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Abstract

Computational imaging with single-pixel detectors utilises spatial correlation of light

to obtain images. A series of structured illumination is generated using a spatial light

modulator to encode the spatial information of an object. The encoded object images are

recorded as total intensities with no spatial information by a single-pixel detector. These

intensities are then sent to correlate with their corresponding illumination structures to

derive an image. This correlation imaging method was first recognised as a quantum

imaging technique called “ghost imaging” (GI) in 1995. Quantum GI uses the spatial

correlation of entangled photon pairs to form images and was later demonstrated also

by using classical correlated light beams. In 2008, an adaptive classical GI system

called computational GI which employed a spatial light modulator and a single-pixel

detector was proposed. Since its proposal, this computational imaging technique received

intensive interest for this potential application. The aim of the work in this thesis was

to improve this new imaging technique into a more applicable stage.

Our contribution mainly includes three aspects. First an advanced reconstruction al-

gorithm called normalised ghost imaging was developed to improve the correlation ef-

ficiency. By normalising the object intensity with a reference beam, the reconstruction

single-to-noise ratio can be increased, especially for a more transmissive object. In the

second work, a computational imaging scheme adapted from computational GI was de-

signed by using a digital light projector for structured illumination. Compared to a

conventional computational GI system, the adaptive system improved the reconstruc-

tion e�ciency significantly. And for the first time, correlation imaging using structured

illumination and single-pixel detection was able to image a 3 dimensional reflective ob-

ject with reasonable details. By using several single-pixel detectors, the system was able

to retrieve the 3 dimensional profile of the object. In the last work, e↵ort was devoted

to increase the reconstruction speed of the single-pixel imaging technique, and a fast

computational imaging system was built up to generate real-time single-pixel videos.
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Chapter 1

Introduction

Imaging is the process of representing an object in an image. In a typical imaging

system, light from the object is collected by an imaging lens and an image is formed at

a particular focal plane, whereupon a sensor (or a screen) is normally placed. Since the

image contains information in two dimensions (2D), the sensor has to be sensitive in 2D.

That is to say, the detector employed to record an image has to contain many pixels.

An alternative approach for imaging, which is the subject this thesis, allows single-pixel

detectors to be used, i.e. those without spatial resolution. This so-called single-pixel

imaging technique can trace its history back to the technique of raster scanning, a

technique in which an image can be recorded or displayed, pixel by pixel. However, the

single-pixel imaging systems discussed in this thesis originated from the field of quantum

“ghost” imaging.

In 1995, a novel imaging technique called “ghost imaging” (GI) was demonstrated by

using quantum entangled photon pairs generated from spontaneous parametric down

conversion (SPDC) [1]. This approach relied on the use of strong spatial correlations

between the positions of pairs of entangled photons. In the imaging process, these

entangled photons were separated at a beam splitter and propagated along two separate

optical paths. One photon was permitted to interact with an object and subsequently

recorded by a single-pixel detector, however the other photon, which does not interact

with the object is measured such that its spatial information is recorded. Neither of

the two measurements is su�cient to provide an image alone, but their correlation does

1
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indeed enable the spatial information of the object to be retrieved. As this technique

seemingly allows a image to be produced using the spatial information recorded by

photons which did not interact with the object it was termed “ghost” imaging. Since

GI was first conducted using quantum entanglement, it was believed to be intrinsically

a quantum phenomenon, and is referred to herein as quantum GI.

Subsequent demonstrations and theoretical analysis proved that GI could also be achieved

using a classical light source, indicating that quantum entanglement and non-locality

provides only a means for utilising strong spatial correlations but is not necessary. In-

deed, any two beams containing spatial correlation are able to produce a “ghost” image

using the same technique. In 2004, a classical GI system based on correlation measure-

ment of pseudo-thermal speckles was proposed and subsequently demonstrated [2–4]. In

such systems the pseudo-thermal speckle beams are generated by passing a laser beam

through a changing phase di↵user, and split by a beam splitter along two separate paths.

Similar to quantum GI, one light beam, the object beam, interacts with the object and is

subsequently measured by a single-pixel detector, whereas the other beam, the reference

beam, does not interact with the object and is instead measured by a device with spatial

resolution, capable of resolving the speckle statistics.

In 2008, a simplified version of classical GI, called computational GI, was proposed [5].

By using a spatial light modulator (SLM), the speckle characteristics can be compu-

tationally controlled and their propagation behaviour theoretically predicted, rendering

the use of the beam splitter and spatially resolving detector unnecessary, and resulting

in a true single-pixel imaging system.

The work presented herein begins with an experiment in computational GI, whereupon

the computer algorithm and experimental apparatus used is shown to have a significant

impact on the quality of the images obtained. Most experimental demonstrations in

the field of computational GI at the time of this research could arguably be considered

as proof of principle, and hence relatively simple binary transmissive objects where

employed. A rigorous quantitative analysis is made on the our results when compared

to existing approaches.
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The goal to improve the performance and quality of reconstructions via computational

GI led the research to instead utilise a digital light projector rather than an SLM and

laser source. With this approach we showed that high-quality 2D images of large 3

dimensional (3D) objects could be obtained. A distinguishing property of a single-

pixel computational imaging system is that the shading properties of an image are

determined by the detecting direction, while the shape of the image is determined by the

illumination direction. This is reciprocal to a camera system, where detecting direction

determines the shape and the illumination direction determines the shading. Hence, in

a computational imaging system with several single-pixel detectors, each detector will

produce a computational image, all of which are in the same shape but di↵erent shadings.

By taking advantage of a technique called “photometric stereo” we demonstrated a new

approach to high-quality 3D image reconstruction by implementing several single-pixel

detectors in conjunction with a device capable of producing structured illumination.

The display rates a↵orded by microelectromechanical systems (MEMS) based devices,

demanded a considerable e↵ort in the signal processing and analysis pipeline in order

to perform image reconstruction e�ciently, which subsequently moved the goal of the

research to providing “real-time” colour video. This research therefore provides an

important contribution towards the application of single-pixel detectors for imaging at

wavelengths where detector arrays are expensive or non-existent.

The rest of this thesis is arranged as follows: in chapter 2 the background of GI is in-

troduced. The development of GI from quantum to pseudo-thermal to computational

setups is discussed. In chapter 3 the normalised correlation algorithm called “normalised

ghost imaging” (NGI) is developed in a computational GI system. Comparison between

NGI and other algorithms is done with both simulation and experimental results. the

normalisation method is also employed utilising compressive sensing techniques. In chap-

ter 4, a 3D computational imaging system utilising single-pixel detectors is detailed. In

chapter 5, a system capable of producing “real-time” video is outlined. With this exper-

imental hardware there are two distinct imaging approaches which are closely related: a

computational imaging system using single-pixel detectors employing structured illumi-

nation or a computational imaging system using single-pixel detectors employing coded
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masking, also known as a single-pixel camera. I summarise my findings and conclude in

chapter 6.



Chapter 2

Ghost Imaging

Ghost imaging (GI) is a technique that utilises correlation measurements of light to

produce images. There are di↵erent categories of GI, which depend on the type of

light source and the experimental apparatus employed, called quantum, classical and

computational. In both quantum and classical GI, the object is reconstructed by using

two correlated beams: the reference beam which is captured by a spatially resolving

detector, i.e. a CCD camera; and the object beam which, after interacting with the

object, is collected by a single-pixel detector (bucket detector). By correlating the light

distribution captured from the reference beam along with the bucket signal, an image

of the object can be reconstructed using a computer algorithm.

The principle of GI was exploited by Klyshko from his advanced wave picture of quan-

tum entanglement [6]. In 1995, the first GI experiment was realised utilising entangled

photon pairs generated from spontaneous parametric down-conversion (SPDC) and thus

was interpreted to be a quantum e↵ect [1]. Subsequently however, it was demonstrated

that GI could also be achieved by using a classical light source [7], indicating that fun-

damentally this phenomenon was a consequence of spatial correlation not entanglement.

In 2008, a modified GI system called computational GI was proposed, whereby a device

capable of producing programmable light fields is employed [5]. In this arrangement,

knowledge of the incident light field is stored in computer memory, negating the re-

quirement for a detector array to measure the reference beam, resulting in a simpler

experimental setup. Since this type of configuration enables images to be formed using

5
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a single-pixel detector, there is similarity with other imaging approaches, namely the

single-pixel camera.

In this chapter I provide a concise theoretical background for the underlying principles of

ghost imaging, starting with an introduction to the interference of light, followed by an

overview of the experimental developments from quantum to classical to computational

systems. In particular, I highlight some limitations of the existing work in the field and

detail how some of these are overcome by the contents of this thesis.

2.1 Light interference

As will be discussed, GI depends upon correlation measurements between two beams,

which can be regarded as a phenomenon of second-order correlation of light. Here

the first and second order coherence functions of light interference are reviewed from a

classical and quantum perspective. Most of the theory discussed here can be found in

references [8–10].

2.1.1 First-order coherence

We start by reviewing Young’s double-slit interference as sketched in Fig. 2.1. Classi-

cally, as light propagates a distance of r from a source it can be described by its complex

amplitude

E(r, t) = E
i

· e�i!t+i� , (2.1)

where E indicates the amplitude, ! is the and angular frequency, � is the phase, and

t = |r|/c where c is the speed of light. In Fig. 2.1, light di↵racted from the two slits S1,

S2 propagating after r
1

and r

2

arrives at a detection position P . The amplitude at any

point on the detection plane can be written as the linear superposition of two waves,

E(r, t) = K1E(r1, t1) +K2E(r2, t2) , (2.2)

where K1 and K2 represent the complex geometric factors that depend on the propaga-

tion of r
1

and r

2

respectively. The intensity I(r), is then measured using a light-sensitive
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Figure 2.1: Sketch of the Young’s double-slit experiment.

detector, which is assumed to have a long response time and therefore is only able to

measure the average light intensity,

I(r) = h|E(r, t)|2i , (2.3)

where h...i denotes the time average. The intensity of Eq. 2.2 can be expressed as

I(r) = |K1|2h|E(r1, t1)|2i+ |K2|2h|E(r2, t2)|2i+ 2Re[K⇤
1K2hE⇤(r1, t1)E(r2, t2)i] . (2.4)

where ⇤ denotes the complex conjugate. On the right hand side of Eq. 2.4, the first two

terms describe the intensities from the two waves, while the third term describes their

interference. The first-order coherence function is defined as

G(1)(r1, t1; r2, t2) = hE⇤(r1, t1)E(r2, t2)i . (2.5)

Equation 2.5 can be normalised as

g(1)(r1, t1; r2, t2) =
hE⇤(r1, t1)E(r2, t2)ip

h|E(r1, t1)|2ih|E(r2, t2)|2i
, (2.6)

which is called normalised first-order coherence function, or degree of first order co-

herence function. It has a value of 1 and 0 for complete coherent light and complete
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incoherent light respectively, and for partially coherent light, 0 < g(1) < 1.

From a quantum perspective, the light field is quantised and represented by E(r, t),

which can be separated into the sum of its positive and negative frequency parts

E(r, t) = E

(+)(r, t) +E

(�)(r, t) , (2.7)

where E

(+)(r, t) and E

(�)(r, t) contains the annihilation and creation operators respec-

tively. The corresponding first-order correlation function is expressed as

G(1)(r1, t1; r2, t2) = hE(�)(r1, t1)E
(+)(r2, t2)i . (2.8)

2.1.2 Second-order interference and Hanbury-Brown-Twiss interfer-

ometer

While the first-order coherence function describes the field-field interference of light,

a second-order coherence function describes the intensity-intensity, or photon-photon

interference. Similar to Eq. 2.5, the classical second-order coherence function can be

written as

G(2)(r1, t1; r2, t2) = hE⇤(r1, t1)E(r⇤2, t2)E
⇤(r2, t2)E(r2, t2)i , (2.9)

and the normalised version of Eq. 2.9 is

g(2)(r1, t1; r2, t2) =
hE⇤(r1, t1)E⇤(r2, t2)E(r2, t2)E(r1, t1)i

h|E(r1, t1)|2ih|E(r2, t2)|2i
. (2.10)

Equation 2.10 can be understood as the degree of intensity correlation of two light waves

at r1 and r2 respectively. In quantum theory, Eq. 2.9 is expressed as

G(2)(r1, t1; r2, t2; r3, t3; r4, t4) = hE(�)(r1, t1)E
(�)(r2, t2)E

(+)(r3, t3)E
(+)(r4, t4)i .

(2.11)

In 1956, a second-order interference experiment at optical wavelengths, called Hanbury-

Brown-Twiss (HBT) interference [11–13] was demonstrated. The original experiment
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Figure 2.2: Schematic diagram of the Hanbury Brown-Twiss stellar intensity inter-
ferometer. Light that has travelled along di↵erent paths r1 and r2 is detected by two
photomultiplier P1 and P2. Signals are then sent to a coincidence counter for coherence
measurement. During the measurement, one detector (P2) is kept stable while the other

is moved in the transverse direction (P1) relative to the incident light.

was designed to observe light from the star Sirius in order to measure its diameter.

More specifically, the HBT interferometer measured the angular separation between two

di↵erent wave vectors k1 and k2 emitting from the star. Light from the star is filtered and

measured by two separated photomultipliers P1 and P2. An interference was observed

between the two intensities by changing the relative transverse distance between the

two detectors. The HBT e↵ect was quite confusing when it was first announced. Simply

speaking, it is di�cult to understand how the phase information is conserved in this

intensity to intensity correlation measurement.

The HBT interference patterns can be explained from both classical and quantum theory,

and the results derived from the two theories are the same. Here only the classical results

are shown. Classically, the interference of the intensities from the two detectors can be
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derived as

hI(r1, t)I(r2, t)i =h{|E
k1 |2 + |E

k2 |2 + [E
k1E

⇤
k2
ei(k1�k2)·r1 + c.c.]}

⇥ {|E
k1 |2 + |E

k2 |2 + [E
k1E

⇤
k2
ei(k1�k2)·r2 + c.c.]}i

= h(|E
k1 |2 + |E

k2 |2)2i+ h|E
k1 |2ih|Ek2 |2i[ei(k1�k2)·(r1�r2) + c.c.] ,

(2.12)

where c.c. stands for the complex conjugate. Notice that the two waves are filtered,

therefore k1 and k2 have the same modules but di↵erent directions. The interference

patterns is contained in the term ei(k1�k2)·(r1�r2) + c.c..

2.2 Quantum ghost imaging

Quantum GI utilises entangled photon pairs generated from spontaneous parameter

down conversion (SPDC) to obtain an image. Entangled photon pairs generated from

SPDC are separated into two beams: the object beam and the reference beam, which

propagate along two separate paths. In the object beam, photons interact with an

object and are subsequently measured on a detector with no spatial resolution (bucket

detector). Meanwhile, the reference beam, which does not interact with the object is

measured by a detector capable of resolving spatial information. Measurements from

the two beams are then correlated, and after many photon pairs are used, an image is

iteratively reconstructed. This “ghost” imaging technique can also be called correlation

imaging, because it works by taking advantage of the spatial correlations of entangled

photon pairs.

The first GI experiment was demonstrated by Pittman et al. in 1995 [1]. In this

experiment, entangled photon pairs are generated from a beta barium borate (BBO)

crystal that is cut at a degenerate type-II phase-matching angle to produce pairs of

orthogonally polarised photons (as shown in Fig. 2.3). A 351.1-nm laser beam is used

to pump the BBO crystal. Photon pairs that emerge from the crystal are separated

by a polarised beam splitter (PBS) and propagated along di↵erent paths. A binary

transmissive object is placed in the path of one photon, termed the object path, and a
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lens is placed between the PBS and object. If the photon is transmitted through the

object it is subsequently measured by a single-pixel detector sensitive to single photons,

for example a single-photon avalanche detector (SPAD). A lens may also be used in

conjunction with the detector, in order to ensure that the photon can be collected from

the entire object. Meanwhile the orthogonally polarised photon that propagated along

the other path, often termed the reference path, does not interact with the object and is

detected by a scanning detector package, consisting of a multimode fibre whose output

is mated with another SPAD. The aperture of the fibre is scanned in the transverse

plane to photon propagation. A lens is also used in the reference path between the PBS

and transverse plane of detection such that they are at the image plane. The output

signals of the two detections are sent to a coincidence counting circuit with a narrow

bandwidth acceptance window. By recording the coincidence counts as a function of the

fibre’s transverse plane coordinates in the reference beam, an image of the object can be

seen in the reference arm. It is worth mentioning that a scanning procedure introduces

a low optical e�ciency at high resolutions. Thus to improve the sampling e�ciency,

a modified experimental setup of quantum GI utilising a camera with high quantum

e�ciency can be performed [14].

The ability to generate entangled photon pairs is an important tool for quantum GI as

well as many other experiments in quantum optics. In SPDC, a nonlinear crystal is used

to degenerate an incident high-energy photon into a pair of lower-energy photons [15–19].

SPDC is a parametric process, which means that light interacts with matter in such a

way as to leave the quantum state of the material unchanged. Therefore both the energy

and momentum is conserved in the process. The combined energy and momentum of

the pair of photons is equal to the energy and momentum of the original photon. The

conservation can be interpreted as phase-matching condition in the frequency domain.

The energy conservation can be described as

!
s

+ !
i

= !
p

, (2.13)



Chapter 2. Ghost Imaging 12

Figure 2.3: Illustration of Quantum ghost imaging setup. Entangled photon pairs
generated from a nonlinear crystal is split by a polarised beamsplitter(PBS) into two
beams. The reference beam is detected by a scanning pinhole detector to record its
spatial information. And the object beam interacts with the object and then collected
by a single-pixel (bucket) detector. The two beams are correlated through a computer

algorithm.

where ! is the angular frequency for the pump (!
p

), signal (!
s

) and idle (!
i

) photons.

And the momentum conservation can be described as

k

s

+ k

i

= k

p

, (2.14)

where k stands for their wave vector. According to Eq. 2.13 and Eq. 2.14, the two entan-

gled photons generated from SPDC always have the opposite (anti-correlated) transverse

momentum in the near-field (Fig. 2.4), and will transferred into position anti-correlation

in the far-field. On the other hand, as photon-pairs are generated from the same position

in space, their positions are highly correlated in the near-field, and coincident at the im-

age plane. Both the near-field correlation and far-field anti-correlation can be employed

for imaging [20]. In the near-field quantum GI, the object and reference detector are

both located in the image plane of the nonlinear crystal. Therefore the transverse spatial

information of the object photons in the object plane can be represented by that of the

entangled photons captured by the reference detector. During the imaging process, the

two entangled photons work in such a way that the reference photon provide (transverse)

spatial information, while the object photon indicates the transmission information on
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Figure 2.4: Illustration of momentum conservation for (a) collimated and (b) non-
collimated SPDC.

corresponding position of the object. Signals from the bucket detector (bucket signals)

work as triggers for the reference signals. If a photon transmits the object in the ob-

ject beam and gets received by the bucket detector, the reference photon is recorded

with related spatial information. The corresponding pixel in the reconstructed image

will have a value of 1 for one photon. Otherwise, if a photon is blocked by the object,

the corresponding pixel indicated by the entangled reference photon will appear as 0 in

the image. After many photon pairs are used, the correlation of these two photons can

be used to reconstruct an image of the object. In the far-field, the anti-correlation of

momentum is transferred into anti-correlation of position. Thus measurements of the

transverse position ⇢ of the reference photon corresponds to its entangled partner pho-

ton in position �⇢. The opposite sign renders an inverted image but with the spatial

information of the object maintained.

Quantum GI can also be understood through Klyshko’s advanced wave interpretation. In

Klyshko’s advanced wave interpretation, the time-space relation between the entangled

photons from SPDC is explained in a geometrical method [6, 21, 22]. As two entangled

photons emit from the crystal with opposite angles, the crystal plane can be regarded

as a mirror upon where the two-beam system can be unfolded. The GI imaging system

then can be treated like a conventional imaging system by replacing the single-pixel

detector by a light source. Fig. 2.5(a) shows an example for the far-field GI setup. Light

emits from the light source goes through the 4F system and images the object in the
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Figure 2.5: Klyshko’s advanced wave illustration of quantum GI for (a) a far-field
correlation and (b) the experiment in [1].

plane of the scanning detector. This illustration helps understand the magnification of

the image reported in [1]. In their system a lens is placed in the object beam before

the object. Unfolding the experiment setup upon the crystal plane we get Fig.2.5(b).

The illustration reveals an imaging system of a thin focussing lens, and therefore the

magnification of the image can be understood from the Gaussian thin lens equation.

In addition to GI experiments that make use of the amplitude component of the electric

field, quantum entanglement can also be utilised for generating a non-local image of a

phase object. In 2004, a quantum GI experiment was demonstrated on some pure phase

objects [23]. It is worth mentioning here that in this experiment a pinhole is placed in

front of each of the two detectors located in the object and reference paths. Prior to this

it was predicted that any type of coincidence imaging technique using a bucket detector

could not be used for a phase object [7]. However, when using a pinhole in front of the

single-pixel detector, the system is rendered partially coherent in space, and therefore

the intensity correlation in the two beams is related to their relative phase di↵erence. In

2009 an experimental demonstration of a phase GI method using entangled photon pairs

carrying orbital angular momentum (OAM) was performed [24]. In this work a phase
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image is obtained by correlation measurements of OAM modes in the light propagating

along the object and reference paths (also referred to by signal and idler beams). In

addition, edge enhancement of the phase image can be achieved by inserting a phase

filter in the reference beam.

2.3 Classical ghost imaging

Although the first GI experiment had been performed using entangled photons, and at

the time was considered intrinsically a quantum phenomenon, it was soon suggested

by others that this type of behaviour could also be achieved with some classical light

sources, a claim contested by Abouraddy et al. [25]. However in 2002, Bennink et al.

achieved the first classical GI demonstration using two classical-angular-correlated pulses

[7]. This, as well as many subsequent experiments, led to the common understanding

that the only requirement necessary for GI is spatial correlations between two light

fields, be that quantum or classical. The discussion about whether or not entanglement

is necessary, however, lasted for a long time [2, 26–34]. During this debate, it was

realised that thermal speckles could also yield images in the same types of systems, first

proposed in 2004 by Gatti et al. [2, 28] and thereafter demonstrated by experiments

[3, 4].

2.3.1 Ghost imaging using classical momentum correlations

Figure 2.6 shows the first GI experiment using classical light. The light source employed

here is a pair of laser beams with classical correlated anglers, which is generated by

chopping a laser beam and then deflecting it by a phase di↵user by a random variable

amount. The beam is then separated by a 50 : 50 (non-polarised) beamsplitter (BS)

so that the photons in the two beams contain correlated momentum distributions. In

one beam, the object is located before a bucket detector. The bucket signal works as

a trigger to the CCD camera in the other beam, in a way that the CCD signal is only

recorded when the object beam is not blocked by the object. This is a classical analog

to the quantum GI experiments, the di↵erence is that the momentum correlation here is
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Figure 2.6: Classical ghost imaging setup using classical correlating momentum.

classical rather than quantum. It mimics the angular conservation without the quantum

property of non-locality.

2.3.2 Theoretical background for pseudo-thermal GI

In 2004, Gatti et. al. proposed a classical ghost imaging setup using incoherent thermal

speckle that can mimic all the features of entangled imaging [2, 28]. They considered

a thermal light source that is split by a beamsplitter into two beams. They performed

a comparison between this light source and an entangled photon pairs emitter in ghost

imaging. Their analysis showed that such a classical light source can perform ghost

imaging in both near-field and far-field, which is a full mimic of that from an quantum

ghost imaging.

In a pseudo thermal GI setup, a speckle light field is passed through a BS, and the

outputs of the BS can be regarded as a classical analogue to entangled photon pairs

from the non-linear crystal used in SPDC. The input-output relation for a BS can be

described as

E1 = tE3 + rE4, E2 = rE3 + tE4 . (2.15)



Chapter 2. Ghost Imaging 17

Figure 2.7: (a) Illustration of two-beam correlation imaging system. The input E and
a is for quantum and thermal cases separately. (b) Illustration of the input and output

of a non-polarising beamsplitter.

When using a 50 : 50 BS the reflection and transmission coe�cients, r and t respectively,

have equal magnitudes. Considering the case of pseudothermal GI, a thermal light field

E(x) passes through the BS, and the two output beams are

e1(x) = rE(x) + tv(x), e2(x) = tE(x) + rv(x) , (2.16)

Here v is a vacuum field uncorrelated with E(x). In comparison to this, the input-output

relations of the crystal in a SPDC process is expressed as

e
i

(q) = U
i

(q)E
i

(q) + V
i

(q)E†
j

(q) , i 6= j = 1, 2. (2.17)

Here e
i

(q) =
R

x

2⇡e
�iq·xe

i

(x) is the signal(i = 1) or idler (i = 2) wave envelope operator

at the output plane of the crystal, and † stands for Hermite conjugate. E
i

are the

corresponding fields at the input plane of the crystal in vacuum state. U
i

and V
i

are the

gain functions.
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In both of the quantum and classical cases, the two outgoing beams travel through two

distinct imaging systems, which can be described by their impulse response functions

h(x
i

)(i = 1, 2). Thus, the fields at the detection planes are given as

c
i

(x
i

) =

Z
dx0

i

h
i

(x
i

,x0
i

)e
i

(x0
i

) + L
i

(x
i

) , i = 1, 2 (2.18)

where L
i

is any possible losses in the imaging system, and depend on vacuum field

operators, and the superscribe 0 is to indicate the output plane of h. In the second-oder

correlation measurement, however, these possible losses can be ignored.

Information about the object is extracted from the spatial correlation function of inten-

sities detected from D1 and D2, as a function of position x of the pixel of D2

hI1(x1)I2(x2)i =
D
c†1(x)c1(x)c

†
2(x)c2(x))

E
. (2.19)

Furthermore, the object information is concentrated in the correlation function of inten-

sity fluctuations [27]:

G((x)1, (x)2) = hI1(x1)I2(x2)i � hI1(x1)i hI2(x2)i , (2.20)

where hI
i

(x
i

)i =
D
c†
i

(x)c
i

(x)
E
is the average intensity of the ith beam.

For thermal case, under Gaussian statistics assumption, by taking Eq. 2.16 into account,

Eq. 2.20 can be written as:

G
C

(x1,x2) = |rt|2|
Z

dx0
1

Z
dx0

2h
⇤
1(x1,x

0
1)h2(x2,x

0
2)
D
E†(x0

1)E(x0
2)
E
|2 . (2.21)

On the other hand, Eq. 2.20 in the quantum case can be rewritten as

G
Q

(x1,x2) = |
Z

dx0
1

Z
dx0

2h1(x1,x
0
1)h2(x2,x

0
2)
⌦
e(x0

1)e(x
0
2)
↵
|2 , (2.22)

where we define

⌦
e1(x

0
1)e2(x

0
2)
↵
=

Z
dq

(2⇡)2
eiq·(x

0
1�x

0
2)U1(q)V2(�q) . (2.23)
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Comparing Eq. 2.21 and Eq. 2.22 reveals an analogy between the results in the quantum

and thermal cases. The second order correlation hE†(x0
1)E(x0

2)i plays the same role in

Eq. 2.21 as the correlation function he(x1)e(x2)i. In both cases, the fact that the modulus

is outside the integral ensures the possibility of coherent imaging via correlation function.

The correlation function hE†(x0
1)E(x0

2)i governs the properties of spatial coherence of

the thermal source. A further analysis shows that this can happen in both near and

far-fields, which is a complete mimic of quantum light in ghost imaging.

2.3.3 Speckle statistics

A speckle pattern is an intensity pattern produced from the interference of a set of wave-

fronts. This phenomenon has been intensively studied since the invention of continuous-

wave lasers. When laser light is reflected from a rough surface such as a wall, a high-

contrast, small-scale granular pattern can be observed. Although the incident laser light

is in a relative uniform intensity, the intensity of the reflected patterns fluctuates across

its space. This granularity is known as “speckle”.

The fluctuation of the speckle intensity is caused by the roughness of the surfaces where

the light is reflected. According to Huygens, every point of the rough surface that is

illuminated by the laser becomes a source of a spherical wave. And speckle is a result

of the interference of these secondary waves. A wave can be described as a vector in

the complex plane, with the amplitude and phase being represented by the length and

direction of the vector respectively. The resultant vector at a point is the sum of all the

vectors. As the phase and amplitudes of the secondary waves are totally random, so the

sum of them gives a wave whose amplitude and therefore intensity varies randomly. This

process can also be described as a 2 dimensional “random walk”. The sum of random

vectors can be expressed as [35]

A = Aej✓ =
1p
N

NX

n=1

a
n

ej�n , (2.24)

here N represents the number of complex vectors in the random walk. A is the resultant

vector, and A and ✓ are the amplitude and phase. The scaling factor 1/
p
N is to preserve
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finite second order moments of the resultant vector. Under large number assumption,

the resultant vector has a Rayleigh distribution of its amplitude

p
A

(A) =

p
A

�2
e�

A
2�2 , (2.25)

here � is the variance of the amplitude. And the phase of the resultant vector is in-

dependent to the amplitude, with a uniform distribution in [�⇡,⇡]. Derived from the

amplitude statistics, the intensities follows an exponential distribution:

p
I

(I) =

p
I

�2
e�

I
2�2 · 1

2
p
I
=

1

2�2
e�

I
2�2 , (2.26)

here I is the light intensity. And the moments of this distribution is

Iq = (2�2)qq! . (2.27)

We find that the mean intensity I = 2�2. Therefore the probability density function

can be rewritten as

p
I

(I) = (1/I)e�I/I . (2.28)

Equation 2.26 or 2.28 is an important character of fully developed speckles.

When an speckle is formed by illuminating a rough surface with a laser, it can be

observed in the image plane. This speckle is called a subjective speckle pattern, because

the speckle pattern structure changes depending on the viewing system. On the other

hand, if laser light is scattered o↵ a rough surface and then falls onto another surface,

it forms an “objective speckle pattern”. Objective speckles are usually obtained in the

far-field ( the Fraunhofer region where Fraunhofer di↵raction happens). Speckles can

also be observed close to the scattering object. This is called near-field speckles. The

statistics properties of a far-field speckle is determined by the form and dimension of

the region hit by laser. For the near-field speckles, however, their statistical properties

are mainly determined by the form and structure of the scattering object.
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Figure 2.8: Illustration pseudo-thermal GI using speckles. Speckles are split by a
non-polarised beamsplitter into two identical beams. The reference beam is captured
by a CCD camera (D2), and the object beam interacts with the object (O) and then
collected by a bucket detector (D1). D2 and the object are placed in the same distance

away from the speckle source.

2.3.4 Experimental demonstrations

Prediction of ghost imaging using thermal light was first demonstrated in experiments by

both Valencia et. al. in [3] and Ferri et. al. in [4] independently. A schematic illustration

of the experiment setup can be seen in Figure 2.8. In both of the experiments, the

speckles are generated by passing a laser through a slowly rotating ground glass. Speckles

are then split by a non-polarised beamsplitter into the object and reference beams. An

imaging lens or lens system is insert in the reference beam. To get a correlation image,

the object and reference detector are arranged in the conjugate planes of this lens ( or

the lens system). That is, if we regard the light source plane as a mirror and unfold the

system according to Kryshko’s advanced wave picture, the reference detector is in the

image plane of the object with respect to the lens ( or lens system). If a light source

illuminates from the bucket detector, a clear image of the object can be seen in the

reference detector plane. This setup assures that the speckle patterns detected by the

reference detector are the same as those in the object plane. Therefore a correlation

image can be derived from the correlation between the speckles and the bucket signals.
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Details of the speckle statistics was also discussed in [4]. In the experiment, the ground

glass rotates slowly enough to give a long coherent time of the speckle (0.5s). On

the other hand, the exposure time of the CCD has to be adjusted to be much shorter

(1ms) than the coherent time of the speckles so that speckle patterns are recorded with

high-contrast. Also, to make sure that any two acquired speckles are uncorrelated, the

acquisition speed should be set slow.

So far it had been proved both theoretically and experimentally that classical light source

can mimic all correlation imaging of entangled bi-photons in both the near and far-field.

Moreover, the switch between near- field and far-field correlation can be done by only

changing the reference beam, which is the same as in a quantum setup.

Classical GI of a phase object using speckles was also reported. In 2006, a classical GI on

a pure phase object was proved by using pseudo-thermal speckles [36]. The experiment

setup is similar as that in [23], the only di↵erence is the entangled bi-photons is replaced

by speckles. In contrast to the normal GI setup, a di↵erent system was proposed for

pure phase classical GI [37]. In this proposed system, the reference beam is the same as

normal GI setup, where the speckles get recorded by a CCD. The object beam, however,

is replaced by a Mach-Zehnder interferometer, with the object being placed in one of

the two arms. In the output of the Mach-Zehnder interferometer, there are two bucket

detectors. It is suggested that the correlation between the di↵erential signals from these

two detectors and the CCD signals from the reference beam reveals phase information

of the object. This new approach for classical phase GI is recently realised by Zhang et

al. [38].

2.4 Computational ghost imaging

The ghost imaging setup proposed in 2.3 can be further simplified by using a computer

programmable optical device called spatial light modulator (SLM). In thermal ghost

imaging system, rather than use laser light transmitted through a rotating ground glass

as the source, we transmit a continuous wave (cw) laser beam through a SLM whose

inputs are chosen to create the desired coherence behaviour. The light modulated is
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then sent to illuminate the object and then collected by a bucket detector. Knowing the

deterministic modulation applied to the cw laser beam allows us to use di↵raction theory

to compute the intensity pattern that would have illuminated the pinhole detector in

the usual lensless ghost imaging configuration.

2.4.1 Theoretical background

In 2008, a new GI experiment system called computational GI was proposed by Shapiro

[5]. It was derived from a Gaussian state theory of GI developed under classical elec-

tromagnetism and semiclassical photo detection theory in [39]. In the proposed system,

a spatial light modulator (SLM) was used as the phase di↵user to generate random

speckles. An object was at a distance of L away from the SLM window, after which

a bucket detector was located to collect object light. Di↵erent from a conventional

pseudo-thermal GI where a CCD camera is normally employed to get the spatial in-

formation of the speckles, the speckle patterns in computational GI was derived from

some computational method. Under a Gaussian-Schell model of pseudo-thermal light,

the intensity distribution of the speckles generated by illuminating a phase di↵user by

a laser was characterised by its phase-insensitive correlation function. Using standard

coherence propagation function [40], the correlation function at any distance after the

SLM plane can be calculated, given that the original field distribution is known. Since

an SLM is driven by a computer hologram, the rendering phase distribution and hence

the complex filed distribution could be predicted by the hologram. Once the speckles on

the object plane were worked out, they were correlated with the corresponding signals

to derive the spatial information of the object.

2.4.2 Experimental demonstrations

In 2009 an experimental demonstration of computational GI was reported in [41]. In this

experiment a two-dimensional phase-only liquid crystal on silicon SLM was employed.

The computer-controlled SLM was illuminated by a cw laser with a Gaussian intensity

distribution to generate speckles. Suppose the incident light field was E0 with a uniform

phase distribution. After the SLM, a pseudo-thermal phase distribution �
r

(x, y) was
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Figure 2.9: Comparison of (a) a conventional pseudo-thermal GI and (b) a com-
putational GI setup. In computational GI, speckles are generated by a spatial light
modulator and predicted by the controlling hologram. The reference beam together

with the beamsplitter is removed from a conventional GI setup.

applied on the incident beam, so the out coming beam at the SLM plane was E
r

(x, y, z =

0) = E
r

ei�r(x,y). The modulated light field was sent to the object and then collected by

a bucket detector. Knowing the deterministic phase mask employed to the laser beam

and the distance between the SLM and the object, the speckle patterns can be obtained

[5, 40]. An image was derived from the correlation between the object signals and the

calculated field patterns. It should be noticed that the image reconstruction can be

conducted in any distance from the source, from the near-field to far-field, as long as

the speckle distribution can be calculated. In [41], the object is placed in the far-field of

the SLM. In Chapter .3 a computational GI system based on the near-field correlation

which is built up in our lab is discussed.

2.4.3 Computational GI and single-pixel camera: comparison between

structured illumination and coded apertures

GI in a computational apparatus is closely comparable to single-pixel camera [42], with

the latter being a well studied area in computer science. In a single-pixel camera system,

the object is illuminated under ambient light and imaged onto a SLM (normally a digital

micro-mirror device (DMD)). The SLM is then controlled by hologram to code the

image with a series of di↵erent patterns, the coded light intensities are detected by a
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single-pixel detector. Correlation between the coded patterns and their corresponding

intensities yields an image of the object. Single pixel camera was developed with the

assistant of compressive sensing [43–47] . In a traditional camera system, in order to

obtain an image with N pixels, the same number of sensors have to be employed. In a

time sequential measurement with a single-pixel sensor (scanning), it has to be sampled

N times (pixel number) to acquire a “perfect” image. This number of samples can be

reduced by using compressive sensing based on the fact that natural images are “sparse”.

More specifically, it is in the frequency domain rather than in a space domain where

images are sparse and therefore easier to be compressed. Further, information of natural

images mostly constrains in low frequency rather than high frequency. According to

compressive sensing, therefore, an image can be reconstructed by cutting o↵ some high

frequency component but without losing much information. Based on this theorem,

in a single pixel camera, an image can be obtained by sampling less than the pixel

number. It is also realised that the best way to encode the image in the SLM plane is

to employ totally random patterns. Consequentially, in a single pixel camera, a series of

2D random patterns and their corresponding object intensities are used in a compressive

sensing algorithm to recover an image.

Both single pixel camera and computational GI use SLM and single-pixel detectors for

measurement, and a recovery algorithm to retrieve images. Yet there are several di↵erent

aspects of the two system. In computational GI, an liquid crystal SLM is normally

employed to generate structured illumination, which in most cases are greyscale pseudo-

thermal speckles. A single-pixel camera, however, uses ambient light as light source,

an DMD is put in the image plane of an imaging system and before the detection, to

encode the image with binary coded apertures. Actually, in Chapter 4 our computational

imaging system utilises a DMD to generate structured illumination. This brings the two

systems (computational imaging and single-pixel camera) more comparable, the only

di↵erence being that DMD is used to generate structured illumination in computational

(GI) imaging but used as coded apertures in single-pixel camera.



Chapter 2. Ghost Imaging 26

2.5 Ghost di↵raction

Ghost di↵raction [4, 29, 48, 49] is a similar phenomenon to GI, which can also be derived

from correlation measurements between two light fields. In a GI setup with two fields,

the object and the CCD camera should be placed in planes where the two light beams

have strong intensity correlation, so that the intensity distribution obtained from the

CCD coincide with that in the object plane. Di↵erently, if the reference detector is

located in the far-field with respect to the object plane, a di↵raction pattern can be

obtained from the same correlation measurement. This is called ghost di↵raction.

Same as GI, the first ghost di↵raction experiment was also reported using entangled

photon pairs from SPDC. In the reference beam, the reference detector is placed to

capture intensities that is equivalent to the far-field distribution of the intensity in the

object plane. In the object beam, the bucket detector is replaced by a pinhole detector.

Again, if the system is unfolded from the crystal plane according to Klyshko’s advanced

wave picture, this two-photon correlation di↵raction can be simply explained via ray

optics. Quantum ghost di↵raction is achievable because entangled photons have strong

correlation both in near and far-field. Therefore Gatti et. al. suggest that both quantum

GI and quantum ghost di↵raction can be achieved by changing the reference beam

while keeping the object beam untouched, and this feature of quantum entanglement

correlation can not be mimicked by classical light. However, a performance of both GI

and ghost di↵raction with pseudo-thermal light in the same system with the object beam

unchanged was realised in the same group [4]. Even before that, a ghost di↵raction

patterns was also reported by using laser beams with classical correlated angles, by

adding an imaging lens in the reference beam in Fig. 2.6.

So far all the quantum correlation e↵ects from two-beams are achieved by classical

light with only di↵erence being that quantum correlation provides patterns with higher

contrast. Therefore it is reasonable to believe that two-beam correlation is not an

intrinsic quantum phenomenon. Any light source that contains spatial correlation in

near and far-field can be used to generate ghost image and ghost di↵raction. Entangled
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photon pairs generate from SPDC contains spatial correlation in both near and far-

field which guarantees quantum GI and quantum ghost di↵raction, but entanglement

consequentially non-locality is not necessary for this phenomenon.

2.6 Conclusion

In this chapter we have discussed the development and physics principle of GI. The

development of GI experienced di↵erent modality, from quantum to classical to com-

putational. The original idea of GI was predicted and demonstrated with quantum

entanglement. It was subsequently demonstrated, however, this spatial correlation mea-

surement is not necessary quantum induced. Generally, all GI experiments in di↵erent

setup can be regarded as an phenomenon of second-order correlation between two corre-

lated beams. As long as two beams are generated with spatial correlation, they are able

to conduct GI experiments. The employment of SLM renders a GI system to a single

beam correlation setup.

More GI work has has been conducted beyond the discussed above. In addition to the

near and far-field correlation, GI in Fourier plane were also discussed [50, 51]. Multi-

ple wavelength GI was studied in [52, 53], and a full colour computational correlation

imaging system was reported in [54]. GI using homodyne detection was reported in

[55, 56]. E↵ect of the single-pixel detector’s aperture on GI and ghost di↵raction was

discussed in [57, 58]. GI with true thermal light was reported in [59]. Fluorescence

GI using speckles was reported in [60]. Resolution of quantum GI was discussed in[61].

An optical encryption based on computational GI was proposed in [62]. As a potential

application, GI through turbulence is also studied in[63–65].

The remainder of this thesis is devoted to my research which focussed on classical and

computational implementations of GI. The developments made, allow single-pixel de-

tectors to be used more e↵ectively in application to yield high-quality images, and may

have considerable importance to a wide range of disciplines underpinned by imaging

technologies.
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Normalised Ghost Imaging

In classical GI using pseudo-thermal speckles as a light source [2–4, 28, 66], a series of

random light patterns illuminate an object. The light backscattered from the object is

collected by a single-pixel, non-imaging detector. Here, this detector will be referred to

as a “bucket detector”, the signal from which is referred to as the “bucket signal”. The

bucket signal is an indication of how well each of the the random patterns overlap with

the object. A pattern that looks more like the object will result in more back-scattered

light and hence a larger bucket signal, while a pattern that looks less like the object will

give a lower signal. To obtain spatial information about the object, we have to combine

our knowledge of the patterns and their corresponding bucket signals in a correlation

function. At one pixel, this contains both the correlation between the pixel and its

corresponding pixel intensities and that between un-correlated pixel intensities. While

the correlation from correlated pixels contributes as signals in the image reconstruction,

the correlation between un-correlated pixels renders noise [67]. This means pseudo-

thermal GI contains intrinsic noise, therefore an e�cient algorithm must be employed to

suppress the background noise and give a high signal-to-noise ratio (SNR) for the image

reconstruction.

A traditional GI algorithm (TGI) increases the SNR by using background subtraction.

In addition to this method, other algorithms, called higher-order GI [68–74] and time-

correspondence GI [75, 76], have been developed. In this chapter an algorithm called

28
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“normalised ghost imaging” (NGI) developed during my research at Glasgow shall be

discussed.

In essence, we have modified the weighting factor used in the TGI algorithm, to account

for changes in the incited light intensity, unrelated to the intensity variations resulting

from changing random patterns. It is shown that when appropriately normalised, a

traditional ghost imaging algorithm can match the performance of a di↵erential GI (DGI)

approach, another common algorithm and approach yielding super results compared to

TGI. We compare our NGI algorithm with these two other algorithms by analysing

the SNR characteristics theoretically and furthermore validate this with experimental

results. The system is based upon a computational GI system, which utilises a spatial

light modulator to generate known random light patterns to illuminate a partially-

transmissive object, and two detectors, one in the object path and one in the reference

path. Towards the end of the chapter I shall discuss the application of the NGI method

when adopting compressive techniques.

Much of the work in the chapter has been published [77]. My main contributions to

this paper are as follows. I built up the computational GI setup and conducted the

experiment. I realised the relation between TGI and DGI, and demonstrated it both in

mathematical derivation and in the experiment. I also took the data for compressive

calculation.

3.1 Introduction to existing iterative algorithms

In all approaches to pseudo-thermal ghost imaging (GI), an algorithm is employed to

recover spatial information about the object using a series of measurements from the

bucket detector, and random patterns which are either separately recorded or computa-

tionally predicted. The algorithms employed fall into two categories: iterative ones that

give a refined estimate of the object after every new light pattern, and inversion ones

which infer an object based on the entire series of patterns and measurements. In this

next section two well-known iterative algorithms called traditional GI (TGI), di↵erential

GI (DGI) are discussed.
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Figure 3.1: Illustration of thermal GI. Speckles pass through a beamsplitter (BS) and
are separated into two identical beams.The object (signal) beam (IS) illuminates the
object and is collected by a bucket detector (D1). The reference beam (IR) is recorded

by a CCD (D2).

3.1.1 Traditional ghost imaging algorithm

Iterative GI algorithms use calculation of the correlation between every new measured

bucket signals and their corresponding light patterns to retrieve the estimation of the

object. Correlation between a bucket signal and its light patterns can be expressed as

the second order correlation of the two beams. Consider a pseudo-thermal GI system

illustrated in Fig. 3.1. The object (signal) beam and reference beam are defined as I
S

(x
S

)

and I
R

(x
R

), respectively. According to Eq. 2.19 and Eq. ??, the correlation between the

two beams can be expressed as

hI
S

(x
S

)I
R

(x
R

)i = hI
S

(x
S

)ihI
R

(x
R

)i+ h�I
S

(x
S

)�I
R

(x
R

)i , (3.1)

here �I(x) ⌘ I(x)�hI(x)i is the intensity fluctuation of the two beams. The first term

on the right hand side of this equation gives rise to a featureless background, while the

second term gives the ghost image. In order to obtain an image with high contrast,the

featureless background should be removed. This can be achieved by simply adding a

DC filter in the correlation, and this method is called traditional ghost imaging (TGI)

algorithm.

Following Eq. 3.1, a TGI algorithm can be written as

G(x
S

,x
R

) = hI
S

(x
S

)I
R

(x
R

)i � hI
S

(x
S

)ihI
R

(x
R

)i . (3.2)
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The object here is restricted to be a two dimensional (2D) transmissive object for dis-

cussion convenience. Therefore the transmissive light power measured by the bucket

detector can be expressed as

S =

Z

Al

I(x
S

, y
S

)T (x
S

, y
S

)dx
S

dy
S

, (3.3)

here A
l

is the laser area and T (x
S

, y
S

) is the (intensity) object transmission function.

For each iteration, i, we define the contribution to the image reconstruction to be [41]

G
i

(x, y)
TGI

= (S � hSi) (I(x, y)� hI(x, y)i) , (3.4)

here < . >⌘ 1
M

⌃ denotes an ensemble average for M iterations. We obtain the final

reconstruction by averaging over all iterations such that G(x, y) = hG
i

(x, y)i. Notice

that in pseudo-thermal GI the signal and reference beams are separated by a 50:50 non-

polarised beam splitter, in most cases we can safely assume that the two beams are

identical I(x
S

, y
S

) = I(x
R

, y
R

) = I(x, y) after the same propagation distance.

This TGI algorithm was first introduced in [27]. It is easy to understand the reconstruc-

tion as being derived from the weighted sum of the speckle field for each measurement.

Therefore S is the weight for the speckle field for each measurement. Higher S means

the light pattern looks more like the object, while lower S indicates the light patterns

looks less like the object. In real experiments, however, this fluctuation of intensities

can be caused by other factors, including changes in the laser (light source) power and

changes in the e�ciency with which the pattern is imprinted. All these sources of change

become noise in GI reconstruction and render low SNR. For a transmissive object, more

transmissive light intensity means higher noise. Therefore one drawback of this algo-

rithm is that signal-to-noise (SNR) ratio is low, especially for highly transmissive object

[67, 77]. Figure 3.2 shows some simulation results of two di↵erent objects. The method is

shot-noise free, but simulates the fluctuation of incident light intensity and the hologram

e�ciency, which adds noise to the reconstruction. Fig. 3.2.(a) shows the reconstruction

of a 2D binary (0s, 1s) transmissive packman, with a low transmission ratio. An image

is obtained from TGI with relative high SNR after a number of iterations equal to the
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Figure 3.2: Simulation TGI reconstruction of a 2D binary transmissive Packman and
its (1s, 0s) inverse. Both results are obtained after a number of iterations equal to their
pixel number. The packman on the right has more 0s in its area so it is more blocked,

while its inverse on the right is more transmissive.

pixel number of the object. But the same reconstruction process fails to generate an

image for the (1s, 0s) inverse object which is in a higher transmission ratio. It shows

that TGI for objects with high transmission su↵ers very low SNR. And this comparison

is also proved in experiment as we are going to show later.

3.1.2 Di↵erential ghost imaging algorithm

To overcome the low SNR of TGI, another algorithm was proposed by Ferri et al as

di↵erential ghost imaging (DGI) [67]. It utilizes a second bucket signal in the reference

beam which is used to weight the speckle field based on the average transmission signal

relative to the average reference signal. Similar to the bucket signal S in the object

beam, the total reference light intensity can be expressed as

R =

Z
I(x

R

, y
R

)dx
R

dy
R

. (3.5)
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In a conventional GI setup, R can be obtained by summing up all of the pixel values on

the CCD camera. While in computational GI, this can be obtained from a photodiode

collecting all the reference photons.

The idea of DGI is to utilise a new di↵erential signal rather than �S = S � hSi as

the weighting factor. Using two intensity signals S and R, the new di↵erential signal is

defined as

�S
d

= S � hSi
hRiR , (3.6)

and the according iterative contribution of DGI can be expressed as

G
i

(x, y)
DGI

=

✓
S � hSi

hRiR
◆
(I(x, y)� hI(x, y)i) . (3.7)

We observe the second term in brackets on the right hand side of Eq. 3.4 and Eq. 3.7 are

identical, however, the first term in brackets of Eq. 3.7 is now weighted according to the

average value of S, which is normalized to the average value of R. As demonstrated in

[67] the DGI algorithm improves by order of magnitude the SNR of the measurement

with respect to TGI. Moreover, a key di↵erence from TGI, it is no longer sensitive to

other sources of noise. For example, fluctuations in the laser power or changes to the

SLM e�ciency will a↵ect both the reference signal and the transmitted signal, which is

cancelled out in the weighting factor of �S
d

, and thus the contribution to the recon-

struction will be weighted more appropriately. Experimental and simulation results will

be presented in later section to show the advantage of DGI compared to TGI.

3.2 Normalized ghost imaging

In this section we discuss an algorithm called normalised ghost imaging (NGI) that

we proposed in our lab [77]. As metioned before, key to all GI algorithms is that the

changes in the measured signal should arise only from the overlap of the known random

pattern with the unknown object. Obviously, other sources of signal change are possible,

including fluctuations of the source intensity and changes in the e�ciency of the phase

di↵user. All these sources of change become noise in GI reconstruction and render low
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SNR. Therefore the original motivation to propose NGI is to get rid of any unwanted

fluctuation of the source intensity. To achieve this, a straightforward method is to use the

relative fluctuation S/R rather than the change of absolute intensity S as the weighting

factor. The algorithm used to describe each contribution to the reconstruction in NGI

is given by

G
i

(x, y)
NGI

=

✓
S

R
� hS

R
i
◆
(I(x, y)� hI(x, y)i) . (3.8)

By using a relative light intensity as weighting factor, e↵ect from the light source fluc-

tuation is removed. Besides this, NGI gives a much better SNR than TGI, especially

for more transmissive object. Details will be covered later in the experiment discussion.

Moreover, it is noticed that NGI and DGI produce “almost the same” results, which

indicates their equivalence to each other. The equivalence are then first proved mathe-

matically. By assuming h S
R

i ⇡ hSi
hRi for a large number of measurements, and comparing

Eq. 3.7 and 3.8, we can get the iterative and total relation between NGI and DGI as

G
i

(x, y)
NGI

=
1

R
G(x, y)

DGI

, (3.9a)

hG(x, y)
NGI

i = 1

hRi hG(x, y)
DGI

i . (3.9b)

To arrive at Eq. 3.9b from Eq. 3.9b we assume G(x, y) and R are independent.

Equation 3.9 shows the amplitude of NGI and DGI reconstruction are only di↵erent by

a constant scaling factor 1
hRi , which does not render any SNR di↵erence, which is a first

proof of the equivalence between NGI and DGI. Exactly, Eq. 3.9 shows DGI and NGI are

equivalent in their signals. To quantitively analysis the relation between these di↵erent

algorithms, we need to analyse their SNR.

3.3 Signal-to-noise ratio analysis

SNR is an important method to analyse GI reconstruction [78–82]. To make a quan-

titative comparison between NGI and the other two existing algorithms, we analyse

their SNR in this section. Here we adopt a similar definition of SNR as used in [67].
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When the coherent size of speckles is much smaller compared to the feature size of the

object (perfect resolution), the average quantity of GI reconstruction of T (x, y) can be

expressed as

hG(x, y)i = A
s

hI(x, y)i2T (x, y) , (3.10)

here A
s

is the average coherent length of speckles. According to Ferri et al [67], the

corresponding signal can be defined as

(�hG(x, y)i)2 = A2
s

hI(x, y)i4(�T )2 , (3.11)

where �T is the variation of the object transmission function to be detected. In our

discussion, the object is restricted to binary, so �T = 1. On the other hand, the noise

associated to the measurement of O(x, y) is the variance of the reconstruction amplitude

which can be expressed as

⌦
�G2(x, y)

↵
=

⌦
G(x, y)2

↵
� hG(x, y)i2 . (3.12)

As we can see from Eq. 3.4, Eq. 3.7 and Eq. 3.8, GI with background subtraction always

have a zero-mean average hG(x, y)i = 0, thus the second term on the right hand side

(RHS) of in Eq. 3.13 may be omitted. For TGI, under the assumptions of uniform illumi-

nation (the average speckle beams are constant over their area) and perfect resolution,

variance in the reconstruction can be expressed as

⌦
�G2

TGI

↵
= A2

s

A2
l

hIi4 T 2 , (3.13)

here T 2 =
R
Al

hI(x, y)i · T 2(x, y)dxdy/
R
Al

hI(x, y)i dxdy is the average quadratic trans-

mission function of the object. A
l

is the area of the whole speckle beam. Therefore by

combining Eq. 3.4, Eq. 3.10 and Eq. 3.13, we summarise the iterative signal, noise and

SNR as

(�hG
TGI

i)2 = A2
s

hIi4(�T )2 , (3.14a)

⌦
�G2

TGI

↵
= A2

s

A2
l

hIi4 T 2 , (3.14b)

SNR
TGI

=
1

N
s

�T 2

T 2
. (3.14c)
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here N
s

= A
l

/A
s

is the number of speckles in the light field.

DGI retrieves the fluctuation of T , that is �T (x, y) = T (x, y)� T , rather than T itself.

Similarly, we can express the signal, noise, and SNR of DGI as

(� hG
DGI

i)2 = A2
s

hIi4 (�T )2 , (3.15a)

⌦
�G2(x, y)

DGI

↵
= A2

s

hIi4 �T (x, y) , (3.15b)

SNR
DGI

= SNR
DGI

=
1

N
s

�T 2

�T 2
. (3.15c)

where �T 2 = T 2 � T
2
and T 2 =

R
Al

hI(x, y)iT 2(x, y)dxdy/
R
Al

hI(x, y)i dxdy.

Now we calculate SNR of NGI. The calculation of SNR
NGI

through the same method

above is not straight forward. A simple way to achieve it is to use the relation between

NGI and DGI, which is shown in Eq. 3.9. By combining Eq. 3.9b and Eq. 3.15a, we can

express the signal of NGI as

(� hO
NGI

i)2 = A2
s

hIi4

hRi2
(�T )2. (3.16)

Using linearization we can write

S

R
⇡ hSi

hRi

✓
1 +

�S

hSi �
�R

hRi

◆
, (3.17)

where �S and �R are the zero-mean deviation of S and R. Using Eq. 3.17 we rewrite

noise of NGI and DGI as

⌦
�G2(x, y)

DGI

↵
= hSi2h

✓
h�Si
hSi � h�Ri

hRi

◆2

(I(x, y)� hI(x, y)i)2i , (3.18a)

⌦
�G2(x, y)

NGI

↵
=

hSi2

hRi2 h
✓
h�Si
hSi � h�Ri

hRi

◆2

(I(x, y)� hI(x, y)i)2i. (3.18b)

Thus the noise of NGI can be obtained by exploiting the comparison of Eq. 3.18a and

Eq. 3.18b and using Eq. 3.15b

⌦
O2

NGI

↵
⇡ A

s

A
l

hIi4

hRi2
�T 2 . (3.19)
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Finally, we arrive at the iterative SNR contribution for NGI is

SNR
NGIi

=
1

N
s

�T 2

�T 2
. (3.20)

Again, N
s

= A
l

/A
s

is the number of speckles in the field. By taking into account that

the total SNR of GI is proportional to both the iterative SNR and the iteration M we

get the final SNR for NGI and DGI after M measurements as

SNR
NGI

= SNR
DGI

=
M

N
s

�T 2

�T 2
, (3.21)

The SNR contribution for NGI is found to be identical to that of the DGI algorithm

derived in [67]. Comparing Eq. 3.21 and Eq. 3.14c, we can examine the di↵erence between

the NGI (or DGI) and TGI algorithms by obtaining the ratio of SNR calculations, given

as

SNR
NGI

SNR
TGI

= 1 +
T
2

T 2 � T
2 . (3.22)

As highlighted by Ferri et al, the di↵erence is always greater than 1 and dependent only

upon the variation in the object transmission function.

In this section we have mathematically analyse the SNR for NGI compared with TGI

and DGI. Mathematical derivation shows that NGI performs as well as DGI in terms of

GI reconstruction. And they are both better in improving the SNR of GI, especially for

more transmissive object. In the following sections we are going to demonstrate these

conclusion in our computational GI system.

3.4 Experimental setup

In this section we introduce a computational GI setup built up in our lab. Compared

to conventional GI setup, computational GI setup only consists one beam: the object

beam. The reference beam and therefore the CCD camera are removed from the system,

rendering GI a real single-pixel imaging system. We test all the three iterative algorithms

with experiment results obtained from our computational GI system.
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3.4.1 General description

The experimental setup is shown in Fig. 3.3. Here a random light pattern is generated

from a simulated superposition of plane waves using random numbers, which is then

sent to a liquid crystal spatial light modulator (LC-SLM) (Boulder Nonlinear Systems)

to produce a synthesized speckle field. The SLM has 512⇥ 512 pixels in the window of

size 7.68 ⇥ 7.68mm. We pass a collimated laser of wavelength � = 632.8 nm through a

polarizing beam splitter and a half-wave plate, before illuminating the SLM window. The

speckle field is generated by modulation of the SLM and the returning light field is then

magnified by a simple telescope system consisting of 150mm and 450mm biconvex lenses.

The object is located at the focus plane of the 450mm lens, which is also the image plane

of the SLM window. A 50 : 50 beam splitter is placed before the object in order to split

the speckle field into two beams; the object beam (I(x
S

, y
S

)) and the reference beam

(I(x
R

, y
R

)). The object beam illuminates the object and is then collected by a bucket

detector, thus providing an computational GI setup. The additional reference beam for

monitoring the light di↵erentiates our system from previous experimental computational

GI configurations. Since we are generating a computer hologram that is then sent to

the SLM to create the speckle field, we can therefore predict the light field at the

reference arm, negating the demand for a CCD camera, and requiring only a second

bucket detector. It should be noted that for TGI based on our computational GI setup,

only the object bucket detector is needed. The additional bucket detector in the reference

arm is only required for NGI and DGI. Light intensities detected by the object and

reference bucket detectors are indicated by S and R respectively, and the speckle field is

described by I(x, y). As we use a 50 : 50 beam splitter, it is understood that I(x, y) =

2I(x
S

, y
S

) = 2I(x
R

, y
R

).

3.4.2 Spatial light modulator and modulated speckles

A SLM is a transmissive or reflective optical device that is employed to modulate the

spatial amplitude and (or) phase of a light field. In our experiment, we use an electro-

optical driven SLM containing liquid crystals as the modulation material. The optical

properties of the liquid crystals are modified by means of an electric field, which is one of
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R

Figure 3.3: Computational ghost imaging setup used in the experiment. A spatial
light modulator (SLM) is used to generate a random speckle field. A beam splitter (BS)
is used to measure a reference signal R on a bucket detector before the object. The
signal, S, is measured on a bucket detector which collects the light transmitted after

the object.

the most commonly used modulation mechanisms in liquid crystal SLM. An important

property of liquid crystals is that they are birefringent, which means they have di↵erent

refraction indices associated with di↵erent crystallographic directions. In an electro-

optical SLM, the voltage induced on each pixel produces an electric field to render a

change of the properties of the liquid crystal, and therefore changes the polarisation of

the incident light fields. To modulate the amplitude of the field, a system shown as

Fig. 3.4 is required. In the system a polarised beam is reflected by a polarised beam

splitter (PBS) toward the SLM window. A half-wave plate rotates the light into the

frame of the optical axis of the SLM. Light is modulated by the SLM depending on the

voltage of the reflecting pixel and then re-rotated by the half-wave plate. After the PBS

a intensity distribution depending on the hologram on the SLM is achieved. For the

SLM we use in our system, each pixel has a modulation dimension from 0 to 255, which

corresponds to a polarisation change from 0 to 180�.
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Figure 3.4: Illustration of a intensity spatial light modulator setup. Linear polarised
laser passes through a half-wave plate and is modulated by the SLM, gets through the
half-wave plate again. The transmissive light from the polarised beamsplitter (PBS)

contains spatial information determined by the hologram.

Based on the speckle generator we introduced above, we generated a series of ran-

dom speckle patterns by controlling the SLM with random generated holograms. The

holograms are calculated by simulating the interference of many plane waves, to make

sure that hologram-controlled speckles the real and imaginary amplitude components

and the wave vector k of each simulated plane wave is Gaussian distributed. Fig. 3.5

shows a typical example of the speckle patterns generated on the SLM and the exponen-

tially distributed intensity for many patterns, implying that the speckle hologram has

complex-Gaussian statistics, thereby a good approximation for real speckle fields [83].

3.5 Experiment results

3.5.1 Experimental comparison between di↵erent algorithms

A binary transmissive object, 5mm⇥5mm in size, is located after a 3 times magnification

telescope in the image plane of the SLM. Since we know both the object and the random
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(a) (b)

Figure 3.5: (a) A typical speckle pattern hologram. (b) The measured intensity
distribution of the speckle pattern (blue) and an exponential curve (red).

speckle field projected to the SLM, we are able to simulate the expected results for

comparison with our experiment. Experimental and simulated reconstruction results

after 10000 iterations are shown in Fig. 3.6. The simulated reconstruction is produced

assuming no external noise sources. The partially transmissive object used is indicated

in the bottom right of Fig. 3.6. It is clear that the DGI and NGI algorithms provide

very similar results, as predicted from the theory, and both show improved background

subtraction compared to TGI.

Compared with the traditional computational GI setup, NGI algorithm requires a ref-

erence bucket detector. However, as discussed before, the advantage of computational

GI means that we can replace this bucket detector with a virtual reference detector gen-

erating a simulated R. Thus we can negate the requirement for the reference detector

and return the system to a true single element camera, which we call single-detector

NGI (SNGI). The two major factors that dominate the value of R are from the di↵er-

ent speckle patterns displayed on the SLM and fluctuations of the incident laser power.

We can computationally predict changes to the value of R due to the speckle pattern,

whereas fluctuations of the laser power can be simulated by using a rolling average for a

particular series of S measurements. The bottom row in Fig. 3.6 shows the experimen-

tal results for reconstructing the object using the SNGI algorithm. We observe similar

results compared with DGI and NGI algorithms indicating an improved performance
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TGI
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simulationexperimentalgorithm
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10000100010010

Figure 3.6: Experimental results (middle column) for TGI, DGI and NGI reconstruc-
tion algorithms as they evolve (10, 100, 1000 and 10000 iterations from left to right,
respectively) with the corresponding simulated results (right column). The transmis-
sive object is shown in the lower right. The bottom row shows the evolution for recon-
structing the object with the NGI algorithm using a single detector and predicting the

reference signal R, termed here the SNGI algorithm.

compared with the TGI algorithm for single element camera.

3.5.2 Experimental SNR Analysis

To demonstrate the e↵ect of object transmission function on the performance of NGI

compared with TGI and DGI algorithms we used a similar experimental approach to

that in Ref. [67]. By scanning a knife edge (located in the image plane of the SLM, as

before) across the speckle field in well defined steps (for which�T = 1), we measured the

SNR’s for the final object reconstruction obtained after 5000 random speckle iterations.

The beam size used was 10 ⇥ 10mm and the speckle size at the plane of the object

was found to be �
s

⇠ 90µm, providing around N
s

⇠ 12500 speckles. The experimental

results and theoretical predictions for the SNR’s of each iterative algorithm are shown

in Fig. 3.8. Note that the y-axis has been normalized to the number of iterations.

We observe close quantitative agreement between the theory and the measurements.

The results indicate that for low transmissive objects, all algorithms reconstruct with
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Figure 3.7: Experimental results of a Packman (top row) and anti-Packman (bottom
row) from di↵erent GI algorithms.

similar SNR, while for more transmissive objects the DGI and NGI algorithms become

more e�cient in comparison to TGI due to the di↵erential nature of the reconstruction.

Furthermore, we observe that when using a single detector, SNGI is a more e�cient

algorithm for reconstructing objects of all transmissions compared to TGI. We observe

that for increasing transmissive objects SNGI becomes less e�cient than NGI, for which

the reason is the subject of ongoing research. Similar to [67], we find a systematic

discrepancy between the experimental results of TGI and the theoretical predictions.

3.6 Normalization in matrix inverse algorithms

3.6.1 Matrix inverse algorithms and compressive sensing

A problem of iterative algorithm is that it always requires many iterations in order to get

an image with high SNR. For an object with N pixels, according to the Nyquist limit,

one needs at least M = N measurements in order to complete an image reconstruction.

In pseudo-thermal GI, because the speckles have a lot of overlap, normally the actual
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Figure 3.8: Signal-to-noise ratio’s for DGI, NGI, SNGI and TGI versus transmitting
area. Transmitting ratio is defined as the ratio between the transmitting area of the

object and the area of the speckle field.

measurement step is much more than the pixel number M � N . It is very helpful if

some more e�cient algorithms is used to reduce measurement steps.

In an alternative way to the iterative techniques, we choose to record all the signals for

a complete set of speckle patterns and then treat the image reconstruction as a problem

of matrix inversion. For an object with N pixels, a series of M speckle patterns are used

for reconstruction. If we represent each speckle pattern as a row vector, then the M

speckle patterns can be represented by a M ⇥N matrix. Then the vector containing the

measured signals is a M element vector. And the acquisition process can be expressed

as 2

66664

S
i

...

S
N

3

77775
=

2

66664
I

3

77775

M⇥N

⇥

2

66664
T(x,y)

3

77775

M

. (3.23)

An image reconstruction can be achieved by solving this linear equation. To obtain a

unique resolution for the linear equation indicated in Eq. 3.23, at least M ⇥ N mea-

surements are required. And same for iterative algorithm, the overlap between speckles

which reduce reconstruction e�ciency also exists here. Therefore inversion algorithm
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itself does not help to reduce the measurement steps for an image reconstruction. But

there is a novel signal process method called compressive sensing that can be applied in

inversion problem to help reduce the steps of measurement. Compressive sensing takes

advantage of signal sparsity or compressibility in some domain [43–45]. Actually most

of natural images are sparse, not in the spatial domain but in Fourier space. That is, if

an image is transformed to its Fourier space, most of the Fourier coe�cients are small,

only the low frequency coe�cients have large values. Based on this property, we can

filter most of the values in frequency space to be zero without losing much information.

Moreover, we send the rendered data to a convex optimisation program and derive an

image which minimises the l1 � norm in the Fourier plane

min
G

||I ⇥G||
l1 , subject to I ⇥G = S. (3.24)

This method applies even when M < N . That is when the acquisition is under the

Nyquist limit and therefore the system is ill-conditioned and calculating the inverse of

the matrix is not straightforward. Problems of this type are wide spread in physics and

techniques for solving them have been developed. Within our system the appeal is to

reconstruct the image of N pixels from M measurements where M < N . That this is

possible is based on the fact that natural images are sparse and the reconstruction can

be obtained by solving a convex optimization problem [47], which is a generalization of

a linear least squares problem. In contrast to iterative methods, compressive GI (CGI)

needs to take all measurements, represented here, in some compressible basis (in this

case a discrete cosine transform which has been applied to each row of the M ⇥ N

matrix). Solving the convex optimization problem requires minimizing the `1 norm [46].

3.6.2 Normalized compressive ghost imaging

By normalizing the measured object signal relative to the reference signal as performed

above, such that S0 ⌘ S/R, we can apply the CGI technique [84–88] to reconstruct our
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Figure 3.9: (a) Experimental result of Normalized known vector reconstruction
method (S/R) having SNR = 9.95. (b) Standard CGI reconstruction from S having

SNR = 7.39.

object. Equation 3.23 can then be written for normalized CGI (NCGI) as

2

66664

S0
i

...

S0
N

3

77775
=

2

66664
I

3

77775

M⇥N

⇥

2

66664
T(x,y)

3

77775

M

. (3.25)

Performing both NCGI and CGI analyses using the same experimental data (acquired

using the experimental setup in Fig.3.3) we obtain the reconstruction in Fig. 3.9. We

observe a clear improvement using the NCGI algorithm compared to the CGI algorithm,

manifest as an increased SNR value. The e�ciency with which NCGI can reconstruct

sparse images over CGI is determined by the level of noise in the system. We find that

when there is no system noise present, both reconstructions are essentially identical.

Thus the main improvement in employing NCGI over CGI with the additional reference

detector is the ability to protect the reconstruction from time varying noise sources.

3.7 Conclusion

In conclusion we have compared di↵erent iterative GI methods to reconstruct an object

and studied a new GI algorithm, which we call normalized GI (NGI). The performance

of the di↵erential GI (DGI) and NGI algorithms show good quantitative agreement as
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predicted by the theoretical foundations that support them. Our results indicate that

by normalizing the measured signal relative to a reference signal, a more appropriate

weighting factor is applied to the ensemble average of the estimated object, compared

to the traditional GI (TGI) algorithm. Our analysis of the measured SNR and the

object transmission shows a significant improvement for more transmissive objects in

comparison to TGI. Furthermore, we have shown it is possible to apply normalization

to systems with a single detector, SNGI, by estimating the reference signal. We have

also investigated normalization within a compressive matrix inversion method, showing

similar results to an non-normalized algorithm but with enhanced noise suppression.

We believe the NGI algorithm will be a useful resource for imaging where alternative

techniques are required in the future.



Chapter 4

3D Computational Imaging with

Single-Pixel Detectors

In this chapter a modified computational GI system is detailed, capable of imaging large

3D objects compared to the previously studied objects that consisted primarily of small

2D binary template objects. Instead of using a liquid crystal spatial light modulator

(SLM), we employed a digital micro-mirror device (DMD) to spatially modulate the

light field incident on the object, and employed several single-pixel detectors located in

di↵erent positions to measure the back-scattered light. The images obtained from each

detector can be used in a separate algorithm to rapidly reconstruct a 3D profile of the

object.

In the previously discussed GI setup a liquid crystal SLM is used to generate speckles

for illumination, however for our system, a digital light projector (DLP) is utilised as

the light source. The DLP contains a white light source and a DMD to generate binary

(0 s and 1 s) structured illumination (light patterns). As the structured illumination

can be predicted by the control holograms, the need for a spatially resolving detector

is removed, and only single-pixel detectors are used. To distinguish our new system

from a computational GI system, we call our new system a computational imaging

system with single-pixel detectors. In a single-pixel computational imaging system, the

object for imaging is extended from 2D transmissive objects to a three dimensional

48
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(3D) real-life size reflective object. Using the same algorithms as used in GI, the single-

pixel computational imaging system infers the scene by correlating the known spatial

information of a changing incident light field with the total reflected (or transmitted)

intensity. Compared to previous GI experiments, our system is able to improve the

reconstruction to a much better level where 3D reflective object can be imaged with

reasonable details.

In addition to 2D reconstruction, a 3D imaging system is also built up based on this

technique. Rather than using only one detector in the system, four single-pixel detectors

are employed in the system, each producing a 2D image. It is realised that all these

images have the same shape but di↵erent intensity distribution. And the intensity

distribution of an image is determined by the surface normals of the object and the

detecting vector. With the knowledge of the intensity distribution in the four images

together with the detecting vectors, the 3D profile of the object can be derived by

employing an algorithm called “photometric stereo”.

In this chapter, we first discussed the limitation of the computational GI system in-

troduced in Chapter 3. Furthermore, the adaptive single-pixel computational imaging

system is introduced. Correlation imaging results obtained from the system will be

discussed together with their shading properties. The 3D reconstruction utilising the

shading property is then discussed. Most of the work in this chapter is published in [89].

My major contributions to this work was designing and conducting the experiment,

improving the photometric stereo algorithm and performing the 3D reconstruction cal-

culation.

4.1 Limitations of the existing GI experiment methodol-

ogy

Original GI was first demonstrated using quantum entanglement which has sparked

much debate whether or not GI is an intrinsic quantum phenomena. The nature of such

experiments based on this principle therefore limited it to the use of binary transmissive
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objects. However, GI has been shown to work using thermal light patterns which theo-

retically allow the use of multi shaded transmissive or indeed reflective objects. A prime

limitation of classical GI using thermal light is that the low single-to-noise-ratio (SNR).

To improve the reconstruction SNR, several advanced algorithms were developed, which

are as discussed in Chapter 3. Among these algorithms, DGI and NGI work well to

produce high SNR. On the other hand, the proposal of computational GI simplified the

hardware of GI system and make GI experiment more applicable. In 2008, an experi-

ment to image an reflective object was performed by Meyers et. al. in a GI system using

chaotic light source [90, 91], but the result was limited as a 2D outline of the object.

There are also other studies about GI using reflective photons, but mostly are limited

to theoretical studies [65, 92–94].

Our experiment is therefore focused on to image a 3D object in a GI system. A first

attempt was made in the computational GI system introduced in Chapter 3. The object

(Fig. 4.1) consists two 3D letters G and U , which are 3D-printed from white plastic.

Each letter is approximately 1 cm⇥ 0.5 cm⇥ 0.3 cm. They are placed with some spatial

separation in both transverse and longitude direction to contain some simple 3D infor-

mation. Indeed the simplicity and dimensions of the object mean that there is a close

similarity to the object appearing as if it were just 2D in this case. The GI reconstruc-

tion can be seen in Fig. 4.1. Similar as the results in [90], only an outline was obtained

with little details and in a low resolution.

The relativity low SNR can be explained here in terms of the generally low reflectively

of the object. In the computational GI system, speckles are generated by passing a

laser beam through a spatial light modulator (SLM). The low e�ciency of the speckle

generator renders the modulated light fields at a low intensity, this is further exasperated

since the light fields are subsequently magnified to illuminate a larger area. This issue

does not majorly impact the result in the case where the collecting e�ciency is high.

After transmission through the object, almost all of the light can be obtained by using

a collecting lens in the beam path. If the object is reflective, however, photon collection

becomes di�cult, since light is scattered into a large solid angle. Only a small portion

of the incident light can be collected, even when a collective lens with a large numerical
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Figure 4.1: Reconstructed image of a 3D reflective object using computational GI
setup discussed in Chapter. 3. The object contains two 3D-printed letters “G” and

“U”.

aperture is used. Fig. 4.2 shows a comparison between two reconstructions of the same

object. Fig. 4.2 (a) is obtained by using the transmissive light, while Fig. 4.2 (b) is

obtained by collecting the reflective light. The reflective reconstruction with a much

lower SNR indicates the di�culty to image a reflective object.

In addition to the low signal level, nonlinear response of the SLM also limits the re-

construction quality. Due to this nonlinear response of the SLM, what one predicts by

the hologram is not exact what is generated. For a binary object, this nonlinearity is

allowable, because the structure of the target is relative simple and easy to retrieve.

For a 3D object with greyscale reflectivity, the generated speckles have to match the

hologram well for a proper reconstruction of the complicated structure. One may think

that the conventional GI setup which uses a CCD camera to acquire speckle patterns

is able to get rid of the nonlinearity issue, however, the use of the CCD camera will

introduce extra shot noise from the CCD chip which will also reduce the reconstruction

quality, therefore conventional GI using a CCD camera does not necessarily produce
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Figure 4.2: GI reconstruction of a transmissive object by measuring the transmissive
(a) an reflective (b)photons.

better reconstructions than computational GI. To summarise, a 3D reflective object is

much more complicated than a 2D transmissive object for GI reconstruction, and will

need an adaptive system for correlation measurement.

4.2 Computational imaging with structured illumination

Based on the discussion above, we realise that an appropriate light source is the essen-

tial element to image a complex 3D object in GI. The new light source should consist

of a programable SLM with good linearity so that we can predict the speckles accu-

rately. Also, it should be able to illuminate a large area with high intensity. To meet

these requirements, we decide to use a light project as our light source. This change

then instigates the switch of the structure illumination from thermal speckles to binary

“chessboard” patterns. Details of the experiment setup will be discussed in this section.

4.2.1 Experiment setup

Our computational imaging experimental setup is shown in Fig. 4.3. It consists of a

digital light projector (DLP) (Light Commander from Texas Instrument) to illuminate
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an object with random binary light patterns, a single-pixel photodetector to measure

the intensity of the reflected light, an analogue-to-digital converter to digitise the pho-

todetector signals and a computer to generate the random speckle patterns as well as

perform 3D reconstructions of the test object. One object investigated was a life-size

white polystyrene mannequin head, with approximate dimensions 190⇥ 160⇥ 250mm.

Our bucket detector is composed of a photodiode and a collecting lens. As light intensity

scattered from the 3D object is relatively low, a collecting lens is placed in front of the

photodiode to increase the numerical aperture of the detector. On the other hand, as

the object light cannot be focused into a spot (the smallest focus area of the object is

about 5mm⇥5mm), a photodiode with a su�cient detection area is required. Therefore

we choose a Thorlabs PDA100A-EC Si Transimpedance Amplified Photodetectors with

an active area of 75.4mm2. It has a response spectrum from 340 nm to 1100 nm with

the peak response at 970 nm. And the response speed (bandwidth range) is 2.4MHz.

There is also a gain control to adjust the detection to di↵erent sensitivity levels. Ac-

quired photocurrent signals are then sent through an analogue-to-digital converter to a

computer. The converter is a Data Acquisition device (DAQ) from National Instrument

(NI): NIUSB-6221 BNC. It utilises a BNC cable to receive signals from the photodiode

and then a USB cable to connect to the computer.

4.2.2 Digital light projectors and digital micromirror devices

In this computational imaging system, the most important component is a programmable

DLP. The DLP we use in our lab is a “Light Commander” from Texas Instruments.

Structure of the DLP is illustrated in Fig. 4.4. It comprises of an illumination source

which contains a red, green and blue light emitting diode to generate red, green and

blue light separately. The RGB light is integrated by a integration tube into white light.

The white light is then reflected by a mirror onto a digital micro-mirror device (DMD)

and modulated with structure illumination. The modulated light pattens are projected

onto the object by a Nikon 50mm focal length lens.

Within the DLP, the primary component is the (DMD). A DMD is a reflective spatial

light modulator made up of metal mirror arrays [95, 96]. It was first invented in Texas
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Figure 4.3: Illustration of the single-pixel computational imaging experimental setup.
The light projector illuminates the object (head) with computer generated random
binary speckle patterns. The light reflected from the object is collected by a single pixel
photodetector. The signals from the photodetector are measured by the computer via

the analogue-digital converter, and used to reconstruct a correlation image.

Instruments in 1980s and then widely used in light projection and optical modulation

systems [97–100]. A DMD chip consists of a 2D rectangular array of microscopic metal

mirrors. Each mirror can be individually rotated electrostatically by a certain angle

(+12 degrees and 12 degrees), which corresponds to an on or o↵ state (Fig. 4.5). In the

on state, light from the projector light source is reflected into the lens, making the pixel

appear bright on the screen. While in the o↵ state, the light is reflected to an absorber,

making the pixel on the screen appear dark.

Compared to a liquid crystal spatial light modulator, DMD can be operated much

more quickly, with better projection precision and broader bandwidth. Importantly,

the large operational bandwidth of the DMD (300 nm � 2µm) would enable the use of

this technique at other wavelengths that are potentially unsuitable for existing imaging

technologies.

The computational imaging system using single-pixel detectors described above is adapted

from computational GI. As mentioned before, we use “computational imaging” to distin-

guish it from computational GI. The two systems have some common aspects. Both of



Chapter 4. 3D Computational Imaging with Single-Pixel Detectors 55

Figure 4.4: Illustration of light projector. RGB light are emitted from three photodi-
odes and passed onto the DMD chip. The modulated light field reflected by the DMD

mirrors are projected by a lens onto the image plane of the DMD.

the two systems use structured illumination and single pixel detection. Images are both

derived from correlation between the illumination structures and single-pixel signals.

The correlation algorithms employed are the same. there are however subtle di↵erences

between the two approaches. The most fundamental di↵erence is that a computational

GI system utilises time coherent speckles as a light source, and the speckle patterns in

a certain plane are calculated based on the propagation function. The computational

imaging system, however, uses a projection lens to project binary patterns onto its image

plane.

The computational imaging system is also similar to a single-pixel camera system. The

only di↵erence is our single-pixel computational imaging system uses DMD to encode

the light source for illumination, while the single-pixel camera uses DMD to encode

object light in the image plane. Details about the di↵erence of these two systems will

be discussed later in Chapter 5.

4.2.3 Depth of field of the projection system

To make sure that computational GI reconstruction is valid for a 3D object, we require

the projection patterns to keep unchanged in the whole 3D object space. In other words,
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Figure 4.5: An illustration of the “on” and “o↵” states of a DMD pixel (a) and a
modulated light pattern.

the depth of field (DOF) of the projection system has to be long enough to cover the

longitude size of the object (the size of the object in the propagation direction of light).

Here we define the DOF as the front and back plane where both the contrast of the

patterns decrease to 50% of that in the focal plane. To quantitatively measure the DOF

of the system, we send a strip pattern (Fig. 4.6 (a)) onto the object space and analyse

the change of the contrast in the longitude direction. As DOF is related to the image

resolution, we combine every 4 neighbouring column of DMD mirrors as a white or black

strip, which means the size of the strip pattern in the horizontal direction is equal to

that of the projected patterns used form computational imaging reconstruction. A CCD

chip is placed in the object area to record the projected strip pattern. The CCD is first

moved along the longitude direction to find the focal plane where we get the highest

contrast. At this point the contrast is not 1, because the black area of the pattern is not

actually “black” due to background light. Therefore we remove the background noise

to make the average black pixel values zero. Taking this background subtraction into

account, we move the CCD along the propagation of the projected light to locate the

two planes where the image contrast reduces to 50% (one in front of the focal plane

and the other in the back). The distance between these two planes is the DOF of the

system. We get the DOF is 23cm, which means that the system is valid to retrieve a
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Figure 4.6: Measurement of depth of focus of the DLP system. (a) Image of black
and white stripes obtained in the focal plane of the projection lens. (b) The image of
the same pattern obtained with the contrast reduced to 50%. (c) shows the cross view
of the magnitude of the pattern in the focal plane (black line), front out-of-focal plane

(red line) and back out-of-focal plane (green line).

3D object within this depth. The mannequin head is 19 cm in the longitude direction,

so the reconstruction should be valid.

4.3 Di↵erential computational imaging

Despite the apparatus di↵erence, computational imaging system shown in Fig. 4.3 uses

the same correlation algorithms as used in GI for image recovery. The three algorithms

discussed in Chapter 3 all use the changes of intensity fluctuation as the correlation

varieties, which are obtained as the zero-mean object light intensities and are e↵ected

by background noise. To get rid of the background noise, a di↵erential signal acquisition

method is introduced. It utilises the bit-plane display of the DLP to display every

structured illumination followed by its inverse. The object intensity therefore can be

represented as the di↵erential of the two intensities from these two opposite illumination.

This di↵erential signal method helps remove the influence of all background noise with

a lower frequency to the display speed.
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Figure 4.7: Illustration of speckles and their inverse. l1 and l2 are two speckles, and
l01 and l02 are the inverse. The di↵erential signals are obtained by subtracting S0 from

S.

4.3.1 Acquisition of di↵erential signals

As discussed in Chapter 3.1, direct correlation of the two beams contains not only the

object spatial information, but also featureless background. To eliminate the background

noise and increase SNR, the DC component is subtracted from both the bucket signal

and the 2D speckles from their correlation (Eq. 3.2). In computational imaging system

using binary patterns, as the speckle can be manipulated computationally, the only thing

to acquire is zero-mean bucket signals. Rather than measuring the absolute intensity

signals and subtracting the mean value, an alternative way to do this is to project pairs

of patterns, with each pair containing a pattern and its inverse. The di↵erential of the

corresponding signals becomes the zero-mean signals for the pattern.

This method can be easily achieved by taking advantage of the bit-plane display of the

DMD. Bit-plane display is a technique that represents of a non-binary number at each

pixel of an image with a set of bits. In computer graphics, a true colour (RGB) display

employs a 24-bit number to represent a RGB pixel. Within this 24-bit number, each

colour is represented by 8 bits. Therefore each colour can be displayed in a space of 256

degrees (0� 255). In the case of light commander, the display can be switched between

two modes. In a video mode, the DLP system works in a way to display true colour

images in a high speed (60Hz). For one true colour image, the R/G/B components

are displayed alternatively within a period of 1/60 second (one frame). In any time
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of such a frame, one colour get displayed, by switching the corresponding LED on and

displaying the corresponding bit planes on DMD chip. In the other mode, which is called

“structure light mode”, all the three LEDs are on at all the time to produce a white

light illumination, and the 24 bit numbers are displayed in sequence. This structure

light mode is an ideal situation for displaying binary patterns with their inverse. For

one frame, we combine a binary pattern and its inverse (Fig. 4.7) alternatively for 11

times, which takes 22 bits of the frame. The other 2 bits left are used as triggers for

synchronisation measurement. This process is shown in Fig. 4.8. Every frame starts

with a bit plane with all the pixels on to generate a high signal, and then follows the

second bit that turns all the pixels o↵. The other 22 bits are coded alternatively with

a speckle and its inverse. Once a 24 bit number is integrated as a frame and sent to

the DMD (and note that it is the minimum unit that DMD can be controlled through

computer), it will be displayed repeatedly in 60Hz. To acquire the signals from a whole

frame, we force the system to acquire two triggers in order to distinguish a whole frame.

The DAQ is set to sample at a rate of 57.6 kHz, which means from every frame there

are 960 samples. To make sure we acquire two triggers to select a frame, we take 2000

samples (slightly more than two frames) for every speckle (Fig. 4.8 (a)). Once a frame

is picked out (Fig. 4.8 (b)), a digital filter as shown in Fig. 4.8 (c) is used to modulate

the signals. Notice that mirrors in the DMD chip are switched in every bit plane, and

because of their finite response speed, signals measured in the raising and falling period

of each bit plane display may contain noise. In order to get ride of these noisy signals,

the first 2 and last 3 samples for every bit plane is discarded, leaving 30 samples for each

bit plane. The filtered signals are then averaged to 11 signals ( the first 2 bit planes are

also discarded), and the average of the these 11 signals finally works out the signal for

the corresponding speckle pattern.

4.3.2 Experimental results

These di↵erential signals together with their light patterns are then sent to the corre-

lation algorithm to retrieve an image. As the di↵erential signals are zero-mean signals

already, the correlation function can be simplified as



Chapter 4. 3D Computational Imaging with Single-Pixel Detectors 60

Figure 4.8: Di↵erential signals. (a) Acquisition of 2000 samples. It contains signals
for one light pattern and its inverse and two pair of triggers. (b) Signals of one frame
of illumination from the DLP. (c) Filter for signals in one frame. (d) The di↵erential

signals.
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Figure 4.9: Source ghost image reconstructed using the TGI iterative algorithm iter-
atively from 1000 to 1,000,000.

I(x, y) = h(S
i

) h(P
i

(x, y))i , (4.1)

here P
i

(x, y) are binary pattens containing �1s and 1s rather than 0s and 1s, with all

the 0s being replaced by �1s.

The Light Commander contains an array of 1024⇥ 768 mirrors in the DMD chip, which

determines the maximum pixel numbers of the projected patterns. In our experiment,

we assemble every 4 ⇥ 4 mirrors into one unit (pixel), so that the projection patterns

are in 2D arrays of 256 ⇥ 192 pixels. During the projection, each “pixel” is randomly

switched on or o↵, rendering the projection as binary patterns (0s and 1s). The patterns

are then projected onto the object, which is placed 1.2m away from the projection lens.

To increase SNR of the reconstruction, we set the black (0) to white 1s pixel ratio in all

projection patterns as 1:1, so that our system is a SNGI system as discussed in Chapter

3. Using Eq. 4.1 we obtain 2D reconstructions of the object, shown in Fig. 4.9. The

four images are obtained after 1 thousand, 10 thousand, 100 thousand and 1 million

iterations respectively. The final image reconstructs the object with reasonable details.

Fig. 4.10 shows some other images obtained from the system.

Although images in Fig. 4.9 are obtained in a dark room without background noise,

the advantage of using di↵erential signals enables us to perform the same experiment

with low frequency background light on. As one di↵erential signal is obtained during

the display of two bits (1/720 seconds), it automatically filters low frequency noise. In
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Figure 4.10: 2D computational images of a sample skull and a toy camel.

our case, the frequency of oscillation from room lights is 100Hz, which is much lower

than the frequency of the di↵erential signals in 720Hz. Therefore the room light can

be filtered out automatically. Fig. 4.11 shows a comparison between reconstructions

with and without room light. Fig. 4.11(a) shows signals acquired with room light in one

frame. Compared to Fig. 4.8(a) it contains a fluctuation with a longer period. This low

frequency signals, however, cannot stop us to work out the e↵ective di↵erential signals

(Fig. 4.8(b)). The image obtained with room light (Fig. 4.8(d)) is slightly noisier than

that obtained from a darkroom, but still in a good quality.

4.4 3D computational imaging utilising structured illumi-

nation

In this section we extend the technique developed above to retrieve the 3D form of the

object. This is achieved by using several single-pixel detectors in di↵erent locations

around the object. From each detector we derive a 2D image that appears to be illu-

minated from a di↵erent direction whilst using a single digital projector as light source.

All these images have the same shape, but di↵erent shadings, which is determined by

both the surface shape and the detecting directions. Using an approach called shape

from shading, the surface gradients and hence the 3D reconstruction of the object can be

obtained by comparing the shading information of from di↵erent images. We compare
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Figure 4.11: (a) Signals of one frame illumination obtained with room light on. (b)
The rendered di↵erential signals. (c) A reconstruction of a toy skull without room light

compared with the same reconstruction with room light on (d).

our 3D result to that obtained from a stereo-photogrammetric system utilising multiple

cameras.
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4.4.1 Computational imaging setup with multiple single-pixel detec-

tors

The experiment setup for 3D reconstruction is adapted from the 2D reconstruction

system discussed in Section 4.2. All the setups are the same except that there are four

single-pixel detectors rather than one. It is worth to mentioning that crossed polarisers

in the DLP and detectors are used to get rid of specular reflection. Details will be

discussed later.

The four spatially separated single-pixel photodetectors are positioned in a plane 1000mm

away from the object, separated by 500mm and each pointing towards a common point

on the object to record the back-scattered light (Fig. 4.12). The whole space can be

marked as a Cartesian coordinate system with three axises (x, y, z), with the origin be-

ing chosen as the centre of the projected light patterns on the image plane. Therefore

the four detectors are at (�50, 0, 100), (50, 0, 100), (0, 50, 100), (0,�50, 100) in the unit

of centimetres. For every binary pattern projected, the corresponding object intensity is

measured by each photodetector, which is fed to a computer algorithm. Iterative results

from the four detectors are shown in Fig. 4.13. All the images here are in a resolution

of 192⇥ 256 pixels.

Now we focus on the final results obtained after one million iterations, shown as the last

row of Fig. 4.13. By comparing these four images we find that all these four images have

the same shape, and the only di↵erence is their intensity distribution. For example, the

one obtained from the top detector has a strong shading in the chin area. It indicates that

the direction is determined by the position of the detectors in GI. And this properties

will be discussed in detail and employed for the 3D reconstruction.

4.4.2 Shading property of computational images

In this section the shading property of the image from the previous computational imag-

ing system is discussed. As mentioned above, the shading profile in a computational

imaging system with single-pixel detectors is determined by the detection element rather

than illumination, which is reciprocal to a conventional camera system. This is because
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Figure 4.12: Illustration of the experimental setup used for 3D surface reconstruc-
tions. The light projector illuminates the object (head) with computer generated ran-
dom binary speckle patterns. The light reflected from the object is collected on 4 spa-
tially separated single pixel photodetectors. The signals from the photodetectors are
measured by the computer via the analogue-digital converter, and used to reconstruct

a ghost image for each photodetector.

the detection element in single-pixel imaging is non-pixelated, just as the illumination in

a camera imaging process. In our computational imaging system, once the illumination

direction is fixed, the intensity distribution of the reconstruction is determined by the

relative orientation of the object surface and the relative position of the detector.

In both GI and computational imaging using single-pixel detectors, a pixel in the GI

reconstruction is determined by a corresponding pixel (P 0) in the structure illumina-

tion. This is because the light source is the component that contains spatial information

(pixel related), and the detector simply only measures the total power. Once the emis-

sion power from the illumination pixel is fixed, the projection power on the corresponding

area of the object space is conservative, though both the projection area size and surface

light intensity may vary due to di↵erent incident light angles (Fig. 4.14 (a)). Assuming

a Lambertian surface that conducts perfect di↵use di↵raction, the scattered light lumi-

nance in all direction is the same, therefore the power of the scattered light detected by

the bucket detector is only dependent on the cross area of the projection area viewed by

the bucket detector. And according to TGI algorithms shown as Eq. 4.1, the intensity

value at any pixel of a computational image is proportional to the total light intensity
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Figure 4.13: Source ghost images from each photodetector employed in the system,
reconstructed using the TGI iterative algorithm iteratively from 1000 to 1, 000, 000. The
spatial information in each image is identical, however the apparent illumination source
is determined by the location of the relevant photodetector, indicated underneath.

from the corresponding area. Therefore once the incidental light is fixed, the pixel in-

tensity will change as a function of the detecting vector. Based on the discussion above,

the image intensity of a pixel from computational correlation imaging (Fig. 4.14 (b)) can

be expressed as

I / I0 · (n · d) . (4.2)
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Here (I0) is the incident light intensity, S is the bucket signal, and d and n are are

the detecting vector and surface normal at this pixel. Note that both d and n are unit

vectors pointing outwards from the object surface.

To further understand the shading property of a computational imaging system, we

compare the computational imaging system with a normal camera system, where we

replace the projector with a camera and the bucket detector with a light bulb (Fig. 4.14

(e)). In this conventional imaging scheme, the intensity of a pixel is determined by the

field of view of the imaging lens. Once the field of view of the lens is fixed for a given

camera, the pixel intensity on the image is only e↵ected by the scattered intensity in

the detecting direction. Again, for a Lambertian surface, this scattered intensity is only

determined by the incident light, while is independent to the detecting angle. Therefore

the pixel intensity in a camera image is

I = I0 · (n · l) . (4.3)

To compare these two image systems with experimental data, the four detectors shown

in Fig. 4.12 are replaced with four LED light sources and the projector is replaced with

a camera. Four images are taken using the camera, each with only one light source on.

The four camera images (Fig. 4.14(f)) obtained have the same intensity distribution as

the corresponding computational image (Fig. 4.14(c)). Although light travels in opposite

directions for the two imaging systems in, the images acquired from both are equivalent.

The usual rule, that the image brightness (strictly the luminance) depends on the angle

to the light source and not the angle to the camera or eye, must be re-stated to be

compatible with computational imaging: the luminance of the image depends on the

angle between the surface and the non-pixelated element, and not in the angle between

the surface and the imaging component. In conventional imaging, the non-pixelated

element is the light source and the imaging component is the camera, or an observer’s eye.

For computational imaging systems however, the pixelated component is the projector

(i.e. the light source), and it is the detector that is the non-pixelated element.
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4.4.3 Computational imaging with multiple illumination directions

The discussion above is about a computational imaging experiment with di↵erent detec-

tions which renders di↵erent shading of the image. While the non-pixelated element in

an imaging system determines the shading property of an image, the pixelated element

determines its shape information. In a computational imaging system with single-pixel

detectors, the pixelated element is the light source. Therefore a complement experiment

to that discussed above is done with the light project being placed in di↵erent positions

relative to the object. The experiment setup can be understood through Fig. 4.3, with

only one light source and one detector. The experiment is done twice, each with the

light projector being placed in a di↵erent point of view relative to the object. When

taking real data, this can be simply achieved by rotating the mannequin head relative

to the DLP. Fig. 4.15 shows two images of the mannequin head with di↵erent shapes,

with the perspective set by the position of the DLP. Same pictures can be taken with a

camera from two view points (left and right) where the DLP is placed.

4.5 3D GI reconstruction using photometric stereo

In this section we utilise the shading properties discussed above to retrieve the 3D

information of the object. In a conventional camera system, the intensity distribution

of an image is di↵erent under di↵erent illumination. In a computational imaging system

with single-pixel detectors, the intensity profile looks di↵erent when it is detected from

di↵erent directions. In both cases, the di↵erent appearance in the 2D images can be

utilised to infer the lost 3rd dimension, recovering the depth information of the scene.

The technique that uses this observation to reconstruct a 3D surface from a single image

under a particular illumination is called shape from shading (SFS). In this section we

are going to apply this technique developedfor use with conventional cameras onto our

computational imaging system for 3D reconstruction.
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4.5.1 3D imaging methodology

Depth information of a scene is otherwise lost in a 2D image, but there are instances

where it can be inferred. Both conventional camera and single-pixel imaging systems

image a scene by projecting 3D space onto a 2D plane, thus in order to obtain 3D

information from 2D computational images we must perform the inverse problem.

In any one pixel of a 2D image the intensity is determined by the surface reflectance

and surface geometry at that point, as well as the incident lighting. The technique that

retrieves 3D information utilising this 2D intensity image is called ’shape from shading’

[101–110]. Using a single image this method relies on the shadows cast by geometrical

features to reveal the depth of the scene, and assuming a uniform Lambertian reflectance

model and known light sources located at infinity, such that the incoming lighting vector

is constant. An extension of this technique known as “photometric stereo” [111–115]

provides a better solution by adopting the same assumptions but requiring multiple

images from the same view point under di↵erent illumination. Although the single

viewing point limits both these techniques to estimate depth from only one side and is

consequently only able to recover 2.5D, the method benefits by not having to establish

correspondences between pixels like other methods.

A di↵erent approach for deriving 3D surface information utilises multiple 2D images

of a scene from di↵erent points of view taken simultaneously and finding the correct

correspondences between pixels, sometimes referred to as ’dense stereo’ [116, 117]. Points

from di↵erent images are in correspondence when they are from the same physical point

in space via perspective projection. Once correspondence is established, it can be used

to determine the 3D profile of the object. This can be simply done by triangulating the

position of the correspondence [118]. For shape reconstruction, similar priors such as

uniform reflectance and constant illumination are typically assumed.

Another 3D mapping method known as “structured illumination” [119], actively illu-

minates a scene using a set of specially designed 2D patterns and taking images from

a particular viewpoint. Many di↵erent techniques exist within this topic but the un-

derlying principles behind them all is that geometrical features in the scene will create
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distortions to the incident patterns from the viewpoint of the imaging device. It is by

accurately measuring the pattern distortions in the images that 3D surface information

can be obtained.

As will become apparent to the reader, the method described here to retrieve 3D surface

information with computational images, is an amalgamation of all aforementioned tech-

niques. The imaging system utilises a light projector to produce random speckle patterns

from a single source (structured illumination) from which the reflected intensities are

measured by multiple single pixel detectors (dense stereo) and correlated to produce

images. However the use of multiple detectors does not o↵er di↵erent perspectives of

the scene but instead provides identical spatial information under di↵erent illumination

(photometric stereo) in the ghost images retrieved (Fig. 4.13).

4.5.2 Shape from shading to photometric stereo

Shape from shading recovers 3D information from a single 2D intensity image based on

the fact that surface reflection follows certain principles. To solve the SFS problem from

a single image, usually some reflectance property is assumed. Also, most methods assume

orthographic or perspective projection so that each scene point has the same incoming

light distribution. Fixed scene illumination, surface-reflectance properties, and imaging

geometry can be integrated into an explicit model that allows image brightness to be

related directly to surface orientation.

Thus we can associate with each point in gradient space the brightness of a surface patch

with the specified orientation. The result, usually depicted by means of isobrightness

contours, is called the reflectance map, R(p, q). It is convenient to denote the surface

gradience by the first partial derivatives of z with respect to x and y:

p =
@z

@x
, q =

@z

@y
. (4.4)

R(p, q) is used to represents the relationship between surface orientation and surface

brightness. The map is defined in gradient space. The reflectance map is a convenient
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tool, since it provides a simple representation of the constraint inherent in one image-

brightness measurement. Once the brightness map, E(x, y), is known, one can ask

what the surface orientation might be. A measurement of image brightness restricts the

possible surface orientations at the corresponding point on the surface of the object.

This constraint is expressed by the image-irradiance equation

R(p, q) = E(x, y) , (4.5)

Therefore to solve the SFS problem is abstracted into solving this equation. However,

the SFS problem is known to be an ill-posed problem. For example, a number of articles

show that the solution is not unique. This can be simply understood in the way that

because for each point of the surface, there are two unknown variables (p, q) in the

reflectance map, while there is only one restriction (the intensity map), rendering the

problem under determined.

An extension of SFS called photometric stereo (PS) [111] also utilises the shading infor-

mation of 2D images from 3D mapping. The di↵erence is PS uses several images rather

than one image for the 3D reconstruction. And the images used are taken from the same

viewpoint but with di↵erent illuminations. Each image leads to a equation as Eq. 4.5.

With a large number of restrictions, the problem can be fully determined. Although

this is developed under conventional camera system, the principle can be adapted by

the computational GI system.

In computational imaging using single-pixel detectors, multiple images are not taken

from di↵erent illumination directions. Instead, the structured illumination of the sys-

tem (Fig. 4.12) is uniform, while it is the di↵erent detection detections that produce

di↵erent images with di↵erent intensities as the source images. As the only pixel-related

component, the light source determines the spatial distribution of the image. Therefore

all the images obtained have the same shape. The di↵erence between these images is

solely their intensity distribution.

The intensity distribution is determined by the relative orientation between the object

surface and the detection direction. According to Eq. 4.3, the intensity of a pixel, I(x, y),
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in the image obtained from the nth detector can be expressed as

I
n

(x, y) = ↵ (L
n

·N) , (4.6)

here ↵ represents the surface reflectance, L
n

is the unit illumination vector pointing

from the detector to the object and N is the surface normal unit vector of the object.

L

n

= (l
x

, l
y

, l
z

)
n

. (4.7)

The surface orientation cannot be determined from a single intensity, since many ori-

entations can bring about the same intensity. Therefore to fully determine the image

geometry we must obtain at least three separate images, but in our system it is just

as simple to capture four images. Thus for all images we can write Eq. 4.6 in matrix

notation as 2

66666664
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which can be represented as I = ↵ · L ·N,. For any pixel (x, y) the unit surface normal

is given

N = (1/↵)L�1 · I , (4.8)

and the reflectance is given by

↵ = |L�1 · I| . (4.9)

From the surface normals calculated at each pixel it is possible to determine the gradient

between adjacent pixels from which we obtain the surface geometry by integration. In

fact, as we record four images, the problem becomes overconstrained as the surface

normals represent only two degrees of freedom per pixel. We can thus remove our

assumption of uniform reflectivity and recover an estimate of the surface reflectance ↵

at the same time as finding the object’s shape.
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4.5.3 System calibration

All of the discussion above is based on the assumption of Lambertian reflection. A

Lambertian surface is a reflection surface that obeys Lambert’s cosine law for reflection.

Lambert’s cosine law says that the radiant intensity measured from an ideal di↵use

reflecting surface is directly proportional to the cosine of the detecting vector and the

surface normal. The luminance (or generally intensity ) from such a surface is therefore

uniform when viewed from any angle. The intensity is the same because both the

emission power and the apparent size from a certain area is reduced by the cosine of

the detection angle, therefore the intensity as the ratio of these two variables keep as

a constant. However, for most objects, the surface reflectance contains both specular

and di↵use (Lambertian) components. While di↵use reflection scattered light uniformly

in all directions, specular surfaces cause the reflectivity to be nearly zero everywhere

except at the angle of incident light while di↵use surfaces reflect light nearly equally in

all directions.

The mannequin head we use is made from polystyrene with a smooth surface. The

reflection o↵ the object is mostly Lambertian but also contains a small part of specular

reflection, which should be eliminated because it will reduce the 3D reconstruction accu-

racy. It is known that specular reflection conserves polarisation while di↵use reflection

produces random polarisation. Therefore to get rid of the specular reflection, we add

some cross polarisers in the system. A linear polariser is added in front of the projection

lens and polarisers with the orthogonal polarisation are added on the photodetectors.

To test the Lambertian property of the surface with the use of cross polarisers, we con-

duct an experimental measurement using a flat white surface made of the same material

(polystyrene) as the mannequin head. We set the surface normal of the flat surface to

point towards the light source, and measured the light reflected on a photodetector at

di↵erent angles from the illumination vector. During the measurement, the photodetec-

tor always points towards the centre of the surface and keeps the same distance from it.

We observe close agreement between our results and the theoretical curve representing

Lamberts cosine law for luminous intensity. The reflection properties has been shown
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in Fig. 4.16. The cosine line of the reflection intensity shows that the mannequin head

surface viewed after cross polarisers is a good Lambertian surface.

It is worth noting that the use of crossed polarisers in the illumination and detection

apparatus ensures that our experiment is una↵ected by specular reflections.

Before conducting the 3D reconstruction process, the system is calibrated to guarantee

measurement precision. As discussed, the photometric stereo method works with the

assumption of Lambertian reflection.

To make sure that all the detectors face towards the centre of the object exactly, we use

a flat polystyrene surface perpendicular to the projection light to calibrate the system.

We adjusted the angles of the detectors so that they all receive a maximum signal from

the flat surface.

To test the calibration of the system, we first 3D reconstruct a object with simple

geometric complexity: a ball made from the same material of the mannequin head. The

2D images from the four detectors can be seen in Fig. 4.17. And the 3D reconstruction

can be viewed in Fig. 4.18. The diameter of the ball is 15cm, and the relative errors of

the 3D reconstruction is 1%. The data shown here is just to show the precision of the

system, while the detailed process of the reconstruction will be discussed in the next

part with the use of the mannequin head.

4.5.4 3D reconstruction algorithm

The process of 3D reconstruction can be seen in Fig. 4.19. We first calculate the surface

normals pixel by pixel based on Eq. 4.8. Pixel intensities are from the four 2D images

obtained from the four detectors (the last row on Fig. 4.13), and detecting vectors are

measured from the experiment setup. Calculated surface normals and the reflectance

can be seen from Fig. 4.20. We then calculate the surface gradients from the surface

normals for each pixel

p =
n
z

n
x

, q =
n
z

n
y

. (4.10)
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The gradients were subsequently integrated to recover a depth-map of the object. Start-

ing in the centre of the object and working outwards, the height for each pixel was

estimated based on the height and the gradient at each of its nearest-neighbour pixels.

Thus, the integration was performed iteratively, each pass over the object estimating

the height of all the pixels having at least one nearest neighbour with a height estimate

to work from. For pixels that have more than one nearest neighbour with an estimated

height, the height is calculated from the average of those pixels. This simple algorithm

works from the middle of the object outwards, and is capable of integrating around holes

in the object where there is no information.

4.5.5 Quantitive analysis of the 3D profile

To quantify the accuracy of our approach the 3D reconstruction of the test object was

compared with a 3D image captured from a stereo-photogrammetric camera system

(Di3D R�). The system uses normal digital cameras and flash illumination to capture

simultaneously pairs of stereo images of a object. Each stereo pair of images is processed

using passive stereo photogrammetry software to derive a dense range map image. The

range map images and original 2D images are then merged together to form a complete

3D surface image.

The Di3D system consists of two camera pairs placed at two sides of the face to take

stereo images. Each pair contains a pair of digital cameras. The cast was simultaneously

illuminated by a flashlight. The resolution of the cameras is 4500 ⇥ 3000 pixels, with

a focal length of 50mm. The four 2D images obtained by the cameras are sent to a

matching algorithm to recover the height map. The accuracy of this system with facial

shapes is well documented [120] to have a root mean square (RMS) error of order 1mm.

Unlike other methods of 3D scanning, DI3D does not require any pattern projection or

laser scanning onto the scene. Instead, the image capture process is instantaneous and

produces the highest resolution 3D surface images with true photographic quality.

To compare the facial profiles measured by the two systems, the shapes are characterised

by anatomical landmarks, which are well-defined facial locations [121] (for example, nose

tip, mouth corners etc.). Fig. 4.26 shows two sets of 21 landmarks superimposed on the
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facial images by a trained observer. After lateral and angular registration and subsequent

depth scaling, the RMS error of our ghost profiler is found to be slightly below 4mm.

Beyond showing that high-quality images of real life objects can be captured using a

single-pixel photodetector, our experiment demonstrates that by using a small number

of single-pixel detectors, computational ghost imaging methods can give 3D images.

We have applied this 3D ghost imaging technique to record a facial shape, indicat-

ing good quantitative agreement with existing imaging technology based on stereo-

photogrammetric systems that employ several high-resolution cameras. An important

di↵erence in our approach is that a single projector determines the spatial resolution of

the system, removing issues of pixel alignment associated with multiple cameras. Fur-

thermore, reversing the fundamental imaging process allows for simpler, less expensive

detectors to be utilised. The operational bandwidth of the system is limited not by the

e�ciency of a pixelated imaging detector but instead by the reflectivity of DMD used

for light projection, whose e�ciency extends well beyond the visible spectrum. Devel-

opment of such technology, for example the use of a broadband white light source, could

enable computational imaging systems to become a cheaper alternative for applications

in 3D and multi-spectral imaging.

4.6 Computational imaging with single detectors detect-

ing object light reflected by a wall

As discussed in Section 4.4.2, a single-pixel imaging system and a normal camera system

are reciprocity in terms of image shading properties. The detectors in computational

imaging with single-pixel detectors play a counterpart role as setting the apparent il-

lumination angle. In a camera system, the imaging process does not require the light

source to illuminate the object directly. Light can be reflected before arriving at the

object (Fig. 4.24(b)). The imaging process can be achieved as long as there is some light

scattered onto the object. Inspired by this phenomenon, we can setup a computational

imaging experiment with the detector receiving the object light indirectly. As shown in

Fig. 4.24(a), a screen is set between the object and the detector so that the reflected light
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o↵ the object cannot be “seen” by the detector directly. Yet, there is a polystyrene plane

placed in a way that the object light can be made incident onto the detector. As the

detector in this computational imaging system is the non pixel-related device and can

only measure light power, as long as the phase di↵user can reflect light proportionally

to the object, a computational imaging reconstruction can be observed.

We test this idea in our system shown in Fig. 4.12 with the detection part adjusted. The

single-pixel detectors are tilted so that they cannot receive the object light directly. One

square polystyrene flat plane (10 cm⇥10 cm) is placed in such a way that the object light

can be reflected onto the detector. The 2D reconstructions are shown in Fig. 4.25. The

shading distribution indicating the detection direction is still obvious, which indicating

the possibility of 3D reconstruction using Eq. 4.8. However, the detecting direction

here is determined by the positions of the polystyrene planes rather than the detectors.

Because of the relative large size of the detection area, the detecting vector from one

“detector” has a large variation. According to Eq. 4.8, the recovery of surface normals

and hence the 3D profile are therefore less precise.

4.7 Conclusion

To summarise, we have developed a single-pixel computational imaging system using a

digital light projector (DLP) as the light source for structured illumination. A series

of binary random patterns were generated to illuminate a real-life size 3D object. A

single-pixel photodiode was used to collect the back-scattered light intensity. These

detected light intensities were then collected to correlate with their corresponding binary

patterns to give an image of the object. This single-pixel computational imaging system

was adapted from our computational ghost imaging (GI) system discussed in Chapter3.

An important change was that the speckle generator was replaced by a DLP. Also a

di↵erential signal acquisition method was employed by projecting any patterns with their

inverse using the bit plane display technique of the DLP. Compared to the original GI

system, it provided a much better reconstruction of a 3D reflective object with reasonable

details. A high speed performance of the di↵erential signal acquisition method enabled
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us to isolate low frequency room light noise and conduct the imaging process with high

level background noise.

A computational imaging system with four single-pixel detectors was developed which

extended the image reconstruction from 2D to 3D. The 3D reconstruction was achieved

by using the four 2D images with di↵erent intensity distribution in an algorithm called

“photometric stereo”. To obtain four 2D images, the 3D computational imaging system

utilised four single-pixel detectors located with spatial separation in the back-scattered

space to collect object light from di↵erent directions. Each detector generated an inde-

pendent image. The images from the four detectors all had the same shape but di↵erent

shadings. Under the uniform illumination, the shading information was determined by

the detecting angle between the surface normals of the object and the detecting vector.

This was reciprocal to a camera system where shading information was determined by

illumination vector. Moreover, based on the fact that the shading property of an image

was determined by the detecting vector, the technique called photometric stereo could

be employed to retrieve 3D information of the object. Taking the detecting vectors into

account, the surface normals and hereby the height information of the object can be

derived by comparing the di↵erent shading information in the four images. The 3D

profile obtained from the computational imaging system was compared to that obtained

from a commercial system which showed high precision.
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Figure 4.14: Validation of imaging system reciprocity. Simplified schematic of a
conventional imaging system (b) and the computational imaging system (e) with the
illustration of light propagation (a) and (c) respectively. In a conventional imaging
system the light travels from the source to the object and the reflected light is measured
on a spatially resolving detector. In our computational imaging system, a spatially
resolved light pattern is projected on the object and the total reflected intensity is
measured on a single-pixel detector. The images acquired from both approaches ( (c)
and (f) ) are equivalent as shown indicated below, whereby the apparent lighting of the

object is determined by the location of the non-imaging element.
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Figure 4.15: Computational images obtained with di↵erent illumination directions:
(a) from the left side of the head and (b) from the right side of the head.
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Figure 4.16: Measurement of Lambertian surface properties. Measured reflected
power from a flat polystyrene surface (circles) and the theoretical curve representing a

cosine function (solid line).
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Figure 4.17: 2D reconstruction of a polystyrene ball .

Figure 4.18: 3D reconstruction of a polystyrene ball .

Figure 4.19: Process of the 3D Reconstruction.

Figure 4.20: Surface Normals and Reflection. (a)-(c) are surface normals in the x, y
and z direction and Reflection.
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Figure 4.21: Rendered views of the reconstructed facial surface derived by integration
of the surface normal data and overlaid with the reflectance data (movie included in

supplementary material).

Figure 4.22: Rendered views of the reconstructed facial surface derived by integration
of the surface normal data and overlaid with the reflectance data (movie included in

supplementary material).
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Figure 4.23: The matched ghost imaging (green) and stereo-photogrammetric (blue)
reconstructions of the mannequin head, from frontal (a) and profile (b) viewpoints, and

with anatomical landmarks (colour coded green and blue respectively) added.



Chapter 4. 3D Computational Imaging with Single-Pixel Detectors 84

Figure 4.24: (a) Illustration of an imaging process of a computational imaging sys-
tem with a single-pixel detector, where the single-pixel detector measures object light
reflected by a wall. (b) Imaging process of a camera where the object is illuminated by

light reflected by a wall.

Figure 4.25: Images obtained from a computational imaging system with four single-
pixel detectors. All four detectors are arranged in a way that light scattered from
the object can not illuminate the detectors directly, but can only be reflected into the

detection windows from pieces of polystyrene planes.
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Figure 4.26: Side view of a 3D reconstruction using the four images shown in Fig. 4.25.



Chapter 5

Single-Pixel Real-Time Video

Any computational imaging technique with single-pixel detectors requires a number of

samples to produce an image. The total acquisition time, therefore, is determined by the

number of samples together with the sampling speed. Most examples of previous single-

pixel computational imaging were conducted in a slow speed that it usually required a

long time to obtain an image, and therefore only statical object could be imaged. Some

studies have aimed to improve the imaging speed, but are constrained in a single-pixel

camera system using compressive algorithms [122–125]. General compressed sensing

algorithms make use of some prior knowledge about the image and will itself require a

non-negligible amount of computer processing time to yield an image. When concerned

with real-time video applications this can therefore present a considerable challenge. In

this chapter, an real-time computational video system with single-pixel detectors single-

pixel based on an iterative algorithm is developed. To increase the total imaging speed,

e↵ort has been devoted to both reducing the sampling steps and increasing measurement

speed.

In single-pixel imaging, sampling e�ciency varies between di↵erent sampling methods,

and so does the number of measurement required to form an image. The simplest

sampling method is to scan the image, one pixel at a time, however the optical e�ciency

of this approach scales inversely with the number of pixels in the image. Another

approach, as discussed in Chapter. 4, is to sample many random pixels simultaneously,

which increases the signal measured with respect to the noise floor of the detector.

86
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This many-pixel sampling method, however, is always in a low e�ciency because the

sampling pixels are always randomly selected. To increase the e�ciency, some special

basis of 2D patterns can be used. In the first section of this chapter, a sampling method

using orthogonal patterns to achieve high sampling e�ciency is discussed. By using

orthogonal sampling, the sample e�ciency is highly improved that it is able to produce

an image with high visibility within the Nyquist limitation, where a sampling method

using random patterns is di�cult to produce a high visibility.

In additional to the sampling e�ciency, measurement speed is another aspect that ef-

fects the imaging speed. Two aspects can be exploit to improve the measurement speed:

the sampling apparatus and the process structure. Normally a single-pixel imaging pro-

cess includes pattern projection, signal acquisition and computing process, which work

together to determine the measurement speed. In a given hardware, the measurement

speed changes depending on the way in which these di↵erent parts of measurement

is arranged. In the second section of the chapter, the measurement speed of a com-

putational imaging system based on a commercial digital light projector is discussed.

Di↵erent measurement speed can be achieved by using di↵erent processing structures.

A highest measurement speed of 660Hz is achieved when all measurement parts run in

parallel, and higher measurement speed is limited by the projection speed of the light

projector. To overcome this limitation a high speed digital micro-mirror device (DMD)

is employed. The DMD provides a trigger signal to enable synchronisation measurement

between mask modulation and signal acquisition so that a stable parallel measurement

system is guaranteed. It can generate spatial masks (or indeed structured illumination)

at a rate of 22 kHz. A high speed single-pixel imaging system is developed based on

the projection of a series of orthogonal patterns in this high-speed DMD. For a given

sampling method, the sampling steps required for an image is proportional to the image

resolution. To achieve high speed video frame, the resolution of images is chosen as

32⇥ 32 pixels, and an image reconstruction can be achieved by using 1024 (which is the

Nyquist limitation) orthogonal patterns together with their inverse. This single-pixel

video system can produce real-time videos in 32 ⇥ 32 pixels in 10Hz. Finally an op-

timiser used in compressive sensing algorithms is employed to reduce the noise in the

reconstruction.
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5.1 Coded masking based on Hadamard patterns

It is realised that totally random patterns is not the best choice for correlation imaging,

because two di↵erent patterns might contain overlap information that will reduce the

correlation e�ciency. To achieve maximum correlation e�ciency, it is best to choose a

set of orthogonal patterns. In mathematics, Hadamard matrix is such kind of matrixes

that provide orthogonal structured patterns. This is earlier studied in the single-pixel

camera area where compressive algorithms are used for reconstruction [126, 127]. In

our computational imaging system with single-pixel detectors, Hadamard patterns can

also be employed to replace totally random patterns to encode light intensity. In this

section, the property of Hadamard matrix and its application in correlation imaging

measurement is discussed.

5.1.1 Hadamard matrix

In mathematics, a Hadamard matrix [128] is a square matrix whose elements are either

+1 or �1 and whose rows are mutually orthogonal [129–131]. In other words,

HH 0 = H 0H = HHT = nI
n

, (5.1)

here H 0 and HT are the inverse and transpose of H, and n is the order of the Hadamard

matrix H. Therefore the transpose of a Hadamard matrix is still a Hadamard matrix. In

a Hadamard matrix, every two di↵erent rows have same elements in exactly half of their

columns and opposite elements in the remaining columns. If any two rows are multiplied

element by element, the sum of all all the multiplication is zero. In other words, every

two di↵erent rows in a Hadamard matrix can be represented by two vectors those are

perpendicular to each other in the vector space. Consequently all these properties hold

for columns as well as rows.
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The order of a Hadamard matrix n could be 1, 2, or 4i where i is a positive integer.

Here only Hadamard with an order of 2n is discussed, which can be expressed as

H2 =

2

64
1 1

1 �1

3

75 .

Higher order Hadamard matrices can be obtained as

H2n =

2

64
H2n�1 H2n�1

H2n�1 �H2n�1

3

75 = H2 ⌦H2n�1 ,

here ⌦ stands for Kronecker product.

5.1.2 Hadamard patterns in iterative correlation imaging

To utilise Hadamard derived pattens in correlation imaging, we choose a Hadamard

matrix in the order of 22k, and then reshape every row ( or column ) into a 2k ⇥ 2k 2D

array. For simplicity, such a pattern derived from a row of a Hadamard matrix is referred

as a Hadamard derived pattern in this thesis. Therefore a Hadamard matrix in the order

of 22k can be transferred into a complete set of k 2k ⇥ 2k Hadamard derived patterns in

2D. These k 2k Hadamard derived patterns are used for structured illumination. In our

first experiment here, a 4096⇥4096 Hadamard matrix is used to generate 4096 of 64⇥64

2D Hadamard derived patterns to modulate the light source. As the 4096⇥4096 pattern

is too big to show here, a 64 ⇥ 64 Hadamard and one of the 8 ⇥ 8 Hadamard derived

pattern is shown for illustration. Fig. 5.1 (a) shows the 64⇥ 64 Hadamard matrix, and

the derived 2D pattern from the 14th row is shown as Fig. 5.1 (b).

The 4096 2D Hadamard derived patterns are used in iterative GI reconstruction ac-

cording to Eq. 4.1. It should be noticed that Hadamard pattens contains +1 and �1

elements, while DLP could only project black/white (0/1) pixels. However, by using

di↵erential projection method introduced in Chapter 4, the e↵ective projection patterns

are in ±1 rather than 0s and 1s.
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Figure 5.1: (a) A 64⇥ 64 Hadamard matrix and (b) the derived 2D pattern from the
14th row.

Results from a TGI correlation algorithm using Hadamard derived patterns are shown in

Fig. 5.2. Compared with TGI using random pattens after the same iteration (Fig. 5.3),

the final reconstruction quality is significantly improved. The reason why Hadamard
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Figure 5.2: Reconstruction of a toy skull from a full set of Hadamard de-
rived patterns. The Hadamard derived patterns are in 64 ⇥ 64 derived from a
4096 ⇥ 4096 Hadamard matrix. From top-left to bottom-right are results after
300, 600, 900, 1200, 1500, 1800, 2100, 2400, 2700, 3000, 3300, 3600, 3800, 4000 and 4096 it-

erations.

derived patterns work much better for correlation imaging is that they are orthogonal

to each other. Therefore the correlation contains no overlap between each other and the

reconstruction e�ciency is much higher. On the other hand, the mid results contain

overlaps before the whole set of patterns are completed employed in the correlation

function (Eq. 4.1). This is determined by the structure property of the Hadamard matrix,

especially by some 2D Hadamard derived patterns contains low resolution and period

structures. The overlap disappears when the whole set of correlation is done because of

the completeness of the patterns.

The di↵erential signals from the whole set of Hadamard derived patterns for the recon-

structions in Fig. 5.2 are shown in Fig. 5.4 (a). Some of the patterns have significant high

signals than the others, indicating that they are much more weighted and may a↵ect

the measurement precision of the others with small values. These nonuniform spectrum

distribution can be adjusted by using randomising the Hadamard subarrays [132, 133],

which can be achieved according to

h
rand

= h�R (5.2)
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Figure 5.3: TGI reconstruction of a toy skull using 4096 random binary patterns.

Here h is a 64⇥64 Hadamard derived pattern, R is a random array in the same dimension,

with half of its elements being +1 and the other half �1. � indicates the boolean

operation exclusiveor, and h
rand

is the randomised array. The exclusiveor operation

follows the rule as: ±1�⌥1 = +1,±1�±1 = �1. A comparison of a original Hadamard

derived pattern and its randomised version is shown in Fig. 5.5. The same randomisation

is applied for all the 4096 Hadamard subarrays using the same random pattern. The

randomised patterns are still orthogonal to each other, but the randomisation spread

the spectrum distribution of the Hadamard derived patterns more uniform and therefore

all overlap intensities are in the same level, as shown in Fig. 5.4 (b). The consequential

reconstruction process is shown in Fig. 5.6. The final reconstruction after the whole set

of correlation keeps the same as in Fig. 5.2, which is obtained using Hadamard derived
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Figure 5.4: (a) Signal distribution of the 4096 Hadamard derived patterns from the
reconstruction shown in Fig. 5.2, and (b) signals of the randomised Hadamard derived

patterns from the reconstruction shown in Fig. 5.6.

patterns without randomisation.

5.2 Computational imaging using a commercial light pro-

jector

In this section, the measurement speed of the computational imaging system described

in Chapter 4 is discussed. As described in Chapter 4, the system consists a digital light

project (DLP) (Texas Instruments light commander), several single-pixel detectors, an

analog to digital converter and a computer. The DLP runs in a typical frame rate of
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Figure 5.5: A Hadamard derived pattern derived from a row of a 4096 ⇥ 4096
Hadamard matrix (left) and its randomised format (right).

Figure 5.6: Reconstructions from a whole set of randomised Hadamard derived pat-
terns. The randomised Hadamard derived patterns are in 64 ⇥ 64 pixels derived from
a 4096 ⇥ 4096 Hadamard matrix. From top-left to bottom-right are results from after
300 up to 4096 iterations, with an increasing step of 300 iterations between any two

neighbouring ones.

60Hz, and in each frame there is further modulation to provide 24 bit colour depth,

resulting in a total pattern projection rate of ⇠ 1440Hz. Acquisition of back-scattered

light is performed using a Thorlabs PDA100-EC silicon photodiode and a National In-

struments 6221 anologue-to-digital converter, with a maximum sampling rate of 250kS/s.

The computer processing is performed using the Labview software package on an intel

Xeon computer processing unit. The overall frame rate of the system is limited by
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Figure 5.7: Sequential experiment procedure of GI using a Light Commander.

the speed of spatial light modulation, the acquisition of photodetector signals and the

computer processing. Depending on how these measurement portions are arranged, the

system can run in di↵erent frame rates. A basic sequential method where di↵erent mea-

surement portions run in series operates the system in 10Hz. Higher frame rate can

achieved within the system using parallel measurement.

5.2.1 Sequential processing

In the computational imaging system with single-pixel detectors in Chapter 4, light

is modulated by a DMD chip controlled by hologram in a frame rate of 60Hz. The

photodetector is set at a sampling rate of 57.6 kHz. For each projection pattern, it takes

34.7ms to obtain 2000 samples. In our system, there is an approximate 30ms delay

for a light pattern to get displayed after a hologram is sent to the DLP. To make sure

that a single-pixel detector acquires the right signals from the corresponding projection,

a 32ms wait is added between the hologram display and the signal acquisition in the

control software (Fig .5.7). Besides, the random hologram generation and iterative

reconstruction calculation also take a certain period of time. All this procedure together

determines the length of each iteration. The measurement speed is around 10Hz.

5.2.2 A 110Hz system by exploiting bit-plane display

A much faster system can be achieved by using bit-plane display in the same experiment

setup. As discussed in Chapter 4, each frame of a DLP display contains 24 bit planes,

which can be coded to project positive and negative patterns. It benefits the system
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Figure 5.8: Signals in a frame which are associated to 11 di↵erent light patterns
(p1 � p11). The two bit planes on the left end are used as triggers.

with di↵erential signals which are free from low frequency background noise. An exten-

sion of this method can help increase the measurement speed. As each bit plane can be

associated to a binary pattern, 24 di↵erent patterns can be coded into one frame. In

order to achieve di↵erential signal measurement, two bit planes are distributed to one

pattern. Therefore 11 di↵erent patterns can be coded into one frame, and the other

two bit planes are used as triggers for synchronisation measurement (Fig. 5.8). Once

a frame is displayed, there are 11 di↵erent patterns get displayed consequently. Sig-

nal acquisition is performed in the same way as shown in Fig. 5.7. To ensure a good

SNR of the acquired signals, the 32ms delay is used. The only di↵erence is that now

every measurement is for 11 di↵erent patterns rather than only one. The signals are

then chopped according to Fig. 4.8 and correlated to their corresponding pattens. As

each frame contains computation and correlation calculation of 11 patterns, the actual

reconstruction speed is about 110Hz.

5.2.3 A 660Hz GI system

In all the measurement methods discussed above, the display of light patterns and signal

acquisition are performed in series. Signal acquisition does not start before the pattern

is displayed and detected by the detector. And the display for the next pattern starts

after the last signal acquisition is finished. In contrast to a series measurement, a parallel

performance of the pattern display, signal acquisition as well as correlation calculation

could take better use of the computing power and boost the imaging reconstruction

speed.
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To achieve parallel measurement, some Labview function called “Queue Operation” is

employed in the controlling program. A “Queue” in Labview is used to communicate

data between di↵erent sections or even other VIs. It is a similar function as “stack”

in C programming. To start, a queue is built up with its optional name, data type

and size. A reference is distributed to access the queue since it is created. Data can

be added to the front or end of the queue. Also they can be read and deleted from

the queue. In our parallel GI program, we build up two queues. One is to store light

patterns and the other to store measured signals. Once a pattern gets displayed, it will

be added to the end of the queue. Meanwhile acquired bucket signals are also added

to their queue in order. Patterns and their corresponding signals are released from the

queue for correlation reconstruction. For the reconstruction, is important to match a

pattern with its correct signals. As there is no inherent trigger signals from the DLP,

to ensure synchronisation measurement, some trigger signals are created using light

pattern display. In the beginning of the measurement, a all black pattern is displayed

for a period of time so that we can measure the background noise level. Right after that,

a trigger frame with alternative all black and all white pixels are displayed. Compared

to the background light, these trigger signals have a high level fluctuation. Therefore

by measuring the root mean square (RMS) of the obtained signals, we can recognise the

starting point of the trigger. Followed the trigger frame there are patterns projected for

reconstruction. The same trigger frame is repeated every 100 frames to maintain the

measurement synchronisation. As all parts of the measurement are running in parallel,

the measurement speed is determined by the display speed. As the DLP runs in 60Hz,

and each frame contains 11 di↵erent patterns, the total reconstruction rate is around

600Hz.

A problem of the parallel system is that the trigger is e↵ected by the environment.

Any small fluctuation of the background light will interfere the synchronisation of the

program, therefore the parallel measurement is very unstable.

In summary, the reconstruction speed of GI system is e↵ected by a few factors: the

hologram display speed, signal acquisition speed as well as computation speed ( which

includes hologram generation and correlation calculation). For a given system setup,
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the highest reconstruction speed is achieved when all di↵erent parts of the experiment

operate in parallel. In fact, the time spent on hologram generation and correlation cal-

culation is trivial, and the acquisition speed is relative fast. In our single-pixel computa-

tional imaging system, the bandwidth of the Thorlabs PDA100A-EC Si Transimpedance

Amplified photodetector is from DC to 2.4MHz. Therefore, the speed of a parallel com-

putational imaging system is mainly limited by the projection speed of the DMD. On

the other hand, in order to achieve a stable parallel measurement system and guarantee

synchronisation measurement, some stable trigger signals have to be employed.

5.3 Real-time video from a computational imaging system

with single-pixel detectors

In this section, a high speed computational imaging system with single-pixel is intro-

duced. The system displays Hadamard derived patterns in a high-speed DMD. With the

assistance of the trigger signals from the DMD controlling circuit, the signal acquisition

is able to run in parallel and synchronise to the light pattern display. As the pattern

display, signal acquisition as well as reconstruction calculation all run in parallel, the

system can operate in a high speed which is determined by the speed of DMD display.

5.3.1 Experimental setup

The experiment setup here is illustrated as Fig. 5.9. The system contains a DMD system

and three photodetectors. A white light source is used to illuminate the DMD chip and

encoded into binary light fields ( 0s and 1s). The structured light patterns are then

projected by a lens onto the object. Three photodetectors for red, green and blue (RGB)

light detection are put together to receive light scatted by the object. A major change

in this system compared to the system shown in Fig. 4.3 is that the Light Commander

is replaced by a high speed DMD called Accessory Light modulator Package (ALP)

4.2 from Vialux. It contains a DMD chip with 1024 ⇥ 768 pixels and a control circuit

connected to computer via a USB cable. The application programming interface is

written as a dynamic-link library (DLL) file which provides a convenient interference
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between of control software (Labview) and ALP driver. Patterns are first loaded from

the controlling software to the ALP board RAM in sequence. The bit depth of the

displayed patterns can be chosen from the following values: 1, 2, 3, 4, 5, 6, 7, 8. And

the display time can also be adjusted manually through the control software. In our

experiment the bit plane depth is chosen to be 1 so that the display can run in the

highest speed. The display time for each pattern is set to be 45µs as the minimum.

Therefore the maximum display speed of the DMD is 22 kHz. Besides the high speed

projection, another important advantage of the ALP is that it provides synchronisation

trigger signals in reference to its display. That is, when one pattern gets displayed, there

is a trigger signal released from DMD control circuit. This trigger signals is connected

to the DAQ input to trigger a series of data acquisition. Signals are acquired after

every trigger signal, and the sample numbers are determined by the display time and

sampling rate. The DAQ used here is a National Instrument portable USB DAQ (NI

USB-6221/16) with a maximum acquisition rate of 250 kHz for all channels. As there

are three channels employed, sampling rate for each channel is set to 83 kHz. Given that

each pattern is displayed for 45µs, there are 3 samples acquired for each pattern.

5.3.2 Single-pixel computational video

Based on the computational imaging system described above, Hadamard derived pat-

terns are displayed for a video frame correlation imaging reconstruction. The Hadamard

derived patterns are derived from a 1024⇥ 1024 Hadamard matrix. The di↵erential dis-

play method is also employed here. Therefore a full set of reconstruction contains 1024

iterations, and in each iteration a 32 ⇥ 32 Hadamard derived pattern is displayed fol-

lowed with its inverse, and a reconstructed image needs 2048 display frame and the

corresponding signal acquisitions. The DMD system runs in its fastest speed in 22 kHz,

so it takes about 0.1s for a complete reconstruction. The displayed images are updated

after a full set of reconstruction is finished, so the video frame rate is 10Hz, while the

correlation measurement frame rate is 10 kHz. Fig. 5.10 shows 40 video frames for 4s.

Each frame is built up from a full set of 1024 Hadamard derived patterns in a resolution

of 32⇥ 32 pixels. The three channels for RGB colours are independently reconstructed
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Figure 5.9: Illustration of a fast single-pixel computational imaging system. Uniform
light is directed to the DMD, modulated into binary patterns and then displayed onto
the object by a projection lens. Reflected signals are collected by three single-pixel

detectors for red, green and blue light and then sent to a computer.

in parallel, and then combined to form a colour image under the simple assumption that

the RGB colours weight equally to each other. To assure a correct colour balance, all

the three detectors are switched on the same gain level. Also a white target is imaged

to test the colour balance, which is verified when the image of the white object is white.

5.4 Real-time video from a single-pixel camera

Computational imaging system with single-pixel detectors employs coded light patterns

for illumination, therefore background light behaves as noise in correlation imaging re-

construction. As an alternative way of computational imaging with single-pixel detec-

tors, a single pixel camera uses the ambient light as light source. Instead of modulating
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Figure 5.10: Video frames from a 10Hz single-pixel computational imaging system
in 4s. Each image is obtained from the correlation of 1024 Hadamard derived patterns
in 32⇥32 pixels, which is finished in 0.1Hz. The scene is about a Rubik’s cube rotated

by hands.

the light with SLM before illumination, single pixel camera projects the object image

illuminated under ambient light onto a DMD chip and modulate the object image with

random patterns before detected by a bucket detector. Fig.5.11 shows such a single pixel

camera system adjusted from the single-pixel computational imaging system shown in

Fig. 5.9. Compared to the computational imaging system, the white light source is re-

moved and replaced by a detecting package. Object illuminated by the ambient light

is imaged onto the DMD chip and then sent to a composite dichroic beamsplitter (X-

Cube). The dichroic beam splitter is used to spectrally direct red, green and blue light

towards di↵erent outputs and allow subsequent measurement on three unfiltered single-

pixel photodetectors. The single-pixel detectors are Thorlabs amplified photomultipliers

(PMM02). PMM02 is an photomultiplier tube designed for detection of light from DC to

20 kHz. A bu↵ered output drives a 50⌦ impedance up to 5V . It also contains a control

(voltage from 0 to 1.8V ) to adjust the gain level. The spectrum range is 280� 850nm.



Chapter 5. Single-Pixel Real-Time Video 102

Figure 5.11: Illustration of a fast single pixel camera. Object under the ambient
light illumination is imaged onto the DMD. Light is then split by a composite dichroic
beamsplitter (X-Cube) into three channels for red green and blue light, each being

detected by a unfiltered single-pixel detector and sent to a computer.

PMM02 is designed with high sensitivity and low dark current, which is ideal for detec-

tion of low level light.

Figure 5.12 shows 40 frame images for 4s. Each image is reconstructed from 1024 32⇥32

Hadamard derived patterns. The three photomultipliers are adjusted into the same gain

level so that the system has the same response to di↵erent colours. Compared with

Fig.5.10, the image quality is much better which is mainly attributed to the utilisation

of the photomultipliers.
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Figure 5.12: Video frames from a 10Hz single pixel camera in 4s. Each image is
obtained from the correlation of 1024 Hadamard derived patterns in 32 ⇥ 32 pixels,

which is finished in 0.1Hz. The scene is about a Rubik’s cube rotated by hands.

5.5 Noise reduction using an optimiser

In a video frame imaging system, signal acquisition for a certain pattern has to be

finished due to the short period of time. In the two fast single pixel imaging systems

described in Section 5.3 and 5.4, each pattern gets 3 signals for the positive pattern

and 3 for its inverse pattern. A less number of samples means a higher noise level in

reconstruction. To improve the reconstruction by reducing the noise level, an optimiser

is employed here with the use of the light patterns and their corresponding intensity

signals.

In computational imaging using single-pixel detectors or single-pixel camera, there are

two kinds of reconstruction algorithms, iterative algorithms and compressive algorithms.

When the patterns and signals are fixed, the results from a given iterative algorithm is

fixed. Compressive algorithms, however, behaves di↵erently that better results could

be obtained if more calculation time is spent. In compressive sensing, an optimiser is
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used for the reconstruction with the assumption of image sparsity. In fact, most images,

O
x,y

are sparse, not in their intensity values but in their spatial frequencies. This latter

algorithms using an optimiser can not only build an image from scratch but also be em-

ployed to reduce the noise of an achieved reconstruction. Such an optimisation algorithm

utilises the measured signals and patterns within a forward-model. The optimisation al-

gorithm suppresses noise by maximising the image sparsity within the statistical bounds

of the fit to the data. Optimising for sparsity of the spatial frequencies is similar to a

minimisation of the image derivatives, the latter being far quicker to compute and hence

more applicable to a real-time computational video system. In this experiment, optimi-

sation is applied to each of the colour plane images separately, based on minimisation of

its spatial curvature and its frame-to-frame temporal derivative. The nth image of the

sequence is obtained by minimisation of its cost function, C
n

, given by

C
n

=
1

N

NX

j=1

(

NP
i=1

A
ij

O
j,n

� S
j,n

�
s

)2 + �1(
X

|d2On

dx2
|+ |d

2O
n

dy2
|) + �2

NX

j=1

|O
i,n

�O
i,n�1| ,

(5.3)

here �
s

is the standard deviation of the noise associated with the measurement of S
j,n

and O
n

is the image expressed in 2D form. The first term corresponds to a minimisation

of �2/N of the image with respect to the measured data, the second term represents

a minimisation of the total image curvature and the third term corresponds to a min-

imisation of the di↵erence between the current and previous image. Values of �1 and

�2 are picked empirically to ensure that, once optimised, �2/N ' 1. Utilising an image

resolution of 32⇥32 pixels, our optimisation algorithm runs approximately 5 times faster

than the full frame acquisition time, which is able to suppress the noise

A comparison between TGI before and after the optimisation is shown in Fig. 5.13. The

object is a moving toy robot, and the scene is recorded in 32 ⇥ 32 pixels. Fig. 5.13 (a)

shows a series of scenery obtained from TGI using 1024 Hadamard derived patterns in

32⇥ 32 pixels. Fig. 5.13 (b) are the corresponding optimised TGI results. Though TGI

without optimisation gives images in reasonable SNR, the optimisation improves the

results even better. These improvement is more obvious for TGI obtained using ran-

dom patterns. Fig. 5.14.(a) shows the same scenery obtained from TGI using random
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Figure 5.13: Video frames of a moving toy robot from TGI algorithm (a) without
optimisation and (b) with optimisation. Each image is obtained using correlation of

1024 32⇥ 32 Hadamard derived patterns.

Figure 5.14: Video frames of a moving toy robot from TGI algorithm (a) without
optimisation and (b) with optimisation. Each image is obtained using correlation of

1024 32⇥ 32 random binary patterns.

patterns. Images reconstructed from random patterns are much more noisy compared

to those obtained using Hadamard derived patterns shown in Fig.5.13. (a). How-

ever, the optimiser can e�ciently removes the noise and provide a much better image (

Fig. 5.14.(b) ).

All videos discussed are recorded in 32⇥ 32 pixels. Reconstruction in higher resolution

requires much longer time, and the video frame rate will be much slower. For a 64⇥ 64

image, the time for the same iteration number is increased by 4 times than that for a

32⇥ 32 image. Therefore the video frame rate for 64⇥ 64 images is around 2.6Hz. An

approach to increase the frame rate is to abandon the di↵erential signal method, which

means the frame rate can be increased to 5Hz for a 64⇥ 64 resolution video.
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Figure 5.15: Video frames of a moving toy robot from TGI algorithm and after
optimisation. Each image is obtained using correlation of 4096 64 ⇥ 64 Hadamard

derived patterns.

5.6 Conclusion

In this section two high speed correlation imaging systems were achieved. Real-time

computational video system was first tried in the computational imaging system with

a Light Commander DLP as for structured illumination. The fastest iteration speed of

600Hz was achieved when light pattern display, signal acquisition and computational

calculation were arranged to run in parallel. However, as there was no inherent trigger

signal from the system, synchronisation of the system was very unstable, and the system

cannot run consistently in long time. To guarantee synchronisation measurement, a fast

DMD with inherent trigger signals was employed to generate light patterns. The DMD

can display binary patterns in 22 kHz, each display accompanying with a trigger signal.

These triggers can be used to run signal acquisition in synchronise to light pattern

display. Moreover, a series of orthogonal patterns derived from Hadamard matrix were

employed to achieve higher correlation e�ciency. A 1024⇥ 1024 Hadamard matrix was

used for correlation imaging in a resolution of 32 ⇥ 32 pixels. For each reconstructed

image, 1024 Hadamard derived patterns in 32 ⇥ 32 were correlated with their signals.

Under di↵erential signal acquisition mode, an image needs 2048 display, which mean

that it requires 0.1s to obtain an image in the fast DMD system, and the frame rate
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is therefore in 10Hz. A real time single-pixel camera in 10Hz was also developed in a

similar setup. The only di↵erence was that a single-pixel camera utilised ambient light

as the light source and therefore no extra light source was needed. Finally, an optimiser

was applied to the image reconstructions to reduce noise.
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Conclusion and Future Work

Imaging systems discussed in this thesis can be called correlation imaging using single-

pixel detectors. In general, correlation imaging with single-pixel detectors utilises spatial

correlation of light to form an image. It employes a series of 2 dimensional patterns to

encode the spatial information of an object into a series of corresponding intensities.

An image is derived from the correlation between the light patterns and their object

intensities. This technique is mainly derived from two di↵erent fields: computational

ghost imaging (GI) and single-pixel camera. In both cases, a spatial light modulator

(SLM) is employed to encode light. In computational GI, an SLM is used to generate

structured illumination. In a single-pixel camera, however, a SLM, or more specifically

a digital micro-mirror device (DMD), is utilised to encode the image of the object in its

image plane. In both cases, light interacting with the object is only detected by single-

pixel detectors, therefore only intensities are recorded with no spatial information. The

spatial information of the object, however, is recovered by correlating the patterns with

their corresponding light intensities.

The work discussed in this thesis originated from computational GI, which was a specific

scheme of classical GI using correlation of pseudo-thermal light. GI was first conducted

using quantum entanglement, but was later demonstrated using classical light. In a

classical GI system using pseudo-thermal light, thermal speckles are generate as the

light source for illumination. In a conventional classical GI system, a beamsplitter splits

the speckles into two beams: the object beam where speckles illuminate the object and

108
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are then collected by a single-pixel detector, and the reference beam where the speckle

patterns are recorded by a CCD. Both these two beams are then sent to a correlation

algorithms for image reconstruction. This classical GI system could be simplified by

using a programmable spatial light modulator (SLM) to generate speckles. As speckles

generated from an SLM can be predicted by the driven holograms, the CCD camera

and beamsplitter can be removed from the system, resulting the system to be a real

single-pixel imaging system. This system is called computational GI. The work in this

thesis contributed by improving the computational GI into a more applicable technique.

Correlation algorithms play an important role in classical GI, because the reconstruc-

tion method itself contains intrinsic noise. In our first work, an advanced correlation

algorithm was achieved for higher correlation e�ciency. In a traditional GI (TGI) al-

gorithm, the reconstruction signal-to-noise ratio (SNR) was a↵ected by the fluctuation

of the total intensity of the incident speckles. This fluctuation could be normalised by

introducing a reference beam as an indication of the incident intensity. The normalised

object intensity provides a more precious indication of the spatial correlation between the

object and the illumination structure, and therefore performs a higher SNR compared

to TGI, especially for a more transmissive object. This algorithm was called normalised

GI (NGI), and was demonstrated by both simulation and experimental results. In the

experiment, a computational GI setup was built up to test the algorithm. The system

consists of an normal object beam and a reference beam where only a bucket detector

was located. NGI was compared with other algorithms using the data from this sys-

tem, and was proved to perform the same SNR in reconstruction as another algorithm

called di↵erential GI (DGI). Furthermore, in a single-beam computational GI system,

the reference intensity can be obtained from simulation prediction. This method called

single-detector NGI (SNGI) was able to improve the reconstruction using exactly the

same data acquisition of TGI, but not able to perform as good as NGI. The normali-

sation method was also applied in compressive algorithms and was able to improve the

reconstruction SNR for experimental results.

In our second experiment, the computational GI was adapted into a computational imag-

ing system using single-pixel detectors. Compared to a computational GI system, the
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most important change was that a digital light projector (DLP) was used for structured

illumination. The DLP contained a digital micro-mirror device (DMD) and a white light

source, which worked together to generate random binary patterns and projected onto

the object space. Light reflected by an object within the depth of the projection was

collected by a single-pixel detector and then correlated with the corresponding illumi-

nation structure. The same algorithm used in GI was used for image reconstruction.

Due to the di↵erent way to generate structured illumination, the system was named as

a “computational imaging system using single-pixel detectors” to be distinguished from

a computational GI system. In this new system, correlation imaging was performed in

a much higher SNR than classical GI using pseudo-thermal speckles. For the first time,

to our knowledge, correlation imaging using structured illumination was able to image

a 3D object with reasonable details. It was also realised that the shading information

rather than the shape of an image changed when the detector was moved. Based on this

principle, a 3D computational imaging system was built up. With a DLP used for unique

structured illumination, there were four single-pixel detectors employed rather than one.

Every detector was set in a di↵erent position and was used to produce an image. In

one imaging process, all these four images obtained had the same shape but di↵erent

shading. More specifically, as the object was a Lambertian surface with perfect di↵use

reflection, the shading information was determined by the angles between the surface

normals of the object and the detecting direction. Since the shading information in the

four images as well as their detecting directions were known, the surface normals could

be derived by solving an inverse problem, a technique which was called “photometric

stereo”. The 3D reconstruction from this system was also compared with that from a

commercial 3D camera and was confirmed with high precision.

In the last work, we increased the reconstruction speed of correlation imaging and de-

veloped a fast single-pixel imaging system. Normally, the reconstruction speed of cor-

relation imaging was determined by the number of measurement and the measurement

speed. To increase the imaging speed, both of these two aspects have been investigated.

Previous single-pixel imaging used random structured illumination for sampling, which

was in a low e�ciency due to the overlap between any random structures. To get rid of
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unnecessary overlap sampling, a series of orthogonal arrays were chosen for the 2D sam-

pling. And the number of the arrays is always the same as that of the image resolution.

Since the arrays are orthogonal to each other, sampling is conducted in a high e�ciency.

Compared to the results obtained from random patterns, a much higher SNR can be

achieved within the same measurement. Additionally, the measurement speed, which

was mainly limited by the speed of spatial mask generation, was improved by using a

fast DMD which could project 2D patterns in 22 KHz. Furthermore, all the other part

of the measurement like signal acquisition and computational calculation were done in

parallel to the mask projection, resulting the system run the highest speed. For an image

in 32⇥ 32 pixels, the system need 0.05s to finish 1024 steps of sampling. To achieve the

di↵erential signal method, 2048 steps were needed and therefore the required time to get

an image is 0.1s. By repeating the same set of measurement, a real-time video in 10Hz

was achieved. At last, an optimiser based on the principle of compressive algorithm was

introduced to suppress the noise level in the single-pixel imaging.

Our work has an advanced correlation algorithm for GI. We also realised the first single-

pixel computational imaging of a 3D reflective object, both in 2D and 3D. The recon-

struction speed of single-pixel computational imaging system was also improved to a

video frame rate. All these achievement brings single-pixel imaging to a more practi-

cal stage for some useful applications, while to utilise this imaging technique in some

real application case still needs to be explored. In our future work, we are going to

employ our single pixel computational imaging system in a specific application: single-

pixel methane imaging. Detecting methane gas is important to safety monitoring in

gas storage and transmission, therefore a low-cost imaging system therefore has wide

industrial use. On the other hand, as methane normally contains very low spatial fre-

quency, image reconstruction can be run in a relatively low resolution, the resultant

reconstruction speed based on the real time single-pixel camera system is also very fast.

Methane has strong absorption in 3µm and 1.6µm. An imaging system based on the

absorption spectrum can be done by using either the ambient background radiation or

active laser illumination. Early research in our group has developed a methane imaging

instrument based on active illumination and single-pixel scanning [134]. In our new
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single-pixel computational imaging approach, we will use a 1.6µm laser diode for ac-

tive illumination. In the detection end, instead of looking through one pixel at a time,

our computational imaging system will sample many pixels. Signal to noise ratio will

be analysed between scanning and multi-pixel sampling to quantitively compare single

pixel camera with scanning method.
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17(1):240–246, 1893.

[129] Kathy J. Horadam. Hadamard matrices and their applications. Princeton univer-

sity press, 2007.

[130] A. Hedayat and WD. Wallis. Hadamard matrices and their applications. The

Annals of Statistics, 6(6):1184–1238, 1978.

[131] J. Williamson. Hadamards determinant theorem and the sum of four squares. Duke

Mathematical Journal, 11(1):65–81, 03 1944. doi: 10.1215/S0012-7094-44-01108-7.

[132] T. T. Do, T. D. Tran, and Lu G. Fast compressive sampling with structurally

random matrices. In Acoustics, Speech and Signal Processing, 2008. ICASSP 2008.

IEEE International Conference on, pages 3369–3372. IEEE, 2008.

[133] J. A. Tropp. Improved analysis of the subsampled randomized hadamard trans-

form. Advances in Adaptive Data Analysis, 3(01n02):115–126, 2011.

[134] Graham Gibson, Ben van Well, Jane Hodgkinson, Russ Pride, Rainer Strzoda,

Stuart Murray, Steve Bishton, and Miles Padgett. Imaging of methane gas using

a scanning, open-path laser system. New Journal of Physics, 8(2):26, 2006.


