − t1) + (n2 − t1) = n − t1 ≥ n − K = K ′.

We now prove that M ′ is weakly stable. No man in X and no woman in Y can be

involved in a blocking pair of M ′, since every person in U ∪ W is matched in M ′. Now

suppose that (mi, wj) blocks M ′, where mi ∈ U and wj ∈ W . Therefore (mi, yi) ∈ M ′,

and (xj , wj) ∈ M ′. Hence each of mi and wj is unmatched in M . Moreover, the edge
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{mi, wj} belongs to E, so that M ∪ {{mi, wj}} is a matching in M , contradicting the

maximality of M . Hence M ′ is stable in I.

Conversely suppose that M ′ is a weakly stable matching in I, where |M ′| ≥ K ′. Let

M = M ′ ∩ E, and t2 = |M |. Then in M ′, at most n1 − t2 men in U are matched

to woman in Y , and at most n2 − t2 women in W are matched to men in X. Hence

|M ′| ≤ t2 + (n1 − t2) + (n2 − t2) = n − t2, therefore |M | ≤ n − K ′ = K.

Now suppose that M is not a maximal matching in G. Then there exists an edge

{mi, wj} such that no edge in M is incident to mi or wj . Therefore in M ′, either mi is

unmatched or (mi, yi) ∈ M ′, and either wj is unmatched or (xj , wj) ∈ M ′. Thus (mi, wj)

blocks M ′ in I. This is a contradiction to the weak stability of M ′, and hence M is indeed

maximal in G.

3.6 (3,∞)-COM-HRT

In this section we consider hrt, the many-to-one generalisation of smti. We present an

NP-completeness result for the problem of finding a complete weakly stable matching given

an instance of (3,∞)-hrt. Here a “complete” weakly stable matching M means that each

resident is matched in M and all hospitals are full in M . The problem is defined formally

below.

Name: (3,∞)-com-hrt

Instance: An hrt instance I where each resident has a

preference list of length at most 3 and each

hospital has a preference list of unbounded length.

Question: Does I have a complete weakly stable matching M?

We use the NP-completeness of exact-mm in subdivision graphs (as established by

Lemma 2.2.1 in Chapter 2) to show that (3,∞)-com-hrt is also NP-complete.

Theorem 3.6.1. (3,∞)-com-hrt is NP-complete.

Proof. Clearly (3,∞)-com-hrt is in NP. To show NP-hardness we reduce from exact-mm

restricted to subdivision graphs. Hence let G (the subdivision graph of some graph G′)

and K (a positive integer) be an instance of exact-mm. Then G is a bipartite graph,

so that G = (R,H,E), where, without loss of generality, all vertices in R have degree

2. Suppose that n1 = |R| and n2 = |H|. Again without loss of generality suppose that
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K ≤ min{n1, n2}. Let R = {r1, r2, . . . , rn1
} and H = {h1, h2, . . . , hn2

}. For each ri ∈ R,

let Ri denote the two vertices that are adjacent to ri in G. Similarly for each hj ∈ H, let

Hj denote the vertices that are adjacent to hj in G.

We construct an instance I of (3,∞)-com-hrt as follows: let R ∪ X be the set of

residents, where X = {x1, x2, . . . , xn2
} and let H ∪ {y, y′} be the set of hospitals. Each

hospital hj ∈ H has capacity 1, y has capacity n1 − K, and y′ has capacity K. The

preference lists of I are shown in Figure 3.3. In these preference lists, residents who appear

within the square brackets are listed in arbitrary strict order. Also those participants that

appear within round brackets are tied with each other. We claim that G has a maximal

matching of size K if and only if I admits a complete weakly stable matching.

Residents’ preferences Hospitals’ preferences

ri : (Ri) y (1 ≤ i ≤ n1) hj : (1) : (Hj) xj (1 ≤ j ≤ n2)

xi : (hi y′) (1 ≤ i ≤ n2) y : (n1 − K) : [residents in R]

y′ : (K) : [residents in X]

Figure 3.3: Preference lists for the constructed instance of (3,∞)-com-hrt.

Suppose that G has a maximal matching M , where |M | = K. We construct a matching

M ′ in I as follows. Initially let M = M ′. There remain n1 − K residents in R who are

unmatched in M ′; denote these residents by rki
(1 ≤ i ≤ n1−K), and add (rki

, y) to M ′ for

each i. There also remain n2 −K hospitals in H that are under-subscribed in M ′; denote

these hospitals by hli (1 ≤ i ≤ n2 −K), and add (xli , hli) to M ′ for each i. This leaves K

residents in X who are unmatched in M ′; denote these residents by xpi
(1 ≤ i ≤ K), and

add (xpi
, y′) to M ′. Clearly each hospital is full in M ′, and each resident is assigned to

one hospital in M ′. Hence it follows that M ′ is a complete matching. We now show that

M ′ is weakly stable.

No resident in X can be involved in a blocking pair. Similarly y cannot be involved

in a blocking pair as every resident in R is matched. Hence a blocking pair must be of

the form (ri, hj), where ri ∈ R and hj ∈ H. Were such a blocking pair to exist, ri must

be assigned to y in M ′, and hj must be assigned to some resident xk ∈ X in M ′. Hence

neither ri nor hj is matched in M , but ri and hj are adjacent in G, therefore M∪{{ri, hj}}
is a matching in G, contradicting the maximality of M . Thus M ′ is weakly stable.

Conversely suppose that M ′ is a complete weakly stable matching in I. Let M =
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M ′ ∩ E. We now prove that |M | = K. Suppose |M | < K. This means that at least

n1−K +1 residents in R are assigned to y in M ′, hence y is over-subscribed, contradicting

the fact that M ′ is a matching. Now suppose |M | > K. If this is the case then there are at

most n2 −K − 1 hospitals in H assigned to residents in X in M ′. Therefore at least K +1

residents in X must be assigned to y′ in M ′, hence y′ is over-subscribed, contradicting the

fact that M ′ is a matching. Hence |M | = K.

Finally, suppose that M is not a maximal matching in G. Then there exists an edge

{ri, hj} in G such that no edge of M is incident to ri or hj. Therefore in M ′, ri must be

assigned to y, and hj must be assigned to a resident in X. Thus (ri, hj) blocks M ′. This

contradiction to the weak stability of M ′ implies that M is indeed maximal.

We remark that the above proof shows NP-completeness of (3,∞)-com-hrt even if

drop the requirement that a hospital should be full in a complete weakly stable matching.

3.7 Open Problems

In this section we provide an overview of the problems with bounded length preference

lists that remain open. The table below shows the details of these problems.

Problem Complexity Reference

smti

(3,4)-max-smti NP-hard Section 3.5.

(3,3)-com-smti NP-complete See [56].

(2,∞)-max-smti P Section 3.3.

hrt

(2,∞)-max-hrt Open Section 3.7.1.

(2,∞)-com-hrt Open

(3,∞)-com-hrt NP-complete Section 3.6 and [56].

3.7.1 (2,∞)-MAX-HRT

It seems natural to consider a straightforward extension of the algorithm given for (2,∞)-

max-smti to the case of (2,∞)-max-hrt. However such an extension does not appear to
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be obvious and the algorithm given in Section 3.3 does not appear to generalise directly to

the case of (2,∞)-max-hrt. Is the problem of finding a maximum weakly stable matching

given an instance of (2,∞)-hrt NP-hard or polynomial-time solvable?
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Chapter 4

The Hospitals/Residents Problem

with Master Lists

4.1 Introduction

In the context of large-scale centralised matching schemes based on hr, it is often difficult

for a hospital to individually rank a large number of applicants in order of preference.

For example, in the NRMP, a hospital may typically rank hundreds of medical students

in preference order. Ranking a large number of agents in such a way can be a laborious

and error-prone process. However in the context of such schemes it is often the case that

hospitals have access to a single uniform ranking of all their applicants according to some

objective criteria such as academic merit. As such, it is useful to consider the problems

that arise when each hospital’s list is derived from a single master list. In this chapter

we consider the algorithmic complexity of variants of hrt where the preference list on

one or both sides are derived from one or two master lists involving the residents and/or

hospitals.

Stable matching problems involving master list have been considered previously. Scott

[67] describes two variants of the master lists problem for smti. The first involves an

instance of smti where the preference lists are derived from a master list on one side only;

we denote this by smti-1ml. For example, consider an instance I of smti-1ml with a

master list of men. Then in I, each woman’s preference list is derived from this single

master list of men. That is, each woman wj’s list consists of the master list with her

unacceptable partners deleted; therefore wj’s ranking is inherited from that of the master

list. An example instance of smti-1ml is shown in Figure 4.1. In general throughout this
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section we assume that an instance of smti-1ml contains a master list of men and that the

derived lists are consistent. Also Scott describes an instance of smti in which preference

lists on both sides are derived from two master lists; we denote this by smti-2ml. We

similarly define both hrt-1ml and hrt-2ml with respect to hrt. Here we assume that,

for an instance of hrt-1ml, the master list comprises of residents. An example instance

of hrt-1ml is shown in Figure 4.2.

Men’s preferences Women’s preferences

Master list: (m1 m2) (m3 m4)

m1 : w2 w3 w4 w1 : (m3 m4)

m2 : (w2 w3) w2 : (m1 m2) m4

m3 : w1 (w3 w4) w3 : (m1 m2) (m3 m4)

m4 : (w2 w3) (w1 w4) w4 : m1 (m3 m4)

Figure 4.1: Example instance of smti-1ml.

It is known that the problem of finding a maximum weakly stable matching for an

instance of smti, and therefore for an instance of hrt, is NP-hard [54]. Scott [67] shows

that for an instance of smti-2ml (and therefore also smti-1ml) the problem remains

NP-hard. However, Irving et al. [41] describe a polynomial-time algorithm that finds a

super-stable matching for an instance of smti-1ml if such a matching exists, and they also

show that the matching is in fact unique if it exists. In the same paper, Irving et al. also

describe a faster polynomial-time algorithm (over the general case [53]) which obtains a

strongly stable matching, or reports that none exists, given an instance of smti-1ml.

We first describe in Section 4.2 a simple algorithm for finding a stable matching given

an instance of hr-1ml (where hr-1ml is an instance of hr with a master list of residents).

Residents’ preferences Hospitals’ preferences

Master list: r1 r2 (r3 r4)

r1 : (h1 h2) h3 h1 : (1) : r1 r2 (r3 r4)

r2 : h1 h3 h2 : (2) : r1 r3

r3 : (h1 h2) h3 : (2) : (r1 r2) r4

r4 : h1 h3

Figure 4.2: Example instance of hrt-1ml.
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We then adapt the result in Section 3.6 of Chapter 3, to prove that, even in the presence

of a master list of residents and a master list of hospitals, and even if each resident has

a list of length at most 3 and each hospital’s list is of unbounded length, the problem of

determining if a complete weakly stable matching exists remains NP-complete. We then

extend the results for super-stability and strong stability in smti-1ml to hrt-1ml. In

Section 4.4 we present a polynomial-time algorithm that finds a super-stable matching, or

reports that none exists, for an instance of hrt-1ml. We also prove that if a super-stable

matching is returned then it is in fact unique. In Section 4.5 we describe a polynomial-time

algorithm that finds a strongly stable matching, or reports that none exists, for an instance

of hrt-1ml in time O(
√

Cλ). The time complexity of our algorithm is an improvement

over that for the general case, namely (O(Cλ)) [45].

4.2 hr-1ml

We first consider the problem of finding a stable matching for an instance of hr-1ml. It is

known that this problem is polynomial-time solvable using the algorithm described by Gale

and Shapley [18]. However in this section we describe a simplified version of the algorithm

for an instance of hr-1ml and prove that the matching returned by the algorithm is in

fact unique.

Algorithm 17 shows algorithm hr-1ml-alg for finding a stable matching M for an

instance I of hr-1ml. First we set M to be empty. We then process each resident ri on

the master list in turn, where ri’s list contains an under-subscribed hospital. Let hj be the

first under-subscribed hospital on ri’s list. We now simply add (ri, hj) to M and repeat

the process for each such resident on the master list in turn .

Algorithm 17 hr-ml-alg

1: M := ∅;
2: for each resident ri in the master list in turn and

ri’s list contains an under-subscribed hospital do

3: hj := first under-subscribed hospital on ri’s list;

4: M := M ∪ {(ri, hj)};
5: return M ;

We now prove in the following lemma that the matching returned by hr-ml-alg is

stable.
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Lemma 4.2.1. The matching returned by hr-ml-alg is stable.

Proof. Suppose, for a contradiction, that the algorithm returns a matching M that is not

stable. Hence there exists a pair (ri, hj) that blocks M . As ri is unassigned in M or

assigned to a hospital worse than hj in M , then at the iteration of the for loop where

resident ri is processed, hj must have been full. Also since the residents are processed in

preference order, hj must be full with residents it prefers to ri in M . Hence (ri, hj) cannot

block M , a contradiction. Therefore M is indeed a stable matching.

The lemma below proves that the matching returned by hr-ml-alg for an instance I

of hr-1ml is the unique stable matching for I.

Lemma 4.2.2. The matching M returned by hr-ml-alg for an instance I of hr-1ml is

the unique stable matching in I.

Proof. Suppose, for a contradiction, that there exists a stable matching M ′ in I, such that

M ′ 6= M . Hence there exists a pair (ri, hj) ∈ M such that (ri, hj) /∈ M ′. Without loss

of generality let ri be the first resident on the master list with this property. Since each

resident before ri on the master list must obtain the same hospital in M as in M ′ and

since hj was ri’s most preferred under-subscribed hospital at this point, ri must obtain a

hospital worse than hj in M ′ – we note that, by the Rural Hospitals Theorem (Theorem

1.2.1), ri cannot be unassigned in M ′. However since every resident better than ri on the

master list has the same hospital in M as in M ′, it follows that hj must either be under-

subscribed in M ′ or be full with at least one resident worse than ri in M ′. Therefore

(ri, hj) blocks M ′, a contradiction. Hence M is the unique stable matching in I.

We now consider the time complexity of the algorithm. We firstly note that each

preference list entry is examined at most once. Therefore the overall complexity of the

algorithm is O(λ) time, where λ is the total length of the preference lists. We bring

together the above results in the following theorem.

Theorem 4.2.3. For a given instance I of hr-1ml, algorithm hr-ml-alg outputs the

unique stable matching for I in time O(λ), where λ is the total length of the preference

lists.
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4.3 hrt-2ml under weak stability

As shown in Section 3.6, the problem of deciding if a complete weakly stable matching

exists for an instance of hrt is NP-complete, even if the resident’s lists are of size 3 and

the hospital’s lists are of unbounded length. In this section we show that in addition,

even if we have both a master list of residents and a master list of hospitals, the problem

remains NP-complete. We define the problem (3,∞)-com-hrt-2ml as follows.

Name: (3,∞)-com-hrt-2ml

Instance: An hrt instance I where each resident has a preference

list of length at most 3 which is derived from a master list

of hospitals, and each hospital has a preference list of

of unbounded length which is derived from a master list of residents.

Question: Does I have a complete weakly stable matching M?

Theorem 4.3.1. (3,∞)-com-hrt-2ml is NP-complete.

Proof. Clearly (3,∞)-com-hrt-2ml is in NP. To prove NP-hardness we use a reduction

from exact-mm similar to that in Theorem 3.6.1. We make a slight modification in order

to construct an instance of (3,∞)-com-hrt with master lists on both sides. An instance I

of (3,∞)-com-hrt-2ml is constructed as follows: let R ∪ X be the set of residents, where

X = {x1, x2, . . . , xn2
} and let H ∪ {y, y′} be the set of hospitals. Each hospital hj ∈ H

has capacity 1, y has capacity n1 − K, and y′ has capacity K. The preference lists of I

are shown in Figure 4.3. Additionally, also shown in Figure 4.3, are the master lists of

hospitals and residents. In these preference lists, residents who appear within the square

brackets are listed in arbitrary strict order. Also those participants that appear within

round brackets are tied with each other. We claim that G has a maximal matching of size

K if and only if I admits a complete weakly stable matching.

The remainder of the proof is identical to that of Theorem 3.6.1.

We note that in this case we require arbitrary length ties in a hospital y’s preference

lists. There does not appear to be an obvious way to extended the NP-completeness

reduction to have ties that are shorter in length.
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Residents’ preferences Hospitals’ preferences

Master list: (hospitals in H y′) y Master list: (residents in R) [residents in X]

ri : (Ri) y (1 ≤ i ≤ n1) hj : (1) : (Hj) xj (1 ≤ j ≤ n2)

xi : (hi y′) (1 ≤ i ≤ n2) y : (n1 − K) : (residents in R)

y′ : (K) : [residents in X]

Figure 4.3: Preference lists for the constructed instance of (3,∞)-com-hrt-2ml.

4.4 hrt-1ml under super-stability

In this section we present algorithm hrt-ml-super, which finds a super-stable matching, or

reports that none exists, given an instance of hrt-1ml. The complexity of the algorithm is

comparable to that given in [39] for the general hrt case, however the algorithm is simpler

and helps to identify key structural properties of a super-stable matching for an instance

of hrt-1ml.

Algorithm hrt-ml-super is shown in Algorithm 18. The pseudocode uses the following

notation. Suppose that master list tie T containing resident ri is processed during an

iteration z of the main loop of hrt-ml-super. We refer to the (possibly empty) set of

hospitals tied at the head of ri’s list as ri’s key hospitals, denoted by Hi. If the algorithm

returns null before the master list tie T containing resident ri is processed then Hi is

undefined. Note that the definition of Hi for a given resident ri is well defined as the

algorithm is deterministic.

The algorithm proceeds as follows. For an instance I of hrt-1ml, we first set the

matching M to be empty. Then for each tie T in the master list in turn we identify the set

of residents P contained in T . If at least one such resident has more than one key hospital,

then (as we will show) no super-stable matching exists for I. Otherwise we construct the

set Q from the union of the sets Hi for each resident ri ∈ P . Then for each hospital

hj ∈ Q, if the number of residents that have hj as a key hospital exceeds the number

of posts that hj has remaining, then we will show that no super-stable matching exists

for I. Otherwise we can assign each resident ri his (unique) key hospital. If during this

process any hospital becomes full we identify each strict successor rk of ri on the master

list and “delete the pair (rk, hj)”, which comprises deleting hj from rk’s list and vice-versa
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(however no deletion is made from the master list).

Algorithm 18 hrt-ml-super

1: M := ∅;
2: for each tie T in the master list in turn do

3: P := set of residents in T ;

4: for each ri ∈ P do

5: if |Hi| ≥ 2 then

6: return null;

7:

8: Q :=
⋃

ri∈P Hi;

9: for each hj ∈ Q do

10: Aj := {ri : Hi = hj};
11: if |Aj | + |M(hj)| > cj then

12: return null;

13:

14: for each ri ∈ P where ri has a non-empty list do

15: hj := ri’s key hsopital; /** Hi = {hj} */

16: M := M ∪ {(ri, hj)};
17: if hj is full then

18: for each strict successor rk of ri on hj ’s list do

19: delete the pair (rk, hj);

20: return M ;

To establish the correctness of the algorithm, we begin by showing that a pair that

belongs to a super-stable matching is never deleted.

Lemma 4.4.1. Algorithm hrt-ml-super never deletes a pair (ri, hj) that belongs to a

super-stable matching.

Proof. Let M be a super-stable matching for an instance I of hrt-1ml. Suppose for a

contradiction that (ri, hj) ∈ M and that (ri, hj) is deleted during an execution E of hrt-

ml-super. Without loss of generality suppose that this is the first super-stable pair to be

deleted during E. Then (ri, hj) is deleted when hj becomes full during E with a set of

assignees S that it strictly prefers to ri. Therefore in M at least one resident rs ∈ S must

obtain a hospital ht that he strictly prefers to hj, for otherwise (rs, hj) blocks M . However

when the algorithm processes the master list tie containing rs, it matches rs with hj at the

head of rs’s list, so the super-stable pair (rs, ht) was already deleted, a contradiction.
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We next show using Lemma 4.4.1 that if hrt-ml-super outputs a matching then the

matching is a super-stable matching.

Lemma 4.4.2. If a matching M is output by hrt-ml-super, then M is a super-stable

matching.

Proof. Suppose for a contradiction that there exists a pair (ri, hj) that blocks M . If

(ri, hj) had been deleted then hj is full with assignees it prefers to ri, contradicting the

fact that (ri, hj) blocks M . Hence the pair (ri, hj) has not been deleted. In M , ri cannot be

unassigned, for otherwise ri’s list is empty by the fourth for loop condition, a contradiction

to the fact that (ri, hj) has not been deleted. Hence (ri, hk) ∈ M , where Hi = {hk}, for

otherwise the algorithm would have returned null rather than outputting M . Since (ri, hj)

blocks M , it follows that ri strictly prefers hj to hk or is indifferent between them. Hence

(ri, hj) was deleted during the algorithm’s execution, a contradiction.

In the following lemma we show that in every super-stable matching M for an instance

of hrt-1ml, if Hi = ∅ then ri is unassigned in M , otherwise ri obtains a partner in Hi.

Lemma 4.4.3. Let ri be a resident whose set of key hospitals Hi is defined. Let M be a

super-stable matching. If Hi = ∅ then ri is unassigned in M , otherwise (ri, hj) ∈ M , for

some hj ∈ Hi.

Proof. Let E be an execution of hrt-ml-super for an instance I of hrt-1ml. At some

iteration z of the main loop during E, suppose that the tie T containing resident ri is

processed. We firstly note that if Hi = ∅ then ri’s preference list is empty at the beginning

of iteration z, and hence ri is unassigned in M by Lemma 4.4.1. Now suppose that Hi is

non-empty. We consider four cases.

Case (i): ri obtains a hospital hj in M that he strictly prefers to the hospitals in

Hi. Therefore at the beginning of iteration z the pair (ri, hj) must have already

been deleted. Hence by Lemma 4.4.1 the pair (ri, hj) can never be super-stable, a

contradiction.

Case (ii) ri obtains a hospital hj in M such that hj /∈ Hi and ri is indifferent between

hj and the hospitals in Hi. Then (ri, hj) was deleted prior to iteration z, so that

(ri, hj) cannot be a super-stable pair by Lemma 4.4.1, a contradiction.
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Case (iii): ri obtains a hospital in M that he finds inferior to the hospitals in Hi. Let

ri be the most-preferred resident (according to the master list) with this property.

Let hj ∈ Hi. Then in M , hj must be full with residents it strictly prefers to ri,

for otherwise (ri, hj) blocks M . Let M ′ be the matching constructed so far at the

beginning of iteration z during E.

We first note that hj is under-subscribed in M ′. For otherwise, hj could not be in

Hi. Hence there exists a resident rs assigned to hj in M but not in M ′. Since hj

prefers rs to ri, resident rs strictly precedes resident ri on the master list. Clearly

Hs is defined (or else both Hs and Hi are undefined), and it follows by Lemma 4.4.1

that Hs is non-empty. If |Hs| > 1 then the algorithm would have returned null before

iteration z, a contradiction since Hi is defined. Hence Hs = {hk} for some hk ∈ H.

By Case (i), rs does not prefer hj to hk. Also if rs prefers hk to hj it contradicts

our choice of ri. Hence rs is indifferent between hj and hk. If hk 6= hj , it follows

that (rs, hk) was deleted, contradicting Lemma 4.4.1 since (rs, hj) ∈ M . Therefore

hk = hj . Thus rs becomes assigned to hj during E before iteration z. However

(rs, hj) /∈ M ′, therefore (rs, hj) was deleted during E, a contradiction by Lemma

4.4.1.

Case (iv) ri is unassigned in M . The argument is similar to that used in Case (iii).

We note that in the case of super-stability if Hi is defined and Hi 6= ∅ then Hi =

{M(ri)} but the lemma above is stated more generally for re-use in the strong stability

section to follow. We now prove that no super-stable matching exists for an instance I of

hrt-1ml, if for any resident ri ∈ R, Hi contains more than one hospital.

Lemma 4.4.4. If for some resident ri, Hi is defined and |Hi| > 1, then no super-stable

matching exists.

Proof. Suppose for a contradiction that there exists a super-stable matching M and at

iteration z of an execution E of hrt-ml-super there exists some resident ri such that

|Hi| > 1. Let M ′ be the matching constructed so far at the beginning of iteration z during

E. Then ri must be the first resident on the master list with more than one key hospital,

as otherwise the algorithm would have return null prior to iteration z. By Lemma 4.4.3,

ri is assigned in M to a hospital hj ∈ Hi. Consider hospital hk ∈ Hi, where hk 6= hj . If hk
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is either under-subscribed in M or full with at least one assignee no better than ri in M ,

then (ri, hk) blocks M . Hence hk must be full with assignees that it strictly prefers to ri

in M . By Lemma 4.4.3 each resident rs (where rs is strictly better than ri on the master

list) is assigned to a hospital in Hs, where |Hs| = 1 by above observation regarding ri.

However since hk is under-subscribed in M ′ (this follows by a similar argument used in

Case (iii) of Lemma 4.4.3 when establishing hj is under-subscribed in M ′), there exist less

than ck residents that hk strictly prefers to ri that have key set Hs = {hk}, for otherwise

hk would be full at iteration z, a contradiction. Hence it is impossible that hk is full in M

with residents it prefers to ri, a contradiction.

Finally we show that if, during an execution of hrt-ml-super, the algorithm returns

null then no super-stable matching exists.

Lemma 4.4.5. If the algorithm hrt-ml-super returns null then no super-stable matching

exists.

Proof. Suppose for a contradiction that, during an execution E of hrt-ml-super for an

instance I of hrt-1ml, the algorithm returns null yet there exists a super-stable matching

M . Consider the following two cases.

Case (i): null is returned when Hi is defined and |Hi| > 1 for some resident ri. By

Lemma 4.4.4 no super-stable matching exists.

Case (ii): null is returned when the set of residents P whose key hospital hj at

iteration z of E exceeds the number of posts hj has available. Let Zj denote the set

of assignees to hj at the beginning of iteration z. Then by Lemma 4.4.4, for each

resident ri ∈ Zj , hj must be ri’s key hospital, and therefore matched to hj in M .

Similarly each resident in P must also obtain hj in M by Lemma 4.4.3. Therefore

in M , hj has |Zj | + |P | > cj hospitals, and hence hj is over-subscribed in M , a

contradiction.

We calculate the time complexity of the algorithm by noting that the outer for loop

in the worst case may iterate n1 times when the master list contains no ties. We note

that the first inner for loop runs in time O(n1), although this will not be required for the

complexity analysis. For the second inner for loop we note that |Q| ≤ |P | as each resident

in P has at most one hospital at the head of their list. We represent Q as an array where
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each element in the array contains two values. The first value represents the hospital

hj ∈ Q and the second value the number of residents that have hj as a key hospital. The

position of each hospital in the set Q is held in a rank list which contains all the hospitals

and when a hospital hj is added to Q, hj ’s position in the array is stored in the rank list.

We note that each element in the rank list can be initialised to 0 before the outer for loop.

This allows us to reset the array back to its initial state in O(n1) overall time after lines

9-12. Therefore in the second inner for loop we can identify the number of residents a that

have a hospital hj ∈ Q as a key hospital by first finding hj ’s position in Q by inspecting

the rank list, then by retrieving a from the array. This operation can therefore be achieved

in constant time, therefore the overall time taken for the second inner for loop is O(n1).

Finally in the third for loop, we observe that the operation “delete the pair (ri, hj)” is

executed at most once for each such pair. Therefore the overall time complexity of the

algorithm is dominated by this last for loop and as such the overall complexity of the

algorithm is O(λ), where λ is the total length of the preference lists. We use this result

and the lemmas above to obtain the following theorem.

Theorem 4.4.6. For a given instance of hrt-1ml algorithm hrt-ml-super finds the

unique super-stable matching or reports that none exists in time O(λ), where λ is the total

length of the preference lists.

4.5 hrt-1ml under strong stability

In this section we present an algorithm hrt-ml-strong that determines if a strongly stable

matching exists for an instance of hrt-1ml and outputs such a matching if one does. We

show that the complexity of hrt-ml-strong improves on that of the best-known algorithm

for the general hrt case, namely O(Cλ) [45], where C is the sum of the hospital capacities

and λ is the total length of the preference lists.

Algorithm hrt-ml-strong is shown in Algorithm 19. The algorithm determines if a

strongly stable matching exists by attempting to construct such a matching. We first

note that a resident ri’s set of key hospitals Hi is as defined in Section 4.4. Initially the

algorithm starts with an empty matching. Then for each tie T on the master list in turn,

we identify the set of residents P in T whose lists are non-empty, and the set of hospitals

Q, which is the union of the sets Hi, for each ri ∈ P . A graph G is then built using the

algorithm shown in Algorithm 20. The vertex set V of G consists of both the residents in
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P and the hospitals in Q, and the edge set E of G is initially set to be empty. We then

set the upper bound for each hospital in V to be 0. Next, for each resident ri ∈ P , we

identify each hospital hj in Hi, and add the edge (ri, hj) to E. Additionally we increment

the upper bound u(hj). At this point a hospital’s upper bound may be larger than the

number of available posts, as more residents may have found the hospital acceptable than

there are available posts. Hence for each hospital hj ∈ Q, we set the upper bound on

hj ’s vertex to be the minimum of the number of residents that find hj acceptable (i.e. the

current value of u(hj)) and the number of available posts in hj. We then check if the sum

of the upper bounds on each vertex representing a hospital in G equals the number of

residents in P . If this is not the case, then we will prove that no strongly stable matching

exists. Otherwise we find a maximum degree-constrained subgraph D with respect to the

capacity function u of G using Gabow’s algorithm [16] (that is for G we find a subgraph D

with the greatest possible number of edges incident to each vertex v such that dv ≤ u(v),

where dv is the degree of v in D). If the number of edges in D is less than the number

of residents in P , then we have failed to match all the residents in P , and we will prove

in this case that no strongly stable matching exists. Finally we add the pairs in D to the

matching M . If, as a result of this assignment, a hospital hj ∈ Q becomes full, then we

identify the worst assigned resident ri in M . Then for each strict successor rk of ri on the

master list we “delete the pair (rk, hj)”, which comprises deleting hj from rk’s list and

vice-versa. The matching M is then returned.

We now define additional notation used in this section. Let E be an execution of

hrt-ml-strong for an instance I of hrt-1ml and z be some iteration of the main for

loop in E. Then we denote the set of residents in P at iteration z by Pz and the set of

hospitals in Q at iteration z by Qz. We also denote the set of residents that have hj as a

key hospital at iteration z by Rz,j. That is, Rz,j = {ri ∈ Pz : hj ∈ Hi}. We note that Rz,j

is well defined as the same set of deletions are made regardless of which degree-constrained

subgraph we choose. Now let M ′ be the matching at the beginning of iteration z. We

define the following partition of Qz:

Q1
z = {hj ∈ Qz : u(hj) = cj − |M ′(hj)|},

Q2
z = {hj ∈ Qz : u(hj) = |Rz,j|},

To prove the correctness of the algorithm, we begin by showing that if the algorithm

deletes a pair then that pair does not belong to any strongly stable matching.
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Algorithm 19 hrt-ml-strong

1: M := ∅;
2: for each tie T in the master list in turn do

3: P := set of residents in T that have a non-empty list;

4: Q :=
⋃

ri∈P Hi;

5:

6: 〈G, u〉 := BuildGraph(P, Q, M); /** Algorithm 20 */

7:

8: if
∑

hj∈Q u(hj) 6= |P | then

9: return null;

10:

11: D := maximum degree-constrained subgraph of G;

12: ED := edge set of D;

13: if |ED| < |P | then

14: return null;

15: MD := ED;

16: M := M ∪ MD;

17: for each hj ∈ Q do

18: if hj is full in M then

19: ri := hj ’s worst assigned resident in M ;

20: for each strict successor rk of ri on the master list do

21: delete the pair (rk, hj);

22: return M ;
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Algorithm 20 BuildGraph(P,Q,M)

1: V := P ∪ Q;

2: E := ∅
3: for each hj ∈ Q do

4: u(hj) := 0;

5:

6: for each ri ∈ P do

7: u(ri) :=1;

8: for each hj ∈ Hi do

9: E := E ∪ {(ri, hj)};
10: u(hj) := u(hj) + 1;

11: /* u(hj) = |Rz,j | */

12: for each hj ∈ Q do

13: u(hj) := min{u(hj), cj − |M(hj)|};
14:

15: G := (V, E);

16: return 〈G, u〉;

Lemma 4.5.1. Algorithm hrt-ml-strong never deletes a pair (ri, hj) that belongs to a

strongly stable matching.

Proof. The proof is identical to that of Lemma 4.4.1.

Lemma 4.5.2. Let E be an execution of hrt-ml-strong for an instance I of hrt-1ml.

At every iteration z of the main loop during E, each resident ri ∈ Pz is assigned in MD

and each hospital hj ∈ Qz is assigned u(hj) residents in MD, or else the algorithm returns

null.

Proof. Clearly each resident ri ∈ Pz is assigned in MD for otherwise the algorithm would

have returned null at line 14. Suppose that the algorithm did not return null at line 9.

Then |Pz | =
∑

hk∈Qz
u(hk). Now suppose that some hospital hj is assigned fewer than

u(hj) residents in MD. Let MD(hk) denote the set of residents assigned to hk in MD, for
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hk ∈ H. Then |MD(hj)| < u(hj) thus:

|MD| =
∑

hk∈Qz

|MD(hk)|

=
∑

hk∈Qz\{hj}

|MD(hk)| + |MD(hj)|

≤
∑

hk∈Qz\{hj}

u(hk) + |MD(hj)|

<
∑

hk∈Qz\{hj}

u(hk) + u(hj)

=
∑

hk∈Qz

u(hk)

= |Pz |.

Hence the algorithm would have returned null at line 14.

The following lemma shows that in every strongly stable matching each resident is

assigned to a key hospital.

Lemma 4.5.3. Let ri be a resident whose set of key hospitals Hi is defined. Let M be any

strongly stable matching. If Hi = ∅ then ri is unassigned in M , otherwise (ri, hj) ∈ M ,

for some hj ∈ Hi.

Proof. Let E be an execution of hrt-ml-strong. Now let z be the iteration of E where

ri is considered. If Hi = ∅, then all hospitals have been deleted from ri’s list and hence

by Lemma 4.5.1, it follows that ri is unassigned in every stable matching. Therefore Hi is

non-empty. We consider the following four cases.

Case (i): ri obtains a hospital hj in M that he strictly prefers to the hospitals in

Hi. The proof of this case is identical to that of Case (i) in Lemma 4.4.3.

Case (ii) ri obtains a hospital hj in M such that hj /∈ Hi and ri is indifferent between

hj and the hospitals in Hi. The proof of this case is identical to Case (ii) of Lemma

4.4.3.

Case (iii): ri obtains a hospital in M that he finds inferior to the hospitals in Hi.

Let ri be the first resident on the master list with this property. Then in M , each

hospital hj ∈ Hi must be full with residents strictly better than ri, for otherwise

(ri, hj) blocks M .
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Let M ′ denote the matching at the beginning of iteration z. Let hj ∈ Hi, then hj

is under-subscribed in M ′, for otherwise hj would have been deleted from the list of

each such ri. Hence there exists a resident rk who is assigned to hj in M but not in

M ′.

Let y be the iteration of E for which rk ∈ Py. Then since y < z, it follows that rk

appears strictly before ri on the master list. Now Hk must be defined, for otherwise

the algorithm would have returned null prior to iteration z, a contradiction. If rk

strictly prefers hj to the hospitals in Hk, we contradict Case (i). Also if rk strictly

prefers the hospitals in Hk to hj then we contradict the choice of ri. Hence rk is

indifferent between hj and the hospitals in Hk. Moreover (rk, hj) is not deleted

during E by Lemma 4.5.1. Hence hj ∈ Hk. Let M ′′ denote the matching at the

beginning of iteration y. Then at iteration y, it follows that u(hj) = cj − |M ′′(hj)|,
for if u(hj) = |Ry,j|, then by Lemma 4.5.2, Ry,j ⊆ M ′(hj), contradicting the fact

that rk is not assigned to hj in M ′. It follows that hj must have become full at

iteration y, a contradiction.

Case (iv) ri is unassigned in M . The argument is similar to that used in Case (iii).

Lemma 4.5.4. Let E be an execution of hrt-ml-strong for an instance I of hrt-1ml.

If, at some iteration z of the main loop during E, u(hj) = |Rz,j| for some hj ∈ Qz, then

in every strongly stable matching M , hj is assigned the set of residents Rz,j in M .

Proof. Suppose that, at iteration z, u(hj) = |Rz,j| and suppose for a contradiction that

M is a strongly stable matching such that ri /∈ M(hj), where hj ∈ Qz and ri ∈ Rz,j. By

Lemma 4.5.3, it follows that ri is assigned in M to a hospital at least as good as hj . Hence

hj must be full with residents at least as good as ri in M , for otherwise (ri, hj) blocks M .

Then at each iteration y prior to z, where hj is a key hospital of a resident in Py, assuming

such an iteration exists, u(hj) = |Ry,j |. For if this was not the case the algorithm would

have returned null prior to iteration z (which is clearly did not happen) or hj would have

become full at iteration y. In the latter case all strict successors of hj ’s worst assigned

resident would have been deleted, and so hj could not be a key hospital of any resident at

iteration z. Since u(hj) = |Rz,j| and u(hj) = |Ry,j | for all iterations y < z,
∑ |Rx,j| ≤ cj ,

for each iteration x (x ≤ z), where hj ∈ Qx. Hence by Lemma 4.5.2, hj is assigned u(hj)

residents at each such iteration, i.e. hj is assigned all the residents that have hj as a key
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hospital at this iteration. Thus hj cannot be full with residents at least as good as ri in

M , a contradiction.

Lemma 4.5.5. Let E be an execution of hrt-ml-strong for an instance I of hrt-1ml.

Let z be an iteration of the main loop during E and let M ′ be the matching at the beginning

of iteration z. For each hj ∈ Qz, if at iteration z, u(hj) = cj − |M ′(hj)|, then hj is full in

every strongly stable matching M .

Proof. Suppose, for a contradiction, that u(hj) = cj − |M ′(hj)| at iteration z of the main

loop during E and that hj is under-subscribed in M . Then in each iteration y prior to

z such that hj ∈ Qy, u(hj) = |Ry,j |. For otherwise hj would have become full during E

at iteration y and hj would have been deleted from the list of each resident strictly worse

than those in Ry,j. Hence hj cannot be in Qz, a contradiction. If cj − |M ′(hj)| = |Rz,j|,
by Lemma 4.5.4, hj is full in M , therefore cj − |M ′(hj)| < |Rz,j|. Hence there exists a

resident ri ∈ Rz,j such that ri /∈ M(hj), for otherwise hj is over-subscribed in M . Then

by Lemma 4.5.3, ri is assigned in M to a hospital hk in Qz, where ri is indifferent between

hk and hj . Therefore if hj is under-subscribed in M , (ri, hj) blocks M .

We now show that if the algorithm hrt-ml-strong outputs a matching M then M is

strongly stable.

Lemma 4.5.6. If a matching M is output by hrt-ml-strong, then M is strongly stable.

Proof. Suppose, for a contradiction, that the matching M output by the algorithm is not

strongly stable. Hence there exists a pair (ri, hj) that blocks M . If (ri, hj) was deleted

during an execution E of hrt-ml-strong, then hj must be full with assignees it prefers to

ri (as by inspection of algorithm, once a hospital becomes full, its set of assignees is fixed

and does not subsequently change) contradicting the fact that (ri, hj) blocks M . Hence

the pair (ri, hj) has not been deleted. We note that ri must be assigned in M , as ri’s list

must be non-empty (it contains hj), thus hrt-ml-strong would have returned null if ri

was unassigned. Let ri be assigned to hk in M , where hj 6= hk. Then ri is indifferent

between hj and hk. For, if ri strictly prefers hj to hk, (ri, hj) has already been deleted as

hk must have been at the head of ri’s list when he became assigned to hk, contradicting

Lemma 4.5.1. Also, if ri strictly prefers hk to hj , (ri, hj) does not block M . Let z denote

the iteration of the main loop during E in which the tie that contains ri is processed. Then

hj , hk ∈ Qz. Let M ′ be the matching at the beginning of iteration z. Clearly u(hj) cannot
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equal the number of residents in Pz that have hj as a key hospital (i.e u(hj) 6= |Rz,j|), as

by Lemma 4.5.4, hj would be assigned to ri in M . It follows that cj − |M ′(hj)| < |Rz,j|
and so u(hj) equals the number of unfilled posts in hj at iteration z. By Lemma 4.5.2,

hj must obtain u(hj) residents from Pz in M . Therefore hj must be assigned a set of

residents at least as good as ri in M , hence (ri, hj) does not block M .

Lemma 4.5.7. Let E be an execution of hrt-ml-strong for an instance I of hrt-1ml. If

at an iteration z of the main loop during E,
∑

hj∈Qz
u(hj) 6= |Pz|, then no strongly stable

matching exists.

Proof. Let M ′ be the matching at the beginning of iteration z during E. Let M be a

strongly stable matching and let M ′′ be those pairs of M involving residents in Pz. Then

by Lemma 4.5.3, |M ′′| = |Pz|. Now by Lemma 4.5.5 and Lemma 4.5.4, and the fact

that hj could not have become full before iteration z,
∑

hj∈Q1
z
cj =

∑

hj∈Q1
z
|M(hj)| =

∑

hj∈Q1
z
|M ′(hj)| +

∑

hj∈Q1
z
|M ′′(hj)|, i.e.

∑

hj∈Q1
z

|M ′′(hj)| =
∑

hj∈Q1
z

(cj − |M ′(hj)|). (4.1)

Also

|M ′′| =
∑

hj∈Qz

|M ′′(hj)|

=
∑

hj∈Q1
z

|M ′′(hj)| +
∑

hj∈Q2
z

|M ′′(hj)|

=
∑

hj∈Q1
z

|M ′′(hj)| +
∑

hj∈Q2
z

|Rz,j| , by Lemma 4.5.3 and Lemma 4.5.4

=
∑

hj∈Q1
z

(cj − |M ′(hj)|) +
∑

hj∈Q2
z

|Rz,j| , by Equation 4.1

=
∑

hj∈Qz

|u(hj)|,

6= |Pz| by assumption, a contradiction.

Lemma 4.5.8. Let E be an execution of hrt-ml-strong for an instance I of hrt-1ml.

If during an iteration z of the main loop during E, the number of residents assigned in

ED is less than the number of residents in Pz, then no strongly stable matching exists.

Proof. Suppose, for a contradiction, that there exists a strongly stable matching M and

that at iteration z of E, the number of residents assigned in ED is less than the number
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of residents in Pz. Let M ′ denote the matching at the beginning of iteration z. Hence

there exists a resident ri ∈ Pz who is unassigned in ED but by Lemma 4.5.3 is assigned

to a hospital hj ∈ Qz in M . Therefore hj is represented by a vertex in G. Now since ri is

unassigned in ED and D is a maximum degree-constrained subgraph of G, u(hj) does not

equal the number of residents that have hj as a key hospital at iteration z, i.e. u(hj) 6=
|Rz,j|. For, if u(hj) equals |Rz,j|, we can increase the number of edges in D by adding the

edge (ri, hj), contradicting the maximality of D. Therefore u(hj) = cj −|M ′(hj)| < |Rz,j|.
Thus in each iteration y prior to z, u(hj) = |Ry,j |, therefore the same residents assigned

to hj in M ′ are assigned to hj in M , by Lemma 4.5.4. Also, hj must be assigned (cj −
|M ′(hj)|) residents in ED at iteration z, for otherwise we contradict the maximality of D

by adding the edge (ri, hj) to D. However as u(hj) = cj − |M ′(hj)|, by Lemma 4.5.5, hj

is full in M . Hence there exists a resident rs assigned to hj in ED but rs /∈ M(hj), for

otherwise hj is over-subscribed in M . Therefore rs must have become assigned to hj at

iteration z (if he had become assigned to hj prior to iteration z, say at iteration x, then

at this iteration u(hj) = |Rx,j |, thus by Lemma 4.5.4 rs is assigned to hj in every strongly

stable matching, a contradiction). Hence hj is indifferent between ri and rs.

By Lemma 4.5.3, rs is assigned to a hospital ht ∈ Qz in M (ht 6= hj). However u(ht)

cannot equal |Rz,t|, for otherwise we can augment along the path (ri, hj), (hj , rs), (rs, ht),

increasing the number of edges in D, contradicting the maximality of D. Therefore u(ht)

equals the number of unfilled posts in ht at iteration z. Hence using a similar argument to

that for hj , there exists a resident rx assigned to ht in ED but rx /∈ M(ht), for otherwise ht

is over-subscribed in M . Therefore rx must have become assigned to ht at iteration z and so

ht is indifferent between rs and rx. By Lemma 4.5.3, rx is assigned to a hospital hu ∈ Qz in

M . Clearly continuing in this manner we either obtain an augmenting path or we increase

the length of the path and since the number of residents is finite and each such resident is

distinct, we must reach a stage where no such resident exists, a contradiction.

We use Lemma 4.5.8 and Lemma 4.5.7 to obtain the following result.

Lemma 4.5.9. If the algorithm returns null then no strongly stable matching exists.

The complexity of the algorithm is dominated by finding a maximum degree-constrained

subgraph of the graph G. All other operations take O(λ) time over the algorithm’s entire

execution, where λ is the total length of the preference lists. We can obtain a maximum

degree-constrained subgraph in time O(|E|
√

S) using Gabow’s algorithm [16], where E is
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the set of edges in G and S is the sum of the upper degree-constraints on each vertex.

Since the graphs at any two iterations of the main loop of the algorithm involve disjoint

sets of edges, hrt-ml-strong has time complexity O(λ
√

C), where C is the sum of the

hospitals’ capacities. Finally we bring together the result above and the results given in

Lemma 4.5.6 and Lemma 4.5.9 to obtain the following theorem.

Theorem 4.5.10. For a given instance of hrt-1ml, algorithm hrt-ml-strong finds a

strongly stable matching or reports that none exists in time O(λ
√

C), where λ is the total

length of the preference lists and C is the sum of the hospitals’ capacities.

4.6 Open Problems

We finish this chapter by giving some open problems.

4.6.1 Finding an egalitarian strongly stable matching

An egalitarian stable matching M in an instance of hr is a stable matching in which the

sum of the ranks of the agents’ assignees in M is minimised. It is known that the problem

of finding an egalitarian stable matching, given an instance of hr, is polynomial-time

solvable [9]. It was also shown by Scott [67] that the problem of finding an egalitarian

weakly stable matching is NP-hard, given an instance of hrt-ml (in fact Scott showed this

is true for smt with a master list on one side that contains no ties). We conjecture that

the problem of finding an egalitarian strongly stable matching is polynomial-time solvable

for the general case of hrt but so far no known proof exists. We also suggest that finding

an algorithm for the case of hrt-ml should be easier, and in turn this should allow us to

disprove Feder’s conjecture [13, p.148], which states that it is NP-hard to find a matching

other than the man-optimal and woman-optimal strongly stable matching, should these

two matchings exist.

4.6.2 Finding a minimum regret strongly stable matching

A minimum regret stable matching M is a stable matching in which we minimise the

maximum rank of an agent’s assignee in M . It is known that the problem of finding a

minimum regret stable matching, given an instance of sm, is solvable in O(λ) [26, Section

4.4.3], where λ is the total length of the preference lists. However Scott showed that the

problem of finding a minimum regret weakly stable matching is NP-hard given an instance
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of smt-ml. We conjecture that the problem of finding a minimum regret strongly stable

matching is polynomial-time solvable for the case of hrt, but so far no known proof exists.

As in the case of Section 4.6.1, finding a minimum regret strongly stable matching may

be easier to derive in the case of hrt-ml and would also allow us to disprove Feder’s

conjecture.
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Chapter 5

The Stable Roommates Problem

with Master Lists

5.1 Introduction

This chapter concerns the Stable Roommates problem (sr). As mentioned in Chapter 1,

it is known that a stable matching need not exist for an instance of sri [18]. However, it is

known that the problem of finding a stable matching or reporting that none exists, given

an instance I of sri can be solved in time O(λ) using Irving’s algorithm [34], where λ is

the total length of the preference lists in I. Additionally deciding whether a weakly stable

matching exists for an instance of srt is known to be NP-complete [38, 62]. By contrast

there is an O(λ) algorithm that finds a super-stable matching or reports that none exists,

given an instance I of srti [38]. An O(λ2) algorithm performs the corresponding task in

the case of strong stability [67]. We also note that weakly stable matchings may be of

different sizes, whereas, in contrast all super-stable matchings have the same size and all

strongly stable matchings have the same size [38,67].

In this chapter we consider instances of sr with and without ties, where the preference

lists are derived from a single master list. We obtain a range of algorithmic results for

these problem variants under different stability criteria. In cases where polynomial-time

algorithms already exist in the general case, we give algorithms that simplify, and in certain

cases, speed up the more general algorithm. We also show that one NP-hard problem in

the general case becomes polynomial time solvable in the presence of a master list.

Let P = {p1, p2, . . . , pn} denote the set of agents for an instance of sri. Then we denote

an instance of sri in which each agent’s list is derived from a single master list by sri-ml.
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Here the concept of a master list is similar to that described in Chapter 4. That is, each

agent pi’s preference list is derived from the master list by deleting pi and additionally all

those agents that pi finds unacceptable. It is assumed that pi finds pj unacceptable if and

only if pj finds pi unacceptable. We also consider the extension srti of sri where ties are

allowed in the preference lists of the agents. In this case we denote an instance of srti

in which each agent’s list is derived from a master list by srti-ml. Figure 5.1 shows an

instance of srti-ml.

Master list: p1 p2 (p3 p4)

Agents’ individual preference lists

p1 : p1 p2 p4

p2 : (p3 p4)

p3 : p1 p3

p4 : p2 (p3 p4)

Figure 5.1: An instance of srti-ml.

The main results and organisation of this chapter are: in Section 5.2 we provide a

simple algorithm, requiring only one phase, which finds the unique stable matching for an

instance of sri-ml. We prove in Section 5.3 that despite the existence of a master list,

the problem of finding a maximum weakly stable matching for an instance of srti-ml is

NP-hard. However, we also show in Section 5.3 that, in contrast to the general case, we

can find a weakly stable matching in polynomial time. In Section 5.4, we describe a O(λ)

algorithm that finds a super-stable matching, or reports that none exists, for an instance I

of srti-ml, where λ is the total length of the preference lists. This algorithm simplifies its

counterpart for the general case [38]. Furthermore we show that if a matching is returned

by the algorithm then this is in fact the unique super-stable matching in I. Finally in

Section 5.5 we describe an algorithm that finds a strongly stable matching, or reports that

none exists, for an instance of srti-ml. The algorithm improves the time complexity of

the general case, and runs in time O(
√

nλ), where λ is the total length of the preference

lists, and n is the number of agents.
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5.2 sri-ml

In this section we describe an algorithm sri-ml-alg that can be used to find a stable

matching for an instance I of sri-ml. The algorithm also indicates that I is bound to

admit at least one stable matching, which need not be true in general, given an instance

of sr (and therefore of sri), as already observed. The worst-case running time of the

algorithm is identical to that of the algorithm due to Irving [34]. However the algorithm

is straightforward and does not require the two-phase approach used in the general case.

We show that the matching output by the algorithm is in fact the unique stable matching

in I.

Algorithm sr-ml-alg is shown in Algorithm 21. Initially a matching M is set to be

empty. Then for each agent pi on the master list in turn, we check to see if pi is unassigned

and pi’s list contains at least one unassigned agent. If this is the case then we identify the

first unassigned agent pj on pi’s list, and add the pair {pi, pj} to M .

Algorithm 21 sri-ml-alg

1: M := ∅;
2: for each agent pi on the master list in turn do

3: if pi is unassigned and pi’s list contains an unassigned agent then

4: pj := first unassigned agent on pi’s list;

5: M := M ∪ {{pi, pj}};
6: return M ;

Let z denote an iteration during an execution E of sri-ml-alg for an instance I of

sri-ml. Then we say that an agent pi is processed if pi is the agent being considered in

the for loop at line 2 during iteration z. We show in the lemma below that the assignment

returned by the algorithm is a stable matching.

Lemma 5.2.1. The matching M returned by algorithm sri-ml-alg is a stable matching.

Proof. Let E be the execution of sr-ml-alg for an instance I of sri-ml. Suppose, for a

contradiction, that the matching M returned at the end of E is not stable. Hence there

exists a pair {pi, pj} that blocks M . At iteration z of the for loop during E where pi is

processed (there can only be one such iteration), either (i) pi is already assigned or (ii) pi

is unassigned.

Case (i): Suppose pi is assigned to pk at the beginning of iteration z. Then pk

became assigned to pi at some iteration y < z, and so pk precedes pi in the master
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list. Also pj precedes pk on the master list since {pi, pj} blocks M . Hence at iteration

x < y when pj was processed, either (a) pj was already assigned to some agent pl,

or (b) pj was unassigned. In Case (a), pl precedes pj on the master list and hence

{pi, pj} does not block M , a contradiction. In Case (b), pi could not have been the

first unassigned agent on pj’s list, for otherwise {pj , pi} would have been added to

M . Therefore in M , pj must obtain an agent he prefers to pi, and so {pi, pj} does

not block M , a contradiction.

Case (ii): Then pj must already be assigned at iteration z, for otherwise the al-

gorithm would have assigned pi to pj in M . In particular pj must have become

assigned, to pk say, in an iteration prior to z. Since agents are processed in prefer-

ence order, either pj became assigned when pk was processed or when pj itself was

processed. In either case pj becomes assigned to pk, and pk must appear before pi

on the master list. Hence {pi, pj} cannot block M .

Lemma 5.2.2. The matching M returned by algorithm sri-ml-alg for an instance I of

sri-ml is the unique stable matching in I.

Proof. Let E be an execution of algorithm sri-ml-alg for I, producing a matching M .

Suppose, for a contradiction, that there exists a matching M ′ that is stable in I, where

M 6= M ′. Hence there exists a pair {pi, pj} ∈ M but {pi, pj} /∈ M ′. Without loss of

generality suppose that pi is the first agent on the master list with this property. Then

since {pi, pj} ∈ M , when pi became assigned to pj during E, pj was the first unassigned

agent on pi’s list. Since each agent better than pi on the master list obtains the same

assignee in M as in M ′, pi must obtain an agent worse than pj in M ′ or be unassigned in

M ′. However by the stability of M ′, pj must obtain an agent better than pi in M ′, which

is impossible as again each resident better than pi on the master list obtains the same

assignee in M as in M ′.

The complexity analysis of algorithm sri-ml-alg is straightforward and can be shown

to be O(λ), where λ is the total length of the preference lists. We now use Lemma 5.2.1

and Lemma 5.2.2 to obtain the following theorem.

Theorem 5.2.3. For a given instance I of sri-ml, algorithm sri-ml-alg outputs the

unique stable matching for I in time O(λ), where λ is the total length of the preference
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lists.

5.3 srti-ml under weak stability

Ronn [62] showed that the problem of deciding whether a weakly stable matching exists,

given an instance of srt, is NP-complete. In contrast, we can always find a weakly stable

matching for an instance I of srti-ml by simply breaking the ties in the master list arbi-

trarily and running the algorithm given in Section 5.2. However, weakly stable matchings

in I may be of different sizes. For example consider instance I in Figure 5.2. Here two

possible weakly stable matching are M = {{p1, p4}, {p2, p3}} and M ′ = {{p1, p3}}. We

now prove that max-srti-ml, the problem of finding a maximum weakly stable matching

given an instance of srti-ml, is in fact NP-hard. We firstly define the decision version of

this problem.

Name : max-srti-ml-d

Instance: An srti instance I in which each agent’s list is derived

from a master list of agents and a positive integer K.

Question: Does I have a weakly stable matching of size ≥ K?

Master list: p1 p2 (p3 p4)

Agents’ individual preference lists

p1 : (p3 p4)

p2 : p3

p3 : p1 p2

p4 : p1

Figure 5.2: An instance I of srti-ml where weakly stable matchings can have different

sizes.

Theorem 5.3.1. max-srti-ml-d is NP-complete, even if the agents’ individual preference

lists are of length at most 4, where each agent’s individual list contains at most one tie of

length 3.

Proof. Clearly max-srti-ml-d is in NP. To prove that max-srti-ml-d is NP-hard we

reduce from min-mm-d restricted to cubic graphs, which as noted in Section 2.2.2 of
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Chapter 2 is NP-complete. Let G, a cubic graph and K, a positive integer, be an instance

of min-mm-d. Furthermore let P = {p1, p2, . . . , pn} denote the vertices of G and let E

denote the edge set of G. We denote the set of vertices adjacent to a vertex pi in G by Pi.

We construct an instance I of max-srti-ml as follows: let P ∪X be the set of agents,

where X = {x1, x2, . . . , xn}. The preference lists and master list of the agents in I are

shown in Figure 5.3. In the master list, agents who appear within square brackets are

listed in arbitrary strict order. Also those agents who appear within round brackets are

tied with each other. Let K ′ = n − K. We claim that G has a maximal matching of size

≤ K if and only if I admits a weakly stable matching of size ≥ K ′.

Master list: (agents in P ) [agents in X]

Agents’ individual preference lists

pi : (Pi) xi (1 ≤ i ≤ n)

xi : pi (1 ≤ i ≤ n)

Figure 5.3: Preference lists for the constructed instance of max-srti-ml-d.

Suppose G has a maximal matching M , where |M | = t ≤ K. We construct a matching

M ′ in I as follows. Initially let M ′ = M . There remain n − 2t agents in P that are

unassigned in M ′: denote these agents by pki
(1 ≤ i ≤ n − 2t), and add {pki

, xki
} to M ′.

Then |M ′| = t + (n − 2t) = n − t ≥ n − K = K ′.

Now suppose for a contradiction that M ′ is not weakly stable. Hence there exists a

pair that blocks M ′. We first note that, by construction of the matching, no agent pi ∈ P

can be unassigned in M ′ as either pi is assigned to an agent pj ∈ P or an agent xi ∈ X.

Hence any pair that blocks M ′ must have the form {pi, pj}, where pi, pj ∈ P . Now as pi

and pj cannot be unassigned in M ′, it follows that pi is assigned to xi in M ′ and pj is

assigned to xj in M ′. Therefore {pi, pj} /∈ M . Moreover {pi, pj} belongs to E, so that

{pi, pj} is a matching in M , contradicting the maximality of M . Hence M ′ is stable in I.

Conversely suppose that M ′ is a weakly stable matching in I and that |M ′| ≥ K ′. Let

M = M ′ ∩E and t = |M |. Then in M ′, there are exactly 2t agents in P who are assigned

to agents also in P , and at most n − 2t agents in X who are matched to agents in P .

Therefore |M ′| ≤ t + (n − 2t) = n − t and since |M ′| ≥ K ′, we have that n − t ≥ K ′, and

so |M | ≤ n − K ′ = K.

Finally suppose that the matching M is not maximal in G. Hence there exists an

edge {pi, pj} in G, such that no edge in M is incident to pi or pj . Therefore pi must be
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unassigned or assigned to xi in M ′ and pj must be unassigned or assigned to xj in M ′.

Hence {pi, pj} blocks M ′ in I, contradicting the weak stability of M ′. Therefore M is

indeed maximal in G.

5.4 srti-ml under super-stability

In this section we present an algorithm srti-ml-super which finds a super-stable match-

ing or reports that none exists, given an instance of srti-ml. The running time of the

algorithm is O(λ), which comparable to that of the algorithm by Irving and Manlove [38],

where λ is the total length of the preference lists. However, our algorithm is much simpler

and in particular does not require two distinct phases. Additionally, we prove that, given

an instance I of srti-ml, if a matching M is returned by the algorithm, then M is the

unique super-stable matching for I.

Algorithm srti-ml-super is shown in Algorithm 22. Before explaining the algorithm’s

operation we first introduce some notation similar to that used in Chapter 4. Let E be

the execution of srti-ml-super and let z be an iteration of the main loop of E. Then

we denote the set of agents in U , S and T (as defined in Algorithm 22) at iteration z by

Uz, Sz and Tz respectively. Additionally, if pi ∈ Sz ∪ Tz we say that pi is considered at

iteration z and if pi ∈ Uz we say that pi is processed at iteration z. Let pi be an agent who

is considered at iteration z. Then we denote the set of agents at the head of pi’s list by Pi,

and refer to them as pi’s key agents. If the algorithm returns null before iteration z, or if pi

is not considered during E, then Pi is undefined. We will prove that Pi is well-defined for

each agent pi ∈ P, by which we mean that if Pi is defined at some iteration z of the main

loop during E, then z is the unique iteration of the main loop in which pi is considered.

The algorithm srti-ml-super proceeds as follows: we create a matching M which is

initially empty. Then for each tie U on the master list in preference order, we identify the

set of agents S in U whose lists are non-empty and who are currently unassigned. Then

for each agent pi ∈ S, if Pi contains more than one agent, the algorithm returns null and

(as we will show) no super-stable matching exists. Next we identify the set of agents T

consisting of the union of Pi for each agent in S. Then for each agent pi ∈ T , we ensure

that exactly one agent in S has pi as a key agent. If this is not the case, the algorithm

returns null and again (as we will show) no super-stable matching exists. Now for each

agent pi ∈ S we assign pi to the single agent pj at the head of pi’s list by adding {pi, pj}
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to M – in the algorithm head(pi) is used to denote the single agent in Pi. Finally for each

successor pk of pj on pi’s list we “delete the pair {pi, pk}”, and also for each successor pl

of pi on pj’s list we delete the pair {pj, pl} (this in effect deletes pi and pj from all other

lists); here to “delete the pair {pi, pj}” means deleting pi from pj’s list and pj from pi’s

list.

Algorithm 22 srti-ml-super

1: M := ∅;
2: for each tie U in the master list in preference order do

3: S := set of agents in U whose lists are non-empty and who are currently unassigned;

4:

5: for each pi ∈ S do

6: /** Pi denotes the head of pi’s list at this iteration **/

7: if |Pi| > 1 then

8: return null;

9:

10: T :=
⋃

pi∈S Pi;

11: for each pi ∈ T do

12: Ai := {pj : pi ∈ Pj};
13: if |Ai| > 1 then

14: return null;

15:

16: for each pi ∈ S do

17: pj := head(pi);

18: M := M ∪ {{pi, pj}};
19: for each strict successor pk of pj on pi’s list do

20: delete the pair {pi, pk};
21: for each strict successor pk of pi on pj ’s list do

22: delete the pair {pj , pk};
23:

24: return M ;

The following sequence of lemmas establish the correctness of the algorithm, starting

with the following result.

Lemma 5.4.1. Let E be the execution of srti-ml-super for an instance I of srti-ml

during which the algorithm does not return null, and let z be an iteration of the main loop

during E. If at iteration z, pi ∈ Sz ∪ Tz, then pi is assigned at the end of iteration z.
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Proof. Clearly each agent in Sz is assigned at the end of iteration z. Now suppose pi ∈ Tz.

Then pi is a key agent of exactly one agent in Sz, for otherwise the algorithm would have

returned null at line 14. Furthermore each agent in Sz has exactly one key agent, or else

the algorithm would have returned null at line 8. Hence pi must become assigned during

E.

We now show that if pi is considered at iteration z, and Pi is the head of pi’s list at

this iteration, then each agent pj in Pi is unassigned.

Lemma 5.4.2. Let E be the execution of srti-ml-super for an instance I of srti-ml

and let pi ∈ Sz ∪ Tz at some iteration z during E. Let Pi denote the head of pi’s list at

iteration z and let pj ∈ Pi. Then pj is unassigned at the beginning of iteration z.

Proof. Suppose pi ∈ Sz ∪ Tz and that pj ∈ Pi. Now suppose for a contradiction that pj is

already assigned at the beginning of iteration z. Then pj must have become assigned to

an agent pk at an iteration y prior to z. Consider the following two cases.

Case (i): pi ∈ Sz. If pi ∈ Sz, then since the pair {pi, pj} has not been deleted

prior to iteration z and since pj became assigned to pk at iteration y, either pi is

strictly better than pk on the master list, or pi and pk appear in the same tie on the

master list. Hence as pi ∈ Sz, it follows that pk /∈ Sy, by construction of the master

list. Thus when pj became assigned to pk at iteration y, it follows that pj ∈ Sy.

Therefore pk must have been at the head of pj ’s list when pj and pk became assigned

at iteration y. Thus if pi is strictly better than pk on the master list, the pair {pi, pj}
has already been deleted prior to iteration z, a contradiction. Hence pi and pk must

appear in the same tie on the master list. Now since pi ∈ Sz, it follows that pi is

unassigned at the beginning of iteration z. Furthermore, pi must also be unassigned

at the end of iteration y. However as {pi, pj} has not been deleted, and since pk ∈ Pj

(where Pj is the head of pj’s list at iteration y), it follows that pi ∈ Pj and thus

pi ∈ Ty. Now by Lemma 5.4.1, it follows that pi becomes assigned during iteration

y, a contradiction to the fact that pi is unassigned at the end of this iteration.

Case (ii): pi ∈ Tz \ Sz. If pi ∈ Tz \ Sz, then there exists at least one agent pl ∈ Sz

such that pi ∈ Pl (where Pl is the head of pl’s list at iteration z). Therefore by

Case (i), as pl ∈ Sz and pi ∈ Pl, we have that pi is unassigned at the beginning of

iteration z. Also, by Lemma 5.4.1, it follows that the master list tie that contains
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pi has not been processed prior to iteration z. Since the pair {pi, pj} has not been

deleted, either pi is strictly better than pk on the master list, or pi and pk appear as

a tie on the master list. Thus the master list tie that contains pk has also not been

processed prior to iteration z. Therefore when pj became assigned to pk at iteration

y, it follows that pj ∈ Sy. Also, since pk became assigned to pj at iteration y, we

have that pk must have been at the head of pj ’s list. Hence if pi is strictly better than

pk on the master list, the pair {pi, pj} has already been deleted prior to iteration z,

a contradiction. Thus both pi and pk appear in the same tie on the master list, and

so pi ∈ Pj (where Pj is the head of pj’s list at iteration y). Now using Lemma 5.4.1,

we have that pi becomes assigned during iteration y, contradicting the fact that pi

is unassigned at the beginning of iteration z.

We can now use Lemma 5.4.1 and Lemma 5.4.2 to obtain the following lemma. In this

lemma we show that if Pi is pi’s set of key agents, then Pi is well defined in the sense

described at the top of page 110.

Lemma 5.4.3. For each agent pi ∈ P, if pi’s set of key agents Pi is defined then Pi is

well-defined.

Proof. Let E be the execution of srti-ml-super for an instance I of srti-ml and let z be

an iteration of the main loop during E. Then by construction of Sz, each agent in Sz is

unassigned, and by Lemma 5.4.2, each agent in Tz is also unassigned. Therefore at each

iteration of the main loop we only consider agents that are unassigned. Furthermore, if the

algorithm does not return null during iteration z, by Lemma 5.4.1, each agent pi ∈ Sz ∪Tz

becomes assigned during iteration z (clearly if the algorithm does return null then pi is

never considered at any subsequent iteration). Hence each agent is considered only once

during E, therefore Pi is well-defined.

In the following proof we show that if pi ∈ Tz, for some iteration z during the execution

E of srti-ml-super, and an agent pj ∈ Sz has pi as a key agent, then pj is a key agent of

pi.

Lemma 5.4.4. Let E be the execution of srti-ml-super for an instance I of srti-ml.

Then at each iteration z during E, if pi ∈ Tz and pi ∈ Pj, where pj ∈ Sz, then pj ∈ Pi.
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Proof. Suppose, for a contradiction, that pi ∈ Tz and pi ∈ Pj , where pj ∈ Sz, and that

pj /∈ Pi. Then either (i) pi strictly prefers pj to the agents in Pi or (ii) pi strictly prefers

the agents in Pi to pj .

Case (i): In this case the pair {pi, pj} has been deleted, but pi ∈ Pj, a contradiction.

Case (ii): Let pk ∈ Pi. Then since pj ∈ Sz, and pk appears strictly before pj on the

master list, it follows that pk was considered at an iteration y prior to z. Hence by

Lemma 5.4.1, pk became assigned to an agent pl at iteration y. By Lemma 5.4.2,

pi is unassigned at the beginning of iteration z, and so pi is unassigned at the end

of iteration y. Now by Lemma 5.4.1, it follows that pi /∈ Sx ∪ Tx for each iteration

x ≤ y. Now consider the following two subcases:

Subcase (a): pk ∈ Sy. Then pl must have been at the head of pk’s list at

iteration y, as pk and pl became assigned at this iteration. Additionally as

pi is unassigned at the beginning of iteration z and so pi /∈ Pk (as pi would

otherwise have become assigned at iteration y contradicting by Lemma 5.4.2),

it follows that pl appears strictly before pi on the master list. Hence when pk

became assigned to pl at iteration y the pair {pi, pk} would have been deleted,

contradicting the fact that pk ∈ Pi.

Subcase (b): pk ∈ Ty \ Sy. Since pl and pk become assigned at iteration y, it

follows that pl ∈ Sy. However since the pair {pi, pk} has not been deleted (as

pk ∈ Pi), either pi and pl appear in the same tie on the master list or pi appears

strictly before pl on the master list. Hence as pl ∈ Sy, it follows that pi must

have been considered at an iteration x ≤ y, a contradiction.

Using the above lemma we obtain the following result.

Lemma 5.4.5. Let E be the execution of srti-ml-super for an instance I of srti-ml.

If at some iteration z during E, pi becomes assigned to pj, then pj ∈ Pi.

Proof. At iteration z either (i) pi ∈ Sz, or (ii) pi ∈ Tz \ Sz.

Case (i): Since pi and pj become assigned to one another at line 18 (and hence the

algorithm did not return null at iteration z) it follows that pj is the single agent at

the head of pi’s list. Therefore pj ∈ Pi.
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Case (ii): Since pi and pj become assigned at line 18 (and hence the algorithm did

not return null at iteration z), it follows that pj ∈ Sz and that pi ∈ Pj . Thus by

Lemma 5.4.4, we have that pj ∈ Pi.

We now show that if pi ∈ Tz, for some iteration z during an execution E of srti-ml-

super, then all pi’s key agents are contained in Sz.

Lemma 5.4.6. Let E be an execution of srti-ml-super for an instance I of srti-ml.

Then at each iteration z during E, if pi ∈ Tz then Pi ⊆ Sz.

Proof. Suppose, for a contradiction, that pi ∈ Tz and Pi 6⊆ Sz. Hence there exists an agent

pj ∈ Pi such that pj /∈ Sz. Then since pi ∈ Tz, there exists at least one agent pk ∈ Sz

such that pi ∈ Pk by definition of Tz. Thus by Lemma 5.4.4, we have that pk ∈ Pi. As

such, pk and pj must appear as a tie in the master list. However since pj /∈ Sz, either pj’s

list is empty at the beginning of iteration z or pj became assigned at an iteration y prior

to iteration z. We first note that pj’s list cannot be empty at the beginning of iteration

z, as it contains (at least) pi. Therefore pj must have become assigned to an agent pl at

iteration y. However since pj ∈ Pi, by Lemma 5.4.2, pj is unassigned at iteration z, a

contradiction.

In the following lemma we prove that no pair deleted by the algorithm belongs to a

super-stable matching.

Lemma 5.4.7. Algorithm srti-ml-super never deletes a pair {pi, pj} that belongs to a

super-stable matching.

Proof. Let M be a super-stable matching for a given instance I of srti-ml. Suppose for

a contradiction that {pi, pj} ∈ M and that {pi, pj} is deleted at iteration z during the

execution E of srti-ml-super. Now suppose that this is the first super-stable pair to be

deleted. Then without loss of generality that {pi, pj} was deleted when pi became assigned

to pk at iteration z. Hence pi strictly prefers pk to pj. Therefore in M , pk must obtain an

agent pl such that pk strictly prefers pl to pi, for otherwise {pi, pk} blocks M . Then either

(i) pk ∈ Sz, or (ii) pk ∈ Tz \ Sz.

Case (i): Then since pi and pk become assigned at iteration z, pi must have been at

the head of pk’s list. Hence the pair {pk, pl} has already been deleted, contradicting

the fact that {pi, pj} is the first super-stable pair to be deleted.
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Case (ii): If pk ∈ Tz \ Sz, then as pi and pk became assigned at iteration z, we

have that pi ∈ Sz, and so pk ∈ Pi. Hence by Lemma 5.4.4, it follows that pi ∈ Pk.

Therefore since pl appears before pi on the master list, the pair {pk, pl} has already

been deleted, contradicting the fact that {pi, pj} is the first super-stable pair deleted.

We now show that in every super-stable matching, an agent is assigned to a key agent.

Lemma 5.4.8. Let pi be an agent whose set of key agents Pi is defined. Let M be a

super-stable matching. Then {pi, pj} ∈ M , for some pj ∈ Pi.

Proof. Let E be the execution of srti-ml-super and let z be the iteration of E where the

agent pi is considered. Then since Pi is defined, it follows that Pi 6= ∅. We consider the

following three cases.

Case (i): pi obtains an agent pk in M strictly better than those in Pi. Then at

iteration z, the pair {pi, pk} has already been deleted. Hence by Lemma 5.4.7, the

pair {pi, pk} does not belong to a super-stable matching, a contradiction.

Case (ii): pi obtains an agent pk in M and pk is indifferent between pk and those

agents in Pi. Then since pk /∈ Pi, the pair {pi, pk} must have been deleted prior to

iteration z. Thus by Lemma 5.4.7, it follows that {pi, pk} does not belong to any

stable matching, a contradiction.

Case (iii): pi obtains an agent in M inferior to those in Pi or is unassigned in M .

Let pi be the most-preferred agent on the master list with this property. Let pj ∈ Pi.

Then pj must obtain an agent pk in M that he strictly prefers to pi, for otherwise

{pi, pj} blocks M . Let M ′ denote the matching at the beginning of iteration z. Then

Lemma 5.4.2 implies that pj is unassigned in M ′. Hence {pj, pk} /∈ M ′. Additionally,

Pk must be defined, as the algorithm did not return null at an iteration prior to z, and

non-empty, as pk’s list contains at least pj, for otherwise {pk, pj} has been deleted,

contradicting Lemma 5.4.7.

Let y < z be the iteration of E where pk is considered. By Cases (i) and (ii) above,

and the fact that pi is the most-preferred agent on the master list to obtain an agent

inferior to a key agent (noting that pk appears strictly before pi on the master list),

it follows that pj ∈ Pk. If, at iteration y, pk ∈ Sy, then pj ∈ Ty, therefore by Lemma

5.4.1, pj is assigned in M ′, a contradiction. Hence pk ∈ Ty \ Sz. Thus by Lemma
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5.4.6, it follows that pj ∈ Sy, and again by Lemma 5.4.1, pj is assigned in M ′, a

contradiction.

We now show that if the algorithm returns an assignment then this assignment is in

fact a matching, i.e. no agent is multiply assigned.

Lemma 5.4.9. If srti-ml-super does not return null then the algorithm outputs a match-

ing M .

Proof. Let E be the execution of srti-ml-super for an instance I of srti-ml and suppose

that the algorithm does not return null during E. Now let M be the assignment output on

termination of E and suppose for a contradiction that M is not a matching. Hence there

exist two pairs {pi, pj} ∈ M and {pk, pj} ∈ M , where i 6= k. We first claim that pi and

pk must be tied in the master list. For, suppose not. Without loss of generality suppose

that pi precedes pk on the master list. If pi is considered before pk, then {pj , pk} is deleted

before pj becomes assigned to pk, a contradiction. Hence pk is considered before pi. This

can only happen if pj ∈ Sy for some iteration y, where pj either precedes pi or is tied with

pi in the master list. Since the algorithm did not return null during E, at iteration y it

follows that Pj = {pk}. Hence by Lemma 5.4.8, the only agent pj can become assigned

to in M is pk, contradicting the fact that {pi, pj} ∈ M . Hence the claim is established.

Let z be the iteration of E where pi and pk become assigned to pj - both must become

assigned at the same iteration as by Lemma 5.4.2 we only consider unassigned agents at

each iteration of E. Then either (i) pj ∈ Sz or (ii) pj ∈ Tz \ Sz.

Case (i): Since pi and pk appear in the same tie, and both become assigned to pj at

iteration z, it follows that {pi, pk} ⊆ Pj. Hence the algorithm would have returned

null at line 8, a contradiction.

Case (ii): Since pi and pk both become assigned to pj at iteration z, it follows that

pi, pk ∈ Sz. Therefore Pi = Pk = {pj}. Hence the algorithm would have returned

null at line 14, a contradiction.

The following result establishes that if the algorithm returns a matching then that

matching is indeed super-stable.

Lemma 5.4.10. If a matching M is output by srti-ml-super, then M is super-stable.
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Proof. Let E be the execution of srti-ml-super for an instance I of srti-ml. Now suppose

for a contradiction that there exists a pair {pi, pj} that blocks M . If {pi, pj} has been

deleted, then, without loss of generality, pi became assigned to an agent pk that he prefers

to pj , and so {pi, pj} cannot block M . Hence {pi, pj} has not been deleted. Also, at least

one of pi and pj must be assigned in M , for if not the algorithm would have either returned

null or assigned pi and pj to one another. Now suppose, without loss of generality, that

pi became assigned to an agent pk at some iteration z. In this case Lemma 5.4.5 implies

that pk ∈ Pi and, since {pi, pj} blocks M , either (i) pi strictly prefers pj to pk, or (ii) pi is

indifferent between pj and pk.

Case (i): In this case the pair {pi, pj} is already deleted at iteration z, a contradic-

tion.

Case (ii): As pi becomes assigned to pk at iteration z, Lemma 5.4.5 implies that

pk ∈ Pi. Then as pk and pj appear in the same tie on the master list, and since {pi, pj}
has not been deleted, it follows that pj ∈ Pi. Therefore if pi ∈ Sz, the algorithm

would have returned null as |Pi| > 1. Therefore pi ∈ Tz \ Sz. Thus by Lemma 5.4.6,

it follows that pj ∈ Sz. Hence by Lemma 5.4.1, pj becomes assigned to an agent pl

at iteration z, and so is assigned to pl in M . Furthermore as the algorithm did not

return null, it follows that Pj = {pl}. Thus if pi appears before pl on the master

list then {pi, pj} has been deleted, a contradiction. Similarly if pi is strictly worse

than pl on the master list, then {pi, pj} is deleted when pj and pl become assigned

at iteration z, a contradiction. Therefore pi and pl must appear in the same tie on

the master list, and since {pi, pj} has not been deleted, it follows that Pj = {pi, pl}.
Hence the algorithm would have returned null at line 8, a contradiction.

We now show that if the algorithm returns null as a result of some agent in S having

more than one key agent, then no super-stable matching exists.

Lemma 5.4.11. If the algorithm srti-ml-super returns null at line 8, then no super-

stable matching exists.

Proof. Let E be the execution of srti-ml-super for an instance I of srti-ml. Now

suppose, for a contradiction, that at some iteration z of E, there exists an agent pi ∈ Sz

such that |Pi| > 1. Let M be a super-stable matching in I. By Lemma 5.4.8, pi must
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obtain an agent pj ∈ Pi in M . However since |Pi| > 1, there exists an agent pk ∈ Pi such

that pk 6= pj and {pi, pk} /∈ M , as M is a matching. Hence in M , pk must obtain an agent

pl, where pl appears strictly before pi on the master list, for otherwise {pi, pk} blocks M .

However, since pi ∈ Sz, it follows that pl must have been considered at an iteration y prior

to z. Then either (i) pl ∈ Sy, or (ii) pl ∈ Ty \ Sy.

Case (i): Since the algorithm did not return null prior to iteration z, it follows that

Pl = {px}, for some agent px. However, if pk = px, {pl, pk} ∈ M and so {pi, pk} was

deleted prior to iteration z, a contradiction. Hence pk 6= px, and so by Lemma 5.4.8,

px is assigned to pl in M . Hence pk cannot be matched to pl in M , a contradiction.

Case (ii): As pl ∈ Ty \Sy, there exists an agent px ∈ Sy such that pl ∈ Px. Now since

the algorithm did not return null prior to iteration z, it follows that Px = {pl}. Again

px 6= pk, for otherwise {pi, pk} would have already been deleted prior to iteration z,

contradicting the fact that pk ∈ Pi. Hence by Lemma 5.4.8, px is assigned to pl in

M . Hence pk cannot be matched to pl in M , a contradiction.

We now prove in the following lemma that if any two agents in Sz have the same key

agent, for some iteration z during the execution of srti-ml-super, then no super-stable

matching exists.

Lemma 5.4.12. If the algorithm srti-ml-super returns null at line 14, then no super-

stable matching exists.

Proof. Let E be the execution of srti-ml-super for an instance I of srti-ml. Now suppose

for a contradiction that at iteration z of E, there exist at least two agents pi, pj ∈ Sz such

that Pi ∩ Pj 6= ∅, and that M is a super-stable matching in I. Since the algorithm did

not return null at line 8, it follows that |Pi| = |Pj | = 1, and since Pi ∩ Pj 6= ∅, we have

Pi = Pj = {pk}. Hence by Lemma 5.4.8, both pi and pj are matched in M to pk, a

contradiction to the fact that M is a matching.

We now show that the matching returned by srti-ml-super given an instance I of

srti-ml is the unique super-stable matching in I.

Lemma 5.4.13. If algorithm srti-ml-super returns a super-stable matching M during

the execution E for an instance I of smti-ml, then M is the unique super-stable matching

in I.
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Proof. Let {pi, pj} ∈ M and let z denote the iteration of E where pi and pj became

assigned. Then without loss of generality pi ∈ Sz. Hence pj ∈ Pi and |Pi| = 1, so

Pi = {pj}. Thus Lemma 5.4.8 implies that {pi, pj} ∈ M ′, for any stable matching M ′.

Furthermore if pi is unmatched in M , then pi is unmatched in M ′ by Lemma 5.4.7.

Using Lemma 5.4.11 and Lemma 5.4.12 we obtain the following lemma.

Lemma 5.4.14. If algorithm srti-ml-super returns null, then no super-stable matching

exists.

Using a similar complexity argument to that in Section 4.4 for algorithm hrt-ml-

super, we can show that srti-ml-super runs in time O(λ), where λ is the total length

of the preference lists. We use this result together with Lemmas 5.4.9, 5.4.10, 5.4.11 and

5.4.14 to obtain the following theorem.

Theorem 5.4.15. For a given instance of srti-ml, algorithm srti-ml-super finds the

unique super stable matching, or reports that none exists, in time O(λ), where λ is the

total length of the preference lists.

5.5 srti-ml under strong stability

Scott [67] showed that the problem of finding a strongly stable matching, or reporting that

none exists, given an instance I of srti is solvable in time O(λ2), where λ is the total

length of the preference lists. In this section we describe an O(
√

nλ) algorithm for finding

a strongly stable matching, or reporting none exists, given an instance of srti-ml, where

n is the number of agents.

Algorithm srti-ml-strong is shown in Algorithm 23. In this section the definition of

the terms considered and processed are identical to the corresponding definitions given in

Section 5.4. Similarly for an iteration z during an execution of algorithm srti-ml-strong,

we define Uz, Sz and Tz as in Section 5.4. Finally we also use Pi to represent the head

of an agent pi’s list at the iteration during which pi is considered. We refer to Pi as pi’s

key agents. We again show in this section that Pi is well-defined for each such pi. That

is, we show that the definition of Pi does not depend on a particular execution of the

algorithm. However in contrast to the case for super-stability, a strongly stable matching

for an instance I of srti-ml need not be unique.
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Algorithm srti-ml-strong proceeds as follows: we construct a matching M that is

initially empty. Then for each tie U in the master list in turn we let S denote the set

of agents in U that have a non-empty preference list and who are currently unassigned.

Next we identify the set T , which is constructed from the union of the sets Pi for each

agent pi ∈ S. If the cardinality of the sets S and T are different, then (as we will show)

no strongly stable matching exists. Otherwise a graph G is then built using algorithm

BuildGraph shown in Algorithm 24. The vertex set of G consists of those agents in

S ∪ T . An edge is added between each agent pi ∈ S to each vertex pj ∈ Pi. A maximum

cardinality matching M+ is then constructed in G. If there exists an agent pi ∈ S∪T such

that pi is unassigned in M+ then (as we will show) no strongly stable matching exists,

otherwise we add the pairs in M+ to M . Finally for each agent pi ∈ S, we identify pi’s

assignee pj in M , and then for each strict successor pk of pj on pi’s list we delete the pair

{pi, pk}, where ‘delete the pair’ means to delete pi from pk’s list and vice-versa. Similarly,

for each strict successor pk of pi from pj’s list we delete the pair {pj, pk}.
In the following lemma we show that each agent considered at an iteration z of the

main loop during an execution E is assigned in M+.

Lemma 5.5.1. Let E be an execution of srti-ml-strong for an instance I of srti-ml.

Then at every iteration z of the main loop during E, each agent pi ∈ Sz ∪ Tz is assigned

in M+, or else the algorithm returns null.

Proof. This is immediate, for if an agent in Sz∪Tz is unassigned in M+ then the algorithm

would have returned null at line 12, a contradiction.

We now show that if pi is considered at iteration z, and Pi is the head of pi’s list at

this iteration, then each agent pj in Pi is unassigned.

Lemma 5.5.2. Let E be an execution of srti-ml-strong for an instance I of srti-ml

and let pi ∈ Sz ∪ Tz at some iteration z of E. Let Pi denote the head of pi’s list at the

beginning of iteration z and let pj ∈ Pi. Then pj is unassigned at the beginning of iteration

z.

Proof. The proof is identical to that of Lemma 5.4.2.

In the following proof we show that if pi ∈ Tz, for some iteration z during an execution

E of srti-ml-strong, and if an agent pj ∈ Sz has pi as a key agent, then pj is a key agent

of pi.
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Algorithm 23 srti-ml-strong

1: M := ∅;
2: for each tie U in the master list in turn do

3: S := set of agents in U whose lists are non-empty and are currently unassigned;

4: T :=
⋃

pi∈S Pi; /** Pi denotes the head of pi’s list at this iteration */

5:

6: if |S| 6= |T | then

7: return null;

8:

9: G := BuildGraph(S,T ); /** See Algorithm 24 */

10: M+ := maximum cardinality matching in G;

11: if there exists pi ∈ S ∪ T such that M+(pi) = ∅ then

12: return null;

13:

14: M := M ∪ M+;

15:

16: for each pi ∈ S do

17: pj := M(pi);

18: for each strict successor pk of pj on pi’s list do

19: delete the pair {pi, pk};
20: for each strict successor pk of pi on pj ’s list do

21: delete the pair {pj , pk};
22: return M ;

Algorithm 24 BuildGraph(S, T )

1: V := S ∪ T ;

2: E := ∅
3: for each pi ∈ S do

4: for each pj ∈ Pi do

5: E := E ∪ {{pi, pj}};
6:

7: G := (V, E);

8: return G;
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Lemma 5.5.3. Let E be an execution of srti-ml-strong for an instance I of srti-ml.

Then at each iteration z during E, if pi ∈ Tz and pi ∈ Pj, where pj ∈ Sz, then pj ∈ Pi.

Proof. The proof is identical to that of Lemma 5.4.4.

Now using the lemma above we can obtain the following result.

Lemma 5.5.4. Let E be an execution of srti-ml-strong for an instance I of srti-ml.

If at some iteration z during E, pi becomes assigned to pj, then pj ∈ Pi.

Proof. At iteration z either (i) pi ∈ Sz or (ii) pi ∈ Tz \ Sz.

Case (i): Since pi and pj are assigned to one another in M+, it follows that {pi, pj}
represents an edge in G at iteration z. Hence as pi ∈ Sz, it follows by the construction

of G that pj ∈ Pi.

Case (ii): Again, since pi and pj become assigned at iteration z, it follows that

{pi, pj} represents an edge in G at iteration z. Furthermore as pi ∈ Tz \Sz, it follows

that pj ∈ Sz and pi ∈ Pj . Hence by Lemma 5.5.3, we have that pj ∈ Pi.

Lemma 5.5.4 tells us that no matter which maximum cardinality matching M+ is

chosen at line 10 of srti-ml-strong, the same set of pairs will be deleted at each loop

iteration. We use this observation, together with Lemma 5.5.1 and Lemma 5.5.2, to show

that Pi is well-defined (in the sense described in the second paragraph of this section) for

each pi ∈ P.

Lemma 5.5.5. For each agent pi ∈ P, if pi’s set of key agents Pi is defined then Pi is

well-defined.

Proof. The result follows by an identical argument to the proof of Lemma 5.4.3, together

with the observation that the same set of pairs are deleted no matter which matching M+

is chosen at each iteration for a given execution of the algorithm.

We now show that if pi ∈ Tz, for some iteration z during an execution E of srti-ml-

strong, then all of pi’s key agents are contained in Sz.

Lemma 5.5.6. Let E be an execution of srti-ml-strong for an instance I of srti-ml.

Then at each iteration z during E, if pi ∈ Tz then Pi ⊆ Sz, where Pi is the head of pi’s

list at iteration z.
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Proof. The proof is identical to that of Lemma 5.4.6.

We note here that if pi ∈ Tz and pj ∈ Pi then Lemma 5.5.6 shows that pj ∈ Sz, however

it need not be the case that pi ∈ Pj .

In the following lemma we prove that no pair which belongs to a strongly stable match-

ing is ever deleted by the algorithm.

Lemma 5.5.7. Algorithm srti-ml-strong never deletes a pair {pi, pj} that belongs to a

strongly stable matching.

Proof. The proof is identical to that of Lemma 5.4.7.

In the following lemma we prove that in every strongly stable matching, each agent pi

obtains a key agent.

Lemma 5.5.8. Let pi be an agent whose set of key agents Pi is defined and let M be a

strongly stable matching. Then {pi, pj} ∈ M , for some pj ∈ Pi.

Proof. The proof is identical to that of Lemma 5.4.8.

In the following lemma we prove that a matching output by the algorithm is indeed

strongly stable.

Lemma 5.5.9. A matching returned by srti-ml-strong is strongly stable.

Proof. Let E be an execution of srti-ml-strong for an instance I of srti-ml and let M

be a matching returned at the end of E. Now suppose for a contradiction that M is not

strongly stable. Hence there exists a pair {pi, pj} that blocks M . If the pair {pi, pj} has

been deleted then, without loss of generality, we can assume that pi is assigned in M to

an agent whom he prefers to pj. Hence the pair {pi, pj} does not block M . Therefore, the

pair {pi, pj} has not been deleted. Also pi and pj must be assigned in M , for otherwise the

algorithm would have returned null at line 12. As {pi, pj} blocks M , without loss generality

pi prefers pj to his assignee pk in M . Let z be the iteration of E where pi becomes assigned

to pk. By Lemma 5.5.4, pk ∈ Pi. Hence {pi, pj} has already been deleted prior to iteration

z, a contradiction.

We now show that if, at an iteration z during an execution E of srti-ml-strong, the

size of Sz and Tz are not equal, then no strongly stable matching exists.
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Lemma 5.5.10. If algorithm srti-ml-strong returns null at line 7 then no strongly stable

matching exists.

Proof. Let E be an execution of srti-ml-strong for an instance I of srti-ml. Now

suppose that at some iteration z during E, |Sz| 6= |Tz|, and suppose for a contradiction

that M is a strongly stable matching in I. Consider the following two cases.

Case (i): |Sz| > |Tz|. Then by Lemma 5.5.8 each agent in Sz is assigned to an agent

in Tz in M . However clearly in this case some agent pi ∈ Tz is multiply assigned,

and as such M is not a matching, a contradiction.

Case (ii): |Sz| < |Tz|. Again using Lemma 5.5.8, each agent in pi ∈ Tz is assigned,

in M , to an agent in Pi. Now using Lemma 5.5.6, Pi ⊆ Sz, therefore each such pi

must obtain an agent in Sz in M , which is impossible as |Tz| > |Sz|.

In the following proof we show that if, at an iteration z during an execution E of

srti-ml-strong, some agent pi ∈ Sz ∪ Tz is unassigned in M+ then no strongly stable

matching exists.

Lemma 5.5.11. If algorithm srti-ml-strong returns null at line 12, then no strongly

stable matching exists.

Proof. Let E be an execution of srti-ml-strong for an instance I of srti-ml. Now

suppose for a contradiction that at iteration z of E there exists an agent pi ∈ Sz ∪Tz such

that M+(pi) = ∅, and that M is a strongly stable matching in I. Then since pi ∈ Sz ∪ Tz,

it follows that Pi is defined and non-empty. Hence by Lemma 5.5.8, pi is assigned to an

agent pj in M , where pi ∈ Pj and pj ∈ Pi. Now if pi ∈ Sz then, by definition of Tz, we

have that pj ∈ Tz. Furthermore if pi ∈ Tz then, since pj ∈ Pi, it follows by Lemma 5.5.6,

that pj ∈ Sz. Therefore both pi and pj are represented by vertices in G, and G contains

the edge {pi, pj}. As such if pj is unassigned in M+, we contradict the maximality of M+

by adding the edge {pi, pj} to M+. Therefore pj must be assigned in M+ to some agent

pk. Hence by Lemma 5.5.4, it follows that pk ∈ Pj . Then since {pi, pj} ∈ M and pj is

indifferent between pi and pk, either (i) pk obtains an agent pl strictly better than pj in

M , or (ii) pk obtains an agent pl in M and pl and pj appear in the same tie on the master

list, otherwise {pj , pk} blocks M .
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Case (i): Then pj ∈ Pk by Lemma 5.5.4. Hence the pair {pk, pl} has been deleted.

Thus by Lemma 5.5.7, the pair {pk, pl} cannot belong to any strongly stable match-

ing, a contradiction.

Case (ii): Since pj becomes assigned to pk in M+, there exists an edge {pj , pk} in G.

Also as {pk, pl} ∈ M , by Lemma 5.5.8, it follows that pk ∈ Pl and pl ∈ Pk. Therefore

if pk ∈ Sz, since pl ∈ Pk, it follows that pl ∈ Tz. Similarly if pk ∈ Tz \ Sz then

by Lemma 5.5.6, it follows that pl ∈ Sz, since pl ∈ Pk. Hence G contains the edge

{pk, pl}. Thus pl cannot be unassigned in M+, for otherwise we can augment along

the path {pi, pj}, {pj , pk}, {pk, pl}, increasing the size of M+ and contradicting the

maximality of |M+|.

Let pr denote pl’s assignee in M+, hence there exists an edge {pr, pl} in G. Thus by

Lemma 5.5.4, we have that pr ∈ Pl and pl ∈ Pr. Then pr cannot be unassigned in

M , as Pr is non-empty. Additionally pr cannot obtain an agent worse than pl, for

otherwise {pl, pr} blocks M (as {pl, pk} ∈ M and pl is indifferent between pk and

pr). Also by Case (i), pr cannot obtain an agent better than pl in M . Hence in M ,

pr must be assigned to an agent pw such that pl and pw appear in the same tie on

the master list. Thus by Lemma 5.5.8, pr ∈ Pw and pw ∈ Pr. Therefore if pr ∈ Sz,

then pw ∈ Tz by construction of Tz, and if pr ∈ Tz, then by Lemma 5.5.6, pw ∈ Sz.

As a result there exists an edge {pr, pw} in G. Therefore pw cannot be unassigned

in M+ for otherwise we can increase the size of M+ by augmenting along the path

{pi, pj}, {pj , pk}, {pk, pl}, {pl, pr}, {pr, pw}.

Let px denote pw’s assignee in M+. Clearly if we continue in a manner identical to

the above, since the number of agents is finite, we must reach a point where no such

px exists, a contradiction.

We now bring together Lemma 5.5.10 and Lemma 5.5.11 to obtain the following lemma.

Lemma 5.5.12. If algorithm srti-ml-strong returns null, then no strongly stable match-

ing exists.

The complexity of the algorithm is dominated by finding a maximum matching in the

graph G constructed at each loop iteration. All other operations take a total of O(λ) time,

taken over the algorithm’s entire execution, where λ is the total length of the preference

126



5.5 srti-ml under strong stability Chapter 5. SR with Master Lists

lists. The fastest algorithm for finding a maximum matching in a general graph G = (V,E)

is due to Micali and Vazirani [57], and has time complexity O(
√

|V ||E|). Hence the time

complexity of srti-ml-strong is O(
√

n(m1 + m2 + · · · + mr)), where mz is the number

of edges in Gz, where Gz is the graph at iteration z and r is the total number of loop

iterations. Therefore srti-ml-strong has time complexity O(
√

nλ).

Finally we bring together the time complexity analysis with Lemmas 5.5.9 and 5.5.12

to obtain the following theorem.

Theorem 5.5.13. For a given instance of srti-ml, algorithm srti-ml-strong finds a

strongly stable matching, or reports that none exists, in time O(
√

nλ), where λ is the total

length of the preference lists and n is the number of agents.

127



Chapter 6

Stable Matching Problems with

Symmetric Preferences

6.1 Introduction

In this chapter we study variants of sm, hr and sr with symmetric preferences. An

instance I of a stable matching problem is said to have symmetric preferences when the

rank of each agent pi on pj’s list is equal to that of pj on pi’s list. We denote an instance

of sm with symmetric preferences by sm-sym, with sr-sym and hr-sym being similarly

defined. Figure 6.1 shows the preference lists for an instance I of sm-sym.

Men’s preferences Women’s preferences

m1 : w3 w2 w4 w1 w1 : m2 m3 m4 m1

m2 : w1 w3 w2 w4 w2 : m4 m1 m2 m3

m3 : w4 w1 w3 w2 w3 : m1 m2 m3 m4

m4 : w2 w4 w1 w3 w4 : m3 m4 m1 m2

Figure 6.1: Instance I of sm-sym.

To understand the motivation for symmetric preferences, we consider the more general

problem of sr with globally-ranked pairs (sr-grp) [5]. An instance of sr-grp is a restric-

tion of sr in which preferences are derived from a ranking function rank : E → N that

acts on the edges of an arbitrary graph G = (V,E). An agent pi ∈ V prefers an agent pj

to pk if rank(e) < rank(e′), where e = {pi, pj} and e′ = {pi, pk}. It is known that sr-grp

can be used to model the preferences in a kidney exchange programme [2,65,66]. In such

128



6.1 Introduction Chapter 6. Symmetric Preferences

a programme, there exists a set of patients each with a willing, but incompatible, donor,

who would like to exchange their donor kidney for another, compatible, donor kidney.

When two (donor, patient) pairs are matched together, the transplant is only carried out

after results obtained using expensive last-minute compatibility test are known. As such,

it is advantageous for a doctor (and patient) to use the potential success of a transplant

(which may be estimated by a scoring system taking into account factors such as blood

type, tissue-type etc.) as a criterion for ranking donors and patients. It is easy to see that

this can be achieved using the sr-grp model.

It is straightforward to see that sr-sym is a special case of sr-grp. For, given an

instance I of sr-sym, we create the underlying graph G = (V,E) of I in the usual way,

and we create a rank function r : E → N as follows: for any edge {pi, pj} ∈ E, r({pi, pj})
is the rank of pi on pj’s preference list.

We note that given an instance of sm-sym, the men’s preference lists form a Latin

square S = [si,j] (as seen from the men’s preferences in Figure 6.1). A matrix T = [ti,j]

representing the women’s preference lists can be derived from S as follows: ∀i, j (1 ≤
i, j,≤ n), if si,j = k then tk,j = i, where n is the number of men in I. In the following

lemma we prove that T is also a Latin square.

Lemma 6.1.1. Let S be the Latin square derived from the men’s preference lists for a

given instance I of sm-sym, and let T be derived from S in the following way: for each i

and j (1 ≤ i, j ≤ n) if si,j = k then tk,j = i, where n is the number of men. Then T is

also a Latin square.

Proof. Suppose that T is not a Latin square. Then ti,j = ti,k = l, for some j 6= k. It

follows, by definition of T , that sl,j = sl,k = i, contradicting the fact that S is a Latin

square. Now suppose ti,j = tk,j = l, for some i 6= k. Then similarly, sl,j = i and sl,j = k,

which is impossible. Hence T is a Latin square.

For a given instance of smti, hrt, and srti, we consider two models arising from the

interpretation of an agent’s rank. Let pi be an agent and let Ai denote the set of agents

that pi finds acceptable. Then we denote the set of agents in the rth tie on pi’s list by

Ti,r. For the first model, we define the rank of pj on pi’s list, denoted by rank(pi, pj), to

be k, where pj ∈ Ti,k. In the second model, we define the rank of pj on pi’s list, denoted

by rank(pi, pj), to be 1 + |{pk ∈ Ai : pi strictly prefers pk to pj}|. For example, consider

the preference list for a single man m1 in an smti instance shown in Figure 6.2 below.
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Then in the first model, rank(m1, w1) = 1, rank(m1, w3) = 2, and rank(m1, w8) = 4,

whilst in the second model rank(m1, w1) = 1, rank(m1, w3) = 3, and rank(m1, w8) = 7.

Additionally, we say that an agent pj is in rth place on pi’s list if rank(pi, pj) = r. We

denote an instance of smt with symmetric preferences where ranks are interpreted using

the first model by smt-sym1 (with smti-sym1, hrt-sym1, srt-sym1, and srti-sym1 being

similarly defined). Also, we denote an instance of smt with symmetric preferences whose

ranks are interpreted using the second model by smt-sym2 (again smti-sym2, hrt-sym2,

srt-sym2 and srti-sym2 are similarly defined). Additionally, if a result is established for

a problem that is specified using an instance without the trailing number, e.g smti-sym,

then the result holds regardless of the rank interpretation.

m1 : (w1 w2) w3 (w4 w5 w6) (w7 w8)

Figure 6.2: m1’s preference list.

To understand the motivation behind our first model, we observe that if an agent is

genuinely indifferent between a set of agents, the rank of an agent in a given tie should not

be dependent on the number of agents in preceding tie(s). The second model is analogous

to the convention used in athletics events, whereby if two agents are first to cross the

finishing line, and do so at the same time, they are deemed to be joint first, and the next

person to cross the line is said to be third.

In this chapter we present a range of algorithmic results for stable matching problems

with ties involving symmetric preferences. Some of these result are given in terms of model

1, some in terms of model 2, whilst others hold regardless of the model under consideration.

We firstly observe that given an instance of sri-sym, there exists a simple algorithm

to find a stable matching. We simply assign each agent pi to the first agent pj on his

preference list. It is easy to show that this is indeed a stable matching.

The main results of this chapter are as follows. In Section 6.2.1 we describe a polynomial-

time algorithm that finds a weakly stable matching, given an instance I of srti-sym. In

Section 6.2.2, we show that for an instance I of smti-sym, weakly stable matchings may

have different sizes. We then show in Section 6.2.2 that, given an instance I of smti-sym1,

the problem of determining if a complete weakly stable matching exists is NP-complete.

We give an alternative reduction to prove that the problem of determining if a complete

weakly stable matching exists, given an instance of smti-sym2, is also NP-complete. Next
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we show, in Section 6.2.3 and Section 6.2.4 respectively, that each of the problems of find-

ing a minimum regret weakly stable matching and an egalitarian weakly stable matching,

given an instance of smti-sym1, is NP-hard. Then in Section 6.2.5 we prove that, given

an instance of smti-sym1, the problem of determining if a (man,woman) pair belongs to

a weakly stable matching is NP-complete.

In the remaining sections we describe new algorithms for the problems of finding a

super-stable or strongly stable matching, or reporting that none exists, given instances of

srti-sym and hrt-sym. The algorithms are simpler than, and in certain cases improve

on, the time complexity of the best known algorithms [38,39,45,67]. In Section 6.3.1 and

Section 6.3.2, we give O(λ) algorithms for the problems of finding a super-stable matching,

or reporting that none exists, given an instance of srti-sym and hrt-sym respectively,

where λ is the total length of the preference lists. Then in Section 6.4.1, we give an

O(
√

nλ) algorithm for the problem of finding a strongly stable matching, or reporting

that none exists, given an instance of srti-sym, where n is the number of agents. Finally

in Section 6.4.2, we give an O(
√

Cλ) algorithm for finding a strongly stable matching,

or reporting that none exists, given an instance of hrt-sym, where C is the sum of the

hospital capacities.

We note that a restriction of the sr-grp model is described by Arkin et al. [8] (devel-

oped independently from the model presented in this chapter). In their paper the authors

describe a model of srti involving ‘geometric’ preferences, whereby each agent’s preference

list is represented as a set of points in a metric space, with the distance between each pair

of points indicating the mutual preference between two agents. An algorithm is presented

that finds a weakly stable matching in polynomial-time, given an instance of srti with

geometric preferences. Furthermore, polynomial-time algorithms are also presented for

each of the problems of finding a strongly stable and super-stable matching, or reporting

that none exists, given an instance of srti with geometric preferences. The author also

provides a description of an algorithm for a minimum regret weakly stable matching (the

actual stability definition to which the authors refer for the minimum regret problem is

not clear, however we assume the matching is a minimum regret weakly stable matching).

However, the problem described does not correspond to the definition of minimum regret

widely used in the literature [15,25,26].

It can be easily shown that an instance of sr with geometric preferences described by

Arkin et al. need not have symmetric preferences. Consider a triangle in the plane with
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vertices u, v, w, where d(u, v) = 1, d(u,w) = 2 and d(v,w) = 2.5. This gives rise to the

following non-symmetric preference lists:

u : v w

v : u w

w : u v

Hence the model considered by Arkin et al. is a special case of sr-grp which is distinct

from the sr-sym model considered in this chapter.

6.2 Weakly stable matchings

6.2.1 Finding a weakly stable matching in srti-sym

For an instance of srt, it is known that the problem of finding a weakly stable matching

is NP-hard [38, 62] (see Section 1.4.4). In this section we show that, by contrast, the

problem of finding a weakly stable matching for an instance of srti-sym is polynomial-

time solvable.

Consider algorithm srti-sym-weak shown in Algorithm 25. Let P = {p1, p2, . . . , pn}
be the set of agents for an instance I of srti-sym, and let Pi,r denote the set of agents in

rth place on pi’s list. Furthermore, in model one, r∗ is defined to be the maximum number

of ties on any agent’s list, and in model two, r∗ is defined to be the maximum length of any

agent’s list. Then for each r (1 ≤ r ≤ r∗), we construct a graph Gr, whose vertex set Vr

consists of the union of the set of agents in Pi,r who are unmatched, for each agent pi ∈ P.

The edge set of Gr comprises edges of the form {pi, pj}, where pi ∈ Vr and pj ∈ Pi,r and

pj is unmatched in M . We then find a maximal matching Mr in Gr, and add Mr to M .

We now show that the matching returned by srti-sym-weak is weakly stable. In the

proof of the following lemma, we say that a pair {pi, pj} is considered at iteration r when

pj ∈ Pi,r (and since the preference lists are symmetric, it follows that pi ∈ Pj,r).

Lemma 6.2.1. The matching returned by srti-sym-weak is weakly stable.

Proof. Let E be an execution of srti-sym-weak for an instance I of srti-sym and let M

be the matching returned at the end of E. Now suppose for a contradiction that M is

not weakly stable. Hence there exists a pair {pi, pj} that blocks M . Let r be the unique

iteration of E where the pair {pi, pj} is considered. We identify the following two cases.
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Algorithm 25 srti-sym-weak

1: M := ∅;
2: r := 1;

3: while r ≤ r∗ do

4: Vr :=
⋃

pi∈P
{pi ∈ Pi,r : M(pi) = ∅};

5: Er := ∅;
6: for each agent pi ∈ Vr do

7: for each agent pj ∈ Pi,r ∩ Vr do

8: Er := Er ∪ {{pi, pj}};
9: Gr := (Vr, Er);

10: Mr := maximal matching in Gr;

11: M := M ∪ Mr;

12: r = r + 1;

13: return M ;

Case (i): pi obtains an agent pk in M such that pi strictly prefers pj to pk. Let

r′ > r be the iteration of E where pi and pk become assigned. We observe that pj

must be unassigned at the beginning of iteration r, for otherwise pj became assigned

at an iteration prior to r, and so is assigned to an agent strictly better than pi, as

such {pi, pj} does not block M . Now as pi is unassigned at the beginning of iteration

r′ (this follows from the fact that pi and pk become assigned at iteration r′, and so

both must be unassigned at the beginning of iteration r′ by the construction of Gr),

pi must have been unassigned at the end of iteration r. Hence if pj is unassigned

at the end of iteration r, we can add {pi, pj} to Mr contradicting the maximality of

Mr. Therefore pj must have become assigned to some agent pl at iteration r, and so

rank(pi, pj) = rank(pj, pl). Thus {pi, pj} does not block M , a contradiction.

Case (ii): pi is unassigned in M (and so is unassigned at the end of iteration r). Then

as in Case (i), pj must be unassigned at the beginning of iteration r. Furthermore pj

must become assigned to some agent pk during iteration r, for otherwise we can add

the pair {pi, pj} to Mr, contradicting the maximality of Mr. Hence pj is indifferent

between pi and pk, therefore {pi, pj} does not block M , a contradiction.

We observe that the time complexity of the algorithm is dominated by finding a max-

imal matching in the graph Gr; all other operations take time O(λ), where λ is the total

length of the preference lists. We can find a maximal matching in Gr in time O(|Er|) using
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a straightforward greedy algorithm. Therefore any two graphs constructed have disjoint

sets of vertices and edges, the overall time complexity of finding all maximal matchings

is O(λ). Hence the overall time complexity for the algorithm is O(λ). We use this result

together with Lemma 6.2.1 to obtain the following theorem.

Theorem 6.2.2. For a given instance of srti-sym, algorithm srti-sym-weak returns a

weakly stable matching in time O(λ), where λ is the total length of the preference lists.

6.2.2 Finding a complete weakly stable matching in smti-sym

In this section we focus on smti-sym. We show that weakly stable matchings may be

of different sizes, and that the problem of deciding whether a complete weakly stable

matching exists is NP-complete. We observe that these results hold, by restriction,

for srti-sym and hrt-sym. First consider instance I1 of smti-sym1 shown in Fig-

ure 6.3. Here two weakly stable matchings are M1 = {(m1, w1), (m3, w2)} and M ′
1 =

{(m1, w3), (m2, w1), (m3, w2)}. To show that weakly stable matchings can be of differ-

ent sizes for an instance of smti-sym2, consider instance I2 shown in Figure 6.4. In

I2, two possible weakly stable matchings are M2 = {(m1, w1), (m3, w2), (m4, w4)} and

M ′
2 = {(m1, w3), (m2, w1), (m3, w2), (m4, w4)}. Now consider the decision problem com-

smti-sym1 defined as follows (com-smti-sym2 can be similarly defined):

Name : com-smti-sym1

Instance: An smti-sym1 instance I.

Question: Does I admit a complete weakly stable matching?

Men’s preferences Women’s preferences

m1 : (w1 w2) w3 w1 : (m1 m2)

m2 : w1 w2 : (m1 m3)

m3 : (w2 w3) w3 : m3 m1

Figure 6.3: Instance I1 of smti-sym1.

In the following sections we show that both com-smti-sym1 and com-smti-sym2 are

NP-complete.
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Men’s preferences Women’s preferences

m1 : (w1 w2) w3 w1 : (m1 m2)

m2 : w1 w2 : (m1 m3)

m3 : (w2 w3) w3 : (m3 m4) m1

m4 : (w3 w4) w4 : m4

Figure 6.4: Instance I2 of smti-sym2.

First model

Here we show that the problem com-smti-sym1 is NP-complete using a reduction from

exact-mm in subdivision graphs, which was shown to be NP-complete in Section 2.2.2.

Theorem 6.2.3. com-smti-sym1 is NP-complete.

Proof. Clearly com-smti-sym1 is in NP. To prove that com-smti-sym1 is NP-hard, we

reduce from exact-mm in subdivision graphs. Let G = (V,E) (a subdivision graph of some

graph G′), and K (a positive integer), be an instance of exact-mm. Suppose that V =

U ∪ W is a bipartition of G, where U = {m1,m2, . . . ,mn1
} and W = {w1, w2, . . . , wn2

}.
Denote the set of vertices adjacent to a vertex mi ∈ U in G by Ui and similarly the set of

vertices adjacent to wi ∈ W in G by Wi.

We construct an instance I of com-smti-sym1 as follows: let U ∪ X ∪ A ∪ B be the

set of men and W ∪ Y ∪ A′ ∪ B′ be the set of women, where X = {x1, x2, . . . , xn2−K},
Y = {y1, y2, . . . , yn1−K}, A = {a1, a2, . . . , aK}, B = {b1, b2, . . . , bK}, A′ = {a′1, a′2, . . . , a′K}
and B′ = {b′1, b′2, . . . , b′K}. The preference lists of I are shown in Figure 6.5. It may

be verified that I is an instance of smti-sym1. We claim that G has an exact maximal

matching of size K if and only if I admits a complete weakly stable matching.

Suppose G has a maximal matching M , where |M | = K. We construct a matching M ′

in I as follows. Initially let M ′ = M . There remain n1−K men in U that are not assigned

to women in W in M ′; denote these men by mki
(1 ≤ i ≤ n1 − K) and add (mki

, yi) to

M ′. Similarly there remain n2 −K women in W that are not assigned to men in U in M ′;

denote these women by wlj (1 ≤ j ≤ n2 − K), and add (xj , wlj ) to M ′. Finally we add

(ai, a
′
i) and (bi, b

′
i) (1 ≤ i ≤ K) to M ′. It is easy to verify that M ′ is a complete matching,

and it remains to prove that M ′ is weakly stable.

Suppose for a contradiction that M ′ is not weakly stable. Hence there exists a pair

that blocks M ′. We note that since the matching is complete, no person in A∪B∪A′∪B′
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Men’s preferences

mi : (Ui) (y1 y2 . . . yn1−K) (1 ≤ i ≤ n1)

xi : b′i (W ) (1 ≤ i ≤ n2 − K)

ai : (yi a′i) (1 ≤ i ≤ K)

bi : b′i (1 ≤ i ≤ K)

Women’s preferences

wj : (Wj) (x1 x2 . . . xn2−K) (1 ≤ j ≤ n2)

yj : aj (U) (1 ≤ j ≤ n1 − K)

a′j : aj (1 ≤ j ≤ K)

b′j : (bj xj) (1 ≤ j ≤ K)

Figure 6.5: Preference lists for the constructed instance of com-smti-sym1.

can be involved in a blocking pair and hence neither can each person in X ∪Y . Therefore

any pair that blocks M ′ must have the form (mi, wj), where mi ∈ U and wj ∈ W . Hence

(mi, yl) ∈ M ′ and (xk, wj) ∈ M ′, for some xk ∈ X and yl ∈ Y , so it follows that mi and

wj are unassigned in M . However if this is the case then we can add (mi, wj) to M , which

contradicts the maximality of M .

Conversely suppose that M ′ is a complete weakly stable matching in I. Let M =

M ′ ∩ E. We show that |M | = K. First suppose that |M | < K. Thus as M ′ is a complete

weakly stable matching, at least n1 − K + 1 men in U must be assigned in M ′ to women

in Y , which is impossible as there are only n1 − K women in Y . Now suppose |M | > K.

Then at most n1 − K − 1 women in Y are assigned in M ′ to men in U . Since M ′ is

complete, there exists at least one women in Y assigned in M ′ to a man in A. Thus at

most K − 1 men in A are assigned in M ′ to women in A′. Hence only K − 1 women in A′

are assigned in M ′, contradicting the fact that M ′ is a complete weakly stable matching.

Finally suppose that the matching M is not maximal in G. Hence there exists an edge

(mi, wj) in G, such that no edge in M is incident to mi or wj . Therefore in M ′, mi is

assigned to some woman yl ∈ Y , and wj is assigned to some man xk ∈ X. Hence (mi, wj)

blocks M ′ in I, contradicting the weak stability of M ′. Therefore M is indeed maximal in

G.

The following remark is used in Sections 6.2.3, 6.2.4 and 6.2.5.
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Remark 6.2.4. The instance of smti-sym1 constructed in the proof of Theorem 6.2.3 can

be extended to that shown in Figure 6.6 with straightforward modifications to the proof

of correctness. This allows us to assume that each man and woman has exactly two ties

Men’s preferences

mi : (Ui) (y1 y2 . . . yn1−K) (1 ≤ i ≤ n1)

xi : a′i (W ) (1 ≤ i ≤ n2 − K)

ai : (yi a′i) c′i (1 ≤ i ≤ K)

bi : b′i c′i (1 ≤ i ≤ K)

ci : c′i (a′i b′i) (1 ≤ i ≤ K)

Women’s preferences

wj : (Wj) (x1 x2 . . . xn2−K) (1 ≤ j ≤ n2)

yj : aj (U) (1 ≤ j ≤ n1 − K)

a′j : (xj aj) cj (1 ≤ j ≤ K)

b′j : bj cj (1 ≤ j ≤ K)

c′j : cj (aj bj) (1 ≤ j ≤ K)

Figure 6.6: Preference lists for the extended constructed instance of com-smti-sym1.

on their list.

Second model

We now show that if the second interpretation of an agent’s rank is used, i.e. rank(pi, pj) =

1 + |{pk ∈ Ai : pi prefers pk to pj}|, the problem of deciding whether a complete weakly

stable matching exists remains NP-complete.

Theorem 6.2.5. com-smti-sym2 is NP-complete.

Proof. Clearly com-smti-sym2 is in NP. To prove that com-smti-sym2 is NP-hard we

reduce from exact-mm restricted to subdivision graphs of cubic graphs, which as noted

in Section 2.2.2 is NP-complete. Let G = (V,E) (a subdivision graph of some cubic graph

G′), and K (a positive integer), be an instance of exact-mm. Suppose that V = U ∪ W

is a bipartition of G, where U = {m1,m2, . . . ,mn1
} and W = {w1, w2, . . . , wn2

}. Without

loss of generality suppose that each vertex in U has degree 3 and each vertex in W has
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degree 2. Then we denote the set of vertices adjacent to a vertex mi ∈ U in G by Ui and

similarly the set of vertices adjacent to wi ∈ W in G by Wi.

We construct an instance I of com-smti-sym2 as follows: let U ∪ X ∪ A ∪ B ∪ C ∪
D ∪ E be the set of men and W ∪ Y ∪ A′ ∪ B′ ∪ C ′ ∪ D′ ∪ E′ be the set of women,

where X = {x1, x2, . . . , xn2−K}, Y = {y1, y2, . . . , yn1−K}, A = {a1, a2, . . . , aK}, A′ =

{a′1, a′2, . . . , a′K}, B = {b1, b2, . . . , bK}, B′ = {b′1, b′2, . . . , b′K}, C = {c1, c2, . . . , cK}, C ′ =

{c′1, c′2, . . . , c′K} D = {d1, d2, . . . , dK}, D′ = {d′1, d′2, . . . , d′K}, E = {e1, e2, . . . , eK}, and

E′ = {e′1, e′2, . . . , e′K}. The preference lists of I are shown in Figure 6.7. It may be verified

that I is an instance of smti-sym2. We claim that G has a maximal matching of size K

if and only if I admits a complete weakly stable matching.

Men’s preferences

mi : (Ui) (y1 y2 . . . yn1−K) (1 ≤ i ≤ n1)

xi : (d′i e′i) (W ) (1 ≤ i ≤ n2 − K)

ai : (yi a′i) (1 ≤ i ≤ K)

bi : (yi b′i) (1 ≤ i ≤ K)

ci : (yi c′i) (1 ≤ i ≤ K)

di : d′i (1 ≤ i ≤ K)

ei : e′i (1 ≤ i ≤ K)

Women’s preferences

wj : (Wj) (x1 x2 . . . xn2−K) (1 ≤ j ≤ n2)

yj : (aj bj cj) (U) (1 ≤ j ≤ n1 − K)

d′j : (xj dj) (1 ≤ j ≤ K)

e′j : (xj ej) (1 ≤ j ≤ K)

a′j : aj (1 ≤ j ≤ K)

b′j : bj (1 ≤ j ≤ K)

c′j : cj (1 ≤ j ≤ K)

Figure 6.7: Preference lists for the constructed instance of com-smti-sym2.

Suppose G has a maximal matching M , where |M | = K. We construct a matching M ′

in I as follows. Initially let M ′ = M . There remain n1−K men in U that are not assigned

to women in W in M ′; denote these men by mki
(1 ≤ i ≤ n1 − K) and add (mki

, yi) to

M ′. Similarly there remain n2 −K women in W that are not assigned to men in U in M ′;
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denote these women by wlj (1 ≤ j ≤ n2 − K), and add (xj , wlj ) to M ′. Finally we add

(ai, a
′
i), (bi, b

′
i), (ci, c

′
i), (di, d

′
i), (ei, e

′
i) (1 ≤ i ≤ K) to M ′. It is easy to verify that M ′ is

complete, and it remains to prove that M ′ is weakly stable.

We first observe that each person in A∪A′ ∪B ∪B′∪C ∪C ′∪D∪D′∪E ∪E′ obtains

their first-choice partner so cannot be involved in a blocking pair. Hence each person in

X ∪ Y also cannot be involved in a blocking pair. Therefore any pair that blocks M must

have the form (mi, wj), where mi ∈ U and wj ∈ W . Suppose that (mi, wj) blocks M ′.

Then (mi, yl) ∈ M ′ for some yl ∈ Y and (xk, wj) ∈ M ′ for some xk ∈ X. Therefore in

M , each of mi and wj is unassigned, and so we can add (mi, wj) to M , contradicting the

maximality of M .

Conversely suppose that M ′ is a complete weakly stable matching in I ′. Let M =

M ′ ∩ E. We show that M is a maximal matching in G and that |M | = K. First suppose

|M | < K. Then as M ′ is complete, at least n1 − K + 1 men in U are assigned in M ′ to

women in Y , which is impossible as there are only n1 − K women in Y . Now suppose

|M | > K. Then at most n1−K−1 men in U are assigned in M ′ to women in Y . Therefore

at least one woman yj ∈ Y is assigned in M ′ to a man q ∈ A∪B∪C. Suppose that q ∈ A.

Then at most K − 1 men in A are assigned in M ′ to women in A′. Hence there exists a

woman in A′ who is unassigned in M ′, contradicting the fact that M ′ is a complete weakly

stable matching. A similar argument can be used if q ∈ B ∪ C. Therefore |M | = K as

required.

Finally we prove that M is indeed a maximal matching. For, suppose not. Hence there

exists an edge (mi, wj) ∈ E such that each of mi and wj are unassigned in M . Therefore,

in M ′, mi is assigned to a woman yl ∈ Y and wj is assigned to a man xk ∈ X, as M ′ is

complete. Hence the pair (mi, wj) blocks M ′, a contradiction.

6.2.3 Finding a minimum regret weakly stable matching in smt-sym1

We recall from Section 1.1.3 that a matching M has minimum regret if

r(M) = max
p∈M∪W

costM (p)

is minimised over all weakly stable matchings, given an instance I of smt-sym1. It was

shown in [54] that the problem of finding a minimum regret weakly stable matching is

NP-hard, given an instance of smt. In this section we prove that the same is true even

for smt-sym1.
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Now consider the following decision problem:

Name : regret-smt-sym1-d

Instance: An smt-sym instance I and a positive integer K.

Question: Does I admit a weakly stable matching M with r(M) ≤ K?

We prove in the following theorem that regret-smt-sym1-d is NP-complete.

Theorem 6.2.6. regret-smt-sym1-d is NP-complete.

Proof. Clearly regret-smt-sym1-d is in NP. To show that the problem is NP-hard, we

reduce from the restriction of com-smti-sym1 in which each person’s list has exactly two

ties, which is NP-complete by Theorem 6.2.3 and Remark 6.2.4. Let I be such an instance

of smti-sym1, where U = {m1,m2, . . . ,mn1
} is the set of men and W = {w1, w2, . . . , wn2

}
is the set of women in I. Furthermore we lose no generality (by Theorem 6.2.3 and Remark

6.2.4) by assuming that n1 = n2 = n. For each man mi ∈ U (1 ≤ i ≤ n), we denote mi’s

preference list in I by Ui. Similarly for each woman wj ∈ W (1 ≤ j ≤ n), we denote wj ’s

preference list in I by Wj.

We construct an instance I ′ of smt-sym1 as follows: let U be the set of men and W

be the set of women (as in instance I). The preference lists in I ′ are shown in Figure 6.8.

We claim that I has a complete weakly stable matching M if and only if I ′ has a weakly

stable matching M ′ where r(M ′) ≤ 2.

Men’s preferences

mi : Ui (W \ Ui) (1 ≤ i ≤ n)

Women’s preferences

wj : Wj (U \ Wj) (1 ≤ j ≤ n)

Figure 6.8: Preference lists for the constructed instance of regret-smt-sym1-d.

Suppose that M is a complete weakly stable matching in I. Let M ′ = M . Then clearly

M ′ is also weakly stable in I ′. Additionally each man and woman must have a partner in

Ui and Wj respectively. Therefore r(M ′) ≤ 2, as required.

Conversely suppose that M ′ is a weakly stable matching in I ′ such that r(M ′) ≤ 2.

Let M = M ′. Then clearly each man and woman in U ∪ W is assigned in M , and has a
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partner in Ui and Wj respectively. Therefore as M ′ is weakly stable in I ′, it follows that

M is weakly stable in I, as required.

6.2.4 Finding an egalitarian weakly stable matching in smt-sym

We first recall from Section 1.1.3 that an egalitarian weakly stable matching M is a weakly

stable matching such that

c(M) =
∑

p∈M∪W

costM (p)

is minimised over all weakly stable matchings in I. It was shown in [54] that the problem

of finding an egalitarian weakly stable matching is NP-hard, given an instance of smt. In

this section we show that the same is true even for smt-sym1.

To prove that the problem of finding an egalitarian weakly stable matching is NP-hard,

we observe a result of Gergely [23], shown in Theorem 6.2.7, relating to diagonalized Latin

squares. A transversal of a Latin square A is a set S of n distinct entries ai,j of A such

that |{i : ai,j ∈ S}| = n and |{j : ai,j ∈ S}| = n. A Latin square is said to be diagonalized

if the main diagonal is a transversal.

Theorem 6.2.7 (Gergely [23]). For any integer n ≥ 3, there exists a diagonalized Latin

square of order n having a transversal which has no common entry with the main diagonal.

Now consider the following decision problem:

Name : egal-smt-sym1-d

Instance: An smt-sym1 instance I and a positive integer K.

Question: Does I admit a weakly stable matching M with c(M) ≤ K?

We prove in the following theorem that egal-smt-sym1-d is NP-complete.

Theorem 6.2.8. egal-smt-sym1-d is NP-complete.

Proof. Clearly egal-smt-sym1-d is in NP. To show that the problem is NP-hard, we

reduce from the restriction of com-smti-sym1 in which each person’s list has exactly two

ties, which is NP-complete by Theorem 6.2.3 and Remark 6.2.4. Let I be such an instance

of smti-sym1 where U = {m1,m2, . . . ,mn1
} is the set of men and W = {w1, w2, . . . , wn2

}
is the set of women. Furthermore we lose no generality (by Theorem 6.2.3 and Remark

6.2.4) by assuming that n1 = n2 = n. For each man mi ∈ U (1 ≤ i ≤ n) we denote mi’s

preference list in I by Ui. Similarly for each woman wj ∈ W (1 ≤ j ≤ n) we denote wj ’s

preference list in I by Wj.
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We construct an instance I ′ of smt-sym1 as follows: let U ∪ X ∪ {p} be the set

of men and let W ∪ Y ∪ {q} be the set of women, where X = {x1, x2, . . . , xn} and Y =

{y1, y2, . . . , yn}. Then we construct the preference lists in I ′ by considering the diagonalized

Latin square of order n, as constructed using Gergely’s method [23] (we note that Gergely’s

construction is polynomial-time computable). Let S be the constructed Latin square of

order n (an example of such a Latin square for n = 8 is shown in Figure 6.10). We first

ensure that the main diagonal in S has entries in the order 1, 2, . . . , n; this can be achieved

by simply swapping symbols in S, e.g. in the Latin square D in Figure 6.10, we apply

the permutations 〈1〉, 〈2, 4, 5, 3〉, 〈6〉, 〈7, 8〉 to obtain the desired Latin square as shown

in Figure 6.11. Next we construct a Latin square T from S using the method given in

Lemma 6.1.1. It is straightforward to verify that T is diagonalized with elements in order

1, 2, . . . , n in the main diagonal. We then use S and T to construct the preference lists as

shown in Figure 6.9. By the construction of T from S and by inspection of the remaining

preference list entries, we observe that I ′ is an instance of smt-sym1 with symmetric

preferences. Let K = 2(3n + 1). We claim that I has a complete weakly stable matching

M if and only if I ′ has a weakly stable matching M ′ where c(M ′) ≤ K.

Suppose that M is a complete weakly stable matching in I. Then we construct a

matching M ′ in I ′ as follows: M ′ = M ∪{(p, q)}∪{(xi, yi) : 1 ≤ i ≤ n}. Then clearly M ′ is

weakly stable in I ′, as M is weakly stable in I and every person in X∪Y ∪{p, q} is assigned

to their first-choice partner. Also, each person ai ∈ U ∪ W has costM ′(ai) ≤ 2, and each

person aj ∈ X∪Y ∪{p, q} has costM ′(aj) = 1. Therefore c(M ′) ≤ (2n+n+1)+(2n+n+1) =

2(3n + 1) = K.

Conversely suppose that M ′ is a weakly stable matching in I ′ such that c(M ′) ≤ K.

We observe that p and q are assigned to one another in every weakly stable matching and

also that xi is assigned to yi (1 ≤ i ≤ n) in every weakly stable matching. Hence each man

mi is assigned in M ′ to a woman in Ui or a woman in W \ Ui. Now suppose there exists

a man mk ∈ U , such that M ′(mk) ∈ W \ Uk. Then costM ′(mk) = n + 3, and since the

preference lists are symmetric, costM ′(M ′(mk)) = n + 3. Hence c(M ′) ≥ ((n + 3) + (n −
1)+n+1)+((n+3)+(n−1)+n+1) = 3n+3+3n+3 = 6(n+1), contradicting the fact

that that c(M ′) ≤ K. Thus each man mi ∈ U and woman wj ∈ W must be assigned to a

partner in Ui and Wj respectively. Now let M = M ′ \ ({(p, q)} ∪ {(xi, yi) : 1 ≤ i ≤ n}).
Then as each person ai ∈ U ∪W is assigned to a partner in Ui ∪Wi in M and since M ′ is

weakly stable in I ′, it follows that M is a complete weakly stable matching in I.
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Men’s preferences

mi : Ui (y1 q) y2 . . . yn (W \ Ui) (1 ≤ i ≤ n)

x1 : y1 q (W ) ys1,2
ys1,3

ys1,4
. . . ys1,n

x2 : y2 q ys2,1
(W ) ys2,3

ys2,4
. . . ys2,n

x3 : y3 q ys3,1
ys3,2

(W ) ys3,4
. . . ys3,n

...

xn : yn q ysn,1
ysn,2

ysn,3
ysn,4

. . . (W )

p : q (Y ) (W )

Women’s preferences

wj : Wj (x1 p) x2 . . . xn (U \ Wj) (1 ≤ j ≤ n)

y1 : x1 p (U) xt1,2
xt1,3

xt1,4
. . . xt1,n

y2 : x2 p xt2,1
(U) xt2,3

xt2,4
. . . xt2,n

y3 : x3 p xt3,1
xt3,2

(U) xt3,4
. . . xt3,n

...

yn : xn p xtn,1
xtn,2

xtn,3
xtn,4

. . . (U)

q : p (X) (U)

Figure 6.9: Preference lists for the constructed instance of egal-smt-sym1-d.

6.2.5 Finding weakly stable pairs in smt-sym

In this section we consider the problem of determining if, given an instance I of smt-sym1

and a (man,woman) pair (mi, wj), there exists a weakly stable matching M in I such that

(mi, wj) ∈ M . This problem was shown to be NP-complete by Manlove et al. [54] given

an instance of smt . We show that this NP-completeness result holds even in the presence

of symmetric preference lists. Consider the following decision problem:

Name : pair-smt-sym1-d

Instance: An smti-sym instance I and a (man,woman) pair (mi, wj).

Question: Does there exists a weakly stable matching M in I

such that (mi, wj) ∈ M?

We prove in the following theorem that pair-smt-sym1-d is NP-complete.

Theorem 6.2.9. pair-smt-sym1-d is NP-complete.
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Figure 6.10: Latin square D.
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Figure 6.11: D after the swap.

Proof. Clearly pair-smt-sym1-d is in NP. To show that the problem is NP-hard, we

reduce from the restriction of com-smti-sym1 in which each person’s list has exactly two

ties, which is NP-complete by Theorem 6.2.3 and Remark 6.2.4. Let I be such an instance

of smti-sym1, where U = {m1,m2, . . . ,mn1
} is the set of men and W = {w1, w2, . . . , wn2

}
is the set of women. Furthermore, we lose no generality (by Theorem 6.2.3 and Remark

6.2.4) by assuming that n1 = n2 = n. For each man mi ∈ U (1 ≤ i ≤ n) we denote mi’s

preference list in I by Ui. Similarly for each woman wj ∈ W (1 ≤ j ≤ n) we denote wj ’s

preference list in I by Wj.

We construct an instance I ′ of smt-sym1 as follows: let U ∪{x, a, b} be the set of men

and W ∪{y, a′, b′} be the set of women. The preference lists in I ′ are shown in Figure 6.12.

It is straightforward to verify that I ′ is an instance of smt-sym1. We claim that I has a

complete weakly stable matching M if and only if there exists a weakly stable matching

M ′ in I ′ such that (x, y) ∈ M ′.

Suppose that M is a complete weakly stable matching in I. Then we construct a

matching M ′ in I ′ as follows: M ′ = M ∪{(x, y), (a, a′), (b, b′)}. Now as M is weakly stable

in I and each of a and b have their first-choice women in I ′, it follows that x cannot be

involved in a blocking pair of M ′ in I, as a′, b′ and each woman in W has a partner in M ′

whom they prefer to x. Hence M ′ is a weakly stable matching in I ′ and (x, y) ∈ M ′ as

required.

Conversely suppose that M ′ is a weakly stable matching in I ′ such that (x, y) ∈ M ′.

It follows that (a, a′) ∈ M ′, for otherwise (a, a′) blocks M ′ in I ′. Also it follows that

(b, b′) ∈ M ′. Now let M = M ′ \ {(x, y), (a, a′), (b, b′)}. Then each man mi ∈ U cannot be
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Men’s preferences

mi : Ui (y a′ b′) (W \ Ui) (1 ≤ i ≤ n)

x : a′ b′ (W ) y

a : (y a′) b′ (W )

b : b′ (y a′) (W )

Women’s preferences

wj : Wj (x a b) (U \ Wj) (1 ≤ j ≤ n)

y : a b (U) x

a′ : (x a) b (U)

b′ : b (x a) (U)

Figure 6.12: Preference lists for the constructed instance of pair-smt-sym1-d.

assigned to a woman in W \Ui, for otherwise the pair (mi, y) blocks M ′. Hence each such

man mi must be assigned to a woman in Ui. Therefore M is a complete weakly stable

matching in I.

6.3 Super-stable matchings

6.3.1 The case of srti-sym

In this section we describe a polynomial-time algorithm for finding a super-stable matching,

or reporting that none exists, given an instance of srti-sym. The algorithm has time

complexity identical to the algorithm due to Irving and Manlove [38] for the general case.

However, the algorithm in this section is much simpler and involves only one phase, as

opposed to two phases required in the general case.

In this section we use Pi to denote the tie in first place on pi’s list (this may be a tie of

size 1, representing a single agent). The algorithm srti-sym-super (shown in Algorithm

26) proceeds as follows: for each agent pi ∈ P, we first check that Pi contains exactly one

agent; if this is not the case then (as we will show), no super-stable matching exists. We

then construct the set T from the union of the sets Pi, for each pi ∈ P. If |T | is not equal

to n, then at least two people have the same agent at the head of their list and (as we will

show) no super-stable matching exists. Otherwise we add {pi, pj} to M for each pj ∈ Pi.
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Algorithm 26 srti-sym-super

1: for each pi ∈ P do

2: if |Pi| > 1 then

3: return null;

4: T := ∪pi∈PPi;

5: if |T | 6= n then

6: return null;

7: M := {{pi, pj} : pi ∈ P ∧ pj ∈ Pi};
8: return M ;

Lemma 6.3.1. If algorithm srti-sym-super returns null, then no super-stable matching

exists, otherwise the matching output by the algorithm is a super-stable matching.

Proof. Let I be an instance of srti-sym. We first show that in every super-stable match-

ing, pi obtains an agent in Pi. Clearly pi cannot obtain an agent better than those in Pi

(as Pi is the tie in first place of pi’s list). Now suppose pi obtains an agent pj worse than

those in Pi. Then each agent pk ∈ Pi must obtain an agent strictly better than pi in M ,

for otherwise {pi, pk} blocks M . However pi must also be at the head of pk’s list as the

preferences are symmetric. Therefore pk cannot obtain an agent strictly better than pi.

Let E be an execution of srti-sym-super for I. Now suppose that during E the

algorithm returns null when |Pi| > 1, for some pi ∈ P. Let M ′ be a super-stable matching

in I. By the result above, pi obtains an agent pj ∈ Pi in M ′. Hence there exists an agent

pk ∈ Pi\{pj} such that pk must obtain an agent strictly better than pi in M ′, for otherwise

{pi, pk} blocks M ′. However since rank(pi, pk) = 1 and the preference lists are symmetric,

it follows that rank(pk, pi) = 1. Therefore pk cannot obtain an agent strictly better than

pi in M ′, and so there exists no super-stable matching in this case.

Now suppose that during E the algorithm returns null when |T | 6= n. Again let M be

a super-stable matching in I. Since |T | 6= n, it follows that there exist two agents pi and

pj such that pk ∈ Pi and pk ∈ Pj . Then as the algorithm did not return null at line 3, we

have that |Pi| = |Pj | = 1. Hence by the result first paragraph (i.e. an agent px is assigned

to an agent in Px in every super-stable matching), both pi and pj obtain pk in M ′, which

is impossible. Hence no super-stable matching exists.

Let M be the assignment output by the algorithm. Then as each agent is assigned to

his first-choice agent and no two agents share the same agent at the head of their list (for

otherwise the algorithm would have returned null at line 6), M is a matching.
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Finally suppose that M is not super-stable and that the pair {pi, pj} blocks M . We

first observe that each agent must be assigned in M (as the algorithm did not return

null, hence each agent is assigned to the single agent at the head of his list). Hence pj is

the single agent at the head of pi’s list and pi is the single agent at the head of pj’s list.

Therefore {pi, pj} ∈ M . Thus {pi, pj} does not block M .

It is easy to verify that the algorithm runs in time linear in the size of the problem

instance. We thus obtain the following theorem.

Theorem 6.3.2. For a given instance of srti-sym, algorithm srti-sym-super returns a

super-stable matching, or reports that none exists, in time O(λ), where λ is the total length

of the preference lists.

6.3.2 The case of hrt-sym

In this section we present an algorithm hrt-sym-super that finds a super-stable matching,

or reports that none exists, given an instance of hrt-sym. The algorithm is similar to srti-

sym-super shown in Section 6.3.1. Again the algorithm has an identical time complexity

to the best known algorithm by Irving et al. [39] for the general case. However, again our

algorithm is simpler and avoids the complex implementation issues associated with the

algorithm for the general case.

Let R = {r1, r2, . . . , rn1
} be the set of residents and H = {h1, h2, . . . , hn2

} be the set

of hospitals for an instance I of hrt-sym. We use Ri to denote the set of hospitals in first

place on a resident ri’s preference list. Algorithm hrt-sym-super is shown in Algorithm

27. The algorithm proceeds as follows: for each agent ri ∈ R, if Ri contains more than

one hospital, then (as we will show) no super-stable matching exists. We then construct

H from the union of the sets Ri, for each ri ∈ R. Then for each hospital hj ∈ H we

construct the set Tj, which contains the residents in R who have hj in first place on their

list. If there are more residents in Tj than there are posts in hj (i.e. |Tj| > cj) then (as we

will show) no super-stable matching exists. Otherwise we obtain M by adding (ri, hj) to

M for each ri ∈ R and hj ∈ Ri.

We prove in the following lemma that if the algorithm hrt-sym-super returns a match-

ing M , then M is indeed super-stable, and that if null is returned then no super-stable

matching exists.

147



6.3 Super-stable matchings Chapter 6. Symmetric Preferences

Algorithm 27 hrt-sym-super

1: for each ri ∈ R do

2: if |Ri| > 1 then

3: return null;

4: H := ∪ri∈RRi;

5: for each hj ∈ H do

6: Tj := {ri ∈ R : hj ∈ Ri};
7: if |Tj | > cj then

8: return null;

9: M := {(ri, hj) : ri ∈ R ∧ hj ∈ Ri};
10: return M ;

Lemma 6.3.3. If algorithm hrt-sym-super returns null, then no super-stable matching

exists, otherwise the matching output by the algorithm is a super-stable matching.

Proof. Let I be an instance of hrt-sym. We first show that in every super-stable matching

each resident ri ∈ R must obtain a hospital in Ri. Clearly ri cannot obtain a hospital

better than those in Ri. Now suppose ri obtains a hospital worse than those in Ri. Then

each hospital hj ∈ Ri must be full with residents it strictly prefers to ri. However, as the

preference lists are symmetric it follows that rank(hj, ri) = 1. Therefore hj cannot be full

with residents it prefers to ri.

Let E be an execution of hrt-sym-super for I. Now suppose that during E the

algorithm returns null when |Ri| > 1, for some ri ∈ R. Let M ′ be a super-stable matching

in I. By the result above, ri obtains a hospital hj ∈ Ri in M ′. Hence there exists a

hospital hk ∈ Ri \ {hj} such that hk must be full with residents strictly better than ri, for

otherwise (ri, hk) blocks M ′. However hk cannot be full with residents better than hk as

rank(hk, ri) = 1. Therefore no super-stable matching exists in this case.

Now suppose that the algorithm returns null during E when |Tj | > cj , for some hj ∈ H,

i.e. more than cj residents have hj at the head of their list. Again let M ′ be a super-stable

matching in I. By the first paragraph each resident in Tj must be assigned to hj in

M , as each resident must have a single hospital at the head of their list, for otherwise

the algorithm would have returned null at line 3. Therefore M ′ is not a matching, a

contradiction.

We now prove that the assignment M returned by the algorithm is a super-stable

matching. Clearly M is a matching as each resident in R is assigned exactly one hospital,
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for otherwise the algorithm would have returned null at line 3, and each hospital is assigned

no more than cj residents, as if this was not the case then the algorithm would have

returned null at line 8. Now suppose that the pair (ri, hj) blocks M . Then ri has exactly

one hospital at the head of his list and is assigned to this hospital in M , hence there exists

no such pair (ri, hj) that blocks M .

Again as in Section 6.3.1 it is easy to verify that the algorithm’s runtime is linear in

the size of that problem instance. Hence we obtain the following theorem.

Theorem 6.3.4. For a given instance of hrt-sym, algorithm hrt-sym-super returns a

super-stable matching, or reports that none exists, in time O(λ), where λ is the total length

of the preference lists.

6.4 Strongly stable matchings

6.4.1 The case of srti-sym

In this section we describe an algorithm srti-sym-strong that finds a strongly stable

matching or reports that none exists, given an instance of srti-sym. Our algorithm is

simpler than the algorithm due to Scott [67] for the general case, and reduces the time

complexity from O(λ2) to O(
√

nλ) (where λ is the total length of the preference lists and

n is the number of agents).

Consider srti-sym-strong shown in Algorithm 28. As in Section 6.3.1, Pi denotes the

tie in first place on an agent pi’s list. The algorithm constructs a graph G = (V,E). The

vertex set V is constructed from the agents in P. The edge set E is then constructed by

adding an edge {pi, pj} to E, for each pi ∈ P and pj ∈ Pi. Next we find a maximum

cardinality matching M in G = (V,E). If |M | 6= |V |/2 (i.e. M is not a perfect matching)

then (as we will show) no strongly stable matching exists, otherwise M is a strongly stable

matching.

Lemma 6.4.1. If algorithm srti-sym-strong returns null, then no strongly stable match-

ing exists, otherwise the matching M output by the algorithm is a strongly stable matching.

Proof. Let I be an instance of srti-sym. Again we can easily verify, using a similar

argument to that in Lemma 6.3.1, that in every strongly stable matching M , each agent

pi ∈ P must be assigned to an agent in Pi in M .
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Algorithm 28 srti-sym-strong
1: V := P ;

2: E :=
⋃

pi∈P
{{pi, pj} : pj ∈ Pi};

3:

4: M := maximum cardinality matching in G = (V, E);

5: if |M | = |V |/2 then

6: return M ;

7: else

8: return null;

Let E be an execution of srti-sym-strong for I. Now suppose that during E the

algorithm returns null when |M | 6= |V |/2. Let M ′ be a strongly stable matching in I. By

the result above each agent pi ∈ P must be assigned in M ′ to an agent in Pi. However G

is constructed from the agents in Pi for each pi ∈ P, yet |M | < |V |/2, hence no such M ′

exists.

To prove that the matching M output is strongly stable, we observe that every agent

is assigned in M , for otherwise the algorithm would have returned null, and by the result

above each agent is assigned to an agent in Pi (their first-choice agents). Hence there is

no pair that blocks M .

We observe that the time complexity of finding a strongly stable matching is domi-

nated by the construction of a maximum cardinality matching in G = (V,E). This can

be achieved in time O(
√

|V ||E|) using the Hopcroft-Karp algorithm [32]. Therefore the

total time required to run srti-sym-strong is O(
√

nλ). We use this result to obtain the

following theorem.

Theorem 6.4.2. For a given instance of srti-sym, algorithm srti-sym-strong returns

a matching that is strongly stable, or reports that none exists, in time O(
√

nλ), where n

is the number of agents and λ is the total length of the preference lists.

6.4.2 The case of hrt

Here we present an algorithm hrt-sym-strong for finding a strongly stable matching, or

reporting that none exists, given an instance I of hrt-sym. The algorithm improves on

the best known time complexity (namely O(Cλ) [45], where λ is the total length of the

preference lists and C the sum of the hospital capacities) for finding a strongly stable

matching, or reporting that none exists, given a general instance of hrt.
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As in Section 6.3.2, Ri denotes the set of hospitals in first place on a resident ri’s list.

Similarly Hj denotes the set of residents in first place on a hospital hj ’s list. Algorithm

hrt-sym-strong is shown in Algorithm 29. The algorithm builds a capacitated bipartite

graph G = (V,E) with upper degree constraining function u. First we construct the set H

from the union of the sets Ri, for each ri ∈ R. The vertex set V comprises the residents

in R and the hospitals in H. An edge (ri, hj) is then added to E for each ri ∈ R and

hj ∈ Ri. The upper bound u(ri) for each resident ri ∈ R is set to 1, and for each hospital

hj ∈ H the upper bound u(hj) is set to be min{cj , |Hj |}. A maximum degree-constrained

subgraph D in G is then computed, and M is set to be the edges in D. We then check to

see if every resident and hospital is assigned exactly u(v) assignees in M , where v ∈ V (i.e.

whether each resident is assigned in M and each hospital is assigned exactly min{cj , |Hj|}
residents in M). If this is not the case, then (as we will show) no strongly stable matching

exists. Otherwise we will prove that M is a strongly stable matching.

Algorithm 29 hrt-sym-strong

1: H :=
⋃

ri∈R
Ri;

2: V := R∪ H ;

3: E :=
⋃

ri∈R
{(ri, hj) : hj ∈ Ri};

4: for each ri ∈ R do

5: u(ri) := 1;

6: for each hj ∈ H do

7: u(hj) := min{cj , |Hj |};
8:

9: D := maximum degree-constrained subgraph of G = (V, E);

10: M := edges of D;

11:

12: for each v ∈ V do

13: if |M(v)| 6= u(v) then

14: return null;

15:

16: return M ;

In the following lemma we prove that if a matching is returned by the algorithm then

this matching is strongly stable, and if the algorithm returns null then no strongly stable

matching exists.

Lemma 6.4.3. If algorithm hrt-sym-strong returns null, then no strongly stable match-
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ing exists, otherwise the matching M output by the algorithm is a strongly stable matching.

Proof. Again it is easy to show, using a similar argument to that in Lemma 6.3.3, each

resident ri is assigned in every strongly stable matching to a hospital in Ri.

Now suppose that there does not exist a maximum degree-constrained subgraph D

with the property specified in line 13 and that there exists a strongly stable matching M ′

in I. Then either (i) some resident ri is unmatched in M ′ or (ii) some hospital hj has less

than min{cj , |Hj |} assignees in M ′.

Case (i): By the result in the first paragraph above, each resident must be assigned

in M ′, hence no strongly stable matching exists.

Case (ii): There exists a resident ri ∈ Hj \ {M(hj)}, therefore (ri, hj), blocks M ′.

Let M be the matching output by the algorithm. Suppose for a contradiction that M

is not strongly stable. Hence there exists a pair (ri, hj) that blocks M . Then as ri is not

assigned to hj , and the algorithm did not return null, it follows that u(hj) = cj . Hence

hj must be full in M with assignees belonging to Hj, and ri is assigned a hospital in Ri,

therefore (ri, hj) does not block M .

By inspection of the algorithm we can see that the time complexity is dominated by

finding a maximum degree-constrained subgraph in G = (V,E). This can be achieved in

time O(
√

min{n,C}|E|) using Gabow’s algorithm [16], where n is the total number of

agents and C is the sum of the upper degree constraints. Therefore we have that hrt-

sym-strong runs in time O(
√

Cλ), where C is the sum of the hospital capacities and λ is

the total length of the preference lists. We use this result and Lemma 6.4.3 to obtain the

following theorem.

Theorem 6.4.4. For a given instance of hrt-sym, algorithm hrt-sym-strong returns a

matching that is strongly stable, or reports none exists, in time O(
√

Cλ), where λ is the

total length of the preference lists, and C is the sum of the hospital capacities.

6.5 Open problems

We conclude this chapter with a selection of open problems.
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6.5.1 Minimum number of strongly blocking pairs

The problem of finding a weakly stable matching with the minimum number of strongly

stable blocking pairs has been shown to be NP-hard and not approximable within n1−ǫ,

for ǫ > 0, given an instance of sr-grp where n is the total number of agents. However

it is open as to whether this problem is NP-hard or polynomial-time solvable, given an

instance of smt-sym.

6.5.2 Optimal matching problems and the stable pair problem in the

second model

We showed in Section 6.2.4, using a reduction from com-smti-sym1, that egal-smt-

sym1-d is NP-complete. However, a similar style of reduction from com-smti-sym2 to

egal-smt-sym2-d does not appear to be obvious. We conjecture that this problem re-

mains NP-hard, but so far no proof is known. Additionally, a straightforward extensions

of the NP-completeness reductions given for regret-smt-sym1-d and pair-smt-sym1-d

to their model two counterparts do not appear to be obvious. Again we conjecture that

these problems are NP-complete when applied to model two, but so far no proof is known.
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Chapter 7

Constraint Programming and the

Stable Marriage Problem

7.1 Introduction

In previous chapters we have explored stable matching problems from a mainly theoretical

perspective. For many variants of these problems we have derived NP-hardness results.

The NP-hardness of a computational problem naturally leads to the question of how to

cope with this complexity in practice. To this end, preceding chapters have contained

approximation algorithms. However by their very definition these algorithms cannot guar-

antee to solve an arbitrary instance to optimality. If optimal solutions are required then,

assuming P 6= NP, one is forced to settle for an exponential-time algorithm. A potential ob-

jective when designing such an algorithm is that it will perform reasonably well on problem

instances that are likely to be considered. Constraint Programming (CP) offers one possi-

ble technique for obtaining exact algorithms for NP-hard optimisation problems. However,

it is also applicable in situations where we are faced with a variant of a polynomial-time

solvable problem that involves additional criteria, such that no polynomial-time algorithm

for the variant is known.

This and the next chapter concern the application of CP techniques to the Stable

Marriage (sm) and Hospitals/Residents (hr) problems with the objective of showing how

NP-hard variants of these classical problems can be modelled and solved. Appendix A

gives a general introduction to CP.

CP approaches to sm have been the focus of much attention in the literature in recent

years [6, 20–22, 24, 50]. These previous studies have generally involved formulating sm as
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a constraint satisfaction problem (CSP), examining the time complexities of establishing

Arc Consistency (AC) within these CSP models and the structure of the solutions that

can be derived from them. A benefit of this approach is that such CSP models can easily

be extended using appropriate “side constraints” to capture variants of sm that are either

NP-hard or involve additional constraints that do not appear to lend themselves easily

to polynomial-time algorithms. This chapter described two such encodings of sm, and

provides examples of sm variants that can be modelled using side constraints.

In order to successfully model variants of sm using side constraint, CSP encodings

of sm require certain structural properties to be maintained. One of the most useful of

these properties is the concept of the GS-lists. As noted in Section 1.1.2, the extended

Gale-Shapley (EGS) algorithm has two possible orientations, namely the man-oriented

EGS (MEGS) algorithm and the woman-oriented EGS (WEGS) algorithm. The reduced

preference lists created as a result of the deletions made by both the MEGS and WEGS

algorithm are known as the MGS-lists and WGS-lists respectively. We recall that the GS-

lists are created from the intersection of the MGS-lists and WGS-lists, and allow us to take

advantage of the many structural properties of sm. It is therefore natural to investigate

the problem of obtaining a CSP encoding for sm.

Section 7.2 gives an overview of the previous CSP encodings of sm. Thereafter, we

present two new CSP encodings for smi. In Section 7.3 an (n+1)-valued encoding is given,

this encoding is a elegant, easy to understand and a natural way to model an instance of

smi. We show that in this model arc consistency can be established in O(n3) time. We

also present structural results and a failure-free enumeration strategy for finding all stable

matchings for a given instance of smi. The second encoding, presented in Section 7.4, is a

4-valued encoding. The encoding is more complex than the first encoding present, but as a

result, AC can be established in time O(n2). Again we prove certain structural properties

for the encoding exist and describe a failure-free enumeration strategy for finding all the

stable matchings for a given instance of smi. Finally, in Section 7.5, we present two NP-

hard variants of sm and describe the side constraints required to obtain a solution using

the (n + 1)-valued encoding.
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7.2 Overview of sm encodings

This section discusses CSP encodings for sm previously proposed in the literature. The

first encoding we consider is due to Aldershof et al. [6]. This encoding uses a set of

inequalities to model an instance of sm with n men and n women. For each (man,woman)

pair an inequality is constructed by examination of the preference lists. An algorithm is

then used to reduce the number of inequalities – it should be noted that it is possible

that the number of inequalities may not be reduced in certain circumstances. A discussion

indicating the relationship between variables of this encoding and the GS-lists is presented,

however no proof is given. In addition to this, no explicit method of enumerating all stable

matchings is shown. Overall this encoding is inefficient: there are Ω(n2) constraints, the

size of each variable’s domain is 2, and the arity of the constraints is Ω(n) in the worst

case. The complexity of establishing AC is Θ(22n) time.

Next we consider two encodings for smi due to Gent et al. [20]. The first encoding

creates a CSP instance J1 using a set of ‘conflict matrices’ to encode an smi instance I.

In J1, AC is established in O(n4) time and after AC propagation the variables’ domains

correspond to the GS-lists of I in a particular way. The second CSP model is a Boolean

encoding creating a CSP instance that we denote by J2. In J2, AC is established in O(n2)

time, however the variables’ domains after AC propagation only correspond to a weaker

structure called the XGS-lists of I (see Section 1.1.5). In both encodings the set of all

stable matchings in I can be enumerated in a failure-free manner.

An extension of sm was presented in the form of a CSP encoding by Dye [12]. Here

a restricted model of spa is encoded as a CSP. Dye presents a set of constraints where

ties are allowed in the preference lists of the students (men). The report aims to find

a weakly stable matching, or more specifically a weakly stable matching that satisfies

some additional criteria, namely load-balancing the projects a lecturer may supervise and

optimising the “student-optimality” of the matching. The analysis of the encoding is from

a practical point of view, and does not focus on theoretical properties of sm. As a result, no

structural properties are proved with reference to the GS-lists, nor is it considered whether

all the weakly stable matchings can be found in a failure-free manner. The author also

notes that, in practice, this approach is not particularly efficient for a large number of

students.

An encoding presented by Lustig and Puget [50] bears some resemblance to the encod-

ing we present in Section 7.3. The constraints for this encoding are shown in Figure 7.1.
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The paper compares and contrasts linear programming and constraint programming, with

sm being used as a concrete example of a combinatorial problem that may be solved using

constraint programming techniques. The encoding is presented to illustrate the general

techniques of constraint programming, and as such, the structural properties arising from

the encoding are not considered. AC propagation with this encoding is established in

O(n4) time.

solve {
forall(m in Men)

husband[wife[m]] = m;

forall(w in Women)

wife[husband[w]] = w;

forall(m in Men & o in Women)

rankMen[m,o] < rankMen[m,wife[m]] =>

rankWomen[o,husband[o]] < rankWomen[o,m];

forall(w in Women & o in Men)

rankWomen[w,o] < rankWomen[w,husband[w]] =>

rankMen[o,wife[o]] < rankMen[o,w];

}

Figure 7.1: Constraints for sm instance found in [50].

Lastly we consider an encoding due to Green and Cohen [24]. The paper describes a

framework that is used to determine if a given instance of a CSP is tractable. Here an

encoding of sm is presented, and the framework is used to explain the tractability of this

encoding. The model used is complicated, and is constructed to facilitate the use of the

framework. The increased complexity does not reflect an increase in performance, with

AC being established in O(n4) time. Additionally, no method of enumerating all stable

matchings and no structural properties of sm are given.

7.3 (n + 1)-valued encoding

We now present an (n + 1)-valued CSP encoding for an instance of smi. Let I be an

instance of smi with n men and n women, each of whom ranks a subset of the members

of the opposite sex in strict order of preference. In I let M = {m1,m2, . . . ,mn} denote

the set of men, and W = {w1, w2, . . . , wn} denote the set of women. For each man mi and
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woman wj (1 ≤ i, j ≤ n) in I, the length of mi’s and wj’s preference list is denoted by lmi

and lwj respectively. Also, for any person z let PL(z) denote the set of people on z’s original

preference list, and GS(z) the set of people on z’s GS-list. For any man mi ∈ M and for

any woman wj ∈ PL(mi) we also denote the position of wj on mi’s original preference

list by rank(mi, wj), with rank(wj ,mi) being similarly defined. If wj ∈ W\PL(mi), then

rank(mi, wj) and rank(wj,mi) are undefined.

We define a CSP encoding J for an instance I of smi by introducing 2n variables: for

each man mi (1 ≤ i ≤ n) in I we introduce a variable xi to represent mi in J ; similarly,

for each woman wj (1 ≤ j ≤ n) in I, we introduce a variable yj to represent wj in J . The

domain of a variable xi is denoted by dom(xi) and can be defined as follows:

dom(xi) = {rank(mi, wj) : wj ∈ PL(mi)} ∪ {n + 1} = {1, 2, . . . , lmi } ∪ {n + 1}

Similarly dom(yj) (1 ≤ j ≤ n) can be defined for each woman wj.

An intuitive meaning of the variables is now given. Informally, if xi = p (1 ≤ p ≤ lmi ),

then mi marries the woman wj such that rank(mi, wj) = p, and similarly for the case that

yj = q (1 ≤ q ≤ lwj ). If min(dom(xi)) ≥ p (often shortened to xi ≥ p) then the pair (mi, wj)

has been deleted as part of the MEGS algorithm, for all wj such that rank(mi, wj) < p.

Here “the pair (mi, wj) has been deleted” means that mi has been deleted from wj’s list

and wj from mi’s list. Hence if wj is the woman such that rank(mi, wj) = p, then either

mi proposes to wj during the execution of the MEGS algorithm or the pair (mi, wj) will

be deleted before the proposal occurs. Similarly if min(dom(yj)) ≥ q (often shortened to

yj ≥ q) then the pair (mi, wj) has been deleted as part of the WEGS algorithm, for all

mi such that rank(wj ,mi) < q. Hence if mi is the man such that rank(wj ,mi) = q, then

either wj proposes to mi during the execution of the WEGS algorithm or the pair (mi, wj)

will be deleted before the proposal occurs. If dom(xi) = {n + 1} then all the women on

mi’s list were deleted during an execution of either the MEGS or WEGS algorithm and

consequently mi is unmatched in every stable matching. Similarly if dom(yj) = {n + 1}
then all the men on wj’s list were deleted during an execution of either the MEGS or

WEGS algorithm and consequently wj is unmatched in every stable matching.

The constraints used for the (n + 1)-valued encoding are shown in Figure 7.3. Each

constraint is present if and only if mi finds wj acceptable, where p denotes the rank of wj

on mi’s list and q denotes the rank of mi on wj’s list.
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1. xi ≥ p ⇒ yj ≤ q (1 ≤ i ≤ n, 1 ≤ p ≤ lmi )

2. yj ≥ q ⇒ xi ≤ p (1 ≤ j ≤ n, 1 ≤ q ≤ lwj )

3. yj 6= q ⇒ xi 6= p (1 ≤ j ≤ n, 1 ≤ q ≤ lwj )

4. xi 6= p ⇒ yj 6= q (1 ≤ i ≤ n, 1 ≤ p ≤ lmi )

Figure 7.2: The constraints for the (n + 1)-valued encoding of an instance smi.

Interpretations of Constraints 1 and 3 are now given (a similar interpretation can be

attached to Constraints 2 and 4, with the roles of the men and women reversed). First

consider Constraint 1 – a stability constraint. This constraint ensures that if a man mi

obtains a partner no better than his pth-choice woman wj, then wj obtains a partner no

worse than her qth-choice man mi. Now consider Constraint 3 – a consistency constraint.

This constraint ensures that if man mi is removed from wj’s list, then wj is removed from

mi’s list.

We now prove that, given the above CSP encoding J for an smi instance I, the variables’

domains in J after AC propagation correspond to the GS-lists of I. That is, we prove that,

after AC is established, for any i, j (1 ≤ i, j ≤ n), wj ∈ GS(mi) if and only if p ∈ dom(xi),

and similarly mi ∈ GS(wj) if and only if q ∈ dom(yj), where rank(mi, wj) = p and

rank(wj,mi) = q.

The proof is presented using two lemmas. The first lemma shows that the arc consistent

domains correspond to a subset of the GS-lists. We show that the deletions made by the

MEGS and WEGS algorithms correspond to the deletions made by AC propagation. The

second lemma shows that the GS-lists correspond to a subset of the domains remaining

after AC propagation. This is shown by considering the domains that correspond to the

GS-lists for an instance I, and proving that these domains are arc consistent in the CSP

instance J .

Lemma 7.3.1. For a given i (1 ≤ i ≤ n), let p be an integer such that p ∈ dom(xi) after

AC propagation. Then the woman wj at position p on mi’s preference list belongs to the

GS-list of mi. A similar correspondence holds for the women.

Proof. The GS-lists are constructed as a result of the deletions made by the MEGS and

WEGS algorithms. It is sufficient to prove that the deletions that occur as part of the

MEGS and WEGS algorithms correspond to those deletions made to the variables’ domains

during AC propagation. In the following proof only deletions made by the MEGS algorithm
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are considered, a similar argument can be used to prove the result for an execution of the

WEGS algorithm.

Let z be the number of proposals during an execution E of the MEGS algorithm. Then

we prove the following by induction on z: if proposal z consists of a man mi proposing

to woman wj , with rank(mi, wj) = p and rank(wj,mi) = q, then xi ≥ p, yj ≤ q, and for

each man mk such that rank(wj ,mk) = t (q < t ≤ lwj ), xk 6= s, where rank(mk, wj) = s.

First consider the base case where z = 1. Then p = 1. Since xi ≥ 1, propagation of

Constraint 1 yields yj ≤ q. Then for each t (q < t ≤ lwj ) propagation of Constraint 3 yields

xk 6= s, where rank(wj,mk) = t and rank(mk, wj) = s.

Now suppose that z = c > 1 and assume that the result holds for z < c. We now

consider the cases where (i) p = 1 and (ii) p > 1.

Case (i) The proof is similar to that of the base case.

Case (ii) Let wr be a woman such that rank(mi, wr) = s < p. Then wr has been

deleted from mi’s list during the MEGS algorithm. Now suppose rank(wr,mi) = t1.

Then mi was deleted from wr’s preference list because she received a proposal from

a man mk whom she prefers to mi, with rank(wr,mk) = t2 < t1. Since mk proposed

to wr before the cth proposal, we have by the induction hypothesis that yr ≤ t2. In

particular, yr 6= t1 and thus xi 6= s. But wr was arbitrary and hence xi 6= s for

1 ≤ s ≤ p − 1, therefore xi ≥ p. The rest of the proof is similar to that of the base

case.

Lemma 7.3.2. For each i (1 ≤ i ≤ n), define a domain of values dom(xi) for the

variable xi as follows: if GS(mi) = ∅, then dom(xi) = {n + 1}; otherwise dom(xi) =

{rank(mi, wj) : wj ∈ GS(mi)}. The domain of each yi (1 ≤ j ≤ n) is defined analogously.

Then the domains so defined are arc consistent in J .

Proof. Suppose that the variables are assigned the values defined in the statement of the

lemma. We are required to show, by considering each constraint shown in Figure 7.3, that

the variables’ domains are arc consistent in J .

First consider Constraint 1, and suppose that xi ≥ p. Then during an execution of the

MEGS algorithm either (i) mi proposed to wj, or (ii) the pair (mi, wj) was deleted, where

rank(mi, wj) = p and rank(wj,mi) = q. Consider the two cases below:
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Case (i) If mi proposes to wj during the MEGS algorithm, all men ranked below mi

on wj ’s list are removed, i.e. yj ≤ q as required.

Case (ii) If (mi, wj) was deleted as part of the MEGS algorithm, then wj must have

received a proposal from a man mk whom she prefers to mi, where rank(wj,mk) = t

(t < q). Therefore the MEGS algorithm deletes all those men mz from wj’s list such

that rank(wj,mz) > t, i.e. yj ≤ t < q as required.

Next consider Constraint 3. Suppose that yj 6= q. Then as part of the MEGS/WEGS

algorithm mi is deleted from wj ’s list, where rank(wj,mi) = q. To ensure the preference

lists are consistent, the MEGS/WEGS algorithm deletes wj from mi’s list, i.e. xi 6= p,

where rank(mi, wj) = p, as required.

Verifying Constraints 2 and 4 is similar to the above with the roles of the men and

women reversed and the MEGS algorithm exchanged for the WEGS algorithm.

In general, each constraint in this encoding can be revised in constant time. Arc con-

sistency can therefore be establish in O(ed) time [72], where e is the number of constraints,

and d is the domain size. For this encoding we have e = O(n2), and d = O(n). Therefore

it can be seen that AC is established in O(n3) time. The time complexity of this encoding

is poorer than that of the Gale-Shapley algorithm. However, the encoding is concise, easy

to understand, and naturally models instances of smi. In addition to this, the GS-lists are

also returned after AC has been established.

The two lemmas above, and the fact that AC algorithms find the unique maximal set

of arc consistent domains, leads to the following theorem.

Theorem 7.3.3. Let I be an instance of smi, and let J be a CSP instance obtained using

the (n+1)-valued encoding. Then:

– AC can be established in O(n3) time;

– the domains remaining after AC propagation in J correspond exactly to the GS-lists.

We now show that for an instance I of smi, the CSP encoding J presented in this

section can be used to enumerate all the solutions of I in a failure-free manner using AC

propagation combined with a value-ordering heuristic.

Theorem 7.3.4. Let I be an instance of smi and let J be a CSP instance obtained from

I using the (n + 1)-valued encoding. Then the following search process enumerates all

solutions in I without repetition and without ever failing due to an inconsistency:
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– AC is established as a preprocessing step, and after each branching decision including

the decision to remove a value from a domain;

– if all domains are arc consistent and some variable xi has two or more values in its

domain then search proceeds by setting xi to the minimum value p in its domain. On

backtracking, the value p is removed from the domain of xi;

– when a solution is found, it is reported and backtracking is forced.

Proof. Let T be the search tree as defined above. We prove by induction on T that each

node in T corresponds to an arc consistent CSP instance J ′, which in turn corresponds to

the GS-lists I ′ for an smi instance derived from I such that every stable matching in I ′ is

also stable in I. To prove this we first show that it holds for the root node of T . We then

assume that the statement is true for an arbitrary branch node u of T , and show that it

is true for the two children of u.

The root node of T corresponds to the CSP instance J ′ with arc consistent domains,

where J ′ is obtained from J by forcing AC propagation. By Theorem 7.3.3, J ′ corresponds

to the GS-lists I ′ for an smi instance I. Using the properties of the GS-lists shown in

Theorem 1.1.2, every stable matching in I ′ is also stable in I.

Now suppose that we have reached the branching node u of T described above. By the

induction hypothesis we have, associated with u, a CSP instance J ′ with arc consistent

domains. Furthermore, J ′ corresponds to the GS-lists I ′ for an smi instance derived from

I such that every stable matching in I ′ is stable in I. Then since u is a branching node,

there exists a variable xi (1 ≤ i ≤ n) such that the domain of xi contains at least two

values. Hence in T , u has two children, namely v1 and v2, each having an associated CSP

instance J ′
1 and J ′

2 derived from J ′ in the following way. In J ′
1, xi is assigned the smallest

value p (which corresponds to the rank of mi’s most preferable partner in I ′) in its domain,

and in J ′
2, p is removed from xi’s domain.

First consider instance J ′
1. During AC propagation in J ′

1 we consider the revisions

made by Constraint 4 when xi is assigned the value p. Let wj be the woman such that

rank(mi, wj) = p. Then if xi = p, for each woman wr where rank(mi, wr) > p, AC

propagation in J ′
1 forces yr 6= t, where rank(wr,mi) = t. After such revisions, J ′

1 cor-

responds to the smi instance I ′1 obtained from I ′ by deleting the pairs (mi, wr), where

r 6= j. We now verify that every stable matching M in I ′1 is stable in I ′. Suppose that

the pair (m,w) blocks M in I ′. If w ∈ PL(m) in I ′1, then (m,w) blocks M in I ′1, therefore
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(m,w) was deleted when obtaining I ′1 from I ′. Hence (m,w) = (mi, wr) for some wr such

that rank(mi, wr) > p. Let M0 denote the man-optimal stable matching in I ′. Then

(mi, wj) ∈ M0, and we can easily verify that M0 is stable in I ′1. Since the same set of men

and women are matched in all stable matchings, the Rural Hospitals Theorem (Theorem

1.2.1) implies that mi is matched in M . In particular, (mi, wj) ∈ M as wj is the only

woman on mi’s list in I ′1. Hence (m,w) = (mi, wr) cannot block M after all, as mi prefers

wj to wr. Therefore M is stable in I ′ and hence by the induction hypothesis is also stable

in I. At node v1, AC is established in J ′
1 giving instance J ′′

1 which we associate with

this node. By Theorem 7.3.3, J ′′
1 corresponds to the GS-lists I ′′1 of smi instance I ′1. The

properties of the GS-lists given in Theorem 1.1.2 imply that every stable matching in I ′′1

is stable in I ′1, which in turn is stable in I by the preceding argument.

We now consider J ′
2. During AC propagation in J ′

2, we consider the revisions made

when p is removed from the domain of xi. Let rank(wj,mi) = q. Propagation of Constraint

4 (or Constraint 1) forces yj 6= q. After this revision J ′
2 corresponds to an smi instance

I ′2 obtained from I ′ by deleting the pair (mi, wj). We can now verify that every stable

matching M in I ′2 is stable in I ′. Suppose that (m,w) blocks M in I ′. Then (m,w) =

(mi, wj), for if this is not the case (m,w) blocks M in I ′2. In I ′, mi has a list of length at

least 2, by the assumption at the branch node. Hence wj must also have a list of length

at least 2. Therefore wj is matched in the man-pessimal stable matching for instance I ′,

which is stable in I ′2. Since the same set of men and women are matched in all stable

matchings (by the Rural Hospitals Theorem – Theorem 1.2.1), wj must be matched in

every stable matching in I ′2. In particular, wj is matched in M to a man whom she prefers

to mi. Therefore (mi, wj) cannot block M in I ′. So M is stable in I ′, and hence by the

induction hypothesis is also stable in I. Now at node v2, AC is established in J ′
2 giving

instance J ′′
2 which we associate with this node. The rest of the proof is similar to that

used in for instance J ′
1 above. Hence by induction the claim is true for all nodes in T .

We now show that the branching process never fails due to an inconsistency, since

setting the variable xi to p leaves the man-optimal stable matching, while excluding p

leaves the man-pessimal stable matching. Also, since all areas of the search space are

explored by the branching process, all possible stable matchings for an smi instance I are

listed. Finally we show that there are no repeated solutions. First observe that the leaf

nodes of T correspond to the stable matchings in I. Suppose for a contradiction that

leaf nodes l1 and l2 correspond to the same stable matching M in I. Let b be the lowest
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common ancestor of l1 and l2 in T . Without loss of generality assume l1 is reached by

taking the path from the left child of b, and l2 is reached by taking the path from the

right child of b. We know that node b corresponds to the GS-lists I ′ for a particular smi

instance derived from I. Furthermore, there exists a variable xi which has at least two

values in its domain. Thus in I ′ there exists a man mi who has a GS-list of size greater

than one. Then the left child of b is obtained by forcing mi to obtain the woman wj at

the head of his list in I ′, and similarly the right child of b is obtained by removing wj

from mi’s list. So l1 corresponds to a stable matching M1 where (mi, wj) ∈ M1, and l2

corresponds to a stable matching M2 where (mi, wj) /∈ M2, i.e. M1 6= M2. Therefore each

leaf node corresponds to a unique stable matching.

7.4 4-Valued Encoding

In this section we present a 4-valued CSP encoding for smi. The encoding is more compact

that the (n+1)-valued encoding presented in Section 7.3, and as a result it has an improved

time complexity. Additionally, after AC propagation the variables’ domains correspond

to the GS-list of the original instance. Again we consider an smi instance I with n men

and n women, and denote the set of men and women by M = {m1,m2, . . . ,mn} and

W = {w1, w2, . . . , wn} respectively. The length of a man mi’s preference list is denoted by

lmi (1 ≤ i ≤ n), with lwj being defined similarly.

Here a CSP encoding J of I consists of λ variables, each of which represents a preference

list entry, where λ is the total length of the preference lists in I. In the encoding J we

introduce for each man mi (1 ≤ i ≤ n) a set of lmi variables xi,p (1 ≤ p ≤ lmi ), and similarly

for each woman wj (1 ≤ j ≤ n) a set of lwj variables yj,q (1 ≤ q ≤ lwj ). As before the

domain of a variable z is denoted by dom(z). In the CSP model, each variable xi,p and

yj,q has the initial domain {0, 1, 2, 3}. The proposals and deletions made by the MEGS

and WEGS algorithms are expressed by the removal of values from a variable’s domain as

shown in Figure 7.3.

An intuitive meaning of the variables’ values is given in Figure 7.3. The table indicates

that deletions carried out by the MEGS and WEGS algorithms applied to I are reflected

by the removal of elements from the relevant variables’ domains. In particular, removal

of the value 2 (respectively 3) from a variable’s domain corresponds to a preference list

entry being deleted by the MEGS (respectively WEGS) algorithm applied to I. Note
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that potentially a given preference list entry could be deleted by both algorithms. Also,

if the value 0 is removed from dom(xi,p) (1 ≤ i ≤ n, 1 ≤ p ≤ lmi ), then either mi

proposes to wj during the MEGS algorithm (where rank(mi, wj) = p) or the entry is

deleted prior to the proposal occurring. Similarly if the value 0 is removed from dom(yj,q)

(1 ≤ j ≤ n, 1 ≤ q ≤ lwj ), then either wj proposes to mi during the WEGS algorithm

(where rank(wj,mi) = q) or the entry is deleted prior to the proposal occurring.

i. 0 /∈ xi,p ⇔ p = 1 or 2 /∈ xi,s (1 ≤ s < p);

ii. 2 /∈ xi,p ⇔ man mi’s pth-choice woman has been removed from

his list as part of the MEGS algorithm;

iii. 3 /∈ xi,p ⇔ man mi’s pth-choice woman has been removed from

his list as part of the WEGS algorithm;

iv. 0 /∈ yj,q ⇔ q = 1 or 3 /∈ yi,t (1 ≤ t < q);

v. 2 /∈ yj,q ⇔ woman wj ’s qth-choice man has been removed from

her list as part of the MEGS algorithm;

vi. 3 /∈ yj,q ⇔ woman wj ’s qth-choice man has been removed from

her list as part of the WEGS algorithm.

Figure 7.3: Variable definitions for the 4-valued smi encoding.

The constraints for this encoding are listed in Figure 7.4. For each i and j (1 ≤ i, j ≤ n),

the constraints marked (†) are present if and only if mi finds wj acceptable. In the context

of Constraints 4 and 10, j is the integer such that rank(mi, wj) = p; also q = rank(wj,mi).

In the context of Constraints 5 and 9, i is the integer such that rank(wj ,mi) = q; also

p = rank(mi, wj). Further, we remark that Constraints 4 and 9 are present only if

q + 1 ≤ lwj and p + 1 ≤ lmi respectively.

The interpretation of each constraint is now given. First consider Constraint 1. This

constraint is used to start the proposal sequence and can be interpreted as each man

initially proposing to the first woman on his list during the MEGS algorithm. Con-

straint 2 says if (mi, wr) has been deleted by the MEGS algorithm for all wr, such that

rank(mi, wr) < p, and (mi, wj) has also been deleted, then (mi, wr) has been deleted by

the MEGS algorithm for all wr such that rank(mi, wr) ≤ p. Also if a woman’s qth-choice

partner is deleted during an iteration of the MEGS algorithm she cannot obtain a partner

165



7.4 4-Valued Encoding Chapter 7. Constraint Programming and SM

further down her list, hence her (q + 1)th-choice partner should also be deleted – this is

modelled by Constraint 3. Constraint 4 shows a stability constraint: this is used to ensure

that if a man mi proposes to woman wj, then wj obtains a partner no worse than mi.

Lastly Constraint 5 is a consistency constraint: this ensures that if mi is removed from

wj’s list during the MEGS algorithm, then wj is removed from mi’s list. Constraints

6-10 have a similar meaning with roles of the men and women reversed, and with MEGS

replaced by WEGS.

We now prove that given the above CSP encoding J of an smi instance I, the domains

of the variables in J after AC propagation correspond to the GS-lists of I. That is, we

show that, after AC is established, for any i, j (1 ≤ i, j ≤ n), wj ∈ GS(mi) if and only

if {2, 3} ⊆ dom(xi,p), and similarly mi ∈ GS(wj) if and only if {2, 3} ⊆ dom(yj,q), where

rank(mi, wj) = p and rank(wj,mi) = q. First some terminology is introduced.

We define the GS-domains for the variables in J as follows. Initially let each variable

in J have domain {0, 1, 2, 3}. Run the MEGS algorithm on instance I. Then use (i), (ii)

and (v) in Figure 7.3 to remove 0s and 2s from the appropriate domains. Next run the

WEGS algorithm on instance I. Now use (iii), (iv) and (vi) in Figure 7.3 to remove 0s

and 3s from the appropriate domains.

As in Section 7.3, we use two lemmas to prove that after AC propagation in the CSP

encoding J , obtained from an instance I of smi, the variables’ domains correspond to the

1. xi,1 > 0 (1 ≤ i ≤ n)

2. (xi,p 6= 2 ∧ xi,p > 0) ⇒ xi,p+1 > 0 (1 ≤ i ≤ n, 1 ≤ p ≤ lmi − 1)

3. yj,q 6= 2 ⇒ yj,q+1 6= 2 (1 ≤ j ≤ n, 1 ≤ q ≤ lwj − 1)

4. xi,p > 0 ⇒ yj,q+1 6= 2 (1 ≤ i ≤ n, 1 ≤ p ≤ lmi ) (†)
5. yj,q 6= 2 ⇒ xi,p 6= 2 (1 ≤ j ≤ n, 1 ≤ q ≤ lwj ) (†)

6. yj,1 > 0 (1 ≤ j ≤ n)

7. (yj,q 6= 3 ∧ yj,q > 0) ⇒ yj,q+1 > 0 (1 ≤ j ≤ n, 1 ≤ q ≤ lwj − 1)

8. xi,p 6= 3 ⇒ xi,p+1 6= 3 (1 ≤ i ≤ n, 1 ≤ p ≤ lmi − 1)

9. yj,q > 0 ⇒ xi,p+1 6= 3 (1 ≤ j ≤ n, 1 ≤ q ≤ lwj ) (†)
10. xi,p 6= 3 ⇒ yj,q 6= 3 (1 ≤ i ≤ n, 1 ≤ p ≤ lmi ) (†)

Figure 7.4: The constraints for the 4-valued encoding of an instance smi.
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GS-lists of I. The first lemma shows that the variables’ domains after AC propagation

correspond to a subset of the GS-lists. This is achieved by proving that if a deletion is made

as part of the MEGS and WEGS algorithm, then a corresponding deletion is made by the

constraints during AC propagation. In particular if a variable, say xi,p, contains the values

{2, 3} then neither the MEGS nor the WEGS algorithms have deleted the woman wj at

position p on mi’s list. Hence wj belongs to mi’s GS-list. A similar correspondence holds

for the women. The second lemma is then used to prove that the GS-lists correspond to a

subset of the domains after AC propagation. We do this by proving that the GS-domains

(corresponding to the GS-lists in I) are arc consistent in J .

Lemma 7.4.1. For a given i (1 ≤ i ≤ n), let p be an integer such that {2, 3} ⊆ dom(xi,p)

after AC propagation. Then the woman at position p on mi’s preference list belongs to the

GS-list of mi. A similar correspondence holds for the women.

Proof. The GS-lists are obtained for an instance of smi through deletions made by the

MEGS and WEGS algorithms. We prove that the deletions made by an execution of

each algorithm correspond exactly to the deletions made in the domains of the relevant

variables during AC propagation. Suppose rank(mi, wj) = p and rank(wj ,mi) = q. Then

we prove:

1. (mi, wj) is deleted during MEGS algorithm ⇔ 2 /∈ dom(xi,p) and 2 /∈ dom(yj,q).

2. (mi, wj) is deleted during WEGS algorithm ⇔ 3 /∈ dom(xi,p) and 3 /∈ dom(yj,q).

In this proof only the deletions made by the MEGS algorithm are considered, a similar

argument can be used to prove the same result for the deletions made by the WEGS

algorithm.

It suffices to prove the following by induction on the number of proposals z during

an execution E of the MEGS algorithm: if proposal z consists of a man mi proposing

to a woman wj, with rank(mi, wj) = p and rank(wj ,mi) = q, then xi,p > 0, yj,t 6= 2

(q < t ≤ lwj ), and for each man mk such that rank(wj,mk) = t (q < t ≤ lwj ), xk,s 6= 2

where rank(mk, wj) = s.

First consider the base case where z = 1. Then p = 1. By Constraint 1, xi,1 > 0, and

hence using Constraint 4 we obtain yj,q+1 6= 2. Also by Constraint 3 it follows that yj,t 6= 2

for (q + 2 ≤ t ≤ lwj ). Combining these results we obtain yj,t 6= 2 for q < t ≤ lwj . Then

for each man mk at position t in wj’s list (q < t ≤ lwj ), the propagation of Constraint 5

ensures xk,s 6= 2, where rank(wj ,mk) = t and rank(mk, wj) = s.
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Now assume z = c > 1, and that the result holds for z < c. We consider two cases.

Case (i) For p = 1 the proof follows from the base case.

Case (ii) Now assume that p > 1. Let wr be a woman such that rank(mi, wr) =

s < p. Then wr has been deleted from mi’s list during the MEGS algorithm. Now

suppose rank(wr,mi) = t1. Then wr was deleted from mi’s list during the MEGS

algorithm when wr received a proposal from a man mk whom she prefers to mi,

where rank(wr,mk) = t2 < t1. Then since mk must have proposed to wr before the

cth proposal, by the induction hypothesis it follows that xi,s 6= 2. However since wr

was arbitrary xi,v 6= 2 for 1 ≤ v ≤ p − 1. From Constraint 1 we have xi,1 > 0 and

hence propagation of Constraint 2 (p−1 times) yields xi,p > 0. The rest of the proof

is similar to that of the base case.

Lemma 7.4.2. The GS-domains (corresponding to the GS-lists in I) are arc consistent

in J .

Proof. We consider each constraint in turn to show that the GS-domains are arc consistent.

Clearly Constraint 1 is satisfied as p = 1 in rule (i), i.e. xi,1 > 0. Now consider

Constraint 4. Suppose that xi,p > 0. Then during the execution of the MEGS algorithm

either (i) mi is proposed to his first choice partner wj , or (ii) the pair (mi, wj) has been

deleted, where rank(mi, wj) = p and rank(wj,mi) = q. Assuming q + 1 ≤ lwj , we consider

the two cases.

Case (i) If mi proposed to wj during the execution of the MEGS algorithm then

wj deletes all those men ranked below mi on her preference list, and in particular

yj,q+1 6= 2.

Case (ii) If the pair (mi, wj) is deleted during the MEGS algorithm then wj must

have received a proposal from a man mk whom she prefers to mi. As a result of

this all men ranked below mk on wj ’s list, including mi, are deleted by the MEGS

algorithm, and in particular yj,q+1 6= 2.

Now suppose that yj,q 6= 2. By construction of the GS-domains, the MEGS algorithm

deleted the pair (mi, wj), where rank(wj,mi) = q. Hence xi,p 6= 2, where rank(mi, wj) =

p, satisfying Constraint 5. Furthermore, a woman only deletes a man mi from her list
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when she receives a proposal from a man whom she prefers to mi. Hence as yj,q 6= 2, wj

received a proposal from a man mk whom she prefers to mi, where rank(wj,mk) = t1 < q.

As a result of this proposal all those ranked below mk on wj ’s list are deleted by the

MEGS algorithm. Therefore 2 is removed from the domain of yj,t2 (t1 < q < t2 ≤ lwj ), i.e.

yj,q+1 6= 2. Thus Constraint 3 is satisfied.

Now consider Constraint 2 and suppose that xi,p 6= 2 and xi,p > 0. Then wj has been

removed from the list of mi during the MEGS algorithm, where rank(mi, wj) = p. Then

xi,p > 0 implies either (i) p = 1, or (ii) xi,s 6= 2 for (1 ≤ s < p). Consider the following

two cases below.

Case (i) For p = 1, we have xi,1 6= 2, and therefore mi either proposed to his second-

choice woman or she was deleted from mi’s list during the MEGS algorithm. In

either case xi,2 > 0 by construction of the GS-domains.

Case (ii) From the definition of xi,p > 0, it follows that xi,s 6= 2 (1 ≤ s < p). Then

since xi,p 6= 2 we have xi,s 6= 2 (1 ≤ s ≤ p), and by construction of the GS-domains

xi,p+1 > 0.

A similar argument can be used to verify that Constraints 6-10 are satisfied. Here the

roles of the men and women are reversed and the MEGS algorithm replaced by the WEGS

algorithm.

Using the formula for calculating the complexity of AC shown in Section 7.3, we obtain

the following results for the 4-valued encoding: e = O(n2) and d = 4. This means that

AC is established in O(n2) time, and is therefore comparable to the time required by the

original Gale-Shapley algorithm. This is also an improvement over the encoding presented

in Section 7.3.

The two lemmas above, and the fact that AC algorithms find the unique maximal set

of arc consistent domains, lead to the following theorem.

Theorem 7.4.3. Let I be an instance of smi, and let J be a CSP instance obtained by

the 4-valued encoding. Then:

– AC can be established in O(n2) time;

– the GS-domains correspond in a precise way to the GS-lists in the following sense:

for any i, j (1 ≤ i, j ≤ n), wj ∈ GS(mi) if and only if {2, 3} ⊆ dom(xi,p), and
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similarly mi ∈ GS(wj) if and only if {2, 3} ⊆ dom(yj,q), where rank(mi, wj) = p

and rank(wj,mi) = q.

During the search process of a constraint solver a solution is normally found by reducing

the domain of each variable to a single value. However, with the 4-valued encoding each

variable’s domain need not be reduced to a single value to obtain a solution. Theorems

7.4.3 and 1.1.2(iii) show that we can find a solution to the CSP giving the man-optimal

stable matching M0 without search: for each man mi ∈ M, if {2, 3} 6⊆ dom(xi,r) for each

r (1 ≤ r ≤ lmi ) then mi is unmatched in M0, otherwise we let p be the unique integer such

that dom(xi,p) = {1, 2, 3} and define the partner of mi to be the woman wj ∈ W such that

rank(mi, wj) = p. Considering the yj variables in a similar way gives the woman-optimal

stable matching Mz.

We now show that for an instance I of smi, the CSP encoding J presented in this

section can be used to enumerate all the solutions of I in a failure-free manner using AC

propagation combined with a value-ordering heuristic.

Theorem 7.4.4. Let I be an instance of smi and let J be a CSP instance obtained from

I using the 4-valued encoding. Then the following search process enumerates all solutions

in I without repetition and without ever failing due to an inconsistency:

– AC is established as a preprocessing step, and after each branching decision including

the decision to remove a value from a domain;

– if all domains are arc consistent and some variable xi,s has {0, 1, 2, 3} in its domain,

then we let p be the unique integer such that dom(xi,p) = {1, 2, 3} and we choose p′

to be the minimum integer (p < p′) such that dom(xi,p′) = {0, 1, 2, 3};

– search proceeds by removing 3 from the domain of xi,p′. On backtracking, the value 2

is removed from the domain of yj,q, where rank(mi, wj) = p and rank(wj,mi) = q;

– when a solution is found, it is reported and backtracking is forced.

Proof. The proof uses a similar argument to that of Theorem 7.3.4. Once again we consider

instances J ′
1 and J ′

2 at nodes v1 and v2 respectively. In J ′
1, the value 3 is removed from

the domain of xi,p′ , and in J ′
2, the value 2 is removed from the domain of yj,q.

First consider instance J ′
1. Then during AC propagation in J ′

1 we consider the revisions

made by Constraints 8 and 10 when 3 is removed from the domain of xi,p′. Constraint 8
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forces 3 to be removed from the the domain of xi,u (p′ < u ≤ lmi ) during AC propagation.

Let wr be the woman such that rank(mi, wr) = u (p′ < u ≤ lmi ). Then the consistency

constraint, Constraint 10, ensures that if xi,u 6= 3, then yr,t 6= 3, where rank(wr,mi) = t.

After such revisions, J ′
1 corresponds to the smi instance I ′1 obtained from I ′ by deleting

the pair (mi, wr) where r 6= j. A similar argument to that used in the proof of Theorem

7.3.4 can now be used to show that any stable matching in I ′1 is stable in I ′, which in turn

is stable in I by the induction hypothesis given in the proof of Theorem 7.3.4. The rest of

the proof is similar to that for instance J ′
1 in Theorem 7.3.4.

Now we consider instance J ′
2. Then during AC propagation in J ′

2 we consider the

revision made by Constraint 5 when yj,q 6= 2. Here Constraint 5 forces xi,p 6= 2 during AC

propagation. The revisions in J ′
2 correspond to an smi instance I ′1 obtained by deleting

the pair (mi, wj). Again a similar argument to that used in Theorem 7.3.4 can be used

to prove that any stable matching in I ′2 is stable in I ′, which is in turn stable in I by the

induction hypothesis. The rest of the proof is similar to that for instance J ′
2 in Theorem

7.3.4.

To prove that the branching process never fails due to an inconsistency, that all so-

lutions are enumerated, and that we obtain no repeat solutions we once again refer to

Theorem 7.3.4.

7.5 Constraint versatility

One of the key motivations for considering constraint-based models of sm is the versatility

that they offer. For example, as shown in Sections 7.3.4 and 7.4.4, we can find all stable

matchings using AC propagation and the standard search process. This is in contrast to

obtaining all stable matchings using a combinatorial algorithmic approach, which requires

the implementation of a complex algorithm given in [26]. We can also easily add side-

constraints to our models to solve variants of sm that are NP-hard. Below we consider

two such extensions.

7.6 Balanced sm problem

In the Balanced Stable Marriage problem we seek to find a matching M where we minimise

the maximum cost (as defined in Section 1.1.3) of the men and the women with respect
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to M . That is, we require to find a stable matching M that minimizes:

max{
∑

mi∈M

costM (mi),
∑

wj∈W

costM (wj)}.

Feder [13] showed that Balanced sm is NP-hard. We describe a side-constraint C that acts

as an objective function, which is defined in terms of the variables in our model. Most

CP toolkits include minimise and maximize functions as standard. These typically use

a branch and bound technique to find a solution. An example of the side-constraint that

can be used with the (n + 1)-valued encoding to obtain an balanced stable matching is

shown below.

minimise{max{
∑

xi,
∑

yi}}

7.6.1 Sex-equal sm problem

In the sex-equal stable marriage problem we seek to find a matching M where the total

cost of M with respect to the men is as close as possible to the total cost of M with respect

to the women. That is, we require to find a stable matching M that minimizes:

|
∑

mi∈M

costM (mi) −
∑

wj∈W

costM (wj)|.

It was shown by Kato [44] that the problem of finding a sex-equal stable matching is

NP-hard given an instance of sm. However with the use of side-constraints we can easily

model the sex-equal stable matching problem. An example constraint for the (n+1)-valued

encoding is shown below.

minimise{|
∑

xi −
∑

yi|}

7.7 Open problem

We finish this chapter with an open problem. Can we find a CP encoding for an instance

of sr that uses polynomial space where AC can be established in polynomial time? Also

can we use the encoding to quickly identify the non-existence of a stable matching for such

an instance or alternatively enumerate all stable matchings in a failure-free manner?
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Chapter 8

Constraint Programming and the

Hospitals/Residents Problem

8.1 Introduction

In Chapter 7 we presented two CP encodings of sm, each with the property that the

domains remaining after AC propagation yield the GS-lists, and a failure-free enumeration

strategy may be used to list all stable matchings. The motivation for these models is that,

in each case, side constraints can be added easily to solve hard variants of sm. In this

chapter we extend the first encoding of Chapter 7 to the hr case, and subsequently to

the case of hrt under weak stability. The motivation is again provided by the facility

to add side constraints to solve hard variants of hr. However, our ultimate goal is that

of modelling and solving, via the second encoding, the NP-hard problem of finding a

maximum weakly stable matching, given an hrt instance.

Centralised matching schemes such as the Scottish Foundation Allocation Scheme

(SFAS), which allocates graduating medical students to hospital posts in Scotland, allow

hospitals’ preference lists to contain ties. In the case of SFAS and other similar schemes it

is desirable to match as many students as possible. This motivates the problem of finding

a maximum weakly stable matching, given an instance of hrt. As discussed in Section

1.1.7, this problem is NP-hard. This naturally leads us to consider if using CSP techniques

can help with this problem.

As indicated in Chapter 7, CP models of sm that identify a correspondence with the

GS-lists following AC propagation, yield techniques for establishing a failure-free enumer-

ation of all stable matchings. Our constraint model of hr aims to establish a similar
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structural correspondence involving the GS-lists for an hr instance. We recall from Sec-

tion 1.2 that the deletions which occur as part of the resident-oriented (RGS) algorithm

result in a reduced set of preference lists called the RGS-lists. Similarly, the deletions that

occur as part of the hospital-oriented (HGS) algorithm result in a reduced set of preference

lists called the HGS-lists. The intersection of the RGS-lists and the HGS-lists is known as

the GS-lists.

In this chapter we present in Section 8.2 a CSP encoding for an instance of hr, to-

gether with a correctness proof, and a strategy for a failure-free enumeration of all stable

matchings. The hr encoding is then extended to hrt under weak stability in Section

8.3. We described an enumeration strategy for finding all weakly stable matchings for an

instance of hrt and hence, with the aid of branch and bound, a maximum weakly stable

matching.

8.2 hr encoding

An instance I of hr involves a set R = {r1, . . . , rn} of residents and a set H = {h1, . . . , hm}
of hospitals. Each resident ri ∈ R has an acceptable set of hospitals Ai ⊆ H; moreover ri

ranks Ai in strict order of preference. For each hj ∈ H, denote by Bj ⊆ R those residents

who find hj acceptable; hj ranks Bj in strict order of preference. Finally each hospital

hj has capacity cj (1 ≤ j ≤ m), indicating the number of posts that hj offers. For each

ri ∈ R, let lri denote the length of ri’s preference list, and for each hj ∈ H, let lhj denote

the length of hj ’s preference list; we assume that cj ≤ lhj .

We construct a CSP instance J involving variables X = {x1, . . . , xn} and Y = {yj,k :

1 ≤ j ≤ m ∧ 0 ≤ k ≤ cj}. Initially the variables’ domains are defined as follows:

dom(xi) = {1, 2, . . . , lri } ∪ {m + 1} (1 ≤ i ≤ n)

dom(yj,0) = {0} (1 ≤ j ≤ m)

dom(yj,k) = {k, k + 1, . . . , lhj } ∪ {n + k} (1 ≤ j ≤ m ∧ 1 ≤ k ≤ cj)

For the xi variables (1 ≤ i ≤ n), the value m + 1 corresponds to the case that ri’s GS-list

is empty, whilst the remaining values correspond to the ranks of preference list entries

that belong to the GS-lists. A similar meaning applies to the yj,k variables (1 ≤ j ≤ m,

1 ≤ k ≤ cj), except that the value n + k corresponds to the case that hj’s GS-list contains

fewer than k entries.

More specifically, if xi ≥ p (1 ≤ p ≤ lri ), then during the RGS algorithm, ri applies to
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his pth-choice hospital or worse, so that in M0, either ri is assigned to such a hospital or

is unassigned. Similarly if xi ≤ p, then during the HGS algorithm, ri was offered a post

by his pth-choice hospital or better, so that ri is assigned to such a hospital in Mz.

From the hospitals’ point of view, if yj,k ≥ q (1 ≤ q ≤ lhj ), then during the HGS

algorithm, hj offers its kth post to its qth-choice resident or worse, so that in Mz, either

hj ’s kth post is filled by such a resident, or is unfilled. Similarly if yj,k ≤ q, then during

the RGS algorithm, some resident ri applied to hj ’s kth post, where rank(hj , ri) ≤ q, so

that hj ’s kth post is filled by ri or better in M0.

The constraints in J are given in Figure 8.1. In the context of lines 2-5, p denotes

the rank of hj in ri’s list and q denotes the rank of ri in hj ’s list. An interpretation of

the constraints is now given. Constraint 1 ensures that hj ’s filled posts are occupied by

residents in preference order, and that if post k−1 is unfilled then so is post k. Constraint

2 states that if hj ’s kth post is filled by a resident no better than ri or is unfilled, then ri

must be assigned to a hospital no worse than hj. Constraints 3 and 5 reflect the consistency

of deletions carried out by the HGS and RGS algorithms respectively (i.e. if hj is deleted

from ri’s list, then ri is deleted from hj ’s list, and vice versa). Finally Constraint 4 states

that if ri is assigned to a hospital no better than hj or is unassigned, and hj ’s first k − 1

posts are filled by residents better than ri, then hj ’s kth post must be filled by a resident

at least as good as ri.

1. yj,k < yj,k+1 (1 ≤ j ≤ m, 1 ≤ k ≤ cj − 1)

2. yj,k ≥ q ⇒ xi ≤ p (1 ≤ j ≤ m, 1 ≤ k ≤ cj , 1 ≤ q ≤ lhj )

3. xi 6= p ⇒ yj,k 6= q (1 ≤ i ≤ n, 1 ≤ p ≤ lri , 1 ≤ k ≤ cj)

4. (xi ≥ p ∧ yj,k−1 < q) ⇒ yj,k ≤ q (1 ≤ i ≤ n, 1 ≤ p ≤ lri , 1 ≤ k ≤ cj)

5. yj,cj
< q ⇒ xi 6= p (1 ≤ j ≤ m, cj ≤ q ≤ lhj )

Figure 8.1: Constraints for the CSP encoding for an hr instance.

It turns out that establishing AC in J yields a set of domains that correspond to the

GS-lists in I. We prove this using three lemmas. The first two lemmas show that the arc

consistent domains correspond to subsets of the HGS-lists and the RGS-lists respectively.

The third lemma shows that the GS-lists correspond to arc consistent domains. In the

following proofs we use the terminology “ri applies (or is assigned) to hj ’s kth post” to

mean that hj is currently assigned k − 1 residents whom it prefers to ri, and prefers ri
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to any of its other assignees. Also given a stable matching M , and given any k such that

1 ≤ k ≤ |M(hj)|, we denote the resident who is assigned to hj ’s kth post in M by Mk(hj).

Lemma 8.2.1. (i) For a given j (1 ≤ j ≤ m), let q be an integer (q ≤ n) such that

q ∈ dom(yj,k) for some k (1 ≤ k ≤ cj) after AC propagation. Then the resident ri at

position q on hospital hj ’s preference list belongs to the HGS-list of hj .

(ii) For a given i (1 ≤ i ≤ n), let p be an integer (p ≤ m) such that p ∈ dom(xi) after AC

propagation. Then hospital hj at position p on resident ri’s preference lists belongs to the

HGS-list of ri.

Proof. The HGS-lists are constructed as a result of the deletions made by the HGS al-

gorithm. We show that the corresponding deletions are made to the variables’ domains

during AC propagation.

The following proof uses induction on the number of iterations of the main loop during

an execution E of the HGS algorithm to show that, if iteration z consists of some hospital

hj offering some resident ri its kth post, then xi ≤ p, proving (ii) above, yj,k ≥ q, and

yv,b 6= t (1 ≤ b ≤ cv), proving (i) above, for each hospital hv such that rank(ri, hv) > p,

where t = rank(hv, ri), p = rank(ri, hj) and q = rank(hj , ri).

Let z be the number of iterations of the main loop during an execution E of the

HGS algorithm. We prove the following by induction on z: if iteration z consists of

hospital hj offering ri its kth post, then xi ≤ p, yj,k ≥ q, and for each hv such that

rank(ri, hv) = s > p, it follows that yv,b 6= t (1 ≤ b ≤ cv), where t = rank(hv, ri),

p = rank(ri, hj) and q = rank(hj, ri).

First consider the case where z = 1. On the first iteration of the main loop, hospital hj

offers resident ri its kth post, where q = 1 = rank(hj , ri) and p = rank(ri, hj). By domain

initialisations, yj,k ≥ 1 (1 ≤ k ≤ cj), therefore propagation of Constraint 2 yields xi ≤ p.

Finally, consider each hospital hv where rank(ri, hv) > p. By propagation of Constraint 3

we obtain yv,b 6= t (1 ≤ b ≤ cv), where t = rank(hv, ri), giving us the result as required.

Now suppose that z = d > 1, and that the result holds for z < d. We consider the two

cases where k = 1 and k > 1.

Case (i) Suppose k = 1. Then consider the two subcases where q = 1 and q > 1.

Subcase (a) For q = 1 the proof is similar to the base case.

Subcase (b) Now suppose that q > 1. Then hj is offering its 1st post to the

resident ri at position q. Let ru1
be a resident such that rank(hj , ru1

) = t1 < q.
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Then ru1
has been deleted from hj ’s list. Now suppose rank(ru1

, hj) = s1.

Then ru1
must have received an offer from some hospital hv whom he prefers to

hj , where rank(ru1
, hv) = s2 < s1 and rank(hv, ru1

) = t2. Therefore hv offered

its ath post, for some a (1 ≤ a ≤ cv), to ru1
before the dth iteration. So by the

induction hypothesis we have yv,a ≥ t2, xu1
≤ s2 and yj,k 6= t1 (1 ≤ k ≤ cj),

where t1 = rank(hj, ru1
). However ru1

was arbitrary, and since yj,k 6= t1 for all

t1 (1 ≤ t1 ≤ q − 1), yj,k ≥ q. The rest of the proof is similar to the base case.

Case (ii) Now suppose k > 1. Let ru1
be the resident to which hj offered its

(k − 1)th post. This occurred during the gth iteration for some g < d. Suppose

that rank(hj , ru1
) = t1 < q. Then by the induction hypothesis we have yj,k−1 ≥ t1,

therefore propagation of Constraint 1 yields:

yj,k ≥ t1 + 1 (8.1)

Now consider the two subcases where q = t1 + 1 and q > t1 + 1.

Subcase (a) If q = t1 + 1, then the rest of the proof is similar to the base case.

Subcase (b) Now suppose q > t1+1. Let ru2
be a resident such that rank(hj , ru2

)

= t2 (t1+1 ≤ t2 ≤ q−1). Then ru2
has been deleted from hj ’s list. Now suppose

rank(ru2
, hj) = s2. Then ru2

must have received an offer from some hospital hv

whom he prefers to hj , where rank(ru2
, hv) = s3 < s2 and rank(hv, ru2

) = t3.

Therefore hv offered its ath post to ru2
for some a (1 ≤ a ≤ cv) before the

dth iteration. By the induction hypothesis, yv,a ≥ t3, xu2
≤ s3 and yj,k 6= t2

(1 ≤ k ≤ cj). However, ru2
was arbitrary, so:

yj,k 6= t2 for t1 + 1 ≤ t2 ≤ q − 1 (8.2)

Thus from Inequalities 8.1 and 8.2, we have yj,k ≥ q. The rest of the proof is

similar to the base case.

Lemma 8.2.2. (i) For a given i (1 ≤ i ≤ n), let p be an integer (p ≤ m) such that p ∈
dom(xi) after AC propagation. Then hospital hj at position p on resident ri’s preference

lists belongs to the RGS-list of ri.

(ii) For a given j (1 ≤ j ≤ m), let q be an integer (q ≤ m) such that q ∈ dom(yj,k) for
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some k (1 ≤ k ≤ cj) after AC propagation. Then the resident ri at position q on hj ’s

preference list belongs to the RGS-list of hj .

Proof. The RGS-lists are constructed as a result of the deletions made by the RGS al-

gorithm. We show that the corresponding deletions are made to the variables’ domains

during AC propagation.

The following proof uses induction on the number of iterations of the main loop during

an execution E of the RGS algorithm to show that if hospital hj becomes full, and residents

ri1 , . . . , ricj
are assigned to hj , then yj,k ≤ qk (1 ≤ k ≤ cj), where rank(hj, rik) = qk and

0 < q1 < q2 < · · · < qcj
(1 ≤ k ≤ cj). We use this result to show that (ii) above is satisfied,

and propagation of Constraint 5 shows that (i) is also satisfied.

Let z be the number of iterations of the main loop during an execution E of the RGS

algorithm. We prove the following by induction on z: if iteration z involves some resident

ri applying to a hospital hj and at the end of this iteration, residents ri1 , . . . , ridj
are

assigned to hj , where dj ≤ cj , then yj,k ≤ qk (1 ≤ k ≤ dj), where qk = rank(hj , ri) and

0 < q1 < q2 < · · · < qdj
, and xik ≥ pik , where pik = rank(rik , hj).

First consider the base case where z = 1. Then during the first iteration of the main

loop, some resident ri applies for the first post at hospital hj , where p = 1 = rank(ri, hj),

and q = rank(hj, ri). Thus, xi ≥ p (by construction of the xi variables’ domains), and

yj,k−1 < q, since k = 1 and yj,0 = 0 by definition. Therefore propagation of Constraint 4

yields yj,k ≤ q as required.

Now suppose that z = d > 1, and that the result holds for z < d. Then during the dth

iteration resident ri applies to hospital hj , and we let dj denote the number of residents

assigned to hj just before ri applies, where dj ≥ 0 and rank(ri, hj) = p. We consider the

cases where p = 1 and p > 1.

Case (i) Suppose p = 1, and therefore xi ≥ p by initialisation of the variables’

domains. We first note that if dj = 0, the proof is similar to the base case. Now

suppose that dj ≥ 1. Then there exists an iteration g < d of the main loop where

some resident applies to hj, such that iteration g′ of the main loop, for g < g′ < d,

does not involve a resident applying to hj . Then at the end of the gth iteration,

residents ri1 , . . . , ridj
are assigned to hj , and by the induction hypotheses yj,k ≤ qk

(1 ≤ k ≤ dj), where qk = rank(hj, rik) and 0 < q1 < q2 < · · · < qdj
. Now consider

the two subcases where dj < cj and dj = cj .
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Subcase (a) Suppose dj < cj . If q > qdj
, then at the dth iteration, ri is assigned

to hj ’s (dj + 1)th post. From above we have that yj,dj
≤ qdj

< q and since

xi ≥ p, propagation of Constraint 4 yields yj,dj+1 ≤ q, as required. Now

suppose that q < qdj
. Then there exists b (1 ≤ b ≤ dj) such that qb−1 < q < qb

(for convenience we define q0 = 0). Therefore at the dth iteration, ri becomes

assigned to hj ’s bth post. Thus from above yj,b−1 ≤ qb−1 < q, and since xi ≥
p, propagation of Constraint 4 yields yj,b ≤ q. Furthermore, yj,b ≤ q < qb,

and by the induction hypothesis xib ≥ pib , where pib = rank(rib , hj). Again

propagation of Constraint 4 yields yj,b+1 ≤ qb. Continuing in this manner we

obtain yj,k ≤ qk−1, for all k (b + 1 ≤ k ≤ dj + 1), as required.

Subcase (b) Now suppose that dj = cj . Hence when ri applies to hj at the dth

iteration, hj becomes over-subscribed. During the gth iteration of the main loop,

hj must have become full. When this happens as part of the RGS algorithm,

the worst assigned resident is identified, and all its successors on hj ’s list are

deleted. It follows that q < qcj
. The remainder of the proof is similar to that

used in Subcase (a) when q < qdj
.

Case (ii) Now suppose that p > 1. Let hv be a hospital such that rank(ri, hv) =

s1 < p. Now suppose rank(hv, ri) = t1. Then hv has been deleted from ri’s list

during the execution of the RGS algorithm. This can only happen if hv became full

at the gth iteration (g < d) of the RGS algorithm. At this point the worst resident

ru assigned to hv is identified, where rank(hv, ru) = t2 < t1. Since hv is full, it

follows that ru is assigned to hv’s cth
v post at the end of the gth iteration, hence by

the induction hypothesis yv,cv ≤ t2 < t1. Thus propagation of Constraint 5 yields

xi 6= s1. But hv was arbitrary and hence xi 6= s2 for all s2 such that 1 ≤ s2 ≤ p− 1,

so xi ≥ p. The rest of the proof is similar to that used in Case (i).

We now prove that the domains corresponding to the GS-lists of an instance I of hr

are arc consistent. First we introduce some new notation.

For each j (1 ≤ j ≤ m) we define the set Sj as follows:

Sj = {rank(hj , ri) : ri ∈ GS(hj)}.
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Let dj denote the number of residents assigned to hospital hj in any stable matching

in I. Then define qj,k = rank(hj,Mzk
(hj)) and tj,k = rank(hj ,M0k

(hj)) for each k

(1 ≤ k ≤ dj), where Mz and M0 are the hospital-optimal and resident-optimal stable

matchings respectively. The GS-domains for the variables in J are defined as follows:

dom(xi) =







{rank(ri, hj) : hj ∈ GS(ri)}, if GS(ri) 6= ∅
{m + 1}, otherwise.

dom(yj,k) =







{q ∈ Sj : qj,k ≤ q ≤ tj,k}, if 1 ≤ k ≤ dj

{n + k}, if dj + 1 ≤ k ≤ cj .

Lemma 8.2.3. The GS-domains are arc consistent in J .

Proof. First consider Constraint 1, and suppose that k < dj . Then min(dom(yj,k+1)) =

qj,k+1 > qj,k = min(dom(yj,k)). Now suppose that dj ≤ k < cj . Then yj,k+1 = n + k + 1 >

n + k = yj,k.

Now consider Constraint 2 and once again suppose that yj,k ≥ q. Then during the

execution of the HGS algorithm either (i) hospital hj offered the resident ri at position q its

ath post for some a (1 ≤ a ≤ cj), or (ii) the pair (ri, hj) was deleted, where p = rank(ri, hj)

and q = rank(hj, ri). Now consider the two cases below:

Case (i) If hj offered resident ri its ath post as part of the HGS algorithm, then ri

deletes all those hospitals ranked lower than hj on his preference list, i.e. xi ≤ p.

Case (ii) If the pair (ri, hj) is deleted, then resident ri must have received an offer

from a hospital hv which he prefers to hj , where rank(ri, hv) = s < p. Since ri

deletes all hospitals in his preference list ranked below hv when he receives such an

offer, xi ≤ s. In particular xi ≤ p.

Consider Constraint 3, and suppose that xi 6= p. Then hospital hj has been deleted from

resident ri’s preference list, where p = rank(ri, hj), by either the RGS or HGS algorithm.

The same algorithm ensures that the preference lists are consistent and removes ri from

the list of hj , i.e. yj,k 6= q (1 ≤ k ≤ cj), where q = rank(hj, ri).

For Constraint 4, suppose that xi ≥ p and yj,k−1 < q, where p = rank(ri, hj) and

q = rank(hj , ri). If tj,k ≤ q, then yj,k ≤ q, since yj,k ≤ tj,k by definition, as required. Now

suppose for a contradiction that tj,k > q. Then tj,a < q, for 1 ≤ a ≤ k − 1, and tj,a > q,

for k ≤ a ≤ dj . Hence ri is not assigned to hj in M0, so (ri, hj) was deleted as part of
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the RGS algorithm, since either ri is unmatched in M0 or prefers hj to M0(ri). As (ri, hj)

has been deleted, hj must have become full during an execution of RGS algorithm with

residents that it prefers to ri. Thus hj is full in M0, so dj = cj, and moreover tj,cj
< q.

This is a contradiction to the earlier assumption that tj,k > q, hence tj,k ≤ q.

Finally consider Constraint 5 and suppose that yj,cj
< q. Then during an execution

of the RGS or HGS algorithm, hospital hj removed the resident ri from its list where

p = rank(ri, hj) and q = rank(hj, ri). To ensure consistency the same algorithm then

deletes hj from ri’s list, i.e. xi 6= p.

In general, following AC propagation in J , matchings M0 and Mz may be obtained as

follows. Let xi ∈ X. If xi = m+1, resident ri is unassigned in both M0 and Mz. Otherwise,

in M0 (respectively Mz), ri is assigned to the hospital hj such that rank(ri, hj) = p, where

p = min(dom(xi)) (respectively p = max(dom(xi))).

The constraints for this encoding can be revised in O(1) time. Arc consistency can

therefore be established in O(ed) time [72], where e is the number of constraints, and d is

the domain size. For this encoding we have e = O(nmC), where C = max{cj : hj ∈ H},
d = O(n + m), and therefore AC can be established in O(nmC(n + m)) = O((n + m)3C).

The two lemmas and time complexity discussion above, in addition to the fact that AC

algorithms find the unique maximal set of arc consistent domains, leads to the following

theorem.

Theorem 8.2.4. Let I be an instance of hr, and let J be a CSP instance obtained by the

encoding in Figure 8.1. Then:

– AC can be established in O((n + m)3C) time;

– the domains remaining after AC propagation in J correspond exactly to the GS-lists.

We now show that, for an instance I of hr, the encoding presented above can be used

to enumerate all the solutions of I in a failure-free manner using AC propagation with

a value-ordering heuristic. We note that if xi has at least two values in its domain then

m + 1 does not belong to the domain. For, suppose that j (j ≤ m) and m + 1 belong

to dom(xi) after AC propagation. Then ri became assigned to some hospital during the

RGS algorithm, so ri is matched in the resident-optimal stable matching. Hence by the

Rural Hospitals Theorem (Theorem 1.2.1) ri is matched in the hospital-optimal stable

matching. Thus ri received a proposal during the HGS algorithm, hence m + 1 must have

been removed from xi’s domain during AC propagation.
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Theorem 8.2.5. Let I be an instance of hr and let J be a CSP instance obtained from

I using the encoding in Figure 8.1. Then the following search process enumerates all

solutions in I without repetition and without ever failing due to an inconsistency:

– AC is established as a preprocessing step, and after each branching decision including

the decision to remove a value from a domain;

– if all domains are arc consistent and some variable xi has two or more values in its

domain then search proceeds by setting xi to the minimum value p in its domain. On

backtracking, the value p is removed from the domain of xi;

– when a solution is found, it is reported and backtracking is forced.

Proof. Let T be the search tree as defined above. We prove by induction on T that each

node in T corresponds to an arc consistent CSP instance J ′, which in turn corresponds to

the GS-lists I ′ for an hr instance derived from I such that every stable matching in I ′ is

also stable in I. To prove this we first show that it holds for the root node of T . Then we

assume it is true at any branch node u in T and show that it is true for each child of u.

The root node of T corresponds to the CSP instance J ′ with arc consistent domains,

where J ′ is obtained from J by forcing AC propagation. Therefore by Theorem 8.2.4, J ′

corresponds to the GS-lists I ′ for the hr instance I. Using the properties of the GS-lists

shown in Theorem 1.1.2, every stable matching in I ′ is also stable in I.

Now suppose that we have reached a branching node u of T . By the induction hy-

pothesis we have, associated with u, a CSP instance J ′ with arc consistent domains.

Furthermore, J ′ corresponds to the GS-lists I ′ for an hr instance derived from I, such

that every stable matching in I ′ is stable in I. Then since u is a branching node, there

exists a variable xi (1 ≤ i ≤ n) such that the domain of xi contains at least two values.

Hence in T , u has two children, namely v1 and v2, each having an associated CSP instance

J ′
1 and J ′

2 derived from J ′ in the following way. In J ′
1, xi is assigned the smallest value p

(which corresponds to the rank of ri’s best stable partner hj in I ′) in its domain, and in

J ′
2, p is removed from xi’s domain.

First consider instance J ′
1. During AC propagation in J ′

1, we consider the revisions

made by Constraint 3 when xi is assigned the value p. Suppose xi = p. Let hv be a hospital

such that rank(ri, hv) > p. Then AC propagation in J ′
1 forces yv,k 6= t (1 ≤ k ≤ cv), where

t = rank(hv, ri). After such revisions, J ′
1 corresponds to an hr instance I ′1 obtained from

I ′ by deleting the pairs (ri, hv), where v 6= j. We now verify that every stable matching
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M in I ′1 is stable in I ′. Suppose that the pair (r, h) blocks M in I ′. If h ∈ PL(r) in

I ′1, then (r, h) must block M in I ′1, hence (r, h) must have been deleted in I ′1. Hence

(r, h) = (ri, hv) for some v such that rank(ri, hv) > p. Let M0 denote the resident-optimal

stable matching in I ′. In M0 each resident obtains his best possible stable partner in I ′.

It can be easily verified that M0 is also stable in I ′1, hence (ri, hj) ∈ M0. By the Rural

Hospitals Theorem (Theorem 1.2.1), the same set of hospitals and residents are matched

in every stable matching, therefore ri is matched in M . In particular, (ri, hj) ∈ M , as hj

is the only hospital on ri’s list in I ′1. Thus (r, h) cannot block in M in I ′ after all, as ri

prefers hj to hv (as hj is the hospital at the head of ri’s list in I ′). Therefore M is stable

in I ′, and hence by the induction hypothesis is also stable in I. Therefore at node v1, AC

is established in J ′
1 giving instance J ′′

1 which we associate with this node. By Theorem

8.2.4, J ′′
1 corresponds to the GS-lists I ′′1 of hr instance I ′1. Using the properties of the

GS-lists given in Theorem 1.1.2, we have that every stable matching in I ′′1 is stable in I ′1,

which in turn is stable in I by the preceding argument.

We now consider J ′
2. Let q = rank(hj , ri). Then during AC propagation in J ′

2, we

consider the revisions made when p is removed from the domain of xi. Propagation of

Constraint 3 forces yj,k 6= q (1 ≤ k ≤ cj). Then propagation of Constraint 4 gives yj,1 ≤ q.

However yj,1 6= q, so yj,1 < q. Hence further propagation of Constraint 4 yields yj,2 ≤ q,

and hence yj,2 < q. Continuing in this way we obtain yj,k < q for 1 ≤ k ≤ cj . Hence

after such revisions J ′
2 corresponds to an hr instance I ′2 obtained from I ′ by deleting the

pairs (ru, hj), where rank(hj , ru) ≥ q. We now verify that every stable matching M in

I ′2 is stable in I ′. Suppose that (r, h) blocks M in I ′. Then (r, h) = (ru, hj) for some

ru such that rank(hj, ru) ≥ q, for otherwise (ru, hj) blocks M in I ′2. Consider Mz, the

resident-pessimal stable matching in I ′, where each resident obtains his worst possible

stable assignment in I ′. We can easily verify that Mz is stable in I ′2. Thus in Mz, ri

is assigned to the hospital at the end of his list, and since ri’s list contains at least two

entries (by assumption at the branch node) Mz(ri) 6= hj . Therefore hj must be full in Mz

with residents it prefers to ri, by the stability of Mz in I ′2. Hence by the Rural Hospitals

Theorem (Theorem 1.2.1) applied to I ′2, hj is full in M . However hj must be full with

assignees whom it prefers to ru by construction of I ′2. Hence M is stable in I ′, and by

the induction hypothesis is stable in I. Now at node v2, AC is established in J ′
2 giving

instance J ′′
2 which we associate with this node. The rest of the proof is similar to that

used for instance J ′
1 above. Hence by induction the claim is true for all nodes in T .
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We can now see that the branching process never fails due to an inconsistency, as

setting the variable xi to p leaves the resident-optimal stable matching, while excluding p

always leaves the resident-pessimal stable matching. Also, since we explore all areas of the

search space with the branching process, all possible stable matchings for an hr instance

I are listed.

We can also prove that there are no repeated solutions. First observe that the leaf

nodes of T correspond to the stable matchings in I. Suppose for a contradiction that leaf

nodes l1 and l2 correspond to the same stable matching M in I. Then let b be the lowest

common ancestor of l1 and l2 in T . Without loss of generality, assume l1 is reached by

taking the path from the left child of b, and l2 is reached by taking the path from the

right child of b. We know that node b corresponds to the GS-lists I ′ for a particular hr

instance derived from I, such that variable xi has at least two values in its domain. This

means that in I ′ there exists some resident ri who has a GS-list of size greater than one.

Then the left child of b is obtained by forcing ri to be assigned to hospital hj at the tail

of his list in I ′, and similarly the right child of b is obtained by removing hj from ri’s list.

So l1 corresponds to a stable matching M1 where (ri, hj) ∈ M1, and l2 corresponds to a

stable matching M2 where (ri, hj) /∈ M2, i.e. M1 6= M2. Therefore we have that each leaf

node corresponds to a unique stable matching.

8.3 hrt encoding

In this section we present a CSP encoding for an instance I of hrt. We use the same nota-

tion for the components of I as defined in Section 8.2 for an instance of hr. However, we

define pos used throughout this section. For all ri ∈ R,] let pos(ri, ·) : Ai → {1, 2, . . . , lri }
be a bijective function. Similarly[ for all hj ∈ H, let pos(hj, ·) : Bj → {1, 2, . . . , lhj } be a

bijective function such that:

∀ ri ∈ R · ∀ hj , hk ∈ Ai · rank(ri, hj) < rank(ri, hk) ⇒ pos(ri, hj) < pos(ri, hk)

∀ hj ∈ H · ∀ ri, rk ∈ Bj · rank(hj, ri) < rank(hj , rk) ⇒ pos(hj, ri) < pos(hj, rk).

If pos(ri, hj) = p then we say that hj occurs at position p on ri’s list, and similarly if

pos(hj , ri) = q we say that ri occurs at position q on hj ’s list. We also define a bijective

function

pref (ri, ·) : {1, 2, . . . , lri } → Ai,
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such that pref (ri, k) = hj if and only if pos(ri, hj) = k. Similarly define a bijective function

pref (hj , ·) : {1, 2, . . . , lhj } → Bj ,

such that pref (hj , k) = ri if and only if pos(hj , ri) = k. Then given any p ∈ {1, 2, . . . , lri },
for some resident ri, we define:

p+ = max{k ∈ {1, 2, . . . , lri } : rank(ri, pref (ri, k)) = rank(ri, pref (ri, p))}
p− = min{k ∈ {1, 2, . . . , lri } : rank(ri, pref (ri, k)) = rank(ri, pref (ri, p))}.

Also given any q ∈ {1, 2, . . . , lhj } we define:

q+ = max{k ∈ {1, 2, . . . , lhj } : rank(hj , pref (hj , k)) = rank(hj , pref (hj , q))}
q− = min{k ∈ {1, 2, . . . , lhj } : rank(hj , pref (hj , k)) = rank(hj , pref (hj , q))}.

We now give the intuition behind p+ and p−, with q+ and q− being similarly defined.

Then p+, with respect to some resident ri, denotes the position of the last hospital in

the same tie as the hospital in position p on ri’s list. Similarly p−, with respect to some

resident ri, denotes the position of the first hospital in the same tie as the hospital in

position p. Both q+ and q− are analogously defined for the hospitals.

Consider the preference list of r1 shown in Figure 8.2. We illustrate the usage of the

above notation with respect to r1’s preference list. In r1’s list we have pos(r1, h4) = 3,

rank(r1, h4) = 2, and pref (r1, 3) = h4. Also for p = 5 (i.e. pref (r1, p) = h2) we have that

p+ = 6 and p− = 4.

r1 : (h1 h5) h4 (h3 h2 h6)

Figure 8.2: r1’s preference list.

We construct a CSP instance J involving variables X = {x1, . . . , xn} and Y = {yj,k :

1 ≤ j ≤ m ∧ 0 ≤ k ≤ cj}. Initially the variables’ domains are defined as follows:

dom(xi) = {1, 2, . . . , lri } ∪ {m + 1} (1 ≤ i ≤ n)

dom(yj,0) = {0} (1 ≤ j ≤ m)

dom(yj,k) = {k, k + 1, . . . , lhj } ∪ {n + k} (1 ≤ j ≤ m ∧ 1 ≤ k ≤ cj).

An important difference between the constraints for the hr model, and that of the

model for hrt, is that the values in the variables’ domains for the hrt model correspond

to positions on an agent’s preference list as opposed to ranks.
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1. yj,k < yj,k+1 (1 ≤ j ≤ m, 1 ≤ k ≤ cj − 1)

2. xi > p+ ⇒ yj,k ≤ q+ (1 ≤ i ≤ n, 1 ≤ p ≤ lri , 1 ≤ k ≤ cj)

3. xi 6= p ⇒ yj,k 6= q (1 ≤ i ≤ n, 1 ≤ p ≤ lri , 1 ≤ k ≤ cj)

4. (xi = p ∧ yj,k−1 < q) ⇒ yj,k ≤ q (1 ≤ i ≤ n, 1 ≤ p ≤ lri , 1 ≤ k ≤ cj)

5. yj,cj
< q ⇒ xi 6= p (1 ≤ j ≤ m, cj ≤ q ≤ lhj )

Figure 8.3: Constraints for the CSP model of hrt instance.

The constraints in J are given in Figure 8.3. In the context of Constraint 2, p denotes

the position of some hospital hv on ri’s preference list, where 1 ≤ p ≤ lri . Then p+

denotes the position of the last hospital in the same tie as hv (possibly p = p+). Similarly

p− denotes the position of the first hospital in the same tie as hv (possibly p = p−).

Both q+ and q− are analogously defined for the hospitals. Then hj denotes a hospital

such that p− ≤ pos(ri, hj) ≤ p+. In the context of Constraints 3–5, p = pos(ri, hj) and

q = pos(hj , ri).

An interpretation of the constraints is now given. Constraint 1 ensures that hj ’s filled

posts are occupied by residents in the order in which they appear on its list, and that if

post k−1 is unoccupied then so is post k. Constraint 2 is a stability constraint and ensures

that if ri obtains a hospital strictly worse than hj , then hj is filled with residents at least

as good as ri. Constraints 3 and 5 are consistency constraints, i.e. if hj is deleted from ri’s

list then ri is deleted from hj ’s list, and vice versa. Finally Constraint 4 states that if ri

is assigned hospital hj , and hj ’s first k − 1 posts are filled by residents who appear before

ri on hj ’s list, then hj’s kth post must be filled by ri or a resident who appears before ri

on hj ’s list.

In contrast to the CSP encoding for hr, enforcing AC on a CSP instance of hrt does

not, in general, yield a weakly stable matching. Furthermore, there is no guarantee that

all weakly stable matchings can be found in a failure-free manner. To find all weakly stable

matchings the following enumeration process is used.

– AC is established as a preprocessing step, and after each branching decision including

the decision to remove a value from a domain;

– if all domains are arc consistent and some variable xi has two or more values in its

domain then search proceeds by setting xi to the minimum value p in its domain.

On backtracking, the value p is removed from the domain of xi;
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– when a solution is found, it is reported and backtracking is forced.

We now show that if during search a solution to the CSP encoding shown in Figure

8.3 is output by the constraint solver, then the solution corresponds to a weakly stable

matching in M .

Lemma 8.3.1. Let I be an instance of hrt and let M be an assignment relation output as

a solution to the CSP encoding shown in Figure 8.3. Then M is a weakly stable matching.

Proof. In order to establish the correctness of the result above, our first goal is to prove

that M is a matching, and secondly that M is weakly stable.

To prove that M is a matching, the aim is to show that, in M , each resident is assigned

to at most one hospital and the number of assignees of each hospital does not exceed its

capacity. First we note that each resident ri can only be assigned to at most one hospital, as

a solution is output only when ri’s domain contains a single value. Now let hj be a hospital

with dj assignees, where dj > cj . Then there exist dj residents assigned to hj , namely

ri1 , ri2 , . . . , ridj
, where pos(hj , rik) = qk (1 ≤ k ≤ dj), and q1 < q2 < · · · < qdj

. Therefore

xik = pk (1 ≤ k ≤ dj), where pk = pos(rik , hj). By Constraint 4, since xi1 = p1 and

yj,0 < q1, we obtain yj,1 ≤ q1. Continuing in this manner, we obtain yj,cj
≤ qcj

. Therefore

propagation of Constraint 5 yields xib 6= pb, for all b (cj < b ≤ dj), a contradiction to

the fact that xik = pk for all k (1 ≤ k ≤ dj). Hence dj ≤ cj, as required. Since hj was

arbitrary, the result holds for all hospitals.

We now establish that M is a weakly stable matching. Suppose for a contradiction

that (ri, hj) blocks M in I. Let p = pos(ri, hj) and q = pos(hj , ri). As (ri, hj) blocks

M in I, either ri is unmatched, or ri strictly prefers hj to M(ri), and either hj is under-

subscribed or hj strictly prefers ri to its worst assignee. First, suppose that ri is unmatched

in M , therefore xi = m + 1 > p+. Hence propagation of Constraint 2 yields yj,k ≤ q+

(1 ≤ k ≤ cj). Then in M , hj is full with cj assignees, none of whom are worse than ri,

a contradiction to the fact that (ri, hj) blocks M in I. Therefore ri must be matched in

M , and ri strictly prefers hj to his assignee hv in M , where pos(ri, hv) = s > p+. Then

xi > p+. Now using a similar argument to that above, we can easily verify that, in M , hj

must be full with cj assignees, none of whom are worse than ri. Therefore M is a weakly

stable matching.

We now establish that every weakly stable matching corresponds to a set of arc con-

sistent domains. First we introduce some notation. Let M be a weakly stable matching
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in which each hj ∈ H is assigned dj residents, namely ri1 , . . . , ridj
, where qk = pos(hj , rik)

(1 ≤ k ≤ dj), and q1 < q2 < · · · < qdj
. Then the M-domains for M are defined as follows:

dom(xi) =







{pos(ri,M(ri))}, if M(ri) 6= ∅
{m + 1}, otherwise

dom(yj,k) =







{qk}, if 1 ≤ k ≤ dj

{n + k}, if dj + 1 ≤ k ≤ cj

Lemma 8.3.2. The M-domains are arc consistent in J .

Proof. Suppose that the variables are assigned values as defined by the M -domains. Then

we show that the variables’ domains are arc consistent by considering each constraint in

turn.

First consider Constraint 1. By definition, if 1 ≤ k < dj , yj,k = qk and yj,k+1 = qk+1,

where qk < qk+1. Also for any k such that dj ≤ k ≤ cj , it follows that yj,k = n + k <

n + k + 1 = yj,k+1. Hence Constraint 1 is satisfied.

Now consider Constraint 2, and suppose that xi > p+. Then xi is assigned to

some hospital hv, where pos(ri, hv) = s1 > p+. Let hj be any hospital such that

p− ≤ pos(ri, hj) ≤ p+. Then by the weak stability of M , hj must be full with cj res-

idents, none of whom are worse than ri, i.e. yj,k ≤ q+ for all k (1 ≤ k ≤ cj), where

q = pos(hj , ri).

Consider Constraint 3. Now suppose that xi 6= p and let k (1 ≤ k ≤ cj) be given.

Then ri is not assigned to hospital hj , where p = pos(ri, hj). Let q = pos(hj , ri). Then hj

is not assigned to ri, therefore yj,k 6= q for (1 ≤ k ≤ cj).

For Constraint 4, suppose that xi = p and yj,k−1 < q. Hence ri is assigned to hj ,

where pos(ri, hj) = p and pos(hj, ri) = q. Let pos(hj , ru) = t < q, where ru is the resident

occupying hj’s (k − 1)th post. Hence the position of the resident holding hj’s kth post

must be at least as good as q, i.e. yj,k ≤ q. Therefore Constraint 4 is satisfied.

Finally consider Constraint 5, and suppose yj,cj
< q, where q = pos(hj, ri). Then

yj,k < q for all k (1 ≤ k ≤ cj), therefore hj is not assigned to ri. Hence xi 6= p, where

p = pos(ri, hj).

The two lemmas above lead to the following theorem.
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Theorem 8.3.3. Let I be an instance of hrt. Then the set of solutions returned by the

enumeration process coincides with the set of weakly stable matchings in I.

We note that by an argument similar to that in Theorem 8.2.5, no weakly stable

matching is repeated during the enumeration.

The constraints shown in Figure 8.3 can be revised in O(1) time during AC propagation,

assuming that upper and lower bounds for the variables’ domains are maintained. Hence

the time complexity of establishing AC is O(ed) [72]. For this encoding we have e =

O(nmC) and d = O(n + m), therefore AC may be established in O((m + n)3C), where

C = max{cj : hj ∈ H}.
To find a maximum weakly stable matching using the encoding in Figure 8.3 we can

add a constraint C similar to those described in Section 7.6. Here the constraint C seeks

to maximise the number of residents assigned over all the weakly stable matchings. An

example of such a constraint is shown below:

maximise{|{xi ∈ X : xi 6= m + 1}|}

8.4 Open problems

Finally we present some open problems.

8.4.1 Optimal CP encoding for hr

For the hr encoding presented in Section 8.2, AC can be established in time O((n+m)3C),

therefore it remains open as to whether there exists an encoding for hr for which AC can

be established in time O(λ) (yielding the GS-lists after AC propagation as before), where

λ is the total length of the preference lists.

8.4.2 Value/variable ordering heuristics for hrt encodings

Section 8.3 describes a CP encoding for an instance of hrt. However a good value and

variable ordering heuristic can make large difference to the time taken to find an optimal

solution. Can we find such a value or variable ordering heuristic that works well with our

hrt encoding?
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8.4.3 Stable fixtures problem

The Stable Fixtures problem is a many-to-many generalisation of sr. The problem is

known to be polynomial-time solvable in the case where no ties are allowed in an agent’s

list [42]. Can the encoding described in this chapter be extended to the Stable Fixtures

problem?
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Conclusions

In this thesis we have presented a range of algorithmic results for stable matching prob-

lems. These include polynomial-time algorithms, and NP-hardness or NP-completeness

results. These complexity results are summarised in Figure 9.1, whose rows correspond

to the stable matching problems in Chapters 2-6. In the table the ‘no ties’ column indi-

cates the complexity of finding a stable matching when agents’ lists are strictly ordered.

Similarly the columns labelled ‘Weak’, ‘Strong’, and ‘Super’ indicate the complexity of

finding a weakly, strongly and super-stable matching respectively. The term ‘(max)’ is

used with respect to weak stability to denote the problem of finding a maximum weakly

stable matching. Furthermore we use ‘(u)’ to indicate that the matching output by the

corresponding algorithm is in fact the unique matching of the given type. Additionally,

we indicate the section number in round brackets where the results can be found.

Although this study has involved a diverse range of problems, we make here a number

of remarks about common properties that can be observed from the contributions of this

thesis.

1. Weak stability

(a) A weakly stable matching (on its own) is usually easy to find in polynomial

time. In the case of smti and hrt it is already known that simply breaking the

ties arbitrarily and running the extended Gale/Shapley algorithm for smi and

hrt respectively yields a weakly stable matching. By contrast, the problem

of deciding whether an instance of srt admits a weakly stable matching is

NP-complete. However, Figure 9.1 also shows that when we consider certain

restrictions of an srti instance, a weakly stable matching can be found in
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No ties Weak Strong Super

spa-pw
NP-hard (max)

(2.2.2)

spa-ps P (2.3)

(3, 4)-max-smti NP-hard (3.5)

(2,∞)-max-smti P (3.3)

(2,∞)-com-smti P (3.4)

(3,∞)-com-smti NP-complete (3.6)

hr/hrt-1ml P (u)(4.2)
P (4.2)

P (4.5) P (u)(4.4)
NP-hard(max) (4.3)

hr/hrt-2ml P (u)(4.2) NP-hard(max) (4.3) P (4.5) P (u)(4.4)

sri/srti-ml P (u)(5.2)
P (5.2)

P (5.5) P (u)(5.4)
NP-hard(max) (5.3)

smi/smti-sym P (u)(5.2) NP-hard(max) (6.2.2) P (6.4.2) P (u)(6.3.2)

hr/hrt-sym NP-hard(max) (6.2.2) P (6.4.2) P (u)(6.3.2)

sri/srti-sym P (u)(6.1)
P (6.2.1)

P (6.4.1) P (u)(6.3.1)
NP-hard(max) (6.2.2)

Figure 9.1: Thesis contribution.

polynomial time.

(b) If we add any additional conditions (such as maximum cardinality, minimum re-

gret, etc to the problem of finding a weakly stable matching) then NP-hardness

usually prevails. In Chapter 6 we show this to be true for various problems

involving finding weakly stable matchings given an smt/smti instance even if

the preference lists are subject to the restriction that they are symmetric. Also,

from Figure 9.1, we can see that this is true for the problem of finding a max-

imum weakly stable matching even if preference lists on one or both sides are

of bounded length, or are derived form one or two master lists.

(c) By contrast to the results mentioned in Part (b), there is a restricted version

of smti for which the problem of finding a maximum cardinality weakly stable

matching is solvable in polynomial time, namely the case where the men’s lists

are of length at most 2.
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Chapter 9. Conclusion

2. Strong/super-stability

(a) In each of the cases of smt, hrt and srt, it is straightforward to formulate an

example instance that admits no strongly stable or super-stable matching [35].

The same is true for spa-ps, where the stability definition is analogous to strong

stability, despite there being no ties in the preference lists of a spa-ps instance.

(b) Again, in each of the case of smt, hrt and srt, there are polynomial-time

algorithms for each of the problems of finding a strongly stable or super-stable

matching, or reporting that none exists [35, 38–40, 67]. The same is true for

spa-ps. Moreover for restricted cases of smt, hrt and srt, we are able to

simplify and (in the case of strong stability) improve on the time complexity

of these algorithms. We further observe that, in the case of stable matching

problems with master lists and symmetric preferences, a super-stable matching

returned by our algorithms is in fact the unique super-stable matching for the

instance in question.

3. Constraint programming

(a) It has been observed that the ability to add side constraints to model and

solve NP-hard variants and versions of problems for which no polynomial-time

algorithm is currently known is an attractive property of CP. We have used

this to show that not only can instances of sm and hr be modelled simply and

efficiently, but side constraints and simple extensions are presented, in Sections

7.5 and 8.3 respectively, that extend these encodings to NP-hard variants of the

respective problem.

(b) We also note that the versatility of CP allows for the development of a modular

software system in relation to matching problems. Using CP eliminates the

need to change the inner workings of an algorithm to deal with special cases

that may arise. A constraint based approach allows for looser coupling between

the different criteria that a matching must satisfy.

The study leaves open some interesting avenues for future research. Open problems

are listed at the end of most chapters, each relating to the particular problem context to

which they apply.
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Appendix A

An Introduction to Constraint

Programming

For many years in the field of AI (see [49]) constraint satisfaction problems (CSPs) have

been an important area of research. A CSP has a set of variables, each with a domain

of values, and a set of constraints involving the given variables. A solution to a CSP is

an assignment to each variable a single value from its domain such that all constraints

are satisfied. One method of finding a set of possible values that provide a satisfying

assignment is known as constraint programming (CP).

CP is typically used to obtain solutions to problems that are known to be hard. There

are many free, and commercial, CP toolkits that are used to solve a wide variety of

problems. In particular, timetabling and scheduling problems that arise in practical ap-

plications have been formulated as CSPs and solved using CP toolkits.

We now formally define a CSP by the following components:

Variables: A set X = {x1, x2, ..., xn} of n variables that represent the values that

we are attempting to find.

Variable Domains: Each variable xi ∈ X has a set of possible values called its domain,

denoted by Di. The domain may be finite or infinite. Here we only

consider finite domains.

Constraints: Constraints model the restrictions between variables. A simple con-

straint might be x1 < x2.
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Appendix A. Introduction to Constraint Programming

Typically when dealing with constraints, we are interested in binary constraints. A

binary constraint Cij between variables xi and xj is a subset of the Cartesian product

Di ×Dj that specifies the allowed pairs of values between xi and xj. We say that a binary

constraint has arity two, meaning that each constraint contains two variables. A binary

constraint satisfaction problem is a CSP that contains only binary and unary constraints

(a unary constraint is a constraint with arity one). It should also be noted that any CSP

can be transformed into a binary CSP [71, Section 1.4].

A solution to a binary CSP with variables x1, . . . , xn is a tuple (a1, . . . , an), where

ai ∈ Di (1 ≤ i ≤ n), and (ai, aj) ∈ Cij for each constraint Cij . We say that a solution

satisfies a constraint Cij if (ai, aj) ∈ Cij .

Let Cij be a constraint between variables xi and xj . Then b ∈ Dj is called a support

for value a ∈ Di with respect to Cij if (a, b) satisfies Cij . A value a ∈ Di is said to be

viable if for every variable xj such that Cij exists, a has a support in Dj. We say that a

CSP instance J is arc consistent if for each domain Di in J , all values in Di are viable.

Arc Consistency (AC) is the process of removing values from a variable’s domain that are

not viable.

AC algorithms have a long history. The first well-known algorithm (known as AC-2)

was described by Waltz [73] in 1972. Then in 1977 Mackworth [51] presented an algorithm

(AC-3) that is a simpler and more general version of Waltz’s algorithm. The complexity of

AC-3 was shown to be O(ed3) [52], where e is the total number of binary constraints, and

d is the size of the largest variable domain. An enhanced algorithm, AC-4, was presented

by Mohr and Henderson [58] in 1986. AC-4 has a theoretically optimal O(ed2) bound,

however this is at the sacrifice of space-complexity over AC-3. Furthermore, although

optimal, AC-4 may under certain circumstances run slower than AC-3, and in practice,

AC-3 is often used instead of AC-4 when domain sizes are large. Further variations and

improvements on AC algorithms have been developed; in particular van Hentenryck et

al. [72] presented AC-5, which can achieve AC in O(ed) time for a number of important

classes of constraints, namely monotonic, functional and anti-functional constraints (for

definitions of these constraint types see [72]). The latest AC algorithm is AC-7 [10].

An example graph showing the constraints between two variables is shown in Figure

A.1(a). The graph represents a CSP instance with two variables x and y, each with domain

{1 . . . 5}. In (b) (x, y) has been made arc consistent, and as a result the domain of x is

now Dx = {4, 5}. This is achieved by checking which values in Dx are consistent with
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x yx > y + 2

{1..5} {1..5}

x yx > y + 2

{4,5} {1..5}

x yx > y + 2

{4,5} {1,2}

(a)

(b)

(c)

Figure A.1: Arc consistency of arc (x, y) and (y, x).

constraint Cxy (x > y + 2). Lastly Figure A.1(c) shows the values after the arc (y, x) has

been made arc consistent.

After AC propagation, if every variable’s domain contains only a single value, then

a solution has been found. Otherwise we have to search to obtain a solution. Search

consists of instantiating a variable x with a value in its domain and then propagating the

effects of this – if this instantiation cannot ultimately lead to a solution then the search

backtracks and tries another value in x’s domain. The search process typically involves

an exponential number of steps depending on the problem and instance. To improve

search capabilities, techniques have been developed to improve worst case performance

in practice. These include symmetry reductions, backtracking, forward checking, and

maintaining arc consistency [71]. In many practical CSP’s performance is affected by the

choice of a variable’s value, or by the order in which variables are instantiated during

search. Value and variable ordering heuristics can be used to dramatically improve the

search time in such cases.
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Index to first usage of major terminology

acceptable pair 6 Rural Hospitals Theorem 17

assigned 3 sm

blocking pair: see under problem name definition 2

complete stable matching 2 blocking pair 3

com-smti 12 smi 6

consistent preference lists 7 smt

egalitarian stable matching 6 definition 8

exact-mm 39 blocking pair weak stability 9

GS-lists 5 blocking pair strong stability 9

hr blocking pair super stability 9

definition 12 smti 10

blocking pair 14 spa

hrt definition 21

definition 17 blocking pair 22

blocking pair weak stability 18 sr

blocking pair strong stability 18 definition 26

blocking pair super stability 18 blocking pair 26

man-optimal 3 sri 29

matching srt

hr 14 definition 29

sm 2 blocking pair weak stability 30

spa 22 blocking pair strong stability 30

sr 26 blocking pair super stability 30

matched 7 srti 30

max-smti 11 woman-optimal 3

min-mm 39 unassigned 3

minimum regret stable matching 6 unmatched 7

partner 2


