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Abstract

The Systematics community works to increase our understanding of biological di-

versity through identifying and classifying organisms and using phylogenies to un-

derstand the relationships between those organisms. It has made great progress in

the building of phylogenies and in the development of algorithms. However, it has

insufficient provision for the preservation of research outcomes and making those

widely accessible and queriable, and this is where database technologies can help.

This thesis makes a contribution in the area of database usability, by addressing the

query needs present in the community, as supported by the analysis of query logs. It

formulates clearly the user requirements in the area of phylogeny and classification

queries. It then reports on the use of warehousing techniques in the integration of

data from many sources, to satisfy those requirements. It shows how to perform

query expansion with synonyms and vernacular names, and how to implement hier-

archical query expansion effectively. A detailed analysis of the improvements offered

by those query expansion techniques is presented. This is supported by the expo-

sition of the database techniques underlying this development, and of the user and

programming interfaces (web services) which make this novel development available

to both end-users and programs.



This thesis is dedicated to my family.



Acknowledgements

This PhD was funded through a scholarship awarded by the University of Glasgow

and supervised by R.D.M. Page and Ela Hunt.



Contents

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Systematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 TreeBASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background 9

2.1 Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Naming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Scientific names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 Synonyms and Homonyms . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.4 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.5 PhyloCode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Delivery of Taxonomic Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Taxonomic Databases on the Web . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 ITIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 NCBI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.3 GRIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.4 Sp2000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.5 Online Checklists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.6 Other sources used to develop the TCl-Db data model . . . . . . . . . . . 19

2.3.6.1 Taxonomer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

iv



CONTENTS

2.3.6.2 IPNI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.6.3 uBio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.7 Coordination across resources . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.7.1 TDWG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.7.2 GBIF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Taxonomy and systematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.1 TreeBASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.2 TreeBASE Database versus Information Retrieval . . . . . . . . . . . . . 25

2.4.3 Requirements of a “Taxonomically Aware” Database . . . . . . . . . . . . 26

2.4.3.1 Support for Hierarchical Query Expansion . . . . . . . . . . . . 26

2.4.3.2 Query Expansion with Synonyms and Vernaculars . . . . . . . . 27

2.4.3.3 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.3.4 Data Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Integration approaches and database technologies . . . . . . . . . . . . . . . . . . 30

2.5.1 Database technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5.2 Data Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5.3 Steps to Integration in Data Warehouses . . . . . . . . . . . . . . . . . . . 40

2.5.3.1 Schema Matching . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5.3.2 Data Transformation . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5.4 Data Warehouses - Update and Maintenance . . . . . . . . . . . . . . . . 44

2.5.5 Warehousing Taxonomic Data . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 Database Design and Implementation 48

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.1 Data Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Data Warehouse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4 Modelling hierarchical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.1 Materialized Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.2 Nested Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.3 Performance Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5 TCl-Db Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

v



CONTENTS

3.5.1 Modelling rank and kingdom . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5.2 Modelling synonyms and vernaculars . . . . . . . . . . . . . . . . . . . . . 63

3.5.3 Trees and Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6 Application Tables and Query performance . . . . . . . . . . . . . . . . . . . . . 65

3.7 Procedures and Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 Populating the Database 69

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 ITIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.1 Schema mapping and Integration . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 NCBI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3.1 Schema mapping and Integration . . . . . . . . . . . . . . . . . . . . . . . 79

4.4 GRIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4.1 Schema mapping and Integration . . . . . . . . . . . . . . . . . . . . . . . 85

4.5 Sp2000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.5.1 Schema mapping and Integration . . . . . . . . . . . . . . . . . . . . . . . 90

4.6 MSOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.6.1 Aves, early bird data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.7 Adding New Data Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.7.1 Data Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.8 Summary and Preview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5 Database Utility and Web Tools 97

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2 Supported Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2.1 Hierarchical queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3 Data analysis Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3.1 Comparing classifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.4 TCl-Db Web Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.4.1 TCl-Db Search Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.4.2 Visualisation Tools: Linked Names and Classifications with Webdot . . . 111

5.4.3 Supporting vernacular search terms . . . . . . . . . . . . . . . . . . . . . 113

5.4.4 A TreeBASE Wrapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

vi



CONTENTS

5.4.5 SOAP Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6 TCl-Db Reconciling data sources 131

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.3 Aves Checklist - Data Transformation . . . . . . . . . . . . . . . . . . . . . . . . 133

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.4.1 Classification Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.4.2 Spelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.5 Data Cleaning and Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7 Using TCl-Db to Improve the Querying of TreeBASE 149

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.4 Taxonomic Infrastructure requirements . . . . . . . . . . . . . . . . . . . . . . . . 151

7.5 TreeBASE Taxon Search Log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.5.1 Data Retrieval in TreeBASE Vs TCl-Db . . . . . . . . . . . . . . . . . . . 153

7.5.1.1 TCl-Db linked names improve data retrieval. . . . . . . . . . . . 154

7.5.1.2 TCl-Db hierarchical queries show superior data retrieval. . . . . 156

7.6 AOL Search queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

8 Discussion and Conclusion 165

8.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

8.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

8.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

8.3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

8.3.2 Semantic Data Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

8.3.3 RSS Feeds and Data Update . . . . . . . . . . . . . . . . . . . . . . . . . 171

8.3.4 The Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

vii



CONTENTS

8.3.5 The User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

8.4 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

8.5 Other Possible Work Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

8.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

A SQL Queries - A 176

A.1 Database Utility Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

B SQL Queries - B 181

B.1 Taxonomic Data extraction, reconciliation and validation - SQL Queries . . . . . 181

C SQL Queries - C 183

C.1 Taxonomic requirements of TreeBASE . . . . . . . . . . . . . . . . . . . . . . . . 183

D TCl-Db in RDF 186

References 211

viii



List of Figures

2.1 Classification of turtle doves Streptopelia turtur. . . . . . . . . . . . . . . . . . . . 11

2.2 Screenshot from IPNI search on Oryza Sativa. . . . . . . . . . . . . . . . . . . . . 20

2.3 Classifications of Lice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Hierarchical Model and Network Model . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 GOOD , Graph database model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6 GDM , Graph database model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.7 Degree of Federation and Instantiation in integration methodologies. . . . . . . 38

2.8 Overview of Loose Federation Procedure. . . . . . . . . . . . . . . . . . . . . . . 39

2.9 Overview of Materialised federation: Data Warehouse. . . . . . . . . . . . . . . . 41

2.10 Schema Matching for transformation into the Global Schema. . . . . . . . . . . . 43

2.11 Schema Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1 NCBI Classification of the family Crocodylidae. . . . . . . . . . . . . . . . . . . . 50

3.2 Representation of NCBI and ITIS Aves Trees. . . . . . . . . . . . . . . . . . . . . 51

3.3 Linked Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4 Hierarchical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 Summativity representation of a hierarchy . . . . . . . . . . . . . . . . . . . . . . 56

3.6 The TCl-Db Data Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.7 TCl-Db implementation schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.8 Association entity, Assertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.9 Modelling rank and kingdom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.10 SQL - Nested sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.11 SQL - Nested sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.12 SQL - Materialised Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

ix



LIST OF FIGURES

3.13 SQL - connect by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.14 SQL - Application Tables, name search) . . . . . . . . . . . . . . . . . . . . . 66

3.15 SQL - Functions, name search) . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1 TCl-Db database architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Materialized View for ITIS Names . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Procedure add itis names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Procedure add itis nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Algorithm used to build the tree data . . . . . . . . . . . . . . . . . . . . . . . . 76

4.6 Procedure add itis vernaculars . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.7 Procedure add itis synonyms. . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.8 Schema mapping NCBI to TCl-Db. . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.9 The NCBI tables used in schema mapping. . . . . . . . . . . . . . . . . . . . . . 81

4.10 Procedure add ncbi names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.11 Procedure add ncbi nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.12 Procedure add ncbi synonyms . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.13 Overview of the GRIN data migration. . . . . . . . . . . . . . . . . . . . . . . . . 86

4.14 Procedure add grin names. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.15 Procedure add grin nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.16 Procedure add grin synonyms. . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.17 Overview of the Sp2000 data migration. . . . . . . . . . . . . . . . . . . . . . . . 91

4.18 Overview of the Mammal Species of the World data migration. . . . . . . . . . . 92

5.1 ITIS and NCBI Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2 Query results for the search term Morus. . . . . . . . . . . . . . . . . . . . . . . . 102

5.3 Crocodylidae Query, ITIS data from NCBI Tree . . . . . . . . . . . . . . . . . . . 106

5.4 Interface: Basic Search page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.5 Interface: Detailed View Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.6 Browse Hierarchy Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.7 Classification displayed in Webdot Interface . . . . . . . . . . . . . . . . . . . . . 113

5.8 Vernacular Query form at http://spira.zoology.gla.ac.uk/app . . . . . . . . . . . 115

5.9 Screen shot of Vernacular Query Results . . . . . . . . . . . . . . . . . . . . . . . 116

5.10 Screen shot of Vernacular Query Results - Data page . . . . . . . . . . . . . . . . 117

5.11 TreeBase Wrapper Screen shot - Search Page . . . . . . . . . . . . . . . . . . . . 119

x



LIST OF FIGURES

5.12 TreeBase Wrapper Screen shot - Browse Page . . . . . . . . . . . . . . . . . . . . 120

5.13 TreeBase Wrapper Materialized Views . . . . . . . . . . . . . . . . . . . . . . . . 121

5.14 TCl-Db WSDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.15 WebDot diagram for linked Names . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.16 WebDot diagram for Children Names . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.1 Multiple Classifications of Casuariidae. . . . . . . . . . . . . . . . . . . . . . . . . 141

6.2 Interface screen shot for NCBI Unique names . . . . . . . . . . . . . . . . . . . . 147

7.1 TreeBASE taxon content and the TreeBASE taxon query log. . . . . . . . . . . 154

7.2 TreeBASE query log and the AOL query log. . . . . . . . . . . . . . . . . . . . . 160

D.1 TCl-Db RDF model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

D.2 TreeBASE RDF model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

D.3 RDF schematic for TCl-Db and TreeBASE. . . . . . . . . . . . . . . . . . . . . . 192

D.4 TCl-Db and TreeBASE graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

xi



Chapter 1

Introduction

This thesis makes a contribution in the area of database methods for systematics and taxonomy.

It consists of 8 chapters.

The focus of this thesis is on the development of database-supported query expansion mech-

anisms which improve the effectiveness of queries posed on the TreeBase database by the sys-

tematics community. To this aim, this Chapter leads the reader into a high level view of the

requirements underlying this work, and explains why this research was needed and timely. First,

a high level overview of systematics and taxonomy is given. This is followed by background

information on TreeBase and other data sources which are relevant in this context. Then it

explains what queries cannot be answered by TreeBase and why this is the case. Finally, the

thesis structure is presented in detail.

1.1 Background

Systematics aims to increase our understanding of biological diversity through identifying and

classifying organisms and using phylogenies to understand the relationships between organisms.

The field has developed very elaborate and sophisticated tools for phylogeny construction, and

practitioners have been very active in building new, better and faster algorithms (DeSalle et al.,

2002; Scotland & Pennington, 2000). However, this has not been matched with database de-

velopment for long term access and storage of the phylogenies produced from these algorithms.

Much of the data used in phylogenetic analysis is acquired from databases in other fields, partic-

ularly specimen data from museum collections (Zusi et al., 1982) and sequence data (Scotland
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1.2 Taxonomy

& Pennington, 2000) from databases available at NCBI (Wheeler et al., 2007). The results of

phylogenetic analysis, namely evolutionary trees, on the other hand are not so easily accessible.

Mostly, phylogenetic trees are retrieved through literature searches. The trees are buried in the

pages and supplementary material sections of the journals in which they are published. The

inaccessibility compounds the practicality of use. Projects such as the tree of life (Cracraft

& Donoghue, 2004) aim to build a complete phylogenetic analysis of the world’s biodiversity

ultimately describing the history of life on earth. The informatics requirements are vast and

challenging, particularly as the data collections grow in size and complexity. Confronting the

information explosion requires creative new approaches to facilitating use of that information.

Finding information in such data sets becomes increasingly difficult the larger the data set and,

as such, data search and discovery needs to be intuitive and precise. Data retrieval through

meaningful queries is paramount to the successfully delivery of the ever more sophisticated

requirements of the systematics community especially now that these large scale projects are

being realised.

A phylogenetic data repository (Nakhleh et al., 2003) should have a good understanding of

the organisms that are represented in the phylogenetic trees and support searches using species

and higher taxa names. However, currently this is not the case. TreeBASE (Morell, 1996) is the

only repository for phylogenetic analyses. TreeBASE does not adequately support taxonomic

data retrieval.

Taxonomic data retrieval is supported in the Genbank sequence database. Genbank contains

the NCBI taxonomy and queries can be performed to retrieve data using taxon names. In

contrast to NCBI, TreeBASE does not contain a taxonomy and queries selecting all Drosophila

studies or phylogenetic trees for insects are not as easily specified. The inclusion of a taxonomic

infrastructure within TreeBASE is essential in order to support these sorts of queries. This

thesis aims to address the limitations of TreeBASE by providing an infrastructure to support

taxonomic queries.

1.2 Taxonomy

Taxonomic data are produced by the processes of Naming, which involves attaching a label

to a concept for the purposes of communication, and Classification, that is arranging similar

concepts together for the purpose of organisation. The name provides a handle on the biological

organism and the position in the classification provides knowledge of the organism in terms of
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1.2 Taxonomy

its similarity to others (Jeffrey, 1989). This section gives a brief overview of the difficulties

users experience when utilising taxonomic data.

The taxonomic classification system is an information storage and retrieval system (Mayr,

1998), originally designed to be easily memorised (Cain, 1958). Taxon names serve two roles;

the name represents an organism that was described and named by a taxonomist and the

name is also placed in a hierarchy to relate the organism to the tree of life. This duality

presents difficulties in the use of taxonomic names. The interdependence between the name

and the classification, the fact that names are not necessarily unique to one organism and

also that the placement of an organism’s name into the hierarchy is not fixed, all complicate

the use of taxonomic names for information storage and retrieval. Compounding this is the

distributed nature of the data. The Global Biodiversity Information Facility lists over 200 data

sources (http://data.gbif.org/datasets/). This number will continue to grow as herbariums and

museums digitise their collections (Soberón & Peterson, 2004) and make their data accessible

on the web. Although taxonomy has firmly taken its place as a digital science, data accessibility

continues to cause difficulty; with the distribution there is also the heterogeneity of the data and

the lack of one all encompassing taxonomic reference. Given that the amount of data is growing

and is in constant flux, it is unlikely that it will be possible to agree on a “unitary taxonomy”

(Scoble, 2004). However, a single all encompassing data source is achievable, and this challenge

is being addressed by GBIF (Saarenmaa, 1999) and projects such as the Encyclopaedia of Life

(Wilson, 2003).

Most taxonomic data systems were developed to meet particular requirements in their use

or data scope. In contrast to the bioinformatics sequence databases, taxonomy data is by its

nature distributed. The data produced from taxonomic research tends to follow a particular

focus, a group such as insects or birds, or a geographical location, and or a period in history.

There is significant heterogeneity in data models and storage format of the data and the in-

terfaces provided to access the data. The taxonomic community have recently established the

Taxonomic Databases Working Group (TDWG) to address data standards, data integration

and interoperability. This effort is beginning to alleviate some of the accessibility and interop-

erability problems experienced by users (International Union of Biological Sciences, 2006).

Taxonomic data are also not easily deployed outside the systems in which they are stored.

This is due to the nature of taxonomic names. As stated by Thiele & Yeates (2002), taxa are not

facts like the data in most other databases, instead, taxa are hypotheses which are “proposed,

used, modified, and then perhaps discarded, as evidence dictates”. The classification of an

3
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organism is based on a set of criteria selected by the expert taxonomist. Different criteria

are used by different taxonomists, for example different morphological characteristics can be

given different weight and trees based on molecular data can be very different to trees based on

morphological data (Hedges & Sibley, 1994). Additional complications arise from the addition

of new data as new organisms are discovered, and taxonomic revisions that are made to update

existing groups. There can be, at any one time, more than one accepted taxonomic opinion on

the name and classification of an organism. This complicates the use of taxon names as search

terms. When a search is performed on the term Aves, we need to know whether the user requires

the NCBI meaning of the term or the ITIS meaning of the term. Also, in situations where a name

has changed for taxonomic reasons, such as Diomedea albatrus which was changed to Phoebastria

albatrus (Coues, 1866), additional support is needed to recognise that these two terms are linked

through synonymy. When the user performs a search on Phoebastria albatrus, should any data

associated with Diomedea albatrus also be returned? Similarly, when a user performs a search

on a vernacular term “short-tailed albatross”, is it assumed that the system should translate

this term to the appropriate Latin names, i.e. Phoebastria albatrus and Diomedea albatrus?

It is not surprising that at the time of development the TreeBASE developers shelved these

taxonomic issues. It is now timely and important to address the taxonomic requirements of

TreeBASE, given that the system is in the process of being overhauled by the CIPRES project

(CIPRES, 2006).

1.3 Systematics

Like taxonomists, most systematists focus their research on a particular group. For these scien-

tists the taxonomic requirements are fairly manageable, and usually involve the most up-to-date

checklists. Most scientists are adept at keeping up-to-date with the literature in the area and for

the most part they produce their own data. Some systematics studies, however, go beyond the

usual boundaries of collecting data and building trees. Two examples are cospeciation analysis

(Page, 2002) and the study of species richness (Gaston, 2000).

A cospeciation study usually follows two taxonomic schemes: one for the host species,

and one for the parasites. Parasites are of particular interest in systematics because of the

shared history of the host and the parasite (Page, 2002). The analysis involves comparing the

phylogenies of the parasite and the host. These phylogenies either need to be collected from

the literature or built from morphological or sequence data. For the data that are collected,
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literature searches are normally conducted using the species or higher taxa names as the search

terms. Similarly, a study of the parasite species richness of a group of organisms also uses two

taxonomic schemes and involves collecting data using taxon names as search terms (Nunn et al.,

2003). This type of analysis shows that more studies now require gathering not just previously

published data in order to stay up-to-date, but also for further analysis. Another example,

where collecting data is integral to the study, is in building super trees (Bininda-Emonds,

2004).

Within super tree analyses, data from several studies are gathered using taxon names as

search terms. Once these data are collected, the taxonomic names across these data need to

be synonymised. Usually, this is done through one authoritative source, for example, Beck

et al. (2006) used Mammal Species of the World (Wilson & Reeder, 1993); and Thomas et al.

(2004) used the taxonomy of Monroe & Sibley (1997). Where one such data source exists, this

is a simple task, however, the time is approaching when super trees go beyond the use of one

taxonomic source (Cracraft & Donoghue, 2004).

The main use of taxonomic data outside its immediate user community is in information

retrieval as the examples above show. Names are used as the keys to retrieve data (Garrity

& Lyons, 2003; Knapp, 2000; Petsko, 2002). Currently, no one taxonomic data provider sup-

ports the needs of the systematics community. This following section describes the taxonomic

requirements of TreeBASE, and provides details of the motivation for this PhD research.

1.4 TreeBASE

TreeBASE (Morell, 1996) is a phylogenetic and evolutionary information store, containing phy-

logenies for more than 56,000 taxa. Submission to TreeBASE is mainly voluntary but some

journals require or recommend that authors submit data to TreeBASE. TreeBASE is unique in

that it stores all the data that are required to reproduce the analysis, including aligned data

sets, the weighting schemes and step matrices as well as information on the algorithm used

in each phylogenetic study. The phylogenetic study is central to the TreeBASE data model,

as it represents the original publication details of the study, including the abstract. Despite

the intrinsic taxonomic content, the developers of TreeBASE purposely excluded taxonomy

(Morell, 1996). Except for the taxon names used within the trees and matrices there is no spe-

cific taxonomic scheme used. The names are not checked against or linked into any taxonomic

schemes or classification. Since the inclusion of a single taxonomic scheme would not have been
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sufficient, and that no systems like uBio or Sp2000 existed at the time of development, it is

easy to understand why the developers made this decision. The consequences however, are that

the system can not support taxonomic queries.

1.5 Motivation

The TreeBASE interface (www.treebase.org) supports six query types: author, citation, study

accession number, matrix accession number, taxon and structure. The taxon search, however,

does not perform adequately. This search option does not effectively support higher taxa queries

or synonym and vernacular queries. From a biologist’s perspective, the taxon search option does

not return the expected results. The query term “Aves” currently returns 5 studies (S281, S880,

S296, S1166, S433). On closer inspection, there are many more studies containing Aves (birds)

within TreeBASE, for example the search term Gallus returns a further 2 studies (S1522, S606)

and Diomedea returns 1 more study (S351). Similarly, the search term Puffinus returns no

studies, however, using the search terms Puffinus tenuirostris or Puffinus gravis, the study

S714 in which they are located is returned. The species Puffinus gravis is also contained in

the study S351, however, a search using the taxon name is not successful because the species

text is “Puffinus gravis U74354”. These examples show that higher taxa terms, such as Aves

and Puffinus, are not being expanded to include the scientific names contained within them.

Queries performed on TreeBASE return only data where the search term matches exactly a

term contained in the study. As such, the term “birds”, which is the vernacular associated with

Aves, returns no data because it is not contained in any study. The synonym for Phoebastria

albatrus, Diomedea albatrus, does not return the study S714 in which the currently accepted

valid name exists. The taxonomic content and structure of TreeBASE does not support these

queries, as query terms are not expanded to include associated terms and as a result incomplete

results are returned. The current data retrieval options within TreeBASE pose a problem for

the research community who commonly use taxonomic names as search terms. The research

hypothesis studied in this thesis is that data retrieval through TreeBASE can be improved by

the inclusion of a taxonomic infrastructure.

The taxonomic queries that TreeBASE should support are: 1) search terms should expand

to include subordinate terms in the classification if they are higher taxa, 2) vernacular queries

should be supported and expand appropriately to include the data linked to the scientific names,

and 3) any given query should also expand to include data associated with synonyms and out
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of date usage of a taxon name. These queries are currently not supported by TreeBASE. The

developers of TreeBASE purposely excluded taxonomy (Morell, 1996) because there were too

many difficulties for a small development team to overcome. The inclusion of a taxonomic

infrastructure still poses several challenges. The distributed nature of taxon names and the

many data sources in which these are held is a significant problem, as few sources cover the

breadth of taxonomic coverage required by TreeBASE. Also, each taxonomic data source uses

a particular classification scheme supporting specific taxonomic opinions. Not only do data

sources differ in the content they deliver but, even those with similar content may follow different

taxonomic opinions and therefore deliver very different classification schemes.

These challenges may be addressed by combining the content of multiple taxonomic data

sources and uniting the data into a form that will enable the taxon query types given above.

TCl-Db, Taxonomy and Classification Database was developed to increase the accessibility and

transparency of taxonomic data by integrating data from the available data sources. It was

designed to provide a taxonomic infrastructure to TreeBASE and the queries systematists wish

to perform.

1.6 Thesis Structure

This thesis is organised into eight chapters. The following chapter, Chapter 2, provides back-

ground on taxonomy. It explains what taxonomic data is, presents the databases that contain

taxonomic data and shows how these databases are used to store taxonomic data. Following

this we discuss the structure and query capacity of TreeBASE. We show, through some ex-

amples, its limited use when queried using taxon names. This leads on to the motivation for

this work and the proposed data integration solution. There is an outline of data integration

approaches and the general benefits offered through integrating taxonomic data.

Chapter 3 gives a full description of the design and implementation TCl-Db, the data ware-

house built as a taxonomic infrastructure for TreeBASE. This chapter gives a discussion of the

requirements of the database through an analysis of the currently available taxonomic databases

and their ability to support taxonomic queries through TreeBASE.

The data sources and their load procedures are outlined in Chapter 4. Each data source is

copied into a local silo, the schema are mapped, and the data transferred using materialized

views and PL/SQL procedures.
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Chapter 5 provides an overview of the queries that are supported by TCl-Db and how these

can be invoked from a user interface. A web interface, a SOAP service and some of the tools

created to support the use of TCl-Db data warehouse are then described. The chapter also

describes a wrapper which accesses a local version of TreeBASE. The wrapper is written in

PHP and uses TCl-Db to translate taxon queries into specific search terms in TreeBASE. This

wrapper exemplifies the queries that TCl-Db was designed to support and the requirements of

a taxonomically intelligent TreeBASE.

Chapter 6 exemplifies how this type of data integration enables data sources to be compared

side by side. In this Chapter we describe how TCl-Db was used to compare taxonomic data

sources with regard to both data composition and distribution. These comparisons enabled us

to enhance the integration by creating links across taxon names that are related.

In Chapter 7 we demonstrate the data retrieval problems experienced by TreeBASE users

through an analysis of the query logs from the TreeBASE website. We are able to show that

data retrieval difficulties are in part due to the lack of taxonomic intelligence in TreeBASE,

and we demonstrate the improved data retrieval based on the use of TCl-Db and the software

infrastructure we have created.

Finally, Chapter 8 provides a discussion of the work presented and some thoughts and

preliminary results from an alternative integration solution, using semantic web technologies.

There is an outline of improvements that could be made to the data model and the user interface.

Finally, an outline of further work is proposed.
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Chapter 2

Background

In the previous Chapter, an introduction and an overview of the background to this thesis were

provided. This Chapter explains the background in more detail. It discusses issues related

to the use of scientific names, synonyms and homonyms, and classifications. It then provides

details of the taxonomic databases and data sources used in this work. Then it expands on the

user requirements in taxonomy and systematics and provides a high level introduction to data

integration methods. This explains why the warehousing technique was selected for this work,

which leads into Chapter 3 which will describe in detail the database techniques which support

the user requirements.

2.1 Taxonomy

A taxonomy is a collection of terms, and a classification is the relationship among those terms.

In biology, taxonomic studies involve naming and classifying organisms into a hierarchical struc-

ture representing the relationships among organisms.

Taxonomic data is the result of the processes of Naming, that is, attaching a label to a

organism for the purposes of communication, and classification of organisms, which is arranging

similar concepts together for the purpose of defining the logic and order of the information.

The name provides a handle on the organism and the classification provides knowledge of the

organism in terms of its similarity to others. These two processes are briefly outlined, and this

is followed with a description of how these data are disseminated to the user community.
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2.1.1 Naming

When a new organism is discovered the first thing a biologist needs to do, in order to share the

discovery, is to identify the organism or name it, if it is new. Organisms are named so that they

can be easily referred to in communication, publications, conversation, etc. (Jeffrey, 1989).

Names are used instead of descriptive phrases since in most situations these are impractical for

effective communication. For example, a geographical location is more easily communicated

through a place name, a street name or number, a city name or country, or GPS co-ordinates

rather than directions from place X to place Y. On the other hand, GPS co-ordinates provide

more accuracy than a name, as do perhaps descriptive directions, but such levels of accuracy

would be cumbersome in a conversation. It is of utmost importance that a name be unambiguous

and understood by all who use it to have the same meaning. However, for taxonomic names this

does not hold true, as taxon names and their organisms do not have a one to one relationship. It

is fundamentally important to have clear-cut unambiguous taxon names, in order to effectively

use those names.

To maintain some order in the naming and classification of organisms, taxonomists work un-

der specific regulations, collectively called the Codes of Nomenclature. Names are managed by

three main bodies, each providing policies (codes) for managing taxonomic names. These are:

the International Code on Zoological Nomenclature (ICZN) (ICZN, International Commission

on Zoological Nomenclature and IUBS, International Union of Biological Sciences, 1999), the

International Code for Botanical Nomenclature (ICBN) (Greuter et al., 1994) and the Interna-

tional Code of Nomenclature of Bacteria (ICNB) (Lapage, 1992). The purpose of these codes

is to ensure both good working practice, through provisions that should to be followed when

giving names, and to create stability of names, by ensuring that a taxon has only one scientific

name by which it is properly known. In a constantly expanding knowledge base accumulated

through 250 years of effort, name changes are inescapable. Even with the use of the codes,

many organisms have more than one name associated with it. In order to understand why

names change through time and the difficulties that arise through these changes, it is necessary

to understand the practices of taxonomists and the structure of taxonomic data.

2.1.2 Scientific names

Every organism is given a name by which it is formally known, this is its scientific name.

Scientific names use Latin alphabet and grammar, as in most proper names the first letter is
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capitalised. Taxa are organised into ranks of increasing inclusiveness (Figure 2.1) by the process

of classification (grouping like with like into the same groups). The top most rank, the most

inclusive, is kingdom which contains progressively less inclusive ranks to the least inclusive rank

-species. The ranks genus and above, known collectively as “higher taxa”, are single terms or

uninomials, while the rank species consist of two terms and is therefore a binomial. The first

part of the binomial comes from the genus rank in which the species has been placed, and the

second term is a specific term given to each species within the genus, the two together refer

to a species. There are several ranks below species, not shown in Figure 2.1. Subspecies are

Figure 2.1: Classification of turtle doves Streptopelia turtur.

generally recognised as trinomials, i.e., the species binomial followed by a third term specific to

the subspecies.

The different codes recognise different ranks, those that are generally accepted are shown in

Figure 2.1, however, while the Zoological Code recognises the rank superfamily, the Botanical

and the Bacteriological codes do not and the Botanical code uses many more ranks (variety,

subvariety, form and subform) below species than any other code. The names of higher taxa

ranks are given specified endings to allow them to be easily identified to a rank, a list is

given in Table 2.1. This table also shows that the codes show differences in accepted endings.

Other nuances across the codes include, for example, the bacteriological code only recommends

that the rank should be inserted within the subspecies name as in, Yersinia pseudotuberculosis
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subsp. pestis whereas the botanical code insists that rank should be indicated in all ranks below

species. These differences are due to the independence of the codes, they operate autonomously

attending only the user community they serve.

As stated above, a taxon name is not a simple name and has two roles. A name relates

not only to a taxon but also indicates to users the rank or taxonomic position of that taxon

(by name endings if uninominal, lower rank if it is not). This duality (Thiele & Yeates, 2002)

of taxon names is incredibly powerful as the names give both meaning and context to users.

However, this duality has significant negative impacts on the data in terms of stability and

change. Taxon names should clearly identify a single taxonomic concept but the process of both

naming and classifying organisms in one term causes difficulty when changes and additions are

made. The process of naming the world’s biodiversity is far from complete (Dubois, 2003),

new organisms are discovered, their names added, new knowledge of their inter-relationships is

obtained and relating these to the existing structure has a considerable effect on the data. The

taxonomic hierarchy organises knowledge but, as is the case for all hierarchical structures, it is

not particularly good at dealing with change. In the simplest example, two organisms placed in

two separate genera may at a later date, based on new knowledge, be found to be more similar

than originally understood, resulting in the two genera being clumped together. Since species

names use both the genus and species epithet, this results in name changes for many of the

concepts originally named in the two genera. When such changes occur at higher taxa ranks,

the changes cascade down and affects all levels of the hierarchy below it. It is therefore difficult

to unambiguously use taxonomic names to identify taxa.

The criteria by which taxa are defined (classified) can change, for example when new or-

ganisms are discovered. The circumscription of taxonomic ranks is not strictly defined as there

are no definitive criteria that are used in the assignment of a taxon to a rank. It is up to the

taxonomists to make sure that the placement of the newly discovered organism exhibits only

those group defining features in which it is being placed. However, those group-defining fea-

tures may be called into question with new discoveries. Different expert taxonomists disagree

on what defines these groups and which criteria are important in circumscription of taxa. The

addition of new data may result in the addition of new ranks, a change in circumscription may

result in the combining of a rank or sometimes splitting of ranks. When there are classification

changes at least one taxon will undergo a change of name. In some cases the names do not

change but the circumscription of the group changes. When a change in classification is made
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Rank ICBN (Botanical) ICNB ICZN
(non-fungal green plants / algae / fungi) (Bacterial) (Zoological)

Division (-phyta / /-mycota)
Subdivision (-phytina / /-mycotina)
Class ( -opsida/ -phyceae / -mycetes )
Subclass ( -idae / -phycidae / -mycetidae )
Order -ales -ales
Suborder -inae -inae
Superfamily (-oidea)
Family -aceae -aceae -idae
Subfamily -oideae -oideae -inae
Tribe -eae -eae (-ini)
Subtribe -inae -inae

Table 2.1: Standardised suffixes for higher taxa. Recommended suffixes are enclosed in paren-
theses. The different suffixes recommended for non-fungal plants are given first, followed by
the algae recommendation, and the fungi recommendation. (Jeffrey, 1989)

and a new name is applied, the new name is deemed valid (or accepted) and the original name

is relegated a synonym.

2.1.3 Synonyms and Homonyms

Synonyms are usually the result of name changes, the reasons for the change are either tax-

onomic (rank change as described above) or nomenclatural. Nomenclatural changes tend to

have a more pronounced effect. For example, if a name is given to an organism by an author

who does not have the knowledge that the name is already in use, the codes stipulate, that the

earlier published name has priority and the newer use of the name does not apply and should

change.

Name changes are common, and experts and researchers with everyday access to this data

can grasp these changes and absorb the knock on effects on the hierarchy with ease. However,

these effects are not easily disseminated to other research communities (Froese et al., 1990).

Information in the literature may be recorded under a name that is no longer deemed valid. The

utility of all taxon names is in the biological information they convey and since taxon names are

used as keys to their information (Geoffroy, 2001), this information becomes obscured through

name changes.

Another naming anomaly results from the independence of the codes and the disparate

nature of taxonomic study. Homonyms are the result of the same name (with the same spelling)

being applied to different taxon concepts, often seen in botany and zoology. Article 1.4 of the
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zoological code explicitly stipulates that:

Article 1.4 Independence

“(T)he name of an animal taxon is not to be rejected merely because it is identical

with the name of a taxon that is not an animal.”

Without clear context the use of a name that refers to two different organisms can result in

confusion. Again, while experts are well placed to deal with such anomalies, a non expert could

get confused when using one term and finding two sets of different data. For example, using

the term Morus to retrieve data will result in both Plant and Animal data returned, since this

genus is used in both the animal and plant kingdoms.

While stability of taxon names is a particular issue in the field, an issue that needs to be

addressed is the access to data associated with names that are in common use but no longer

regarded by the specialists as the proper name. The resulting gap in knowledge and the potential

loss of data can have significant side-effects across several fields of biology that use taxon names

as information retrieval keys in their studies (Mallet & Willmott, 2003).

2.1.4 Classification

Taxonomists build their classification on a set of criteria. These criteria should group similar

with similar, however, the choice of criteria used is subjective, and it is up to the taxonomist

which characteristics are used for classification. Therefore, different taxonomists can place em-

phasis on different criteria, that attempts to best reflect the similarities and differences between

the organisms. The result is multiple overlapping classifications and the same name having dif-

ferent meanings (circumscriptions) in different classifications. Similarly, when molecular data

are used for classification these do not always agree with classifications based on morphological

data (Hedges & Sibley, 1994). The classification assigns taxa to other taxa of higher ranks

(depicted in Figure 2.1), and, as stated, this is generally regarded as grouping similar organ-

isms together. Nowadays, this has shifted towards evolution (Ereshefsky, 2001; Franz, 2005), in

which the systematics community group organisms by ancestry. These two forms of grouping

and the resultant classifications are very different.

In biological taxonomy the classification is a containment hierarchy. The organisational cri-

terion (Knox, 1998) in a containment hierarchy is that entities at the higher rank are composed

of (or contain) entities at the next lower rank. For example, species which show some common

defining feature are grouped into a more inclusive rank of genus, these are in turn grouped into
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families and so on. This is distinct from a phylogeny which orders entities according to their hi-

erarchical ancestor/descendant relations. Although structured similarly (directed graphs) and

similar methods for determination are used, an ancestor descendant hierarchy is distinct from a

classification hierarchy in the organisation criterion of derivation (the evolutionary process be-

ing mapped) rather than inclusiveness. Ancestors are not contained within ancestors, therefore

the phylogenetic trees produced through systematics are not the same as classifications (Knox,

1998).

There has been significant debate as to whether the use of two systems, and the resultant

practice of merging the two systems, is having a detrimental effect on taxon names and the use

of taxon names. The PhyloCode movement, to be discussed next, calls for the exclusive use of

one system, that of ancestry, and the decommissioning of the classification system.

2.1.5 PhyloCode

The PhyloCode (de Queiroz & Gauthier, 1992) represents the movement away from Linnaean

nomenclature (the current system) to phylogenetic nomenclature, in which species on a clado-

gram would allow the definition of names of taxa by their position in trees built from phylo-

genetic hypothesis. Supporters of the PhyloCode argue that current taxonomy was designed

in a non evolutionary age and is therefore no longer appropriate, whereas their proposal, the

PhyloCode, promises to promote clarity, uniqueness and stability in nomenclature through

phylogenetic definition of taxa.

The proponents of this system argue that the organisation of the Linnaean hierarchy does

not fully reflect the genealogical relationships in its classifications and the current practices of

aligning classification and phylogeny are not appropriate. However, this system has sparked

ferocious debate and while it has its followers, many have completely shunned the idea. Critics

of the code especially dispute the claim to stability (Nixon, 2000) and the argument comes down

to the definition of stability in the two camps; the stability of the name versus the stability of

the definition, i.e., nomenclatural stability or taxonomic stability (Schuh, 2003). Others have

recognised that there is some controversy about whether taxon names are defined (de Queiroz

& Cantino, 2001) or not (Stuessy, 2001), and how they are defined in the current system

(Moore, 2003). Those in favour of PhyloCode suggest that nomenclatural stability is more

important, while the content of the named taxon may change as new organisms are placed into

the phylogeny. The resulting nomenclatural stability would sacrifice taxonomic stability which

the critics find unacceptable. Both sides have merit in their argument with one side providing a
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solution that copes with the inevitable change (phylogenies are hypotheses and are in constant

flux as a natural consequence of increase in knowledge) and the other side who insist that such a

radical and flawed proposal is not an appropriate solution. Indeed, to replace the whole system

with a flawed one would cause more disruption than than the current system causes confusion.

There have since been other proposals to build stability into taxonomic data, with the

registration of new names as a mandatory tenet of publication of taxonomic data (Borgen

et al., 1998; Bouchet, 1999; Knapp et al., 20077; Patterson et al., 2003; Thorne, 2003) and

the development of networked and web accessible taxonomic data sources (Bisby et al., 2002;

Emery, 2003; Gewin, 2002; Godfray, 2002; Wilson, 2003).

2.2 Delivery of Taxonomic Knowledge

The standard mechanism for delivering new knowledge in the field of taxonomy is through

publication within appropriate scientific journals. The data are also published in the form of

field guides, checklists and monographs.

Checklists take the form of a catalogue in which all known species are listed. Checklists are a

type of aide memoire and are usually devoted to particular groups or geographical locations for

example the Sibley and Monroe Checklist of Birds (Monroe & Sibley, 1997). The information

they provide is usually the species name the author or authority on that name and taxonomic

classification.

Field Guides serve the purposes of users who need a quick and reliable data source to aid

the identification of organisms in the field. These are generally small enough to be fit for

purpose (i.e. taken out to the field) and therefore only provide enough data to allow a general

identification through descriptions, photographs and illustration.

A monograph, by definition, is a more thorough treatment of a group often including a

checklist and the important bibliographic references to original publications of the group that

is being documented. Monographs can take any form and generally the information given varies

according to the requirements of the group. A monograph on plants differs significantly from

most zoological monographs. Generally however, they include illustrations of representative

species, with, when appropriate, typical examples of the male and female, a thorough phylogeny

of the group. Increasingly, taxonomic data are disseminated in database systems that are

available on the web. These systems have increased the scope and use of taxonomic data in
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similar ways to the parallel field of Bioinformatics and the dissemination of data throughout

its hundreds of databases.

2.3 Taxonomic Databases on the Web

There are a large number of taxonomic databases and the field of ‘databasing’ taxonomic data

is as diverse as the data. These databases are built by institutions, taxonomists and generally

those with a vested interest in taxonomic data. The different uses led different user communities

to build databases to their meet specific needs. As a result, many heterogeneous databases exist

within the taxonomic community.

There are over 200 taxonomic databases published or described, GBIF (2006) provides

a list at http://www.gbif.org/DataProviders/. The databases that were studied and used in

this project, especially at the outset, are described here. These databases were studied either

because of their influence (uBio), their data (ITIS, NCBI) or their data model (Taxonomer

(Pyle, 2004), IPNI (IPNI, 2006)). Sp2000 was examined initially to determine its suitability

as an external taxonomic data source for TreeBASE. Those databases will now be described in

more detail.

2.3.1 ITIS

The Integrated Taxonomic Information System (ITIS) (ITIS, 2006) is a partnership of federal

agencies and organisations from the United States, Canada, and Mexico. It is primarily a

taxonomic database serving data for “biota of interest to North America”, though the data

are curated by experts from around the world and the taxa are not limited to those native

to North America. The taxonomic scope includes the ITIS classification and scientific names

and common names in English, French, Spanish, and Portuguese. The data are available for

download in a relational format at http://www.itis.gov/ftp download.html, and the download

includes an SQL script for building the table structures.

2.3.2 NCBI

The National Center for Biotechnology Information (NCBI) (Federhen et.al, 2005) built a cu-

rated set of names and a classification, originally for the databases within their Entrez system

and, specifically, the Genbank sequence database. The NCBI taxonomy can now be downloaded
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as a separate database. The purpose of the taxonomic system within NCBI was to enable the

names of organisms to be cross linked across NCBI tools and databases. The project started

to clean up the haphazard taxonomic content, as many taxonomies were diverging within the

sequence data bases and NCBI needed a consensus clean taxonomy within Entrez. Considerable

effort went into building the taxonomy and has since been adopted by all the sequence databases.

The data are provided as a database flat file dump at ftp://ftp.ncbi.nih.gov/pub/taxonomy/.

2.3.3 GRIN

The Germplasm Resources Information Network (GRIN) of the United States Department

of Agriculture, Agricultural Research Service contains taxonomic and nomenclatural data for

records of vascular plants. The scope and purpose of GRIN was to serve the taxonomic and

nomenclatural needs of the (American) National GermPlasm System (NPGS). The GRIN tax-

onomy includes accepted names in family, genus, species and infraspecies ranks, common names,

literature references and geographic distribution. The GRIN resource is provided over the web

and individuals and organisations are encouraged to utilise the data, with the aim of making

GRIN a standard reference for scientific names for plants. The GRIN data model has not been

published however, this resource was included in this research for the rich data it provided.

2.3.4 Sp2000

Species 2000, Sp2000 (Bisby & Smith, 2000) aims to provide a “common gateway to species-

based information in biological databases”. The focus of Sp2000 was to provide a complete

list of species names, including synonyms in a style similar to a checklist (Bisby et al., 2002).

The Sp2000 project was amalgamated into SPICE (Jones et al., 2000) and later evolved into

the Catalogue of Life. The system design followed a loose federated architecture, where the

data sources maintain autonomy. Although the architecture of Sp2000 is described as an “au-

tonomous federated system”, the system is distributed as a CD, so some data are materialised

in some way. The annual CD checklist in 2003 was distributed in Microsoft Access format.

Later versions (2006) were moved to MySQL.

2.3.5 Online Checklists

Increasingly traditional checklist publications are being placed online. The Mammal Species of

the World (MSOW) is an online checklist from the Smithsonian National Museum of History
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and was also used here purely as a data source. The checklist (Wilson & Reeder, 1993) is in

its third edition, published in 2005, and the website provides this version for download in plain

text files. The scope of the data is limited to description and bibliographic data for mammals.

Other digitised checklists are also available for example, the Aves checklists from the early bird

project (Hackett, 2003).

2.3.6 Other sources used to develop the TCl-Db data model

The following databases are not available for download. However, since they were also built as

relational databases they were studied with the aim of understanding their structure.

2.3.6.1 Taxonomer

Taxonomer contains a relational data model that is used to manage taxonomic names and

concepts attached to specimen data at the B.P. Bishops Museum in Honolulu. The publication

describing this data model (Pyle, 2004) makes very clear the distinction between a taxon name

and a taxon concept. A taxonomic concept refers to a construct of a taxonomic name and

its reference or the publication in which the taxonomic name is described. The taxonomer

database models Agents, References and Assertions as taxonomic authorities, publications and

taxonomic concepts respectively. The author makes use of the term ‘Protonym’ to refer to the

tuple of Name OriginalAuthors(s) OriginalYear.

This tuple is a Protonym-Reference construct that is represented in the entity Assertion. The

data model explicates the requirement of using a taxonomic concept in order to accommodate,

in one database, multiple views and classifications of taxon names.

2.3.6.2 IPNI

The International Plant Name Index, IPNI (IPNI, 2006), is a database storing names for all

vascular plants. The database was designed to serve as a global plant checklist. IPNI was

formed as a joint venture between the Royal Botanic Gardens at Kew, the Harvard University

Herbaria and the Centre for Plant Biodiversity Research in Canberra. The requirement was

to improve the accessibility of internal databases at these institutions. Further, combining the

limited resources for data compilation and maintenance was a strong motivation. The system

has a very strong community focus, as the users contribute data and help maintain a complete

index of published names.
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The database has a nomenclatural focus, providing primary literature references for taxon

names combined from three data sources: the Index Kewensis (IK), the Gray herbarium Card

Index (GCI) and the Australian Plant Names Index (APNI) (Lughadha, 2004). The database

has a central entity, the Index Entry, through this entity the database links to Names and the

Name Authority (i.e. the author that described and published a name). There are also entities

for the Author, Publication and Source of each Index Entry. Additional data in the form of

Type specimens, Synonyms (and misapplied names and spelling errors) are also included in the

database model. The IPNI website provides a very user friendly interface to search for taxon

names, a search for the term Oryza sativa is shown in Figure 2.2 with each data source for

the term given explicitly. The database structure of IPNI was particularly influential in this

project as it provided an example of how data from multiple sources are combined into a single

queriable structure.

Figure 2.2: Screenshot from IPNI search on Oryza Sativa. Typical search results show the

data that IPNI deliver, namely the taxon name including the publication in which the taxon is

found.

2.3.6.3 uBio

uBio, Universal Biological Indexer and Organiser, (Patterson et al., 2006) is a system that

aims to gather all taxon names so that they can be indexed and used as ‘metadata’ terms that
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are capable of defining subsets of information and therefore used to retrieve information. The

uBio NameBank is a biological name server, serving as a thesaurus for taxonomic names. The

developers also recognised that many different names are used for the same taxon and in order

for all information related to taxon to be retrieved, these names need to be linked. The remit

was later extended to include classification data. ClassificationBank is a taxon concept server

that stores multiple classifications and taxonomic concepts, thus extending the functionality of

NameBank. This project is by far the most complete taxon name source, and is characterised

by a very good API’s for data access. The database structure, however, is not published, and

the data are not downloadable, but only accessible through the graphical interface and the API.

To some extent, uBio served as a model for the taxonomic requirements for TreeBASE, with

linked names and support for multiple taxonomic opinions, however, as stated and discussed in

the conclusion, the data could not be effectively linked to TreeBASE

2.3.7 Coordination across resources

The existing amalgamated databases of taxon names address some of the issues of data scope,

however, these too were designed to meet particular requirements and do not support more

general requirements. For example, IPNI and the International Organization For Plant In-

formation (IOPI) database was designed to meet the requirements of a global plant checklist,

Sp2000 (Bisby & Smith, 2000) extended similar requirements to all species and the uBio (uBio,

2006) name server is now both a names server and classification bank. The large number of

taxonomic database systems and amalgamations have made obvious the requirements of inter-

operability and quality (especially in secondary amalgamated databases (Chapman, 2005a)).

Encouragingly, many of the stable published databases have some affiliation to TDWG (Taxo-

nomic Databases Working Group) who are beginning to address the requirements of taxonomic

data across several user communities.

2.3.7.1 TDWG

TDWG and GBIF (Global Biodiversity Information facility) (Saarenmaa, 1999) have started

looking at the more global requirements of taxonomic databases. TDWG’s remit is specifically

to build interoperability through standards and protocols. GBIF have an overlapping element

but aim to use the standards output from TDWG to build tools that will enable interoperability

through their network and make biodiversity data more freely accessible.
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TDWG ratified and published the Taxonomic Concept Schema (TCS) in 2006. Taxonomic

concepts (Franz et al., 2006) are entities created to tackle the inherent problems of using names

as unique identifiers, as names in different databases are not necessarily equivalent. The data

associated with a name are vital to the use of that name and therefore the understanding of the

name. A richer association of metadata and taxon name can address this. Taxon concepts can

do this through associating the reference (the definition) of the name with the name itself as a

two part entity. This two part entity enables the unique association of a taxon to its original

data.

This is especially important in taxonomic information interchange. The SEEK Project

(SEEK, 2006), where the TCS was originally conceived, is reaching out to the data concerns of

ecologists and the TCS was originally designed to enable data integration across ecological data

sources. Integrating data from two databases by matching purely on the taxon name can result

in significant loss of information. Ecologists require a certain amount of precision in the data

they use and therefore require stringent taxonomic data co-ordination. Moving a taxon name

from one database to another purely based on the name string would for example, result in the

loss of information pertaining to the taxonomic position in the hierarchy (if the two systems

used different classification schemes), or to specimen information (if the two systems came from

different geographic locations). A mechanism was required to transmit data across systems

while retaining the uniqueness of the taxon in the individual systems, within the integrated

data. Such metadata (literature reference, rank and taxonomic position, specimens) enable

better understanding of the name concept in the data systems and therefore of the meaning of

the taxon.

Using the TCS with the additional metadata, information can be transferred without ambi-

guity and the loss of meaning from the original data provider. The integrated data can be linked

without confusion backwards to the original data sources through this scheme. See references;

Kennedy et al. (2005); Franz (2006); Berendsohn (1995) and Gradstein et al. (2001).

The limitations, however, are the number of taxonomic data sources that have enough

data to fully utilise the TCS. The systems most likely to contain such verbose data will be

at herbariums and museums (primary data sources) that have links to literature references

and specimen references. Considerable effort is also required to adapt data in this format for

transfer (mapping two relational database schemas is much simpler). Although the majority

of components are optional within the schema, its full value will only be realised when the
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transformation into the structure is made seamless and data is made available and openly

disseminated to the community in this format. This falls into the remit of GBIF.

2.3.7.2 GBIF

GBIF focuses particularly on data about species and specimens, with appropriate links to other

relevant data. The data GBIF will take responsibility for are (GBIF, 2006):

1. Taxonomic data, including

(a) Taxon names (the responsibility of the ECAT Work Programme)

i. Scientific names, including data on synonymy

ii. Vernacular names

(b) Taxonomic descriptions, including diagnostic keys

2. Taxon occurrence information (primarily species-level, but including data for taxa at

different ranks where appropriate)

(a) Specimen records (from natural history collections)

(b) Observation records

3. Links to other taxon-level information, including

(a) Information on taxon biology and life history

(b) Ecological interactions

(c) Genetic data

(d) Sound and image resources

The Taxonomic element is the most relevant to this work and is also their initial priority.

Using the TDWG ratified Taxanomic Concept Transfer Schema, GBIF have started exchanging

taxonomic data across their network (the GBIF portal can be found at http://data.gbif.org/),

this will take the form of ECAT (Electronic Catalogue of Names of Known Organisms), a digital

listing of the names of all known species. ECAT is being developed in collaboration with Species

2000 (Bisby & Smith, 2000), ITIS (ITIS, 2006), uBio (uBio, 2006), the providers of taxonomic

nomenclators, taxonomic institutions worldwide, the nomenclatural codes and others. In 2005,

ECAT contained about 983,000 species names from nearly 200 data providers; it aims to have

a complete listing of all known species by 2010.
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2.4 Taxonomy and systematics

Despite a plethora of taxonomic databases, there is no database of taxonomic names that

has been developed specifically for the tree building community, and no taxonomic database

currently meets the requirements of this community. This is perhaps difficult to fathom given

the interdependence of taxonomy and systematics. The reasons for this are highlighted here.

Uniquely, systematists are both taxonomic users and taxonomic data providers through

building the phylogenies on which classifications are based. As such, they have unique tax-

onomic requirements and often visit many taxonomic data sources, compared to taxonomists

whose needs are met by one or perhaps two systems. Taxonomists, generally work on small

groups of organisms and they focus more narrowly sometimes on geographical locations or ge-

ological time periods. Getting a handle on other data, even for an expert, when not actively

involved in the research, can be difficult. This is partly due to the complications associated with

taxonomic data as described above (synonyms, name changes and taxonomic revisions), but

also because of the data accessibility, particularly moving from one database system to another.

There are many taxonomic database systems and they each have a very specific data scope and

were usually built for a specific user community. Prometheus (Pullan et al., 2000), for example,

although extensible, has a working data scope of plants and was built to manage these data

through the working practices of taxonomists. There are also many examples of literature and

specimen databases that have taxonomic content but are not taxonomic databases. In these

cases, the interfaces to these systems are designed with particular queries in mind, and using

them outside of the original scope, say to extract all taxonomic data, can be difficult and some-

times impossible through the interfaces provided. Although, some database have been built

to expressly index names so that they can be used to retrieve data (Berendsohn, 2003), the

focus was towards retrieving literature data. Databases that performed literature retrieval well,

with the exception of uBio, had limited data scope. Given that no system has been designed

with the data scope and query interface geared towards the systematics community, currently

systematists have to visit and learn to use many systems and from these gather the data they

require and collate and manipulate it into a form they can use.

2.4.1 TreeBASE

TreeBASE Morell (1996) is a phylogenetic and evolutionary information store now containing

phylogenies for more than 90,000 taxa. Despite the intrinsic taxonomic content, at design, the
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developers of TreeBASE purposely excluded taxonomy. This decision was taken because at the

time of development, there were few electronic taxonomic data sources to choose from and there

was also the question of which classification to use. This is still an issue. As we show in Chapter

5 names in different classifications can have different meanings hierarchically, for example, Aves

in NCBI and Aves in ITIS are quite different in their data coverage and content. Also, some

classifications do not support some commonly used ranks and data coverage varies across the

taxonomic data sources. It would be unfitting to apply one single classification to TreeBASE,

but without a classification, TreeBASE does not effectively support higher taxa queries.

Currently, data can only be retrieved by exact of partial string matching. As a result, sys-

tematists prefer to gather the data they require for their analysis through literature searches.

In most cases, once data are retrieved the search results have to be manually examined to deter-

mine if they contain the phylogenetic data of interest. The lack of taxonomic intelligence makes

data retrieval through TreeBASE difficult. Currently, in order to retrieve all bird sequences a

user would first have to find all the scientific names and any synonyms he is interested in and

then perform the searches one at a time using this list. It would be far more efficient if the

query term “birds” translated to Aves which, in turn translated hierarchically by the system,

this is what is meant by ‘taxonomic intelligence’.

2.4.2 TreeBASE Database versus Information Retrieval

When querying a database system, the results returned are exactly those data that satisfy the

given query. This is referred to as data retrieval and in relational database systems it can be

accomplished by the structured query language (SQL). For effective data retrieval, the data has

well defined structure and should have well defined semantics. A well formed query will return

exactly those data that satisfy that query. In information retrieval, ideally, a given query is

understood by the system, i.e., there is an element of interpretation through related terms or

categorised topics (Fast et al., 2002). The query therefore does not have to be exact and the

data returned is not that which matches the query but that which is relevant to the query. The

query need neither be well formed nor exact.

The queries supported by the TreeBASE interface do not perform adequately, as it does not

support higher taxa queries or synonym and vernacular queries. Currently TreeBASE provides

only data retrieval capacity, (as outlined in Section 1.5) and as we show in Chapter 7, in the

searches performed on TreeBASE, the users expect information retrieval, which means that the

systems does not perform as expected.
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2.4.3 Requirements of a “Taxonomically Aware” Database

At the very least, the taxonomic requirements that TreeBASE should support are:

• search terms should expand to include subordinate terms in the classification if they are

higher taxa

• vernacular queries should be supported and expand appropriately to include the data

linked to the scientific names

• any given query should also expand to include data associated with synonyms and out of

date usage of a taxon name

2.4.3.1 Support for Hierarchical Query Expansion

Genbank (Wheeler et al., 2007) is an example of a database with a taxonomic intelligence. Each

sequence record in Genbank includes the data; the organism name and organism classification.

By using this information queries such as ‘select all Insecta sequences’, ‘select all plant sequences’

or ‘select all sequences in the genus Drosophilla’ retrieve the data in a taxonomically intelligent

manner, i.e. by resolving the query hierarchically. This is what users expect when they perform

a query using a higher taxa search term and is what a taxonomically aware database should

be able to achieve. TreeBASE was built when there were few taxonomic databases available.

While NCBI had the resources to build the taxonomy (Federhen et.al, 2005) they required for

information retrieval, smaller projects such as TreeBASE, due to financial constraints, could

achieve the same. The Genbank model highlights the requirements of taxonomic intelligence

that would potentially make TreeBASE a more attractive information provider.

Many queries that users perform are higher taxa queries. As data are often collected for

multiple taxa, it is easier to use the higher taxa that include all the species of interest, than

it is to search for each species name individually. Higher taxa queries implicitly include all

lower taxa in the hierarchy, and as a result make the queries more succinct and easier to

formulate. Including hierarchical queries in TreeBASE can be easily achieved with the inclusion

of the NCBI taxonomy. However, the difficulty here is that NCBI provides just one taxonomic

view and there are multiple overlapping classifications which may be useful in different user
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communities. Some users may wish to use higher taxa groups that are not contained in the

NCBI classification. This poses a problem for systems such as TreeBASE that store data across

classifications, and the storage of these classifications and the choice of which classification

to traverse when performing these hierarchical queries is a significant consideration. In this

respect, Genbank only provides one particular view of taxonomy, and no others, which may not

be suitable for all TreeBASE users.

2.4.3.2 Query Expansion with Synonyms and Vernaculars

It seems that users prefer to perform loose queries in the hope of gathering all the data (and not

loose anything of value) and manually filter the result set. Vernaculars can be considered to be

loose queries, for example, a cat could refer to all species in the family Felidae, where as puma,

cougar and mountain lion have a little more specificity. The use of loose search terms is typical

in a “drill down” search, which is usually performed when a user has a rough idea of what she

is looking for but is not exactly sure, and chooses to browse the relevant data until she comes

across the actual search term. The use of loose query terms is similar to hierarchical query

expansion, in that the query term should also translate from the vernacular to the currently

accepted scientific name. Indeed, judging from the queries we examined (see Chapter 7), a user

expects that the query translates to the scientific name and any other synonyms and vernaculars

that are linked to that scientific name.

Synonyms are not loose queries but queries that are performed either because the user knows

exactly what she is looking for or because she is unaware of the current status of the name and is

using it in error. This should not cripple a user in their search strategy, and similarly, synonyms

should translate in much the same way as vernaculars, so that all relevant data are returned to

the user, despite the fact that the user provided a very specific query term.

2.4.3.3 Consistency

Consistent use of names is important in information retrieval. If the database system only allows

the use of a single name for a given concept, the data linked to that name can be retrieved

when using the name as a search term. However, if names are used inconsistently, i.e. with

two different spellings, then some data will be attached to one use of the name and some other

data to the other spelling (Rothschild, 1989). In order to get all data of interest, both names

would have to be used as the search term. However, two different classification schemes may

rightly or wrongly use different spellings, i.e., the spellings Boopidae vs. Boopiidae shown in
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Figure 2.3. It is therefore an important design consideration to allow mismatches in search

terms as taxonomic names take Latin form and the exact spelling can sometimes be difficult to

decipher for both experts and novices. As a result, spelling mistakes have propagated through

the data. Not only do users require some capacity to check for the correct spelling of a name

but they should also be able to retrieve data that has been used with an alternative spelling.

An approximate string match tool can be employed that will enable the system to find a match

even if a query it is misspelt.

2.4.3.4 Data Coverage

Simply employing the NCBI taxonomy, as used in Genbank, is not a solution to all the tax-

onomic requirements of TreeBASE or the work of all systematists. In some cases, there is an

obvious choice of a taxonomic data source, however, there are cases where users require full

coverage of all known named organisms. In the example, in Figure 2.3 we see that Genbank is

not a complete source of taxonomic data for lice. Many more taxon names can usually be found

in the classifications of constructed by experts. In Genbank the sarch term Aves returns 4645

taxon names while the same search in ITIS returns 14,095 names. Considering this, the NCBI

taxonomy alone would not suffice for the working practices of systematists. Most researchers in

the field are able to find with ease the most up-to-date checklist on particular groups, however,

these checklists are not always linked to data. For example, 4645 bird names are linked to a

sequence, but names in stand alone checklists are not digitally linked to data. Using another

taxonomic scheme requires manually synonymising names across the schemes in order to trans-

late the query term in one, to the relevant query term in the other. For example, Charadii vs

Charadiiformes is a required synonymisation. It is therefore important for a taxonomy database

to provide full coverage of the estimated 1.7 million known species (Alroy, 2002) by including

as many taxonomic data sources as possible.

These challenges may be addressed by combining the content of multiple taxonomic data

sources and integrating the data into a form that can support taxon queries in TreeBASE.

The research hypothesis studied in this project is that data retrieval from TreeBASE can be

improved by the inclusion of a taxonomic infrastructure. This infrastructure must provide a

wide coverage of data and therefore a merged, integrated view of taxonomic data through a

single point of access is required.
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Figure 2.3: A comparison of two different classifications of Lice shown using an applet (Grant,

2004). A classification provided by Vince Smith, currently at the Natural History Museum,

London and the NCBI classification starting from the node Phthiraptera. The colour assignment

is as follows:

Black = The root of the tree (top level of classification),

White = Nodes that are the same in both trees,

Green = Nodes that occur only in one of the trees,

Red = Nodes that have the same name but are classified differently in the two trees,

Orange =The point at which the classifications of the red nodes diverge.

The red nodes highlight the classification differences, this is because Rhyncophthirina and

Rhynchophthirinia and Boopidae and Boopiidae are spelt differently in the two classifications.

The darker shades of these colour represent nodes in the NCBI classification. The number of

light green nodes indicates that the Vince Smith classification has far greater data coverage

than the NCBI classification. This data was part of a masters project carried out by E. Grant,

see http://www.dcs.gla.ac.uk/~grantej/treebolic/DATA/liceTaxonomy.html.
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2.5 Integration approaches and database technologies

It is clear from the taxonomic requirements of TreeBASE that a taxonomic database is required

that can deliver a broad coverage of taxa and multiple classifications. The proposed approach

is to build this database specifically for TreeBASE. A database is defined as a collection of

related information about a subject, organised into a useful manner that allows the data to be

safely stored, accessed and analysed. This section briefly outlines database technologies that

are in prominent use in biology.

2.5.1 Database technologies

Database System

The term database system (or more accurately database management system) is distinct from

database, although the terms are used synonymously. A database system comprises the com-

puter programs used to manage and query a database, while databases are structured collections

of related data. The structure of the data is the key component of a database, and is mod-

elled by the database schema. A database schema represents the structural description of the

data that is held and the objects and relationships among them. There are different ways of

organising a database schema. The different database models that are in use described below.

Database management systems are categorised by the data model they support. The re-

lational model is the most commonly used. Object Relational is a relatively recent addition

and there are the older Hierarchical and Network Models. The database system also provides a

language to access the data. These two components of a DBMS, the model supported and the

query language, are a key part of the decision for which system to use in the development of a

database. One other data model that is not supported by any particular management system1

is the flat model.

Flat files

In the early days of computing (when magnetic tapes/punch cards were in widespread use) data

was generally structured in a flat model. This data model represented data in simple files of

sequential records. The more commonly used term now is “flat file” since they are distinct from

most other data models and this term is more literal. In a flat file one record is sequentially

followed by the next, and the file contains only data and delimiters. The field delimiters and
1Excluding the operating system - these were essentially filesystems similar to those currently in use.
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the record delimiters are commonly commas and newlines. Fixed width flat files were the first

implementations where the fields were padded (with spaces) to a particular width2. Flat files

are still common data structures. They are simple tables (precursor to spreadsheets), easy to

use and conceptualise and one of the main reasons they have stayed in regular use is that they

are easy to share and transform into other structures.

With the ease of use came several limitations, in particular the operations on these structures

were limited to: opening the file and reading the current record and only basic operations to

allow you to go to the next, first, last, previous or nth record with only insert, update and

delete manipulations. These file systems were soon found to be lacking as a database, given

the overhead of opening and closing files, the problems associated with redundant data3 and

concurrent access 4. In terms of data management, flat files were especially inappropriate for

complex data.

Though flat files are making a revival through more sophisticated structured XML files,

other data models offer more adequate solutions to databases and data management.

Hierarchical Model

The first data model in prominent use was the Hierarchical model. In this model data is

structured as a tree (hierarchy), similar to the taxonomic tree structure. Data at each level in

the hierarchy are either related or dependant upon data at the level higher. The model presents

data as records, records have fields and the fields hold the data values. Records are

connected to each other through links, and links connect two records.

However, while the hierarchical model is very fast and efficient at querying hierarchies,

certain queries can be difficult, i.e. querying across multiple trees. Also, these models are

not designed for regularly changing hierarchies. The most widely used hierarchical DBMS is

IBM’s IMS (Information Management System) (Strickland et al., 1982), initially developed for

the Apollo space program back in the 1960’s and still in use today in many financial systems.

However, it runs only on IBM’s mainframe hardware and is integrally linked to the Z/OS

operating system making it an inaccessible product for most academic environments.

A newer Linux-based and open source implementation called Mumps/MDH (The Multi-

Dimensional and Hierarchical Database Toolkit (O’Kane, 2006)) provides hierarchical storage

and retrieval and has been shown to work very well. It has been implemented successfully for
280 digit punch cards are an example of fixed width flat file.
3the same data in many files
4data corruption through two processes attempting to modify the same data file
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large genome data sets (O’Kane & Lockner, 2004) with added functions including Perl regular

expressions, string searching algorithms and the Smith-Waterman alignment algorithm. This is

one of many Mumps based information systems which are mostly implemented in the healthcare

industry, MDH is perhaps the first implementation within the bioinformatics community. How-

ever, Mumps is a rather esoteric programming language, pre-dating many of those currently in

use today and therefore has a very different syntax. The MDH implementation supports access

to the PostgreSQL DBMS, the Perl Compatible Regular Expression Library, the Berkeley Data

Base. The database with its functions is available as C++ classes, making it the most accessible

Mumps implementation so far and may prove more popular in the future.

Figure 2.4: Hierarchical Model on the the left and the Network Model on the right. Adapted

from Greenwald et al. (1999) Figure 1-1.

The hierarchical model allows 1:N (one to many) relationships between records, i.e. a

record (the parent) can have many children records, the children can have only one parent.

To enable multiple parent-child relationships (N:N or many to many), the Network model was

established. The network model differs from the hierarchical model in that the hierarchical

model must form a tree structure while a network model allows arbitrary graphs. The model

is record based. Records in the network model are a collection of data items. Records grouped

together are set types. CODASYL (Conference On DAta SYstems Languages) (Taylor &

Frank, 1976) formally defined the network model in 1971, it is based on mathematical set

theory, where a set defines the 1:N, N:N and also 1:1 relationships. Figure 2.4 gives a schematic

of the difference between the hierarchical and network models. The Network model however

was very quickly displaced by the Relational model.
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The Relational Model

The Relational model (Codd, 1970) is by far the biggest success story in database research. Also

based on mathematical set theory, its biggest advantage was in the simplification of systems

through independence of data from the application. In all the systems described above, the data

and application were tightly coupled. In the relational model this is not so, because the data

model and implementation (physical components that constitute the model) are distinct and

‘data independence’ is achieved. What this means to application designers is that if changes

are made to the way the data are stored and accessed at the physical level, no corresponding

changes are needed at the application level. The way the data looks to the user and the way

queries are made do not need to change.

The language of the relational system also simplified data access, as older systems commonly

used procedural languages, working on one record at a time, while relational programming is

non procedural working on sets. At another level of simplification, data consistency in the

relational database is enforced, not by rules built into the applications but through constraints

which are part of the logical schema. The same rules are accessible from the schema and they

do not have to be built into each individual application that accesses the data. Overall, it was

these simplifications of data management and data querying that resulted in the Relational

Model dominating the database market. One other reason the relational databases grew to be

more dominant was through the availability of multiple platform versions; unlike IBM’s IMS, for

example, the Oracle relational database was available on nearly all the early operating systems

(Greenwald et al., 1999). The Relational Model is the most accessible and by far the easiest to

use system of all those described. It is predominant in bioinformatics and indeed most of the

taxonomic databases currently available are built on a relational model.

The Object-Oriented Model

The object-oriented (OO) database model (Silberschatz et al., 1996) is adapted, as the name

suggests, from the object oriented paradigm used in programming languages. The model is

based on objects and their relationships, contrasting them from the record based relational

model. Within the OO data model, data are represented as objects. These in turn, are organised

into classes, giving a hierarchical structure where classes inherit from its parent. Both data,

and operations on the data (methods), are stored in the database as objects and since data

values are stored as objects, objects can be shared. Using object identity, two objects can
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share components, other objects or methods. The hierarchical structure of classes facilitates

the re-use of methods. Object-oriented models are used for systems where other data models,

such as the relational model, can not be used easily to capture the underlying structure of the

data.

Graph Model

The graph database models (Angles & Gutierrez, 2008) were popularised alongside OO models

and were developed to explicitly capture the inherent graph structure of certain data, i.e.

hypertext data. In graph databases the data structure (and the schema) are represented as

graphs (directed, labelled) or a generalisation of a graph (hypernode, hypergraphs) and data

manipulations are expressed as graph-oriented queries. Each of the proposed graph data models

supports node labelled digraphs and the majority also support edge labels. An example schema

and instance for the graph database model GOOD is presented in Figure 2.5 and the more

recent model, the Graph Data Model (GDM) is presented in Figure 2.6. GDM was based on

the GOOD data-model but extended to support complex objects.

2.5.2 Data Integration

Data integration involves combining data, so that data from a number of heterogeneous data

sources can be queried seamlessly. Data integration offers significant advantages to users,

namely; transparency and extensibility of data. Data from several different sources often need to

be queried in specific ways, by integrating the data accessibility is made efficient and differences

and overlaps in the data are made more obvious. Also, in terms of extensibility, if is often

difficult to use data outside of the scope provided by individual data providers, data integration

offers to extend the scope of data use. Data integration is most often achieved through Database

Integration.

The establishment of reliable data management solutions has resulted in increasing numbers

of easily accessible information resources. However, with large number of databases built for

specific needs and requirements, especially in the biological sciences, data has become more

disparate and the focus has shifted towards data integration in order to maximise the use of

these data. The main goal of data integration systems is to provide a mechanism to unify

databases so that users do not have to manually query multiple databases and collate the

results. There are clear benefits to be gained from integrating data other than the convenience
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Figure 2.5: GOOD, Graph Object-Oriented Data Model taken from Angles & Gutierrez (2008)

Figure 11. The schema graph on the left represent the parent child relationship through the

nodes Pe (person) and CP (child-parent), the double arrowed edge between CP and Pe labelled

Parent indicates a multi-valued attribute. A person has more than one parent. The child

attribute of a person is indicated below with a single arrowed edge, indicating that a person

can only be the child of one Child-Parent instance. For example, Person with name Julia and

last name Jones is a child of the child-parent relation, which has two parents Ana Jones and

George Jones.
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Figure 2.6: GDM, Graph Data Model taken from Angles & Gutierrez (2008) Figure 11. The

schema is represented in the graph on the left, nodes are classes and the attributes are repre-

sented as edges. The Person class has attributes name and lastname. Person is an object node,

PC is a composite-value node and has the attributes parent and child. Str is a basic value

node, representing the values name and lastname. ‘The instance is the graph on the right. In

the instance graph we see the parent child relationship between George Jones and Julia Jones

represented as: Person, with name “George” and last name “Jones” is a parent and has child,

a Person with name “Julia” and lastname “Jones”.
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of not having to query several databases; the ability to extract data and make predictions or

decisions from integrated sources is just not possible when the databases are queried in isolation.

In data integration, the data are combined from two or more databases (data sources) into

one large database (Lenzerini, 2002). Within the large integrated database, the consolidated

data can be queried as a unit, thus allowing more information to be acquired from the data

(Calvanese et al., 1999). One approach to data integration is database federation which consists

of relational database that provides uniform access to two or more heterogeneous data sources.

Database federation is an effective approach to integration of heterogeneous data sources when

the data can not be materialised into the integrated database (a data warehouse). Data in-

tegration using a data warehouse approach, where data from the data sources are physically

combined into one structure, is a very mature field. The data warehousing solutions (OLAP

- see below) and data federation tools (query rewrite and cost-based optimisation) are well

established and used in many production systems.

Through a federated approach, the combining of data from several data sources can be

accomplished in several ways. In a loose federation (Figure 2.7), application systems are built

to directly combine data retrieved from querying the individual data sources. These special

purpose applications are often a ‘quick and dirty solution’. They are quick because integration

is coded into the applications which are inexpensive and simple to build, but dirty, because

these systems are expensive to maintain especially as they are easily broken by changes to the

underlying sources (new data sources generally require the application to be re-written), see

Figure 2.8.

More robust data integration systems generally follow a materialised approach (Figure 2.7),

where the degree of federation is based on requirements and data availability. Where data are

being integrated from different organisations, those organisation may choose to make the data

available in such a way that the underlying data sources remain under their control. These

autonomous data sources force the development towards loose federation. However, where

the requirements show data mining or decision support queries then performance becomes the

key driver to the degree of federation, pushing towards a data warehouse. This approach is

illustrated in Figure 2.9.

In a data warehouse copies of data from several sources are stored in a single database, using

a global schema (Bouzeghoub & Lenzerini, 2001). The components of a data warehouse are

the sources containing the original data, the global schema providing the integrated view of the

data and the data load processes that transform the data from the sources to the global schema.
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Figure 2.7: Degree of Federation and Instantiation in integration methodologies. Data ware-

houses fall to the left in the diagram above. Generally, warehouses are computationally more

efficient since they provide high performance and are scalable. Loose federations have several

advantages also, since the data are not replicated and the data sources can be anything from

flat files, XML files to application programs (see Figure 2.9).
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Figure 2.8: Overview of Loose Federation Procedure taken from Karasavvas et al. (2004). This

diagram shows query driven integration. Data are extracted from the sources only when queries

are posed. The integration system contains no data, the wrappers access the data sources,

extract the relevant data and return those data in some specified format read by the mediator

which merges the data from each wrapper and returns the integrated data to the user. The

data sources remain autonomous. In a materialised federation, integration is data driven (see

Figure 2.9)
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During the load processes data are usually filtered or cleaned. One of the primary uses of a

data warehouse is for decision support. In the commercial business sector, the need for in-depth

analysis of data for determining statistical patterns of consumers, stock updates, forecasting

from sale patterns, financial reporting etc., essentially drove the establishment of data warehouse

technologies. The focus of analysis (complex queries) in warehouses over transactions (updates,

inserts deletes) led to the development of OLAP (On-Line Analytical Processing (Chaudhuri &

Dayal, 1997)). 6.

The database federation approach can form either a virtual warehouse or a materialised

warehouse, depending on whether the data can be physically moved. Generally the term

warehouse is synonymised with a materialised warehouse; the term warehouse is used here

in reference to a materialised warehouse.

It is commonly accepted that data warehousing is the most effective way to provide the data

for business decision support queries (Hoven, 1998). Data warehouses have several advantages

but mainly the powerful high-level query language (SQL) greatly simplifies the combining and

comparing of data, transferring data and of course all the other features of relational database

management systems in terms of performance, reliability and extensibility.

There has been a notable shift in data integration more recently, since the internet has

accelerated the decentralised nature of data. Many newer technologies are gaining ground

especially as many data sets, due to size, are too large to physically move. Data (or information)

integration is now a pivotal area of research and highlighted as one of the main uses of semantic

web technologies (Berners-Lee et al., 2001a).

2.5.3 Steps to Integration in Data Warehouses

In the context of a materialised data warehouse, the process can be outlined in three steps.

1. Identification of the sources and source schemata where the relevant information resides.

2. Schema Matching: mapping source schemata to the warehouse structure (global schema).

3. Data Transformation: Combining data within the data warehouse structure (global schema).

The first step involves identifying the sources where the relevant information resides and acquires

the data. In most business environments these are internal data silos but in academic research

these are usually public domain databases. These data are then mapped from the source data
6Traditional databases were OLTP systems (On-Line Transaction Processing).
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Figure 2.9: Materialised federation, Data Warehouse, taken from Widom (1995). In this

methodology the integration is data driven, the data flows from the information sources at

the bottom to the data warehouse at the top. The Integrator transforms the data into the data

warehouse from the information sources. Monitors may be employed to check periodically for

data that need to be transferred. The wrappers access the data that are to be transferred, these

could be simple SQL statements or programs to retrieve the data from the sources. The dia-

gram suggests that the information sources are databases but they need not be. Data sources

can be also, XML files, flat files or Excel files.
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structure (schema) to the warehouse schema (schema matching) and finally integration occurs

as physical transformation of the data to the data warehouse schema. Particular attention is

paid to the second step, mapping of the source schemata to the warehouse schema since this is

the most challenging step in the process.

2.5.3.1 Schema Matching

Schema matching (Navathe et al., 1984) is the interpretation of the data within the data sources

before integration (i.e. before building the transformation code to transfer data in the source

schema to the destination schema). Schemata are the structural description of the data held in

data stores and as such are metadata. Some schemata also address data contents through, for

example, allowable values and meaning of data through cardinality and referential integrity. As

much as databases are heterogeneous, their schema representations are equally heterogeneous,

making the process of mapping across schemata a manual task. The mapping process looks at

data elements described in the schema to determine how and which data elements should be

transformed into the source schema. An example is given in Figure 2.10, showing the mapping

between two different schema structures. The first step is the comparison of the source schema

to the corresponding destination/global schema. In the example given, we can map Style

to Genre, Band to Artist and so on. These are semantic correspondences between the two

schemata. In many cases the mapping is clear through, however, cases such as Track and Title

could be tricky given only this level of metadata. Quite often it is necessary to look at data

items, for example, Track could equally map to Name or Title. However, if it turned out that

tracks in this case are numbers (e.g. Track 1) it would not map to any of the items in the global

schema. Only by looking at data items may data elements become obvious. The example also

highlights missing data in the local schema, and a possible amalgamated element in Band and

Producer which together could correspond to Artist.

Identifying these semantic correspondences is almost entirely a manual task, sometimes even

requiring domain experts to perform the matching. New research is attempting to automate

this (Saleem et al., 2008)) Since the next step, data integration, is fundamentally built on these

mappings it is particularly important that this step is expertly completed.

2.5.3.2 Data Transformation

The semantic mappings from the previous step are used to write the relevant code (SQL) to

transform and transfer the data into the global schema. Given the examples in Figure 2.10, if
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Name

Title
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Figure 2.10: Schema Matching for transformation into the Global Schema.

both the source schema and global schema were in relational form, this stage would require an

SQL query to transform the data (see Figure 2.11).

Figure 2.11: SQL INSERT statement maps attributes from the (source) Schema into Global

Schema attributes. The attributes Band and Producer are concatenated into the global schema

attribute Artist.

This data merging step has three design considerations: performance, duplicate removal and

data quality assessment. These issues can require considerable analysis and design effort.

In most cases, the above two steps are performed incrementally, i.e. the data are added into

the global schema incrementally. The addition of the first data source is straightforward, the

addition of the second and subsequent data sources, are more complicated, as the data need

to be examined to remove duplicates. Data quality is considered after this stage, it is only

once the data are brought together that the complexity of the data and the number of source

data quality problems become evident. The physical transformation of data should homogenise

and cleanse the data of inconsistencies across the data sources, making inconsistencies easier to
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spot.

Transformation steps are often performed with materialised views (or simply views). Views

are a stored SQL query, which in this case compares the data in the global schema to the data

that is in the local schema. Duplicates can be avoided either by including a clause in the view

so that they are not included or they can be allowed in the view (as is sometimes required)

and picked up by unique constraints on the global schema. These views also serve to speed up

some of the data transformation process. The views also provide the first comparisons between

different data sources and are therefore also used to analyse data quality and pick up data

inconsistencies such as missing values or inconsistent use of attribute values. These processes

are typically known as data scrubbing or data staging.

2.5.4 Data Warehouses - Update and Maintenance

The development of a data warehouse requires a considerable investment in time and resources.

One point that needs to be addressed once the system is operational is maintenance and data

refreshment. Most database systems require maintenance, such as for example, queries that

need to be optimised and the addition or update of data or indexes. Similar maintenance

requirements in a warehouse have the overhead of scale as warehouses, by definition, are larger

than most of the data source systems, and as such the maintenance overhead is greater in terms

of index sizes and backups.

The requirements of data refreshment should be considered at the early stages of develop-

ment, and the rate of refreshment will depend on the purpose of the warehouse. All database

systems have similar considerations however, due to the increased scale of data warehouses,

performance during a data refresh can have a serious impact on users. In most cases mainte-

nance and refreshment has to be done off-line. In some scenarios the data warehouses are not

refreshed at all but retired and replaced with a system containing the new data.

Materialised views1 and database triggers2 are often used to maintain and refresh data. In

these cases data refreshment can be either source driven (using views) or warehouse driven

(using triggers). In a source driven architecture, when the source schemata are updated, the

views simultaneously update the warehouse with the relevant changes. In a warehouse driven

architecture, the warehouse is updated during specified down time, the new data are collected
1A Materialised view is the result of a SQL query where the result set is stored on disk.
2Database triggers are procedures that are stored in a database and are executed or “fired” when a table is

modified.
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into log tables and a trigger is fired once these tables reach a certain point (size or time driven).

Clearly source driven refreshment has advantages, however, performance remains an issue and

most databases can be refreshed more efficiently when they are taken off-line.

An alternative approach to data warehousing uses web services to facilitate cross-database

queries. This mediated approach has also been successfully deployed for taxonomy (Page, 2005).

In this system a user’s query is captured by a mediating script (wrapper), which translates the

query to the various data sources and returns the results to the user. The major advantage

is that users have access to the most up-to-date data. Each source is mapped and the query

mechanism is coded into a wrapper so that the user accesses each source through a uniform

query interface. What can be delivered though are only those queries supported by each indi-

vidual system. The warehouse approach has this additional advantage; the flexibility of data

manipulation during transfer, and the ability to effectively query combined data as a unit. The

warehouse approach is also more commonly used when data mining and cleaning are a necessary

part of data integration.

2.5.5 Warehousing Taxonomic Data

As more and more taxonomic data becomes available to the wider user community, focus

is beginning to shift towards understanding the distribution and quality of taxonomic data

(Chavan et al., 2005; Embury et al., 2001). Data accuracy, consistency and completeness are

issues the taxonomic community are beginning to address (Chapman, 2005a,b). By reconciling

taxonomic data, we can begin to understand the quality of the data currently available and

deliver more information to our user communities.

There is considerable benefit in combining and merging these taxonomic data sources. Aside

from providing a single point of entry to taxonomic data, integrated data sources enable us to

determine and understand data quality. Taxonomic names combined from several data sources

into a common structure can be compared and verified against each other to identify inaccurate,

inconsistent and incomplete data. Uncovering these data quality metrics (Fox et al., 1994; Wang

et al., 1995) gives users the ability to understand and therefore use their data better. It can

also be used to identify data that require cleaning or complete taxonomic review.

Integrated Taxonomic Information System (ITIS, 2006), the Universal Biological Indexer

and Organizer (uBio, 2006) and Species 2000 (Bisby & Smith, 2000) were each built for specific

user communities. The Sp2000 project provides federated taxonomic data and performs excep-

tionally well for the purposes and scope for which it was built. The problem arises for users
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who wish to use the data beyond this scope, for example, Sp2000 does not support the ability

to search the individual data sources from which data are collected hierarchically, because it

does not store the classifications from each of the data sources. uBio provides, at the moment,

possibly the best taxonomic name search facility. These queries can be automated and inte-

grated into other systems (Page, 2005) through their web services interface. However, the data

they provide can not be downloaded into other databases, for example, a phylogenetic database.

ITIS, which also compiles data from other data sources, carefully curate each datum they ac-

quire and provide users with a single conservative view of each name. It is however, biased

in data scope. Similarly, the NCBI (Federhen et.al, 2005) taxonomy is another excellent data

source but biased reflecting only those organisms for which nucleotide or amino acid sequence

information is available. There are many more examples of databases, each developed to meet

specific user requirements (Deprez et al., 2004). As a result taxonomy now has an enormous

web presence yet none of these taxonomic data sources meet the requirements of TreeBASE as

outlined.

The number of online taxonomic resources has now made it easier to collate taxonomic

information (Bisby et al., 2002; Gewin, 2002). “Data Warehouse” technology enables data to

be brought together, integrated and transformed into a common structure. This increases the

accessibility of the data to wider audiences by remodelling the data for their specific require-

ments. Generally, the source systems are designed for experts in the field, leaving non-experts

put off by the interfaces and the overwhelming quantity of data. In most cases this remodelling

simplifies data, making it accessible to non expert users and used outside its’ original design

scope. This thesis goes on to outline the development of a taxonomic data source for Tree-

BASE, the Taxonomy and Classification Database (TCl-Db). In the warehouse architecture of

TCl-Db, data from several taxonomic data sources are replicated and maintained in a common

structure, increasing data coverage and adding links across the data sets. The data in TCl-Db

is also transformed to enable hierarchical queries.

2.6 Summary

This chapter gives an overview of the complexities of taxonomic data. Regular changes to biolog-

ical taxonomy result in name changes, synonyms, homonyms and many classificatory opinions.

As a result biological taxonomy cannot be used as an information retrieval system. It is par-

ticular difficult to use taxon names to retrieve data. Even though many taxonomic database
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exist and these problems are being addressed, currently, the taxonomic requirements of the

systematics community are not well supported. TreeBASE does not contain an adequate tax-

onomic infrastructure that supports taxonomically intelligent queries for data retrieval. Given

the large number of online taxonomic database and the benefits provided by data integration,

a data warehouse approach to resolving the taxonomic deficiencies of TreeBASE forms an ideal

solution.

The following chapter details the design and implementation of TCl-Db. Taxon names and

classifications from several data sources are combined into one queriable structure that supports

expansion of vernacular, synonym and higher taxa query terms.
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Chapter 3

Database Design and

Implementation

The previous Chapter detailed the requirements for a taxonomic infrastructure for TreeBASE.

This Chapter outlines the database structure of TCl-Db, the database that was built to meet

those requirements.

3.1 Introduction

The taxonomic requirements of TreeBASE, and particularly the need to support of informa-

tion retrieval, prompted the development of TCl-Db, a data warehouse of taxonomic names

and classifications. Currently, no taxonomic database meets the requirements of the systemat-

ics/tree building community with respect to data coverage of taxon names and classifications.

TCl-Db facilitates broader access to taxonomic data, beyond its expert community, through

an integrated view of taxonomic data. The database structure enables the types of queries the

systematics community would expect to perform. These queries are: hierarchical queries (the

use of higher taxa names as the search term with the full classification below that term returned

in the result set); and queries such as synonyms and vernaculars that expand to related terms.

TCl-Db uses a data warehouse approach to perform taxonomic data integration. In a data

warehouse, the data are gathered from multiple sources and collated into a single structure.

This approach is particularly useful to the systematics community, since it not only addresses

the issue of data scope, but is also scalable and highly configurable, allowing data to be re-
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structured to enable specific requirements. These requirements are outlined in this chapter.

The architecture of the TCl-Db data warehouse, the databases that contributed data, and the

global schema structure developed to hold the integrated data are described.

3.2 Requirements

3.2.1 Data Retrieval

When querying a database system the results returned are those data that satisfy the given

query. This is referred to as data retrieval and in relational database systems it is accom-

plished by the query language SQL. Given well defined structure and semantics, a well formed

query will return exactly those data that satisfy that query. In information retrieval, ideally,

a given query is understood by the system, there is an element of interpretation through related

terms or categorised topics (Fast et al., 2002). The query does not have to be exact and the

data returned is not that which matches the query but that which is relevant to the query. For

example, a search through the TreeBASE data using a query on the vernacular term “Song

Sparrow” will return data that matches that term exactly. Such a query will not return data

including associated terms i.e., the scientific name Melospiza melodia. The database structure

and data content of TreeBASE will only return data for a query if that data exists. If, for

example, the term “Song Sparrow” exists, data will be returned, however, the data attached

to Melospiza melodia will not. Inherently, a biologist is really talking about Melospiza melodia

when he uses the vernacular “Song Sparrow” therefore, these users would expect the query to

include both terms. In most cases it is also expected that a hierarchical query, a query using a

higher taxon name, would return not just the data associated with that string but all relevant

data, including subordinates of that taxon. Hierarchical queries are commonly used in “drill

down” searches through generalised terms and as such play a valuable role in information re-

trieval. Currently, TreeBASE performs only data retrieval. The database was built specifically

to enable effective taxonomic queries through TreeBASE through query expansion.

Hierarchical Queries

The hierarchical structure of taxonomic data is instinctively recognisable. A biologist can recog-

nise a taxon name simply by its structure or its name ending. This organisational structure was

originally designed to enable biologists to commit the data to memory (Cain, 1959) and enable
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Figure 3.1: NCBI Classification of the family Crocodylidae.

them to identify and place newly discovered organisms into the system. For many biologists

higher taxon names are a natural access point into databases such as TreeBASE. The results of

a taxon name search should return that name in the context of its position in the classification

and its usage in terms of validity or synonymy. In a database that is taxonomically aware, such

as GenBank, hierarchical queries such as, “find all sequences for the genus Crocodylus” or “all

sequences for the kingdom Fungi” are easy to specify. A hierarchical query enables a user to

enter a broad search term and have the query expand through the hierarchy. This gives the
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user the opportunity to refine and adapt their search based on the result set. For example, a

search on a taxonomic order should return all families, genera and species. Figure 3.1 shows an

example of the results expected given the search term “Crocodylidae”. However, the differing

classifications means hierarchical queries are not straightforward, since biologists may wish to

use different classifications in these searches. Hierarchical queries on different data sources often

return different result sets. Figure 3.2 A and 3.2 B are representations of the classification for

the class Aves in NCBI (A) and ITIS (B). This circular representation of the hierarchy high-

lights the structural differences between the two classifications. When the two classifications

are overlaid in Figure 3.2 C, with ITIS names in red and NCBI names in BLUE, we clearly

Figure 3.2: NCBI and ITIS Aves Trees. This figure highlights the difference in the classification

of Aves in NCBI (A) and ITIS (B). C overlays names common to both ITIS and NCBI on to

the NCBI classification.
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see little overlap above the leaf nodes. Considering these different classification opinions it

would be inappropriate to impose one classification on users. Therefore, a part of the design

criteria of TCl-Db was to give users a choice of classification. This was also timely since most

other taxonomic database amalgamations such as uBio and Sp2000 were focusing on gathering

names and building global checklists rather than the classifications. uBio extended their remit

to classifications.

Supporting Query Expansion for Synonyms and Vernaculars

The intertwining of names into the hierarchical structure has an adverse side effect when things

change or are moved. The taxonomic system is in constant flux as new organisms are discovered

and introduced into the hierarchy (Froese et al., 1990), which often results in the movement of

names in the hierarchy to accommodate additions and the subsequent changes to the names to

fit into the new rank, as outlined in the previous chapter. Data additions that cause changes

to the classification can be particularly severe since those changes have a rippling effect on the

data below it. Where hierarchical data structures fail is in the lack of data management, as

there is no mechanism to manage and share changes and additions to classifications provided

by the expert (Froese et al., 1990). As a result, data can be misused by users who continue

to use those names they are aware of. For example, a user conducting a search with the term

Phoebastria albatrus may not be aware that there are other names associated with that organism

i.e., the synonym Diomedea albatrus and the vernacular “Short-tailed albatross” (Figure 3.3).

Therefore, explicit in the user requirements is the ability to expand queries to include associated

terms. Synonym and vernacular queries terms and their Latin names should be linked, so that

queries can expand to include data associated with the linked terms. In a search interface a

user may then enter either one of the above names as a search term, with the same result set

returned.

Data coverage

The differences in classification between ITIS and NCBI have already been highlighted, how-

ever, these databases also differ significantly in data coverage, as shown in detail in Chapter 5.

Particularly obvious differences are the coverage of data in bacteria and fungi where molecular

data has played a much greater role in discovery and identification. In order to effectively use

taxonomic data as search terms, the systematics community require an integrated global view

of taxonomy that covers the breadth of available taxonomic data.
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Diomedea albatrus

Phoebastria albatrus

NCBI ITIS

Albatros rabon

ITIS

short-tailed albatross

ITIS

Figure 3.3: This figure shows linked names for one organism Diomedea albatrus. A search using

any one of these terms will return all of the terms in the result set. The arrows show how

the names are linked within the database. A simple search on the source databases using the

term Phoebastria albatrus would not return “Short-tailed albatross” since there is no direct link

between these terms.

Each of the requirements outlined above: data retrieval, query expansion and data coverage

can be addressed through data integration.

3.3 Data Warehouse

The traditional method used to integrate and inter-operate between multiple data sources is

to database using a warehouse approach. This approach involves migrating data from multiple

sources into a common structure so that the data can be queried as a unit.

The warehousing approach to data integration is described in the previous chapter. It

is well established and well supported in database technologies (Ullman et al., 2001). An

alternative approach to data warehousing uses web services to facilitate cross-database queries.

This mediated approach has also been successfully deployed for taxonomy by Page (2005). In

this system a user’s query is captured by a mediating script (wrapper), which translates the

query to the various data sources and returns the results to the user. The main advantage of this

is that users have access to the most up-to-date data. Each source is mapped and their query

mechanism is coded into a wrapper. The user accesses each data source through a uniform query

interface. However, only those queries supported by each individual system can be delivered

in the integrated wrapper. The specific requirements of enabling hierarchical, synonym and

vernacular queries may not be available within each source. The warehouse approach does not
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have this disadvantage. In fact, it offers the flexibility of data manipulation during transfer,

and the ability to effectively query combined data as a unit. The warehouse approach is also

more commonly used when data mining and cleaning are a necessary part of data integration.

The advantage from our perspective is that during data migration data can be restructured to

enable specific user requirements. The disadvantage, however, is that this approach replicates

data, as keeping data up-to-date adds a significant overhead to managing the system.

Given the requirements outlined above and specified in Section 2.4.3, data integration using

a loose federated system would be insufficient. In loosely federated systems the data sources

remain autonomous and maintain control over the structure of the data. Therefore, as a fed-

eration the data can not be transformed effectively to enable hierarchical queries. However,

a materialised data warehouse copies data locally. This enables data re-modelling to support

hierarchical queries and the ability to build new data structures to enable query expansion.

Additional advantages offered through a materialised approach are reliability and scalability.

This is of particular importance since this system is envisaged to apply to secondary databases

such as TreeBASE. A materialised data warehouse approach was deemed most appropriate to

meet the requirements laid out. This would be built using a RDBMS. We were faced with

two choices of RDBMS: MySQL (MySQL, 2006), open source and distributed under the GPL

License, and Oracle (Oracle, 2006) which requires a license but is free to academics for teaching

and research. Since data can be ported across relational systems with relative ease, the deci-

sion was ultimately based on which system provided the best tools for development and which

system would deal better with the requirement of hierarchical queries.

3.4 Modelling hierarchical data

A hierarchy is an organisational model in which the highest level of organisation consists of a

single entity. An entity at a lower level of organisation is related to only one entity at the next

higher level but can be related to more than one entity at the next lower level. Entities at all

lower levels are related by extension to the single entity at the highest level of organisation.

Biological taxonomy is a containment hierarchy in which a set at one level contains all the sets

below it. For example, a family is a superset of all the genera and species contained in that

family.

Relational databases in general do not handle hierarchical data very well, especially recursive

queries through hierarchical data. Two solutions are Nested sets and Materialised paths (Celko,
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Figure 3.4: Hierarchical model represented as a node labelled graph on the left. The figure to

the right represents the materialised path data for the same hierarchy.

2004; Tropashko, 2002). Also Oracle has a solution for recursive queries as an addition to SQL.

These solutions are described below followed by a comparison that was performed to determine

any performance advantages or disadvantages.

3.4.1 Materialized Paths

In this approach, the descriptive data for each node is the path from the root (the top) of the

tree. A path is a string of characters that represents the edges connecting each node to the

root node. Using the tree structure given in Figure 3.4, a hierarchy is represented on the left

as node labelled graph and on the right the same hierarchy is shown with the nodes labelled

with their materialised path string (similar to the directory path string in Unix).

3.4.2 Nested Sets

In Figure 3.5, the representation below the node labelled graph offers another representation

that better reflects a containment hierarchy. Nested sets use this summativity representation.

Each node in the tree is given a pair of numbered labels, to represent the inclusiveness of the

node. The most inclusive pair is the root node and the least inclusive are the leaf nodes. For
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Figure 3.5: Summativity representation. This representation is created by collapsing each node

into ovals and each oval into its parent ovals . Each oval represents a set containing nodes

from the node labelled graph above. The nested sets are left and right numbers representing

the containment. These are calculated by drawing a line through each oval, as the line comes

through an oval a number is incremented and attached to the left (the beginning of the set)

and then right (the end of the set) of each node.
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example, the nested set for node 1 is defined by the labels 1 and 22, node 3 is defined by 5 and

14 and node 6, a leaf node, has the nested set 12 and 13. The nested set 12 and 13 for node 6

is contained in the set, 5 and 14, for node 3 which in turn is contained in the set 1 and 22 for

node 1. These sets are calculated by drawing a horizontal axis through the the graph shown in

the centre and at the bottom of Figure 3.5, each node is numbered as the axis passed through

each boundary.

The nested sets and materialised paths offer an attractive solution because they are both

database vendor free solutions. The advantage they offer is the ability to use these data in

any RDBMS which makes the system portable. However, the disadvantage is that these data

need to be calculated for each tree, thus adding a significant over-head to data update. This is

particularly a problem if the tree structure changes or is updated as the paths and nested sets

for the whole tree have to be recalculated. The Oracle connect by query does not have this

added overhead since it uses only the parent-child relationship.

3.4.3 Performance Benchmarking

A benchmarking exercise was conducted on each form of hierarchical query to determine any

performance advantage or disadvantage within Oracle and MySQL. Using the same table struc-

tures in Oracle 9i and MySQL 4 with the same indexes and constraints, the responsiveness of

each database with each hierarchical query was tested.

The initial results show that both database implementations performed equally well in a

small subset of the NCBI taxonomy tree, with Aves at the root of the tree (4645 rows in

the table). We found, on this small dataset, that the differences in query response times were

negligible, therefore the benchmarks were repeated on a larger dataset (the full NCBI Taxonomy

tree with 162290 rows).

Using the larger data set, Oracle outperformed MySQL in both nested set and materialised

path queries. In Oracle, the connect by query timed out and two sub queries (selecting a small

branch of the tree) were also very slow to complete. The small difference between the nested

sets and path queries is most likely due to the difference between Oracle and MySQL indexing.

Nested sets are a numeric query (select all nodes between 1 and 22) while the paths are a

textual query (select all nodes that match 1/*). Given the way SQL performs, we would expect

the numerical, nested set queries, to have a performance advantage over the materialised path

queries, however, the table below shows that the materialised paths significantly outperformed

the nested sets for this data set. The results are summarised in Table 3.1.
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Aves (4645 rows)

Query Oracle MySQL

connect by 0.0 N/A
select count(taxon id)

from taxon start with taxon name =’Aves’

connect by prior

taxon id = parent id

Nested Set 0.0 0.01
select count(taxon id)

from taxon

where left id between 1 and 9290

Materialised Path 0.0 0.02
select count(taxon id)

from taxon

where path like ’/%’

NCBI (162,290 rows)

Query Oracle MySQL

connect by Timed Out N/A
select count(taxon id)

from taxon start with taxon name =’Root’

connect by prior

taxon id = parent id

Nested Set 0.0 0.45
select count(taxon id)

from taxon

where left id between 1 and 324574

Materialised Path 0.0 0.01
select count(taxon id)

from taxon

where path like ’/%’

Table 3.1: Average benchmark times in seconds taken for each of the three hierarchical queries
on Oracle and MySQL. Two data sets are used: the upper panel is the smaller Aves subtree of
NCBI and the lower panel is the full NCBI tree.

Given the overhead of building the nested set and materialised path data, the sensible

approach was to allow hierarchical data to be queried in more than one way. Oracle was

ultimately the RDBMS of choice, as if the nested sets or paths could not be built, an alternative

query, the connect by query, would still be available. Also, by giving a choice of mechanisms

to perform hierarchical queries, the system would still be accessible and portable to other

database products, including MySQL. The nested sets and materialised path data need to be

calculated and an example of building this data in Perl is given in Mackey (2002). The program

used here was written by Rod Page in C++ and performed very efficiently and calculated both

nested sets and path strings with no additional cost in time. Since both data sets were created,

both were included in the TCl-Db model.
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3.5 TCl-Db Structure

The database design was based on the data model given below in Figure 3.6. This was trans-

formed into the physical structure shown in Figure 3.7.

Name

NameSource

Comes From

Node

SynonymName

Has Valid Is a 

VernacularName

Has Valid Is a

Tree

Contains

Is Composed of

Figure 3.6: ER diagram representing the TCl-Db data model.

The entity name identifies a taxonomic name. The name entity has the following attributes:

name id, which uniquely identifies any given entity occurrence; name text, which is the name;

and name usage i.e., valid, synonym or vernacular. NID is a globally unique identifier attached

to the name upon entering the database. A name comes from one or more name sources and

the name source entity identifies the database from which a name originated. Name source

has the attributes: source id, source db name, ora schema name and URL. From the model in

Figure 3.6, a name must come from one or more name sources, giving name and name source

a many to many (M:M) relationship. M:M relationships cannot be represented as simple at-

tributes in either relation. To resolve this, the relationship is replaced with an association entity

called assertion (Figure 3.8), also used by Pyle (2004) and Berendsohn (1995). An asser-

tion is an instance of a taxonomic name in a name source. assertion, as an association entity

would normally be a key only, however, in TCl-Db this is where the source ids are stored as
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dbsource id. The dbsource id in assertion represents the unique identifier of the name in the

data source of origin (TSN in ITIS, taxonid in NCBI etc). Kingdom and rank are also placed

in assertion as discussed in more detail below.

The tree entity identifies the trees that have been built from a particular name source.

Several different tree topologies can be built from one name source, for example, different clas-

sification opinions of the NCBI classification tree and edited versions of the ITIS classification

tree. Several topologies of a name source’s classification can therefore be loaded into the schema

and traversed. A tree entity identifies each topology and has the attributes tree id, tree name,

description and source id to link back to the source from which the classification was built. Each

tree must have one or more nodes describing the topology of the tree. Each tree is composed

of nodes (Figure 3.6). A node identifies the location of a name/assertion in a particular

classification tree from a particular name source. assertions and names are tied to each

node via foreign keys. The attributes name id and parent name id describes the parent-child

relationship of each node, there is a check constraint on these attributes to make sure that the

name id and parent name id exist in names. The parent name id and name id together with

Figure 3.7: The TCl-Db physical data model. The divided boxes represent relations (tables),

the name of the table is shown in the grey division and the columns and keys are given in the

blue division. Constraints are labelled: Foreign Keys (FK), Primary Keys (PK), Unique (U),

Not Null (I).
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Figure 3.8: The many to many relationship between name and name source (above) is

resolved below with the association entity assertion.

tree id, are used in Oracle connect by queries. The location of each node in each classifica-

tion tree is also described by the attributes left id, right id for the nested sets representation

and the attribute path stores for the materialised paths representation. (Celko & McDonald,

1995), (Celko, 2004).

Stable unique identifiers are attached to assertions and to names to enable other databases

to link to TCl-Db. These are tracked using the AIDS MV materialised view, for assertions

and NIDS MV materialised view for names. On entering the database, each name is given

this unique and anonymous number. This identifier is guaranteed not to change on update.

After a data load the following steps are employed to ensure stability in the identifiers. Firstly,

the names are checked against the NIDS MV view to get the NID if it exists. Secondly, if the

name does not exist, a new NID is assigned and if the name does exist, the NID is updated

from the view data. Finally, on completion of the update, the view is refreshed with the

DBMS MVIEW.REFRESH procedure. The same method is used for AID’s on assertions.

The materialised views in the databases are refreshed on demand since many are ineligible
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for automatic refresh (i.e., on commit). These views are formed by complex queries, or, in the

case of NIDS MV and AIDS MV, make reference to the non repeating expression SYSDATE.

Mostly, the views are used to simplify and speed up data loads, so refreshment is performed

during the data loads. These views actually serve to simplify data loading procedures, since the

original queries to build the views are effectively stored in the schema and refreshed using just

one simple procedure call. Thus, the views provide simplicity and increase the performance of

the data load, and their maintenance forms part of the data load procedures.

3.5.1 Modelling rank and kingdom

With the exception of the attributes rank and kingdom, the entity assertion is key only. There

were several design options for these data, reflecting the complex relationship between name,

node and assertion. The relationships are shown in Figure 3.9.

Rank
Name AssertionHas

circumscribed with

Kingdom
circumscribed with type of

RankName

Kingdom

Figure 3.9: The many to many relationship between name , kingdom and rank is resolved

with association entity assertion.

Ranks and kingdoms are attributes of a name, however, because the attributes of names

can be different in each name source, they are modelled as attributes of assertions. This

placement results in repeating values in assertions. However, kingdom and rank have a

restricted number of values. Kingdom can be only one of 5 values, and Rank, depending on

the classification, also has a limited number of values, so that the repeating values are easily

managed through check constraints during data load. Adding these as separate entities would

have added complexity to the data model and data load process. In the pursuit of a simple

model these were modelled as attributes of assertions.
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3.5.2 Modelling synonyms and vernaculars

synonym name and vernacular are weak entities reliant on the foreign keys referencing the

name entity. A name may exist without a synonym name ; a synonym name , however, can

not exist without a name because both attributes of synonym name and vernacular are

foreign keys. These could have been modelled as a “usage” attribute, describing the usage of

the name. In situations where different data sources treat the same name differently, this model

would result in multiple values of usage per name. To avoid multi-valued attributes and self

referencing on name, the weak entities synonym name and vernacular are used instead.

3.5.3 Trees and Nodes

The classification trees for each name source are modelled to enable hierarchical queries.

Parent-child relationships through name id and parent name id are used by the Oracle con-

nect by query. The left id and right id are used in the nested set queries, and path is used by

the materialised path query.

A node has two foreign keys. Source id references name source and tree id references

tree. The source id constraint is not actually necessary since the foreign key to assertion id

referencing assertion accomplishes the same thing: a node is linked to its name source

through the assertion id. For example, the query in Figure 3.10 returns the number of names

below Aves (name id 13232598) using its assertion id 11951770 which links it to the name source

ITIS. This compares to the query shown in Figure 3.11 which uses the foreign key tree id. When

using tree id, the join to the assertion table is not required. The query is much faster because

it does not have to compute a join, as the data is accessed from only one table. Also, more than

one classification can be stored for a name source, as for some name sources using assertion id

would return data from more than one tree. Therefore the first query using assertion id only

works when there is only one tree for a name source. The addition of extra foreign keys

speeds up a number of queries that are used in the application described in Chapter 5. The

foreign keys were therefore included, in order to simplify and speed up hierarchical queries.

Hierarchical queries using materialised paths

Example nested set queries are shown in Figure 3.10 and Figure 3.11 The nested set and path

data have been included to make the system more accessible and portable to other database

products, including MySQL. The nested set mechanism is described by Celko (2004), and
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Figure 3.10: SQL query using nested sets. This query used assertion id to traverse the classifi-

cation from Aves in ITIS.

Figure 3.11: SQL query using nested sets. This query used tree id and name id to traverse the

classification from Aves (name id 13232598) in ITIS (tree id 1).

these data, currently, need to be calculated using graph algorithms. An example query using

materialised paths is shown in Figure 3.12, these hierarchical queries are described in detail in

the following chapter.

Hierarchical queries using Oracle’s connect by statement

The connect by query is an extension to SQL that was implemented by Oracle specifically to

enable hierarchical queries using parent-child relationships. Within TCl-Db the connect by

query uses the parent-child relationship modelled by the attributes name id and parent name id

in the node entity. An example, for the name id (e.g., 13232589 for the genus Crocodylus) is

shown in Figure 3.13. Further examples are given in the following chapter.
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Figure 3.12: SQL query using materialised paths. This query used tree id and name id to

traverse the classification from Aves (name id 13232598) in ITIS (tree id 1).

Figure 3.13: SQL query using connect by. This query used tree id and name id to traverse

the classification from Aves (name id 13232598) in ITIS (tree id 1).

3.6 Application Tables and Query performance

The schema has not been de-normalised and the physical structure conforms very closely to

the original conceptual structure. The requirement to ensure good performance of data loads

kept the warehouse structure as simple as possible. Query considerations did go into the

design, for example, by modelling the node and tree data as described above. However,

query performance did not drive the data warehouse design. Query performance was addressed,

instead, through the use of a de-normalised structure overlaying the warehouse structure. These

tables and materialized views are built specifically to guarantee good performance in application

queries.

The name search table (Figure 3.14) is an amalgamated table of data from name, syn-
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onym name and vernacular. It also contains all identified homonyms.

Figure 3.14: Insert statements used to load the application table name search

The queries in Figure 3.14 use a function, get name text. A number of functions were

created to increase query performance (Figure 3.15). They were built for common data items,

such as name text and in most cases are used to simplify queries by reducing the number of
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table joins.

Figure 3.15: SQL examples using functions, get name text, get source name,

get itis path name and get ncbi path name.

The hierarchical queries proved to be particularly slow. Even the two functions get ncbi path name

and get itis path name were not fast enough, and therefore, tables were created to store pre-

computed path strings for particular groups within ITIS and NCBI data source classifications.

For the Aves group two tables were created, for example, these are itis aves path strings,

ncbi aves path strings.

3.7 Procedures and Views

In addition to the entities and relationships described, the database also contains PL/SQL

procedures and materialized views. The PL/SQL procedures move data from each data source

schema into the TCl-Db schema. The database contains a schema for each source database

including: NCBI (Federhen et.al, 2005), ITIS (ITIS, 2006), SP2K (Bisby & Smith, 2000),

GRIN (USDA, 2000), MSW (Wilson & Reeder, 1993) and other checklists. Once these source

database schemas are built, the data are loaded using Oracle’s SQLLDR utility. The PL/SQL

procedures then move the relevant data into the TCl-Db schema. Materialised views are used
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by these procedures to help speed up the data transfer across the schemas. A materialized view

is a snapshot of data from a query performed on master tables. In this case, tables in the source

database schemas. By pre-calculating expensive joins and aggregations into a materialized view,

performance of the data transfer is significantly improved. For example, the materialized views

SP2K NAMEIDS MV calculates the names that are already in TCl-Db name table and stores

the name id and db sourceid, so that the addition of these known names to the assertion

table during data load is accomplished by querying one table. The procedures used for data

load are detailed in the following chapter.

3.8 Summary

This chapter describes the architecture and schema design of TCl-Db. The database stores not

only the taxonomic names but also the full classifications for each data source. This gives users

access to differing classification opinions in one data structure. The supported hierarchical

queries are outlined with SQL examples. Application tables that were built, for example, to

enable the use of linked names in searches through the name search table, and functions

that are used to improve query performance are also described. The next chapter details the

procedure used for populating the data warehouse and data sources that were merged into the

TCl-Db structure.
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Chapter 4

Populating the Database

This Chapter describes in detail the procedures followed during database loading. This is done

for each of the data sources in the following order: ITIS, NCBI, GRIN, Sp2000, Mammal Species

of the World and finally other smaller resources.

4.1 Introduction

In this chapter we present each of the data sources and the protocol used for loading the data.

For each of the data sources this can be described in 3 steps, (1) assembling local version of the

source database, (2) mapping source schema elements to TCl-Db and (3) loading data into the

TCl-Db schema.

The application architecture is depicted in Figure 4.1. The data sources used within TCl-

Db were all downloaded and replicated into an Oracle database as separate silos (schemas). In

most cases, the data sources were replicated into their silos in their native format. We created

the table structures that represented the structure of the source files. Since the data were not

manipulated into another format, there was no possibility of compromising the integrity of the

data with an additional transformation step. The TCl-Db warehouse was then populated with

data from several data sources. These are given in the order in which they were loaded. A full

list of contributing data sources is shown in Table 4.1.

The following section gives background information for each of the data sources and a

description of the schema mapping and data load process.
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4.1 Introduction

Figure 4.1: The database architecture. The diagram shows the five larger data sources within

the database. These are: NCBI (National Center for Biotechnology Information), ITIS (In-

tegrated Taxonomic Information System), MSOW (Mammal Species of the World), GRIN

(Germplasm Resources Information Network), and Species 2000. Other smaller checklists have

also been added. The PL/SQL procedures for moving data between the schemas are stored

within TCl-Db.
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4.2 ITIS

Data Source Download Date/Version Name count

ITIS January 2004 413227
ITIS October 2005 78847
GRIN July 2005 94146
NCBI September 2004 273404
NCBI October 2005 346840
SP2K 2006 Annual Checklist 1262469
ALGAEBASE July 2005 38150
MSOW July 2005 6058
nam980612 12034
American Ornithological Union AOU (1983) 4936
American Ornithological Union AOU (1998) 2755
Sibley and Monroe Monroe & Sibley (1997) 11932
Peters Peters (1987) 11267
Clements Clements (2000) 19305
Bird names IOC World bird names 2006 19313
Morony, Bock, and Farrand J.J. Morony et al. (1975) 11455

Table 4.1: Summary of data sources.

4.2 ITIS

The Integrated Taxonomic Information System (ITIS) (ITIS, 2006) is a partnership of federal

agencies and organisations from the United States, Canada, and Mexico. It is primarily a

taxonomic database serving data for “ biota of interest to North America”, though the data

are curated by experts from around the world and the taxa are not limited to those native

to North America. The taxonomic scope includes: the ITIS classification and scientific names

and common names in English, French, Spanish, and Portuguese. The data are available for

download in relational form. The downloaded files include an SQL script for building the table

structures and a separate dump file for each table. This script was manually edited to remove

the source RDBMS specific structures so that it could be used within both MySQL and Oracle

RDBMS. After copying the source schema into TCl-Db, the data were loaded using Oracle’s

SQLLDR utility.

4.2.1 Schema mapping and Integration

ITIS was the first data set loaded. The original database dump contained an SQL script which,

after some modification, was used to replicate the ITIS dump into a data silo within our Oracle

instance. The transformation of ITIS data into TCl-Db’s global schema uses four PL/SQL pro-

cedures: add itis names, add itis nodes, add itis synonyms and add itis vernaculars.

In addition to the ITIS tables, there are two materialized views used in the load procedure
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4.2 ITIS

ITIS_VALID_NAMES

TSN
NAME

TAXONOMIC_UNITS

TAXON_AUTHOR_ID
HYBRID_AUTHOR_ID
KINGDOM_ID
RANK_ID
UPDATE_DATE
UNCERTAIN_PRNT_IND
TSN
UNIT_IND1
UNIT_NAME1
UNIT_IND2
UNIT_NAME2
UNIT_IND3
UNIT_NAME3
UNIT_IND4
UNIT_NAME4
UNNAMED_TAXON_IND
TU_USAGE
UNACCEPT_REASON
CREDIBILITY_RTNG
COMPLETENESS_RTNG
CURRENCY_RATING
PHYLO_SORT_SEQ
INITIAL_TIME_STAMP
PARENT_TSN

Figure 4.2: Definitions of the materialized views, itis valid names and

whouse itis valid mv
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4.2 ITIS

itis valid names and whouse itis valid mv whose definitions are given in Figure 4.2. The

first view created is itis valid names. It concatenates the taxonomic unit attributes in the

ITIS table taxonomic units into a single attribute called name, for valid and accepted names.

This view is then used in the procedure add itis names (Figure 4.3). The relations name,

assertion and name source are populated by this procedure.

Once add itis names has completed, the second view whouse itis valid mv is built.

This view contains all valid name ids, assertion ids and the corresponding dbsource ids that are

required in the procedure add itis nodes (Figure 4.4). This procedure loads the precomputed

ITIS classification data from the table itis tree into the table node. itis tree, is populated

through the process outlined in Figure 4.5.

This process starts with a Perl script that takes the TSN and Parent TSN values taken from

the taxonomic units table. The Perl script produces a GML (Graph Markup Language) file,

which is used as input into the C++ program gml2nestedsql. A snippet of the GML file is

shown below.

graph [

comment ”This is the ITIS graph”

directed 1

node [id 999999 label ”999999” ]

node [id 202423 label ”202423”]

node [id 46861 label ”46861”]

node [id 46862 label ”46862”]

...

...

The text file produced from this program is then loaded into the table using SQL*Loader.

Synonyms and vernaculars are loaded into the global schema using the procedures

add itis synonyms and add itis vernaculars. The procedure add itis vernaculars

(Figure 4.6) takes data from the vernaculars table, using the TSN and Vernacular name

attributes. In this table the TSN is the TSN of the associated valid name (primary key

used in taxonomic units), the vernacular name does not have a TSN in the ITIS tables.

In TCl-Db every names source id is stored in the assertion table. For ITIS vernaculars

it is the TSN of the valid names that is stored. Synonyms within ITIS are stored in the

synonym links table, and the taxonomic units table. Synonym names are loaded with
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4.2 ITIS

WHOUSE.ADD ITIS NAMES
CREATE PROCEDURE
add itis names
AS

CURSOR tsnCursor IS
SELECT tsn, name
FROM itis.itis valid names;
name id NUMBER;
begin
INSERT INTO whouse.name source (source id, source db name, ora schema name, URL)
VALUES (source seq.nextval, ’ITIS’, ’itis’, ’http://www.itis.usda.gov/’);
FOR rec IN tsnCursor LOOP
begin
INSERT INTO whouse.name (name id, name text, name usage)
VALUES (name seq.nextval, rec.name, ’valid’);
IF ( sql%rowcount = 1 ) THEN
INSERT INTO whouse.assertion (assertion id, name id, source id, dbsource id)
VALUES (assertion seq.nextval, name seq.currval, source seq.currval, rec.tsn);
END IF;
EXCEPTION
WHEN dup val on index THEN
INSERT INTO whouse.assertion (assertion id, name id, source id, dbsource id)
VALUES (assertion seq.nextval,
(SELECT name id FROM whouse.name WHERE name text = rec.name),
source seq.currval, rec.tsn );
end;
END LOOP;
update whouse.name set name text = rtrim(name text);
COMMIT;
end;

ITIS_VALID_NAMES

TSN
NAME

Figure 4.3: The procedure add itis names is run first. This procedure takes data from the view

itis valid names and fills the tables name source, name and assertion. The procedure is

run using the command execute add itis names at the SQL command prompt.

the procedure add itis synonyms (Figure 4.7). In taxonomic units synonyms are distin-

guished from valid names through the tu usage attribute. Synonyms have the value ‘invalid’ or

‘not accepted’. These names are linked to their valid or accepted name through the value of

tsn accepted.
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4.2 ITIS

WHOUSE_ITIS_VALID_MV

NAME_ID
DBSOURCE_ID
ASSERTION_ID

WHOUSE.ADD ITIS NODES
CREATE PROCEDURE
add itis nodes
AS

CURSOR itistree Cursor IS
SELECT *
colorblue FROM whouse.itis tree;
source id pr NUMBER;
name id pr NUMBER;
assertion id pr NUMBER;
parent name id pr NUMBER;
begin
SELECT source id INTO source id pr
FROM name source WHERE source db name = ’ITIS’;
INSERT INTO tree (tree id, tree name, description, source id) VALUES
(tree seq.nextval, ’ITIS’, ’ITIS WHOLE TREE’, source id pr);
FOR rec IN itistree Cursor LOOP
SELECT assertion id INTO assertion id pr
FROM whouse.whouse itis valid mv
WHERE dbsource id = rec.taxon id;
SELECT name id INTO name id pr
FROM whouse.whouse itis valid mv
WHERE dbsource id = rec.taxon id;
SELECT name id INTO parent name id pr
FROM whouse.whouse itis valid mv
WHERE dbsource id = rec.parent id;
INSERT INTO whouse.node
(node id, assertion id, name id, source id, tree id, path, left id, right id, parent name id)
VALUES
(node seq.nextval,assertion id pr ,name id pr ,source id pr,
tree seq.currval, rec.path, rec.left id, rec.right id, parent name id pr);
END LOOP; COMMIT; end; END LOOP;
COMMIT;
end;

ITIS_TREE

TAXONID
PARENTID
LEFT_ID
RIGHT_ID
PATH

Figure 4.4: This procedure is run using the command “execute add itis nodes” at the SQL

command prompt, once the procedure add itis names has completed.
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Figure 4.5: Algorithm used to build the tree data.
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4.2 ITIS

WHOUSE.ADD ITIS VERNACULARS
CREATE PROCEDURE
add itis synonyms
AS

CURSOR vern Cursor IS
SELECT tsn, vernacular name, language
colorblue FROM itis.vernaculars;
accname VARCHAR(550); accname id NUMBER; source id pr NUMBER; name id NUMBER; begin

FOR rec IN vern CursorLOOP
begin
SELECT source id INTO source id pr
FROM name source WHERE source db name = ’ITIS’;
SELECT MAX(name id) INTO accname id
FROM whouse.assertion WHERE dbsource id = rec.tsn
AND source id = source id pr ; EXCEPTION
WHENno data found THEN
accname id := null;
end;
begin
IF accname id IS NOT NULL THEN
INSERT INTO whouse.name
(name id, name text, name usage)
VALUES (name seq.nextval, rtrim(rec.vernacular name), ’vernacular’);
INSERT INTO whouse.assertion
(assertion id, name id, source id, dbsource id)
VALUES (assertion seq.nextval, name seq.currval, source id pr, rec.tsn);
INSERT INTO whouse.vernacular
(name id, valid name id, language)
VALUES (name seq.currval, accname id, rec.language);
END IF;
EXCEPTION
WHENdup val on index THEN
SELECT name id INTO name id
FROM whouse.name WHERE name text = rtrim(rec.vernacular name) ;
INSERT INTO whouse.vernacular
(name id, valid name id, language)
VALUES (name id, accname id, rec.language);
INSERT INTO whouse.assertion
(assertion id, name id, source id, dbsource id)
VALUES
(assertion seq.nextval, name id, source id pr, rec.tsn);
end;
END LOOP;
COMMIT;
end;

VERNACULARS

TSN
VERNACULAR_N
AME
LANGUAGE
APPROVED_IND
UPDATE_DATE

Figure 4.6: Procedure add itis vernaculars. This procedure should be run after all valid

names have been loaded using the add itis names procedure.
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4.2 ITIS

SYNONYM_LINKS

TSN
TSN_ACCEPTED
UPDATE_DATE

WHOUSE.ADD ITIS SYNONYMS
CREATE PROCEDURE
add itis synonyms
AS

CURSOR Syns Cursor IS
SELECT tsn, tsn accepted
FROM itis.synony links;
source id pr VARCHAR(550);
tsn pr NUMBER;
tsn accepted pr NUMBER;
name id pr NUMBER;
accname id pr NUMBER;
begin

SELECT source id INTO source id pr
FROM name source
WHERE source db name = ’ITIS’;
FOR rec IN Syns Cursor LOOP
begin
SELECT (RTRIM(unit name1) ‖‖′′‖‖
RTRIM(unit name2) ‖‖′′‖‖
RTRIM(unit name3) ‖‖′′‖‖
RTRIM(unit name4))
INTO name pr FROM itis.taxonomic units WHERE tsn = rec.tsn;
SELECT name id INTO accname id pr
FROM whouse itis valid mv
WHERE dbsource id = rec.tsn accepted;
EXCEPTION
WHEN no data found THEN
accname id pr := NULL;
end;
begin
INSERT INTO whouse.name (name id, name text, name usage)
VALUES (name seq.nextval, rtrim(name pr), ’synonym’);
EXCEPTION
WHEN dup val on index THEN
name id pr:=NULL; end; IF (name id pr IS NOT NULL) THEN
INSERT INTO whouse.assertion (assertion id, name id, source id, dbsource id)
VALUES (assertion seq.nextval, name seq.currval, source id pr, rec.tsn);
IF (accname id pr is not null) THEN
INSERT INTO whouse.synonym name (name id, valid name id)
VALUES (name seq.currval, accname id pr );
ELSE
INSERT INTO whouse.synonym name (name id, valid name id)
VALUES (name seq.currval,name seq.currval);
END IF; ELSIF (name id pr is null) THEN
SELECT name id INTO name id pr
FROM whouse.name WHERE name text = rtrim(name pr);
INSERT INTO whouse.synonym name (name id, valid name id)
VALUES (name id pr, accname id pr); end if; END LOOP;
COMMIT;
end;

Figure 4.7: Procedure add itis synonyms. This procedure should be run after all valid names

have been loaded using the add itis names procedure.
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4.3 NCBI

The National Center for Biotechnology Information (NCBI) (Federhen et.al, 2005) taxonomy

was originally built to enable taxonomic indexing in their Entrez system and the Genbank

sequence database. The NCBI taxonomy can now be downloaded as a separate database and has

been adopted by most other sequence databases. The data are provided as flat file downloads.

The download includes 7 tab delimited text files. In this work a schema was created for the

NCBI data in which the file structures were replicated into tables and the data were loaded

using SQLLDR.

4.3.1 Schema mapping and Integration

The architecture of the NCBI mapping and integration is summarised in Figure 4.8.

The first step in migration identifies scientific names in the NCBI tables, from which the

NCBI classification tree data are collected. A perl script uses the table ncbi nodes (see Figure

4.9) from which the tax id and parent tax id are used to build the nested set and path data.

These data are transformed, using the same scripts as ITIS above and loaded into into the table

ncbi tree. The table ncbi names holds taxon names within name text attribute. Scientific

names were distinguished from synonyms and vernaculars using the name class attribute in

the same table. These data were extracted and initially transformed into three materialized

views shown in Figure 4.9.

The first view built is ncbi sci names mv, using the source tables ncbi name and ncbi nodes.

This view is then used to build ncbi only names mv by comparing the NCBI names to all

names that are already loaded in the warehouse. Since the ITIS database was loaded first, the

view ncbi itis names mv stores the names common to both ITIS and NCBI that have already

been loaded into the schema. Names in this view add NCBI assertions for names that already

exist in TCl-Db..

The first procedure run is add ncbi names (see Figure 4.10). This loads the tables

name source, name and assertion. Once this procedure is finished, the names that have

just been loaded now have TCl-Db attributes name id, assertion id and the dbsource id.

These are identified and stored in another materialized view, whouse ncbi valid mv. This

view is used to speed up the next data load, add ncbi nodes (see Figure 4.11). Synonyms

and vernaculars are added using the procedures add ncbi synonyms(see Figure 4.12) and

add ncbi vernaculars, following a similar process as the ITIS load.
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4.3 NCBI

Figure 4.8: Schema mapping NCBI to TCl-Db.
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4.3 NCBI

Figure 4.9: The NCBI tables and views that were built during schema mapping.
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4.3 NCBI

WHOUSE.ADD NCBI NAMES
CREATE PROCEDURE
add ncbi names
AS
TYPE names IS TABLE OF ncbi.ncbi names.name txt%type;
TYPE taxids IS TABLE OF ncbi.ncbi names.tax id%type;
TYPE nameids IS TABLE OF whouse.name.name id%type;

CURSOR ncbi onlyCursor IS
SELECT tax id, name
FROM ncbi.ncbi only names mv;

CURSOR ncbi itiscursor IS
SELECT tax id, name, name id
FROM ncbi.ncbi itis names mv;
ncbi names names;
ncbi tax id taxids;
whouse nids nameids;
name id pr NUMBER;

begin
INSERT INTO whouse.name source (source id, source db name, ora schema name, URL)
VALUES
source seq.NEXTVAL, ’NCBI’, ncbi, ’http://www.ncbi.nlm.nih.gov/taxonomy’);
–
OPEN ncbi onlyCursor;
FETCH ncbi onlyCursor BULK COLLECT INTO ncbi tax id, ncbi names;
FOR this IN ncbi names.FIRST .. ncbi names.LAST LOOP
begin
INSERT INTO whouse.name (name id, name text, name usage) VALUES
(name seq.NEXTVAL, ncbi names(this), ’valid’);
EXCEPTION
WHEN dup val on index THEN
SELECT name id INTO name id pr FROM whouse.name where name text = ncbi names(this);
IF name id pr IS NOT NULL THEN
INSERT INTO whouse.assertion (assertion id, name id, source id dbsource id,) VALUES
(assertion seq.NEXTVAL, whouse nids(this), source seq.CURRVAL, ncbi tax idthis));
END IF;
END LOOP;
CLOSE ncbi onlyCursor;
–
OPEN ncbi itisCursor;
FETCH ncbi itisCursor BULK COLLECT INTO ncbi tax id, ncbi names, whouse nids;
FOR this IN ncbi names.FIRST .. ncbi names.LAST LOOP
INSERT INTO whouse.assertion (assertion id, name id, source id dbsource id,) VALUES
(assertion seq.NEXTVAL, whouse nids(this), source seq.CURRVAL, ncbi tax idthis));
END LOOP;
CLOSE ncbi itisCursor;
UPDATE whouse.name SET name text = RTRIM(name text);
COMMIT;
end;

Figure 4.10: The procedure add ncbi names is run first. This procedure takes data from the

views shown in Figure 4.9 and fills the tables name and assertion. The procedure is run using

the command “execute add ncbi names” at the SQL command prompt.
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WHOUSE.ADD NCBI NODES
CREATE PROCEDURE
add ncbi nodes
AS

CURSOR ncbitree Cursor IS
SELECT *
FROM whouse.ncbi tree;

source id pr NUMBER;
assertion id pr NUMBER;
name id pr NUMBER;
parent name id pr NUMBER;

–
begin
FOR rec IN ncbitree Cursor LOOP
SELECT source id INTO source id pr
FROM whouse.name source
WHERE source db name = ’NCBI’;
SELECT name id INTO name id pr
FROM whouse.whouse ncbi valid mv
WHERE dbsource id = rec.taxon id;
SELECT assertion id INTO assertion id pr
FROM whouse.whosue ncbi valid mv
WHERE dbsource id = rec.taxon id;
SELECT name id into parent name id pr
FROM whouse. whouse ncbi valid mv
WHERE dbsource id = rec.parent id;
–
INSERT INTO whouse.node (node id, assertion id, name id,
source id, path, left id, right id, parent name id)
VALUES
(node seq.NEXTVAL, assertion id pr, name id pr, source id pr,
rec.path, rec.left id, rec.right id, parent name id pr);
END LOOP;
COMMIT;
end;

Figure 4.11: Procedure add ncbi nodes is run after add ncbi names.The name ids and

assertion id are taken from the view sc whouse ncbi valid mv.
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WHOUSE.ADD NCBI SYNONYMS
CREATE PROCEDURE
add ncbi synonyms
AS

CURSOR synCursor IS
SELECT tax id, name txt
FROM ncbi.ncbi names
WHERE colorblack name class LIKE ’synonym%’;

source id pr NUMBER;
accname id pr NUMBER;
name id pr NUMBER;

begin
SELECT source id INTO source id pr
FROM whouse.name source
WHERE source db name = ’NCBI’;
FOR rec IN ncbisynCursor LOOP
begin
SELECT name id INTO accname id pr
FROM whouse.whouse ncbi valid mv
WHERE dbsource id = rec.taxon id;
INSERT INTO whouse.name (name id, name text, name usage)
VALUES
(name seq.NEXTVAL, rec.name txt, ’synonym’);
EXCEPTION
WHEN dup val on index THEN
name id pr :=0;
end; IF name id pr THEN
INSERT INTO whouse.assertion (assertion id, name id, source id, dbsource id)
VALUES
(assertion seq.NEXTVAL, name seq.CURRVAL, source id pr, rec.tax id);
INSERT INTO whouse.synonym name (name id, valid name id)
VALUES
(name seq.CURRVAL, accname id pr);
else
SELECT name id INTO name id pr FROM whouse,name where name text = rec.name txt;
INSERT INTO whouse.synonym name (name id, valid name id)
VALUES
( name id pr, accname id pr);
COMMIT;
END IF;
END LOOP;
update whouse.name set name text = RTRIM(name text); COMMIT;
end;

Figure 4.12: add ncbi synonyms . The procedure add ncbi vernaculars is essentially the

same, except that the initial query uses “name class LIKE ‘vernacular’ ”.
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4.4 GRIN

The National Germplasm Information Network (GRIN) (USDA, 2000) contains classification

and nomenclature for plant germplasm data held within the (United States) Agricultural Re-

search Service National Plant Germplasm System. The taxonomic data includes scientific

names, classification (up to the rank family), synonyms and common names. The taxonomy is

curated by experts at the Systematic Botany and Mycology Laboratory in collaboration with

world wide experts. Their aim is to reflect the taxonomic opinion of taxonomists from vari-

ous plant groups and their literature. Data are also taken from floras and checklists. Mostly,

the data are guided by expert opinion and, where this is not available, the generally accepted

usage. The data downloads are dbf files from Xbase (a desktop database management system

like Microsoft Access see http://xbase.darwinports.com). The data were extracted from the dbf

files and transformed into SQL insert statements. The SQL scripts for each dbf file were loaded

into a replicated table structure reflecting the original dbf file.

4.4.1 Schema mapping and Integration

The architecture of the GRIN data integration is summarised in Figure 4.13. The GRIN

schema did not conform to standard normalisation or relational rules and the data load was

complicated since data items were stored in multiple places and there were several integrity

issues that needed to be resolved. These problems were resolved into a master table, with the

key data items necessary for TCl-Db. The species, genus and family table were used to

extract hierarchy up to family. The master table was then checked for integrity, one query

found thirty-nine species names whose parent name identifiers were missing. Unfortunately the

identifiers; species (taxno), genus (gno) and family (famno) were not unique across the

three tables and could not be used. To remedy this, a unique identifier was given to each name

as it entered the master table, these were used for the parent child relationships (instead of

the identifiers given by GRIN) for the grin tree table. There were also some data cleaning

necessary on the master table to remove disconnected nodes from the tree, these were mostly

names that had no parent names i.e. they were assigned as valid names in the tables but the

parent names were not valid. In all cases these were leaf nodes in the tree, sub-species names

considered valid but the species were invalid.

Once the grin table was created, the data were initially transformed into materialized views

which were used for the transformation into the TCl-Db schema (see Figures 4.14 and 4.15).
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Figure 4.13: Overview of the GRIN data migration.

Synonyms were extracted for species data using the grin table and the original GRIN

species table. Synonyms were stored in the schema through the primary key taxno and

candidate key validtaxno. A valid name would have taxno equal to validtaxno while

synonym had a validtaxno, that did not equate to its own taxno. Using the unique identifiers

created for the grin table, the species synonyms where collected into the materialized view

grin species synonyms mv. There were no vernaculars in the GRIN data.
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WHOUSE.ADD GRIN NAMES
CREATE PROCEDURE
add grin names
AS

TYPE names IS TABLE OF whouse.name.name text%TYPE;
TYPE taxids IS TABLE OF whouse.assertion.dbsource id%TYPE;
TYPE nameids IS TABLE OF whouse.name.name id%TYPE;
CURSOR grin namesCursor IS
SELECT taxon id, name
FROM grin.grin only mv;
CURSOR grin commonCursor IS
SELECT taxon id, name, name id
FROM grin.whouse nameids mv;
grin names names;
grin ids taxids;
whouse nids nameids;
name id prNUMBER;
begin
INSERT INTO whouse.name source (SOURCE ID, SOURCE DB NAME, ORA SCHEMA NAME, URL)
VALUES (source seq.nextval, ’GRIN’, ’grin’, ’http://www.ars-grin.gov/cgi-bin/npgs/html/index.pl’);
OPEN grin namesCursor;
FETCH grin namesCursor
BULK COLLECT INTO grin ids, grin names;
FOR this IN grin names.FIRST..grin names.LAST LOOP
begin
INSERT INTO whouse.name (name id, name text, name usage)
VALUES (name seq.nextval, grin names(this), ’valid’);
EXCEPTION
WHEN dup val on index TEHN
SELECT name id INTO name id pr FROM whouse.name WHERE name text = grin names(this);
end;
IF name id pr IS NOT NULL THEN
INSERT INTO whouse.assertion (assertion id, name id, source id, dbsource id)
VALUES (assertion seq.nextval, name id pr, source seq.currval, grin ids(this));
name id pr := NULL;
ELSE
INSERT INTO whouse.assertion (assertion id, name id, source id, dbsource id)
VALUES (assertion seq.nextval, name seq.currval, source seq.currval, grin ids(this));
END IF;
END LOOP;
close grin namesCursor;
–
OPEN grin commonCursor; FETCH grin commonCursor
BULK COLLECT INTO grin ids, grin names, whouse nids;
FORthis IN grin names.FIRST..grin names.LAST LOOP
INSERT INTO whouse.assertion (assertion id, name id, source id, dbsource id)
VALUES (assertion seq.nextval, whouse nids(this), source seq.currval, grin ids(this));
END LOOP;
CLOSE grin commonCursor;
UPDATE whouse.name SET name text = rtrim(name text);
COMMIT;
end;

Figure 4.14: Procedure add grin names.
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WHOUSE.ADD GRIN NODES
CREATE PROCEDURE
add grin nodes
AS

CURSOR grintree Cursor IS
SELECT *
from grin.grin tree;
–
source id pr NUMBER;
assertion id pr NUMBER;
name id pr NUMBER;
parent name id pr NUMBER;
begin
SELECT source id INTO source id pr
FROM name source WHERE source db name = ’GRIN’;
INSERT INTO tree (tree id, tree name, description, source id)
VALUES (tree seq.nextval, ’GRIN’,
’GRIN Tree manually built from created parent child data in Master’, source id pr);
COMMIT;
FOR rec IN grintree Cursor LOOP
SELECT max(name id) INTO name id pr
FROM whouse.whouse grin valid mv
WHERE taxon id = rec.taxon id;
SELECT max(assertion id) INTO assertion id pr
FROM whouse.whouse grin valid mv
WHERE taxon id = rec.taxon id;
SELECT max(name id) INTO parent name id pr
FROM whouse.whouse grin valid mv
WHERE taxon id = rec.parent id;
INSERT INTO whouse.node (node id, assertion id, name id, source id,
tree id, path, left id, right id, parent name id)
VALUES (node seq.nextval,assertion id pr ,name id pr ,
source id pr, tree seq.currval, rec.path, rec.left id, rec.right id, parent name id pr);
END LOOP;
COMMIT;
end;

Figure 4.15: Procedure add grin nodes.
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WHOUSE.ADD GRIN SYNONYMS
CREATE PROCEDURE
add grin synonyms
AS
CURSOR synCursor IS
SELECT *
FROM whouse.grin species synonyms mv;
–
source id pr NUMBER;
accname id pr NUMBER;
name id pr NUMBER;
begin
SELECT source id INTO source id pr
FROM whouse.name source
WHERE source db name = ’GRIN’;
–
FOR rec IN synCursor LOOP
begin
SELECT name id INTO accname id pr
FROM whouse.whouse grin valid mv
WHERE whouse.whouse grin valid mv.taxon id = rec.taxon id;
INSERT INTO whouse.name (name id, name text, name usage)
VALUES (name seq.nextval, rec.taxon, ’synonym’);
EXCEPTION
WHEN dup val on index THEN
name id pr := 0;
end;
IF name id pr IS NULL THEN
INSERT INTO whouse.assertion (assertion id, name id, source id, dbsource id)
VALUES (assertion seq.nextval, name seq.currval, source id pr, rec.grin id);
INSERT INTO whouse.synonym name (name id, valid name id)
VALUES (name seq.currval, accname id pr);
ELSE
SELECT name id INTO name id pr
FROM whouse.name
WHERE name text = rec.taxon;
INSERT INTO whouse.assertion (assertion id,name id, source id, dbsource id)
VALUES (assertion seq.nextval, name id pr, source id pr, rec.grin id);
INSERT INTO whouse.synonym name (name id, valid name id)
VALUES (name id pr, accname id pr);
COMMIT;
END IF;
END LOOP;
UPDATE whouse.name SET name text = rtrim(name text);
COMMIT;
end;

Figure 4.16: Procedure add grin synonyms.
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4.5 Sp2000

The Sp2000 system is based on a loosely federated architecture, where the data sources maintain

autonomy. Although the architecture of Sp2000 is described as an “autonomous federated

system”, the system is distributed as a CD so the data are materialised. The annual CD

checklist in 2003 was distributed within Microsoft Access. Later versions were moved to MySQL

and were much easier to use. The MySQL versions of Sp2000 released in 2005 and 2006 were

added to TCl-Db. The MySQL data structure was replicated first into a local installation of

MySQL, and the data were then loaded into TCl-Db using SQL dumps.

4.5.1 Schema mapping and Integration

The Sp2000 load uses a layer of materialized views to speed up the data load and also greatly

simplify the PL/SQL procedures (Figure 4.17). Names, nodes, synonyms and vernaculars

are loaded in much the same way as the other data sources, using specific views. The first

view, sp2k nameids mv, gathers the names in Sp2000 that are already in TCl-Db. These

data are loaded directly into the assertion table by the add sp2k names procedure. Names

unique to Sp2000 are gathered into the view sp2k only mv and are subsequently loaded into

the name and assertion tables. The table sp2k tree is created using a process similar

to that outlined in Figure 4.5 for ITIS, using the record id and parent id attributes in the

taxa tree table. These data are loaded into TCl-Db, using data gathered into the materialized

view, sp2k valid mv which is built once the add sp2k names procedure has completed. In

Sp2000 synonyms are stored in the taxa table. These have the value 0 in the attribute

is accepted name. Synonyms are loaded after all valid names have been loaded into TCl-

Db, using the add sp2k synonyms procedure. The procedure add sp2k vernaculars takes

data from the sp2k common names mv and sp2k valid mv views and loads these data into

the name, assertion and vernacular tables in TCl-Db.
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TAXA                  
RECORD_ID
NAME
NAME_WITH_ITALICS
TAXON

NAME_CODE
PARENT_ID
SP2000_STATUS_ID
DATABASE_ID
IS_ACCEPTED_NAME

TAXA_TREE              
RECORD_ID
NAME
NAME_WITH_ITALICS
TAXON
NAME_CODE

PARENT_ID
SP2000_STATUS_ID
DATABASE_ID
IS_ACCEPTED_NAME

add_sp2k_names

SP2K_TREE              
TAXON_ID
PARENT_ID

LEFT_ID
RIGHT_ID
PATH

SP2K NAMEIDS MV

CREATE MATERIALIZED VIEW
sp2k nameids mv
AS
SELECT a.name, a.record id, b.name id
FROM sp2k.taxa a, whouse.name b
WHERE a.name = b.name text

SP2K ONLY MV

CREATE MATERIALIZED VIEW
sp2k only mv
AS SELECT t a.name, a.record id, a.parent id
FROM sp2k.taxa a LEFT OUTER JOIN whouse.name b
ON a.name = b.name text
WHERE b.name id is null

WHOUSE SP2K VALID MV

CREATE MATERIALIZED VIEW
whouse sp2k valid mv
AS
SELECT a.name id, b.assertion id, c.record id
FROM whouse.name a, whouse.assertion b, sp2k.taxa tree c
WHERE a.name id = b.name id
AND b.dbsource id = c.record id
AND b.source id = 222

SP2K COMMON NAMES MV

CREATE MATERIALIZED VIEW
sp2k common names mv
AS
SELECT a.common name, a.record id, b.record id valid record id
FROM common names a, taxa b
WHERE a.name code = b.name code
AND b.is accepted name = 1

SP2K SYNONYMS MV

CREATE MATERIALIZED VIEW
sp2k synonyms mv
AS
SELECT record id, name, taxon, parent id
FROM taxa
WHERE is accepted name =0
AND parent id in (
SELECTrecord id
FROM taxa
WHERE is accepted name =1)

add_sp2k_names

add_sp2k_nodes

add_sp2k_vernacuars

add_sp2k_synonyms

Figure 4.17: Overview of the Sp2000 data migration giving the tables, and views over these

tables that are used in the PL/SQL procedures.
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4.6 MSOW

The Mammal Species of the World (MSOW) is an online checklist from the Smithsonian Na-

tional Museum of History. A plain text file was downloaded from the website

http://nmnhgoph.si.edu/msw/ and the data were transformed into a simple table structure.

This data structure represents, within a single table, the minimum data required for a data

source, these are: a unique identifier, the name text and the hierarchical parent name text.

The data needed to be given unique identifiers, which was done using an Oracle sequence 1,

and parent-child relationships for the hierarchy were extracted from the download file. These

data and the hierarchical data were then loaded into the table msow tree shown in Fig-

ure 4.18. Using this table, the unique MSOW names were collected into the materialized

view msow only name mv and, for the names already in TCl-Db, the materialized view

whouse nameids mv pre-collected the data needed for loading into the assertion table.

Once these views are built, the procedures add msow names and add msow nodes are then

run.

Figure 4.18: Overview of the Mammal Species of the World data migration giving the tables

and views used in the PL/SQL procedures add msow names and add msow nodes

1A sequence is an object in Oracle that is used to generate a number sequence. These are useful when you

need to create a unique number to act as a primary key.
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4.6.1 Aves, early bird data

Additional data from a number of Aves checklists were made available to us through the Early

Bird Project (Hackett, 2003). These data, summarised in Table 4.2, mostly came in the form of

flat files. An extract of the data is given in Table 4.3. The data in these files were loaded into

individual tables and transformed into the global schema. The transformation process included

adding a name entry if the name did not already exist in the database, an assertion entry to

link the name to its original data source and a node entry for the classification data. PL/SQL

procedures transformed the flat file structure shown in Table 4.3 into a hierarchical parent -

child structure, e.g. Parus as a parent with Parus montanus as child. Using this transformed

structure, we calculated nested sets and materialized paths for each node of the hierarchy,

and produced the data, as sampled in Table 4.4. Additional data for rank and kingdom were

extrapolated and added to the assertion rows. Some data cleaning was performed during

transfer to the TCl-Db schema. This removed minor data inconsistencies in spelling of higher

taxa names, duplicated values and inserted missing higher taxa values.

Check List Total Names Unique Names TCl-Db Names

Morony, Bock and Farrand (247) 11396 659 10,796
Sibley and Monroe(248) 11,909 81 11,850
American Ornithological Union 83 (250) 2741 39 2716
American Ornithological Union 98 (251) 2914 60 2888
Peters (252) 11,218 1221 10,046
NAM980612 (253) 10,18 60 11,974
Bird Names (256) 9652 101 9560
Clements (259) 9648 0 9657

Table 4.2: The transformation process produces a materialized view for each new name source,
reconciling the names with those already within TCl-Db and identifying new names that need
to be added. For each of the Aves checklists the number of names in each and the totals for
new and existing TCl-Db names are given. The checklists are listed above in the order in which
they were loaded into the TCl-Db schema.
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ID Order Family Genus Species Name MBFnum SMnum
1 Tinamiformes Tinamidae Tinamus major Tinamus major 4 14
2 Tinamiformes Tinamidae Nothocercus bonapartei Nothocercus bonapartei 6 16
3 Tinamiformes Tinamidae Crypturellus soui Crypturellus soui 11 21
4 Tinamiformes Tinamidae Crypturellus cinnamomeus Crypturellus cinnamomeus 22 24
5 Tinamiformes Tinamidae Crypturellus boucardi Crypturellus boucardi 23 28
6 Tinamiformes Tinamidae Crypturellus kerriae Crypturellus kerriae 25 29
7 Gaviiformes Gaviidae Gavia stellata Gavia stellata 60 3845
8 Gaviiformes Gaviidae Gavia arctica Gavia arctica 61 3846
10 Gaviiformes Gaviidae Gavia immer Gavia immer 63 3848
11 Gaviiformes Gaviidae Gavia adamsii Gavia adamsii 64 3849
12 Podicipediformes Podicipedidae Tachybaptus dominicus Tachybaptus dominicus 71 3615
13 Podicipediformes Podicipedidae Podilymbus podiceps Podilymbus podiceps 72 3616
14 Podicipediformes Podicipedidae Podilymbus gigas Podilymbus gigas 73 3617
15 Podicipediformes Podicipedidae Podiceps auritus Podiceps auritus 77 3623
16 Podicipediformes Podicipedidae Podiceps grisegena Podiceps grisegena 78 3621
17 Podicipediformes Podicipedidae Podiceps nigricollis Podiceps nigricollis 80 3624
18 Podicipediformes Podicipedidae Aechmophorus occidentalis Aechmophorus occidentalis 84 3629
20 Procellariiformes Diomedeidae Diomedea exulans Diomedea exulans 86 3929
21 Procellariiformes Diomedeidae Diomedea albatrus Diomedea albatrus 89 3933
22 Procellariiformes Diomedeidae Diomedea nigripes Diomedea nigripes 90 3934
23 Procellariiformes Diomedeidae Diomedea immutabilis Diomedea immutabilis 91 3935

Table 4.3: Sample data from the Aves checklist flat files. This extract shows the first 23 lines
of the file from American Ornithological Union 83. This flat file gives a numerical id, Order,
Family, Genus and Species Names, followed by the corresponding identifier for the species in
the checklists of Morony, Bock and Ferrand, and Sibley and Monroe.

NODE ID ASSERTION ID NAME ID SOURCE ID PATH LEFT ID RIGHT ID PARENT NAME ID TREE ID

16660362 15337710 13234529 248 /14 2898 2993 13232598 280011
16660363 15337350 13232759 248 /13 2784 2897 13232598 280011
16660364 15339215 13236650 248 /12 2770 2783 13232598 280011
16660365 15338881 13236225 248 /11 1908 2769 13232598 280011
16660366 15339051 13236457 248 /10 1816 1907 13232598 280011
16660367 15338666 13235896 248 /9 1776 1815 13232598 280011
16660368 15339677 13237288 248 /8 404 1775 13232598 280011
16660369 15338459 13235592 248 /7 364 403 13232598 280011
16660370 15339223 13236660 248 /6 356 363 13232598 280011
16660371 15340407 13239850 248 /5 242 355 13232598 280011
16660372 15340551 13240465 248 /4 24 241 13232598 280011
16660373 15337191 15891304 248 /3 18 23 13232598 280011
16660374 15349053 14174735 248 /2 4 17 13232598 280011
16668411 15345647 13291365 248 /1 2 3 13232598 280011
16671318 15418688 13232598 248 / 1 23818 13232598 280011

Table 4.4: Sample data from Node table. Hierarchical queries can be performed on this trans-
formed data set using 1. parent-child relationship presented in columns NAME ID and PAR-
ENT NAME ID; 2. difference between LEFT ID and RIGHT ID columns presenting the nested
set data and 3. using LIKE statements on the materialized paths presented in the column PATH.
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4.7 Adding New Data Sources

Adding new data sources to TCl-Db is relatively easy, requiring only knowledge of SQL to build

the tables for the new data source, and PL/SQL to copy the data in to the TCl-Db schema.

The easiest route is to build a table structure that replicates the data source’s flat file structure.

This requires building a table for each file and loading the data directly into the table, using

the SQLLDR utility. The process of mapping the tables and building the PL/SQL procedures

is manual, though, once built, these can be called in triggers after INSERT, UPDATE and

DELETE on the source tables. Database triggers are used to handle specific events on specific

tables and they provide a significant benefit in data management (transferring data across

schemas in this case). Triggers were implemented on the data source schemas to drive data

transfer. When new data are added to the source tables, the trigger fires the relevant procedure.

However, the source data structures have not so far proved to be stable and the triggers have

been disabled. The data load steps are currently run manually in an effort to maintain and

check the integrity of the data coming into the TCl-Db tables.

For each new data source, the classification data for the node table need to be built to

enable the hierarchical queries. This requirement is not satisfied by some data providers, ITIS,

GRIN and SP2K needed manual editing to remove disconnected nodes. Disconnected nodes

occurred most often when a species or sub species name were labelled valid (or accepted) but

the parent name was not considered valid. Only valid names were extracted for inclusion in the

classification tree and, in some cases, the parent names were missed in the query. These were

‘breaking’ the tree and either the parent was identified manually and added to the tree data or

the node had to be removed if a valid parent could not be identified. Finding these disconnected

nodes is not a trivial task and was the most laborious step in the data load process. Another

difficulty that was encountered was unique and persistent identification. In order to effectively

use the GRIN, MSOW and the Early Bird data, unique identifiers had to be created for each

datum entering the master table. Sp2000 was a problematic update, as it uses unique identifiers

which are not persistent through releases. When adding the 2006 Sp2000 release we could not

load just the new data. Instead we had to delete the older 2005 version and reload the newer

version of Sp2000. Since the old Sp2000 identifiers no longer pointed to data at Sp2000, deleting

the old version and replacing it with the new one seemed the most sensible option.
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4.7.1 Data Availability

The data are available in two forms, Oracle EXP dumps and a MYSQL dump from a version

ported to MySQL. The Oracle download consists of two EXP files, one full export which con-

tains the full data warehouse including the source data silos, and the other is a simple export

containing just the global schema and data. SQL scripts are also provided to replicate the table

structures.

The MySQL download contains the global schema and data. An XML format of the

integrated assertion data of the global schema is also available. These data can be down-

loaded from http://spira.zoology.gla.ac.uk/download.php along with full instructions on their

use. The PL/SQL procedures and views used in the data loads are fully documented at

http://spira.zoology.gla.ac.uk/doc.php.

4.8 Summary and Preview

This chapter described the implementation aspects of data integration undertaken in the course

of constructing TCl-Db. Data loading, cleaning and structuring into trees was carried out using

a mixture of software programs written in C++ and PL/SQL. Database view mechanisms and

stored procedures played a decisive role in the success of this undertaking. Full details of

imports from all the data sources were given. The next chapter will focus on how this data can

now be used to satisfy user information needs.
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Chapter 5

Database Utility and Web Tools

5.1 Overview

TCl-Db was primarily built to meet the requirements of the systematics/tree building com-

munity. This chapter exemplifies the utility of the database within two contexts: using the

data in TCl-Db to translate search terms into those used in databases such as TreeBASE, and

using TCl-Db for more complex analysis, to synonymise terms across various data sources.

The first section details the queries that are supported by TCl-Db, with examples. We then

go on to extend these queries and display the utility of the data warehouse in contributing to

a better understanding of the individual data sources. Using a warehouse approach to meet

the requirements has the added benefit of enabling queries that compare data sources side by

side. Querying integrated data as a unit is a particular benefit of data warehouses. The final

section details the web tools that were built to search the data in TCl-Db. Finally, we present

a wrapper that uses the data in TCl-Db to deliver taxonomically intelligent queries on a local

copy of TreeBASE.

5.2 Supported Queries

The most important requirement in the development of TCl-Db was to deliver taxonomically

intelligent queries. These queries are: hierarchical queries, where the query term expands to

include subordinate terms in the classification of choice, and the expansion of vernaculars and

synonym queries to include valid names and other names associated with the original search
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term. The TCl-Db data model is described in Chapter 3, while the queries that this model and

the implementation supports are exemplified here.

5.2.1 Hierarchical queries

The most important of the requirements was the capacity to store and query multiple classi-

fications. Although a number of amalgamated database systems stored names from multiple

sources, the classifications of those names were not stored. This was also deemed one of the

most important features lacking in TreeBASE. TreeBASE contains taxon names but no classifi-

cation. TCl-Db provides three mechanisms to query the hierarchical data: the Oracle Connect

By query (Gennick, 2006), nested sets query and the materialised path query (Celko, 2004).

These are outlined below.

Using Parent-Child Relationship on node

Simple queries can be performed using the parent-child relationship stored in the node table.

For example, a very simple query can collect all species within a genus using the query shown

in Appendix A (A1). An alternative form of this query is shown in A2 using rank data from

the assertion table.

Oracle’s connect by statement

The connect by clause is an extension to SQL’s SELECT query implemented within the

Oracle RDBMS, specifically to enable hierarchical queries using parent rows and child rows.

Within TCl-Db the connect by query also uses the parent-child relationship modelled by the

attributes name id and parent name id in the node table. For example, in Appendix A (A3)

the connect by starts with Crocodilia and moves up the tree to the Root node. Queries A4

and A5 use an Oracle function SYS CONNECT BY PATH which produces a delimited path

listing of all names up to the root of the hierarchy.

Hierarchical queries using nested set, left and right IDs and paths

The nested set and path data have been included to make the system more accessible and

portable to other database products, including MySQL. The nested set mechanism is described

by Celko (2004) and these data need to be calculated using graph algorithms. The path string

complements the nested mechanism. It turned out that although the nested set query as in
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Appendix A (A6) is the fastest query when traversing down a tree, traversing up a tree is much

harder with this method. Selecting the path string and iterating through this proved to be more

efficient and is shown in A7. Query A7 is uses two queries. Since they can not be combined

into a single query, the path has to be retrieved from the tables first, so that it can be used in

a LIKE clause in the second query.

5.3 Data analysis Queries

The advantage of the data warehouse approach is that once data are replicated and transformed

into a global schema, they can be queried as a unit. This is the most significant advantage of

data warehousing, as certain complex queries can only be performed efficiently when the data

are available in this way. The breadth of queries that are possible directly on the warehouse

far exceeds any kind of interface that can be provided at individual sources. These queries are

suited to the ‘omics’ style analyses which are prevalent in molecular biology and bioinformatics.

The types of analyses on the data that are now possible are exemplified through some queries

given here.

Initially, very simple comparisons were conducted between data sources. The overlap be-

tween ITIS and NCBI, using the query in Appendix A (A8), returns the number of overlapping

names. The overlap was surprisingly low. From a total of 413,230 names in ITIS and 273,404

in NCBI only 48,355 names were common to both databases. Following on from this, we tried

to identify distributional bias of the names within each kingdom in order to identify where the

overlaps were and where the differences existed. While trying to quantify these differences we

found that a comparison by kingdom did not form a simple query. This is because NCBI uses

the Woese domain system of Bacteria, Archaea and Eukarya (Woese, 2004), while ITIS uses

the Whittaker five kingdom system (Whittaker, 1959). Attempting to map these names was

untenable. For example, it is difficult to equate Monera in ITIS to Bacteria and Archaea in

NCBI. Also in NCBI the ‘Fungi/Metazoa group’ was too complex to map to Animalia in ITIS.

This query highlights the fundamental differences in classification that many of the databases

exhibit. A user querying NCBI with the term Monera may not get the expected results. The

databases are quite different in their coverage of taxonomic data, prompting further questions.

For example, the number of names unique to NCBI names that are species/subspecies and

higher taxa names (Appendix A (A12)), is given in Figure 5.1 and Table 5.1 shows that there

is significantly less overlap at the species level (13%) and lower ranks. These comparisons show
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69%
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20%

No Rank
Higher Taxa
Species and Lower Taxa

NCBI Names

90%

10%

No Rank
Higher Taxa
Species and Lower Taxa

ITIS Names

58%

42%

No Rank
Higher Taxa
Species and Lower Taxa

Overlap

Figure 5.1: ITIS and NCBI comparison showing that the majority of names in both databases

are species and lower taxa but the overlapping names are split almost equally between higher

taxa and lower taxa ranks.

that the two databases are complimentary, and therefore have the potential of adding more

value when used together. We are also able to use the integrated data to look at data coverage

within groups. For example, given a genus we can count how many species and subspecies that

genus contains across all the data sources.

One of the advantages of using a data warehouse is the ability to add to the existing

data. The queries given in Appendix (A9 and A10) gather homonyms into a materialized

view. Homonyms are names that are spelt in an identical manner but refer to different taxa.

Such names arise mainly because the names of plants and animals are independent and there are

no rules across the codes to forbid the use of a name already used in an other kingdom. A list

of homonyms has been constructed and is available at http://darwin.zoology.gla.ac.uk/

~nanwar/animal_plant_dup_names.txt. To simplify and avoid confusion during a search these
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Rank NCBI ITIS overlap with ITIS
Count Count Count %

Superkingdom 3 0 0 0
Kingdom 3 4 2 50
Subkingdom 0 2 0 0
superphylum 4 0 0 0
Phylum 81 69 55 79
Subphylum 14 17 12 70
Superclass 5 5 1 20
Class 203 156 114 73
Subclass 100 103 76 73
Superorder 49 41 31 75
Order 976 937 664 70
Suborder 325 437 189 43
Superfamily 593 286 153 53
Family 5204 6387 3581 58
Subfamily 1392 769 229 29
Genus 31,298 33,649 13,241 39
Subgenus 521 209 0 0
Species 171,156 189,497 25,804 13
Subspecies 4769 14358 349 2.5
Tribe 912 345 95 27
Subtribe 173 9 1 11
Varietas(Variety) 1268 9639 1 0.01

Table 5.1: Summary of ITIS and NCBI content categorised by rank. The overlap, with respect
to ITIS, is given in the final column.

names are tagged with their respective kingdoms in parentheses, for example, search results for

the query term Morus are shown in Figure 5.2. Homonyms in higher taxa can also cause

significant problems for hierarchical queries using the Oracle connect by statement. In ITIS,

for example, there is a loop in the tree at the name id 13102529 for the name Mastigophora,

since this taxa is both a valid genus in the kingdom Plantae and a valid sub phylum in the

kingdom Animalia. Identifying these homonyms enables these data to be tagged in such a way

that many of the problems and confusion they cause can be overcome.

Data quality is of particular interest, and queries in TCl-Db enable data to be compared

side by side making differences and discrepancies more obvious. Data quality and data integrity

queries can check the names across databases to identify, for example, misspellings in names. In

TCl-Db misspelt names can be identified by gathering all names unique to one data source and

then comparing these to the names in the rest of the database, while allowing for mismatches.

This was done for the class Aves. An initial comparison identified that ITIS had more names in

this class, so for data quality we looked first at those names in NCBI that were not in ITIS. The
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Morus

Morus confinis

Morus crataegifolia

Morus grisea

Morus radulina

Morus tatarica

Morus tinctoria

Morus papyrifera

mulberry

mulberries

mulberry trees

Morus(Animalia)

Morus(Plantae)

Morus(Plants)

Morus(Vertebrates)

Figure 5.2: Query results for the search term Morus. Since Morus is a homonym the name with

the kingdom in parentheses has been added so that users can easily see the term exists validly

in two kingdoms.
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unique NCBI Aves subset was extracted and a script iterated through each name using Agrep

(Wu & Manber, 1992) to compare it to all other names in TCl-Db. Agrep is a text searching

tool that allows strings to be compared while allowing for mismatches, i.e. errors. This analysis

is described in Chapter 6.

TCl-Db can also be used to look at the content of particular databases. For example, we

are able to count the number of the bacterial species names in NCBI that are trinomial rather

than binomial. The query in Appendix A (A13) uses the LIKE condition in the where clause

to find names that have the pattern ’% % %‘ i.e. any string followed by a space, followed by

any string and a space followed by any string. Simple queries like this can be used to get a

better understanding of data quality and to determine where in the warehouse constraints and

rules can be placed. For example, it would be inappropriate to add an integrity rule to the

warehouse restricting species names to binomials. This is an example of a data integrity query.

While performing these queries we also found numerous examples of names like ”genus sp.” in

NCBI. Usually these names are attached to sequences for organisms that have sequence data,

the organism though has only been identified into a genus with no specific name assigned. Also,

many taxa in NCBI have simply been named as an “environmental sample”.

Although it would be inappropriate to modify the source data entering TCl-Db, the examples

above show that the data can be tagged with metadata once they are identified. Data integrity

differs from data quality in that integrity refers to the validity of data in terms of consistency

and data quality refers to the correctness of data in terms of accuracy. In TCl-Db the data

sources are assumed to be correct. There are cases, however, where correct data entered into

a database with no checks and no referential integrity can result in multiple entries, i.e., poor

data integrity. For example, we identified three assertions for the name Mastigophora (TCl-Db

name id 13102529). This is because in ITIS this name has three valid entries. Not only is this

a homonym, but within the Plant Kingdom it has two valid entries at the rank genus with

Taxon Serial Numbers (TSN) 14271 and 14272. See http://www.itis.usda.gov/servlet/

SingleRpt/SingleRpt?search_topic=TSN&search_value=14271

and http://www.itis.usda.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_

value=14272. These data integrity issues in the source databases can be identified more eas-

ily in TCl-Db. They can be found with an SQL statement as in query A10 in Appendix

A, which identifies duplicate names into a materialised view. Each of the entries in the

view were checked individually to determine which were homonyms and which were dupli-

cate entries within the same kingdom. Some of those identified from this view are listed at
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http://spira.zoology.gla.ac.uk/itis_valid_dups.txt. A similar example of poor data

integrity in one of the source databases, SP2K, can be shown in the records for Vertebrata

(record id 2348763), Amphibia (record id 2349507) and Isoptera (record id 2348853) which are

all in the kingdom Animalia. In one version of SP2K these are not accepted names and they

point to the valid name Rhodomelaceae (record id 1248761). These records are incorrect be-

cause the valid name Rhodomelaceae is in the plant kingdom and not the animal kingdom.

The query A11 in Appendix A is used to identify and link names via synonyms and vernaculars

across the databases, answering the question “how many names in the synonym name table

are also considered to be valid names”. Such names could have entered the synonym name

table because at least one data source considers the name a synonym. Using several similar

SQL queries, we found that not only do NCBI and ITIS differ in their coverage of names but

names that do overlap may also be treated differently. For example, 866 ITIS valid names are

considered to be synonyms in NCBI.

All linked names, misspellings, homonyms and data recovered from these queries have been

placed into the table: name search which can be searched using the example query A14 in

Appendix A. The result returned from this query is shown in Figure 5.2.

5.3.1 Comparing classifications.

Comparing classifications is a complex problem that is more easily accomplished through graph

based queries (Zhong et al., 1996, 1999) than the set based queries within SQL. The importance

of mapping taxonomies to each other is demonstrated with queries such as gathering data from

one system using the classification of another. It could be, for example, that a user wishes

to retrieve all sequence data for “Metazoa”. Another example is highlighted by the case of

“Ecdysozoa”. The Ecdysozoa are a group of protostome animals which include the Arthropoda

and Nematoda, and several smaller phyla (Aguinaldo et al., 1997). Proponents of this clade may

wish to use it as a search term, but currently the NCBI taxonomy does not include this term.

To gather sequence data for this group requires mapping the term on to the NCBI classification.

A direct comparison of NCBI nodes and ITIS nodes from query A15 in Appendix A gives

44,320 names common to both classifications. Extending this query (A16) we can tell how many

of these do not have the same parent name and are potentially classified differently. Queries

to map across classifications are also possible using TCl-Db. Using hierarchical queries it is

possible, for example, to take children of specific nodes in one classification and compare them

to the children nodes in another classification. Discrepancies can be identified for those children
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CHILD PARENT NCBI PARENT ITIS

Crocodylidae Archosauria Crocodilia

Tomistoma Gavialinae Crocodylidae

Osteolaemus Crocodylinae Crocodylidae

Crocodylus Crocodylinae Crocodylidae

Table 5.2: Child nodes of the term Crocodylidae that are in both NCBI and ITIS but classified
differently. These are the results from query A17, Appendix A.

whose parent names are different. An example is given in query A17 which finds the child nodes

for the term Crocodylidae (given in Figure 3.1) for NCBI and ITIS; the classifications overlap

but are not the same. By creating a set of the child nodes in NCBI and a set of the child

nodes in ITIS, we can identify from these sets which children overlap but do not share the same

parent. The two classifications in this case are completely different and do not merge until the

genera and species. ITIS does not recognise the name Crocodylinae, the parent of Crocodylus

in NCBI.

The remainder of this chapter outlines the individual web tools created to perform query

expansion using TCl-Db. In the final section, the web tools are brought together in one appli-

cation, that enables taxon queries through TreeBASE .
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Crocodylidae

Tomistoma

Osteolaemus

Crocodylus

Crocodylus niloticus

Crocodylus novaeguineae

Tomistoma schlegelii

Crocodylus mindorensis

Crocodylus porosus

Osteolaemus tetraspis tetraspis

Crocodylus siamensis

Crocodylus cataphractus

Crocodylus rhombifer

Crocodylus palustris

Caiman crocodilus apaporiensis

Alligator sinensis

Crocodylus moreletii

Gavialis gangeticus

Alligator mississippiensis

Osteolaemus tetraspis

Paleosuchus trigonatus

Paleosuchus palpebrosus

Melanosuchus niger

Osteolaemus tetraspis osborni

Crocodylus johnsoni

Crocodylus intermedius

Crocodylus acutus

Caiman yacare

Caiman latirostris

Caiman crocodilus

Caiman crocodilus crocodilus

Caiman

Gavialis

Alligator

Melanosuchus

Paleosuchus

Crocodilia

Figure 5.3: Crocodylidae Query: NCBI and ITIS. The NCBI classification is given in Fig-
ure 3.1. The ITIS classification of the family Crocodylidae is highlighted with the red edges
NCBI classification in black. All common names across the two classifications are highlighted
in blue. The classifications were merged using an SQL query. The query takes all nodes
in the NCBI classification and uses these nodes to gather the same nodes within the ITIS
classification. The diagram was created using webdot, e.g. http://spira.zoology.gla.ac.
uk/ClassificationWebdot.php?name_id=13232588&tree_id=1 for ITIS and http://spira.
zoology.gla.ac.uk/ClassificationWebdot.php?name_id=13232588&tree_id=2 for NCBI.
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5.4 TCl-Db Web Tools

Taxon names are keys to biological data (Geoffroy, 2001), and in this capacity they are com-

monly used as search terms to retrieve data in many systems. TCl-Db warehouse was developed

primarily to aid information retrieval from TreeBASE, through taxon names. This section de-

scribes web based search tools that utilise the TCl-Db integrated data, and a TreeBASE wrap-

per using a local copy of TreeBASE whose taxon names have been mapped to TCl-Db. Query

terms given in the wrapper are transformed into taxon queries which are then performed on

the mapped TreeBASE taxa in TCl-Db. We first describe the generic tools that may be used

to browse, visualise and search for names stored within TCl-Db.

All the applications described here are located on the TCl-Db web page at spira.zoology.

gla.ac.uk. The tools are built using PHP, PHP Hypertext Processor programming language

(Zend Technologies, 2006), JavaScript, CSS, and the XMLHttpRequest Object is used to pop-

ulate parts of the interface (Darie & Brinzarea, 2006). PHP is a very easy to use scripting

language that makes development of web interfaces from databases such as MySQL and Oracle

quick and cost effective. PHP is used primarily to access the data in the databases through

the Oracle Call Interface (OCI) functions for Oracle. Alongside the traditional web interface

for TCl-Db, there are web services providing a service oriented architecture to enable inter-

operability with other systems. These were also built using PHP, through re-using code already

developed and PHP’s web service development tools for XML-RPC (XML- Remote Procedure

Call) (Winer et al., 1999) and SOAP ( Simple Object Access Protocol) (Gudgin et al., 2003).

5.4.1 TCl-Db Search Tool

This section describes the scripts that were built to query and visualise data in TCl-Db. These

tools can be used to link TCl-Db to other systems that need to support taxonomically intelligent

queries.

Using scientific names as search terms is complicated by the fact that taxon names are in

Latin and are often difficult to spell. This can be overcome using string matching technologies

(Alberga, 1967; Navarro, 2001; Pfeifer et al., 1995, 1996). By using these tools, the system can

provide ‘a catch’ on each query: if no data are found for the query given, then alternatives are

suggested to the user. Taxon names also change from time to time and data linked to an older

usage, a synonym, may not be retrieved when another name takes common use. Linked names

within TCl-Db can be used to expand search terms to include both synonyms and vernaculars.
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One other feature of taxon names that should be considered by a system that allows taxon

names as search terms, is that taxon names are also contained within a hierarchy. In many

cases the search term given is not a simple search and the user expects the query to expand

hierarchically. These requirements are fulfilled by a search tool for TCl-Db.

The search service can be found at the URL http://spira.zoology.gla.ac.uk/search tcl.php.

The interface requires the user to submit a search term. The search terms are first checked

against the names in the TCl-Db table name search for an exact match. This table contains

all linked names, therefore, the search term can be a synonym, vernacular, higher taxon name

or valid species name. If no hits are returned, the query is then rechecked against the database

using Agrep (Wu & Manber, 1992). The Agrep results are refined, based on the query length

using the Levenshtein (Cohen et al., 2003) method.

On returning either an exact match, or providing links to approximate matches, the returned

result, including linked names, is shown diagrammatically and in a drop down menu (Figure

5.4). The user can select from the drop down list the name for which he wishes to view the

assertion data. The assertion data are name data from each of the data sources included within

TCl-Db. The detailed view for the term Casuariidae, shown in Figure 5.5, gives the databases

that contain the name, the synonym details, vernacular details and links to the original data

sources. These are termed the assertion data. The data given for valid names in the columns

above are: the search term, data source of the term, the data source identifier, rank, kingdom,

the parent of the term in that data source hierarchy and a link to the children of that term.

Synonyms and vernaculars show the same data, except for the rank and hierarchy data. The

assertion data show repeated values for NCBI and ITIS, which is due to the way data are loaded.

Although names are stored only once, the assertions of that name (i.e. which data source that

name came from) can have multiple values if there is more than one copy of that data source.

Both ITIS and NCBI have been updated and show two and three assertions, respectively, for

the name Casuariidae. Should this result set become too verbose, it can be condensed by adding

a distinct clause to the SQL query in the PHP script. The data include the direct parent in

the hierarchy and a link to browse the immediate children within the original source hierarchy.

The details for any synonyms and vernaculars are also listed in this view.

In addition to the simple search page, a second interface is provided to browse through

particular classifications. This page can be accessed from the search page by clicking on the

Browse button or directly from the URL http://spira.zoology.gla.ac.uk/browse/tcl browse.php.

The user is presented with a choice of three check boxes, and selecting any of them starts the
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Figure 5.4: Search for the term Casuariidae presents users with a mapping to the synonym

Dromaiidae. Mappings are also presented in a diagram. The diagram shows which names are

linked. If a name is linked to itself it usually represents the valid name. There are two arrows

linking the term Casuariidae, which represents the fact that these links were made through two

data sources. If there is only one arrow, then only one data source made the link.
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Figure 5.5: The detailed view for the term Casuariidae.
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Figure 5.6: The Classification Browse Interface allows the user to click through the classification.

search. Once selected, the next series of select boxes appears, and the user clicks through the

boxes for the classification path of interest. A double click on a name will display assertion

data.

5.4.2 Visualisation Tools: Linked Names and Classifications with Web-

dot

The Dot command line programme and language (Koutsoos et al., 1996) draws directed graphs,

Webdot (Ellson, 2006) is a CGI program that converts the dot graphs into an image that can be

included into a webpage. Webdot images are used to display linked names produced by TCl-Db

as shown in Figure 5.4 and also Figure 5.15, and are particularly useful for displaying portions
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of the classifications (Figure 5.16). The Webdot application was installed to run locally. It

takes as input a dot file, (an example dot file is shown below in Table 5.3). This file produces

the image shown in Figure 5.15.

digraph G

{
graph [size="16,2"];

"Morus"->"Morus";

"Morus"->"Morus confinis";

"Morus"->"Morus crataegifolia";

"Morus"->"Morus grisea";

"Morus"->"Morus radulina";

"Morus"->"Morus tatarica";

"Morus"->"Morus tinctoria";

"Morus"->"Morus papyrifera";

"Morus"->"mulberry";

"Morus"->"mulberries";

"Morus"->"mulberry trees";

"Morus(Animalia)"->"Morus";

"Morus(Plantae)"->"Morus";

"Morus(Plants)"->"Morus";

"Morus(Vertebrates)"->"Morus";

"mulberry"->"Morus";

}

Table 5.3: Example dot file used Webdot to produce the image in Figure 5.16

The PHP functions within the TCl-Db basic search produce a dot file for each search. The

webdot CGI then converts this file into the images (Figure 5.4 and Figure 5.15). These views

were very useful in the understanding of the integrated data. A further standalone tool was de-

veloped to display the full hierarchy below a search term. The application, shown in Figure 5.7,

returns the full classification below the term Crocodylidae for the classification tree from ITIS. A

search form version is provided at http://spira.zoology.gla.ac.uk/classificationwebdotallnodes.php.

However, for larger queries, with more than 30 nodes the graphs become difficult to read and
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hence the interface is only useful for smaller subtrees.

Figure 5.7: Interface: Classification displayed in Webdot for Crocodylidae. From URL

http://spira.zoology.gla.ac.uk/classificationwebdot.php?name id=13232588&tree id=1

5.4.3 Supporting vernacular search terms

Vernacular names are commonly used as search terms (see analysis of TreeBASE search data

in Chapter 7). Although spiders, fruit fly, or birds are more familiar terms, they do not convey

the same meaning as their Latin counterparts Archanae, Drosophila melanogaster, or Aves.

Scientific names are more specific in their meaning than vernacular names. Vernacular names

are often used because they are not specific and have broader scope and are therefore used
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as general or loose queries. Most databases primarily deliver scientific names and vernaculars

may or may not be given. This is because vernaculars are not included within the scope of

the database if they are not needed. There seems to be poor link up between valid scientific

names and vernacular names. With the current tools, it is a cumbersome task for a biologist

to translate a list of vernacular names into scientific names. TCl-Db can be used to map

vernacular names to valid names, and the application described here exemplifies how TCl-

Db can be used to simplify or semi-automate data collection using vernacular names. For

example, such an application can be used to collect sequence data for several organisms, using

vernaculars as query terms. Links to NCBI have been included in the application as an example.

The common names can be searched using approximate spelling, or a phonetic spelling with

suggestions returned for the user to select from. Given the awkward spelling of many names, a

secondary search page provides suggestions as the user types, which may be more useful to some

users. The URL for the vernacular search form is http://spira.zoology.gla.ac.uk/app.

When using a vernacular term, most users know roughly what they are looking for, i.e. they

use a “they will know it when they see it” search. These queries usually start with an initial

non-specific or “broad” query term in the expectation of returning a large set of names which

they can then browse through to find the Latin name of interest. In this capacity, the vernacular

search term is a kind of “loose” query. The looseness of vernaculars makes the term relatively

stable, for example, the term birds translates to the scientific name Aves. Taxonomists may

revise what the term Aves means phylogenetically, however, the details of that change (inclusion

or exclusion of several species) does not change the general definition of the vernacular term,

i.e., egg-laying vertebrates characterised primarily by feathers, forelimbs modified as wings, and

hollow bones, etc.

For users seeking to collect sequence data, the NCBI web site enables them to conduct a

vernacular search, and many other taxonomic data sources also provide a vernacular search

tool. However, most systems with this capability fall short for a number of reasons. The search

interfaces enable only a single name search at a time. A user with a list of names has to

search each name separately and then collate his data. In a system that does translate the

vernacular term, it does so only on the valid term and the term is not expanded further, i.e.

hierarchically. To use the birds example again, this would translate to Aves but it is likely that

the user requires the species names within Aves and not the actual term itself. As we have

already shown, there is also the issue of taxonomic coverage within individual databases, and

amalgamated databases such as TCl-Db provide far more coverage.
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The interface uses PHP and javaScript (Darie & Brinzarea, 2006). There are three separate

PHP scripts. The first gives the initial search page (Figure 5.8) and is found at the URL

http://spira.zoology.gla.ac.uk/app. On this page, users can copy and paste a list of vernacular

names into the text box, while an alternative search page provides users with suggestions as

they type. The suggestions interface is based on the Google suggests

(http://www.google.com/webhp?complete=1&hl=en).

Figure 5.8: Vernacular Query form at http://spira.zoology.gla.ac.uk/app

The script uses a list of names which were dumped into a text file from a TCl-Db table

holding mapped names. The script takes the search terms given and searches each through the

text file of TCl-Db names using Agrep, in order to find initial matches. With a mismatch of two

agrep returns a very large list of matches. The use of Agrep with a mismatch of two is a bit of

a compromise, as the effect of increasing the mismatch returns even more data when the search

term is short and reducing it to one misses too many potential matches when the search term

is longer. This is analogous to the precision and recall measures used in information retrieval,

as good recall returns as many relevant matches as possible while minimising the number of

non-relevant matches (Singhal, 2001). The matches returned from Agrep are refined using the

length of the query term and the Levenshtein method (Cohen et al., 2003). From these results,
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suggestions for taxon names that match the query are returned to the user in a second query

form. This second script builds a form from which users select the names of interest returned

from the initial query. Further suggestions are also made to users to help them find what they

are looking for, see Figure 5.9. After selecting the terms of interest using the check boxes and

clicking on the next button, the following page (and final script) displays the selections with a

drop down menu from which the user can view assertion data (Figure 5.10).

Figure 5.9: Screen shot of Vernacular Query Results from a query on cranes, pigeons, penguins,

larks at http://spira.zoology.gla.ac.uk/app
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Figure 5.10: Screen shot of Vernacular Query Results - Data page
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5.4.4 A TreeBASE Wrapper

Taxonomic Requirements of TreeBASE

TreeBASE (Morell, 1996) contains phylogenies for more than 90,000 taxa. Despite the intrin-

sic taxonomic content, at design, the developers of TreeBASE purposely excluded taxonomy

(Morell, 1996). The TreeBASE interface (www.treebase.org) supports six query types: author,

citation, study accession number, matrix accession number, taxon and structure. The taxon

search, however, does not perform adequately. This search option does not effectively support

higher taxa queries or synonym and vernacular queries.

From a biologists perspective, the taxon search option does not return the expected results.

The query term “Aves” currently returns 5 studies however, there are many more studies con-

taining Aves (birds) within TreeBASE. Higher taxa terms such as Aves are not being expanded

to include the scientific names contained within them. Queries performed on TreeBASE return

only data where the search term matches exactly a term contained in the study. Similarly a

vernacular query such as “birds”, returns no data because it is not contained in any study. The

synonyms also fail to return complete result sets. The taxonomic content and structure of Tree-

BASE does not support these queries, as query terms are not expanded to include associated

terms and as a result incomplete results are returned. TCl-Db was built to improve the current

data retrieval options within TreeBASE.

The taxonomic queries that TreeBASE should support were stated in the introduction, query

terms should expand hierarchically and vernacular and synonym queries should be supported

through the provision of query expansion to linked valid names. TCl-Db was designed to provide

a taxonomic infrastructure to TreeBASE and supports these queries.

We have built a simple web application that enables taxon queries via TCl-Db to return the

relevant TreeBASE data. The interface provides both a search form (Figure 5.11) and a classi-

fication browse form (Figure 5.12) which returns either TreeBASE TREEID’s or STUDYID’s.

These link to the current online TreeBASE interface via hyperlinks. Unfortunately, the copy of

TreeBASE that this application is built on is over two years old. However, the application code

uses data in materialized views which query the TreeBASE taxa and TCl-DB names tables

and the views are set to automatically refresh when new data are loaded into these parent

tables. Therefore, on update of the TreeBASE schema, the application code will require no

significant changes. The two materialized views used by the application (Query 1 and Query 2,

are shown in Figure 5.13) make use of the taxon mappings table treebase whouse mapped.
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Figure 5.11: TreeBase Wrapper Screen shot - Search Page
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Figure 5.12: TreeBase Wrapper Screen shot - Browse Page
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The data in this table are from a combination of exact and approximate text matching on

the taxonname field in the TreeBASE taxa table and the TCl-Db name table. The exact

matching (case insensitive) was a simple SQL query. A Perl script ran the approximate queries

and loaded the data into a separate table. After some manual editing, these two tables were

combined to give the master table treebase whouse mapped used by the materialized views

shown in Figure 5.13.

Figure 5.13: TreeBase Wrapper Materialized Views

The data in the views are accessed via PHP and JavaScript. A query using a vernacular

term in the search form will return a list of linked taxon names from which the user can select

TreeBASE data. For example, the search term “Song Sparrow” returns Melospiza melodia. The
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search form also enables the user to use an approximate spelling, for example, the search term

“Caenorabditis” returns no data but suggests “Caenorhabditis” as a search. The browse form

allows the users to first select which hierarchy they wish to browse, the choices given are ITIS,

NCBI and Sp2000, and then select the taxon for which they want to get TreeBASE data. The

application can be accessed from the URL http://spira.zoology.gla.ac.uk/app/tbase wrapper.php.

5.4.5 SOAP Tools

Introduction

Most systems, and even sometimes the underlying tools within those systems, are built in

isolation and rarely work together seamlessly. It is quite rare to find an all encompassing

monolithic tool that contains every application or algorithm that a users wants to use. More

often, tools are developed in isolation and then built into a system. What this means for

users is that they often have to wait for useful algorithms and tools to become available in the

applications they use, or they have to use these tools in the native forms and transform the

inputs and outputs as required. For example, a task performed by many molecular biologists

through web tools takes a sequence of interest from NCBI (www.ncbi.nlm.nih.gov) to conduct a

BLAST search, the results from the BLAST search are manually examined, and the user selects

the relevant hits. These are gathered into FASTA format and then aligned using ClustalW

(www.ebi.ac.uk/clustalw/). This is a very simple example of a workflow which can be performed

from several resources on the web. There has been a huge investment in the development of

automatic workflows to seamlessly manage the transfer of data and results from one application

to the next (Hoon et al., 2003; Shannon et al., 2006), in the example above from BLAST to

ClustalW. This kind of application integration can be performed in the traditional manner

using a common API (Application Programming interface). In this way the applications can

be strung together with relative ease. Just as data are integrated into larger systems to ease

interoperability, applications and tools are integrated for the same purpose (Jepsen, 2001).

Solutions for providing the same seamless interoperability over the web have come to be known

as “Web services” (Ferris, 2003; Jepsen, 2001). These services are based on various XML

technologies: UDDI (Universal Description, Discovery and Integration) which enables services

to be discovered; WSDL (Web Services Definition Language) (Chinnici et al., 2004) which is

used to describe the syntax of web services; and SOAP (Simple Object Access Protocol) which

is a message syntax for sending and receiving XML messages within Web services. SOAP is
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Figure 5.14: The WSDL for the TCl-Db SOAP service can be found at

http://spira.zoology.gla.ac.uk/app/nusoap.

the protocol that builds the interoperability within web services in a platform independent

manner, as it is essentially an agreed standard for accessing a web service. The advantage of

building web services for interoperability of applications are especially seen in Service Oriented

Architectures (SOA). In a SOA the service provider has a service designed for others to use.

Interoperability is a core principle in the development of TCl-Db, since the database was

developed for the purposes of interoperability with other databases, TreeBASE specifically, but

not exclusively (Tsenov, 2004). To this end, the interfaces described below are available as web

services using nuSOAP (Nichol, 2004). The TCl-Db web service provides a WSDL detailing the

interface, the operations and the inputs and outputs of the operations. An example of the client

code in PHP is given in Table 5.4, to exemplify the use of the service (Figure 5.14). Each of

the functions in the WSDL are described briefly below with an example of the expected input

and an example output.

Displaying Linked Names and Classifications with Webdot in SOAP

The outputs created by functions createDot, getchildrendot itis and getchildrendot ncbi

are shown in Figures 5.15 and Figure 5.16.
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<?php

require once(’./lib/nusoap.php’);

// Get inputs

$client = new soapclient(’http://localhost/app/nusoap/tclsearchwsdl.php’);

$int = array(’int’=>’1818’); # AN ITIS or NCBI ID

$param = array(’string’=>$ GET[’string’]);

$name id = array(’name id’=>$ GET[’name id’]);

// Call the functions

$result = $client->call(’getName’, $param);

$dot = $client->call(’createDot’, $param);

$itischildrendot = $client->call(’getchildrendot itis’, $name id);

$ncbichildrendot = $client->call(’getchildrendot ncbi’, $name id);

$classification = $client->call(’getclassification itis’, $param);

$name = $client->call(’getNameByID’, $int);

$ids = $client->call(’getids’, $param);

$assertions = $client->call(’getassertions’, $param);

$hierarchy = $client->call(’gethierarchy’, $param);

$synonym = $client->call(’getsynonym’, $param);

$vernacular = $client->call(’getvernacular’, $param);

// Display the results

print r($result);

print r($dot);

print r($itischildrendot);

print r($ncbichildrendot);

print r($classification);

print r($name);

print r($ids);

print r($assertions);

print r($hierarchy);

print r($synonym);

print r($vernacular);

?>

Table 5.4: Example PHP script that calls each of the SOAP functions.
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Morus

Morus confinis

Morus crataegifolia

Morus grisea

Morus radulina

Morus tatarica

Morus tinctoria

Morus papyrifera

mulberry

mulberries

mulberry trees

Morus(Animalia)

Morus(Plantae)

Morus(Plants)

Morus(Vertebrates)

Figure 5.15: WebDot diagram for linked names for the term Morus. From the URL

http://spira.zoology.gla.ac.uk/app/nusoap/getWebdotByNameClient.php?name text=Morus

Morus

Morus nigra

Morus serrator

Morus tictoria

Morus microphylla

Morus rubra

Morus bassanus

Morus capensis

Morus alba

Figure 5.16: WebDot diagram for ITIS children names for the term Morus. From the URL

http://spira.zoology.gla.ac.uk/app/nusoap/getchildrenwebdotClient.php?name id=13107094
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SOAP - Basic search

The basic search functions are getids, getName and getassertions.

• getids takes a name as input and returns the identifiers at the data source. The XML

below is the output from the URL

http://spira.zoology.gla.ac.uk/app/nusoap/getTCLIDClient.php?string=Pinguinus

<response>

<tcl_name string="Pinguinus" id="13235745" status="valid">

<SP2K>2393290</SP2K>

<NCBI>94622</NCBI>

<Moro>10831</Moro>

<Amer>10978</Amer>

<Amer>2854</Amer>

<pete>10614</pete>

<Sibl>11334</Sibl>

<NCBI>94622</NCBI>

<ITIS>177036</ITIS>

</tcl_name>

</response>

• getName does the reverse of getids and uses a source database ID to gather the name

from TCl-Db.

http://spira.zoology.gla.ac.uk/app/nusoap/getNameByIDClient.php?int=177036

The name sources are independent databases and an integer used as an identifier in one

database can be used to identify something else in another as shown in the example below.

<response>

<NCBI>tall donkey orchid</NCBI>

<SP2K>acacia</SP2K>

<ITIS>great auks</ITIS>

<ITIS>Pinguinus</ITIS>

<NCBI>Diuris drummondii</NCBI>

</response>
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• getassertions takes a name as input. Below is the XML output from the URL

http://spira.zoology.gla.ac.uk/app/nusoap/tclassertionClient.php?string=Pinguinus

<response>

<tcl_name string="Pinguinus" id="13235745" status="valid">

<Assertion>

<nameString>Pinguinus</nameString>

<dbstring>SP2K</dbstring>

<IdentifiedBy>2393290</IdentifiedBy>

<rankString>Genus</rankString>

<Kingdom>Animalia</Kingdom>

<parentString>Laridae</parentString>

</Assertion>

<Assertion></Assertion>

<Assertion></Assertion>

<Assertion></Assertion>

<Assertion></Assertion>

</tcl_name>

</response>

SOAP - Vernacular/Synonym search

Two functions are provided, getsynonym and getvernacular. An example output for the

vernaculars is given below. This can also be viewed from the URL

http://spira.zoology.gla.ac.uk/app/nusoap/tclvernacularClient.php?string=Aves

<response>

<tcl_name string="Aves" id="13232598" status="valid">

<vernacularString>birds</vernacularString>

<dbstring>ITIS</dbstring>

<IdentifiedBy>174371</IdentifiedBy>

<Kingdom>Animalia</Kingdom>

<vernacularString>birds</vernacularString>

<dbstring>NCBI</dbstring>

<IdentifiedBy>8782</IdentifiedBy>
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</tcl_name>

</response>

SOAP - Hierarchical search

The functions gethierarchy and getclassification provide the hierarchical interface to the

database.

• getclassification itis takes a name as input and traverses up the ITIS tree to get

the classification to the root. This function uses the materialised paths data for the name

and traverses this in a PHP array. The example output below is from the URL

http://spira.zoology.gla.ac.uk/app/nusoap/getclassificationClient.php?string=Pinguinus

<response>

<tcl_name string="Pinguinus" id="13235745" status="valid">

<path>

Laridae,Ciconiiformes,Aves,Vertebrata,Chordata,Animalia,

</path>

</tcl_name>

</response>
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• gethierarchy also takes a name as input. The function uses the nested set data to

retrieve the full hierarchy below the search term. This function differs from the the

Webdot functions described above, getchildren itis and getchildren ncbi return all

the children directly below that node using the parent-child data in the node table,

whereas the gethierarchy returns the direct parent from each data source. The example

below is from the URL

http://spira.zoology.gla.ac.uk/app/nusoap/tclhierarchyClient.php?string=Pinguinus and

has been simplified for clarity.

<response>

<tcl_name string="Pinguinus" id="13235745" status="valid">

<itis>

<node id="11648509">

<child>Pinguinus impennis</child>

<parent>Pinguinus</parent>

</node>

<node id="11648510">

<child>Pinguinus</child>

<parent>Laridae</parent>

</node>

</itis>

<ncbi>

<node id="12153284">

<child>Pinguinus impennis</child>

<parent>Pinguinus</parent>

</node>

<node id="12153285">

<child>Pinguinus</child>

<parent>Laridae</parent>

</node>

</ncbi>

<sp2k>

</sp2k>

</tcl_name>

</response>
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5.5 Summary

This Chapter shows the queries that TCl-Db supports and gives examples of the types of analysis

that can be performed on integrated data within TCl-Db. The web tools and applications were

developed to search the TCl-Db warehouse of taxonomic names. The tools shown here are

examples of the kind of tools that can be developed. The database, however, has a very broad

scope and with the ease of development using PHP further applications can be built for the

purposes of individual researchers. The examples illustrated here show both a simple standalone

web interface and an interface deployed over another database, TreeBASE. The tools are also

available as a web service through SOAP, enabling interoperability with other systems. Further

work and future considerations will focus on the suggest interface mock up based on Google

suggest. Since the version of TreeBASE shown here is out-of-date, a more recent version of the

data will be installed.

The following two chapters exemplify further the utility of the database. Chapter 6 shows

how the data sources can be compared and reconciled further through the identification of

misspellings and homonyms. Chapter 7 highlights the advantages of using TCl-Db to query

data in TreeBASE.
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Chapter 6

TCl-Db Reconciling data sources

6.1 Summary

Taxonomic data sources, such as the Integrated Taxonomic Information System (ITIS, 2006),

the Universal Biological Indexer and Organizer (uBio, 2006) and Species 2000 (Bisby & Smith,

2000) do an exemplary job in providing up-to-date taxonomic data to their respective user

communities. As a result, the accessibility of taxonomic data to users has never been easier.

Taxonomists continue to invest in their data by focusing on data accessibility (Patterson et al.,

2006; Remsen et al., 2006), data management (Polaszek, 2005) and now data quality (Chapman,

2005a,b). TCl-Db is a next step in data availability. It provides a global view of taxonomic

names from multiple data sources. The merged data in TCl-Db can be used to determine data

quality in terms of accuracy, consistency and completeness within these taxonomic data sources

(Fox et al., 1994). Described here are the queries and results of a data cleaning and reconciliation

task performed on the class Aves (birds). We have identified spelling inconsistencies, synonym

discrepancies, homonyms and classification differences. These data have been used to add links

between names in the TCl-Db structure, adding value and providing clarity and consistency to

the data provided in TCl-Db.

6.2 Background

As more and more taxonomic data becomes available to the wider user community, focus

is beginning to shift towards understanding the distribution and quality of taxonomic data
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(Chavan et al., 2005; Embury et al., 2001). Data accuracy, consistency and completeness are

issues the taxonomic community are beginning to address (Chapman, 2005a,b). By reconciling

taxonomic data, we can begin to understand the quality of the data currently available and

deliver more information to our user communities. TCl-Db can be used to identify differences

that can handicap non-expert and inexperienced users. Also, reconciling names from several

data sources is one of the first steps in a super tree construction, where taxon names used in

the trees need to be synonymised (Thomas et al., 2004) to a standard checklist. This chapter

shows how TCl-Db can facilitate these tasks.

Integrated Taxonomic Information System (ITIS, 2006), the Universal Biological Indexer

and Organizer (uBio, 2006), Species 2000 (Bisby & Smith, 2000) and NCBI are some examples

of the successful investment that has been made in the dissemination of taxonomic data on the

web. These systems were developed to meet specific user requirements. For example, NCBI

provides a taxonomic backbone to the NCBI sequence database GenBank, and the scope of ITIS

is limited to taxa of interest to North America. With many more, made to order databases,

taxonomic data has never been so readily accessible and taxonomy now has an enormous web

presence. The difficulty now is understanding the landscape of taxonomic data, i.e. what data

are where? Another difficulty is the accessibility and discovery of heterogeneous data. Data

integration and interoperability are now a major focus (Godfray, 2007; Stein & Wieczorek,

2004). There is considerable benefit in combining and merging data from many taxonomic data

sources. Aside from providing a single point of entry to taxonomic data, integrated data sources

such as TCl-Db enable us to compare data sources side by side to determine and understand data

quality and distribution. When combined into a common structure, names from several data

sources can be compared to each other to identify differences, inconsistencies and understand

data coverage and distribution. Uncovering these data quality metrics (Fox et al., 1994; Wang

et al., 1995) gives users the ability to understand, and therefore, use the data better.

In this chapter we exemplify the use of the simplest data cleaning approach, Verification.

Using the analogy of a spell checker, this type of cleaning approach takes a datum (in this

case a taxon name) and evaluates its correctness by comparison to a verified list (in this case

the other data sources). Since all names that are identical are reconciled by the integration

processes, the process first involves identifying and extracting names unique to individual data

sources and then comparing these to each other data source. This kind of data cleaning and

reconciliation is exemplified here for the class Aves. This data set was chosen for its manageable

size of approximately 10,000 species and also the availability of taxonomic data from many data
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sources, including digitised checklists from the Early Bird Project (Hackett, 2003). The addition

of the checklists offers the opportunity for demonstrating the use of TCl-Db for reconciling

multiple name sources, as is often required in supertree analysis.

6.3 Aves Checklist - Data Transformation

A description of the TCl-Db architecture can be found in Chapter 3, and the data transfor-

mation processes for the data sources are fully outlined in Chapter 4. Additional data from a

number of Aves checklists were made available to us through the Early Bird Project. These

data came in the form of flat files and were loaded into individual tables and transformed into

the global schema.

Table 6.1 shows the order in which the checklist data were added to the global schema and

the number of new Aves names that came in from each source. The table shows that there

were over 2000 Aves names that were not in TCl-Db, and the inclusion of the early bird data

added not only more assertions, but also more names. Table 6.2 shows the data distribution

of each data source by rank. These data were a byproduct from the PL/SQL procedures that

were used to add rank data.

Total New Names Existing Names
Check List Names Added in TCl-Db

Morony, Bock and Farrand (247) 11,396 659 10,796
Sibley and Monroe(248) 11,909 81 11,850
American Ornithological Union 83 (250) 2741 39 2716
American Ornithological Union 98 (251) 2914 60 2888
Peters (252) 11,218 1221 10,046
NAM980612 (253) 12,018 60 11,974
Bird Names (256) 9652 101 9560
Clements (259) 96,48 0 9657

Total 2221

Table 6.1: Content of the Aves Checklists Data. These numbers come from a count on the
materialized views used in the transformation of the each sources data into TCl-Db. 2221 new
Aves names were added to TCl-Db from these data sources.

6.4 Results

The analyses described below identify unique data (names unique to a single data source),

inconsistent data (synonym names where different data sources show different valid names) and
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ITIS NCBI Sp2000 Peters NAM MBF AOU 98 SibMon Clements
Total 14095 6386 13985 11218 12018 11396 2741 11909

Superorder 2
Order 23 36 23 24 22 29
Suborder 29
Superfamily 2
Family 195 169 (153) (168) (146) (166) (89)
Subfamily 26 28
Genus 2169 1430 2264 2128 2081 2048 740
Species 10103 3990 (8899) 9767 9152 1907 9707 19122
Subspecies 1569 733
no rank 12 26

Table 6.2: Summary of the distribution, by rank, of Aves names across the data sources. In
brackets are the data where rank information was extrapolated.

missing data (synonyms or vernacular names with no valid name link).

Our investigation started with how much overlap existed between Aves data source. With

the inclusion of the checklists, there were eleven distinct data sources for Aves data (ITIS,

NCBI, SP200 and the 8 sources shown in Table 6.1). On transformation into the global schema

the total number of bird names reconciled within TCl-Db was 26,831. The initial comparison

of each data source is given in the Table 6.3. This table displays one aspect of data quality,

the relative completeness of each individual data source. The columns represent the percentage

overlap in names of that data source in comparison to the other one. We see that 81.7% of

Sp2000 names (SP2K) are in NCBI while only 37% of NCBI names are in SP2K. The colour

coded columns represent the percent overlap between data sources, red and white shading shows

less than 50% overlap and we see that NCBI, AOU83 and AOU98 have the poorest overlap

with all other data sources.

In terms of completeness NCBI scores poorly. NCBI contains only 6,386 Aves names from

the total 26,831 unique Aves names in TCl-Db. In this respect it is only 23.8% complete.

Although this number initially seems very low, it should be noted that NCBI data represents

species for which nucleotide or amino acid sequence information is available. Therefore, this

number actually reflects the fact that 23.8% of Aves species have sequence data. Given this

context, the data can actually be considered 100% complete, as all known sequences for Aves

are most likely included in GenBank. Since, data quality in terms of completeness can not be

measured independent of the data sources’ data scope, and we focus instead, on data quality
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ITIS NCBI SP2K MBF SM AOU98 AOU83 Peters Clements

ITIS 100 37 99.2 77.7 83.5 18.9 19.7 69.1 66.8
NCBI 81.7 100 81.3 75 77.6 28.2 29.2 70.3 55.4
SP2K 100 37.1 100 75 84 19 19.7 69.4 67.3
MBF 91.9 41.8 91.5 100 90.8 23.8 23.7 89.3 72.4

SM 98.6 41.5 98.5 87.2 100 22 22.2 80.4 78.4
AOU98 97 65.5 96.6 99.1 95.5 100 94.6 87.4 65.8
AOU83 56.9 38.6 55.8 56.3 53.7 52.9 100 50.2 76.8
Peters 86.5 39.8 86.1 90.8 85.2 21.3 21.4 100 66.9

Clements 48.8 18.3 48.7 42.9 48.5 9.3 19.6 39 100

Table 6.3: The percentage overlap of taxon names in each pair of data sources. For example,
37% of names in NCBI are also in ITIS, whereas 81.7% of names in ITIS are also in NCBI.
This all against all comparison for Aves data sources includes the checklists from the early
bird project: MBF is (J.J. Morony et al., 1975), SM is (Monroe & Sibley, 1997), AOU 98 and
AOU 83 are (American Ornithological Union, 1998) and American Ornithological Union, 1983),
Peters is (Peters, 1987), and Clements is (Clements, 2000). The data sets with more than 75%
overlap are coloured yellow, data sets with between 50% and 75% overlap are coloured green,
25% to 49% are coloured red and less than 25% are coloured white. The SQL was a simple
boolean query on two subsets of the assertion data. The SQL query is given as Query B1 in
Appendix B.1.

in terms of accuracy and consistency. The remainder of this analysis examines the NCBI

unique names in detail. Since sequence data is playing a more significant role in defining and

identifying species (Hebert et al., 2004; Mallet & Willmott, 2003), an understanding of the

quality of taxonomic data within this increasingly important data source, and how it compares

to more traditional data sources, is appropriate at this time. The data warehouse approach

used in TCl-Db enables these kinds of analyses to be performed efficiently.

Aves in NCBI

An initial comparison of NCBI and ITIS returned 1169 unique NCBI names. Our aim here was

to determine how many of these names could be resolved further and linked to names in other

data sources. Some names unique to NCBI were easily accounted for using simple SQL queries.

NCBI contains sequence data for extinct species, some of which are not included in ITIS. These

species are listed in Table 6.4. Differences in classification also account for some of the unique

names. For example in NCBI there are 20 names of the rank sub-family that are not in ITIS.

39 are names that ITIS treated as synonyms, which NCBI considered to be valid. A selection

of these are listed in Table 6.5.
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Valid name Vernacular NCBI Tax ID Class
Aegotheles novaezealandiae 191447 Aves
Anomalopteryx didiformis little bush moa 8811 Aves
Aptornis defossor South Island adzebill 54366 Aves
Dinornis novaezealandiae large bush moa 8818 Aves
Dinornis robustus 314500 Aves
Dinornis struthoides slender bush moa 237965 Aves
Euryapteryx curtus costal moa 230980 Aves
Euryapteryx geranoides stout-legged Moa 314499 Aves
Fulica chathamensis New Zealand coot 54568 Aves
Harpagornis moorei New Zealand giant eagle 307641 Aves
Megalapteryx benhami 328612 Aves
Megalapteryx didinus South Island Tokoweka 8813 Aves
Pachyornis elephantopus heavy-footed moa 8815 Aves
Pachyornis australis crested moa 239969 Aves
Pachyornis mappini Mappins moa 239970 Aves
Thambetochen chauliodous moa-nalo 107030 Aves

Table 6.4: NCBI extinct species not in ITIS. These data were downloaded from Entrez at
http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/index.cgi?chapter=extinct

NAME ID ITIS Synonym/NCBI Valid Names NAME ID ITIS Valid name
13370347 Cyanopica cyanus 13290971 Cyanopica cyana
13421691 Syrmaticus reevesi 13286348 Syrmaticus reevesii
13389945 Catreus wallichi 13235716 Catreus wallichii
13368910 Anser canagica 13231876 Anser canagicus
13502780 Ptilinopus melanospil 13236835 Ptilinopus melanospila
13383217 Troglodytinae 13235043 Troglodytidae
13385669 Batrachostomatidae 13284858 Batrachostomidae
13482607 Mesitornithidae 13289249 Mestiornithidae
13444945 Thalassarche melanophris melanophris 13287984 Thalassarche melanophris
13386024 Columba inornata wetmorei 13235949 Columba inornata
13500532 Poecile carolinensis extimus 13287820 Poecile carolinensis
13426291 Tetrao tetrix tetrix 13286352 Tetrao tetrix
13457566 Anas flavirostris flavirostris 13235934 Columba flavirostris flavirostris
13432409 Cyanopica cyanus gili 13290971 Cyanopica cyana

Table 6.5: A few of the NCBI names that are not considered valid names in ITIS but are
represented as synonyms. The SQL that identified these synonyms was query B2 in Appendix
B.1.
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6.4.1 Classification Differences

When the NCBI unique names were quantified by rank, we found that some of these unique

names fell into ranks not included in ITIS, as stated above for the rank subfamily. The two

superorder names used in NCBI are: Palaeognathia (Palaeognathae) Huxley, 1867 (Pygraft,

1900) and Neognathia (Neognathae) Huxley, 1867 (Pygraft, 1900). The ITIS classification for

the class Aves goes directly to order level. However, these two names follow the accepted

hypotheses that modern birds (subclass Neornithes) subdivide into these named superorders

(Edwards et al., 2005), and ITIS simply does not include the rank superorder. Peters, Morony,

Bock and Farrand (MBF), ITIS and Sp2000 go from the class Aces directly to Order, while

Sibley and Monroe (SM), and the AOU data sources do not contain Order data (see Table 6.2).

Of the 36 orders in NCBI, fourteen are unique to NCBI and twelve of these are considered to

be synonyms in other data sets: Caprimulgiformes (Strigiformes), Rheiformes, Casuariiformes,

Apterygiformes (Struthioniformes) and Sphenisciformes, Gaviiformes, Podicipediformes, Pro-

cellariiformes, Pelecaniformes, Falconiformes, Charadriiformes, Phoenicopteriformes (Ciconi-

iformes) (Sibley & Ahlquist, 1990). The two remaining orders are Dinornithiformes which in-

cludes two families, six genera and ten species which are all extinct moas and unique to NCBI.

Opisthocomiformes, which includes the family Opisthocomidae, contains one genus Opisthoco-

mus Illiger, 1811 and one species Opisthocomus hoazin Muller, 1776. These names exist in ITIS

under the family Cuculiformes.

The two superfamily names unique to NCBI are Passeroidea and Corvoidea. In NCBI, the

Passeroidea contain the following families: Alaudidae, Paramythiidae, Nectariniidae, Passeri-

dae, Fringillidae and Melanocharitidae; while the Corvoidea contains the families Orthonychi-

dae, Vireonidae, Laniidae, Corvidae, Callaeatidae and Irenidae. These names exist in ITIS

under the order Passeriformes, and again ITIS does not include the rank superfamily.

The family names Aptornithidae, Emeidae, Aepyornithidae and Dinornithidae represent

classification of extinct species. Seven of the eighteen family names were found to be synonyms

in ITIS. These are: Dromaiidae (Casuariidae), Diomedeidae, Pelecanoididae (Procellariidae),

Cathartidae (Ciconiidae), Haematopodidae (Charadriidae), Stercorariidae (Laridae) and Al-

cidae (Laridae). The NCBI family Batrachostomatidae contains one genus and one species

Batrachostomus cornutus. This name is found in ITIS under the classification Batrachosto-

mus/Batrachostominae/Podargidae. The NCBI family Pteroclidae contains two genera and six

species, these are each in ITIS but the family name is spelt Pteroclididae.

Only ITIS and NCBI have subfamilies for Aves. ITIS has 26 and NCBI has 28, but only 8
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subfamilies are common to both databases. Table 6.6 gives these names, and shows that both

NCBI and ITIS disagree above family level.

Subfamily ITIS family NCBI family parent name parent name
ITIS family NCBI family

Pandioninae Accipitridae Accipitridae Ciconiiformes Falconiformes
Carduelinae Fringillidae Fringillidae Passeriformes Passeroidea
Estrildinae Estrildidae Estrildidae Oscines Passeriformes
Viduinae Estrildidae Estrildidae Oscines Passeriformes
Fringillinae Fringillidae Fringillidae Passeriformes Passeroidea
Drepanidinae Fringillidae Fringillidae Passeriformes Passeroidea
Accipitrinae Accipitridae Accipitridae Ciconiiformes Falconiformes
Phasianinae Phasianidae Phasianidae Galliformes Galliformes

Table 6.6: Subfamily names common to both NCBI and ITIS. Although the family names are
in agreement, the classification above family does not agree.

Next, we looked at how many genera common to NCBI and ITIS were classified into different

families (Table 6.7). The query used both the NCBI and ITIS classifications and is shown

Appendix B.1, query B3.

This query returns 534 genera that have a different parent name within the ITIS classifi-

cation. Of these, 327 are subfamily names in NCBI with all but six of these having the same

family in ITIS. In the remainder, 181 are family names and twenty-six are of unknown rank.

We checked how many of the 181 family names were synonyms using the query given in B4,

Appendix (B.1), returning the data in Table 6.7. The genus Sapayoa (Tyrannidae in NCBI)

is the only Incerta sedis (uncertain classification), leaving 148 genera classified differently in

NCBI and ITIS. This query also returned homonyms, i.e., identical names that apply to dif-

ferent taxa. Bartramia, Batis, Oenanthe, Prunella, Morus and Arenaria are avian genera that

are also valid genera in the plant kingdom. Homonyms can cause considerable confusion when

performing hierarchical queries as a query by name in these cases returns both plant and bird

species. Using a simple query, we can identify all these duplicated names in each hierarchy.

These queries were extended to include data in the source schemas, which discriminates be-

tween homonyms and database duplications. The queries used to gather these homonyms were

replicated into a materialized view (stored query) for both ITIS and NCBI.

Storing multiple classifications and performing hierarchical queries is also useful when differ-

ences need to be validated, i.e., where NCBI and ITIS disagree on synonymy; for example, the

family names Casuariidae (cassowaries) and Dromaiidae (emus) that have been linked together

by synonymy. These are both valid names according to NCBI, however, most other data sources
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Genus Name NCBI Family ITIS Family
Aethia Alcidae Laridae
Alca Alcidae Laridae
Alle Alcidae Laridae
Bonasa Tetraonidae Phasianidae
Brachyramphus Alcidae Laridae
Catharacta Stercorariidae Laridae
Cathartes Cathartidae Ciconiidae
Centrocercus Tetraonidae Phasianidae
Cepphus Alcidae Laridae
Cerorhinca Alcidae Laridae
Coragyps Cathartidae Ciconiidae
Dendragapus Tetraonidae Phasianidae
Diomedea Diomedeidae Procellariidae
Dromaius Dromaiidae Casuariidae
Falcipennis Tetraonidae Phasianidae
Fratercula Alcidae Laridae
Gymnogyps Cathartidae Ciconiidae
Haematopus Haematopodidae Charadriidae
Lagopus Tetraonidae Phasianidae
Pelecanoides Pelecanoididae Procellariidae
Phoebetria Diomedeidae Procellariidae
Ptychoramphus Alcidae Laridae
Stercorarius Stercorariidae Laridae
Synthliboramphus Alcidae Laridae
Tetrao Tetraonidae Phasianidae
Tetraogallus Tetraonidae hasianidae
Tympanuchus Tetraonidae Phasianidae
Uria Alcidae Laridae
Vultur Cathartidae Ciconiidae
Agriocharis Phasianidae Meleagrididae
Batrachostomus Batrachostomatidae Batrachostomidae
Mesitornis Mesitornithidae Mestiornithidae

Table 6.7: Listed above are the thirty-two genera out of 181 that are common to ITIS and NCBI
but classified differently. In the top section the NCBI family names are synonyms. The three
ITIS family names in the section below are synonyms.
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show Casuariidae as the current accepted name, and link Dromaiidae to it as a synonym. This

link stems from the reclassification of the emus which were formerly classified in their own

family, Dromaiidae and later added to Casuariidae. This was determined by examining the

children, as shown in Figure 6.1. The first graph shows the ITIS children for Casuariidae and

the second shows that the children in NCBI do not include the genus Dromaius. The Sibley

and Monroe classification agrees with the ITIS classification and can be used to validate the

link created between two valid names within TCl-Db.

6.4.2 Spelling

Next, we examined the accuracy of the names in NCBI. The examples above highlighted not only

classification differences between NCBI and ITIS, but also spelling discrepancies. Specifically,

we were interested in determining the number of names that were not reconciled at the outset,

due to differences in spelling. Using the Agrep algorithm (Wu & Manber, 1992), we compared

the unique names in NCBI against ITIS names. Agrep is a string searching program that

performs approximate pattern matching. Agrep implements several different algorithms for

string matching, including a variant of the Boyer-Moore algorithm and the bitap algorithm

based on the shift-or algorithm of Baeza-Yates and Gonnet (Navarro, 2001; Wu & Manber,

1992). Agrep takes as input an approximate string (or pattern) and uses the inbuilt string

matching algorithms to find that string in a given text file. Using Agrep, names unique to

NCBI were compared against ITIS names, allowing for mismatches. Agrep originally found

202 potential matches and this list was manually inspected to give the data in Table 6.8. Of

these Agrep matches, 101 (˜1.6% of the 6386 NCBI Aves) names were found to be potentially

misspelt.

These names and the ITIS matches are shown in Table 6.8, with the spelling differences

highlighted. Twenty-two are genus names (green in Table 6.8), three are family names (blue

in Table 6.8) and the remaining are species names. The refinement process was largely manual

and removed approximate matches found between a subfamily ending in -idae and a family

ending in -inae. These could be easily identified automatically with simple rules in a PL/SQL

script. For example, a rule can be used to rule out matches where the matching string is the

parent name of the search string.

Two matches in the genus epithet were found, Pipile Nattereri matched to the ITIS name

Pipra nattereri and Turdus abyssinicus matched the ITIS name Turtur abyssinicus. The visual

check could not tell if these were misspellings or actually different genera with the same specific
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ITIS Classification

Casuariidae

Casuarius

Dromaius

Casuarius casuarius

Casuarius unappendiculatus

Casuarius bennetti

Dromaius novaehollandiae

NCBI Classification

Casuariidae Casuarius

Casuarius casuarius

Casuarius bennetti

Dromaiidae Dromaius Dromaius novaehollandiae

Sibley and Monroe Classification

Casuariidae

Casuarius

Dromaius

Casuarius casuarius

Casuarius unappendiculatus

Casuarius bennetti

Dromaius novaehollandiae

Figure 6.1: Multiple Classifications of Casuariidae.
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epithet, so these were reconciled using distribution data, i.e., since NCBI had more than one

name in those genera, it was unlikely that the Agrep matches represented misspellings. This

analysis found many false positives which could only be identified and validated by manual

inspection, full automation of this process would not be feasible.

Most of the names in Table 6.8 are species names. Subspecies names were not included

in the analysis as the Agrep algorithm is limited to strings of twenty-seven characters or less

when searching with a mismatch. To try and get round this, a script was used to first chop

the string to the twenty-seven character limit then add the number of characters removed to

the mismatch, up to a maximum of eight. For example, Malurus leucopterus leuconotus would

be chopped to the string “Malurus leucopterus leucono” allowing for a mismatch of six. This

method did not match any subspecies names to any other subspecies and most matches were

made to the parent species name. A total of 622 subspecies were not included in the Agrep test.

Since Agrep could not be used for all names in this data set, the Soundex algorithm (Zobal &

Dart, 1996) was then tested. Soundex differs from Agrep in that it does not string match but

converts each string into a code where phonetically similar strings get the same codes. Soundex

did not perform particularly well compared to Agrep. Taxonomic names are Latin and since

Soundex codes each name by English pronunciation, this was not unexpected. The algorithm

did usually find matches, e.g., Bradypterus baboecola matched Bradypterus baboecala, but also

twenty-one other names making the data too noisy to parse automatically. A combination of

string matching for genus and phonetic matching for specific epithet was slightly less noisy,

however, this combination did not perform any better than string matching alone and did not

provide any additional data.

NCBI Spelling ITIS Spelling
1 Illadopsis pyrrhopterum Illadopsis pyrrhoptera
2 Northura maculosa Nothura maculosa
3 Criniger ochraceus Criniger olivaceus
4 Doryfera ludoviciae Doryfera ludovicae
5 Artamus leucorhynchus Artamus leucorynchus
6 Seicercus xanthoschistus Seicercus xanthoschistos
7 Carduelis yarellii Carduelis yarrellii
8 Anser canagica Anser canagicus
9 Thamnolea cinnamomeiventris Thamnolaeacinnamomeiventris

10 Certhilauda erythroclamys Certhilauda erythrochlamys
11 Thinocorus orbignyanus Thinocorus orbigny ianus
12 Taenopygia guttata Taeniopygia guttata
13 Myioborus brunneiceps Myioborus brunniceps
14 Dendrocolaptidae Dendrocolapteridae
15 Emberiza impeltuani Emberiza impetuani
16 Icterus graceaneae Icterus graceannae
17 Cisticola fulvicapilla Cisticola fulvicapillus
18 Rhabdornis mysticalis Rhabdornis mystacalis
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19 Francolinus levaillantoides Francolinus levaill iantoides
20 Calorhamphus fuliginosus Calor amphus fuliginosus
21 Chlamydera lauterbachi i Chlamydera lauterbachi
22 Schistochlamys melanopsis Schistochlamys melanopis
23 Platysterira Platysteira
24 Ptilogonys cinereus Ptil iogonys cinereus
25 Loboparadisaea sericea Loboparadisea sericea
26 Upucerthia dumeteria Upucerthia dumetaria
27 Ketupa ketupa Ketupa ketupu
28 Pterglossus azara Pteroglossus azara
29 Tachybapthus Tachybaptus
30 Tricholaema lachrymosa Tricholaema lacrymosa
31 Ephthianura tricolor Epthianura tricolor
32 Amytornis striatus Amytornis barbatus
33 Rhipidura hyperthra Rhipidura hyperythra
34 Aerodramus terraereginae Aerodramus terraereginus
35 Cactospiza Charitospiza
36 Serinus canicolis Serinus canicollis
37 Dives warszwewiczi Dives warszewiczi
38 Northellia haematogaster Northiella haematogaster
39 Chamaeza mollisima Chamaeza mollissima
40 Calorhamphus Colorhamphus
41 Parus ater Parus afer
42 Pitta guajara Pitta guajana
43 Calicalius Calicalicus
44 Jabouillea Jabouilleia
45 Mesitornithidae Mestiornithidae
46 Certhilauda brevirostris Certhilauda curvirostris
47 Pterocnemia pennata Pteroicnemia pennata
48 Loboparadisaea Loboparadisea
49 Liosceles thorasicus Liosceles thoracicus
50 Basileuterus rubifrons Basileuterus rufifrons
51 Poospiza hispaneolensis Poospiza hispaniolensis
52 Corvoidea Corvidae
53 Volatina jacarina Volatinia jacarina
54 Lophura erythropthalma Lophura erythrophthalma
55 Pteruthius xanthochlor is Pteruthius xanthochlorus
56 Puffinus nativitatus Puffinus nativitatis
57 Aerodramus salangana Aerodramus salanganus
58 Taenopygia bichenovii Taeniopygia bichenovii
59 Speleaornis chocolatinus Spelaeornis chocolatinus
60 Cyanopica cyanus Cyanopica cyana
61 Cisticola cherina Cisticola cherinus
62 Jabouillea danjoui Jabouilleia danjoui
63 Turdus falklandii Turdus falcklandii
64 Pterodroma deserta Pterodroma incerta
65 Cercotrichas quadrivir igata Cercotrichas quadrivirgata
66 Pterocnemia Pteroicnemia
67 Calicalius madagascariensis Calicalicus madagascariensis
68 Ephthianura Epthianura
69 Pachycephala hyperthra Pachycephala hyperythra
70 Pelecanoides magellanicus Pelecanoides magellani
71 Buarremon brunneinucha Buarremon brunneinuchus
72 Mionectes macconnelli i Mionectes macconnelli
73 Gallirex Gallicrex
74 Raphidura Rhaphidura
75 Basileuterus tristiatus Basileuterus tristriatus
76 Taenopygia Taeniopygia
77 Northura Nothura
78 Cecropis Crecopsis
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79 Volatina Volatinia
80 Francolinus africanus Francolinus africans
81 Basileuterus crysogaster Basileuterus chrysogaster
82 Neochen jubatus Neochen jubata
83 Platysterira cyanea Platysteira cyanea
84 Chrysothlypis chrysomelas Chrysothlypis chrysomelaena
85 Caprimulgus seriocaudatus Caprimulgus sericocaudatus
86 Lophotis Lophornis
87 Saurothera vielloti Saurothera vieilloti
88 Speleaornis Spelaeornis
89 Picoides dorsalis Picoides borealis
90 Sephanoides sephanoides Sephanoides sephaniodes
91 Philetarius Philetairus
92 Tachybapthus ruficollis Tachybaptus ruficollis
93 Thamnolea Thamnolaea
94 Acrocephalus sirpaceus Acrocephalus scirpaceus
95 Saxicola rubertra Saxicola rubetra
96 Raphidura leucopygialis Rhaphidura leucopygialis
97 Rallus philippiensis Rallus philippensis
98 Acanthagenys Acanthogenys
99 Philetarius socius Philetairus socius

100 Pterglossus Pteroglossus
101 Acanthagenys rufogularis Acanthogenys rufogularis

Table 6.8 Agrep matches in ITIS for unique NCBI names.
Locations of differences are underlined and highlighted in bold.
The genus and family names are coloured green and blue, respectively.

The remaining generic names, after removing the twenty-two spelling discrepancies and

eight extinct genera, are listed in Table 6.9. The remaining species and subspecies names that

were not found to be misspellings, extinct or located within these unique genera, are likely

to be genuinely unique to NCBI. Twenty-four names were of the structure “Genus sp.” i.e.,

Grus sp.. These names are valid in NCBI and stand for species not yet taxonomically published

with a specific epithet and representing an increasing number of unidentified sequences (Nilsson

et al., 2005). When looking more closely at the subspecies, it was found that for 312 of the

622 subspecies, the parent species names existed in ITIS. Similarly, for 149 of the 407 unique

species names, the parent genus name existed in ITIS. These data represent the distributional

biases in the two databases. Further analysis of these names was beyond the scope of the data

within TCl-Db. However, for the remaining unique NCBI names, sequence accession numbers,

and Digital Object identifiers (DOI) for articles publishing those sequences were extracted from

the NCBI sequence records and added to TCl-Db, they are presented to users in the interface

in order to ease the manual inspection of each, see section 6.5 and Figure 6.2.
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Genus Species name

Guaruba Guaruba guarouba
Xanthopsar Xanthopsar flavus
Acanthis Acanthis flammea
Halocyptena Halocyptena microsoma
Eulipoa emphEulipoa wallacei
Phonygammus Phonygammus keraudrenii
Schistolais Schistolais leontica

Schistolais leucopogon
Ruwenzorornis Ruwenzorornis johnstoni
Turdampelis Turdampelis subalaris

Turdampelis cryptolophus
Pygochelidon Pygochelidon cyanoleuca
Pseudhirundo Pseudhirundo griseopyga
Afrotis Afrotis afra

Afrotis afraoides
Diopsittaca emphDiopsittaca nobilis
Ptaiochen Ptaiochen pau
Creadion Creadion carunculatus
Cossyphicula Cossyphicula roberti
Criniferoides Criniferoides leucogaster
Chalcites Chalcites lucidus
Diphyllodes Diphyllodes magnificus

Diphyllodes respublica
Chalcites Chalcites minutillus

Chalcites basalis
Aidemosyne Aidemosyne modesta
Northellia Northellia haematogaster
Rhynochetus Rhynochetus jubata
Orthopsittaca Orthopsittaca manilata
Terenotriccus Terenotriccus erythrurus
Emeus Emeus crassus
Primolius Primolius maracana
Houbaropsis Houbaropsis bengalensis

Primolius couloni
Primolius auricollis

Stizorhina Stizorhina finschi
Hoplopterus Hoplopterus spinosus
Stictocarbo Stictocarbo punctatus
Platyspiza Platyspiza crassirostris
Cyclorrhynchus Cyclorrhynchus psittacula
Lunda Lunda cirrhata
Asarcornis Asarcornis scutulata
Speculanas Speculanas specularis
Ptyonoprogne Ptyonoprogne fuligula

Stizorhina fraseri
Leistes Leistes militaris
Mullerornis Mullerornis agilis
Lissotis Lissotis melanogaster

Lissotis hartlaubii
Nesoenas Nesoenas mayeri
Phaeothlypis Phaeothlypis fulvicauda
Parisoma Parisoma subcaeruleum
Schistocichla Schistocichla leucostigma

Table 6.9: 43 genus names unique to NCBI, after accounting for extinct genera and misspellings.
The species which they contain are also listed here.
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6.5 Data Cleaning and Presentation

Data cleaning is an important aspect of data integration. The quality of data within the data

sources reflects the quality of data in TCl-Db. While some data is cleaned on transformation,

the data analysis described above shows how such queries can be used for further integration i.e.,

explicating links that were previously not obvious, such as the link between Opisthocomiformes

and Cuculiformes, for example. This data cleaning adds value and validates the links that are

created within TCl-Db.

We chose not to correct the misspellings given in Table 6.8, since this would assume that

all ITIS spellings are correct. Instead, the two names are linked together in the same way

that synonyms are linked to valid names. This way, a search on one spelling will return the

alternative spelling. The classification differences between NCBI and ITIS reflect the different

schools of thought which present valid hypotheses that are not necessarily incorrect. Therefore,

removing the name Dromaiidae from the NCBI classification and moving its children to reflect

the other classifications would be inappropriate. However, linking the data together creates

transparency by potentially dispelling any confusion that could arise.

One issue that has not been addressed is how the data and queries that have been presented

here are performed on other data sets, updated, maintained and delivered to user communi-

ties. This analysis could be done in TC-Db using any generic name source. A set of names

from phylogenetic trees, for example, can be synonymised using simple SQL queries. The data

presented were derived using SQL queries, highlighted by the few examples included in Ap-

pendix B.1. SQL is relatively easy to learn, however, we acknowledge that it is difficult to

master and efficient queries require an intimate understanding of the database schema. Build-

ing simple efficient queries is easy for developers, but considerable development effort would be

required to make this kind of analysis simpler and accessible to others. The examples given

here present the ability of TCl-Db, given its structure and data content, to perform large

scale data quality analyses. The TCl-Db database is available for direct SQL access via iSQL

at http://spira.zoology.gla.ac.uk:5561/isqlplus/. The Aves example presented here

shows that these analyses are possible within a data warehouse like TCl-Db, while these queries

could not be performed using the interfaces provided by the individual data sources or through

systems like uBio and Sp2000.

A simple search interface has been provided to allow users to search through the data pre-

sented in TCl-Db at http://spira.zoology.gla.ac.uk/search_tcl.php, which is described
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Figure 6.2: The interface presenting the data collected for NCBI Unique names
http://spira.zoology.gla.ac.uk/ncbi aves ref.php

in detail in the previous chapter. The interface is designed for users who wish to view com-

bined taxonomic data, and allows them to perform relatively loose searches and follow links

to take them to the information they require. Experts using specific search terms may also

find the combined view of the data useful as an initial search before performing searches in

other databases. Some of the cleaning and validation data described above is also presented

at http://spira.zoology.gla.ac.uk/aves.html. From this page there are links to several

forms presenting the data from specific queries. For example, a form has been built for the

NCBI unique names. These names are presented in a pull down menu and details that have

been gathered are returned to the user (see Figure 6.2). Similarly, for the genera in NCBI and

ITIS that are classified in different families, a simple comparison interface has been developed

to allow users to view the classifications side by side.
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6.6 Conclusions

We now understand more clearly the main differences between NCBI and ITIS data and we

are better equipped to find these differences. With this knowledge, we can use the data better.

For example, knowing that only approximately 18% of known Aves species are represented in

GenBank we can better judge species assignments that are based on sequence searches (Hebert

et al., 2004). Understanding the distributional biases within databases has applications for

users in ecology and conservation, where the use of names from only one database may be

inappropriate.

TCl-Db contains integrated, reconciled taxonomic data from multiple data sources. At a

basic level, a combined, global view of taxonomic data is presented to users. A combined view

of data in a single database enables data validation in terms of corroborating the spelling,

status or classification of any given taxonomic name. This is one of the main advantages of the

data warehouse approach. The queries performed and described here for the class Aves have

identified data that do not reconcile and inconsistencies that can cause confusion. The value

added data from these queries enhances further the data content in TCl-Db, creating links

across spelling differences and highlighting synonym and classification differences, and thus

improving clarity of the data delivered in TCl-Db. Such data analyses are only possible when

all data sources are available in a single structure and the data can be compared side by side.

This chapter highlights an analysis that is an important initial step in our understanding of data

quality and distribution. The following chapter goes on to show the importance of taxonomic

data quality and coverage in a phylogenetic database and the effect on data retrieval.
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Chapter 7

Using TCl-Db to Improve the

Querying of TreeBASE

7.1 Summary

At the outset of TreeBASE (Morell, 1996) design a decision was taken to shelve the issue of

taxonomy and as a result, it is fair to say that TreeBASE under performs taxonomically. The

database is not taxonomically intelligent and queries do not translate to return all relevant hits.

A biologist expects a query on a higher taxa name to translate hierarchically, i.e. return all

data contained within the original search term. Likewise, a vernacular query should translate

to the accepted name and both queries should be performed automatically for the user. Here,

we analyse the queries performed on TreeBASE thus far. We show that vernacular and hierar-

chical queries are common searches performed by users. The poor performance of these queries

displays the importance of biological taxonomy for information retrieval. We use the TCl-Db

database to exemplify how the inclusion of taxonomy overcomes the poor data retrieval users

are currently experiencing.

7.2 Introduction

In previous chapters we have shown that some classifications do not support some commonly

used ranks and that data coverage varies across the taxonomic data sources. While it would be

unfitting to apply one classification to TreeBASE, without a classification, TreeBASE does not
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effectively support higher taxon queries. However, with a taxonomy, it is possible to perform

a search using terms linked by association and content. There are many taxonomic databases,

electronically available, that can easily be included into a phylogenetic data store. The reasons

for TreeBASE not including a taxonomy are now outdated and a simple solution is presented

in the form of TCl-Db.

7.3 Background

Currently, systematists prefer to gather the data they require for their analysis through lit-

erature searches. In most cases, once data are retrieved, the search results are examined by

eye to determine if they contain the phylogenetic data of interest. Unlike the major sequence

databases, phylogenetic tree data does not have to be deposited in a database before it can be

published. Currently, the deposition of data in TreeBASE has been voluntary. Also, TreeBASE

is not used because data are difficult to retrieve using search terms that are intuitive to users.

Although TreeBASE provides a Taxon name search, the returned data are often incomplete.

The example given in Section 1.5 for the query term “Aves”, shows that data can only be

retrieved by exact or partial text matching on taxon names.

Our hypothesis that an integrated taxonomic data source could alleviate the problems of

using taxonomic names to retrieve data from TreeBASE is tested through a comparison of the

data retrieval of a set of taxon queries performed on a local copy of TreeBASE, and the same

queries performed through TCl-Db tables linked to TreeBASE.

Examination of the taxon query logs shows that the taxonomic capacity of TreeBASE is

ineffective. The types of queries performed using TreeBASE and the results returned are anal-

ysed. In the first section of this chapter we examine the taxon queries that have been performed

on the TreeBASE user interface and inspect the retrieval capacity of these queries. These data

are then compared to the results found by searches mediated by TCl-Db. Queries performed

through TCl-Db show marked improvement in data retrieval. Finally, we show some interesting

insights within the recently released AOL search data. We see the taxonomic searches in this

data set echoing the trend towards higher taxa and vernacular queries, as seen within the Tree-

BASE data, thus reiterating the use of taxonomy and ontologies as key information retrieval

tools.
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7.4 Taxonomic Infrastructure requirements

The taxonomic queries that TreeBASE should support are as follows.

• Search terms should expand to include subordinate terms in the classification if they are

higher taxa.

• Vernacular queries should be supported and expand appropriately to include the data

linked to the scientific names.

• Any given query should also expand to include data associated with synonyms and out

of date usage of a taxon name.

These queries are supported in TCl-Db and demonstrated below.

7.5 TreeBASE Taxon Search Log

The TreeBASE web interface can be found at the URL www.treebase.org. The interface allows

users to conduct taxon queries, queries by a specific matrix identifier, study, or tree identi-

fier. These queries return the number of phylogenetic studies that contain the term that was

used in the search. The database structure of TreeBASE was replicated locally so that SQL

queries could be performed on specific tables within TreeBASE and TCl-Db tables linked to

TreeBASE. The taxon queries on TreeBASE came from a script given to us by the TreeBASE

developers. The script returned all queries performed using the taxon field in the TreeBASE

user interface. This query log contains the queries and the number of times these queries had

been performed. The query log was loaded into a database table and given unique identifiers.

The data were initially trimmed to remove trailing spaces. Duplicates were then removed and

non taxon searches, such as queries based on TreeBASE identifiers, were also removed. Searches

for study authors were removed by comparing the queries to the author names stored in Tree-

BASE. Genbank Accession number queries were also removed from the data set. The remaining

62,126 queries were then mapped to TCl-Db giving, 27,239 queries in the query log with exact

matches to a taxon name in TCl-Db. These are stored in the materialized view given in query

C1 in Appendix C. The queries were compared to the taxon names in TCl-Db for a second

time, allowing, this time, for case insensitive matches and single letter mismatches. Including

mismatches, a total of 29,035 queries were mapped to a taxon name in TCl-Db. Using these
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Database Source Mapped Queries MappedTreeBASE taxa
Morony,Bock and Farrand Checklist 695 97
ITIS 12785 3415
ITIS 978 258
Sp2000 15990 4566
Algaebase 224 106
NCBI 17018 5545
NCBI 15893 5485
American Ornithological Union 489 44
GRIN 5044 1945
Mammal Species of the World 950 478
bird names 261 68
Clements Check List 261 68
Sibley and Monroe Checklist 652 88

Table 7.1: Data from Appendix C, query C4. This table shows the number of taxon names,
from two data sets, that map to each data source (there are two copies of NCBI and ITIS after
updates). The first data set, in column 2, are the mapped queries from the TreeBASE query
log. The second data set, are the taxa within TreeBASE (column 3).

mapped queries we compare the data returned in response to these queries directly against a

local copy of TreeBASE, downloaded in 2006, and through our TCl-Db wrapper.

The analysis of the query logs show that users have been experiencing very poor data

retrieval. Over 1/2 of the queries, 16,018 out of 27,239, do not return data in TreeBASE. Of

the valid name queries posed against TreeBASE 71% do not return data (query C2, Appendix

C) with 94% of the vernacular queries and 85% of the synonym queries also returning no data.

Approximately 50% of the queries posed on TreeBASE are higher taxa queries (of rank genus

and above) while 28% were species queries (query C3, Appendix C) see also Figure 7.1.

Table 7.1 shows how these mapped taxa in the query log correspond to the original data

sources. The first column gives the data source names, the second column gives the number

of taxon queries that matched a name in these data sources. The third column is the number

of TreeBASE taxa that matched a name in these data sources. A comparison of the final

two columns shows that many more taxa are being used as search terms in TreeBASE than

exist in TreeBASE. Taking the Sibley and Monroe Checklist as an example, 652 queries have

been performed while only 88 of these names exists in TreeBASE. This table highlights the

importance of data coverage and shows that one database source for a taxonomically intelligent

database is insufficient. For example, Sp2000 and NCBI show similar numbers (15,990 and

15,893 respectively), there is, however, very little overlap in these names, and closer inspection

showed that nearly 5,000 of the NCBI matches (1/3) were not included in Sp2000.
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7.5.1 Data Retrieval in TreeBASE Vs TCl-Db

We used the taxon queries in the TreeBASE search log to determine if the current taxonomic

capabilities of TreeBASE could be improved with the addition of TCl-Db. Since only half of the

mapped queries returned a tree in TreeBASE, we were convinced that this could be improved

using TCl-Db. A comparison of the query capacity of these queries against TreeBASE and

against TCl-Db linked to TreeBASE is given below.

The comparison is based on the number of trees returned by the queries. In the web interface

of TreeBASE, studyids are returned. The data given here are tree counts and not study counts,

and therefore are not directly reproducible on the TreeBASE web site. We found that in the

version of TreeBASE we had, studyids could not be used as a stable measure of retrieval. In

order to determine the number of studies returned for each taxon query, four tables need to be

joined. The joins proved to be unstable since the data lacked referential integrity. However,

the table treetaxa with the key TreeID linked directly to the taxa table which provides

stable queries and an efficient and reliable measure of data retrieval. A few queries to return

studies were performed to confirm and double check the results. Where available these have

been shown in the data below.

The data retrieval capacity of TreeBASE for each taxon query was calculated using the

query C1 in Appendix C.1. The total number of trees returned by the taxon query data

set from directly searching the TreeBASE taxa table was 2,962 distinct trees (1,775 distinct

matrices). The distribution of TreeBASE taxa and the TreeBASE queries by taxonomic rank

is summarised in Figure 7.1 . The total higher taxa queries were calculated from subgenus and

above and the species count includes subspecies and lower rank queries. The pie charts show

that the majority of TreeBASE names are Species while the majority of queries performed on

TreeBASE are higher taxa names. Table 7.2 shows more detail by rank, of the TreeBASE taxon

query log. The percentage of queries of Species and lower ranks is 30%, for higher taxa 50%,

and 38% for NULL rank values (rank data was not available). The reason these numbers do not

add up to 100 is due to duplicated taxon names across ranks and differences in ranking between

data sources. Some examples of this are shown in the last column of Table 7.2 where taxa are

included in more than one rank, due to differences in classification across the data sources as

highlighted in bold. With the exception of a few examples in Genus and Subgenus, this was

more prevalent in the ranks above Family. There are instances where some data sources did

not give rank data for particular names but the rank was available from other data sources,

e.g. Myxomycota, Oomycota. In the ranks Class and Subclass there are examples of different
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forms of the same taxon name, spelt differently e.g., (Granuloreticulosa, Granuloreticulosea)

and (Hamamelidae, Hamamelididae). From this data we are able to conclude that the poor

data retrieval is due to use of names that are not contained within TreeBASE. Since TreeBASE

does not contain a hierarchy, and majority of the queries are higher taxa, it is not surprising

that data retrieval rate shown in the query log is so poor.

Figure 7.1: TreeBASE taxon content and the TreeBASE taxon query log. The difference

between the distribution of taxon names in TreeBASE and the TreeBASE query log is large.

The vast majority of taxa in TreeBASE are species (left) while the types of queries performed

on TreeBASE concern higher taxa. (From query C3 given in Appendix C)

7.5.1.1 TCl-Db linked names improve data retrieval.

Poor data retrieval, like poor communication, is the result of lack of understanding. The queries

do not return data because the query term is not understood by the database. One way to

improve this is by increasing ‘the vocabulary’ of the database. The addition of a taxonomy into

the TreeBASE structure would enable the queries to be understood by the system and make

it more user friendly. With the majority of queries not returning data through a direct search

on TreeBASE, we performed these queries through TCl-Db in-order to compare the retrieval

capacity of the search terms through a more complete taxonomic data source.

Synonym queries
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Count Rank %(of 27239)
(Taxon Names)

7781 Species 28%
145 Subspecies
20 Infraspecies

105 Tribe
9 Subtribe

137 Variety
15 Varietas
1 species subgroup

8213 Total Species 30%
and lower ranks

Count Rank %(of 27239) Examples
(Taxon Names)

8 Superkingdom Eucarya, Eukarya,
Eukaryotae, eukaryotes

21 Kingdom Chromista, Metazoa, Fungi
3 Subkingdom Chromista, Tracheobionta

11 Superclass Gnathostomata, Osteichthyes
279 Class 1% Ophiuroidea, Monogenea

Granuloreticulosa, Granuloreticulosea
90 Subclass Ophiuroidea, Monogenea

Hamamelidae, Hamamelididae
14 Infraclass Eutheria, Holometabola,

Endopterygota, Dipnoi
1 Superphylum

203 Phylum Protozoa, Rhodophyta, Chordata
Oomycota, Myxomycota

30 Subphylum Pezizomycotina, Pentastoma,
Myriapoda, Mycetozoa

40 Superorder Salientia, Parasitiformes,
Palaeognathae, Neognathae

683 Order 2.4% Neogastropoda, Galliformes
Salientia,Parasitiformes

142 Suborder Strongylida, Iguania
Tylenchida, Symphyta

33 Infraorder Stratiomyomorpha, Palinura,
3 Parvorder Amphisbaenia, Heteroneura,

81 Superfamily Tylenchoidea, Scorpionoidea,
1767 Family 7.3% Crocodylidae, Hominidae

Viperinae, Sphinginae
208 Subfamily 0.9% Crocodylidae, Alligatorinae

9971 Genus 37% Solea ,Fusobacterium,
Parvovirus, Anopheles

45 Subgenus Sarcophaga,Pelophylax,
Xenopus,Pinus,Anopheles

202 no rank Coelomata,Amniota,Anopheles
Escherichia coli K12, Fusarium solani
Myxomycota,Myxomycetes,Oomycota

13835 Total Higher taxa 50%

Count Rank %(of 27239) Included Names
(Taxon Names)

10512 NULL 38% Catherpes,Corvus,
Oenothera, Dragon, Lemna minor

Table 7.2: Distribution by rank of TreeBASE Taxon Queries. (From query C3 in Appendix C.)

In the TreeBASE query log we found that 85% of the queries that were synonyms returned no

data. Expanding search terms in TCl-Db improves data retrieval for synonym queries. The 868

synonym queries that returned no data in TreeBASE alone, returned 594 trees when TCl-Db

was used. These queries used the query expansion within TCL-Db. Valid names are linked

to synonyms, so that when a query is performed using a synonym, TCl-Db is able to use the
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Query TCl-Db Query TCl-Db retrieval TreeBASE retrieval
maple Acer 7 0
primates primata 3 2
pine Pinus brutia 2 0
pine Pinus 7 0
eubacteria Bacteria 2 0
mouse Mus musculus 28 0
birds Aves 8 0
dog Canis familiaris 19 0
mammals Mammalia 12 0
human Homo sapiens 52 0
elm Ulmus 2 0
Acacia Parkinsonia aculeata 2 0
Acacia Acacia ampliceps 2 0
Acacia Robinia pseudoacacia 10 0
yeast Saccharomyces cerevisiae 70 0

Table 7.3: The most common vernacular queries with Latin names and the number of trees
found for each query. (Appendix C, query C5)

linked name as part of the search.

Vernacular queries

Vernacular queries on TreeBASE perform particularly poorly. While these are not the most

frequently used search terms, TCl-Db allows these terms to expand to Latin names. The

retrieval for vernacular queries is exemplified in Table 7.3. The vernacular ‘acacia’ translates

to Robinia pseudoacacia. Using the search term acacia returns no data in TreeBASE while the

Latin term, related to acacia, returns 2 trees. In TCl-Db, the inclusion of the alternative Latin

names improves the quality of data retrieval. For those queries that translate to higher taxa

names, data retrieval can be further enhanced by performing a hierarchical query.

With higher taxa queries we would expect a significant improvement when the queries

translate to include all subordinate taxa (since more names are included in the search). Further,

since most of the queries performed were higher taxa names, it is important to quantify the

expected increase.

7.5.1.2 TCl-Db hierarchical queries show superior data retrieval.

Hierarchical queries are those where the search term is a higher taxon name and the query

expands to include all names subordinate to it. With a family name, for example, the query

would search the family name, all genera, and all species considered within the family. Tables

7.4 and 7.5 show a comparison of query effectiveness of TreeBASE alone and TCl-Db used in

conjunction with TreeBASE. The most significant improvement in the quality of data retrieval

is seen for ‘pinus’ (Table 7.4) and ‘Metazoa’ (Table 7.5).

Using the 6622 generic queries that return no data in TreeBASE, these queries were re-run
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using TCl-Db. A total of 1,127 trees are returned when hierarchical query expansion is used. If

a query is translated to include all terms below it in a hierarchy, we can assume that the search

will return far more data than a simple name search with only one term. For example, the

query term Aspergillus expands from one term to 155, returning 38 more trees than the term

Aspergillus alone (more examples in Table 7.4). If we assume that this is what the user meant

when he performed the query, then many more data can be returned when expanding the search

term hierarchically. One caveat to consider here is which classification to use when performing

this type of query. The Aspergillus query was expanded using the NCBI classification which

from previous data we know to have good data coverage for Bacteria and Fungi. The same

query using ITIS returns no species because the genus does not exist in ITIS. In this scenario,

where one database contains data and where the other does not, the decision is straight-forward.

However, given the situation where the term exists in both databases but the distribution of

species names were different, which one should be used? The combined data in TCl-Db enables

us to perform such a query through multiple hierarchies returning all unique names. It would

be pertinent for the user to be told exactly which names were included in the search, so that

he could exclude those he wished to use. When the Aspergillus query is repeated for all unique

names subordinate to Aspergillus, without specifying the source database, the species number

expands to 262, which returns 43 trees (Table 7.4).

The genus rank provides a very simple and efficient query in the TCl-Db data structure, (see

Appendix C, Queries C6 and C7). Table 7.4 shows considerable improvement in data retrieval

when the query expands to include species within a Genus search. Higher taxa queries above

the Genus rank are more complicated to perform, and an example is given in Appendix C, query

C8. The table highlights the importance of including more than one hierarchy. For instance,

the query ‘Metazoa’ returns no data when using the ITIS or Sp2000, but over 1000 trees in

NCBI. Similarly, for ‘Fungi’ we see that NCBI and ITIS differ considerably. In some cases the

hierarchical query failed, and this is denoted with an X. For example, the term ‘Archaea’ is

both a genus and superkingdom in SP2K, causing the hierarchical query to fail (see Section 8.3).

Initially the queries producing data given in Table 7.5, were performed individually, for each

data source. To make these higher taxa queries more efficient, a materialized view was created

to capture data from the node table and the mapped names. Using this view, a subsequent

view was created in which the hierarchical queries are pre-calculated for each of the mapped

names for the SP2K, NCBI and ITIS classifications.
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Genus ITIS NCBI Sp2000 Trees Returned Additional Trees
species count species count species count from TreeBASE Returned Using TCl-Db

Platanus 6 5 6 23 2
Drosophila 378 43 2066 28 88
Saccharomyces 13 62 6 26 73
Homo 1 1 1 1 52
Quercus 214 89 211 1 5
Pinus 62 66 57 7 123
Arabidopsis 2 10 2 9 37
Acer 21 79 21 7 9
Canis 7 10 7 9 29
Pan 2 2 2 1 4
Escherichia 21 1 7 0 8
Acacia 62 160 1315 0 4
Acorus 2 4 2 13 1
Phytophthora 1 74 58 13 29
Mus 38 25 38 28 30
Bacillus 1 1450 150 1 5
Magnolia 12 76 134 8 4
Aspergillus 0 155 185 5 43
Fusarium 0 183 85 2 19
Tetragnatha 0 21 323 6 6

Table 7.4: The number of species within each genus for ITIS, NCBI and Sp2000. Each source
shows varied species content for each genus, e.g. Pinus and Drosophila. The last two columns
show the number of trees returned for the genus in TreeBASE; and the number of additional
trees returned using species names from hierarchical query expansion in TCl-Db. This table
was populated using the query exemplified in C7, Appendix C

7.6 AOL Search queries

America Online (www.AOL.com) is a large search and internet provider in the USA. AOL

released a data set of 20 million web queries from 650,000 users, for research purposes. The

data taken over a three month period includes not only the query but also the results that

were clicked (referrals). We analysed this data set for taxonomy searches, to see how many and

what kind of taxonomic searches were being performed in general purpose search engines. The

aim was to see if higher taxa queries predominated, as was seen in the TreeBASE logs. Figure

7.2 shows that, although there are significantly more species queries on TreeBASE, the higher

taxa searches within AOL search engine do indeed echo the search pattern seen in TreeBASE.

As expected, given the AOL user community, vernaculars were more common searches than

scientific names.

The AOL query data was loaded into a table, then sorted alphabetically, and duplicates

were removed. A query to determine exact matches to names in TCl-Db was run first. These

matches were counted and removed and the remaining data was compared to a dictionary to

remove English words. The remainder of the data set was then compared to a list of taxon

names extracted from TCl-Db using Agrep, allowing for one mismatch. A second iteration with

Agrep using two mismatches was also performed but discarded, as the shorter queries returned
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Number of Trees Returned Using:
QUERY TreeBASE Sp2000 Hierarchy ITIS Hierarchy NCBI Hierarchy
Diptera 7 X 111 106
Lepidoptera 5 41 39 71
Carnivora 12 49 49 65
Animalia 1 954 856 0
Solanaceae 9 80 80 80
Rosaceae 1 42 42 38
Felidae 7 10 10 15
Vertebrata 3 0 408 443
Fungi 8 807 389 814
Crustacea 2 0 47 38
Chordata 1 433 411 446
Metazoa 5 0 0 1014
Poaceae 11 100 100 95
Rodentia 9 100 100 102
Chlorophyceae 6 50 66 50
Cnidaria 3 75 78 79
Arthropoda 5 404 284 371
Primates 7 61 61 61
Aves 8 91 91 87
Reptilia 1 74 74 0
Coleoptera 3 67 45 49
Cetacea 16 47 17 47
Bacteria 2 55 13 35
Ascomycota 9 549 273 540
Archaea 4 X 0 15
Mollusca 14 75 86 93
Mammalia 12 224 212 221
Fabaceae 11 151 143 151
Asteraceae 11 127 127 156
Insecta 2 325 238 301

Table 7.5: Expanding query terms hierarchically increases the number of trees returned from
TreeBASE. The first column shows the number of tree returned from TreeBASE. The remaining
columns show the number of trees returned using hierarchical query expansion using classifi-
cations in TCl-Db. This table was populated using the query example given in C8, Appendix
C

too many matches to usefully determine the actual query. The exact matches and the Agrep

single letter mismatches were loaded into a table and examined in detail.

This data set contained 8,281 taxonomic queries, of which 3,590 were vernacular names,

367 were synonyms and 3,076 were valid names. When the data were compared allowing for

misspellings, these figures increased. With a mismatch of one for queries greater than four

characters in length, we first selected the approximate matches that have only one Agrep hit,

which gave 1708 additional queries mapped to a taxonomic name.

However, there were far more Agrep matches that could not be included in the analysis.

When using a mismatch of one or two, especially with the shorter queries, we could not be sure

that the hit given by Agrep was what the user was requesting. With the TreeBASE query data

we were more confident that the Agrep match was a taxon name. However, the AOL search

data can not be treated the same way as the TreeBASE query log, since the TreeBASE log was

based on taxon searches. For example, the Agrep match of Ortegon to the query Oregon could
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Figure 7.2: TreeBASE query log and the AOL query log. Given a similar number of queries,

there are roughly three times as many species queries in TreeBASE as in AOL.

be misleading; the same is true for Volvo matching the query term Volva, and other examples.

Where two or more Agrep matches were found for a query, we had to check each referral to

pick the Agrep match that was the actual query the user was placing. This was too large a

task, considering the size of the data set (265,909 Agrep matches). Instead, we looked only at

the exact matches that were found in the AOL log and the single letter mismatches that had

only one Agrep match.

The AOL Taxon queries are summarised by rank in Table 7.6. Some of the data in the

higher ranks were manually checked through referrals. The 3 superkingdoms searched were

Archaea, Bacteria and Eukaryote. Ten Kingdom searches were placed but no referrals

were made from these searches. However, considering the unique nature of these terms, there

is little ambiguity in the users’ intentions. Out of 44 Phylum searches, 34 had referrals. The

most common taxon search term was Chlamydia, with 202 searches, however, the majority of

referrals were for various sexual health sites and only one referral was made to NCBI.

There were 6 queries that approximately matched to taxon in the rank Class. Those verified

as taxon queries were gastropods (three searches), trichomonads (one search - no referral),

cephalpods (four searches), nusa (one search - no referral), and ruda. In Subclass, there

were five approximate matches and all but one search had a referral. In the Superorder, all but
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Rank AOL Query Count
Superkingdom 2
Kingdom 7
Phylum 44
Superclass 1
Class 48
Subclass 12
Superorder 2
Order 82
Superfamily 4
Family 208
Subfamily 8
Genus 2658
Subgenus 9
Species 1870
Subspecies 47
Infraspecies 5
Variety 51
Tribe 1

Table 7.6: Referral URLs from the AOL Log. Each URL was searched against the AOL data
using http://www.seosleuth.com/site/.

one of the three searches were valid taxon queries. Since there were 185 searches in the Order

rank, we verified only the valid names that were approximate matches, making the assumption

that the others are true taxon searches. In this set there were 7 searches, one of which turned

out to be a car search performed 391 times, acura. The next most abundant search from this

group was spirulina, with 47 searches.

The referral data was the more interesting and useful part of the AOL queries. We were

able to check the number of referrals made to various taxonomic name servers including ITIS,

NCBI, uBio and Sp2000. The servers within Sp2000(www.catalogueoflife.org) and UBio had

no referrals from taxonomic name searches, while ITIS and NCBI did. Taking into account

the search terms used and the technology used by name servers in comparison to systems

like tolweb.org that serve simple (botable) html pages, this is perhaps not a huge surprise.

However, considering the enormous amount of taxonomic data available on the web, the AOL

data shows that not much of it is being searched for or indeed being found by the general public.

Considering this, it may be appropriate for projects such as the Encyclopaedia of life (EOL,

2008) to make their species pages discoverable via general purpose search engines such as AOL

and Google (see section 8.3).
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Referral URL Total No. of Searches Total Unique Keywords referred
www.itis.usda.gov 36 28
www.ubio.org 0 0
ubio.mbl.edu 0 0
www.ncbi.nlm.nih.gov 16180 12674
darwin.zoology.gla.ac.uk 9 8
www.otlweb.org 4 4
www.ipni.org 7 6
www.indexfungorum.org 3 3
www.mbl.edu 26 22
www.catalogueoflife 0 0
www.sp2000.org 2 2
www.gbif.org 0 0

Table 7.7: Referral URLs from the AOL Log. Each URL was searched against the AOL data
using http://www.seosleuth.com/site/.

7.7 Discussion

We have shown that the inclusion of TCl-Db data makes a significant impact on information

retrieval by linking vernaculars and higher taxa queries to their related terms. As stated, one

explanation for the queries returning no data is the taxon content of TreeBASE, as there is

no data to retrieve for these names. For example, given that most TreeBASE taxa are valid

species names, it is not surprising that vernacular names return little data. Through TCl-Db,

however, the vernacular queries that did not return data were extended to include linked valid

names, resulting in the retrieval of 868 trees (426 matrices). Similarly, for the synonym queries

that were returning no data, queries routed through TCl-Db’s linked names returned 594 trees

(252 matrices). Also, for the valid names that returned no TreeBASE data we performed a

hierarchical query for 6,622 genera, returning 1,127 trees (671 matrices). Therefore, using TCl-

Db we can retrieve more data from TreeBASE using search terms that are not contained within

TreeBASE.

There were a significant number of queries that mapped to a name in TCl-Db but did not

return data in TreeBASE. 16,018 were valid taxon queries (queries mapped to a name TCl-Db)

and did not retrieve data in TreeBASE. This is because the vast majority of queries posed on

TreeBASE are higher taxa terms that are not contained in any trees within TreeBASE.

The analysis above shows that TreeBASE displays both poor data retrieval and poor infor-

mation retrieval. From 62,126 queries, 2,962 trees are returned, giving a 4.7% data retrieval

rate. From the complete query log, 27,239 queries were mapped to taxa in TCl-Db, returning

a total number of 2,748 trees with a higher retrieval rate of 10.8%. While the ratio of data

retrieval from the mapped names is better, the actual numbers of trees returned are similar.
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This is because both data sets are searched through the same data content, i.e. the taxa table

in TreeBASE. The poor data retrieval rate is therefore a property of the taxonomic content of

TreeBASE, specifically, the limited taxonomic content of TreeBASE and the fact that most of

the queries posed are not names contained in TreeBASE.

The taxonomic data content in the version of TreeBASE used was 56,712 taxa. As stated

above, 27,239 mapped to a name in the TCl-Db database and 31,459 were extensively mapped

by Page (2007), using a number of data sources including uBio. Over 25,000 taxa in TreeBASE

can not be mapped to an online taxonomic data source. These figures suggest that the Taxon

content of TreeBASE is of poor quality, and the mapping performed showed that not all the

data labelled as taxon names are in fact proper taxon names. Including TCl-Db taxa into

TreeBASE did show a substantial increase in data retrieval (from 4.7% to 10.8%). However,

part of the problem is also the taxon content of TreeBASE, and cleaning the taxa data in

TreeBASE would significantly improve the data retrieval further.

While the improvements described above could be achieved using any taxonomy database,

the multiple data sources and the storage of more than one hierarchy in TCl-Db is an important

factor in terms of data coverage as shown in Table 7.2. The number of queries that mapped to

a taxon in TCl-Db were 27,239. The distribution of these across the data sources in TCl-Db

is shown in column 2 of Table 7.1. Although there is a significant overlap in the taxa across

the data sources, NCBI and Sp2000 show the best coverage. Similarly, the taxon content of

TreeBASE mapped to the TCl-Db data sources shows NCBI and Sp2000 fairing almost equally.

However, the classification differences between Sp2000 and NCBI are significant, and picking

one over the other would impair some users. Table 7.4 also highlights the data distribution in

genera across ITIS, NCBI and Sp2000. The most commonly performed genus queries are given

in the first column and the number of children within each data source is given in columns 2,

3 and 4. The last two columns show the substantial improvement in data retrieval achieved by

using TCl-Db. Also, Table 7.5 shows the data retrieval of the most frequent higher taxon queries

across different hierarchies. ITIS and Sp2000 performed similarly in most cases. Aves and Fungi

are the most notable exceptions and highlights the effect of the differences in taxonomic content

of the different databases.
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7.8 Conclusions

TreeBASE is an example of a data set that has not been equipped with complete metadata,

rendering the retrieval of data difficult and cumbersome. The data retrieval capacity afforded

by the inclusion of metadata such as ontologies and taxonomies is well established in this the-

sis. Given that taxonomic names are such an integral part of this data, it is inexcusable not

to force the inclusion of taxonomy, especially now, with the technology and databases cur-

rently available. The analysis here shows the importance of taxonomic data for more efficient

data retrieval in TreeBASE and the use of an amalgamated taxonomy data warehouse to ac-

commodate coverage and differing opinions in taxonomy. The TCl-Db warehouse provides an

infrastructure to support effective data retrieval from TreeBASE. An application has been built

to wrap taxon queries through TreeBASE was described in Chapter 5. The wrapper returns

the expected treeids and matrixids which are linked directly to the TreeBASE website for the

user to continue their download.
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Chapter 8

Discussion and Conclusion

We have shown in the previous Chapter that TCl-Db improves data retrieval through Tree-

BASE, corroborating the hypothesis given in Chapter 1. In this Chapter, we revisit the original

requirements that were laid out and address the contribution that TCl-Db has made in context

of other work in this area. This Chapter concludes with a discussion of an alternative method

that, in future, could be used to address data integration more economically and finally, further

work and improvements that have been highlighted through the course of writing this thesis.

8.1 Overview

This research project aimed to address the taxonomic requirements of the systematics com-

munity and was motivated by the inadequate taxonomic data retrieval in TreeBASE. A data

warehouse solution to this problem, TCl-Db, the Taxonomy and Classification Database, ad-

dresses the taxonomic requirements of TreeBASE. The data structure is described in Chapter

3, and Chapter 4 gives an overview of the data that contribute to the warehouse and how these

were loaded into the integrated TCl-Db schema. Queries enabled by TCl-Db are described and

web tools that were built to use TCl-Db are presented in Chapter 5. TCl-Db provides breadth

of coverage by integrating multiple taxonomic data sources. As shown in Chapter 6, there are

significant differences in the data held by different data sources. Chapter 6 also highlighted the

classification differences that required TCl-Db to store and deliver hierarchical queries through

a choice of classifications. In Chapter 7 we demonstrated the improved data retrieval that

can be achieved by including a taxonomic infrastructure within TreeBASE. This Chapter high-

lighted the use of query expansion for higher taxa, synonyms and vernaculars that significantly

improved data retrieval. This current chapter discusses this work and an alternative technology
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that can be used in the future developments of TCl-Db.

8.2 Contribution

TCl-Db was designed for two specific types of consumers: those who require access to data

through taxon name queries in TreeBASE and those who gather data from multiple sources

where names need to be reconciled before analysis, for example in a supertree analysis. The first

requirement was delivered and demonstrated in Chapter 7 and the second was demonstrated

in Chapter 6. These requirements are now also being addressed by the wider community and

will eventually be superseded by TreeBASEII and Global Taxonomic Initiative and its partners.

For the time being, these requirements are met by TCl-Db.

The core of TCl-Db development consisted of data integration. Data integration addresses

several aspects of taxonomic data that cause difficulty in the user community. Integrated

taxonomic data increases accessibility of disparate data, as data redundancy is reduced by

combining data from several sources into a single structure, and combined data can be compared

to highlight differences and discrepancies. In Chapter 6 we showed how the data sources used in

TCl-Db can be compared side by side. In Section 5.3 we presented SQL queries which identify

homonyms, differences in name usage (synonyms and valid names) across the data sources and

classification differences between data sources (Section 5.3.1).

These analysis queries were extended in Chapter 6 and used to add data to TCl-Db. The

integrated data were used to make complete the information, through the addition of, for

example, rank information to data sources that did not hold these data. Additional linked

names were generated via the identification of spelling differences, and queries were formulated

that easily map names to different classifications (Table 6.7). In Chapter 6 we were also able

to corroborate links that were created through usage differences. For example, in Chapter 5 we

showed that Casuariidae and Dromaiidae were linked as synonyms. The comparison of NCBI

and ITIS alone could not corroborate this link, however, the addition of Aves check lists enable

this link to be validated. Queries to corroborate the links that are created in TCl-Db are easy

to specify, since the original data sources are linked in to the global TCl-Db schema.

The integrated data in TCl-Db are used as a taxonomic infrastructure for TreeBASE.

In Chapter 7 we demonstrated significantly improved data retrieval using taxonomic queries

through TCl-Db linked to TreeBASE. TCl-Db enables query expansion of higher taxa query

terms, synonym and vernacular query terms and provides breadth of taxonomic coverage.
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The user requirements laid out in Chapter 1 have been met and demonstrated through this

work. Several aspects were highlighted for improvement through the course of writing this

thesis, particularly, aspects of the data model and the user interface that can be improved. An

alternative method that is increasingly being used in the taxonomic and biodiversity community

are semantic web technologies. These technologies were briefly explored and an evaluation

exercise highlighted their potential use in the future developments of TCl-Db. This chapter

continues with a listing of further work proposed from these discussions.

8.3 Discussion

8.3.1 Related Work

The motivation for developing TCl-Db was to deliver a taxonomic infrastructure that could be

used with TreeBASE. The current version of TreeBASE is soon to be replaced by Cyberinfras-

tructure for Phylogenetic Research (CIPRES) TreeBASEII (CIPRES, 2006). A prototype was

due for release in July 2006 but is not yet available. The new improved TreeBASE schema

has been published (CIPRES, 2006) and contains a Taxon module which looks to rectify many

of the data retrieval issues currently experienced by users. At this stage, with only architec-

ture and structural documentation, it is difficult to see exactly how hierarchical and vernacular

queries will be supported in TreeBASEII.

The schema contains a taxon module describing the objects TaxonLabel, TaxonLabelSet,

Taxon, TaxonSet, TaxonLink and others. The documentation states that the Taxon object

holds a unique taxon name. Through the TaxonLink this will connect users to an external

taxon authority. The TaxonAuthority object makes reference to NCBI, uBio and SEEK, as

examples. TreeBASEII also plans to make use of LSIDs (Life Science IDentifiers (Miranker

et al., 2008)) as a mode of unique identification and information integration with other data

authorities. Creating these links will also require extensive data mappings of each TreeBASE

taxon to taxa names in each data authority, similar to the exercise performed in this research

for TreeBASE names in Chapter 6. Without actually testing the prototype it is difficult to tell

if this new improved data structure will support the queries users are performing on the current

version of TreeBASE. Until the TreeBASEII system comes online, TCl-Db offers a solution that

enables more effective data retrieval using taxon names, as demonstrated in Chapter 7.

Attaching a taxonomic infrastructure to TreeBASE can be achieved in a number of ways.

167



8.3 Discussion

A recent solution was provided by Phylofinder (Duhong et al., 2008). Phylofinder offers a

taxonomic backbone to TreeBASE via TBmap and the NCBI classification. The solution offered

by TCl-Db is superior to the simple approach used in Phylofinder. A comparison of TreeBASE

queries using Phylofinder and TCl-Db shows that while Phylofinder does indeed improve data

retrieval, it has some severe limitations resulting from using only one classification. Higher

taxa queries from the ITIS classification that are not used in NCBI, or that have not been

mapped in TBmap fail to return data. TCl-Db does not have this limitation, since TCl-Db

contains full classifications and TreeBASE mappings to ITIS and other resources. TBmap will

also expire with time, while the mappings to TreeBASE made via TCl-Db can be maintained

very efficiently with SQL queries that can be rerun after each new update

uBio has a very similar scope and remit to TCl-Db, however, it is only available through

web services, which means that their data can not be physically integrated into TreeBASE.

The performance of SOAP services provided by uBio could be severely limiting. Performance

of web service mediated data queries does not compare to queries performed through physical

integration, and this was one of the reasons that we choose a data warehouse approach.

Since this project used data integration in order to deliver data coverage, and data trans-

formation was required to deliver hierarchical queries, a data warehouse within the relational

data model was deemed to be the most appropriate method.

TreeBASE, and most of the other taxonomic databases, are built using relational database

technology. Technologies developed by the W3C for the semantic web have been highlighted as

an alternative solution for data integration. This alternative method was briefly explored (see

Appendix D), since it offers to deliver all the advantages offered by a data warehouse without

replicating data within a warehouse and the technologies offer a mediated solution that would

be far easier to maintain than traditional web mediated services.

8.3.2 Semantic Data Integration

From a database perspective, data integration assembles data from several data silos and maps

those into a shared schema. Integration is achieved by applying queries on this schema. On the

web, data are not integrated but are linked together using URLs. This is achieved through the

addition of a href tags around URLs within documents marked up in HTML or XHTML.

These tags enable a user to browse from the current data to relevant data, as linked by the

author. Using semantic web technologies (Berners-Lee & Hendler, 2001) resources on the web,

given correct metadata (Resnik, 1995), new resources can be discovered which would remove
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the need for human mediated links. With the addition of metadata, the resources become

semantically rich and have meaning to computers as well as the users browsing them (Amann

et al., 2000). Since computers have the capacity to use the metadata, data discovery on the

web can be made possible.

Data integration was highlighted as one of the core uses of semantic web technologies (Heflin

& Hendler, 2001). Making taxonomic data interoperable across the web (Williams, 1997) would

be of great benefit, considering the investments made so far and also the distributed nature

of the science. The potential use of the semantic web (Berners-Lee et al., 2001b) for data

integration is now well acknowledged and solutions are being implemented in several areas of

life sciences (Good & Wilkinson, 2006; Stevens et al., 2006) of which, the taxonomic community

has also taken note of these developments (Page, 2007).

The semantic web uses several layers of technology (W.3.C., 2006). When these are used

together, they add increasingly richer expressivity to data (via metadata). In the bottom

layer a global naming scheme, through URI’s is required. A URI, Uniform Resource Identifier,

is simply a web identifier and any data object in the semantic model must have a unique

URI. Currently GUIDs 1 and LSIDs 2 are being tested as solutions within the biodiversity

community (Page, 2008). Above this layer is XML and XML Schema. These languages have

been in use for many years already. XML adds surface syntax to data and XML schema is

used to describe the structure of data in an XML document. The taxonomic community has

invested in this area also through the adoption of a data exchange format in XML (Kennedy,

2005) and controlled vocabularies such as Darwin Core for geographic occurrence and specimen

information. Layered over XML and XML-S, is the core semantic web technology technology,

RDF, the Resource Description Framework (http://www.w3.org/RDF/).

RDF provides a standard syntax for describing data and is the layer at which data can be

brought together. RDF provides a consistent standardised way to describe and query resources

with syntactic interoperability. In essence, RDF is a data model that describes relationships be-

tween things, web resources, data elements, or objects. Data in RDF are represented as triples:

a subject (with a unique URI), a relation (the predicate) that describes the relationship to an

object or data value. In RDF, data are annotated with metadata in a machine readable way

though these relations (or properties). To enable interoperability a common shared vocabulary

is required and this is provided via RDF-Schema, an RDF vocabulary dictionary. RDF is also
1Globally Unique Identifier
2Life Science Identifier
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being adopted. IPNI offers their data in RDF and uBio offers a tool (http://www.ubio.org/rss/)

that can collect taxonomic names from data provided by the RSS 1 feeds from publishers of

scientific literature.

The Web Ontology language, OWL, adds even more expressiveness to the data. So far, not

much progress has been made in this area, but this is undoubtedly where future investment

will be focused, as current efforts progress and the base layers described above are in place.

The Biodiversity community are making significant strides towards delivering and using data

from these technologies. The Encyclopaedia of Life (Wilson, 2003) is one project following the

semantic web ethos (Saaed et al., 2008).

With Oracle providing support for RDF within the Oracle spatial product, we were able

to get a feel for this technology by using the integrated data in TCl-Db and a local copy of

TreeBASE (see Appendix D). Several observations were made while this technology was tested.

These are as follows.

• Conversion from relational data into RDF is fairly simple and several tools exist that

support this (Bizer, 2003). Serialising RDF using SQLX was trivial, and XSLT scripts

also took very little time and effort to write. The N3 notation (Berners-Lee, 1998) is

much more user friendly and easier to handle than the RDF/XML format (Beckett et al.,

2003).

• Queries were very intuitive, following SQL and SPARQL like syntax, but more complex

queries required an intimate understanding of the graph structure where a visualisation

of the graph would have been useful. Oracle provides the ability to query data in the

RDF network and relational tables together through SQL which was incredibly powerful.

• On the whole, the experiences gained were very useful and it is clear that this has the

potential to be a more cost effective integration technology.

• From this small exercise we conducted, performance and scalability are still limiting.

• Systems that have fully adopted the semantic web ethos are still few and far between and

it will be sometime before the advantages are fully realised.

• We do see the advantages offered by the semantic web and TCl-Db will in the future move

towards delivering data that can be used and discovered automatically. The web services
1RDF Site Summary
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described in Chapter 5 go some way to provide this already and this will be extended and

progressed.

The experiences gained from testing these technologies allowed us to develop ideas for future

developments and additions to TCl-Db.

8.3.3 RSS Feeds and Data Update

One of the biggest challenges in a data warehouse system is maintenance and keeping data

up to date. Currently, data refresh is manual and laborious, though it could be automated

using database triggers. This was touched upon in section 4.7 and was attempted. However,

only NCBI’s data worked through this mechanism. The ITIS and Sp2000 updates had to be

performed manually. As more data sources move toward providing their data in RDF via RSS

feeds, the possibilities for maintenance and data update through these data feeds will enable

the data in the system to be more easily kept up to date.

RSS, RDF Site Summary, is already used to aggregate content form multiple web resources

(Hammond et al., 2004). Google news, for example, uses RSS feeds from various news sources

and aggregates the contents into a single page. As mentioned above, this technology is also

being used by uBio to gather new names that are published in the scientific literature (Leary

et al., 2007). In the same way that these applications gather data, TCl-Db can use RSS feeds to

collect data from databases that publish updates through RSS. Currently, few database provide

updates to their data sources in this manner, however, NCBI are moving in this direction (Sahoo

et al., 2007) and it will not be long before this becomes a more popular method of content

delivery.

To this end, the future development will primarily focus on maintaining TCl-Db data in

RDF. In the proposed architecture, the assertion data in TCl-Db would be stored as a single

RDF graph. New assertions can easily be added. This requires the data sources to set up an

RSS feed, and the data in the feeds can then be automatically sent to a software client that

converts the assertions into the TCl-Db RDF graph. This would be one mechanism that could

keep assertions up to date within the database. However, this would only work well for lower

taxa, where there is no impact on the source classification. Higher taxa names that are changed

or added from the sources would require a full update in order to build the nested set and

materialised path data. Additionally, by maintaining the assertion data in RDF, these data

can be syndicated to other aggregators or resources on the web.
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8.3.4 The Data Model

There are two aspects of the TCl-Db data model that could be improved in the future. Since

these did not affect the function of TCl-Db significantly, they were not implemented, how-

ever, these improvements could enable further uses of the TCl-Db data by databases other

than TreeBASE. These improvements concern the way the database stores synonyms and their

provenance and the implementation of hierarchical queries.

Synonyms are stored in the database through the use of the name status attribute in the

name table. The placement of name status in the assertion table would have been more

appropriate. The placement of name status in the name table may result in data loss during

transformation. Since different databases treat taxonomic names differently, there were many

situations where names considered valid in some databases and considered synonyms in others.

Therefore, by attaching name status as an attribute of name, we lose the different status

opinions from other databases databases and fail to preserve data provenance Buneman et al.

(2000).

As ITIS was the first data source loaded, the names from ITIS were the first to fill the

attributes in name. During subsequent data loads from NCBI and other data sources, the

status of the name, if it was already in the database came from ITIS , and if the status was

different from that recorded in ITIS this data would be lost. When this was observed, a simple

solution was put in place. Since we maintained each copy of the data sources in individual data

silos, we were able to gather this data by querying individual silos. These data are stored in

a materialised view, however, this is not a permanent fix and the model should be adjusted in

future work to enable name status from the different data sources to be maintained in the data

model. Since this had no effect on querying TreeBASE, it was not deemed important to change,

but this does limit other uses of TCl-Db and therefore will be addressed in future versions.

Homonyms caused problems with hierarchical queries using Oracle’s connect by utility.

There were several situations where a single name is placed in several ranks within the same

database. Examples mentioned in previous chapters are: Drosophila which in NCBI is in the

rank Genus and the rank subgenus and Archaea in Sp2000, which is both a kingdom and

a genus in the Animalia kingdom. While performing the data analysis queries described in

Chapter 5, it was discovered that the homonyms in hierarchical queries would fail. In the TCl-

Db data model, homonyms have the same name id but different parent name ids in the node

table, and having a name id in the tree twice creates a loop in the connect by query. One

resolution to this would be to use an assertion id and parent assertion id in place of name id
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and parent name id. Alternatively, a more robust solution would be to identify homonyms

during the data load procedures and give them unique identifiers. Since alternative hierarchical

queries, using the materialised paths and nested sets still work, and these are used by the web

tools, a short term fix was not necessary in this case and was not applied.

8.3.5 The User Interface

An ancestor taxa search is not currently available in the web tools described in Chapter 5. An

ancestor query is equivalent to travelling up a tree. Currently, the hierarchical queries provided

by TCl-Db only provide a descendant query, i.e. travelling down a tree to leaf nodes. It may be

useful to provide a mechanism to go up the tree also. This query could easily be implemented

within the current data model, as Oracle provides a mechanism to go up through parents using

the connect by utility. For example, a query starting at Chordata and traversing up the tree

would look as follows:

select node id
from whouse.node
where tree id = get tree id(ITIS)
start with (name id = get name id(Chordata) and tree id = get tree id(ITIS))
connect by prior parent name id = name id

The nested sets work intuitively when traversing down a tree, however, ancestor relationships

are hard to calculate efficiently. Materialised paths can be used instead. Traversing up a tree

requires simply taking the path from the node you wish to start from. For example, using the

starting path 1/2/5/1/2, the last digit can be recursively removed to move up through the

parents. The first pass would start with the path 1/2/5/1/2, which has the parent with the

path 1/2/5/1, whose parent is 1/2/5, followed by 1/2 up to the root 1. A PL/SQL procedure

could be written to handle this kind of query and called in a function. Alternatively, to make the

interface more responsive, the parent path for each node could be calculated by this procedure

and stored in a table.

8.4 Further Work

• Delivering TCl-Db in RDF

As stated above, it is our proposal to maintain the assertion data of TCl-Db in RDF

format. This satisfies two objectives, first, delivering TCl-Db data in RDF format via RSS

feeds will enable the integrated data to be shared with other resources on the web. Second
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once the data sources used by TCl-Db move towards delivering data and updates via

subscribed RSS feeds, this provides a very convenient mechanism of automated updates

to the data that can be propagated into the database.

• Data Update

The classification data in TCl-Db is not amenable to automatic updates, since these

data need to be converted into nested sets and materialised paths before they can be

loaded. Experience of manual data updates so far has enabled us to recognise where

manual intervention is most often required in these updates. So far, misplaced synonyms

in the classification and homonyms have caused problems. It is possible to now to make

provisions for these scenarios and deal with them within an automated script.

• New Data Sources

As stated in Chapter 3, adding new data sources to TCl-Db is very simple. Data sources

are usually replicated into a separate silo and PL/SQL procedures copy the data into the

TCl-Db schema. New data sources can be added within hours as need arises.

• Data Model Improvements

Improvements to the data model will be made to better handle they way homonyms and

synonyms are dealt with. These improvements will also have a positive impact on the

data updates.

• Web Interface Improvements

Additional queries will be added to the web interface and SOAP service. An ancestor

query has been identified as a requirement and further additions will be made as user

requirements dictate.

8.5 Other Possible Work Directions

One could imagine this research extended in a number of dimensions. The first of those is

visualisation. The Treebolic viewer used in the work of E. Grant (see Chapter 2 Figure 2.3) was

a good solution, but since this work was carried out, new visualisations have become available,

developed mainly by the University of Maryland (http://www.cs.umd.edu/hcil/biodiversity/).

One could also investigate the usability of such tree comparisons and how well they support a

scientist in understanding the data and its complexities.

174



8.6 Conclusion

One could also work on the algorithmic efficiency of querying, as with the advent of even

larger classifications and tree databases, more efficient data access may be required. Alternative

tree representations and additional indexes could help in this work. One would typically carry

out performance measurement to decide between alternative data and index layouts.

Another angle on the issues of querying would be furnished by the investigation of the

changes in classification, as done in the work of (Pullan et al., 2000). This will be relevant as

more classifications become available and are subject to minor and major adjustments, due to

our improving knowledge of phylogeny.

8.6 Conclusion

This thesis addressed data integration and query problems observed in taxonomy and system-

atics. Based on an analysis of query logs, we showed that the majority of queries submitted to

the main phylogeny database, TreeBASE, or submitted on the web by naive users do not find

the information which the users require. Based on this material, we derived a number of user

requirements, and then we produced a solution which fulfils those requirements. The solution

presented here consisted of a supporting database warehouse which performs query expansion

with synonyms, vernaculars and hierarchically structured classification terms. This solution

was evaluated and shown to be far superior to the standalone version of TreeBASE. Future

work extending this thesis would consist in adding new data sources, extending the semantic

power of this database warehouse, and provision and testing of improved user interfaces for tree

visualisation and traversal.

This closes the thesis with the conclusion that the newly implemented database warehouse

satisfies the needs of taxonomic research to a far greater extent than other existing solution

and proves the research hypothesis presented at the start of the thesis.
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SQL Queries - A

A.1 Database Utility Queries

Hierarchical Queries

A1. Count nodes contained within this genus Crocodylus
(name id=13232589)in the ITIS (tree id 1).

SELECT count(*)
FROM node
WHERE parent name id = 13232589
AND tree id = 1

A2. Count nodes below 13232589 (Crocodylus) that are have rank = species.

SELECT count(*), b.rank
FROM node a, assertion b
WHERE a.assertion id = b.assertion id
AND a.parent name id = 13232589
AND a.tree id = 1
AND b.source id = 116
GROUP BY rank HAVING count(*) > 0

A3. Traversing the tree from the node 13285208 (Crocodilia) using connect by:

SELECT node id
FROM node
WHERE tree id = 1
START WITH (name id = 13285208 and tree id = 1)
CONNECT BY PRIOR name id = parent name id

A4. Display the path of a node up to the root, by name id:

SELECT LPAD(’ ’, 2*level-1)| | SYS CONNECT BY PATH(name id, ’/’) "path"
FROM node
WHERE tree id = 1
START WITH (name id = 13285208 and tree id = 1)
CONNECT BY PRIOR parent name id = name id
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A5. Display the path of a node up to the root, by name text:

SELECT LPAD(’ ’, 2*level-1)| | SYS CONNECT BY PATH(b.name text, ’/’) "Path"
FROM node a, name b
WHERE a.name id = b.name id
AND tree id = 1
START WITH (a.name id = 13285208 and a.tree id = 1)
CONNECT BY PRIOR a.parent name id = b.name id

A6. Count species contained within the genus Crocodylus (name id = 13232589) in ITIS (tree id 1):

SELECT count(*)
FROM node
WHERE left id between
(SELECT left id FROM node WHERE name id = 13232589 AND tree id = 1)
AND
(SELECT right id FROM node WHERE name id = 13232589 AND tree id = 1)
AND tree id = 1

A7. Select the path for a node and then count how many nodes fall within that path:

SELECT path FROM node
WHERE tree id = 1
AND name id = 13232589

SELECT count(*)
FROM node
WHERE tree id = 1
AND path like
‘/1/30/3/4/4/1/1%’
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Data Analysis Queries

A8. This query gives 48355 names common to NCBI and ITIS.
To indicate how many are species the query can be extended to
include the clause where rank=’species’. (See also Figure 5.1)

SELECT count(*)
FROM assertion
WHERE a.source id = 116
AND name id in
(SELECT name id FROM assertion WHERE source id = 117)

A9. This query builds a materialized view of all known NCBI homonyms
using the NCBI schema data.

CREATE MATERIALIZED VIEW ncbi homonyms AS
SELECT b.name id, b.name text, a.rank, a.kingdom
FROM assertion a, name b
WHERE a.name id = b.name id
AND b.name usage = ’valid’
AND a.source id = 117
AND a.dbsource id in
(SELECT tax id FROM ncbi.ncbi names WHERE unique name IS NOT NULL
AND name class = ’scientific name’)
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A10. The query used to build the materialized view itis homonyms mv
and ncbi homonyms mv using TCl-Db node data.
CREATE MATERIALIZED VIEW itis homonyms mv AS
SELECT get name text(a.name id), get name text(a.parent name id),
get name text(b.parent name id)
FROM node a, node b
WHERE a.name id = b.name id
AND a.node id != b.node id
AND a.tree id = 1
AND b.tree id = 1
AND a.parent name id != b.parent name id
AND a.name id NOT IN
(SELECT name id FROM assertion WHERE source id = 116 AND rank = ’Variety’)

CREATE MATERIALIZED VIEW ncbi homonyms mv AS
SELECT get name text(a.name id), get name text(a.parent name id),
get name text(b.parent name id) FROM node a, node b
WHERE a.name id = b.name id
AND a.node id != b.node id
AND a.tree id = 2
AND b.tree id = 2
AND a.parent name id != b.parent name id
and a.name id !=13351800

A11. This query identifies how many of the synonym names in the
TCl-Db have more than one valid name associated with it.

SELECT count(*) FROM synonym name a, assertion b, assertion c
WHERE b.source id = 117
AND c.source id = 116
AND a.name id = b.name id
AND a.name id = c.name id

A12. Query to identify number of unique NCBI names in each rank.

SELECT count(*), b.rank
FROM node a, assertion b
WHERE a.assertion id = b.assertion id
AND a.tree id =2
AND a.name id not in (
SELECT name id FROM node WHERE tree id= 1)
GROUP BY b.rank HAVING count(*) >1

SELECT count(*), b.rank
FROM node a, assertion b
WHERE a.assertion id = b.assertion id
AND a.tree id =2
AND b.rank =’Species’
AND a.name id not in (
SELECT name id FROM node WHERE tree id= 1)
GROUP BY b.rank HAVING count(*)>1
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A13. This query identifies valid species names in the NCBI
kingdom Bacteria that are not binomial.

SELECT count(*)
FROM name
WHERE name id IN
(SELECT name id FROM assertion
WHERE source id = 117 AND kingdom = ’Bacteria’ AND rank=’Species’)
AND name text LIKE ’% % %’
AND name status = ’valid’

A14. This query uses the table name search to find all linked
names as in Figure 3.3.

SELECT name, valid name
FROM name search
WHERE name = ’Diomedea albatrus’
OR valid name = ’Diomedea albatrus’;

Classification comparison queries

A15. This query returns the number of names that are common
to both the NCBI (tree id 2) and ITIS (tree id 1) classification.

SELECT count(*)
FROM node a, node b
WHERE a.name id = b.name id
AND a.tree id = 2
AND b.tree id = 1

A16. Similar to 1 above but returns the number of nodes
that have different parents in the classification.

SELECT count(*)
FROM node a, node b
WHERE a.name id = b.name id
AND a.tree id = 2
AND b.tree id = 1
AND a.parent name id != b.parent name id

A17. Similar to A16 above but using the hierarchical data from the node Crocodylidae.

SELECT get name text(a.name id) AS child,
get name text(a.parent name id) as parent ncbi,
get name text(b.parent name id) as parent itis
FROM
(SELECT name id, parent name id
FROM node WHERE tree id = 2
START WITH (name id = 13232588 and tree id = 2)
CONNECT BY PRIOR name id = parent name id) a ,
(SELECT name id, parent name id
FROM node WHERE tree id = 1
START WITH (name id = 13232588 and tree id =1)
CONNECT BY PRIOR name id = parent name id) b
WHERE a.name id = b.name id
AND a.parent name id != b.parent name id

A18. The functions used in this query, returns the full path string for a particular name id.
The functions themselves use the SYS CONNECT BY PATH as in
the example A4 above. The use of the functions greatly simplifies this query.

SELECT get ncbi path string(name id), get itis path string(name id)
FROM name
WHERE name id = 13250043
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SQL Queries - B

B.1 Taxonomic Data extraction, reconciliation and vali-

dation - SQL Queries

B1.

SELECT count(*)
FROM assertion
WHERE source id = 248
AND name id IN
(
SELECT name id FROM assertion WHERE source id = 247
);

B2.

SELECT get name text(name id) from synonym name
WHERE name id in
(
SELECT name id FROM assertion WHERE name id IN
( SELECT name id FROM node WHERE source id = 117
AND left id BETWEEN 419620 AND 432391)
AND name id NOT IN
( SELECT name id FROM node WHERE tree id = 1
AND left id BETWEEN 346067 AND 374256 )
AND source id = 116
);
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B3.

SELECT distinct(get name text(b.name id)) as genus,
get name text(b.parent name id) as ncbi,
get name text(a.parent name id) as itis
FROM node a, node b
WHERE a.tree id =1
AND b.tree id = 2
AND a.name id = b.name id
AND a.parent name id != b.parent name id
AND b.name id IN
(
SELECT name id FROM assertion
WHERE source id = 117 AND rank = ’Genus’ AND name id IN
(SELECT name id FROM node WHERE tree id = 2
AND left id BETWEEN 419620 and 432391)
)
AND a.name id IN
(
SELECT name id FROM assertion
WHERE source id = 116 AND rank = ’Genus’ AND name id IN
(SELECT name id FROM node
WHERE tree id = 1 AND left id BETWEEN 346067 AND 374256)
);

B4.

SELECT distinct(get name text(b.name id)) as genus,
get name text(b.parent name id) as family,
get name text(a.parent name id) as itis
FROM node a, node b
WHERE a.tree id =1
AND b.tree id = 2
AND a.name id = b.name id
AND a.parent name id != b.parent name id
AND b.name id IN
(
SELECT name id FROM assertion
WHERE source id = 117 AND rank = ’Genus’ AND name id IN
(SELECT name id FROM node WHERE tree id = 2
AND left id BETWEEN 419620 AND 432391)
)
AND a.name id IN
(
SELECT name id FROM assertion
WHERE source id = 116 AND rank = ’Genus’ AND name id IN
(SELECT name id FROM node WHERE tree id = 1
AND left id BETWEEN 346067 AND 374256)
)
AND b.parent name id IN
(SELECT name id FROM assertion
WHERE source id = 117 AND rank = ’Family’ AND name id IN
(SELECT name id FROM node WHERE tree id = 2
AND left id BETWEEN 419620 AND 432391)
)
AND b.parent name id IN
(SELECT name id FROM synonym name)
;
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SQL Queries - C

C.1 Taxonomic requirements of TreeBASE

C1.

SELECT count(distinct(treeid))
FROM treetaxa WHERE taxonid IN
(SELECT a.taxonid FROM taxa a, treebase queries distinct b
WHERE lower(a.taxonname) = lower(b.query))

SELECT count(distinct(matrixid))
FROM matrixtaxa WHERE taxonid IN
(SELECT a.taxonid FROM taxa a, treebase queries distinct b
WHERE lower(a.taxonname) = lower(b.query))

CREATE MATERIALIZED VIEW queries resultcount AS
SELECT a.id, b.query, count(distinct(b.treeid))
FROM treebase queries distinct a, treetaxa b, taxa c
WHERE b.taxonid = c.taxonid
AND lower(a.query) = lower(c.taxonname)
GROUP BY a.id, a.query, b.treeid
HAVING count(b.treeid) >0

C2.

SELECT count(distinct(a.name id)), b.name status
FROM queries matched 2 a, whouse.name b
WHERE a.name id = b.name id
GROUP BY b.name status
HAVING count(a.name id) >0
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C3.

SELECT count(distinct(a.name id)), b.rank
FROM queries matched 2 a, whouse.assertion b
WHERE a.name id = b.name id
GROUP BY rank
HAVING count(a.name id) >=1

C4.

SELECT count(distinct(a.name id)), get source name(source id)
FROM whouse.assertion
WHERE name id IN
(select name id from treebase queries matched 2)
GROUP BY source id
HAVING count(*)>0

SELECT count(distinct(name id)) as cnt,
get source name(source id) as source
FROM whouse.assertion
WHERE name id IN
( SELECT name id FROM treebase06.queries matched 2
WHERE lower(query) IN
(SELECT lower(a.taxonname) FROM treebase06.taxa a, treebase06.treetaxa b
WHERE a.taxonid=b.taxonid)
) GROUP BY source id
HAVING count(*)>0

C5.

SELECT a.query, a.q count,
get name text(b.valid name id) name,
count(distinct(c.treeid))
FROM treebase06.treebase queries distinct a,
whouse.vernacular b,
treebase06.treetaxa c,
treebase06.taxa d
WHERE lower(a.query) = lower(get name text(b.name id))
AND c.taxonid = d.taxonid
AND lower(d.taxonname) = lower(get name text(b.valid name id))
GROUP BY a.query, a.q count, b.valid name id
HAVING count(c.treeid)>0
ORDER BY a.q count DESC

C6.

SELECT count(distinct(name id))
FROM node
WHERE parent name id =
( SELECT name id FROM name WHERE name text = ’Aspergillus’)

C7.

SELECT count(distinct(b.treeid))
FROM treebase06.taxa a, treebase06.treetaxa b
WHERE a.taxonid= b.taxonid
AND LOWER(a.taxonname) IN
(SELECT LOWER(get name text(name id)) FROM node WHERE parent name id =
(SELECT name id FROM name WHERE name text = ’Aspergillus’)
GORUP BY name id)
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C.1 Taxonomic requirements of TreeBASE

C8.

SELECT count(distinct(a.treeid))
FROM treebase06.treetaxa a, treebase06.taxa b
WHERE lower(taxonname) IN
(SELECT LOWER(get name text(name id))
FROM whouse.node WHERE tree id = 47 AND left id
BETWEEN
(SELECT left id FROM whouse.node
where tree id = 47 AND name id=13126098)
and
(SELECT right id FROM whouse.node
WHERE tree id = 47 AND name id=13126098) )
AND a.taxonid=b.taxonid
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Appendix D

TCl-Db in RDF

Support for RDF is provided through the Oracle Database 10g RDF Data Model (Alexander

et al., 2004; Murray, 2005). There are several RDF data stores with, 3store (Harris & Gibbins,

2003), Sesame (Broekstra et al., 2002) and Jena2 (Wilkinson et al., 2003) being the most

popular (and robust). Apart from the fact that TCl-Db was already implemented within

an Oracle database, the advantage of using Oracle is that queries are SQL based therefore,

queries already performed in previous chapters could be easily translated. The Oracle RDF

implementation is delivered within Oracle spatial which consists of a network data model (data

are modelled in nodes and links). RDF triples are stored as a logical graph within spatial.

The subject and objects are mapped to nodes and predicates are mapped to links, the start

node of a link being the subject and the end node being the object. The way data are stored

there are no repeated values, an object or subject are stored only once. This optimised storage

structure maintains fidelity and means it can scale to very large datasets. RDF fits into the

network model within Oracle spatial and the features that Oracle has already provided within

this product for storage and retrieval of network data made this the system of choice for testing

the use of RDF within TCl-Db.

The basic steps to using RDF in Oracle require first creating an RDF network, then creating

the table to store the references to the RDF triples and finally creating a model that references

the table in which the triples are referenced. These steps are outlined below.

1. Create tables to store the references to the RDF data

CREATE TABLE assertions_rdf (id NUMBER, triple SDO_RDF_TRIPLE_S);

CREATE TABLE names_rdf (id NUMBER, triple SDO_RDF_TRIPLE_S);

186



2. Create the RDF Models

EXECUTE SDO_RDF.CREATE_RDF_MODEL(’assertions’, ’assertions_rdf’, ’triple’);

EXECUTE SDO_RDF.CREATE_RDF_MODEL(’names’, ’names_rdf’, ’triple’);

3. Create Oracle database indexes on conditions that will be specified in the WHERE clause

of SELECT statements, to provide better performance for such queries.

CREATE INDEX asertions_sub_idx ON assertions_rdf (triple.GET_SUBJECT());

CREATE INDEX asertions_prop_idx ON assertions_rdf (triple.GET_PROPERTY());

CREATE INDEX asertions_obj_idx ON assertions_rdf (TO_CHAR(triple.GET_OBJECT()));

CREATE INDEX asertions_tri_idx ON assertions_rdf (triple.rdf_t_id);

CREATE INDEX names_sub_idx ON names_rdf (triple.GET_SUBJECT());

CREATE INDEX names_prop_idx ON names_rdf (triple.GET_PROPERTY());

CREATE INDEX names_obj_idx ON names_rdf (TO_CHAR(triple.GET_OBJECT()));

CREATE INDEX names_tri_idx ON names_rdf (triple.rdf_t_id);

TCl-Db in RDF

The default method used for describing RDF data models is the RDF graph, these are simple

directed graphs with labelled nodes and edges. While RDF graph is used to model the data

the format for delivering the data in an RDF graph is through serialisation using RDF/XML

(Beckett et al., 2003). The TCl data mapped into RDF is shown in Figure D.1. Relational tables

are easily serialised into RDF/XML using SQLX. The SQLX queries for the tables assertion,
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tcl_name.php?id=

:parent_name
:valid_name
:synonym

:vernacular
synonymrdf:type

vernacularrdf:type

valid
rdf:type

?name

rdf:value

tcl_assertion.php?id=

assertion:name

?sourceassertion:source

db source idassertion:dbsource

?rank

assertion:rank

?kingdom

assertion:kingdom

Figure D.1: Graph structure for TCl RDF of Names and Assertions. The Nodes

tcl assertion.php and tcl name.php are web resources. The full URL would be for example:

http://spira.zoology.gla.ac.uk/tcl name.php?id=13232598
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name and node tables are given below.

• assertion SQLX

select XMLELEMENT("rdf:description",

XMLATTRIBUTES(a.assertion_id as

"rdf:about=http://spira.zoology.gla.ac.uk/tcl_assertion.php?id"),

XMLELEMENT("assertion:source", get_source_name(source_id)),

XMLELEMENT("assertion:dbsourceid", dbsource_id),

XMLELEMENT("assertion:rank", rank),

XMLELEMENT("assertion:kingdom", kingdom),

XMLELEMENT("assertion:name",

XMLATTRIBUTES(get_name_text(name_id) as

"rdf:resource=http://spira.zoology.gla.ac.uk/tcl_name.php?id"))

)

from assertion a

• name SQLX

select XMLELEMENT("rdf:description",

XMLATTRIBUTES(a.name_id as

"rdf:about=http://spira.zoology.gla.ac.uk/tcl_name.php?id"),

XMLELEMENT("name:text", a.name_text),

XMLELEMENT("name:status", a.name_status),

XMLELEMENT("name:synonym", get_name_text(b.name_id)),

XMLELEMENT("name:vernacular", get_name_text(c.name_id)),

XMLELEMENT("name:parent",

XMLATTRIBUTES(d.parent_name_id as

"rdf:resource=http://spira.zoology.gla.ac.uk/tcl_name.php?id"))

)

from name a, synonym_name b, vernacular c, node d

where a.name_id = b.valid_name_id

and a.name_id = c.valid_name_id

and a.name_id = d.name_id
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These queries return three XML files, when edited to include the appropriate headers, these

would then be parsed using XSLT (using for example the XALAN processor) into Notation 3

format (N3) (Berners-Lee, 2006). The XSLT script is given in Appendix A. The Oracle RDF

loader uses Java to load data in N3 format. Similarly, XSLT can be used to build SQL insert

statements that can be directly executed from sqlplus utility, however the Java loader performs

much better than individual insert statements. The command line:

java -classpath .:$ORACLE_HOME/jdbc/lib/ojdbc14.jar:./sdordfclient.jar

TestNTriple2NDM name.nt name_rdf names 12

for example, would load the name file in N3 format into the table names rdf, these data

would be associated with the model names which has a model id of 12.

TreeBASE in RDF

The RDF model for TreeBASE is given in Figure D.2. Using the TreeBASE schema that was

replicated into the local Oracle database, a similar SQLX query would serialise the data into

RDF/XML. The queries for the treetaxa and the matrixtaxa tables are given below. Again,

with the addition of the appropriate headers, these files would be parsed with XSLT (Appendix

B) into N3 format and loaded into Oracle as shown above.

• treebase.matrixtaxa SQLX

select XMLELEMENT("rdf:description",

XMLATTRIBUTES(b.matrixid as

rdf:about="http://spira.zoology.gla.ac.uk/treebase_matrix.php?id),

XMLELEMENT("matrixtaxa:taxonid",

XMLATTRIBUTES(b.taxonid as

rdf:resource="http://spira.zoology.gla.ac.uk/treebase_taxon.php?id)),

XMLELEMENT("taxa:name", c.taxonname)

)

from matrixtaxa b, taxa c

where b.taxonid = c.taxonid
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• treebase.treetaxa SQLX

select XMLELEMENT("rdf:description",

XMLATTRIBUTES(b.treeid as

rdf:about="http://spira.zoology.gla.ac.uk/treebase_matrix.php?id),

XMLELEMENT("treetaxa:taxonid",

XMLATTRIBUTES(b.taxonid as

rdf:resource="http://spira.zoology.gla.ac.uk/treebase_taxon.php?id)),

XMLELEMENT("taxa:name", c.taxonname)

)

from treetaxa b, taxa c

where b.taxonid = c.taxonid

TreeBASE RDF Model

treebase_matrix.php?id=

treebase_taxon.php?id=

:taxonid

matrixidrdf:type

taxonid
rdf:type

rdf:type

?taxonname

rdf:value

rdf:value taxonrdf:type
rdf:type

treebase_tree.php?id=

:taxonid

treeid

rdf:type

Figure D.2: Graph structure for TreeBASE.

Querying TCl-RDF

As described in previous chapters, the content and design of TreeBASE does not enable effective

data retrieval using taxon names. While TreeBASE does have an element of taxonomy through

the tables taxon, treetaxa and matrixtaxa, these data do not include the full hierarchy

and linked alternative names, thus searches using taxon names may not return all the data a

user would expect. This thesis outlines the use of a data warehouse that can be integrated into

TreeBASE to enable the types of taxon searches that were described in Chapter 5. Semantic

technologies, RDF, RDFS etc., give a new alternative to traditional integration and mapping of
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data. As described above data delivered in RDF forms a graph, two datasets brought together

in this format can be easily queried together, the architecture is depicted in Figure D.3. While

RDF provides a means of integration over data, the purpose of integrating data is to allow the

data to be queried together. Several query languages have been proposed for querying RDF

data, SPARQL query language for RDF (Prudhommeaux & Seaborne, 2004) and RDQL, RDF

Data Query Language (Seaborne, 2004) are implementations that have been submitted to the

W3C. Oracle has implemented SPARQL like graph patterns for querying RDF within Oracle

Spatial.

The use of semantic integration is exemplified here with the TCl RDF data model and

TreeBASE RDF model for treetaxa and matrixtaxa tables. The query possibilities through

these RDF data are given with some examples below using the model given in Figure D.4. The

last query is an example of the use of data in both the network model and relational model.

Figure D.3: The diagram above represents how two RDF graphs can be brought together and

integrated through inference rules. The dashed lines in green depict the mapping of identical

nodes in the two trees and the black dashed line depicts how new triples can be inferred from

rules and existing triples. When the datasets are brought together in RDF format, they can be

queried together using SPARQL embedded within SQL. The result set of such a query can be

easily parsed via XSLT into HTML for inclusion within a web interface.
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TreeBASE RDF Model

TCl RDF Model

treebase_matrix.php?id=

treebase_taxon.php?id=

:taxonid

matrixidrdf:type

taxonid
rdf:type

rdf:type

?taxonnamerdf:value

rdf:value

taxonrdf:type

rdf:type

?name

inferred triple (treebase:name)

treebase_tree.php?id=

:taxonid

treeid
rdf:type

tcl_name.php?id=

:parent_name
:valid_name
:synonym

:vernacular

synonym

rdf:type

vernacular

rdf:type

valid
rdf:type

rdf:value

name_id

SQL table join

parent_name_id

SQL table join

tcl_assertion.php?id=

assertion:name

?source

assertion:source

db source id
assertion:dbsource

?rank
assertion:rank

?kingdomassertion:kingdom

assertion_id

SQL table join

NODE

Figure D.4: RDF graph for TCl and TreeBASE RDF model. The dashed line connecting the

nodes taxonname and name text represents the inferred triple, using this triple the two data

sets can be queried together. i.e treebase data can be queried using taxa names. In Oracle data

in the network data model and the relational data model can be queried together through SQL.

Using the data in the relational node table traditional hierarchical queries can be combined

with the RDF queries.
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Data Retrieval Queries

• selects all valid names for synonyms

select nameid, name

from TABLE(SDO_RDF_MATCH(

’(?nameid :synonym ?x)

(?x rdf:value ?name)’,

SDO_RDF_MODELS(’names’),

null,

SDO_RDF_ALIASES(SDO_RDF_Alias(’’, ’http://spira.zoology.gla.ac.uk/terms/TCL/’)),

null));

• selects all valid names for the vernacular “hazelnut”

select name

from TABLE(SDO_RDF_MATCH(

’(?nameid :vernacular ?x)

(?x rdf:value "hazelnut")

(?nameid rdf:value ?name)’,

SDO_RDF_MODELS(’names’),

null,

SDO_RDF_ALIASES(SDO_RDF_Alias(’’, ’http://spira.zoology.gla.ac.uk/terms/TCL/’)),

null));

• select TreeBASE treeids

select treeid, taxonid, name

from TABLE(SDO_RDF_MATCH(

’(?treeid rdf:type :treeid)

(?treeid :taxonid ?taxonid)

(?taxonid rdf:value ?name)

(?name rdf:type :taxon)’,

SDO_RDF_MODELS(’treebase’),

null,
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SDO_RDF_ALIASES(SDO_RDF_Alias(’’, ’http://spira.zoology.gla.ac.uk/terms/TCL/’)),

null));

• TreeBase Inference

EXECUTE SDO_RDF_INFERENCE.CREATE_RULEBASE(’taxon_rb’);

INSERT INTO mdsys.rdfr_taxon_rb VALUES(

’parent_rule’,

’(?treebasename rdf:type :taxon)

(?nameid rdf:type ?valid)

(?nameid rdf:value ?whousename)’,

NULL,

’(?treebasename :links ?whousename)’,

SDO_RDF_Aliases(SDO_RDF_Alias(’’,’http://spira.zoology.gla.ac/terms/TCL/links’)));
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• TreeBase query using inference rule

select a.treeid, a.nameid, b.parent_name_id

from TABLE(SDO_RDF_MATCH(

’(?treeid rdf:type :treeid)

(?treeid :taxonid ?taxonid)

(?taxonid rdf:type :taxonid)

(?taxonid rdf:value ?taxon)

(?taxon :links ?name)

(?nameid rdf:value ?name)

(?name rdf:value "Candida")’,

SDO_RDF_MODELS(’names’),

SDO_RDF_RULEBASES(’RDFS’,’taxon_rb’),

SDO_RDF_ALIASES(SDO_RDF_Alias(’’, ’http://spira.zoology.gla.ac.uk/terms/TCL/’)),

null)) a, whouse.node b

where a.nameid=b.name_id

• TreeBase TreeIDs from a higher taxa name query using spatial and relational tables

select treeid

from TABLE(SDO_RDF_MATCH(

’(?treeid rdf:type :treeid)

(?treeid :taxonid ?taxonid)

(?taxonid rdf:type :taxonid)

(?taxonid rdf:value ?taxon)

(?taxon :links ?name)

(?nameid rdf:value ?name)

(?name rdf:value "Candida")’,

SDO_RDF_MODELS(’names’),

SDO_RDF_RULEBASES(’RDFS’,’taxon_rb’),

SDO_RDF_ALIASES(SDO_RDF_Alias(’’, ’http://spira.zoology.gla.ac.uk/terms/TCL/’)),

null));
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