
Glasgow Theses Service
http://theses.gla.ac.uk/

theses@gla.ac.uk

Collins, Graham Richard McFarlane (2001) Supporting formal reasoning
about functional programs. PhD thesis.

http://theses.gla.ac.uk/4609/

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

http://theses.gla.ac.uk/
http://theses.gla.ac.uk/4609/

UNIVERSITY
of

GLASGOW

Department of
Computing Science

Supporting Formal Reasoning
about Functional Programs

Graham Richard McFarlane Collins

A dissertation submitted for the Doctor of Philosophy
Degree at the University of Glasgow

January 2001

© Graham Collins 2001

Abstract

It is often claimed that functional programming languages, and in particular pure func­

tional languages. are suitable for formal reasoning. This claim is supported by the fact

that many people in the functional programming community do reason about languages

and programs in a forlllal or sellli-furIllal way. Different reasoning principles. such as

equational reasoning, induction and co-induction, are used, depending on the nature of

the problem.

Using a computer program to check the application of rules and to mechanise the

t.edious bookkeeping involved can simplify proofs and provide more confidence in their

correctness. When reasoning about programs, this can also allow experiments with

new rules and reasoning styles, where a user may not be confident about structuring a

proof on paper. Checking the applicability of a rule can eliminate the risk of mistakes

caused by misunderstanding the theory being used. Just as there are different ways in

which formal or informal reasoning can be applied in functional programming, there are

different ways in which tools can be provided to support this reasoning.

This thesis describes an investigation of how to develop a mechanised reasoning

system to allow reasoning about algorithms as a functional programmer would write

them, not an encoding of the algorithm into a significantly different form. In addition,

thl' work aims to develop a system to support a user who is not a theorem proving

expert or an expert in the theoretical foundations of functional programming. The work

j" aiUleJ luwarJs a :::.yslelll that cuulJ ue used by a fUllctional programmer developing

real programs and wishing to prove some or all of the programs correct or to prove that

two programs are equivalent.

Acknow ledgements

I would like to acknowledge three years of funding from the Engineering and Physical

Sciences Research Council during the course of this work.

I would also like to thank the following people for their help and support over the

last few years:

My supervisor, Professor Tom Melham, who provided all the support, criticism and

advice necessary for me to complete this work, and the Department of Computing

Science, especially the Formal Analysis, Theory and Algorithms research group, the

Functional Programming research group, Simon Peyton Jones and John O'Donnel from

my tiupcrvitiory team. The wider theorem proving community, especially the Glasgow

Provers, the Automated Reasoning Group at the University of Cambridge and the Pros­

per team. All the other researchers that have commented on my work or shared details

of theirl:i. especially Andy Gordon, Andy Pitts and all the referees of my papers. All my

office mates, fellow students and friends, especially Claire Quigley, Jonathan Hogg and

Aileen Callaghan.

Finally, this would not have been completed without the love and support of my

wife, Barbara, and my parents whose love, understanding and support throughout my

university career has been invaluable.

ii

Contents

Abstract

Acknowledgements ii

1 Introduction 1

1.1 Reasoning and functional programming 1

1.2 Supporting formal reasoning . 2

1.3 Aims 4

1.4 Contributions 5

1.5 Outline 6

2 Background 9

2.1 Theorem proving 9

2.2 Operational semantics 10

2.2.1 Static semantics 11

2.2.2 Dynamic semantics . 12

2.3 Co-induction and bisimulation 14

2.3.1 Process calculi 14

2.3.2 Functional programming languages . 17

2.3.3 Underlying theory 18

2.3.4 Applicative bisimulation 20

2.4 Finite maps 21

3 Design choices 24

3.1 Language 24

3.1.1 Type theory . 25

3.1.2 Inductive and co-inductive types 26

3.1.3 The target language 27

3.2 Reasoning technology ... 28

iii

CONTENTS

3.3 Semantics............

3.3.1 Contextual equivalence

3.3.2 Models for equality.

3.3.3 Bisimulation

3.4 Summary

4 Overview of language and architecture

4.1 Language features ..

4.1.1 Polymorphism

4.1.2 Datatypes ...

4.2 Embedding of primitive types

4.3 Syntax

4.4 Substitution ..

4.5 Static semantics

4.6 Dynamic semantics .

4.7 Labelled transition system and equivalence

4.R Example: lists.

4.8.1 Introducing the list type . . .

4.8.2 Introducing the constructors

4.8.3 Labelled transitions for lists .

5 Embedding the syntax and semantics

5.1 Syntax

5.1.1 Types .. .

5.1.2 Expressions

5.1.3 Adding booleans

,').2 Substitutiuns

5.2.1 A choice function.

5.2.2 The substitution functions .

5.3 Properties of substitution

5.4 Closed substitutions

5.5 Equality for expressions and types

5.5.1 Alpha equivalence for types

5.6 Static semantics

5.7 Properties of the typing relation

5.8 Dynamic semantics

5.8.1 The dynamic semantics of numbers.

iv

29

29

30

31

31

32

32

33

33

34

35

36

38

38

39

40

41

41

42

43

43

43

46

48

49

49

54

54

57

61

62

65

67

70

70

CONTENTS v

5.8.2 Derived relations 72

5.9 Properties of reduction . 73

5.10 Related work · 73

6 Automation of low level inference 75

6.1 Translation of syntax 76

6.2 Definition of new types and functions. 77

6.2.1 Datatype definition. 77

6.2.2 Expression definition 79

6.3 Automating type inference and reduction 80

6.3.1 Substitution. 82

6.3.2 Variables 82

6.4 Related work 84

7 Equivalence 85

7.1 Co-induction · 85

7.2 Labelled transition system . 88

7.2.1 Labels 89

7.2.2 Transition relation 89

7.2.3 Passive and active types 91

7.3 Equivalence relation 92

7.3.1 Simulation 94

7.3.2 Bisimulation 95

7.4 Congruence 97

7.4.1 Compatible refinement . 97

7.4.2 Open extensions 99

7.4.3 Precongruence and congruence 99

7.5 Properties of equivalence . · 103

7.6 Contextual equivalence. · 105
7.7 Related work · · 106

8 Supporting formal reasoning 107

8.1 Constants, equivalence and transitions .107

8.2 Equational reasoning . · 108
8.3 Variables .. · 109

8.4 Coinduction . · 110
~.4.1 Labelled transition system . .110

8.5 Strictness of functions · 113

CONTENTS

8.5.1 Evaluation to normal forms and strictness .

8.6 Application of the tools

8.6.1 map-compose ..

8.6.2 rotate

8.6.3 Extending the bisimulation

8.6.4 An example using filter .

8.7 A model of circuits

8.7.1 The Slack-Circuit Model.

8.7.2 Formal execution.

8.7.3 Simple circuits ..

8.7.4 Combinator proofs

8.8 Related work

9 Styles of Reasoning

9.1 Induction over finite data

9.2 The take lemma

9.3 Parametric polymorphism

9.3.1 Admissible relations

9.3.2 Actions on types ..

9.3.3 The parametricity theorem

9.3.4 Example: The identity functions

9.4 Invariants over infinite data ...

9.5 Restricted principles of definition

10 Conclusions

10.1 Reasoning about programs .

10.2 Reasoning about semantics

10.3 Further work

10.3.1 The language

10.3.2 Additional proof rules

10.3.3 Tool support

A Notation

B A Theory of Finite Maps

B.1 Introduction.

B.2 Finite maps .

B.2.1 Axioms for the constants

vi

· 114

· 115

.115

.117

.117

.119

.119

· 119

· 121

· 121

· 121

· 123

125

· 125

· 127

· 128

· 129

· 130

· 131

· 132

· 132

.134

135

· 135

· 136

· 137

· 137

· 138

· 138

140

141

· 141

· 142

· 142

CONTENTS

B.2.2 Induction

B.2.3 Equality.

B.3 The logical definition of finite maps .

B.3.1 Possible representations .. .

B.3.2 The representation used .. .

B.3.3 Consistence, independence and completeness

B.4 Enriching the theory

B.5 Finite maps and recursive types

B.5.1 Canonical representations for finite maps

B.5.2 Introducing the type List Val

B.5.3 Introducing the type Val.

B.6 Decision procedures

B.6.1 Simplifying terms. .

13.0.2 A reducer for Apply

B.7 An example

B. 7.1 A small language .

B.7.2 Context extension

B.7.3 Restriction of the context

B.8 Conclusions

vii

· 143

· 144

.145

· 145

· 146

· 147

· 148

· 149

· 150

· 151

· 151

· 152

· 152

· 153

· 154

· 155

· 155

· 156

· 157

List of Figures

4.1 The syntax of SDT types

4.2 The syntax of SDT expressions

4.3 Static Semantics

4.4 Reduction Rules

4.5 Labels for labelled transition system. .

4.6 Rules for labelled transition system.

5.1 The type of SDT types in HOL ...

5.2 The type of SDT expressions in HOL

5.3 Substituting types into types

5.4 Substituting expressions into expressions .

5.5 Substituting types into expressions

5.6 The defintion of =Q •••••••

5.7 The typing rules

5.8 Strong rule induction for Types.

5.9 The dynamic semantics

5.10 The dynamic semantics of numbers .

6.1 The ML types for the abstract syntax of expressions

6.2 The definition of map

6.3 The reduction and typing theorems for map

7.1 Labels for labelled transition system. . .

7.2 Rules for labelled transition system. ..

7.3 The definition of compatible refinement

viii

36

36

38

39

39

40

44
47

54

55

55

62

66

68

71

72

78

80

80

89

90

98

Chapter 1

Introduction

It is often claimed that functional programming languages, and in particular pure func­

tional languages, are suitable for formal reasoning. This claim is supported by the fact

that many people in the functional programming community do reason about languages

and programs in a formal or semi-formal way. Different reasoning principles, such as

equational reasoning, induction and co-induction, are used, depending on the nature of

the problem.

Using a computer program to check the application of rules and to mechanise the

tedious bookkeeping involved can simplify proofs and provide more confidence in their

correctness. When reasoning about programs, this can also allow experiments with

new rules and reasoning styles, where a user may not be confident about structuring a

proof on paper. Checking the applicability of a rule can eliminate the risk of mistakes

caused by misunderstanding the theory being used. Just as there are different ways in

which formal or informal reasoning can be applied in functional programming, there are

different ways in which tools can be provided to support this reasoning.

The rest of this chapter looks first at the reasoning tasks that can be supported and

the types of tools that can be built to support them. It then outlines the specific aims,

approach and contribution of this thesis.

1.1 Reasoning and functional programming

Two significant applications of reasoning to functional programming are proving prop­

erties and equivalence of programs and deriving new rules needed to prove these results.

These activities require different levels of knowledge to produce a correct proof.

The highest level of knowledge and formal rigour is required to derive new rules. New

rules are derived within some semantic framework, typically an operational or denota-

1

CHAPTER 1. INTRODUCTION 2

tional semantics. For example, fixpoint induction is often derived from a denotational

semantics, as is parametricity [Wad89). Leading advocates of coinduction often present

work derived from an operational semantics framework [Gor94).

In many cases there is work showing either that the rules derived from one semantic

framework are transferable to other semantic frameworks, or that the semantic frame­

works are equivalent. It requires a greater range and depth of mathematical knowledge

to understand how these results can be derived and combined in different semantic

frameworks than to apply the rules to specific problems. But when a mixture of rules

is used to reason about programs, without checking that the underlying semantics are

compatible, then the resulting proofs, while quite possibly correct, are not as rigorous

as they could be.

Mechanised reasoning support can fill this gap by providing a framework for expert

users to derive rules and for a more general group of users to apply them. This would

allow the less expert user to apply the rules, without being aware of the underlying

semantics, and with the knowledge that if the rule is applied incorrectly then the mech­

anised tool will detect the error. In addition, with a suitable level of automation a tool

can also simplify the discovery of the proof itself.

1.2 Supporting formal reasoning

There are three main ways of developing a program to mechanise the construction of a

proof about some property of a program or language. The choice of method is influenced

by whether the aim is to reason about programs, to derive new rules to aid reasoning, or

to reason about the language semantics. The first approach is to develop a tool with no

mechanised formal basis but which can manipulate terms in the language. Such a tool

could be a custom rewrite engine with a user interface [Gil96) or an informal translation

of the function definitions and derived rules for the language into axioms in a theorem

prover [Tho89, Tho93, Tho94]. Both are useful, but the lack of a formal basis means

there is no way to check that the rules themselves are correct and no internal way of

generating new rules.

A second approach is to directly use the underlying logic in an existing theorem

prover. Functions, and function definitions, can be expressed in the logics of most

theorem provers. Some, such as HOL [GM93]' have a logic that restricts the functions

that can be introduced to ones that are terminating and total, providing a useful, but

limited, basis for reasoning about such programs. LCF [Pau87] provides a logic where

non-terminating functions can be introduced, but it forces the user to reason about a

'bottom element' in all types---€ven when this may be unnecessary because the bottom

CHAPTER 1. INTRODUCTION 3

element cannot arise [GMW79, Pau87]. While such systems are the simplest way to

provide formal support for mechanised reasoning, the restriction on programs expressible

and the inability to derive new rules directly from the semantics may prevent reasoning

about many real programs.

For example, syntactic restrictions on the form of programs to ensure termination

can mean that to reason about a program it is necessary not just to extend it as in the

requirement for totality, but to rewrite the program completely. In the lazy functional

programming community, infinite data structures and non-terminating programs are

used not just where inhnite behaviour is required, but also to simplify the structure of a

program by allowing the programmer to writp functions that define an infinite structure

and then relying on lazy evaluation to ensure the intinite structures are not generated.

Restrictions on the termination behaviour will disallow many of the programs that are

actually written. In addition, since new proof rules and other meta-theoretic results

cannot be derived within the system, there will be restrictions on the range of proof

styles that may be applied to problems.

The third approach for developing a mechanised tool is to first define the semantics

of the language in a theorem prover and then develop reasoning principles on top of this.

This allows the meaning to be given to programs that cannot be expressed directly in the

theorem prover's logic and provides a means to derive new rules from the semantics. As

long as the semantics are correct, any program for the language will be able to be entered,

and any new meta-theory should be derivable. Varieties of denotational semantics and

operational semantics can be used to express the semantics of the language.

Denotational semantics determines the meaning of a program by translation into a

mathematical model. One of the advantages of this approach is that the meaning of the

equalitv of two programs is easily expressed as the equality of the programs' denotations

in the underlying model. The definitions of some lanuages within HOL have used this

flpproflrh [Rf'g9fi. Agd}4j

Operational semantics work:; by detining the meaning in terms of the program's exe­

cution on some abstract machine. The mathematical concepts used to give the meaning

to programs are often simpler than in a denotational semantics, since nothing more

complicated than relations is needed. This makes operational semantics suitable for ex­

pressing the meaning of terms in the language and for reasoning about the language, but

not necessarily for reasoning about equality of programs since this is not given by the def­

inition of the abstract machine. The semantics of SML is specified using an operational

semantics [MTH90, MT91, MTHM97]. Numerous systems have been built by formalising

parts of this definition in a theorem prover [Sym92, Sym93. VG93, Van94, MG94, C092].

While equality of programs that yield a value can easily be expressed as the equality

CHAPTER 1. INTRODUCTION 4

of the results of the evaluation of both programs, there is no simple definition of equality

for programs or functions that do not terminate to yield a value. Instead the equality can

be defined as a new relation that captures the intended meaning and can be proved to

be a congruence. The operational approach leads to a system that does not impose any

restrictions on the programs that can be expressed. Any program that can be expressed

in the language can be entered.

Whether or not a particular semantics for a language, and hence the derived meaning

of equality of two programs, correctly captures our intentions depends on the choices

made in defining the semantics and equality. For domain theory most of these choices

are distilled into the choice of the model for the semantics. In the operational approach

the choiCe!> are divided between the choice of execution rules for the abstract machine

and the choice of equivalence relation. Any of these choices may lead to a semantics that

gives a different meaning to a program than the meaning intended by the programmer.

For example, the semantics may specify a different termination behaviour from that

expected by the programmer. Such a semantics may be incorrect, but there may also be

no mathematical inconsistencies. One way to determine the correctness of the semantics

is to compare the meaning given to programs with the meaning assigned by some other

semantics we already believe to be correct.

One definition of equivalence that is more abstract than either of the above ap­

proaches is contextual equivalence. This states that two programs are equivalent if they

have the same behaviour when placed in any larger program or context. This is often

used as the benchmark for full abstraction results about the semantics. The models most

often used in the domain theory do not lead to a semantics that is fully abstract, although

models can be found based on game theory that are [McC98, AJM94j. Correctness with

respect to contextual equivalence is easier to obtain with an operational semantics and

a defined equivalence than with a denotational semantics. The equivalence relation for

the language could be defined to be contextual equivalence but using different relations

Cdll g,i ve rise tu mure u:;cful reasuning principle:; for proving the equivalence of programs.

1.3 Aims

The aim of the work described here is to investigate how to develop a mechanised rea­

soning system to allow reasoning about algorithms as a functional programmer would

write them, not an encoding of the algorithm into a significantly different form. In addi­

tioll. till' wurk aims to dcvelop d system to support a user who i:; not a theorem proving

expert or an expert in the theoretical foundations of functional programming. The work

is aim{'o towards a system that could be used by a functional programmer developing

CHAPTER 1. INTRODUCTION 5

real programs and wishing to prove some or all of the programs correct or just prove

two programs are equivalent. Such a user will understand some of the concepts of induc­

tion and other proof principles but should not have to handle fine-grained mathematical

details.

Such a system removes two obligations from the programmer in the generation of

rigorous proof:

• the obligation to understand how proof rules are derived from the underlying se­

mantics, and

• the obligation to produce and check every step of the proof.

The system should be extensible, allowing the addition of new rules and tools. This

involves supporting a second class of user who, as an expert in the theoretical foundation

or theorem proving, can derive these new rules.

The work is based on the definition of an operational semantics for a lazy functional

programming language in a theorem prover. While this language is smaller and simpler

than a full strength functional language, it still allows the expression of many of the

styles of programming used. Such a set-up has in the past been used primarily to reason

about language semantics; here it is extended with a definition and theory of equality.

This provides a semantic base from which to define a range of reasoning principles.

One primary difficulty with this approach is that much of the reasoning is at a very

low level and consists of many more steps than a paper proof. One aim of the work

here is to show it is possible to use sufficient automation and derived rules within the

system to move towards a system that allows reasoning at the same or higher level than

semi-formal reasoning on paper.

1.4 Contributions

A major product of the work described here is a system that satisfies the aims described

in the previous section. In particular there is a theory, formalised in HOL, along with as­

sociated proof tools that allows reasoning, at a high level, about lazy functional programs

without placing restrictions on the form and termination behaviour of the functions. The

system makes use of a variety of tools written in the ML language and ideas from the

functional programming community, such as strictness analysis, to achieve this level of

reasoning.

This result shows that it is possible to define the semantics of a language by a defining

the syntax and a hierarchy of semantic relations and still recover a practical system by

use of the ML language to construct proof tools.

CHAPTER 1. INTRODUCTION 6

Some more specific contributions that resulted from this work are:

• A formalisation of coinduction, finite maps [CS95] and closing substitutions. These

general theories, which have not previously been mechanised in HOL, are used

throughout the rest of the formalisation and form libraries of results that could be

used elsewhere.

• The operational semantics of a small language has been embedded in HOL and

a large collection of standard results, such as the uniqueness of type assignments

and determinacy results about reduction, has been proved. The treatment here

is different from other embeddings of functional languages in that it is aimed at

reasoning about programs, rather than the semantics.

• A mechanisation of Gordon's theory of applicative bisimulation [Gor95aJ. The

equivalence relation is defined relative to an operational semantics and is proved

to be a congruence. This was the first substantial development of this theory in a

theorem prover and illustrates that deriving equality of functional programs from

an operational semantics is feasible in a mechanised setting.

• A mechanised operational treatment of a restricted form of parametric polymor­

phism ("theorems for free") [Wad89, Pit98]. Many presentations begin by setting

up a semantic framework tailored to the development of parametric polymorphism

but not the same semantic framework used to derive other results. The work here

uses the same operational semantics that the rest of the work is based on. This

shows that this semantic framework is suitable for extension with new reasoning

principles.

• A set of examples demonstrating the range of proofs possible, including results

about programs that cannot expressed or proved correct without dealing with

undefined and infinite values.

While the work described here is not a fully fledged system suitable for general use­

it lacks a full-blown user interface, support for derived syntax, and a rich library of

pre-derived results-it does illustrate the practicality of the approach and deals with

many issues not brought together in one semantic framework and system before.

1.5 Outline

This thesis can be divided into three main parts. Chapters 2 to 4 contain a discussion of

other tools and theory relevant to the rest of the thesis and an informal exposition of the

CHAPTER 1. INTRODUCTION 7

target language and its semantics. Chapters 5 to 7 discuss the development of the theory

in the HOL theorem prover and the basic tools necessary to mechanise the semantics.

Chapters 8 and 9 develop this platform further and describe the higher level tools to

support reasoning and the development of extensions to the theory. These chapters also

contain examples of the use of the tools developed. A more detailed breakdown of the

contents is as follows:

Chapter 2 - Background. This chapter describes some of the theory used in the sub­

sequent chapters. This includes a description of the HOL theorem proving system,

a discussion of the style of operational semantics used, a brief introduction to

coinduction, and a brief description of the finite map library.

Chapter 3 - Design Choices. This chapter discusses some of the choices made in

deciding the style of the development employed. The chapter looks in more detail

at the language features to be supported, alternative styles of language semantics,

and ways to embed languages in theorem provers.

Chapter 4 - Overview of Language and Architecture. This chapter contains a dis­

cussion and informal overview of the syntax and semantics of the functional pro­

gramming language and the definition of equivalence. It also provides an overview

of the structure of the reasoning system developed.

Chapter 5 - Embedding the Syntax and Semantics. This is the first chapter dis­

cussing the development of the system itself. The embedding of the language

:::;Yllil:l.X Cl.llJ :;CUlCl.lltiCi:i a.::; ucw typc:::; Cl.llJ rclatioui:i ill the HOL theorem prover is

given and the main results about this embedding are proved.

Chapter 6 - Automation of Low Level Inference. Use of the syntax and seman­

tics introduced involves a large number of trivial proof steps that make application

of the rules by hand tedious and impractical. This chapter presents the tools that

fully automate all these steps by using an implementation of the interpreter spec­

ified by the operational semantics and mirroring this execution in the logic by

application of the rules.

Chapter 7 - Equivalence. This chapter describes a theory of coinduction that is added

to the HOL system and then used to define an equivalence relation. The key prop­

erties of this relation, including the fact that it is a congruence and is equivalent

to contextual equivalence, are proved.

Chapter 8 - Supporting Formal Reasoning. The tools to allow reasoning about

the equality of programs are developed. These include tools for defining new func-

CHAPTER 1. INTRODUCTION 8

tions and proving their basic properties, an equational reasoning system, and tools

to partially automate proofs by coinduction. A range of examples is presented to

illustrate the use of these tools.

Chapter 9 - Styles of Reasoning. New reasoning principles are derived and the as­

sociated tools are developed to illustrate how the system can be extended. The

principles derived include structural induction, a variant of parametric polymor­

phism, and the take lemma.

Chapter 10 - Conclusions. This chapter provides some conclusions that can be drawn

from this work and suggests further work to be considered.

Chapter 2

Background

This chapter gives an overview of some existing tools and mathematical theory used in

the rest of this work. There are several approaches that could have been used as the basis

of this work; some of these alternative approaches are discussed in the next chapter.

2.1 Theorem proving

There are two constraints on the choice of theorem prover that will be the starting point

for the system described here. It must support a formalism suitable for embedding the

semantics of the language, and it must provide a means of writing a rich set of tools

to partially automate proof. The logical requirements for developing the system are

minimal; the major requirement for a mechanisation of the theory for both co-induction

and operational semantics is simply the ability to reason about relations.

The HOL theorem prover [GM93] was used because of its use of Standard ML as the

meta-language. This is a fully featured programming language and allows complex proof

tools to be programmed that can perform proof search if necessary. ML was first used

as a meta-language in the LCF theorem prover [GMW79, Pau87]. The HOL theorem

prover is one of the descendants of Edinburgh LCF and supports Higher Order Logic

instead of the Logic for Computable Functions supported by LCF. In principle all the

theory and tools developed here could be ported to other theorem provers in the LCF

family.

HOL is a theorem proving environment for classical higher order logic [GM93]. There

is a tradition in the HOL community of taking a purely definitional approach to using

logic; instead of postulating axioms to give meaning to new notations, as is typical in the

use of theorem provers such as LP [GG89], new concepts are defined in terms of existing

ones that already have the required semantics. For example, the user must define any

9

CHAPTER 2. BACKGROUND 10

new type in terms of a precisely suitable subset of an existing type. This is guaranteed

to preserve the consistency of the system, but leads to complex definitions. Packages

are provided to perform definitions automatically from natural specifications of some

important classes of types and functions. It is also possible to add new axioms to HOL

and, although most of the work here follows the definitional approach, two axioms, the

characteristic theorems for the syntax of the language, are added. The automated tools

that would normally be used to support the definitions of these do not support some

features of the syntax but the axioms are relatively simple and easily justified on paper.

The axioms are discussed in detail in chapter 5.

HOL allows both forward and backward, or goal-directed, proof. For forward proof,

an inference rule is applied to some theorems to derive a new theorem. One such inference

rule is MP which implements Modus Ponens. This takes the theorems rl f- tl ::J t2 and

r2 r- tl and yields the theorem r 1 Ur2 r- t2 where rl and r2 are sets of assumptions.

Goal directed proof is supported by the HOL subgoal package. This allows the

goal to be interactively decomposed into subgoals that can eventually be proved. The

current goal is a term together with a list of terms representing the assumptions that

are made when proving the goal. The decomposition of a goal is usually performed

by tactics, functions that transform one goal into a list of subgoals. An example of

a tactic is CONJ_TAC, which breaks a conjunction into subgoals corresponding to the

conjuncts. Once each of these subgoals is proved the original goal is proved. The tactics

can themselves be combined by other functions, tacticals, such as THEN, which allows

the compositions of two tactics in sequence.

An important feature of HOL is that the meta-language, Standard ML, is a fully

featured programming language. This allows complex tactics to be programmed which

llIay pt!rform arbitrary proof search. A proof in HOL is generated by an ML program.

This is usually developed interactively and can be saved and used again. The program

can also be modified so that if the goal to be proved is changed then the existing proof

can be modified rather than having to develop a new proof. If a pattern exists in the

proofs of similar properties for many terms, then a generalised proof tool can often be

written to automatically generate the proofs for a whole class of problems.

2.2 Operational semantics

An operational semantics is the description of the meaning of a language in terms of an

abstract machine. The machine is normally expressed as a relation that relates each term

to the term that results from the evaluation of the first term. Its arguments may also

include various pieces of context information, such as an environment mapping identifiers

CHAPTER 2. BACKGROUND 11

to values or maintaining information about state. As the lazy language being discussed

here contains no state, the latter is not needed in this work. If state were added to the

language then many of the results relating to the semantics would be similar but the

rules for proving the properties and equivalence of programs would not.

One feature common to all the abstract machines is that, as with a compiler or inter­

preter, the form of the rules is dictated by the syntax of the language. There will typically

be one or more rules for each syntactic construct of the language. Such presentations

of the semantics are referred to as structural operational semantics [Plo91). There are

several books that describe various approaches to the formalisation of an operational

semantics for both functional and imperative languages [Win93, Gun92). The Defini­

tion of Standard ML [MTH90) is also given as an operational semantics. The semantics

of a language is normally divided into two sections, the static and dynamic semantics,

which describe how to type and evaluate programs respectively. These correspond to

two important stages in any compiler or interpreter for a functional language.

The discussion in the rest of this section will be illustrated by the rules for a simple,

non-strict, functional language with variables, functions and numbers. The types for

this language are

ty ::= Nurn

tYl ~ tY2

and the expressions are

exp ::= nurn num

varid

Natural number constant

Variables

Aid: ty. exp Function abstraction

Function application

2.2.1 Static semantics

The static semantics is a collection of rules relating expressions to their type. The

relation is written r f- e : 0, where e is the expression, 0 is the type assigned and r
is the context that maps variables to their types. r[x t-+ 0) is a context with the same

mappings as r, but mapping x to o. The rules defining this relation for the example

language are

fix 1-+ 0] f- var x : 0 r f- nurn n : Nurn

r[x 1-+ 0) f- e : {3 r f- e 1 : (0 - (3) r f- e2 : 0

r f- (AX: o. e) : 0 - {3

CHAPTER 2. BACKGROUND 12

The rules here are straightforward. For example, the type of any lambda abstraction,

Ax : G. e, is a function from the type of the argument, G, to the type of the body, (j.

The type of the body is determined in a context where the bound variable is mapped to

the type of the argument.

2.2.2 Dynamic semantics

The approach to the static semantics illustrated in the last section is standard and

similar to that used in most static semantics. There are more varied approaches to the

formalisation of the dynamic semantics. Some differences centre around how variable

binding is formalised, which can be done by recording the mapping from variables to the

values they are bound to in an environment, or by substituting the value to which the

variable is bound throughout the expression. The substitution of an expression e2 for a

variable x in expression el will be written e2[el/x]. It is not necessary to specify that

the expressions are closed or well typed although we are mainly interested in expressions

that are. Other differences centre on whether the meaning of a term is defined as what

it evaluates to or in terms of several intermediate steps that are closer to the final value.

A semantics that gives the meaning of a program in terms of its final value is called a

"big step" semantics and will be represented by the relation.ij.. A semantics that gives

the meaning in terms of several reduction steps is called a "small step" semantics and

will be represented by the relation --+. For a substitution based semantics, the big step

semantics of the small language above would be:

nurn n.J.l. nurn n
(2.1)

Ax : t. {;J.J.l. Ax: t. EJ
(2.2)

(2.3)

A small step semantics would be:

(AX: t. e) el --+ e[eI/x]
(2.4)

(2.5)

There are no reduction rules for numbers and lambda abstractions since these cannot be

reduced further. The body of a lambda abstraction is reduced only after the function

is applied to an argument. Other approaches would be possible but are not considered

here.

CHAPTER 2. BACKGROUND 13

The two styles give the same meaning to a program that returns a value, in this

case a lambda abstraction or number. For the application ele2, repeated use of rule 2.5

to el will either continue forever producing no value or will result in a value of the

form AX : t. e3 that will be the same value produced by the big step evaluation relation

el .lJ. AX: t. e3. Rule 2.4 will then apply giving an expression e3Ie2/xj. Other rules will

then apply to reduce this to some term e4 that will be the same as that produced by the

big step evaluation:

It is also possible that no reduction rules will apply indicating a "run-time" error in the

evaluation of the program. In the richer language described later, this may happen if

the program uses partial functions.

The difference in the two semantics relates to programs that do not evaluate to some

value - such as partial or non-terminating. In this case the small step semantics allows

for easier analysis of the intermediate results. Because of this, a big step semantics is

often useful for specifying compilers where the main interest is in programs that return

values. The small step semantics can be useful for theoretical work on languages and

programs.

If an environment is used instead of substitution, then the form of the relation changes

from a relation between expressions to a relation between expressions in the context of an

environment. The big step semantics is very similar in structure to the static semantics.

(E, nurn n) .lJ. nurn n

(E, et) .lJ. e2

(E, AX: t. e3).lJ. AX: t. e3

(E, et) .lJ. AX: t. e3 (E[x 1-+ e2], e3) .lJ. e4
(E,(el e2» .lJ. e4

A small step semantics using environments would look like this

(EIX 1-+ ed, var X) -+ (E, e})

(E, (AT: t. e) ell ~ (E[x 1-+ ell, e)

(El,et) -+ (E2,e3)
(EI' el e2) -+ (~, e3 e2)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

In the rest of this thesis we use a small step semantics with substitution and derive a

big step semantics with substitution. This is discussed is greater detail later.

CHAPTER 2. BACKGROUND 14

2.3 Co-induction and bisimulation

This section gives an overview of the motivation and theory for the use of co-induction

and bisimulation. We begin with a description of process calculi, the problem area where

many of the ideas were developed, and discuss how the same ideas have been applied

to functional programs. This section concentrates mainly on the co-inductively defined

relations, as these will be used later in this thesis. At the end of this section we discuss

how this relates to co-inductively defined types that offer an alternative approach.

2.3.1 Process calculi

Many of the ideas related to co-induction and the labelled transition systems that will

be used in the formalisation of equality in functional languages are closely related to the

use of co-induction in process calculi such as ees [Mil89] and the 7T-calculus [MPW92a,

MPW92b]. In particular these process calculi describe systems with infinite behaviour.

Both these calculi have been embedded in the HOL theorem prover [Nes92, Me194J. This

section gives a very brief overview of co-induction and equality in ees.
ees models processes and the communication between them. An example of a simple

process, or agent, in ees is the agent A defined by

A = a.A

where A is the name of the agent being defined and a is the name of a "port" waiting to

send information. After sending, referred to as an output action, the agent returns to its

initial state. This is represented by the recursive call to A. The semantics of ees are

given in terms of labelled transitions that indicate the actions that happen and the state

of the agent before and after the transition. For example the only possible transition for

the above process is

a.A -'!.... A

This means that the agent a.A may perform an output action on a and then evolve into

A. Since A = a.A, this transition could be then be repeated giving an infinite graph

with every transition having the same label. The a in the above example refers to an

output action on the port. An agent B which waits for an input action a and then

returns to its initial state would be defined by

B = a.B

The over bar on the a indicates that an input is expected instead of an output.

CHAPTER 2. BACKGROUND 15

A process that can perform more than one action is defined using a summation

operator +. For example, a process which can perform either of two outputs with names

a and b would be defined as

C = a.C + b.C

This process would have the transition graph

C

;/~
C C

Agents can be combined using a composition operator I. The two agents A and B can be

combined to form an agent AlB that could either perform an input or output transition

with the label a. In addition, the two agents can also communicate, or synchronise, with

each other since the output from A and the input to B have the same label a. The

transition representing this internal communication is given a special label T. This gives

three possible transitions for AlB.

The final construction from CCS that is used is the restriction operator \. This operator

restricts the labels that are visible outside of the agent. If the composition of A and B

is restricted to exclude the label a

(AIB)\{a}

then this new construction cannot perform any transitions visible outside the new agent.

The internal transition is the only possible one

(a.A 1 a.B) \ {a} ...!... (A 1 B) \ {a}

For the purpose of defining the equality of two agents, these internal transitions will not

normally be taken into consideration.

Agents will often be defined by mutually recursive definitions. For example two

agents A and B could be defined by

A = a.B

B = b.A

This process A Can make two transitions:

CHAPTER 2. BACKGROUND

Now consider the process

C = a.b.C

This has transition graph

C-2.....b.C~C

16

While A and C are not syntactically equivalent they have the same labels on the tran­

sition graph. This can be used to indicate the equivalence of the two agents.

Finally an agent F can be defined, in terms of two simpler agents D and E, which

includes some internal communication

D = a.b.c.D

E = c.E

F = (DIE) \ {e}

This gives a transition graph

F = (DIE) \ {e} -2..... ((b.e.D)lc.E) \ {e} ~ ((e.D)lc.E) \ {e}:.... (DIE) \ {e}

If the internal transition 7" is ignored then this is a transition graph with the same labels

as A and C. There is no external transition that the two agents can make that allows

them to be distinguished. We could therefore regard them as equal, and indeed take this

property to define equality.

The key idea in defining what it means to for the two processes A and F to be

equivalent is captured by the set of pairs of states

{(A, F), (B, ((b.e.D)lc.E) \ {e}), (A, ((e.D)lc.E) \ {e})}

This set of pairs is called a bisimulation and has the following important properties:

• For any pair, if one member of the pair can make a transition then the other can

make a transition with the same label, or in the case of a 7"-actions do nothing.

• The pair of results of these transitions is still in the set.

• The pair (A, F) is in the set.

The proof that two processes are equal will involve finding a relation containing the

processes and proving that the relation is a bisimulation. The exact details of how to

formalise these properties, particularly with respect to the 7"-actions is not given here.

There are several different approaches that can give different meanings to the equality

of processes [Mil89J.

CHAPTER 2. BACKGROUND 17

2.3.2 Functional programming languages

Lazy functional programs can exhibit similar behaviour to the processes in the previous

section. For two functions to be equal they must accept the same arguments and produce

the same results. In a functional language any two functions of the same type can accept

the same arguments, but if two functions produce infinite lists then the results cannot

be compared in full. Instead they must be compared in terms of what another function

can do with the result. For a list, any processing of the result can be decomposed into

taking the head and tail of the result and then processing these. If the heads are equal

and the tails are equal then the results will be equal. To view the results in terms of

transitions we consider the following two transitions for infinite lists.

x:: xs~x
TI x::xs-xs

The labels Hd and TI represent taking the head and tail of the list respectively. The

following example shows how these transitions can lead to a similar view of equality

to that in the previous section. Consider the following three lists and a function that

merges lists.

tflist -- True::False::tflist mergeQ [I xs -- [I
flist -- False::flist merge xs [I -- [I
tlist -- True::t1ist merge (x::xs) (y::ys) -- x::y::(merge xs ys)

The theorem

I- tflist == merge tlist flist

can be proven by analysing the transitions. The graphs of the transitions are:

tflist merge tlist flist

!
True:: False::tflist

!
True::False::merge tlist flist

H~I
True False::tflist

H~I
True False::merge tlist flist

H~I
False tflist

H~I
False merge t1ist flist

As the leaves of the graphs are either literals or the expression we started with, they are

a finite presentation of all the possible transitions for these expressions.

The role of the evaluation arrows is equivalent to the role of the r-actions in CCS.

They represent some internal processing that is not visible to the outside world. In both

cases equivalence can be defined in terms of the other observable transitions.

CHAPTER 2. BACKGROUND 18

Although in this case the unlabeled evaluation arrows match, in general they need

not and only the labelled transitions are considered. Whenever we take the heads of the

two lists the results are the same. Whenever we take the tails then the left and right

hand sides are one of the following two pairs:

(tflist, merge tlist flist) (False::tflist, False::merge tlist flist)

These pairs in fact make up a bisimulation. An equivalence based on these ideas is

referred to as an observational equivalence. In the context of functional programming

language the equivalence is referred to as applicative bisimulation.

The above example is only one simple instance of using bisimulation to reason

about functional programming. Much of the original work in this subject is due to

Abra.msky [Abr90j and the approach used here is based directly on that used by Gor­

don [Gor93a, Gor93b, Gor94, Gor95a, Gor95bJ. Bisimulation can also be derived from

a domain theoretic semantics [Pit94, Pit96J. Finally, a proof principle can be de­

rived from a co-inductive definition of a type rather than from a language seman­

tics [Pau94, Tur95, JR97j. These approaches will be discussed in the next chapter.

The rest of this section describes how to formalise a co-inductive equality based on a

small step operational semantics.

2.3.3 Underlying theory

Co-inductive definitions are the dual of inductive definitions [Acz77] and depend on

much of the same relational theory. The definition of an inductively defined relation

given below depends on two concepts, monotonic functions and F -closed sets.

A function F, mapping sets to sets, is monotonic if

VX Y. (X ~ Y) ~ (F(X) ~ F(Y))

and a set X is F-closed if F(X) ~ X

The least fixpoint of F I denoted Ifp F, is defined to be the intersection of all F -closed

sets. For any monotonic function F this can be proved to be the smallest F -closed set

and a fixpoint. The principle of induction follow directly and is that for any X:

F(X) ~ X ~ Ifp F ~ X

To see how this relates to the most common form of induction. mathematical induction

on natural numbers, consider an element 0 and a function s with appropriate behaviour

for the successor function (if s is applied to 0 n times then this will return a different

CHAPTER 2. BACKGROUND 19

value from any other number of applications). A monotone function F can be defined

by

F(X) = {O} U {s(x) I x E X}

The natural numbers can be defined to be the least fixpoint of this monotonic function.

Nat = Ifp F

The principle of induction for this set will then be

F(X) ~ X J Nat ~ X

which simplifies to

{O} U {s(x) I x E X} ~ X ::> Nat ~ X

Suppose addition, +, is defined in terms of s by the following equations

O+x = x

s(x}+y = s(x+y)

Then we can prove the property

"Ix. x+O = x

(2.13)

(2.14)

(2.15)

by induction as follows. If Y is the set of terms for which this property holds then

we can prove that it holds for all natural numbers by showing that Nat ~ Y. From

equation 2.13 it is necessary to show that

{O} u{s(x) I XEY}~ Y

Simplifying this gives two cases, the base and step cases of an ordinary induction:

0+0 = 0

(x + 0 = x) ::> (s(x) + 0 = s(x))

Both of these are easily proved from the equations for addition. There are other ways to

define the natural numbers and other proof principles that can be used to reason about

them. The construction given above is used as an example because co-inductively defined

relations are the dual of such inductively defined relations and because the corresponding

principle of co-induction gives rise to the central proof principle for reasoning about the

equivalence of programs introduced later.

The definition of a co-inductively defined relation given below depends on the defi­

nition of monotonic functions and F-dense sets. A set X is F-dense if for the function

CHAPTER 2. BACKGROUND 20

F, X ~ F(X). The greatest fixpoint of F, denoted gfp F, is defined to be the union

of all F-dense sets. For any monotonic function F this can be proved to be the largest

F -dense set and a fixpoint. The principle of co-induction is, for any X,

X ~ F(X) :J X ~ gfp F

A second principle, sometimes referred to as strong co-induction [Gor95a], can be easily

derived from co-induction:

X ~ F(X u gfp F) :J X ~ gfp F

This variation can simplify the choice of the relation X in a proof by co-induction.

The coinductive definition for the relation capturing what it means for two programs

to be equal will involve choosing a suitable function F. In the work presented here this

definition will be based on an small step operational semantics and a labelled transition

system.

2.3.4 Applicative bisimulation

The operational semantics used will be similar to the semantics given by the rules 2.4

and 2.5. For the small language presented there this has the effect of reducing every­

thing to a normal form where either the outermost construct is a number or lambda

abstraction. The third possible outcome of repeated evaluation will be an infinite chain

of reduction with no normal form being reached. The transition system will define what

it means to observe properties of these expressions. In particular it will be possible to

observe the value of a number or the result of applying a function to another term.

num nn~nO appb
a -'-'-+ a b

It only remains to somehow integrate the reduction relation into the transition system.

Following the CCS style of adding a T-action would be possible

f- a: Num

but the approach here is to include the reduction in an inductive definition of the tran­

sition system by adding rules of the form:

b~c f- a: Num
Q

a ---+ c

This has the advantage of simplifying the definition of equivalence since there are not

extra r-actions to consider. In the two transition trees presented in section 2.3.2 this ap­

proach to the definition of transition would remove the unlabelled reduction arrows. It is

CHAPTER 2. BACKGROUND 21

possible to take this simplified approach for the labelled transition systems for functional

programs because the reduction relation is deterministic. In the semantics for ees the

T-actions may represent a choice between two possibilities in a non-deterministic system.

As the reduction in the functional language is deterministic there is no information that

can be inferred and the reduction can be safely hidden.

Equivalence is defined. by choosing a function F== based on the labelled transition

system, so that two programs el and e2 are equivalent if they can make the same tran­

sitions to terms that are also bisimilar. The principle of co-induction derived from this

definition allows a proof that x == y by finding a relation S such that: (x, y) E Sand

for any (a, b) E S

('Va'. 'VI. a~a':::> (3b'. b~b' " (a',b') E S V a' == b')) /I.

('Vb'. 'VI. b ~ b' :::> (3a'. a ~ a' /I. (a', b') E S V a' == b'»

This formalises the idea of looking at the two transition graphs and ensuring that every

pair of nodes are either equal or in the relation S.

2.4 Finite maps

The results in subsequent chapters make heavy use of functions that are defined on

finite domains. These functions, commonly referred to as finite maps or finite partial

functions, are used in reasoning about the semantics of the functional language, where

they model type contexts and substitutions. This section gives a brief introduction to a

formalisation of finite maps developed for this work, in collaboration with Donald Syme.

An updated version of a publication presenting this theory in is given in appendix B.

The core theory of finite maps defines four constants. Finite maps are constructed

from the empty mapping, FEmpty, and the update function that takes a map I and a

pair (a, b) and returns the mapping that is equal to I but with a mapped to b, I[a b].

The application of a finite map I to a term a is represented by FApply I a. This will be

written I a when it cannot be confused with function application. Finally, the domain

of a finite map I is given by FOom /.

CHAPTER 2. BACKGROUND

The meaning of these constants is given by the following properties:

't- "11 a b. (I[a t-+ bJ) a = b

't- "Ix a. (x ¥ a) :) "11 b. (l[a t-+ bJ) x = 1 x

't- "Ia c. (a ¥ c) :)

"11 b d.

l[a t-+ b][c t-+ d] = /[c t-+ d][a t-+ b]

't- "11 abc. l[a t-+ b][a t-+ c] = l[a t-+ c]

't- "Ia. -,(FOom FEmpty a)

't- 'V/ a b X. FOom (I[a t-+ bJ) x = (x = a) V FOom / x

together with an induction theorem

't-"IP.

P FEmpty 1\

("If, P f :) ("Ix. -,(FOom 1 x) :) "Iy. P (l[x t-+ yJ))

:)

"If, P 1

22

Equality of two finite maps can be proved using the following theorems, which follow

from the above facts.

't- vi g. «FOom i = FOom g) 1\ ("Ix.j x = 9 x» = (/ = g)

't- "Ii g.
«FOom 1 = FOom g) 1\ ("Ix. FOom f x :) (I x = 9 x»

= (j = g)

A number of additional constants are defined to enrich the theory. All the basic

constants introduced above either increase or preserve the domain of a finite map. A

constant ORestrict can be defined which reduces the domain of a finite map to those ele­

ments satisfying some predicate. Some useful properties that can be proved of ORestrict

are

't-"I/p.

("Ix. FOom (ORestrict 1 p) x = FDom f x 1\ P x) 1\

("Ix. FOom 1 x 1\ P x ~ (FApply (DRestrict J p) x = FApply f x»

't- "Ip. DRestrict FEmpty p = FEmpty

't- "11 p a b.

DRestrict (I[a t-+ b]) p =

«P a) =? «DRestrict 1 p)[a t-+ bJ) I (DRestrict 1 p»

CHAPTER 2. BACKGROUND 23

The expression of the form b => el I e2 uses the HOL syntax for a conditional expres­

sion. This is equal to el if b is true and e2 if b is false. Another important concept

is composition, either of two finite maps or a finite map and a function. Three infix

composition functions are defined:

Lo_f: ({3,-y)fmap -t (0:, (3)fmap -t (o:,-y)fmap

o_f : (f3 -t -y) -t (o:,f3)fmap -t (o:,-y)fmap

Lo : (f3, -y)fmap -t (0: -t (3) -+ (0:, -y)fmap

The notation is designed to show the link with composition of functions

o : (f3 -+ -y) -+ (0: -+ (3) -+ (0: -+ ')')

Chapter 3

Design choices

This chapter discusses the choice of object language, language semantics and embedding

technology on which the work in the rest of this thesis is based. For each aspect the

whole space of design choices is outlined, the current research in the field reviewed

and the choice made for the work here explained. The issues in each section are not

independent and the chapter concludes with a summary of the set of consistent choices

made here.

3.1 Language

Two strategies for introducing formal proof into the process of writing functional pro­

grams are to support proof about programs that have already been written and introduce

new languages and methodologies that make formal proof easier or incorporate proof into

the programming methodology itself. The latter approach will, in general, require less

work to support in a theorem proving environment because restrictions can be made on

the form of the programs being reasoned about.

The ideal target for any project that aims towards a system that can be used by

functional programmers to reason about their programs is an established program­

ming language. The two languages that have the greatest user bases are Standard

ML [MTH90, Pau96j and Haskell [H+92, Bir98, Tho96]. These represent the two main

styles of functional programming implementation. Standard ML is a strict language,

where the arguments to a function are evaluated before the function application. Stan­

dard ML has side effects, assignment to state variables and exceptions. These features

are the main obstacle to reasoning; they make the meaning of equality of two programs

less clear and the need to deal with them significantly complicates the semantics.

Haskell is a lazy language, where the arguments to functions are not evaluated before

24

CHAPTER 3. DESIGN CHOICES 25

the application of functions. Haskell does not allow side effects. since the interaction

between side effects and laziness makes it hard to determine the behaviour of programs.

In particular, it can be difficult to determine in what order side effects occur. Instead,

features that would normally be handled by side effects, such as exceptions and in­

put/output, are handled by use of laziness.

Languages such as Haskell are claimed to be easier to reason about because it is

easier to understand and model what it means for two functions to be equal and to

consider the meaning of separate parts of programs separately and combine the results.

In particular, even if an expression appears in different places in a program it will always

evaluate to the same value. This is called referencial transparency and does not hold in

languages with side effects where the value of an expression may depend on assignments

elsewhere in the program. The disadvantage is that these languages allow the possibility

of infinite data and non-terminating functions to occur throughout programs, even where

they have no clear utility. Indeed such structures are fundamental to the programming

styles used.

3.1.1 Type theory

There are some type theories for functional languages [Tho91J, such as The Calculus of

Constructions [Lu094j or Martin-LOf Type Theory [NPS90j, where the type language for

programs is much richer than in functional languages such as Haskell and ML. Instead

of the types simply stating what kind of values a variable or program denotes, the types

can contain more information. Instead of just lists, types such as "sorted lists" can be

introduced. The richer language allows specifications of the programs to be included in

their types. Proof that a program has a certain specification can be reduced to proving

that the program has the specified type.

There is a family of theorem proving systems, including Lego [LP92j, ALF [ACN90j,

COQ [DFH+93j and NuPRL [CAB+86j, based on type theory. In these systems prop­

erties of functions can be proved by determining that they have a suitable type. In

addition, programs can in principle be constructed from proofs. A proof of existence

of an object with a particular type will give rise to a program with the property cor­

responding to the type. Thus a new methodology for writing programs is introduced

where the program is derived by finding a witness for the existence of a program of a

particular type.

These systellls can be used to reasull abuut fUllctional programs written using this

methodology without the need to develop any new tools. It is not the approach used

here, since the aim of this work is to reason about programs as a functional programmer

CHAPTER 3. DESIGN CHOICES 26

would write them and investigate what can be achieved without imposing a new style of

writing programs on the user.

3.1.2 Inductive and co-inductive types

The presentation of co-induction in the previous chapter concentrated on the use of co­

inductive definitions to define a new relation giving the meaning of equality for programs.

This is not the only way that co-induction can be used to give rise to a theory of equality

over infinite data structures.

Instead of defining relations by co-induction an alternative is to define data types us­

ing co-induction. Such co-inductive types are the dual of inductive types. An inductive

type is one where any member of the type is finitely generated by a set of constructors.

For example, the list type is defined in many theorem provers to be the inductive type

generated by the nil and cons constructors. Any list consists of a series of cons construc­

tors terminated by a nil constructor. Such lists must be finite. Lists in Haskell and other

lazy languages cannot be defined in this way since they contain infinite elements.

A (necessarily) infinite list can be defined as a co-inductive type. This can be thought

of as a list which is always of the form cons x xs where the xs is another infinite list.

The difference here is that there is no requirement to be able to enumerate the list in

terms of only cons constructors. Indeed, for an infinite list this will be impossible since

without a nil constructor there is no way to terminate the construction. Such types can

be thought of in terms of destructors instead of constructors. An element of a type of

infinite lists is a value to which two destructors head and tail can be applied.

Lists which may be infinite or finite can also be defined in this way by adding the

nil constructor. or a corresponding destructor. This would allow the possibility, but not

the requirement, of enumerating the list.

Inductive and co-inductive types can be defined using the same theory discussed in

the previous chapter. Inductive types are the least fix-point of an equation describing

the types and co-inductive types are defined in as the greatest fix-point of the same

equation. This is mechanised in the Isabelle system [Pau94].

These types can also be derived using ideas from category theory. The induction

theorem for a type follows from the initiaiity property of a type expressed as an algebra

and the co-induction property from a type expressed as a co-algebra. This approach is

explained in full by Jacobs and Rutten [JR97]. The Charity [FT96) system implements

many of these ideas.

Thrner [Thr95] advocates the use of these types along with a restriction to primitive

recursion and co-recursion as a way of producing programs which are more easily under-

CHAPTER 3. DESIGN CHOICES 21

stood. He refers to this as Strong Functional Programming. This gives an easier route

to theorem proving support, as many of the complexities in real languages arise because

of programming styles that are ruled out by these restrictions.

This approach is, in effect, to take a well-behaved, common subset of both Haskell

and ML - whether the language is lazy or not becomes an issue for compiler designers.

The order of evaluation does not affect the meaning of programs in this setting, although

it may affect the efficiency of the programs.

As with the type theory approach, there is no need to develop new tools for this

approach as existing theorem proving tools can be used. There is, however, the same

requirement to write programs in a different style and the restriction to either write

programs with very simple recursion, such as primitive recursion, which can be easily

checked for termination conditions, or to prove properties of the recursion in a program

in order to define new function.

The aim of the present work is to design a system when programs can be entered

into the system regardless of the form of the recursion used and without any distinction

between data and co-data.

3.1.3 The target language

The use of either an advanced type theory or a system treating data and co-data sep­

arately would give a system that would be suited for deriving new programs to match

a specification. But the required restrictions on the way in which the programs can be

written would prevent this being applied to many existing programs or programming

styles. Because of this, the target language for the rest of this thesis is a subset of

Haskell specified by a semantics that allows reasoning about programs that can contain

general recursion or partial functions even if the programs do not produce any result.

This will allow reasoning about existing algorithms to determine when they produce a

value and when they fail.

A subset of Haskell is chosen because the Haskell community already uses informal

reasoning to reason about their programs. For practical reasons of time and complexity,

rather than supporting in full the large range of syntactic constructs in Haskell, only a

small but significant subset is supported. The details of the language are given in the

next chapter.

In addition, formalising the semantics of the language in the login of a theorem prover

allows reasoning about the language itself. The logic in the theorem prover can be used

to express and prove properties of the semantics that cannot be expressed in terms of

the language alone. Results such as parametric polymorphism require such reasoning.

CHAPTER 3. DESIGN CHOICES 28

3.2 Reasoning technology

One method by which a language semantics can be embedded in the logic of a theorem

prover is to translate its syntax directly into expressions within the logic. Each expression

in the language is mapped meta-linguistically to its denotation in the logic.

For example, a conditional operator would be represented as a function in the logic

of type bool -+ a: -+ a: -+ a: that takes the condition as its first argument and is equal to

the value of its second or third argument if the first argument is true or false respectively.

The expression if-then-else true el e2 would be mapped to this function applied to true,

el, and e2 and so would be provably equal to el in the logic. This approach is referred

to as a shallow embedding [BGG+92].

A second method is to represent the syntax of the language by the values of one

or more data types in the logic. Typically each expression in the language, such as a

conditional expression or a function abstraction, will be represented using one of the con­

structors of these data-types. A denotational semantics can then be given to the language

by defining a function within the logic to map each value of this type to its denotation.

Alternatively, an operational semantics can be given by defining relations between the

types representing the syntax. This is referred to as a deep embedding [BGG+92].

One obvious difference between the two approaches is that in a shallow embedding

the syntax of the language does not appear in the logic. It then becomes impossible to

state some meta-theoretic results that involve quantification over expressions within the

language, since no type of expressions exists.

The Definition of Standard ML [MTH90] has been the starting point for much of the

work embedding the semantics of programming languages in theorem provers. The most

complete approach to the dynamic semantics is the HOL-ML project [MG94, VG93].

Here the dynamic semantics of the language is investigated, including the imperative

features and the module system. The project uses a deep embedding of the Definition

of Standard ML in the HOL theorem prover. The major results of this project are

meta-theoretic, such as confirmation that the dynamic semantics of Standard ML are

deterministic.

Little of the work embedding the semantics of programming languages in HOL has

been based on a domain theoretic approach, due to the lack of formalisms of sufficient

domain theory in theorem provers to make a deep embedding of a language with recursive

types practical. Formalising domain theory in theorem provers like HOL is an area of

current research [Age94, Reg95]. The LCF theorem prover [Pau87] provide a means to

reason about a functional language with a mechanised logic using a domain theoretic

approach. Here the domain theory is part of the theorem prover's logic rather than an

CHAPTER 3. DESIGN CHOICES 29

embedding in a logic such as Higher Order Logic.

The work presented here uses a deep embedding for two reasons. Firstly, it is not

possible to find a representation in the logic of most theorem provers for non-terminating

or partial functions. Secondly, we can reason about the semantics of the language, allow­

ing proofs of properties of the semantics that give rise to new rules for use in reasoning

about programs. For example, in a shallow embedding the types of the language will

be types in the logic of the theorem prover. Results such as parametric polymorphism

require reasoning about the types of terms. There is no mechanism by which to reason

about the types of terms in the logic of a theorem prover such as HOL within the theorem

prover itself.

3.3 Semantics

In order to be useful there are two main kinds of results that must be derivable for a

program in the semantic framework used. These are the result of evaluating a program

and a proof principle for showing equality of two programs. Where the definition of a

language is presented in terms of an operational semantics, then the aim of the semantics

is to state what a program evaluates to. While this is both important in its own right,

and an important part of deciding what equality between programs means, it is the

meaning of equality and how to prove equalities that are the main requirements for the

work presented here. Equality can be defined in several ways.

3.3.1 Contextual equivalence

Contextual equivalence defines the meaning of the equality of two programs in terms of

the behaviour produced when they are substituted into large programs, or contexts.

A context C[I is an expression in the language with a "hole" (formally modelled by

a free variable). C[eJ will be used to denote a context with an expression e replacing

this free variable. Two expressions, el and e2, are equal if for any C, C[el] and G[e2J

either both diverge or both converge. It is not necessary to state that they converge

to the same value for all contexts, as this follows from the definition. If there is some

context, C[], for which they do not converge to the same value then there must be

another context that would make one diverge and one converge. For example, if G[ell

converges to a value VI and C[e2J converges to a value V2 then the extended context,

Cl [J is given by

Cd J = if (C[J = vI) then VI else J..

CHAPTER 3. DESIGN CHOICES 30

where .L is a program which diverges. CI [ell converges and CI [e2] diverges if VI and V2

differ.

This is an abstract view of equality since it makes no reference to the language

semantics. The other equalities described below refer to the semantics and are often

evaluated for correctness relative to contextual equivalence. The main practical weakness

of contextual equivalence is that it does not provide an easily used proof principle. In

order to prove the equality of two programs it is necessary to quantify over all contexts,

requiring a proof by structural induction over the syntax of the language.

3.3.2 Models for equality

Denotational semantics determines the meaning of a program by translation into a math­

ematical model. Each term in the language is translated to an element, its denotation,

in the model. One of the advantages of this approach is that the meaning of the equality

of two programs is easily expressed as the equality of the programs' denotations in the

model. Domain theory provides a well-understood way of building these models. Some

embeddings in HOL have used a domain theoretic approach [Reg95, Age94]. But any

shallow embedding in a theorem prover can be considered to be a denotational semantics,

with the logic of the theorem prover providing the model.

The ability to inherit the meaning for equality, along with ways of proving properties

of programs, is one of the advantages of a denotational semantics. A disadvantage is

that in order to model recursive data types and programs, the mathematics used in the

model is complex. In addition small changes to the language, or differences between

different languages can require large changes to the model.

Another problem is that while the equality of elements in the model may be genuine

mathematical equality, the equality may not be the correct relation between terms in the

programming language being defined. One way to test the equality is to compare it with

contextual equivalence. If the two equalities coincide then the semantics is said to be

fully abstract. Semantics based on domain theory are often not fully abstract. Because

the semantics were developed to give meaning to the evaluation of terms, typically any

terms that evaluate to return a value will be equal in the model and under a contextual

equivalence.

The problems usually arise with terms that do not return a value and are of in­

terest in proving equivalence of lazy functional programs but not in specifying a com­

piler [AJM94]. Recently, models based on game theory have been developed which are

fully abstract [McC98]. There has been no work on embedding such models in theorem

proving systems.

CHAPTER 3. DESIGN CHOICES 31

3.3.3 Bisimulation

An alternative to defining equality via translation into a model is to take a semantics

specifying how a term is evaluated and define explicitly what it means for two programs

to be equal in terms of it. Observational equivalences and, in particular, a co-inductive

definition of bisimulation, are one way of defining such an equivalence. This has the

advantage of requiring much simpler mathematics than a denotational semantics, in

part because the evaluation behaviour and meaning of equality are defined separately.

Thi:s was introduced in the previous chapter. In addition similar definitions and theory

can be applied to many different languages and it can be proved that such equivalences

coincide with contextual equivalence.

3.4 Summary

This aim of this work is to develop a reasoning system for non-strict functional programs

that does not restrict the programming style used to develop programs. For this reason

a language based on advanced type theories or a language based on separate use of data

and co-data were not chosen. This rules out a shallow embedding in a theorem prover

and makes it necessary to make a deep embedding of the semantics of the language.

Either an operational semantics with a defined equality or a denotational semantics

could be used. The former is chosen because the theory required to produce a system

in which the equality of programs is the desired equality, and is equal to contextual

equivalence is simpler. In addition this approach will give rise to more results that can

be reused for other languages.

Chapter 4

Overview of language and

architecture

This chapter discusses the syntax and semantics of the programming language which is

to be embedded in HOL. Ideally the language used would be a full strength functional

programming language such as Haskell [H+92]. But, for both practical and theoretical

reasons, a simpler language is used. The language is a variety of second order lambda

calculus with datatypes. The language is referred to as SDT to stand for Second order

with Data Types.

4.1 Language features

There are several features that the language would ideally have. SDT is a compromise

between these feature and constraints on the time and complexity of the embedding

process. Two important inclusions in the language are polymorphism and datatypes.

These are discussed separately later in this section.

Many desirable features of a real language are left out. These include primitive

support for pattern matching, a module system and a wider range of primitive operations

and types. It is possible to add tool support for many of these. Pattern matching

could be supported by providing tools to derive the correct underlying functions from a

specification containing pattern matching and then proving that the rules given in the

specification follow from the definition. Such a mechanism has been implemented for

defining functions using pattern matching in the HOL logic by Konrad Slind [Sli96].

The Haskell module system is relatively simple compared to the more complex ML

module system and the ability to reason at the level of these modules is not likely to be

crucial to any proofs attempted using this system. Additional types and operations can

32

CHAPTER 4. OVERVIEW OF LANGUAGE AND ARCHITECTURE 33

be added by defining them in terms of the basic syntax. These possibilities are discussed

in later chapters.

4.1.1 Polymorphism

On first inspection SDT's treatment of polymorphism is not similar to that in Haskell. It

is similar to a language called core which is the language to which Haskell is translated

in the Glasgow Haskell compiler [Jon96J. We know Haskell programs can be translated

automatically to this language, but some difficulties with the practical use of such a

translation are discussed in chapter 10. The fundamental difference is the need for

explicit type abstraction and application. This change removes the need to do type

inference, which is not trivial to express and reason about formally. As types guide

much of the proof, this type inference has to be performed repeatedly, increasing the

number of proof steps or slowing down automated tools. A similar motivation influenced

the choice of core as the language in the Haskell compiler, because here the types drive

the transformation steps and it is again inefficient to repeatedly infer types for terms

and subterms.

Additionally many theoretical results, such as parametric polymorphism, can be

proved more easily in a second order language and these results can then be applied

to Haskell terms by reasoning about their translation into second order terms. This

translation can be done simply by removing the additional type information contained

in the SOT term. Such a translation is not always possible. While Haskell style programs

can be translated into SOT the reverse is not true for all SOT programs. The syntax

of SOT allows for quantification over type variables inside type expression and not just

at the top level as in Haskell. Programs such as these cannot be translated back into

Haskell, but such programs are easily identified or avoided.

4.1.2 Datatypes

In order to reason about a range of real programs the language must contain datatypes

and the datatypes available must be extensible by the user. The way in which the types

are formalised must also give rise to usable reasoning principles for datatypes, such as

induction and co-induction.

It is possible to encode datatypes in terms of the function type in a second order

language without the addition of primitive language constructs for datatypes. We do

not take this approach since a programmer will expect the primitive constructs and any

encoding would have to be hidden from the user. Maintaining this illusion when proving

properties would be difficult during a proof attempt, particularly when automated tools

CHAPTER 4. OVERVIEW OF LANGUAGE AND ARCHITECTURE 34

need to work with the underlying term. Reverse translation may be impossible if two

syntactically different datatypes in the users view of the system have the same encoding.

In this work, constructors and datatypes are introduced as primitive syntactic constructs

and destructors are introduced as primitive transitions. Some aspects of this approach

are similar to those used in Gordon's thesis [Gor94]. An example of how this works in

practice is given for lists at the end of this chapter.

4.2 Embedding of primitive types

In order to reason about programs the language has to include, or be able to encode,

some primitive types. This section considers natural numbers and booleans. There are

three main ways to add these primitive types to the language.

Datatypes In the previous section it was stated that the language will include the nec­

essary constructions to add new datatypes. Both naturals and booleans can be encoded

as new datatypes in the language with the constructors true and false for booleans and

zero and successor for naturals. The if-then-else and case statements are simply special

cases of the case statement for datatypes. Because of this it is not necessary to explicitly

provide any support for these types in the language. This is elegant but there are other

alternatives, and the practical merits for some of these alternatives are discussed below.

Primitive syntax Instead of defining types like numbers and Booleans in terms of

existing language contructs, the syntax of the language can be extended to include them.

In this approach a new type would be added for booleans or naturals and new syntax

added for the constructors of the type. In this case booleans would require the addition

of the constructors for true and false and a conditional statement. Numbers would

require the addition of zero, successor and a case split function.

In earlier work [Co196b], where the language considered did not contain the facility

to define datatypes, this approach was used for booleans and numbers. The presence

of the datatypes in the language considered here means this approach is not required,

as the new constructors and if-then-else and case functions can be easily added using

ttlf' ciatfltypps. Gpneral results for datatypes can be applied to numbers and booleans

without needing to prove the result for each additional syntactic construct.

Lifting of HOL types The above approaches both require definitions to be made for

all common functions over natural numbers and booleans, and the proof of all basic

properties of these functions. But since we are working in the HOL system, we are in

CHAPTER 4. OVERVIEW OF LANGUAGE AND ARCHITECTURE 35

an environment where all these results have already been proven for the naturals and

booleans. It would be of obvious practical advantage to make this existing body of

results available for reasoning about programs written in SOT. Similar observations have

previously been made by Agerholm [Age94].

For example, we can lift the type of numbers and some operators, such as addition,

by adding new syntax to the language. Numbers would by expressed using a constructor

nurn taking a HOL number as an argument. Addition could represented by another

constructor pius. The expression 2 + 2 would be written plus (nurn 2) (nurn 2). The

semantics would show that this evaluated to nurn (2 + 2). In the HOL logic this is

provably equal to nurn 4. This works in HOL because all elements of the number and

boolean types correspond to some literal. The reverse is not true. There are elements of

the number type in SOT, such as non-terminating programs, that do not correspond to

any literal and so do not have any corresponding element in the HOL numbers. In the

terminology introduced earlier this is a shallow embedding of numbers in a system that

is otherwise a deep embedding.

The disadvantage of this approach is that it requires adding several new primitive

elements to the syntax for each type and these new elements have to be handled as

special cases in many places.

The approach taken here is to encode booleans as an SOT datatype and naturals as

a primitive type with the literals and operations lifted from HOL. The details of these

encodings are given in the next chapter. The choice to lift naturals and not booleans

is motivated in part by the greater desire to lift the naturals in the anticipation of

more complex reasoning about numbers than booleans in the system and by the fact

that naturals are not commonly thought of, by a programmer, as a type consisting of

only zero and successor while booleans are thought of as a type with two elements. In

addition, choosing to treat the types differently gives the opportunity to compare the

two approaches.

4.3 Syntax

The syntax of the types is given in figure 4.1. The only unusual feature is the syntax for

datatypes. A datatype has an identifier (a string) that will be used to make recursive

calls to the definition. The finite map from strings to a list of types is a mapping from

the constructors to the types of their arguments. A finite map is precisely the right

formalism, since we require a finite number of distinct constructors.

The syntax of expressions is given in figure 4.2. Most expressions are annotated with

CHAPTER 4. OVERVIEW OF LANGUAGE AND ARCHITECTURE

ty .. - Num
Var id

'tfid.ty

tYl -+ tY2

Data id (id 1-+ [tyJ)

Figure 4.1: The syntax of SDT types

exp .. - nurn num Natural number

36

nop (num -+ num -+ num) eXPl exP2 Binary operation on numbers

bop (num -+ num -+ bool) eXPl exP2

var id

Aid: ty. exp

eXPl exP2

Aid. exp

eXPty

rec idty exp

con idty [exp]

case exp (id 1-+ exp)

Binary relation on numbers

Variables

Function abstraction

Function application

Type abstraction

Type application

Recursive value

Constructor

Case expression

Figure 4.2: The syntax of SDT expressions

their types. For the expressions representing natural numbers and operations on natural

numbers the syntax is a little strange since we are lifting the natural numbers from the

underlying logic rather than defining them here.

4.4 Substitution

In order to give both the static and dynamic semantics of the language it is necessary

to define the substitution of expressions or types for free expression or type variables.

For example, an abstraction can have the form AX : a. e where x is a variable and e is

some expr~ioIl, possibly containing x. Thil> can be applied to a term y of type a to

produce the term formed by replacing x by y in e. Much of the detail in this thesis will

involve the formalisation of the substitution by which the term y is substituted into e.

This substitution will be represented bye[y/x].

The main complexity in the treatment of substitution arises because of the possibility

of variable capture. If the variable x is substituted for y in AX : a. y x without renaming

(Ax: a. y x)[x/y] = Ax: Q. (y x)[x/y] = AX: Q. x X

CHAPTER 4. OVERVIEW OF LANGUAGE AND ARCHITECTURE 37

then the meaning is changed by the capture of the variable x by the binding. Instead

we must rename the bound variable x to get

(AX: o. y x}!x/y] = AX': o. (y x')[xjy] = AX': Q. X x'

The terms AX : o. X x and AX' : Q. X .x' are different terms with different meanings and

so correct treatment of substitution is important. Several other authors have already

treated these issues in HOL [HM94, Mel94 , GM96] and the treatment discussed later is

a variant of these.

These issues may seem to have little relevance to real programming. When a well­

typed program is substituted into another well-typed program there are no free variables

in the incoming program and so variable capture can never occur. Much of the work

in this thesis involved identifying when such simplifying assumptions can be made and

developing a simpler theory to cover these cases.

Substitution itself can be formalised as a substitution of a single variable as described

above, or as the simultaneous substitution of terms for several variables. As simultaneous

substitutions are needed later we define this first and define the single substitution as a

special case.

In some work functions from variables to terms are used to formalise the substitution

function. This thesis uses a finite map from variables to terms, as there are only a finite

number of variables being substituted for at anyone time. A type substitution is a finite

map from type variables to types and an expression substitution is a finite map from

variables to expressions.

A type substitution can be applied to either a type or an expression while an expres­

sion substitution can only be applied to expressions. The three simultaneous substitution

functions are:

eeSubs:exp -+ (string exp) -+ exp

teSubs:exp -+ (string ty) -+ exp

ttSubs :ty -+ (string ty) -+ ty

Instead of representing the application of a substitution s to an expression e as eeSubs e s
we write [eli' The same notation is used for all three substitutions if the types of the

substitution and term can be inferred.

From these definitions of simultaneous substitution the definition for substituting for

one variable can easily be derived:

eeSub:exp -+ (string, exp) -+ exp

teSub:exp -+ (string, ty) -+ exp

ttSub: ty -+ (string, ty) -+ ty

Details of the definitions of all the substitution functions are given in the next chapter.

CHAPTER 4. OVERVIEW OF LANGUAGE AND ARCHITECTURE

r r num n: Num

r r el : Num r r e2 : Num
r r nop op el e2 : Num

r r el : Num r r e2 : Num
r r bop op el e2 : Bool

r[x 1-+ tl] r e : t2

r f- t~ : t .r not free in r
r f- Ax. e : 'Vx.t

fix tl f- e : t
r f- rec Xt e : t

rr e: Data xM

rlx 1-+ t] r var x : t

rr(ele2):t2

r f- e : 'Vx.t

'v's.FDom c s ::> r r (c s) : (makefun t (m s))[Data x mix]

r r case e c : t

Figure 4.3: Static Semantics

4.5 Static semantics

38

The static semantics of the language is given in figure 4.3. The general form of the rules

has been explained in section 2.2.1. The only complex rules are the rules for constructors

and for the case expression. The function makefun takes a list of types (the arguments

to a constructor) and generates a function type (the type of a function to consume the

arguments to a constructor). It is defined by

makefun t [1 = t
makefun t (x :: XS) = (x -+ (makefun t xs))

4.6 Dynamic semantics

The dynamic semantics of the language is given in figure 4.4. This a small step semantics

using substitution to handle variable binding as discussed in section 2.2.2. This is a

subset of all the possible reduction rules. The subset chosen specifies the reduction order

CHAPTER 4. OVERVIEW OF LANGUAGE AND ARCHITECTURE

(Ax: t. e) el - e[eI/x]

/I-h

rec Xt e - e[rec Xt elx]

(Ax. e}t - e[tlx]

case (con Xt [et .. en]) c - (c x) et .. en

case et C --. case e2 c

Figure 4.4: Reduction Rules

label .. - numl num

appl exp

Appl exp

destl string ty num

Figure 4.5: Labels for labelled transition system.

39

and gives a non-strict semantics. There are no reduction rules for numbers, variables,

functions or constructors as these cannot be reduced.

4.7 Labelled transition system and equivalence

The labelled transition system is central to the definition of equivalence. Before intro­

ducing the rules for the transition system, the syntax of the labels must be given. This

is shown in figure 4.5. The rules for the transition system follow the examples given in

section 2.3 and are given in figure 4.6.

The choice of including datatypes as a primitive in the language is important here

as there is only one destructor step to go from one element of a type to the elements

of the component types. If an encoding were used, then more than one destructor step

would be necessary.

From this transition system applicative bisimulation can be defined as in section 2.3.

This will give rise to a proof principle that will allow two programs, x and y, to be proved

equivalent by finding a relation S that contains the pair x and y and is a bisimulation.

CHAPTER 4. OVERVIEW OF LANGUAGE AND ARCHITECTURE

numlno numn --+

appl b b a --+ a

I- b : tl

I- con Ct 0 : Data x m

[j destL c tOo con Ct --+

b~c
Q a--+c

I- a : 'VX.tl
AppL t

a --+ at

I- a: Num

I- con Ct tel .. en] : Data x m
----...::.....:.[-=--';';'j:""'des-t""'L-c-t-i --1 $ i $ n

con Ct el .. en --+ ei

I- a: Data x m
<>

u ---+ c

Figure 4.6: Rules for labelled transition system.

That is it has the property that for any (a, b) E S

('Va'.'Va.a~a'-:J (3b'.b~b' A (a',b') E S V a' ==b')) A

(Vb'. 'Va. b ~ b' -:J (3a'. a ~ a' " (a',b') E S V a' == b'))

4.8 Example: lists

40

To illustrate many of the language constructs introduced in this chapter we discuss the

introduction of the type of possibly infinite lists (streams). This also illustrates the use

of logical constants of the HaL logic to give names to the new types and constructors.

There are four identifiers that give rise to SOT types: Num, 'V, --+ and Data. The

identifier Data is distinct from the rest in that it will not appear in programs but only

in definitions.

One instance of a datatype in SOT is

Data nlist [nil [],

cons [Num, Var nlistlJ

This syntax corresponds to a list of numbers. It is a legitimate piece of syntax for an

SOT type and could be used in programs. In order to make SOT programs look more

familiar we assign this piece of syntax a name in HaL:

nlist = Data nlist [nil 0,
cons [Num, Var nlist]]

where [Num, Var nlistJ is the list of types that should be supplied to the cons constructor.

The nil constructor takes no arguments. nlist is a newly introduced logical constant in

HaL. This constant can then be used in programs to represent the type of lists of

CHAPTER 4. OVERVIEW OF LANGUAGE AND ARCHITECTURE 41

numbers. The same process can be repeated for constructors and for functions. The

remainder of this section considers the more general type of polymorphic lists.

4.8.1 Introducing the list type

As the polymorphic type for lists is a generalisation of the type for lists of numbers, a

first guess at the definition of the list type would be:

list a = Data list [nil 1-+ 0,
cons 1-+ [a, Var listlJ

where a is an arbitrary type. This definition is incorrect because of the possibility of

the capture of a type variable if a is instantiated to a type with the variable list free in

it. The simplest example would be the instantiation of Q to Var list. This gives:

list (Var list) = Data list [nil 1-+ [j,

cons 1-+ [Var list, Var list]]

which is in fact a type of lists with two tails and no heads.

The solution is to state explicity that the instantiation of Q must use the renaming

type substitution defined earlier.

I· (Data list [nil 1-+ [j,) 1
1st a = [ala

cons 1-+ [Var a, Var list]]

Instantiating Q to Var list with this definition and performing the substitution renames

the bound list.

list (Var list) = Data list [nil 1-+ 0,
cons 1-+ [Var list, Var list]]

As often happens, where there is possibility of renaming we can ensure that in practice

this renaming will never occur. In particular, whenever such a substitution may occur,

the rest of the program will ensure that the free variable is replaced by a closed type

before the substitution needs to be evaluated.

4.8.2 Introducing the constructors

Out of the many possible fragments of code that can be formed from the SDT constructor

syntax con, only two forms will be well typed with type list Q according to the static

semantics. These are

con ni~ist Q 0

CHAPTER 4. OVERVIEW OF LANGUAGE AND ARCHITECTURE

con con.9J1st a [h ,t]

We define new constants to represent these constructors.

nila = con ni~ist a 0
consa h t = con conSlist a [h , t]

The following rules hold:

(' I- t : list (\'
C I-- nilo : list (.t C I-- conso h t : list (.t

42

It can also be proved that these introduced constants make no reductions and hence

evaluate to themselves. The specialised case theorems are:

C I- e : list Q C I- (c nil) : f3 C I- (c cons) : Q -+ list 0: -+ f3
Cl-caseec:f3

case nila C --+ (c niQ

case (consa h t) c --+ (c cons) h t

4.8.3 Labelled transitions for lists

The three possible types of transitions for lists can be abbreviated by introducing three

constants Nil, Hd and TI with the definitions

Nila = destL ni~ist a 0

Hd a = destL COnstist a 1

Tla = destL COn.9Jilt Q 2

The rules for the transitions for lists are:

'1 ~O nlo

I- (conSa h t) : list Q

Hd
(consQ h t) ~ h

I- (consa h t) : list Q

Q
a--+c

I- a : list Q

The introduced constants and rules for lists are now identical to the rules given for

PCF plus steams [CoI96aJ, with the addition of the type argument in places to allow for

the more expressive type system used here.

Chapter 5

Embedding the syntax and

semantics

This chapter presents the formalisation in the HOL theorem prover of the language

syntax and semantics discussed in the previous chapter. This is done by making a deep

embedding of the syntax and semantics of the language [BGG+92] into HOL's logic.

The abstract syntax of the types and expressions are represented by two new types in

HOL. The substitution functions are implemented by functions in the HOL logic and the

semantics are expressed as a series of relations in the logic.

5.1 Syntax

When using the HOL theorem prover there is a convention of taking a definitional ap­

proach to using logic. This has been discussed in chapter 2. The two definitions in

this thesis that do not follow this convention are the definition, as new types in the

logic, of the abstract syntax of SDT types and of expressions. These are introduced

by axioms rather than deriving the characteristic properties. There is a. large amount

of work involved in introducing such syntax and while automated tools are provided

for introducing many kinds of abstract syntax [Me189J, none of these tools can handle

the inclusion of finite maps in the definitions. The form of the two axioms introduced

is standard and it has been shown elsewhere that syntax including finite maps can be

introduced into HOL definitionally [CS95j.

5.1.1 Types

The syntax of types, as introduced into the HOL system, is given in figure 5.1. For the

rest of this thesis however, the simplified notation first introduced in figure 4.1 is used.

43

CHAPTER 5. EMBEDDING THE SYNTAX AND SEMANTICS

Syntax in HOL Simplified Syntax

ty .. - Num Num

Varid Varid

All id ty \;lid. ty

tYl -+ tY2 tYl -+ tY2

Data id (id, ty list)fmap Data id (id tty])

Figure 5.1: The type of SOT types in HOL

This type is characterised by the following axiom.

Axiom 5.1 (Characteristic axiom for the type of types)

"Iv n a d f.
3!g.

(VXI. 9 (Var xt) = tJ Xl) "

(g Num = n) "

(VXI X2. 9 ('VXI.X2) = a (g X2) Xl X2) "

("Ix m. 9 (Data x m) = d «Map g) o_f m) X m) "

(VXI X2· 9 (Xl - X2) = f (9 Xl) (g X2) Xl X2)

44

This axiom provides a complete characterisation of the type. It expresses the fact that

functions can be defined over the type using primitive recursion. These functions are

introduced as the unique function 9 satisfying the equations formed by a particular

choice for v, n, a, d and f in the axiom. This axiom, and the corresponding axiom for

expressions are the only axioms added to HOL. All other definitions and results have

been formally developed and proved within HOL. This axiom is standard apart from

the case for datatypes, which depends on the correct treatment of the finite map. This

case is very similar to the theorem that could have been derived automatically if the

constructors for the datatype had taken a list as an argument instead of a finite map.

With this change the datatype case would be:

VXI X2. 9 (Data List Xl X2) = d (Map (Map 9 0 Snd) X2) Xl X2

In both the list and finite map versions, the recursive call of the function 9 is mapped

across the list of types representing the arguments for each constructor. If the construc­

tors for the datatype are represented by a list, then this function is mapped over the

list of constructors by the outer application of the Map function. If the constructors are

CHAPTER 5. EMBEDDING THE SYNTAX AND SEMANTICS 45

represented in a finite map, then the function Map 9 is applied to the range of the finite

map. The list version could easily be added to HOL using Gunter's extension of the type

definition package [Gun93].

From axiom 5.1 we can derive the induction theorem for types:

Theorem 5.2 (Structural induction for the type of types)

VP.

("Ix. P (Var x» 1\

P Num 1\

(Vo..P 0. ::> (Vx. P (V'x.o.») 1\

(Vo. {3. P 0. 1\ P {3 ::> P (0. -+ {3» 1\

(Vy m.
FEvery (Ax.Every P (Snd x» m ::>

P(Data y m))

::>

("10.. P 0.)

Proof. Follows from the axiom 5.1. The proof is closely modelled on that used by the

tools supplied with HOL for proving the corresponding theorem for the types that can

be introduced automatically.

The standard results about the distinctiveness and one to one properties of the construc­

tors can be derived.

Theorem 5.3 Distinctness of types

(Vx. Num ::f: Var x) 1\

("Ix 0.. Num ::f: V'x.o.) 1\

(Vo. {3. Num ::f: 0. -+ f3) 1\

('Vx m. Num ::f: Data x m) 1\

('Vx v 0.. Var x =/: V'v.o.) 1\

('Vx 0. {3. Var X =/:0. -+ {3) 1\

('Vx v m. Var x ::f: Data v m) 1\

('Vx 0. {3 "y. V'x.o: ::f: {3 -+ "y) 1\

(Vx v 0. f3. V'x.o: ::f: Data v m) 1\

(Vx m f3 "y • .,(Data x m ::f: (,B -+ "y»)

CHAPTER 5. EMBEDDING THE SYNTAX AND SEMANTICS 46

Theorem 5.4 One-to-one property of types

('''Ix y. (Var x = Var y) = (x = y» /\

("Ix a y {3. (Vx.a = 'Vy.{3) = (x = y) /\ (0 = {3» /\

(Va {3 "f o. «0 --+ {3) = h --+ 0» = (Q = "f) /\ ({3 = 0»/\

("Ix 711 y Ti. «Data x 711) = (Data y Ti» = (x = y) /\ (711 = Ti»

Theorem 5.4 illustrates a problem with the given equality over these types; equality of

two types requires bound variables to have the same names. But it is usual to equate

tYPe!) up to a renaming of the bound variables. Possible solutions to this problem and

the approach taken here are discussed later in this chapter, after giving the definition of

substitution necessary to formalise and reason about the renaming.

Using axiom 5.1 we can introduce recursive functions over types. One such function

is the free type variable test. This function takes any type and a variable and tests

whether that variable is free in the type. The definition makes use of the function Any,

a disjunction operation over Boolean lists.

Definition 5.5 The function Any is defined by:

Any [1 = F

Any (Cons x y) = x V Any y

Using this the definition of the free variable function for types is:

Definition 5.6 Free type variables

ftv (Var xI) x

ftv Num x

ftv ('VXI.X2) x

ftv (Xl --+ X2) x

ftv (Data Xl m) X

5.1.2 Expressions

=
=
=
=
=

(X = xt)

F

(X # Xl) /\ ftv X2 X

ftv Xl X V ftv X2 X

(X # xd /\
3y. FRange m y /\ Any (Map (>.z.ftv z x) y)

The syntax of expressions as introduced into HOL is given in figure 5.2. For the rest of

this thesis we will use the simplified mathematical notation for the syntax except where

there is a risk of confusion with the HOL syntax for quantification and abstraction. The

syntax for the constructors and case expressions was introduced in the previous chapter.

The num, nnnop and nnbop constructs provide a means for lifting numbers from the HOL

logic for use in SDT.

CHAPTER 5. EMBEDDING THE SYNTAX AND SEMANTICS

Syntax in HOL

exp .. - num Dum

nop (Dum - Dum - Dum) Dum Dum

bop (Dum - Dum - bool) num Dum

varid

lambda id ty exp

app expl exP2

Lambda id ty

App exp ty

ree id tyexp

con id ty (exp list)

case exp (id, exp)fmap

Simplified Syntax

(where different)

Aid: ty. exp

eXPI exP2

Aid. exp

eXPty

ree idty exp

con idty [expJ

case exp (id 1-+ exp)

Figure 5.2: The type of SDT expressions in HOL

47

This type is characterised by an axiom added to the logic in a similar way to ax­

iom 5.1.

Axiom 5.7 Chameteristie theorem for expressions

"Inc nne nbc ve le re lte ae ate cc cae.

3!y.

(VXI' y (num Xl) = ne Xl} /\

(VXI el e2· Y (nop Xl el e2) = nne (yet) (y e2) Xl el e2} /\

(VXI el e2· Y (bop Xl el e2) = nbc (yet) (y e2) Xl el e2} /\

(VXI' y (var xt} = ve xt} /\

(VXI X2 X3· Y (AXI : X2· X3) = le (y X3) Xl X2 X3) I\.

("Ix t Xl. Y (ree Xt xt} = re (y xt} X t xtll\.

(VXI X2. Y (AXI' X2) = lte (y X2) XIX2} /\

(VXI X2· Y (Xl X2) = ae (y xt} (y X2) Xl X2) I\.

(VXI t. Y (Xlt) = ate (y Xl) Xl t) /\

("Ix t Xl. Y (con Xt xt) = ee (Map y Xl) X t xt} /\

('<Ix m. y (case X m) = cae (y x) (y o_f m) X m)

From this axiom, similar theorems to those derived from the axiom for types can be

derived. These are the induction theorem for expressions and theorems stating that the

constructors are distinct and there is a one-to-one correspondence.

CHAPTER 5. EMBEDDING THE SYNTAX AND SEMANTICS 48

Axiom 5.7 allows the definition of free variable functions for expressions. There are

two functions, one to test for free type variables in expressions and one to test for free

expression variables.

Definition 5.8 Free expression variables in expressions.

fv (var v) x = (x= v)

fv (nurn n) x = F

fv (nop n el e2) x = (fv el x) V (fv e2 x)

fv (bop b el e2) x = (fv el x) V (fv e2 x)

fv (el e2) x = (fv el x) V (fv e2 x)

fv (te) x = (fv e x)

fv (,\y : t. e) x = (fv e x) 1\ (x =F y)

fv (Ay. e) x = fvex

fv (rec Yt e) x = fvex 1\ (x ~ y)

fv (con Yt ys) x = Any (Map (>.z.fv z x) ys)

fv (case e m) x = (fv e x) V (3y. (FRange m y) 1\ (fv y x»

Definition 5.9 Free type variables in expressions.

ftve (var v) x = F

ftve (nurn n) x = F

ftve (nop n el e2) = (ftve el x) V (ftve e2 x)

ftve (bop n el e2) = (ftve el x) V (ftve e2 x)

ftve (el e2) = (ftve el x) V (ftve e2 x)

ftve (elt,) = (ftve el x) V (ftv tl x)

ftve (>'Y : tl· el) = (ftve el x) V (ftv tl x)

ftve (Ay. el) = (ftve el x) 1\ (x =F y)

ftve (rec Yt, el) = (ftve el x) V (ftv tl x)

ftve (con Yt ys) x = (ftv t x) V (Any (Map (,\y. ftve y x) ys»

ftve (case e m) x = (ftve e x) V (3y. (FRange m y) 1\ (ftve y x»

5.1.3 Adding booleans

The syntax for types and expressions introduced in the last section contains the syntactic

constructs necessary to lift the HOL type of numbers for use in SDT programs. The

syntax does not make any such provision for the booleans, which will be defined in

terms of datatypes as discussed in section 4.2. The definition of booleans is:

CHAPTER 5. EMBEDDING THE SYNTAX AND SEMANTICS 49

Definition 5.10 The three constants in HOL representing the boolean type and con­

structors are:

Bool = Data "0001" ["true" 1-+ [], "false" 1-+ []]

True = con "true"BooI [1
False = con "false"BooI []

Constants for the booleans are introduced before the semantics of the language is

defined so that the rules can, for clarity, be defined in terms of these constants. This

is not essential. The rules for binary relations could be given directly in terms of the

primitive syntax for datatypes and then rewritten with the definitions Bool, True and

False later.

5.2 Substitutions

The six substitution functions were introduced in section 4.4. Their definition is neces­

sary in order to define both the static and dynamic semantics, and to express and reason

about many of the meta-theoretic results. The approach here is to define a simultaneous

substitution function, taking a substitution represented as a finite map of the appropri­

ate type. Substitution for a single variable is then defined as a special case. Only these

simpler substitutions are used in the definition of the static and dynamic semantics, but

simultaneous substitutions are needed for the meta-theory.

The approach here is similar to that used by others to embed imperative pro­

grams [HM94] and the 7T-calculus [MeI94, GM96] in HOL. The definition of substitution

depends on the definition of a function to pick new variables distinct from those free in

a term.

5.2.1 A choice function

Before the definition of the functions can be given it is necessary to deal with the

possibility of variable capture when substituting under a binding construct. A renaming

function is defined which takes a variable, x, and a set of variables, s, and returns a

variant of x that is not in s. Providing the set is finite it will always be possible to find

such a variant. If x is not in s then the variant will be x itself. The set of variables is

represented by its characteristic function. For any finite set L, the two key properties of

the choice function, ch, are:

"Ix L. ch(x, L) ~ L

"Ix L. ch (x, L) = (x E L => ch (prime x, L) I x)

CHAPTER 5. EMBEDDING THE SYNTAX AND SEMANTICS 50

where prime is the function that adds a I to the string x.

The choice function is not a primitive recursive function and cannot be defined easily

using the standard function definition package in HOL. Instead it is defined using Konrad

SHnd's TFL package [SH96] , the documentation for which contains a similar function

definition.

Definition 5.11 The choice function is introduced. with the property

ch (x, L) = (x E L A Finite L * ch (prime x, L) I x)

under the assumption that the function is terminating. This assumption is expressed. by

a measure which is assumed. to be decreasing. The measure is

A(x,L). CARD ({y I SLENGTH x $ SLENGTH y} n L)

where CARD is the cardinality of a set and SLENGTH is the length of a string.

To discharge the assumption that the measure is decreasing the following lemma is

proved.

Lemma 5.12

"Ix L. FiniteL:J

x E L:J

CARD ({y I SLENGTH (prime x) $ SLENGTH y} n L) <
CARD ({y I SLENGTH x $ SLENGTH y} n L)

Proof By induction over the finite set L and simplification.

This allows the required properties of the choice function to be proved.

Theorem 5.13 The choice function, ch, has the property:

"Ix L. FiniteL:J

ch (x, L) = (x E L * ch (prime x, L) I x)

Proof. Follows from definition 5.11 and lemma 5.12.

An induction principle can be derived from the definition of the choice function

Theorem 5.14 (Recursion induction)

P.
("Ix L. (x E L A FiniteL:J P (prime x, L)) :J P (x, L)) :J

("Ix L. P(x, L))

CHAPTER 5. EMBEDDING THE SYNTAX AND SEMANTICS 51

Proof. Simplification of the induction theorem introduced with definition 5.11 by

lemma 5.12.

Finally the correctness of the choice function can be stated.

Theorem 5.15

'Vx L. ch(x, L) ¢ L

Proof. By induction using theorem 5.14 and simplification using theorem 5.13.

This choice function is used to rename bound variables to avoid capture. If a type a

with a free type variable x is substituted into the type "'x./3 then the free variable x is

'captured' by the binding 'Vx. To avoid this the bound variable is renamed to a variable

that cannot occur free in the body of the term after the substitution.

If f is the appropriate free variable test (fv, ftv or ftve) then the set of variables in

an abstraction with the body t and bound variable x is

blfty" Y=F x }

The free variables after substitution are the variables in this set which are not replaced

by the substitution, plus the free variables in the image of this set under the substitution.

Two new functions freeR and free capture this informal description in HOL.

Definition 5.16 If f is a free variable junction and s a substitution then freeR tests for

the free variables in the mnge of s and is defined by:

freeR f s x = 3e. FRange s e /\ f e x

Definition 5.17 If f is a free variable function, s a substitution and 9 represents a set

of variables, then free tests for the free variables in the image of the set represented by 9

under the substitution s or in the variables of 9 that are not replaced by s. free is defined

by:

free f s 9 x = (freeR f (DRestrict s g) x) V (g x ",(FDom s x))

For a substitution 8 applied to a type "'x./3 or any similar binding construct, the renaming

of the bound variable is chosen to be:

ch (x, free f s (Ay· f /3 y " y =F x))

For the example of a type, "'x./3, the function f would be ftv.

CHAPTER 5. EMBEDDING THE SYNTAX AND SEMANTICS 52

It remains only to show that this new variable is distinct from any of the free variables

that could be captured.

We begin with a series of lemmas about the finiteness properties of the free variable

functions, lists, finite maps and the functions freeR and free. The first two are not of any

real significance themselves but are included to illustrate a pattern that occurs in many

later proofs and will not be shown in detail again. The important result is lemma 5.20,

where the quantification is over expressions and types in the language. As some of the

syntactic constructs contain finite maps and lists, some steps of an inductive proof for

these constructs may require further inductive proofs over the lists and finite maps. The

first two results are used in these proofs.

Lemma 5.18 If f is a free variable function and ys is a list then

Every {Ae. Finite (/ e)) ys :::> Finite(,\x. Any (Map «AZ. Z x) 0 f) ys))

Proof. Follows by an easy structural induction over the list ys.

Lemma 5.19 If f is a free variable function for terms of type a and m is finite map

from variables to a list of type a, then

(Yx. FOom m x :::> Every (Ae. Finite (f e))(m x)) :::>

Finite (AX. 3y. FOom my A Any (Map «Az. z x) 0 f) (m y)))

Proof. Follows by an easy induction over the finite map iii and lemma 5.18.

Lemma 5.20 Each free variable function ftv, fv and ftve, produces only a finite number

of free variables.

'<Ia. Finite (ftv a)

'<Ie. Finite (fv e)

'<Ie. Finite (ftve e)

Proof. Each lemma is proved by a structural induction over the term or type using

lemmas 5.18 and 5.19.

The following two lemmas capture the finiteness properties of the function freeR and

free. The assumption

{'<Ie. Finite (f e))

that appears in these lemmas can be discharged by the above results and so the lemmas

can be instantiated for each free variable function.

CHAPTER 5. EMBEDDING THE SYNTAX AND SEMANTICS 53

Lemma 5.21

"If. ("Ie. Finite (! e» ~ ("Is. Finite (freeR I s))

Proof. Follows by an easy induction over the finite map s.

Lemma 5.22

Vlg. ('Ve. Finite (f e)) /\ Finite g :::> ('Vs.Finite (free I s g»

Proof. Follows from definition 5.17 and lemma 5.21.

Finally, theorem 5.13 can be instantiated to the particular set of variables used here and

the assumption about the finiteness of this set simplified using theorem 5.22. This gives

the behaviour of the choice function as it will be used in the next section.

Theorem 5.23

'VI. ('Ve. Finite (f e» ~

('Ve s v.
ch (v, free I s (AX. I e X /\ (x:/: v»)

=

«v E (free I S (AX. I e x /\ (x:/: v))))

=* (ch (prime v, (freel S (AX. I e x /\ (x:/: v)))))

I v»

As with the previous two theorems, the function I can be instantiated to any of the

free variable functions and the assumption about the finiteness of I discharged.

A useful property of the choice function is that if it is applied to a variable and an

empty set of variables, then the function returns the original variable. The empty set of

variables is represented by the function Ax.F that always returns false.

Theorem 5.24

'Vx. ch (x, >.x.F) = x

Proof. A simple corollary of theorem 5.13

CHAPTER 5. EMBEDDING THE SYNTAX AND SEMANTICS 54

5.2.2 The substitution functions

The definition of the simultaneous substitution function

ttSubs : ty -+ (string, ty)fmap -+ ty

which substitutes types into types is given figure 5.3. The application of a substitution 8

to a type 0, ttSubs a s, is abbreviated by [oj,.
From this, the single substitution function

ttSub : ty -+ (string, ty) -+ ty

is easily defined. If the substitution of {3 for x in the type 0, ttSub a (x, (3), is abbreviated

by a[{3/x], the definition is as follows.

Definition 5.25 (Substitution for a single variable)

a[{3/x] = [0] [x>-81

The substitution functions for types into expressions and expressions into expressions

are similar. Their definitions are given in figures 5.4 and 5.5. From these the single

substitution functions can be defined in exactly the same way as for types.

5.3 Properties of substitution

This section gives some of the properties of the substitution functions. Unless specifically

mentioned, these properties have been proved for all the varieties of substitution. Many

of the following results are concerned with simplifying the mappings used in substitution.

This is essential for many of the proofs in later sections.

The first result states that a substitution can be restricted in its domain to the free

variables in the term it is applied to.

[Var vJs =
[Numls =
['v'v.als =

[a -+ {3Ji =
[Data x lis =

«FDom s v) =* s v I Var v)

Num

let y = ch (v, free ftv S (AX. ftv Q X 1\ x # v))

in 'v'y. [a!s[v>-vilr 1/)

[aJi -+ !{3]i

let y = ch (v, free ftv s (Ax. ftv Q x " x # v»

in Data x (Map (Aa. !a],[X'vilf 1/)) o_f I)

Figure 5.3: Substituting types into types

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

CHAPTER 5. EMBEDDING THE SYNTAX AND SEMANTICS 55

[num n]. = num n (5.6)

[nop n el e2]i = nop n [ell.. [e2J.; (5.7)

[bop n el e2]i = bop n [ells [e211 (5.8)

[var v],; = (FDom s V =* S v I var v) (5.9)

[AY: a. eli = let Z = (ch (y, (free fv S (Ax. fv ex 1\ X:F y))))

in (Az : Ct. [e].(v var z)) (5.10)

[Ax. elli = Ax. [ell. (5.11)

tel e2]i = [ell. [e2). (5.12)

[ela). = [el).a (5.13)

[ree Ya e). = let Z = (ch (y, (free fv 8 (Ax. fv e x 1\ x:F Y))))

in (ree Za [e].(y>-+var z)) (5.14)

[con Co xs]. = con Co (Map (Ax. [x).} xs) (5.15)

[case e m)i = case [eli «Ael. [el).) o_f m) (5.16)

Figure 5.4: Substituting expressions into expressions

[num n]s = numn (5.17)

[nop n el e2)i = nop n [ell. [e2). (5.18)

[bop n el e2). = bop n [ells [e2]. (5.19)

[var v). = var v (5.20)

[AY : a. eli = AY : [a) •. [e). (5.21)

[Ax. ell, = let y = ch (x, free ftv S (Az. ftve el Z 1\ x::f: z))

in (Ay. [el].(Xt-OVar v)) (5.22)

tel e2]. = tel]' [e2h (5.23)

[ela]' = [el)'a (5.24)

[ree Ya e]. = ree Y(aJ, [e). (5.25)

[con Co xs). = con CIa), (Map (Ax. [x],) xs) (5.26)

[case em]. = case Ie). «Ael. le1].) o_f m) (5.27)

Figure 5.5: Substituting types into expressions

CHAPTER 5. EMBEDDING THE SYNTAX AND SEMANTICS 56

Theorem 5.26 If [.1 is a substitution function and f a free variable function then

"It s. [tl, = [tloRestrict i (f t»

Proof. By structural induction over types or expressions, depending on which of the

three substitution functions is being considered.

It can be shown that the identity substitution, which maps variables to themselves,

leaves a term unchanged.

Theorem 5.27 If I_I is the function for substituting types into types or expressions then

"It s. ("Ix. FOom s x :::> S x = Var x) :::> Itls = t

If I-I is the function for substituting expressions into expressions, then

"It s. ("Ix. FOom s x :> S x = var x) :> [t], = t

Proof. By structural induction over types or expressions, according to which substitu­

tion function is used, and then simplification with the definitions of ch, free and freeR.

The proof relies on the fact that an identity substitution cannot cause renaming of

variables.

It follows from this that the empty substitution also leaves a term unchanged.

Theorem 5.28

"It. [t]FEmpty = t

Proof. Follows from theorem 5.27, since the empty mapping satisfies the property

"Ix. FOom FEmpty x :> FEmpty x = var x

Another immediate consequence of theorem 5.27 is that replacing a variable by itself

leaves the term unchanged.

Theorem 5.29

"Ix t. t[Var x/x] = t

Proof. Follows immediately from theorem 5.27 and the definition of single substitution.

The final result is that if two terms are equal under all substitutions then they are the

same term.

CHAPTER 5. EMBEDDING THE SYNTAX AND SEMANTICS 57

Theorem 5.30

Proof. Since [tds = [t21s holds for all substitutions s it also holds for the empty

substitution. This gives [tdFEmpty = [t21FEmpty. The result follows from theorem 5.28.

The above theorems have been proved without having to deal with renaming of variables,

since the identity and empty substitutions do not cause renaming. Another important

class of substitutions that do not cause renaming are those where the range consists only

of terms with no free variables. The next section considers how to formalise this and the

results that can be proved.

5.4 Closed substitutions

In practice the need to consider whether or not to rename variables can greatly compli­

cate proofs. But in almost all cases, this can be eliminated by considering properties of

the expressions that we are substituting into the program. In particular, if the expression

being introduced contains no free variables, then variable capture cannot occur.

The key idea is that at the top level of a program we have well-typed functions

(which can be shown to have no free variables) and that these are applied to closed

terms as arguments. The application generates a new substitution with a closed term

in the range. As substitutions are propagated throughout the term, all the terms in the

range of the substitution are closed. When looking at a subprogram in isolation there

may be free variables, but we can work under the assumption that these variables will

always be replaced by a closed term. This assumption will be propagated through the

proofs and will eventually be discharged.

There are a number of exceptions to this ideal model. The first is the creation

of identity substitutions when renaming does not occur. This can happen in all the

substitution functions where the choice function is used. Any substitution containing

identity mappings can be proved equal to a substitution without; this is detailed later

in this section.

A more significant exception is that while function application will behave as de­

scribed above, type application may cause a renaming because a well-typed expression

may contain free type variables. In section 5.5.1, some results will be considered for

substitutions that map to types where renaming does occur.

Before examining the properties of the substitution functions, we introduce some

predicates to capture the idea of closed substitutions and to simplify the presentation of

results and propagation of information.

CHAPTER 5. EMBEDDING THE SYNTAX AND SEMANTICS 58

Definition 5.31 The lact that a tenn t is closed with respect to some free variable

function I is stated by:

Closed I t = "Ix,(f t x)

One important and frequently used property of a closed term is that it is unchanged by

any substitution. This can be shown for each of the substitution functions and I is used

to stand for the appropriate free variable function.

Theorem 5.32

Vt. Closed / t ::> (V8. [tJs = t)

Proof. By theorem 5.26, the domain of the substitution 8 can be restricted to the free

variables in t. As t is closed, there are no free variables, so [tis is equal to [tlFEmpty. The

result then follows from theorem 5.28, which states that the empty substitution has no

effect on a term.

From the definition of a closed term, we can define a closed substitution.

Definition 5.33 For any free variable function /

FClosed / s = (Vy. FOom 8 y ::> Closed / (8 y»

A closed finite map can be built from an empty finite map, which is closed, by adding any

closed terms to the range of the mapping. The following results capture this construction.

Theorem 5.34

"1/. FClosed / FEmpty

V/ 8 Ck. FClosed / 8 1\ Closed / a ::> ("Ix. FClosed / (s[x 1-+ a])

Proof. Both results are proved by simplifying with the definitions of closed terms and

simple properties of finite maps.

For any expression, if there is a closed finite map whose domain covers all of the free

variables then we sometimes refer to this finite map as closing substitution for the ex­

pression.

Definition 5.35

V/ 8 Q. Closing / sa = FCiosed / s 1\ ("Ix. / a x ::> FOom 8 x)

The definition of FClosed substitutions allows us to prove properties which state that

they do not cause renaming. For the substitution into types, the two clauses where a

substitution is moved through a bound variable can, when the substitution is closed, be

simplified as follows.

CHAPTER 5. EMBEDDING THE SYNTAX AND SEMANTICS

Theorem 5.36

"Iv t s.
FCiosed ftv s :::>

['Vv.tJ;. = 'Vv.[tJ.[v Var v]

"Ix , s.
FClosed ftv s ::>

[Data x ni = Data x (Map p.t. [tli[Xl-+Var ~]) oJ /)

Theorem 5.37

'Vy s.
FClosed fv s :::>

[.>.y : a. eJ. = .>.y: a. [eJ,[~ var II]

'Vy s.
FClosed fv s :::>

[ree Yo e], = rec Yo [eh[~ var III

59

Proof. From the definition of substitution and properties of the choice function, it can

be shown that renaming does not occur. The clauses in the definitions of substitution

can then be simplified to produce the above results.

The theorems above indicate one remaining problem with the use of FClosed substitutions

to simplify proofs. While the substitution that is applied to the abstractions is closed

the substitution generated and applied to the body of the abstraction is not. This can

lead to a problem in several proofs later in the section where there is an induction over

the structure of an expression of type. For types, a general example is form:

'Vt s. FClosed ftv s ::> P([tJi) (5.28)

In attempt to prove this by induction over t, the step case for type quantification will

be

'Vs. FClosed ftv s :::> P(['Vx.tJ,) (5.29)

under the assumption

"It s. FCiosed ftv s :::> P([tJi)

This will typically be simplified using the definition of substitution and other properties

to

(5.30)

CHAPTER 5. EMBEDDING THE SYNTAX AND SEMANTICS

under the assumptions

'Vt i. FClosed ftv i ::) P([t],)

FClosed ftv i

60

As sIx t-+ Var xl is not closed the induction hypothesis cannot be applied. In the

remainder of this section we show that a substitution that is closed apart from identity

mappings has the same effect as a closed substitution and so the induction hypothesis

in the previous example can be applied. Substitutions which map variables to either the

same variable or a closed term are described as follows:

Definition 5.38

Ty_FClosedJd 8 = ('Vx. FOom 8 x::) ((Closed ftv (8 x» V ((8 x) = Var x»)

Exp_FClosedJd s = ("Ix. FOom 8 x::) (Closed fv (s x» V «8 x) = var x»)

In the rest ofthis section only the function for types, Ty.FClosedJd, will be considered.

The results all hold for the equivalent version for expressions. Some simple properties

are:

Theorem 5.39

'V'S. Ty.FClosedJd i :::> ('Vx. Ty_FClosed.ld (s[x t-t Var x))))

'Va a. Ty_FClosedJd a 1\ Closed ftv a ::) ('Vx. Ty.FClosedJd (sIx t-t aJ))

Proof. Both results are proved by simplifying with the definitions above and simple

properties of finite maps.

By replacing FClosed by Ty..FClosedJd in the inductive proof above the inductive hy­

pothesis will apply. While some theorems can be proved this way, the problem can

be tackled more easily using two more results. The first states that any substitution

satisfying Ty_FClosedJd can be transformed into a closed substitution by removing the

identity mappings.

Theorem 5.40

'V'S. Ty_FClosedJd a ::) FClosed ftv (ORestrict 8 (AX. s x :f= Var x»
Proof. By induction over the finite map a and simplifying with properies of FClosed,

Ty_FClosedJd and finite maps.

This closed substitution generated from a substitution satisfying Ty_FClosedJd has the

same effect as the original substitution.

Theorem 5.41

'Va s. Ty.FClosedJd s :) [a], = [a]ORestrict i (>.%. i % ;: Var %)

CH.4PTER 5. EMBEDDING THE SYNTAX AND SEMANTICS 61

Proof. By structural induction over the type Q: and simplifying with properies of

Ty_FClosedJd, FClosed and finite maps.

These results are sufficient to apply the inductive hypothesis in the example goal (5.30).

This technique is used in the induction step of the proof of the following theorem.

Proofs about the semantics of the language will often proceed by rule induction [Win93]

over the appropriate semantic relation. Some rules, including those for type and function

application, generate a single substitution. In the inductive step it is often necessary to

rearrange the order in which this single substitution and a simultaneous substitution of

a finite map takes place. The key theorem is:

Theorem 5.42 III is Bome free variable function then

'It 8 tt. FClosed f 8 /\ Closed f tl :) ('Ix. [t[ttf x)). = [tl.[z Var z) [ttf x])

Proof. By structural induction over t.

While the version of this theorem for expressions is sufficient to prove the required

results later in this thesis, the version for substitutions of types is not. In particular the

condition that the type t} is closed will not hold. In the next section we prove a variant

of this theorem without the condition that t} is closed and with a weaker conclusion.

5.5 Equality for expressions and types

The definitions of the types of SDT types and expressions in HOL gives rise to types for

which the standard logical equality is not the equality that is required. In many pre­

sentations of lambda calculi and other such languages the syntax of binding constructs,

such as type abstraction, is normally assumed to be equal up to alpha conversion. That

is, two expressions or types will be equal if they differ only in the names of bound vari­

ables. For the types and expressions introduced in the last section this does not hold.

The types

Vx.var x

and

Vy.Var y

are not equal unless the strings x and y are equal.

To solve this problem new relations are introduced to define equivalence for both

expressions and types. Very different approaches are taken for each. For types, a relation

is introduced which captures precisely equivalence up to renaming of bound variable. For

CHAPTER 5. EMBEDDING THE SYNTAX AND SEMANTICS

Num=oNum

Var v=oVar v

'Ie. FOom xs e ::>

all2 (=0) (xs e) (Map (_[Var x/y])(ys c))

Data x xs =0 Data y f1S
...,(ftv (Data y ys) x)

(FDom xs = FDom ys)

Figure 5.6: The defintion of =0

62

expressions, a new relation will be introduced later which will have equivalence up to

renaming of bound variables as a property. This will be a co-inductively defined equality.

The definition of this relation for expressions, and the proof of the correct properties,

form a major part of this work and are given in chapter 7.

5.5.1 Alpha equivalence for types

The equivalence relation for types, =0' is defined as the inductive relation given in

figure 5.6. The function all2 takes a binary relation and two lists and returns true if

the lists are the same length and corresponding elements of the two lists are related by

the binary relation. This definition was introduced in HOL using Harrison's inductive

definition» package [Har95]. The definition has a side condition stating that the relation

is monotonic. This is easily proved.

The definition also produces an induction theorem.

CHAPTER 5. EMBEDDING THE SYNTAX AND SEMANTICS

Theorem 5.43 (Rule induction for alpha equivalence)

'VR.

R Num Num 1\

("Iv. R (Var v)(Var v» 1\

('Vtl t2 t3 t4'

R tl t3 1\ R t2 t4 ::> R (tl - t2) (t3 - t4» 1\

("Ix y tl t2·

R tl (t2l\'ar x/y]) 1\ ..,(ftv ('Vy.t2)X) ::> R ('Vx.td ('Vy.t2» 1\

("Ix m y n.
("Ie. FDom me::>

all2 R (m c) (Map (~z. zl\'ar x/y]) (n e))) 1\

...,(ftv(Data y n) x) 1\

(FDom m = FDom n) ::>

R (Data x m) (Data y n»

::>

63

A more useful version of the induction theorem can be derived, and is referred to as

strong rule induction [Gor95a]. For the rest of this thesis, where induction theorems are

derived from a relation, only the strong rule induction version will be given.

CHAPTER 5. EMBEDDING THE SYNTAX AND SEMANTICS

Theorem 5.44 (Strong rule induction)

VR.
R Num Num 1\

('Iv. R (Var v)(Var v)) 1\

(Vtl t2 t3 t4'

R tl t3 1\ R t~ t4 1\ tl =0 t3 1\ t2 =0 t4 ::J R (tl t2) (t3 t4)) 1\

(V'x y t1 t2'

64

R tl (tl[Var .ely]) 1\ t1 =0 (t2[Var .1'Iy]) 1\ .(ftv (Vy.t2)X) ::J R (Vx.td ('Vy.t2)) 1\

('Ix m y n.
('Ie. FDom me:)

all2 R (m c) (Map (AZ. z[Var xly]) (n c))) 1\

all2 (=a) (m c) (Map (AZ. z[Var xly)) (n c))) 1\

-,(ftv(Data y n) x) 1\

(FDom m = FOom n) :)

R (Data x m) (Data y n))

::J

(Val a2. al =a a2 :) R al a2)

Proof. Follows from theorem 5.43 by instantiating R in that theorem with

AQ f3.a =a f3 1\ R a f3

and simplifying.

The relation is an equivalence relation.

Theorem 5.45 FUT any types 0:, p, I'

a =a a

a =a f3 ::J f3 =a a

a =a f3 1\ f3 =a 'Y :) a =a 'Y

Proof. Reflexivity follows by a simple structural induction over the type a. Symmetry

and transitivity follow by rule inductions with theorem 5.44 and some tedious but routine

reasoning about free variables and substitutions.

Alpha equivalence relates two terms up to renaming of bound variables.

Theorem 5.46

'Ix y a. -.(ftv ('Vx.a) y) ~ ('Vx.a) =Q ('Vy.a[Var y/x])

CHAPTER 5. EMBEDDING THE SYNTAX AND SEMANTICS 65

Proof. Follows from the definiton of =0 and the reflexive and symetric properties.

We can now return to the variant of theorem 5.42 mentioned in the previous section.

Theorem 5.47

Proof. By structural induction over t.

5.6 Static semantics

The static semantics are formalised by an inductively defined relation [MeI92]

Type: (string, ty)fmap -+ exp -+ ty -+ boo}

which takes a context, an expression and a type and returns true if the expression has

the given type in the context. We will normally write the typing judgement

Type rea

ff-e:a

The Type relation is given in figure 5.7. The definition makes use of function, makefun,

which takes a result type of a case expression, a, and a list of types representing the

arguments of a constructor, [/h,.82, ... ,.8n], and returns the syntax of a function type

which takes the same arguments as the constructor:

f31 -+ f32 -+ ... -+ f3n -+ a

Definition 5.48

makefun a [I = a

makefun a (Cons x xs) = (x -+ (makefun a xs))

Alpha equivalence for types is used in a number of places in the definition, but not

everywhere it could be used. For example, the rule for function application could have

been written as:

.8 =0 fJ
r f- (e I (;2) : ,3

This is unnecessary since the reason for weakening equality to alpha equivalence is so

that the following statement will be true.

'VI' e a. f f- e : a :::> ('1.8. a =0.8 :::> r I- e : .8)

CHAPTER 5. EMBEDDING THE SYNTAX AND SEMANTICS

r I- el : Num r I- e2 : Num

r I- num n : Num r f- nop ap el e2 : Num

/3 =0 'Y C I- el : Num C I- e2: Num

r[x ~ /3] I- var x : 'Y r I- bop op el e2 : Bool

r[x ~ /3]1- e : 0 {3 =0 'Y

r I- (AX: {3. e) : 'Y - 6

r f- el : (/3 - 'Y) r f- e2 : /3
r f- (el e2) : 'Y

r I- e : /3 X not free in r 'Y =0 Vx.{3
r f- Ax. e : 'Y

r f- e : Vx.(3 0 =0 (3blx]

r[x 1-+ f3] I- e : {3 'Y =0 {3
r I- rec x{j e : 'Y

FDom m c
all2 (Type r) xs (Map ("y. y[Oata x mix]) ts)

ts = m c) r I- con CDau x iii xs: {3
{3 =0 (Data x m)

r I- e : Data x m

'Vs.FOom c s ::> FOom m s 1\

r I- (c s) : (makefun {3 (m s»[data x mix]

r f- case e c : (3

Figure 5.7: The typing rules

66

CHAPTER 5. EMBEDDING THE SYNTAX AND SEMANTICS 67

In order to prove this, it is necessary to weaken the equality of only the types which

occur, or have components which occur, on both sides of the I:' in the type assignment.

Thus the weakening is unnecessary for the rule for function application, but necessary

for type application where {3 and 'Y occur in different places in the conclusion r r- efj : "y.

Similarly, the equivalence, {3 =0 'lr/x.'Y is necessary in the rule for type abstraction since

x and {3 occur separately in the conclusion r t- Ax. e : {3.

The typing relation is again introduced using the inductive definitions package and

the rules are proved to be monotonic. This gives rise to an induction theorem. A stronger

version of this theorem, strong rule induction, can also be proved. The statement of the

theorem is given in figure 5.S.

Typically we consider only well typed programs, so it is useful to introduce a second

relation, Prog, which holds of a type Q and an expression e only if e has type Q in the

empty context.

Definition 5.49

Prog e ex = Type FEmpty (; ex

For clarity, Prog e Q will often be written e : Q.

A major property of expressions that can be typed in the empty context is that they

cannot contain free expression variables.

Theorem 5.50

'rIe Q. e : Q :,) Closed fv e

The significance of this theorem, in conjunction with theorem 5.37, is that when a closed

expression is a.pplied to another closed expression, only closed substitutions are formed

and so no renaming will occur.

5.7 Properties of the typing relation

There are some important properties of the relationship between typing judgements a.nd

alpha conversion. The two crucial theorems are given below.

Theorem 5.51 'rI r e Q. r r- e : Q :,) ('rI{3. Q =0 f3 :,) r r- e : (3)

Proof. Follows by a straightforward rule induction with theorem 5.8.

The next theorem of this section expresses the fact a term has a unique type, when

the types are considered equal up to renaming of the bound variables.

CHAPTER 5. EMBEDDING THE SYNTAX AND SEMANTICS

"IT.

("In r. T r (num n) Num) /\

("In e2 el r.
T r el Num /\ T r e2 Num /\ r f- el : Num /\ r f- e2 : Num ::>

r r (nop n el e2) Num) /\

("In e2 el r.
T r el Num /\ T r e2 Num /\ r f- el : Num /\ r f- e2 : Num ::>

T r (bop n el e2) Bool) /\

("Iv r a f3. a =Q f3 ::> T r[v 1-+ tJ (var v) (3) /\

(V-y a e f3 y r.
T r[y 1-+ f3J e a /\ r[y 1-+ f3]1- : e a /\ f3 =0 -y ::>

T r (AY : f3. e) b -+ a) /\

(Ve2 a f3 elr.

T r el (f3 -+ a) /\ T r e2 f3 /\ r f- el : (f3 -+ a) /\ r I- e2 : f3 ::>
T r (el e2) a) /\

(Vf3 x a e r.
Trea /\ rl-e:a/\

(Vy,(FDom r y /\ ftv (r y) x)) /\ f3 =0 (Vx.a) ::>
T r (Ax. e) (3) /\

(Vf3 a -y x e r.
T r e ('v'x.-y) /\ r I- e : 'v'x."r) /\ a =0 (-y[f3fx]) ::>

rf(f'8)n)t\

(VfJ e a y r. T (fly 1-+ .8]) e a /\ fly 1-+ fJ] f- e : a /\ fJ =Q a :)
T r (ree Yo e) (3) /\

(Va C ts m x xs r.
all2 (T r) xs (Map (_[Data x mix!) ts) /\

all2 (Type r) xs (Map (_[Data x mix!) ts) /\

FDom m c /\ (ts = m c) /\ a =0 Data x m :)
T r (con C(Datum) xs) a) /\

(Va n m x e r.
T r e (Data x m) /\ r I- e : Data x m /\

("Is.

:)

FDom n s :) FDom m s /\

T r (n s) (makefun a (Map (_ [Data x mix]) (m s» :)

T r (case e n) a)

(W e a. r f- e : a :) T rea)

Figure 5.8: Strong rule induction for Types

68

CHAPTER 5. EMBEDDING THE SYNTAX AND SEMANTICS 69

Theorem 5.52 Uniqueness of types up to alpha equivalence

VI' e a. r ... e : a :::> (Vf3. r I- e : f3 :::> a =0 (3)

Proof. Follows by rule induction over the typing judgement r ... e : a.

It is useful to know that a term has only one type. Much of theory that follows

depends on the analysis of the types of terms and this analysis is easier if there is only

one type to consider for each term.

This chapter has introduced closed substitutions and expressions that have a type

in a context and in the empty context. The following results express the relationship

between the type of expressions with free variables and the type of expressions with

closed terms substituted for the free variables.

If an expression e is typeable in a context r then a substitution that maps variables

to expressions with the type corresponding to that variable in the context will be known

as a closure. This is defined as:

Definition 5.53

Closure r s = (FOom r = FOam s) A (Vx. FOom r x :::> (s x) : (r x))

One useful property of closures is that the substitution is itself closed.

Theorem 5.54

VI' s. Closure r s :::> FClosed fv s

Proof. From definition of Closure we know that every expression in the range of the

substitution is well-typed in the empty context and hence, from theorem 5.50, contains

no free expression variables. The result follows from the definition of FClosed.

An important property of closures is that the substitution for any term typeable in the

empty context is itself empty.

Theorem 5.55

Va. Closure FEmpty a = (a = FEmpty)

Proof. Follows immediately from the definition of Closure and properties of finite maps.

The key theorem, which will be used extensively in Chapter 7, relates the type of an

expression in a context to the type of the closed term produced by a closure for that

context.

CHAPTER 5. EMBEDDING THE SYNTAX AND SEMANTICS 70

Theorem 5.56

\fT e a. r I- e : a :J ('Vs. Closure r s :J [eJs: a)

Proof. By rule induction over the typing judgement and the properties of substitution,

typing and closures.

A variant of this theorem can be proved that takes account of type substitutions as

well. This theorem will be used in the theory for parametricity in Chapter 9. This

extends theorem 5.56 by relating the type of an expression in a context to the type of

that expression under both expression and typing substitutions.

Theorem 5.57

'V rea.

rl-e:a :J

('Vs t. FClosed fv 8 /I. FClosed ftve 8 /I. FClosed ftv t /I.

('Vx. FOom r x :J (FOom 8 x /I. 8 x : [rxjl')) 1\

('Vx. ftve e x :J FOom t x) :J

[[elill' : [al1')

Proof. By strong rule induction on the typing judgement r I- e : Q and tedious reasoning

about the substitutions.

5.8 Dynamic semantics

The dynamic semantics introduces a family of relations based on one relation, --+. From

this, many step reduction, --+*, and reduction to normal form or evaluation, .1.1-, can be

defined.
The reduction relation is defined inductively in the same way as the static semantics.

The rules are given in figures 5.9 and 5.10. The choice of rules for the semantics has been

discussed previously. The definition gives rise to the usual rule induction and strong rule

induction theorems. In what follows, we consider the semantics of numbers separately

to the semantics of the other syntactic constructs. Figure 5.10 gives the semantics for

numbers and figure 5.9 gives the semantics for the other constructs.

5.B.1 The dynamic semantics of numbers

The dynamic semantics for numbers is given in full in figure 5.10. Here only the num­

bers and the binary operations are embedded, although more could easily be added by

extending the syntax introduced in figure 5.2. There is an important difference between

CHAPTER 5. EMBEDDING THE SYNTAX AND SEMANTICS 71

rec Ya e --+ e[rec Ya ely]

(Ay. e}a --+ e\a/y]

case (can Xa xs) in --+ applyfun(m x) xs

case el in --+ case e2 in

Figure 5.9: The dynamic semantics

the type of nwnbers in SOT and the HOL logic. In the logic all expressions with the type

of numbers, including arbitrarily complex expressions, denote some unique number. In

SOT an expression of number type may be non-terminating or contain a partial function

which does not return a result. When moving between the two representation of num­

bers it is important that these differences are handled correctly. In this section a specific

example of the behaviour of the binary relation "less than or equal" is considered.

Suppose el,e2 and e3 are expressions with type Nurn, nl and n2 are numbers in the

HOL logic, and $ is the "less-than-or-equal" function in the logic. The rules for this

binary relation on numbers are:

el --+ e2
bop $ el e3 --+ bop $ e2 e3

e2 --+ e3

bop ~ (nurn nd (nurn n2) --+ nurn (nl ~ n2)

If ~ is applied to numbers which reduce to a value by repeated application of the first

two rules, then the third rule will apply and the application of $ can be pushed down

into the HOL numbers and the result lifted. But if one of the arguments does not reduce

to a value, then one of the first two rules can be applied indefinitely, or the argument

contains a partial function and at some point no rule applies. In either case the third rule

will not apply and a result of the form nurn n will never be returned. This means that,

unlike the type of numbers in HOL, the number expressions in SOT may not represent

any numeric literal.

CHAPTER 5. EMBEDDING THE SYNTAX AND SEMANTICS 72

nop f num n el --+ nop f num n e2

bop f nurn n el --+ bop f nurn n e2

Figure 5.10: The dynamic semantics of numbers

5.8.2 Derived relations

The reduction relation is a small step evaluation relation, where a term can be reduced

repeatedly until a value is returned. It is useful to define a second relation, the relexive

tra.nsitive closure of reduction, which can express many reduction steps in one relation.

The relation --+* is an inductively defined many step reduction relation.

Definition 5.58

e-*e

If an expression has been reduced to a value (function, type abstraction, number or

constructor) then it cannot be reduced any further. These normal forms of the reduction

function can be defined by

Definition 5.59

NF c = 3x Q as. c = con XQ as V

3n. c = nurn n V

3x Q e. c = AX: Q. e V

3x e. c = Ax. e

Reduction to normal form, .\.I., can then be defined as

Definition 5.60

el .\.I. e:l = (el --+* e2 " NF e2)

CHAPTER 5. EMBEDDING THE SYNTAX AND SEMANTICS 73

Rules can be proved for this relation which are identical to the rules that would have

been defined for a large step reduction relation, as discussed in chapter 3. One example

is the rule for function application:

et .lJ. (.\y: a. e) (ele2/yJ) .lJ. c
(et e2).JJ.c

Later, it will be useful to state that an expression e evaluates to some normal form

without needing to worry about the form of that result.

3c. e.JJ. c

This statement will be abbreviated by e .JJ..

5.9 Properties of reduction

The reduction relation has been written in such a way as to specify the reduction order.

At no point can more that one rule apply to any expression. It follows from this that

the relation is deterministic.

Theorem 5.61

Proof. By a rule induction on the reduction el ---+ e2·

The reduction relation is untyped and so the rules may also be applied to untyped

expressions. Whenever the rules are applied to well-typed expressions it is important

that the type is preserved.

Theorem 5.62 (Subject Reduction)

f- Vet e2. e} ---+ e2 :J (Va. e} : a :J e2: a)

Proof. By a rule induction on the reduction e} ---+ e2·

5.10 Related work

In this chapter the syntax of the SDT language was represented by types in the logic with

a structural equality between terms of the type. For SOT types, a new equivalence was

defined to identify types up to a renaming of bound variables. An alternative approach,

which has been applied to simple languages with binding constructs, would be to define

the types in a different way so that the standard equality has this property [GM96].

While this would simplify the problems of alpha equivalence and single substitutions

CHAPTER 5. EMBEDDING THE SYNTAX AND SEMANTICS 74

it would not remove the need to reason about simultaneous substitutions later in this

thesis and so would not allow any of the work on substitutions to be omitted.

The work in this chapter is similar in some ways to the deep embeddings of functional

languages discussed in chapter 3. These embeddings also introduced new types for

the syntax and new relations for the semantics. The language that has been most

commonly embedded in theorem provers is the semantics of Standard ML, due to the

availability of the a complete operational semantics for the language [MTH90, MT91,

MTHM97]. Donald Syme embedded core ML in HOL [Sym93, Sym92]. The HOL­

ML project developed an embedding of the core language (VG93, Van94] and looked at

the module language and variants of the module language with the aim of comparing

features [MG94].

These embeddings of ML differ from the embedding here. With all the ML embed­

dings, the aim was to reason about the language semantics, not to produce a reasoning

system for programs in the language. The style in which the semantics is formalised is

very different. The meaning of a function is defined relative to a complex environment

containing state information. Function application is formalised not by substitution

but by adding function closures to the environment. This avoids the complex reason­

ing about substitutions described here, but similar issues would arise in an attempt to

compare different programs for eqUality. The environments would have to be compared

which would involve renaming of variables in the environments.

Chapter 6

Automation of low level inference

The work described in the previous chapter establishes the theoretical foundations for

reasoning about the syntax and semantics of SDT programs. This chapter deals with

the practical aspects of reasoning about the typing and reduction of programs.

Results such as a proof that an expression evaluates to a specific value can be obtained

by working out which rules to apply by hand or by conducting a long interactive goal­

directed proof. The number of rules to be applied may be very large and applying all the

rules by hand may not be practical. As type judgements may be in the side conditions for

the application of many other theorems it is important that their proofs are as automatic

as possible. Similar problems occur when proving many results about programs. There

are often a large number of obvious or trivial proof steps to be carried out.

Many of the small steps in a proof will arise from calculating the type or value of

a program and so tools have been developed to automate these proofs. The typing

and reduction relations can be thought of as specifications of how to type or reduce

expressions on an abstract machine. It is possible to write, in ML, a program that

implements this specification.

For the reduction and typing relations, these programs and the relations will both

be deterministic. The way in which the programs calculate the types or values will

correspond exactly to the way in which the rules need to be applied to prove the same

result. Because of this the programs can be used to return information about the rules

applied and this can be used to generate the proof. This method provides a structured

proof, following the definition precisely, rather than trying to solve a search problem or

attempting the exhaustive application of rewrite rules.

Although HOL and the tools are both implemented in ML, they are treated as sepa­

rate systems with an interface between them. A translator converts from the HOL types

for the syntax of expressions and types to the ML types used in the tools. This allows

75

CHAPTER 6. AUTOMATION OF LOW LEVEL INFERENCE 76

the tools to be developed and tested separately from the rest of the system. The ML

types contain additional type constructors. For example we represent HOL variables and

HOL constants with separate type constructors as discussed in the next section.

One advantage of developing an external system to find the proof and then using

a theorem prover such as HOL to check the proof and manipulate the results is that

checking a proof may be much more efficient than searching for a proof. The resulting

system is still guaranteed sound; if the interpreter is not correct then an incorrect proof

will fail when checked. There are also applications, such as finding the witness for

solving existential goals, for which discovering the type of the term may be enough

without completing the proof.

The reducer and type checker also provide useful tools for experimenting with pro­

grams before deciding which direction a proof should take. In this case the reducer and

type checker can be run without performing any proof at all and invoked only to provide

a proof when the overall strategy has been established.

For the type checker, the results returned are always of the form

r ~ e: a

There are two variations of the reducer. The first, simple version returns a result of the

form

while the more general version returns results of the form

For any expression el there are many such results depending on how many reductions

are performed. Parameters supplied to the reducer determine how many reduction steps

are applied. For any specific parameter values, the result will be deterministic.

6.1 Translation of syntax

There is a translation from the HOL types for the syntax of expression to ML datatypes

representing the syntax. This is not a one-ta-one translation, as the ML types contain

additional constructors. For example, we represent HOL variables and HOL constants

with separate constructors and add constructors representing the substitution functions.

This allows easier manipulation of these aspects of a term.

The ML types for the syntax could he extended in the future to handle heuristics

such as rippling [BSvH+93j that can be used to control the application of rewrite rules in

CHAPTER 6. AUTOMATION OF LOW LEVEL INFERENCE 77

an equational reasoning system to rewrite the step case of an induction to the induction

hypothesis.

6.2 Definition of new types and functions

In general, most programs entered into the system will not consist only of primitive

syntax. Most will consist mainly of previously-defined functions and types. This section

discusses how the tools handle the definition of these constants and how this information

will be made available to other tools.

6.2.1 Datatype definition

The definition of lists in terms of the primitive syntax of the language was given in

section 4.8. Some care was needed to ensure the definition behaved correctly with

respect to the renaming of type variables. The differences between the naive definition

and the correct one are predictable and the correct definition can be automatically

deduced from the naive one. In addition to defining the type it is also necessary to

define the logical constants representing the type and its constructors. The ML function

define_datatype takes a specification of a type and produces a definition of the type

and the logical constants and proves and stores some useful theorems about them. For

lists define_datatype is called as follows:

define_datatype

{Name-"List" ,

Def= Data ("List",[("Nil", []),("Cons", [Var "a", Var "List"])])}

This function call defines a new constant in the logic, List, and two constants, Nil and

Cons. These constants have the following definitions:

list a = [a/ a]
(

Data list [nil 1-+ 0,)
cons 1-+ [Var a, Var list]]

nilo = con ni~ist 0 0
conso h t = con COn8!ist 0 [h ,t]

The typing rules for the constructors will normally be defined automatically using the

tools presented later in this section. For the constructors for lists the following theorems

will be proved:

C I- Nilo : list a

CHAPTER 6. AUTOMATION OF LOW LEVEL INFERENCE

datatype ty - HOLvar_ty of string
I HOLconst_ty of string * ty list

Var of string

Mum
Data of string • (string*ty list) list
Fun of ty * ty
All of string * ty

HOLty of term

ttsub of ty • string * ty

and exp • HOLvar_exp of string
HOLeonst_exp of string * arg list

num of term

var of string

con of string * ty * exp list

lambda of string * ty * exp
app of exp * exp

Lambda of string * exp

App of exp * ty

Rae of string * ty * axp

Case of exp * (string * axp) list
aesub of exp * string * exp

tesub ofaxp * string * ty
HOLexp of term

DDIlOP of tarm * exp * exp

nnbop of term * exp * exp

and arg - Ty of ty I Exp of exp

Figure 6.1: The ML types for the abstract syntax of expressions

78

CHAPTER 6. AUTOMATION OF LOW LEVEL INFERENCE 79

C I- h : a 1\ C I- t : list a :> C I- ConSo h t : list a

To make these definitions and typing rules available to the other tools in a uniform and

efficient way they are stored in a global state. The ML records that are stored for each

constructor are:

type Tyconinfo = {Name:string.

Def:thm.

}

type Coninfo • {Name:string,

Def:thm.

Ty:thm option.

}

(*The name of the constuctor*)

(*The theorem defining the constant*)

(*The name of the constuctor*)

(*The theorem defining the constant*)

(*The theorem giving the type*)

The theorem for the type of the constructor is an option type that can return either

the value NONE indicating there is no type stored or return SOME t where t is the the­

orem required. This is to allow the function define_datatype to fail gracefully if, for

any reason, it cannot prove the typing rule for the constructor. For constructors the

automatic tools should always prove the type theorem but this is adopted as a design

decision for all stored theorems. Future chapters will extend the range of theorems that

will be stored and some of these may not be able to be proved automatically. A set of

functions is provided which, given the name of a constant, look up that constant in the

state and return the corresponding record.

6.2.2 Expression definition

The tool for expression definition takes the specification of an expression and defines

the new logical constant. It also produces theorems about evaluation and typing. The

function map used can be introduced in this way. The definition of map is given in

figure 6.2.
The theorems produced by this are the theorem storing the definition of map and

the evaluation and typing theorems in figure 6.3. The evaluation theorem is just one

unwinding of the recursive function. The theorems produced by the definition are stored

in the system's state and can be accessed in a similar way to the information about type

definitions.
The type of the record storing this information is:

type Expinfo • {Def :thm.
Eval:thm option,

CHAPTER 6. AUTOMATION OF LOW LEVEL INFERENCE

map = ree mapI : ('Va {3. (a -. (3) -. List a -. List (3)

Aa. A{3.

AI: a -- {3. A x : list a.

case x of

nil t-+ nil{3 I
cons t-+ (A hd : a. A tl : List a.

(consfj (f hd) (map/a fj 1 tl)))

Figure 6.2: The definition of map

I- 'Va {3. mapa fj -* .x 1 : a -. {3. A x : List a.

case x of

nil t-+ nil{3

cons t-+ (A hd : a . .x tl : List a.

(cons{3 (I hd) (mapa (3 1 tl)))

I- 'Va {3. maPa {3 : «a -- (3) -. list a -. list (3)

Figure 6.3: The reduction and typing theorems for map

Name:string.

Ty:thm option}

6.3 Automating type inference and reduction

80

The tools for type inference and reduction are similar and this section concentrates on

a description of the type inference tools. As an example typing the application of the

identity function to a number is discussed. The expression (Act . .xx : a. x)Num 1 has type

Num. This can be proved by the following sequence of inferences.

[x t-+ a) I- x : a

I- .xx : a. x : a -. a

I- Aa . .xx : a. x : 'Va.a -. a
I- 1 : Num

I- (Aa . .xx : a. x)Num : Num - Num

I- (Aa. AX : a. x)Num 1 : Num

Type inference is done by recursively decomposing the expression, calculating the type

of the expressions at the leaves of the tree and using these to derive the type of the initial

expression. The types of constants are found by looking up the type in the global state.

CHAPTER 6. AUTOMATION OF LOW LEVEL INFERENCE 81

The algorithm for doing this is much simpler than type inference in languages such as

Haskel and ML. This is because SOT is explicitly typed and no unification is necessary

to determine the type of expressions.

While a conventional implementation would simply return the type of the expression,

the tool devised here returns a derivation tree that can be used to reconstruct the proof

in HOL. The type of the result of type inference is defined in terms of

datatype 'a Result • Node of 'a * 'a Result list;

This type is used for the result of both the typing and reduction tools. For type inference

the result type is

«string. ty) list * exp * ty) Result

The three elements in the type correspond to the context, expression and type in the

typing judgement. This encodes the derivation tree corresponding to the inferences

shown in the diagram above. The tree can then be traversed from the nodes to the root,

building a forward proof about the type of a term using the rules in figure 5.7.

The tools for reducing a term are similar. For single step reduction, the expression

is broken down and the proof built up according to dynamic semantics given in the

previous chapter.
For the many step reduction there are different strategies possible. The simplest

would be to apply the tools for single step reduction repeatedly until they failed. This

is inefficient since it involves repeatedly traversing the expression. Instead a new set

of rules is proved and used to gain a more efficient proof. These rules are designed to

resemble a big step semantics. For example, the rule for function application is

el _. (>.y : a. e) (e[e2/yJ) _. c

(el e2) --+. C

The advantage of using many step reduction, --+., instead of reduction to a value, .\j.,

is that if any part of the term cannot be reduced then the rule

e-*e

can always be invoked to terminate the proof of some reduction property. This may not

be reduction to a normal form but will allow the term to be reduced as far as possible.

Later in this section the use of HOL variables as meta variables and how the reducer can

reason about these is considered.

Two choices to be made when developing the tools are how to handle substitution

and how to deal with variables.

CHAPTER 6. AUTOMATION OF LOW LEVEL INFERENCE 82

6.3.1 Substitution

There are a number of different options for handling substitution when reducing and

type checking expressions. The current system expands out all substitutions as they

arise. This is the simplest approach, but is inefficient for a number of reasons .

• Evaluation of expressions before substitution can simplify the expression and re­

duce the number of substitutions.

• Syntactic checks can remove substitutions. If an expression contains no free vari­

ables then any substitution will leave the expression unchanged and so the substi­

tution need not be applied.

An alternative method would be to only evaluate the substitution function when neces­

sary. This approach could lead to a more efficient system and could form the basis for

further work

6.3.2 Variables

While the mechanism for dealing with HOL constants in SDT expressions is straightfor­

ward, HOL variables raise a more complex problem. This problem arises because instead

of always reasoning about fully expanded SDT expressions, we often reason about ex­

pressiOns contain a HOL variable representing as arbitrary expression. When the proof

tools encounter such a variable they should attempt to deduce as much as possible auto­

matically but should raise appropriate proof obligations or fail sensibly if they cannot.

The need to fail with a sensible result is important. Such failures may indicate an error

in the program and a sensible error message or a proof obligation that cannot be proved

can help find the error.

A goal of the form

a: Nurn

where the theorem a = nurn 2 occurs on the assumption list could be solved by first

rewriting with the assumption and then calling the type-checker. This is not satisfactory

because goals such as this should be solved automatically and rewriting unnecessarily

with the assumption list could complicate the goal.

The solution adopted is to write conversions [GM93] that take a list of terms rep­

resenting known facts about the variables of the current term as an argument. These

conversions have the type [term] -> term -> thm. The theorem produced will have

the form

CHAPTER 6. AUTOMATION OF LOW LEVEL INFERENCE 83

where All A2, ... , An are the assumptions made to prove el = e2. These assumptions

can then be discharged from the assumption list or turned into new proof obligations

by tactics provided to handle these assumptions. In normal use the assumptions of the

theorem made will be a subset of the assumption list and can be discharged automat­

ically. If the evaluator or type checker is unable to prove some theorem, this may also

be added to the assumptions of the theorem and eventually be turned into a new proof

goal by the tactic applying the conversion. This goal may not be able to be proved and

hence indicate an error in the proof attempt.

As an example of the use of these conversions, suppose we wished to prove the goal

(f x) : {3

under the assumptions

I- /:0-+8

I- x: 0

The assumptions are essential because they are the only source of the information that

the type of x is o. If TYPE_CONV is the function written to call the type checker and it is

called with the arguments [I: 0 -+ {3, x: 0] and applied to (f x) : {3 it will return

1 : 0 -+ {3, x: 0 I- (f x) : {3 = T

The type checking will have occurred by looking up the type of 1 and x from the

assumptions.
This tool cannot make use of arbitrary facts from the assumption list. In the current

system only theorems about the definition of expressions, equality of expressions, evalu­

ation of expressions and the type of closed expressions will be used. This allows a large

class of problems to be simplified automatically while not generating too large a proof

search. Tactics are provided to search the assumption list for suitable assumptions, call

the conversions, and discharge the assumptions.

The tactics and conversions also take a list of statements that may be supplied by

the user. These will be searched as if they were in the assumption list and, if used, will

give rise to new subgoals. These goals would then need to be proved separately. This

can be useful if the user knows that a fact is easily proved and believes that it will be

useful in an automatic proof but it will not be proved automatically.

Support for variables in terms that are to be reduced instead of type checked is

similar. For a variable x, assumptions of the form x -- e, x ---- e and x = e will be

used in the proof about the reduction of a term.

The collection of techniques used to deal with variables and constants allows auto­

matic reduction of a term as far as possible using information about the constants and

CHAPTER 6. AUTOMATION OF LOW LEVEL INFERENCE 84

variables in the assumption list. In contrast to the mechanisms for pushing through

reduction as far as possible it is sometimes desirable to reduce the number of reduction

steps. In particular, it may only be necessary to reduce a term by expanding a few vari­

ables and constants. The reducer can be supplied with a list of constants and variables

and will only expand the variables or constants in that list.

6.4 Related work

The use of an SML interpreter, the Kit Compiler IBRTT93], with HOL-ML IVG93] to

perform a similar task was investigated in [CoI94] and summarised in [CG94]. This work

did not deal with the symbolic evaluation of expressions. The symbolic evaluation of

programs that are partially made up of HOL variables was investigated by Camilleri and

ZammitlCZ94] .
Richard Boulton's Claret system IBou97, Bou98j can automatically generate many

similar tools to those in this chapter. Claret takes a specification of the syntax and

a specification of the semantics in a denotational style and returns the syntax of the

language both as ML types and types in the HOL logic along with pretty printers and

parsers. The specification of the denotational semantics is used to generate rules in the

logic and to generate tools for mechanizing those rules. While the Claret tools could

have been used to automate some of the work discussed here if they had been available

at the time, the style of semantics used is incompatible with that used here.

Donald Syme has developed a theorem proving environment, Declare, which is de­

signed for reasoning about operational semantics !Sym97, Sym98j. Declare uses a declar­

ative style of theorem proving. Many of the results and tools in this chapter may be

able to be reproduced more easily using Declare as it contains automation specific to

the task of reasoning about semantics relations similar to those here. Declare was not

available when the work described here was carried out.

Chapter 7

Equivalence

The previous chapters have defined the semantics of SDT and tools for reasoning about

the semantics. This chapter considers what it means for two programs to be equal.

As the main relations are defined co-inductively this chapter begins by formalising co­

inductive relations and the labelled transition system which, together with typing and

reduction, form the components used in the definition of equivalence. The chapter

concludes with the proofs that the relation introduced satisfies the required properties

of equivalence. The proofs of some of these properties involve some long and complex

theory development and proofs. These are necessary to prove that equivalence is a

congruence but are not used in later chapters.

7.1 Co-induction

Chapter 2 introduced co-induction with familiar but informal set notation. While the

notation suggests a representation of relations 88 sets of pairs, we choose instead to

represent a binary relation 88 a function from two arguments to a boolean. Thus a

relation R between two expressions will have type

R : exp --+ exp --+ bool

and the membership for the relationship, (x, y) E R is written R x y. In a later section

we shoW how this theory can be reworked for unary relations and how it could be

generalised. This theory will be used to define equivalence from the labelled transition

system. Subset and union for relations expressed 88 functions can be defined as follows:

Definition 7.1 If Rand S are binary relations, represented as junctions, the subset,

C and union, U, are defined to be: -,

R ~ S = "Ix y. R x y ~ S x Y

85

CHAPTER 7. EQUNALENCE 86

R U S = "Ix y. R x y Y S x Y

The usual theorems about subset and union can be easily proved. Some examples are

given in the following theorem.

Theorem 7.2

Tlx y. x C Y /\ Y ~ x :J (x = y)

Tlx y. x ~ (x U y)

"Ix y. y ~ (x U y)

"Ix y z. x ~ z " y ~ z :::> (x U y) ~ z

"Ix y. y ~ x :::> (x U y = x)

Proof. All the results follow directly from the definitions and some simplification.

The important definitions for the development of the theory for co-induction are

Definition 7.3 We define what it means lor I from binary relations to binary relations

to be monotonic by

Monotone I = "Ix y. x ~ y :::> I x S; I y

Definition 7.4 II I is a function from binary relations to binary relations and x is a

binary relation then we define what it means lor x to be I -Dense by

Dense 1 x = x ~ (I x)

Definition 7.5 II I is a function from binary relations to binary relations then gfp I
is defined to be the function

gfp 1 =).a b. 3x. Dense I x " x a b

This definition does not define gfp I to be the greatest fix point of I but instead provides

a way of constructing the greatest fix point. The following results show that this is the

greatest fix point.

If 1 is a function from binary relations to binary relations then gfp I contains any

relation which is I-dense.

Theorem 7.6

'V I. Dense I x :::> x ~ gfp I

CHAPTER 7. EQUIVALENCE

Proof. Follows easily from the definitions of gfp and Dense.

The greatest fixpoint is itself an I-dense relation

Theorem 7.7

"'I. Monotone I ::> Dense I (gfp f)

87

Proof. Follows from the definitions of Monotone, Dense and gfp, along with theorem 7.6.

Theorems 7.6 and 7.7 show that the greatest fixpoint is the largest I-dense relation

associated with a monotonic function I· It is also a fix point

Theorem 7.8

'V I. Monotone I ::> (gfp I = I (gfp f))

Proof. Follows from theorem 7.6 and theorem 7.7 and the definitions of the constants.

The priniciple of co-induction can now be stated and proved.

Theorem 7.9 (Co-induction)

'VI. (Monotone I /I. Dense I x)::> x ~ (gfp f)

Proof. Follows immediately from theorems 7.7 and 7.6.

This theorem will be used in defining a new relation, R say, as the greatest fixpoint of

some monotonic function I· With these assumptions theorem 7.9 simplifies to:

"'I. Dense I x ::> x ~ R

To shoW that some pair of values a and b are related by R (R a b) we only need to find

a relation S such that

Sab (7.1)

and

Dense I S (7.2)

From equation 7.2 and theorem 7.9 we get that S ~ R and so from the definition of

subset we get

Sab ~ Rab

A stronger version of theorem 7.9 can also be derived.

CHAPTER~ EQUIVALENCE 88

Theorem 7.10 (Strong co-induction)

r- 'If. Monotone I ::> (x ~ (f (x U (gfp f)) ::> x ~ (gfp f)

Proof. Follows from the definitions and basic properties of the constants.

All the above results are for binary relations. An identical theory can be developed for

relations taking any number of arguments. In chapter 9 a theory of co-induction for

unary functions (predicate sets) is used. The same theory can be proved for a set of

definitions in this form. For example, the definition of subset and union would be:

Definition 7.11 Sunset and union lor unary predicates.

x ~ y = Va. x a ::> y a

x U Y = Aa. x a V y a

These definitions are identical to those in the HOL predicate sets library. The proofs of

the theorems corresponding to theorems 7.1 to 7.5 are a simple adaptation of the proofs

of these theorems. It would be possible to generate these theorems automatically for

predicates with any number of arguments to get a package with the same functionality

as John Harrison's induction package [Har95].

7.2 Labelled transition system

The labelled transition system is used to represent the observable properties of terms.

If an expression evaluates to a number or to a datatype constructor with no arguments

then we can observe the value of the number or constructor. If an expression evaluates

to a constructor for a datatype with one or more arguments then we can make further

observations of each argument. If an expression does not evaluate to a literal then it

must be either a type abstraction, a function abstraction or an undefined expression. If

the expression is undefined then we can never make an observation about the expression

while if it is an abstraction we can apply it to an arbitrary term of the right type and

then make observations. This process must eventually lead to the observation of literals

or constructors or to undefined expressions. The possible observations will give rise to a

tree of possibly infinite depth, with the observation of numbers and nullary constructors

at the leaf nodes.
The labelled transition system is introduced in two stages, the definition of the labels

and the definition of the transitions relation.

CHAPTER 7. EQUNALENCE

label .. - numl num

appl exp

Appl exp

destl string ty num

Figure 7.1: Labels for labelled transition system.

7.2.1 Labels

89

The labels for the transition system are introduced as a new type in HOL using the

recursive type definition package [MeI89]. The syntax is given in figure 7.1. In some

settings, such as CCS [Mil89], these labels are known as actions.

The argument of the numl label is simply the value observed. The arguments to the

appl and Appl labels are the terms to which the abstraction is applied. The arguments

to the destructor label destl are the name of the constructor, the datatype which it is a

constructor for and the argument being observed. For a constructor with no arguments

the only possible observation will have this number being O. For a constructor with n

arguments there will be n observations with numbers 1 to n. The possible observations

for each expression are formalised by the transition relation.

As with all syntactic types introduced, a series of characterising theorems can be

derived. The important facts about the labels are that they are distinct and their

constructors are one to one.

7.2.2 Transition relation

The labelled transition system is introduced as a relation

l TS : exp - exp - label - bool

where label is the type of labels. l TS el e2 a means that under the rules for l TS the

expression el can make a transition to e2 with label a. In the rest of this thesis this will

be represented by the notation

The rules are given in figure 7.2. The expression 0 is a non-terminating, or bottom,

element of type Num. This type is unimportant, as the only purpose of 0 is to give an

element of which no observations can made. 0 is defined as the function

rec XNum x

CHAPTER 7. EQUNALENCE

numLn 0 nurn n ---+

I- a: Nurn

I- con Co 0 : Data x ffi I- con Co [e} •• en] : Data x Tn

[]
destcoOo

con Co ---+

I
e2 ---+ ea I- el : Data x m

Figure 7.2: Rules for labelled transition system.

The bottom element of any type can be generated by the function

J. = Aa. rec Xo x

so that

Theorem 7.12 Rule induction for labelled transition system.

VL.
("In. L (nurn n) Zero (nurnL n))1\

(Vel e2 a /3. el : Q - /3 1\ e2: /3 :> L e} (el e2) (appL b)) 1\

(Vel Q /3 x. e} : (Vx./3) :> L el (el,B) (AppL /3)) 1\

(\leI e2 e3 Q. L e2 e3 Q 1\ el : Nurn 1\ el -- e2 :> L el e3 a) 1\

90

(Vel e2 e3 x m a. L e2 e3 a 1\ el : Data x m 1\ el -- e2 :> LeI e3 a) 1\

(Vc Q. L (con Co []) 0 (destL c a 0» 1\

(Vc 0 xs i. 0 < i 1\ i:S LENGTH xs :>

L (con Co xs) (EL (PRE i) xs) (destL co i))

:>
(Vel e2 Q. el ..!!.. Q :> L el e2 a)

We can show by rule induction over the transition relation that if there is a transition

from an expression el to an expression e2 then el and e2 are both well typed.

Vel e2 1. el ~ e2 :> (30. el : 0)

Vel e2 l. el ~ e2 :> (30. e2 : 0)

In general el and e2 may not have the same type.

CHAPTER 7. EQUNALENCE 91

1.2.3 Passive and active types

The labelled transition system makes a distinction between two classes of types. The

observable behaviours of functions and type abstractions depend only on their types

while the behaviours of all the other types depend on their values. Using the same

tenninology as Gordon [Gor95a), these classes are referred to as passive and active types

respectively. The active types are the only types where we are interested in observing

the their value. For expressions of passive types we only make observations of the values

created by applying them to other expressions. Two predicates over the syntax of the

types, Passive and Active, are defined to test which class a type belongs to.

Definition 7.13 Active a = (a = Num) V (3x m. a = Data x m)

Definition 7.14 Passive a = (3/3 'Y. a = /3 - 'Y) V (3x /3. Q = 'Vx./3)

This distinction is important in considering the behaviour of the relations defined from

the equality to be defined over terms. The proof that two expressions are equivalent will

involve applying passive types to types and expressions as appropriate until an active

type is produced. The main work of the proof will involve considering the possible

transitions of the expression of active types.

This has important consequences for deciding the meaning of equality. If 1.0 is a

non-terminating element of type a then it is necessary to decide if the expressions

AX: Q. loa

are equivalent. They clearly have different behaviour with respect to the given dynamic

semantics. The first expression can make no reductions and evaluates to itself while

the second can make an infinite series of reductions and hence evaluation will never

terminate. With the choice of active and passive types given above these terms can both

make the same transitions. Both can be applied to another expression and then can

make no more transitions. This reftects the decision that it is not possible to observe

the behaviour of a function without applying it to something.

Other choices could have been made in defining active and passive types. The func­

tion type could have been made active by including the following two rules instead of

the one given above

t- (AX: Q. ell : Q - {3 f- b: a

CHAPTER~ EQUIVALENCE 92

then the expressions AX : Q • .la and .la a would have different transition graphs.

One useful property, which is true of active types but not passive types, is that

reduction has no effect on the possible transitions. If an expression el reduces to e2 then

el can make a particular transition if and only if e2 can make the same transition.

Theorem 7.15

'Vel e2 e3 l. (3a. el : a /\ Active a) /\ el -- e2 ::) (el -.!... e3 = e2 -.!... e3)

Proof. From the definition of active types, the rules for the labelled transition system

and theorem 5.61.

7.3 Equivalence relation

This section considers the formal definition of the equivalence relation between expres­

sions in the language. The definition is guided by the intended co-induction property

discussed earlier. For any two programs, X and y we should be able to prove their equiv­

alence by finding a relation S which contains the pair x and y and is a bisimulation.

That is, it has the property that for any (a, b) E S

('Va'. 'VI. a ..J.... a'::) (3b'. b ..J.... b' /\ (a', b') E S V a' == b'» /\

('Vb'.'Vl.b...!.....b'::> (3a'.a-.!...a' /\ (a',b') E S V a'==b'»

This is the usual property given in other treatments of the theory. But because we

do not have a type of well-typed expressions it is necessary to either introduce this type

or to define the behaviour of equivalence for terms that are not well-typed. As in the rest

of this work we choose not to introduce a new type and instead modify the equivalence

relation to deal with this issue.
Given that only the equivalence of well-typed terms is of interest the choice of how

to handle terms that are not well-typed is not crucial. If every theorem involving the

equivalence relation also includes the assumptions that all expressions involved are well­

typed, then the issue will not arise in practice. But in order to simplify theorems we

would prefer that such side conditions were not always necessary. Thus some consider­

ation must be given to the various possible interpretations of the equality function for

non well-typed expressions. There are three main possibilities.

• Consider all terms which are not well typed to be equal. This could thought of as

modelling some universal error value.

• Define equivalence such that terms that are not well typed are equal to themselves

and not to any other.

CHAPTER 7. EQUIVALENCE 93

• Define equivalence such that terms that are not well typed are not equivalent to

any term, including themselves.

For pragmatic reasons the third possibility is chosen. This means any theorem of the

form

carries more meaning than the other two possibilities. With the approach here the

theorem states the equivalence of two terms and the fact that they are well typed.

The other approaches would require a proof that the terms were well typed before any

information about the structure or semantics of the terms could be deduced.

This approach distils the disadvantage of not creating a new type of well-typed

expressions into one weakness. The equivalence relation will not be able to be proved

to be reflexive without an assumption that the expression is well typed. That is, the

statement

"Ie. e == e

is false while the statement

"Ie. (30. e : 0) ::) e == e

is true.
In practice most of the assumptions of the form e : 0 will already have been proved or

be easy to prove. The interaction of the need to prove this assumption and the automatic

proof tools designed for the system is discussed in the next chapter.

To capture the effect on untyped terms in the definition of equivalence we change

the meaning of a bisimulation to

Vel el. (el,e2) E S ::) (7.3)

(30. el : 0 /\ e2: 0)/\
I (I (Ve3' Vl. el --+ e3::) 3e4. e2 --+ e4 /\ (e3,e4) E S V e3 == e4)) 1\

(Ve4' Vl. e2 ...i... e4 ::) (3e3. el ...i... e3 1\ (e3, e4) E S V e3 == e4))

This property could be derived by defining the equivalence relation, ==, as the

greatest fixpoint of a function, F, with the property

"IS el e2. (F S) el e2 = (7.4)

(30. el : 0 " e2 : 0) /\

(Ve3 I. el -..!..... ea ::) (3e4' e2 .J..... e4 " S es e4)) /\
I I

(Ve4 l. e2 --+ e4 ::) (3e3. el --+ es 1\ S es e4))

CHAPTER 7. EQUWALENCE 94

The property given in equation 7.3 is the property required for a proof using strong co­

induction (theorem 7.10) with this de6nition of ==. Instead of following this approach,

all the definitions are made in terms of simulation. This will allow the simplification of

the definitions and proofs by exploiting the symmetry of the definition of bisimulation.

The property of a simulation relation will be

Vel e2. (el' e2) E S :::>

(30. el : 0 /\ e2 : 0)/\
I I

(Ve3. Vl. el -- e3:::> (3e4' e2 -- e4 /\ (e3, e4) E S))

(7.5)

An equivalence relation, ==, with the required properties will be defined in terms of the

this relation.

1.S.1 Simulation

Simulation is defined in terms of the function FSIM with property

Deftnition 7.16

(FSIM 8) et e2 =
(3a. et : 0 /\ E2: 0)/\

(Ve3. VI. et ...!... e3:::> (3e4. e2 ...!... e4 1\ S es e4 »
This function is a monotone function.

Theorem 7.17

Monotone FSIM

proof. By the definition of Monotone and simplification.

Simulation is defined as the greatest fixpoint of FSIM.

Deftnition 7.18

SIM = gfp FSIM

A principle of coinduction follows from theorem 7.9.

Theorem 7.19

\Ix y. (38. Dense FSIM 8 1\ S x y) :> SIM x 11

CHAPTER 7. EQUIVALENCE 95

If the definitions of Dense and FSIM are expanded out, then this theorem simplifies to

V'x y.

(3S.

('lei e2·

S el e2 ::>
(30. el : 0 1\ e2 : 0) 1\

(V'e3. V'l. elL e3::> (3e4' e2L e4 1\ S e3 e4)))

1\ S x y)

::>

SIM xy

This theorem can be used to prove other properties of the simulation function. First, it

is reflexive for well typed programs and transitive for all programs.

Theorem 7.20

'Ix a. x : a ::> SIM x x

'Ix y z. SIM x y 1\ SIM y z ::> SIM x z

Proof. For reflexivity the proof is a simple coinductive proof using the relation S R

where

SR x Y = (30. x : a) 1\ (x = y)

For transitivity the proof is again by coinduction using the relation ST where

ST X Z = 3y. SIM x y 1\ SIM y z

7.3.2 Bisimulation

Bisimulation can now be defined in terms of simulation. The function op that reverses

the order of elements in a relation given as

Definition 7.21

(op S) T Y = S Y T

The definiton of the function on which bisimulation is based is

Definition 7.22

F== S x y = (FSIM S X y) 1\ (op (FSIM (op S» x y)

CHAPTER~ EQUIVALENCE 96

This is a monotone function and h88 the same property 88 the function described in

equation 7.4.

'VS el e2· (F S) el e2 =
(30. el : 0 1\ C2 : 0) 1\

I I
('Vea l. Cl ---+ C3 ::> (3C4. C2 ---+ e4 1\ S C3 C4» 1\

I I
('Ve4 l. C2 ---+ e4 :::> (3e3. e} ---+ e3 1\ S Ca e4»

The equivalence relation between expressions that is central to this work can now be

defined as follows

Definition 7.23

The principles of co-induction and strong co-induction follow easily from the definiton

and theorems 7.9 and 7.10.

Theorem 1.24 (A co-induction principle for ==) If there is a relation S such that

S x y and for any a, b for which S a b

('Va'. 'Va. a ~ a':::> (311. b ~ II " S a' II» "

('Vb'. 'Vo. b ~ II :::> (3a'. a ~ a' " S a' b'»

then x == y.

Theorem 1.25 (A strong co-induction principle for ==) If there is a relation S

such that S x y and for any a, b for which S a b

('Va'. 'Va:. a ~ a':::> (3b'. b ~ b' 1\ Sa' b' V a' == b'» 1\

('Vb'. 'Va. b ~ II :::> (3a'. a ~ a' " Sa' b' V a' == II»

then x == y.

This relation is an equivalence relation.

Theorem 7.26

'Vx a. x : a ::> x == x

'Vx y. x == y::> Y == x

'Vx Y z. x == Y 1\ Y == z ::> x == z

CHAPTER 7. EQUIVALENCE 97

Proof. The proofs of the three theorems are by co-induction using the relation SR, S8

and ST respectively:

SR x y = (30. x: 0) " (x=y)

S5 x y = op --
ST x Z = 3y. x == y " y==z

Many other properties can be proved for the relation. The first that is investigated is

the proof that the relation is a congruence.

7.4 Congruence

This section presents the proof that the equivalence relation, ==, is a congruence. This

will form the basis of the equational reasoning system developed in the next section. The

congruence rules are not proved directly but are derived from a more general theorem

depending on a concept of contexts, closing substitutions for these contexts (closures),

and the properties of extensions of a relation between closed terms to a relation between

open terms (open extensiOns) in conjunction with closures of the terms.

The proof, using Howe's Method [How89J, works by proving properties of an open

extension of ==. The proof of congruence is long and involves the introduction of an

additional inductively defined relation that is easily proved to be a congruence, and then

proving that the two relations are equal. The mechanised proof mirrors very closely a

proof on paper [Gor95aJ.

A special case of the result will be that for an expression C with one free variable x,

any two substitutions 81 and 82 with the property that

give

The congruence rules are then obtained by specialising the context C.

For the rest of this section we discuss simulation instead of bisimulation, as the results

for simulation are simpler and the bisimulation results follow easily.

7.4.1 Compatible refinement

The concept of congruence is formalised using a new relation, Compref, called the com­

patible refinement of a relation. The rules defining Compref R for some relation R

between expressions are given in figure 7.3. A relation is a precongruence if it contains

CHAPTER~ EQUIVALENCE

Compref R r a(var e)(var e)

Compref R r Num (num n) (num n)

Compref R r Num el e2 Compref R r Num II 12
Compref R r Num (nop n el e2) (nop nil 12)

Compref R r Num el e2 Compref R r Num 11 12
Compref R r Bool (bop n el e2) (bop n il h)

R r (a -+ (J) edl R r a e212
Compref R r {3 (el e2)(ft 12)

R (r[x t-+ oJ) {3 el e2
Compref R r ('y -+ {3) {.\x: a. ell (Ax: a. e2) "Y

=0 a

R r a el e2 V
Compref R r "y (Ax. etl(Ax. e2) "y =0' x.a

R (r[x t-+ aDa el e2 {3 =0 a
Compref R r {J (ree XQ et}{rec Xo e2)

FDom m C
all3 (R f) (Map (AY, y[Data:r mix!) ts) eSI eS2 _

)(ts = m C
Compref R r {J (con Co eSI con Co eS2)

R r (Data x d) el e2

FOom c'i S = FOom C2 s

"Is. FOom ci s ::>

FOom d s 1\

{J =0' (Data x m)

R r (makefun a (Map (Ay. y[Data x d/x)) (d 8» (ci 8) (C2 8»

Figure 7.3: The definition of compatible refinement

98

CHAPTER 7. EQUIVALENCE 99

its own compatible refinement and a congruence if it is also an equivalence relation.

Compref is easily proved to be a monotone function.

7.4.2 Open extensions

An open extension of a relation is a relation which takes the same argument as the

original along with closures of those arguments.

Definition 7.27 For any relation R the open extension Open R is defined by

The useful properties of this definition include the reflexivity of the open extension of

simulation.

Theorem 7.28

vr e a. r ~ e : ~ Open SIM rae e

Proof. Using definiton 7.27 this simplifies to the goal

with the assumptions Closure r 8 and r ~ e :. These assumptions and theorem 5.56 give

[xl. : a

The result follows from theorem 7.20.

The open extension of simulation does not distinguish between alpha-equivalent types.

Theorem 7.29

VI' Q {3 el e2. Q ==0 {3 ~ Open SIM r Q el e2 = Open SIM r {3 el e2

Proof. From the definition of open (definition 7.27) and the theorem relating typing

judgements with alpha-equivalent types (theorem 5.51).

7.4.3 Precongruence and congruence

Instead of directly proving that simulation is a precongruence, a new relation which can

be easily proved to be a precongruence is introduced. The fact that simulation is a

precongruence will be proved by showing that the open extension of simulation is equal

to this new relation. This relation, which will be referred to as the candidate relation,

is defined as follows:

CHAPTER 7. EQUNALENCE

Definition 7.30

Compref Cand r a el e2 Open SIM r a e2 ea
Cand r a el ea

100

This relation and the structure of the proof that it is equal to the open extension of

simulation is very close in form to the presentation in Gordon's report (Gor95aJ. A

range of simple properties can again be proved including reflexivity results.

Theorem 7.31

'tfI' e a. r r- e : a ::> Cand rae e

Proof. By rule induction over the typing judgement. Each case follows from defini­

tion 7.30, the reflexivity of open simulation (theorem 7.28), the definition of compatible

refinement (figure 7.3), and the typing rules.

Theorem 7.52

'VI' e a. r r e : a ::> Compref Cand rae e

Proof. By rule induction over the typing judgement. Each case follows easily the rules

for compatible refinement (figure 7.3) and from theorem 7.31.

From the definition it is easy to prove that the relation, Cand, is a precongruence.

Theorem 7.53

Proof. Follows immediately from the definition of Cand and the refiexivity of the open

extension of simulation (theorem 7.28).

The proof that the relation, Cand, and the open extension of simulation are equal is done

by showing that both relations contain the other. The first direction is straightforward.

Theorem 7.34

Proof. For any r,a,el and e2 we have Open Sim r a el e2. This and definition 7.27

give r r el : a. From this and theorem 7.32 we get Compref Cand r a el e2. The result

follows from using the definition of Cando

The proof in the other direction requires a number of lemmas expressing the relationship

between the candidate relation and the open extension of simulation.

CHAPTER 7. EQUIVALENCE 101

Lemma 7.35

Proof. Follows from the definition of Cand and the transitivity of simulation and open

extentensions.

Cand is the smallest relation satifying theorems 7.33 and 7.35.

Lemma 7.36

'r/R.
«VT 0 el e2. r r e2 : 0 ~ Compref R r 0 el e2 ~ R r 0 ele2)/\

(VT 0 e el e2. R roe e2 /\ Open SIM r 0 e2 el ~ R roe el))

~

(VT 0 el e2. Cand r 0 el e2 ~ R r 0 el e2)

Proof. By rule induction using the induction theorem arising from the definition of

Cando

If two expressions are related by the candidate relation and two further expressions

related by the candidate relation are substituted into these expressions, then the resulting

expressions are also related by the candidate relation.

Lemma 7.37

VT 0 el e2. Cand r 0 el e2 :J

(VTI x {3 II h· (r = (rIlx ~ (3])) :J

Cand rl {3 It h ~ Cand rl 0 (el[lt/x]) (e2[h/x]))

A related theorem states that if a substitution is made for all the free variables in the

expressions related by the candidate relation, then the resulting expressions are related

by the candidate relation with an empty context.

Lemma 7.38

VT 0 el e2. Cand r 0 el e2 ~

(Va. Closure r a ~ Cand FEmpty 0 [ell. [e2li)

Proof. Both the results are proved by a rule induction over

Cand r Q el e2

then reasoning about the compatible refinement relation and substitution.

The final collection of results needed relate to the relation S defined by

S el e2 = (30. (and FEmpty 0 el e2)

with the properties

CHAPTER~ EQUIVALENCE

Lemma 7.39

Proof. By rule induction over the reduction relation.

Lemma 7.40

Vel e2 l.el ..l.... e2 :) (Ve3. S el e3 :) (3e4' e3..l....4 1\ S e2 e4»

Proof. By rule induction over the transition relation and using lemma 7.40.

It follows from this that the relation S is contained in the simulation relation

Lemma 7.41

Proof. By co-induction using lemma 7.40 to show that S is a simulation.

Lemma 7.42

102

Proof. Follows immediately from the definition of open extension and lemma 7.41.

Lemma 7.43

Proof. Follows from the definition of Open and lemma 7.38.

From these properties of Cand the following theorem can be proved.

Theorem 7.44

Open Sim = Cand

Proof. From lemmas 7.42 and 7.43 we get the result

and theorem 7.34 gives the result in the other direction.

From this it follows that Open Sim is a precongruence since Cand is a precongruence

(theorem 7.33).
To relate the results for simulation to bisimulation it is necessary to show the relation-

ship between the open extension of simulation and the open extension of bisimulation.

CHAPTER 7. EQUIVALENCE 103

Theorem 7.45

'vT a el e2·

(Open SIM f a el e2 " Open (op SIM)r a el e2) :>

(Open (==»f a el e2

Proof. Follows from the definitions of Open and op and the relationship between bisim­

ulation and simulation.

Using this and the congruence of the open extension of simulation it is easy to prove

that the open extension of bisimulation is also a congruence.

Theorem 7.46

'II' a el e2·

f ~ e2 : a :> Compref (Open (==) r a el e2) :> (Open(==)r a el e2)

To relate this theorem to the congruence rules for closed programs we need one further

result.

Theorem 7.47

'leI e2. el == e2 = (3a. Open (==) FEmpty a el e2)

Proof. The proof is straightforward using the definition of Open and the fact that the

substitutions generated by expanding the definition of Open must be empty and hence

have no effect of the terms.

A set of congruence rules for expressions are easily proved from the last two theorems

and the definition of compatible refinement. For example, the rule for application is:

'leI e2 e3 e4 a {J.

el : a - {J "e2: a " el == e3 " e2

7.5 Properties of equivalence

This section describes some useful and important results including the fact that equiv­

alence is preserved by reduction. This proof will make use of the following result about

the possible transitions for active types.

Theorem 7.48

'Vel e2. el - e2 :>
(3a. Active a" el : a) :> ('Ve3 l. el .J.... e3 =

Proof. By rule induction over the reduction relation.

CHAPTER 7. EqUNALENCE 104

Theorem 7.49

Vel e2. el -* e2 :J

(30. Active a /\ el : a) :J (Ve3 l. el -1-. e3 = e2 -1-. e3)

proof. By induction over the definition of many step reduction.

The key theorem is

Theorem 7.50

Va b. a --+ b ::> a == b

Proof. This is proved by c~induction using the bisimulation Aa b. a -- b and a case

analysis over all possible transitions. If the type of a is active then the result follows

easily from theorem 1.48.

Results relating the transition relation with evaluation can also be proved. These

are used in the proof of contextual equivalence and in the tools described in the next

chapter.

Theorem 7.51

Vel e2 I. el -1.... e2 ::> (30. el : a /\ Active a::> el-U-)

proof. By rule induction over the transition el -1-. e2.

Although it has been proved that the defined equivalence relation, ==, is a congru­

ence it is not true that equivalence equals equality. The theorem

Vel e2 : expo (el == e2) = (el = e2)

does not hold. The two expressions

(AX: a:.X)(Ax : a:.x)

and

AX: a.x

are equivalent, since the first evaluates to the second, but are not equal, since the first

is an application and the second is a lambda abstraction.

In practise this does not present a problem, unless we are reasoning about a predicate

over expressions that does not respect equivalence. This issue arises in chapter 9 and

some solutions are discussed there.

It would be possible to define a new type by taking the quotient of the expression type

with the equivalence relation. This would effectively disallow the definition of predicates

over the new type that do not respect equivalence. Instead we take the approach of

restricting the predicates allowed in certain situations.

CHAPTER 7. EQUIVALENCE 105

1.6 Contextual equivalence

Contextual equivalence was introduced in section 3.3. The informal definition given

there stated that two expressions are equal when substituted into a larger expression (the

context) and the convergence behaviour of that larger expression is the same for both

expressions. In formalising the definition there are number of considerations, particularly

relating to the possible types of the context. In section 7.2.3 active and passive types

were introduced. Equivalent expressions of active types will have the same evaluation

behaviour while equivalent expressions of passive types may not. For this reason we

restrict the definition of contextual equivalence to contexts of active type. A context is

defined to be

Definition 7.52

Context x 0 e = (3p. Active p 1\ [x t-+ 0] I- e : P)

As with the other results in this section we do not prove that applicative bisimulation and

contextual equivalence coincide directly but instead prove the equivalence of simulation

and contextual order. Contextual order can be defined as follows.

Definition 7.53

co el e2 = 30. et: 0 1\ e2: 0 A

ftlx e. Context x 0 e :> «e[el/x» ~:> (e[e2/x» ~»

The proof that contextual order includes simulation is relatively simple.

Theorem 7.54

\let e2. SIM el e2 :::> CO el e2

Proof. For any context e we need to show that if SIM el e2 then

Since simulation is a precongruence we know that SIM (e[et/x)) (e[e2/x)). Now, if

(e[et/xJ) ~ then it reduces to normal form and can make a transition. From this we

know that e[e2/x] makes the same transition and, from theorem 7.51, that (e[e2/x)) ~.

It can also be proved that simulation includes contextual order.

Theorem 7.55

CHAPTER 7. EQUNALENCE 106

proof. The result follows immediately from a proof that contextual order is a simulation.

This proof uses a case analysis of all the possible transitions and properties of the

transition and evaluation relations. In the following chapters only the co-inductively

defined equivalence is used. It would be possible to develop other proofs using contextual

equivalence but this is not investigated here.

7.7 Related work

All the theory in this section is based on Oordons work on operational theories for func­

tional programming language [Gor93b, Oor94, Gor93a, Gor95a, Gor95bJ. The general

structure of the theory and the structure of many individual proofs follows this work

closely. The main differences are the details of the language.

Other approaches can be used for developing a co-inductively defined equivalence

for a functional programming language without introducing a labelled transition sys­

tem. This can be done by defining equivalence in terms of a large step evaluation

relation [00194, Pit97). Expressions are equivalent if they have the same termination

behaviour and evaluate to terms that are equivalent. This approach has been used by

Ambler and Crole (AC99) 88 a basis of a mechanised theory similar to that presented in

this chapter.
The small step semantics and labelled transition system was used here because it is

finer grained and provides more information about the wayan expression is decomposed.

This can be useful when reasoning about infinite structures and for finding errors in

expression~ during a proof attempt.

Chapter 8

Supporting formal reasoning

This chapter discusses various reasoning principles that can be developed from the theory

of equivalence derived in the previous chapter. These are used to develop the tools that

are necessary to make reasoning practical.

The tools described in chapter 6 can automate the proofs of many facts about the

evaluation and typing relations. Although this allows the automation of many of the

trivial steps in a proof. the tools described are not sufficient to raise the level of inter­

action to a high level. The typing and evaluation conversions must still be applied by

hand, as must the theorems we need about labelled transition systems. This section gives

some examples of how the tools can be combined with commonly used meta-theorems

to produce the higher level proof tools that give the desired level of interaction. This

chapter then gives a series of examples of the use of the tools.

8.1 Constants, equivalence and transitions

Chapter 6 introduced ML programs that simplified the definition and use of SDT datatypes

and functions. These tools stored theorems about the typing and reduction for the new

constants introduced. In the last chapter the transition system and equivalence relation

were added. The tools can be extended to store results about these for the introduced

constants.
The data stored for constructors is updated with two new fields. One stores a theorem

stating the possible transitions for a given constructor and the other stores a congruence

rule. The expanded record is:

type Coninfo • { Name:string,

Def : tbJD ,

Ty: tbJD option,

(.The name of the constuctor.)

(.The definition of the constructor.)

(.The theorem giving the type.)

107

CHAPTER 8. SUPPOJ:rI1NG FORMAL REASONING 108

Lts:tba option, (*'l'he theor_ giving the transitions.)

Cong:tba option (*The congruence rule.)

}

For lists the new theorems for the possible transitions would be:

"Ie a I. Ni1a ~ e = (e = Zero) "(l = destL Nil (list a) 0)

I
"Ie el e2 I a. ConSa el e2 -- e =

(e = e.) " (I = destl Cons (list a) 1) V

(e = e2) " (I = destL Cons (list a) 2)

The congruence rule for Cons is

"Ix 1/ xs 1/S a.

x : a " xs: List a " x == 1/ " xs == "s :::> COOSa x X8 == Consa " 1/S

The data stored for a datatype is updated by adding one new field. This stores the

possible transitions that any expression of that type can make. This is simply the sum

of the possible transitions for the constructors of the type.

The definition and reduction rules for map given earlier differ from the normal rules

that would be used to define map. The use of the case split would normally be replaced

by pattern matching. The rules would be

maPa / [I == 0
maPa / (COMo x xs) == COOSa (/ x) (maPa / xs)

for correctly typed arguments. These rules can be easily proved from the definition of

map. The next section introduces tools for rewriting with equivalence and it is useful

to have the rules representing these pseudo-definitions stored to be used for rewriting.

A new field is added to the functions record to store this information although at the

time of definition no theorem is stored. These can be added later if they are proved. In

principle an automated tool could be added to take a specification in this more natural

form, work out the necessary underlying function and then prove these rules. This could

form the basis of future work.

8.2 Equational reasoning

This section introduces the equational reasoning system that is based on the congruence

results in the previous chapter. The rewriter simply takes a list of equivalences and

an expression and traverses the expression substituting terms from the list where they

match sub-expressions.

CHAPTER 8. SUPPORTING FORMAL REASONING 109

The rewriter is based on the fact that the relation == is a congruence. An ML

function is defined to prove the appropriate congruence results when needed. Such a

function is called a conversion. The type of a conversion is cony which is equal to the

type term -> thm. A conversion takes a term t and returns a theorem of the form

I- t = t'. Thus a conversion proves the equality of a term to some other term and

returns a theorem stating this equality. Following Paulson, conversions are used as the

basis for implementing rewriting [Pau83].

The function used here to prove congruence results, cong_CONV:tbm -> conY, is a

slight variation on this general pattern. It takes a theorem of the form ~ el == e2 and

returns a conversion that proves that any expression e is equivalent to the expression

formed by replacing all occurrences of el in e by e2. If the new expression is denoted

bye' then the theorem returned is of the form e == e'. Note that it does not return

e = e'.
This conversion can then be used as a basis for a tactic

EQUIV_REWRlTE_TAC : thm list -> tactic

which takes a list of theorems of the form el == e2. The tactic reduces a goal of the

form e == e' by rewriting all sub-terms of this goal matching the left hand sides of

one of the list of theorems to the right hand side. A variation on this is the tactic

ASM~UIV ...REWRITE_TAC : thm list -> tactic which also rewrites with any assump­

tions of the form el == e2·

Type checking may be required to complete the rewriting process, since the reflexive

property and congruence rules must be used and these contain typing judgements as side

conditions. The rewriting conversions will use the type checker to automate these proofs

where possible. If any of these proofs fail then the side condition will be turned into an

assumption of the resulting theorem in a similar way to the treatment of variables in

chapter 6.

8.3 Variables

The type-checker and reducer introduced in chapter 6 contain support for handling logi­

cal variables in the expressions they are applied to. This section discusses the extension

of these tools to also make use of facts about the equivalence of expressions.

For type checking there are several additional types of assumption which are useful

for deciding the type of an expression. These can be searched efficiently for additional

information. The new assumptions that are handled include statements of the form

x == e where x is a variable. If the type checker is applied to an expression containing

CHAPTER 8. SUPPORTING FORMAL REASONING 110

the variable x then it will try to type check e and use that result in the proof. This is

often preferable to rewriting the goal to replace x with e. If e is a large term then such

a rewrite may increase the size of the goal considerably, particularly if x appears more

than once.
This approach could be extended to include a wider variety of statements, such 8B

an equivalence consisting of a term other than a variable on the left hand side. This

would require more to find a proof automatically. In most cases, adding a new term to

the list of facts used by the tools can be used instead and the resulting subgoal proved.

The same extensions cannot be made to the reducer. When trying to prove that a

term el reduces to a term e2, the fact that e1 contains a variable x and x == e cannot

be used in reducing el· The central problem is that, while the statement

(8.1)

is true, the statement

is not in general

8.4 Coinduction

The tactics for co-induction and strong co-induction work by manipulating the goal,

applying a theorem and then simplifying the resulting subgoals. The tactics take a

relation S and manipulate the goal, such 8B stripping away some universal quantifiers

and assumptions, so that it is in the form a == b suitable for the application of one

of the principles of co-induction. The tactics then tidy up the resulting subgoals and

attempt to solve any subgoals involving only type checking. For some simple cases they

also prove that S a b.

In general the work here will not try to determine what the bisimulation relation S

is. One tactic GUESS_CO INDUCT _TAC will try the simplest relation. For an equivalence

el == e2 this will be the relation containing pairs of the form (et. e2) generalised over

any HOL variables in the expressions. Dennis [Den99] h8B investigated the use of proof

planning to work out the bisimulation relations for functional programming languages.

8.4.1 Labelled transition system

There are a number of theorems about the labelled transition system that depend on

the evaluation and typing relations. Rather than force the user to apply the evaluation

CHAPTER 8. SUPPORTING FORMAL REASONING 111

and type tactics explicitly, higher level tools are provided to apply the lower level tools

automatically.

For example, a tool to apply a result about the labelled transition system is the

conversion that applies theorem 7.49. The theorem is

'Vel e2. el ~. e2 :::>

(30. Active 0/\ el : 0) :::> (\fe3 l. el --!..... e3 = e2 --!..... e3)

The conversion LTS..REDUCE_CONV : term list -) conv takes a list of terms, typically

derived from the assumption list as in chapter 6, and tries to prove the equation

by evaluating elt then instantiating the theorem above to the appropriate terms and

using the reduction theorem to remove the antecedent of the implication. The condition

that the type is active is proved by using the type checker to decide the type of el or

raising this as a separate proof obligation if that fails. A tactic, LTS..REDUCE_TAC, applies

this conversion to any transitions in the goal.

For exa.mple, the fUllction map was introduced earlier and the function iterate can be

defined easily. The following equations specify the behaviour of these functions.

maPa {3 ! Ni1a == Nil{3

maPa {3 ! (Conso x xs) == Cons (f x) (map! xs)

iteratea ! x == Conso x (iterate! (f x»

The following statement can be proved by co-induction using the tools described here.

\f!ax.!:a-a /\ x:a :::>

iterateo ! (f x) == maPa a ! (iterateo f x)

First the tactic GUESS_COINDUCT_TAC is applied. The relation that this tactic chooses to

use is the one relating any expression a and b where

a = iterateaf' (I' xl)

b = mapa a f' (iterateo f' xl)

for some !' and x'. The tactic also automatically proves that a and b have the correct

type and that the left and right hand sides of the original goal are in the relation. It only

remains to show that the relation is a bisimulation. There are two subgoals generated,

CHAPTER 8. SUPPOKI'ING FORMAL REASONING

the first of which is

a~a' ~ (311. b~V A

«31 x.

(a' = iteratea I (I x» A

(b' = mapa a I (iterateal x»A

I: 0 - oA

x: o)V

a' == V))

a = iteratea I' (/' x')

b = maPa a I' (iteratea I' X')

I': 0 - 0

r:o

112

The second goal is similar and relates to matching any transitions for b with transitions

for a. The proofs of the two goals are identical so only the first is considered here. If

LTS..REJ)UCE-TAC is applied to the goal, then the expressions on the left hand side of the

transition are reduced to give a new goal.

Consa (I' x') (iteratea I' (I' (I' x'»))!... a' :::>

(3b'. Consa (/' x') (mapa a I' (iterate f' (I' x'»))....!... b' A

«31 x.

(a' = iteratea I (I x)) A

(b' = maPa a I (iterateal X»A

l:o-oA

x: o)V

a' == V»)

The next step in the proof is to analyse the possible values of the label and right hand

sides of the transition.

Thit; is done using a second conversion, LTS_CASE_CONV, or associated tactic, LTS_CASE_TAC,

which performs a case analysis on the structure of an expression to determine the possible

transitions. For the example above the transistion

ConSa (I' x') (iteratea I' (1'(1' x')))!... a'

can be simplifed using the theorem about the possible transition for Cons that is stored

in the global state. The theorem is

I
"'Ie el e2 l o. Consa el e2 -- e =

(e = et) A (l = destl Cons (list 0) 1) V

(e = e2) A (l = destl Cons (list 0) 2)

CHAPTER 8. SUPPORTING FORMAL REASONING 113

In the example this means that either

a' = !' x' and 1 = destL Cons (list a) 1

or

a' = iteratea !' (f'(f' x'» and I = destL Cons (list a) 2

The first case is solved by letting 11 = (f' x'), since (f' x') == (f' x') by reflexivity.

The remaining case is solved by letting 11 = (mapa a I' «iteratea 1') (I' x'»). The

result follows since the values for a' and b' are in the bisimulation. This is shown by

proving that

31 x.

(a' = iteratea I (I x» "
(11 = maPa a I (iterateQI x» A

l:a--+aA

x:a

This can be done by choosing I' as the witness for I and I' x' as the witness for x.

This proof is typical of examples where the programs are generating lists. In this

case we do not have to reason about undefined lists. There are added complications

when this simplification cannot be made and these are discussed in a later example.

8.S Strictness of functions

There are some programs that cannot be reduced sufficiently to allow case analysis

of the possible transition and additional information must be derived before the tools

described above can be applied. For example, suppose the map function is applied to

some unknown list xs

maPa {J I xs

If xs is the empty list then the program will evaluate to Nil and if xs is a Cons then the

program will evaluate to a Cons. But xs may be undefined, in which case we cannot

evaluate the application of map. This is because map is strict in its second argument; if

the second argument of an application of map cannot be evaluated then neither can the

application of map. In many cases it is possible to make use of this strictness information

in co-inductive proofs.

Consider a goal of the form

(mapa (3 I xs .J..... e) ::) P

CHAPTER 8. SUPPOKI'ING FORMAL REASONING 114

Although %8 is a variable, this does give sufficient information about the reduction

behaviour of xs to perform the case analysis described above. We can prove that if any

program of list type makes a transition, then it must also evaluate to some value. So

maPa {J f X8 can be evaluated and because map is strict in its second argument we know

that xs evaluates. Inspection of the type of x will give the possible values of x and then

LTS....REDUCE-CONV and LTS_CASE_COHV can be applied.

8.5.1 Evaluation to normal forms and strictness

The argument in the example above was phrased in terms of the strictness of map

in its second argument. There are different ways to handle the propagation of such

information. For example, a predicate Strict could be defined to test if any function is

strict in an argument

Strict f = (30 (3. f : a: - f3 A f 1.0 == l.{J)

and a theory built up from this to allow reasoning about the strictness of functions.

The approach taken here is not to reason directly about the strictness of functions

but instead to reason about the evaluation behaviour of the functions. An alternative,

equivalent definition of Strict would be that

Strict f = (30 f3. f: a: - (3) A (Ve. (f e) ~:::> e~)

although this is not used explicitly. The results about evaluation behaviour are defined

when needed and not stored as theorems involving the constant Strict.

The main results in this section relate to the mechanism for propagating the infor­

mation about the evaluation of an expression and its sub-expressions through a goal.

For example, a common goal will be of the form

F[e]~z

G[e}.!!.... y

where F and G are expressions containing the expression e as a sub-expression. If G is

strict in e then we can make use of the assumption that G[e] makes transition and hence

has a normal form to show that e must reduce to some value. Theorem 7.51 is used to

get the initial evaluation result that forms the basis for the proof. This theorem states

that

'Vel e2 ,. el ..1..... e2 C (30. el : a: A Active a::::> el~)

If we can propagate the fact that G[e1 has this evaluation behaviour in the above goal to

a result about e, then we will be able to deduce the possible transitions for F[e]. Some

results which show this propagation are:

CHAPTER 8. SUPPORTING FORMAL REASONING 115

Theorem 8.1 Propagation of normal form results into expressions.

'in. num n.u.

Vc es. case c es JJ.:::> c JJ.

Vop a b. (nop op a b) JJ.:::> a JJ.

Vop a b. (nop op a b) JJ.:::> b.IJ.

From these theorems a series of conversions and tactics are built that can prove results

about the propagation of evaluation information. In the above example these will prove

that e .IJ. since Gle].IJ.. Since the type of x is known, and it is known that it reduces to

normal form, all the possible values of x can be determined and a case split made on

these values. This is discussed in more detail for a specific example in the next section.

8.6 Application of the tools

This section presents a series of small examples showing the different ways of using the

tools to reason about the equivalence of expressions.

8.6.1 map-compose

This example involves the interaction of two functions, map and compose. The theorem

we aim to prove is

VI 9 x ttl t2'

f : tl - t2 A 9: t - tl A x: List x :::>

maPU2 (comJ)05e& tl t2 I g) x == maPtl t2 I (maPt h 9 x)

The definition of map is given in figure 6.2 and the definition of compose is

Definition 8.2

A natural equational definition can be derived from this definition. An equational

theorem for compose is

(composet t1 t2 f g) x == I (g x)

for all appropriately typed I, g, and x.

CHAPTER 8. SUPPORTING FORMAL REASONING 116

As with the map-iterate example, the proof is by strong co-induction, using a relation

8 with definition

Sab = 31 gx.

(a = mapU2(comf>OSet '1 '2 I g) x) "

(b = maPtl '2 I (mapt'l 9 x» "
Prog (tl -+ t2) I 1\ Prog (t -+ tt) 9 " Prog (List t) x

The proof begins by applying the tactic for strong co-induction. In addition to applying

co-induction this performs some automatic proof about the types of the terms and proves

the theorem

~ S (map, t2(comPoset '1 t2 I g) x) (maptl t2 I (mapt tl 9 x»

which states that the left and right hand sides of the original goal are included in the

relation S. It remains to be shown that S is included in F==(S U ==). Two goals are

generated.

1. Va' act. lTS a a' act ::> (311. (lTS b II act) 1\ (S a' b' V a' == II))

2. VII act.lTS b II act ::> (3a/.(lTS a a' act) " (8 a' II V a' == II))

where we have assumptions

a = maPt t2 (comp05et tl '2 I' tI) x,

b = map'l '2 l' (map! tl tI x')

for some f', g, and x'. We cannot proceed as in the first example because we cannot

evaluate either a or b unless we can evaluate x'. But, from the strictness of map, the

assumption that a makes some transition and the type of x', the system can deduce

that x' must evaluate to nil or some cons cell. Two goals are generated, with the new

assumptions

Eval x' nilt

Eval x' (cons hi t')

for some hi and t' with the correct types.

With the possible values for x' known, a and b can be evaluated and the goal simplified

using LTS..EVAL_TAC and LTS..DISCH_TAC as in the previous example. If x evaluates to nil

then a and b evaluate to nil and the transition must be the Nil transition. If x evaluates

to cons hi t' then two goals corresponding to the Hd and TI transitions are generated.

Each of the goals is solved by choosing a witness for II and followed by some simple

equational reasoning.

CHAPTER 8. SUPPOKI'ING FORMAL REASONING 117

8.6.2 rotate

If we introduce the tree type into SDT and define the function rotate with the properties

I- Vo: a. a : 0: ::) rotatea (Leaf a) == (Leaf a)

I- Vo: I r. I : tree 0: 1\ r : tree 0: ::)

rotatea (Node I r) == Node (rotateQ r) (rotateQ l)

we can prove the following theorem

I- Vt 0:. t : tree 0: ::) rotatea(rotateQ t) == t

The trees t for which this theorem hold may be finite, infinite or undefined. The proof

is by co-induction using the trivial relation

{(rotatea(rotatea f), f)}

The proof involves a simple analysis of the transition system. It requires some strictness

analysis to start the proof. In order to analyse the transitions we need to know more

about the tree t'. Because we know that rotate is strict in its first argument we know that

the whole expression is dependent on the value of t'. We can then perform a case analysis

over the possible constructors of tree type (Node or leaf) and the possible transitions.

In our system the whole proof is fully automated, including the strictness analysis. The

actual proof script used is

GUESS_CO_INDUCT_TAC THEN

LTS_STRICT_TAC THEN

LTS_SIMP_TAC

This script is very general and will prove a wide variety of goals for a range of different

datatypes.
It is for proving results like this that co-induction is particularly useful. An alter­

native inductive proof would require a side condition that the tree was finite. This

side condition would then need to be proved before using the theorem in subsequent

rewriting.

8.6.3 Extending the bisimulation

In the earlier examples in this section the bisimulations have been trivial and consist

of only the original pair of terms generalised over some of the variables. While a large

class of problems can be solved by these simple bisimulations, there are problems where

a more complex relation is needed. There are two common methods for adding more

elements to the bisimulation. The first is to add additional pairs of terms with a different

CHAPTER 8. SUPPORTING FORMAL REASONING 118

pattern. Section 2.3.2 included an example of a problem where there are two pairs in

bisimulation. The theorem that can be proved is

.- tflist == merpBool t1ist flist

This can easily be proved using ~induction with the bisimulation

tflist 1\ e2 == merge tlist fUst) V

False::tflist 1\ e2 == False::merge tlist flist)

The second method used to the extend the bisimulation is to pick new functions which

evalua.te to the function in the initial goal for some inputs. The following example, used

by Dennis [DG97J, illustrates this generalisation.

h = rec h : (V'a. (0 - 0) - a - list 0).

Aa. >../: a - a. >..x: a. Consa X (map a a / (he / x»

This function is another way of defining the iterate function. The theorem

"1/ x Q. / : Q - a 1\ x: Q ::> ha I x == iteratee / x

should hold. This is not provable using the simple bisimulation consisting of the pairs

of the form

(ha / x, iteratea / x)

because each step in the production of the list from the application of h introduces a

new application of the map function into the result. The solution is to introduce a new

function which will be used to capture the repeated applications of map or any other

function.

fexp = ree /exp : (V'a .. (0 - 0) - Num - a -. 0).
Aa.A/ : a - a. AX : Num. AY : Q.

case (x = 0) of

True 1-+ y I
False 1-+ / (fexpe / (x - 1) y)

This allows the bisimulation for the proof to be written down as a generalisation of

the original goal

Vel e2· (3n. el -- fexP(list a) (mapa e f) n (ha / x) 1\

e2 -- iteratea / (fexPe / n x»

The equivalence of h and iterate can then be proved by co-induction using this relation.

CHAPTER 8. SUPPORTING FORMAL REASONING 119

8.6.4 An example using filter

One function that is simple to define but is hard to reason about is filter. It can be

easily defined in SDT and proved to have the properties

filtera P U -- D
filter a P (ConSa % %8) -- case (p %) of

True Consa % (filtera P %8)

False filter Q P %8

If filter is applied to an infinite list and the predicate p is false for all elements of the list

then the function will never return a value. This means that the termination behaviour

depends on the value of its inputs and not on the structure of the input as with functions

like map. It is possible to reason about the function, by co-induction, with arbitrary

arguments but this requires a rule induction over the reduction relation. There are ways

of performing this rule induction once and deriving a new proof principle that is similar

but more complex than the proof based on bisimulation [Gor95a] but this has not yet

been mechanised.

With the tools described here the function can still be entered into the system and

properties proved of programs using filter without proving general properties of filter.

For example the goal

filterBooi istrue tflist == tlist

can be proved with a trivial co-induction argument.

8.7 A model of circuits

This sections discusses some experiments with using SDT to investigate a translation

of Ruby [SJ90j, a relational hardware description language, into Haskell [H+92]. The

purpose of the translation is to allow the execution of specifications in Ruby. This

new functional model of circuits, known as the Slack Circuit model, was developed by

Jonathan Hogg. This section does not discuss the details of the model or all the results

shown using SDT. These are covered elsewhere [CH97j.

8.7.1 The Slack-Circuit Model

The problem with embedding relation languages, such as Ruby, in a functional language

is the need to consider dataflow with functions. But, the problem is not in the presence

of dataftow as such, since most circuits have well-defined dataflow implicit in them; the

problem is in the need to explicitly specify the directions in the combinators.

CHAPTER 8. SUPPORTING FORMAL REASONING 120

The Slack-Circuit model takes a different approach to other translations by modelling

relations, not as functions from inputs to outputs, but as functions from a domain/range

pair to a new domain/range pair. The new domain and range represent the state of the

circuit's signals after the circuit has notionally executed. Consider an inverting circuit

described as a relation:

a inv b~a=b

This specifies that the domain, a, is the logical opposite of the range, b. Although the

directions are not specified here, we can implicitly determine two possible dataftows: a
as input and b as output, or b as input and a as output. The following function, inV,
gives an interpretation of this relation.

inV :: ([8001],[8001]) -> ([8001],[8001])

inV (as,bs) • (map not bs, map not as)

The domain and range types are streams of booleans. Because Haskell is a lazily evalu­
ated functional language, these streams can be infinite. The question is which way is this
circuit executed? Here we take advantage of another property of laziness to determine
the appropriate order of execution. Consider the following Haskell expression:

ys • snd (loV (xs,ws»

If we evaluate y8 then the second map in the definition of inV will be evaluated such that

y8 • map not X8. If we consider the evaluation of y8 to be the act of obsenling the inV

circuit, then the direction of the circuit can be said to be determined observationally.

TiS could be any value without affecting the result.

Circuit combinators can be specified in a similar manner. The standard Ruby circuit

combinator is the serial composition operator which connects the range and domain of

two respective circuits:

.£ (R; S) z <===? 3y . .r R y & y S z

The encoding for the Ruby serial combinator into Haskell is shown below using the

symbol <->.

«-» :: Circuit a b -> Circuit b c -> Circuit a c

«-» r s (a,c) • (a',c')

where

(a',bl) • r (a,b2)

(b2,c') • s (bl,c)

where Circuit a b is the type (a, b) -> (a, b). The way in which this functions works

is not clear, depends heavily on laziness and polymorphism, and contains mutually

CHAPTER 8. SUPPORrlNG FORMAL REASONING 121

recursive definitions of a and b. The function does behave correctly when tested on

inputs representing well-formed circuits and it can be encoded in SDT. This function,

and many others in the model, could not be expressed directly in the logic of theorem

provers such as HOL. The rest of this section discusses some experiments in using SDT

to investigate the behaviour of these functions.

8.7.2 Formal execution

The first, and one of the most useful, attempts at reasoning about the model was to

formally execute some circuits to investigate their behaviour. SOT allows symbolic eval­

uation and fine control over how far the evaluation proceeds. In particular this allows

reasoning about circuits that are not behaving correctly to investigate why. Typically

problems with circuits were caused by a subtle mistake in the strictness properties of the

circuit. While not yielding interesting proofs, this process did prove an effective form of

debugging.

8.7.3 Sinnple Circ~t8

The next level of check on the behaviour of the model is to attempt to prove correctness

of some simple circuits. We prove that the composition of two inverters is just the

identity circuit. The theorem we want to prove is:

.... 'TId r. d: [Bool] A r: [BooI] ::> (inV<->inV) (d, r) == iD[BooI)(d, r)

The inverter was defined by mapping the not function over the inputs. In order to prove

this theorem we prove the following result about map .

.... VXI. XI : [BooI] ::> map not (map not X8) == X8

The proof follows the usual pattern for simple co-inductive proofs described earlier in this

chapter. We use the obvious bisimulation relation and use the fact that map is strict in

its second argument. The proof concludes with some simple equational reasoning about

the not function. The proof of the theorem about the inverter follows by some simple

evaluation and rewriting. Similar results can be easily proven about other simple gates.

8.7.4 Connbinator proofs

The most important proofs about the correctness of the model are the proofs of the prop­

erties of the combinators. We begin with a discussion of the relatively simple converse

CHAPTER 8. SUPPORTING FORMAL REASONING

combinatory, which "reverses" the direction of a circuit.

converse =
Aa.A{3.AR : (Pair a (3) - (Pair a (3).AS : Pair {3 a.

case S of pair - Ab: {3. Aa : a.

(case (R (a, b»of

pair - Aal : {3.Abl : {3. (b1, ad)

122

As pattern matching is not part of SOT it is necessary to use the case expression to

decompose the pair.

This function illustrates one of the subtle differences introduced into the embedding

of Lilt:: Slack-Circuit Model in HlUlkell. There are a number of rules in Ruby for this

combinator. One of the rules is

r 'Va {3 R s. R: circuit a {3 " s : (a, (3) ::>

converse (converse R) 8 == R 8

This law is not provable for the Slack-Circuit Model. The provable version is

r 'Va {3 R d r. R: circuit a {3 " d: a " r: (3 ::>

converse (converse R) (d, r) == R (d, r)

The difference between these two rules is in the conditions on the structure of the signal.

Regardless of the definition of converse it is always possible to find a circuit and signal

that will behave differently when reversed twice. For our definition of converse consider

the circuit with behaviour 'Vx. R x = (U, U> and the signal.1., the undefined value. The

circuit returns m, U> while the circuit after reversing returns.1.. This can be fixed by

making converse less strict, but another pair of circuit and signals can be found to cause

a similar problem. This is caused because the definition of converse decides whether the

converse of a circuit is strict on its input and not the strictness property of the circuit.

This was only noticed while attempting the proof of the above result.

The next combinator we consider is serial composition. AB the purpose of the trans­

lation from a relational language to a functional one is to execute circuit specifications,

the llIust important property is that serial composition decomposes to function compo­

sition if the directions of data fiow can be resolved. What this illustrates is that for any

concrete circuit, the translation from Ruby to the Slack-Circuit Model does have an ad­

vantage over a translation to a functional style. We can defer resolving the directions in

the relational descriptions until after the translation and the directions will be correctly

resolved by evaluation. We do not prove this for general circuits but give an example

using the following function which converts a function into a circuit with a left to right

data fiow.

wraplr = Aa.A{3.Af: a - {3. >'8: (a, (3). (ZZo, f (fst 8»

CHAPTER 8. SUPPORTING FORMAL REASONING 123

Using serial composition to compose two functions converted to circuits decomposes into

function composition as expected.

I- 'VI 9 dr. I : 0 - {3 1\ 9 : {3 - "y 1\ d: 0 1\ r : "y ::)

snd «wraplrQ ,8f)<->(wraplr,8"Y g)(d, r» == 9 (f d)

A similar result holds for a right to left data flow. We have also proved the decomposition

for the parallel and serial compositions of functions with data flows in different directions.

While not a general proof of correctness these proofs were useful for checking the

correctness of the composition operators. We can speculate that this can be extended to

all circuits that conform to some notion of being well-formed. Such conditions would not

apply to Ruby and this illustrates one difference in moving between the two models. This

is consistent with having to determine the directionality in the circuit before making a

translation to a more conventional functional model. In the Slack-Circuit model we are

able to defer such reasoning about directionality to the point where it is necessary to

complete a proof.

The final result we look at for serial composition is associativity. In Ruby the theorem

I- R<->(S<->T) == (R<->S)<->T

hold for for any circuits R, S and T. We would hope to be able to prove a similar

theorem for the Slack-Circuit Model. Unfortunately, the proof requires reasoning about

the directions of the data-flows. The circuits may have arbitrarily complex data-flows

and as this is determined by the circuit definitions and not just their types this would

require us to formalise a directional type system for the language. This formalisation

has not yet been attempted.

We can prove the result for any specific functions. For example, we can express the

fact that a circuit I has no right to left data flow by assuming that

3/1 h· R (d, r) == (11 d, h d)

This says that the circuit R returns a well formed pair and is only a function of it's

domain. The associativity theorem can be easily proved for circuits of this form and for

any specific combination of such circuits.

A number of other laws for the Ruby combinators, not involving serial composition,

have been proved. The results in this section are all consistent with the expectation that

the Slack-Circuit Model gives a correct translation of well-formed Ruby specifications.

8.8 Related work

The main focus of the work here has been to formalise proofs by co-induction where the

bisimulation to be used is known. Other that the trivial bisimulation relations that can

CHAPTER 8. SUPPORTING FORMAL REASONING 124

be found using GUESS_COINDUCT_TAC, and are sufficient to solve a large class of problems,

this work does not consider any automatic means of finding the relations to be used in a

co-inductive proof. Louise Dennis has investigated how to use proof planning to do this.

Chapter 9

Styles of Reasoning

The previous chapters have developed a system based on a theory of a co-inductively

defined equivalence. Using the theory, we can do proofs using evaluation, equational

reasoning and co-induction. In practise this is not sufficient. A stated aim of this work

is to have an extensible system for which new types of reasoning can be added. This is

done by proving some new results from the semantics of the la.nguage and the definition

of equivalence. This chapter gives some examples of the extension of the system with

new styles of reasoning. It begins with a discussion of induction for finite data structures.

9.1 Induction over finite data

Co-induction provides a proof principle for reasoning about the equality of infinite data

structures. When proving properties of finite data structures, structural induction is

both adequate and easier to apply. This section presents a theory of induction for finite

lists derivable in the setting presented in previous chapters. None of the techniques in

this section are specific to lists and could be applied to any datatypes.

The conventional form of induction for lists is

'<IP.

P []/\
('<Ih : Q t : List Q. P t :J P(Consa h t))

:J

'Vl : List Q. P l

As it stands this theorem is not true in our system. There are two problems. First we

Ullliit ft:Strict the lists quantified over to be finite. Second we must deal with the fact

that the predicate P may not preserve equivalence. That is, P is a predicate over the

125

CHAPTER 9. STYLES OF REASONING 126

syntax of lists, and could distinguish equivalent values. This issue was introduced in

section 7.5.

The first problem is to restrict the induction theorem to apply only to finite lists.

There are two ways to express this. The first is to say that every finite list is equivalent

(==) to some list constructed only using nil and cons, rather than function applications

or other expressions. A meta-level relation concrete is defined below that tests if a list

is of this form.

Concrete Nilar a

Concrete xs a

Concrete (Consu x xs) a

The second way to express this is to define an object language function length to calculate

the length of a list and define a list l to be finite if (length l) --+. n for some natural n.

Definition 9.1

length = ree length: 'Va.List a - Num.
AOt. ~l : List a.

case l of

Nil 0 I
Cons ~x: a. ~xs : List a. 1 + (lengtha xs)

A finite list can now be defined as a list that has a length. The length function will not

terminate for infinite lists.

Definition 9.2 Finite l a = 3n. lengthQ l --+. n

The relationship between finite lists and concrete lists is given by the following theorem

Theorem 9.3

'VI n a. Finite 1 a = (3l1' 1== l} " Concrete II a)

Proof. We can prove that a finite list is equal to some concrete list by induction over

the length of the list and show that a concrete list is finite by rule induction.

The second difficulty with the statement of the induction theorem arises because a

predicate P of type exp - boo} is a predicate over the syntax of expressions. Two

expressions which are equivalent may have different syntax and the predicate P may

refer to the syntax. This problem was introduced in section 7.5. The equivalence relation

== partitions all expressions into equivalence classes and it is necessary to either define

CHAPTER 9. STYLES OF REASONING 127

the predicate P over only one member of each equivalence class or to ensure that the

predicate does not distinguish between different members of the equivalence classes.

The first, unsatisfactory, solution is to define the induction theorem only over a

sublset of all finite lists, one representative for each equivalence class. The discussion of

how to restrict induction to finite lists introduced the predicate Concrete and showed

that every finite list will be equal to a list satisfying this predicate. Restricting reduction

to lists satisfying the predicate Concrete restricts induction to one specific representative

of each equivalence class.

Theorem 9.4

VP.

P Ni1a 1\

("It: 0 h : List o. P t :) P (Consa h t»
:::>

VI : List o. Concrete I 0:) P I

Proof. By rule induction for concrete lists.

The alternative restriction is to ensure the predicate P yields the same result for any

two members of an equivalence class. This can easily be expressed by imposing the

restriction Vh 12.h == 12 :) P II = P l2. The alternative induction theorem is:

Theorem 9.5

V P. (VII'. I == I' :) P I = PI') :::>

P Ni1a 1\

(Vt : 0 h: List a .. P t :::> P (Consa h t»
:)

VI : List o. Finitel:::> P I

Proof. By induction over the length of the list.

There are some simple syntactic conditions which are sufficient to allow the automatic

proof of the precondition that the predicate preserves equivalence. In particular, many

predicates will be of the form CIl'] == C2 [1] where C1 [I] and C2[1] are larger programs

containing I. If I == I' then Cdl'] == C2["] follows immediately by rewriting.

9.2 The take lemma

The take lemma [BW88] provides a simple means to prove many theorems about infinite

lists. The theorem states that you can prove the equality of two infinite lists by proving

that all the initial segments of the list are equal. This allows the proof to be reduced

CHAPTER 9. STYLES OF REASONING 128

to a proof about finite Usts. The function take is defined 90 that the following equations

hold:

takea 0 %6

takea (n + 1) []

-- []
(]

takea (n + 1) (COIlSa % %6) -- ConSo % (takea n %.)

The definiton in SOT which gives rise to these equations is:

Definition 9.6

take = rec take! : V'Q.Num - list Q - list Q.

All. An : Num. AXs : list Q.

case (n = 0) of

The key theorem is

7rue 1-+ Nila I
False 1-+ case x. of

Nil 1-+ Ni1a

Cons 1-+ Azl: Q. Az8l : List Q.

(ConSa Xl (take! a (n - 1) x.t>

Theorem 9. 'T (The take lemma)

lrixy. (Vn. takea n % == takea n y) " x: List Q " y: list Q = (x -- y)

Proof. By ~induction using the relation

..xx y. (lrin. takea (n + 1) x == takea (n + 1) y) A x: list Q A Y : list Q

and some reasoning about the evaluation behaviour of the expressions.

The reverse implication from that given in the take lemma is not interesting and is easily

proved by equational reasoning.

The shape of a proof using the take lemma will be very similar to a proof using

co-induction but is more restrictive. Using the take lemma an induction over the lengths

of the initial segments is performed. For the base case n = 0 the result is trivial since

take 0 %8 = U for any list %8. For the step case we prove that the heads are equal and

the tails have a pattern (the inductive hypothesis).

9.3 Parametric polymorphism

Parameteric Polymorphism, or "theorems for free" as it is sometimes known [Wad89],

allows the mechanical derivation of properties of expressions from their type alone. Most

CHAPTER 9. STYLES OF REASONING 129

presentations of parametric polymorphism is based on a domain theoretic semantics. In

this section a restricted version of parametric ploymorphism is considered bued on the

operational semantics discussed earlier.

There are two main restrictiOJl5 which have been made to simplify the problem.

These are to ignore both the recursion operator and datatypes. It is believed that

these restrictions could be removed by additional work. Other, more recent, work on

parametric polymorphism may provide a better approach to this proof [Pit98] than what

follows.

The key idea is to define, for each type a, a relation [oj. This relation will be referred

to as an Action on the type. The main result of this section will be to prove that

(a, a) E (01

Interesting results about functions of type a can be derived from this theorem and the

definition of the relation corresponding to a.

For a function with the type of the identity function, Ir/a.a -+ a, then the following

holds.

I- (I, f) E ('ta.a -+ oJ
One theorem which can be derived from this is:

"ria ;3 x y. /fJ (g x) = 9 (fax)

Th(' details arc given below.

9.3.1 Admissible relations

Relations will be introduced in this sections which have several useful properties. These

will be called admissible relations and are relations R between terms of two closed types

such tha.t:

• R relates only terms of the appropriate types.

• R respects equivalence.

• R relates a divergent terms (.i) to another divergent term.

The formal definition is

Definition 9.8

AdRel R a {3 = Closed ftv a 1\ Closed ftv {3 1\

'<Ix y. (R x y) :::> x: a 1\ y: {3 1\

(lr/x' y'. x == x' 1\ Y == y':::> R x, y') 1\

CHAPTER 9. STYLES OF REASONING 130

In particular, consider a strict function a and the relation that relates the pairs

(x,a x) where x is any expression of the correct type. This is an admissible relation.

Another useful result is that all admissible relations are non-empty. An admissible

relation between types a and {3 contains relates .La and .L.a.

9.3.2 Actions on types

While the types we eventually consider will all be closed, the definition of the action on

a type will need to consider free type variables. This is due to the clause in the definition

for the type abstraction that involves defining a relation for the body of the abstraction,

which is not closed. We use a new type context, mapping types to relations between

expressions of particular types. In use these relations will be restricted to admissible

relations. We write the actions on a type a as labt where 'R is the mapping from types

to relations.

Definition 9.9

lam ='Ro
INunh e ~ = e : Num /\ e' : Num /\ (e == e'»
10 -Ib I I' = "Ie e'. lab e e' :> lib (J e) (J' e')
('Ix.am e e' = (3Ti. FClosed hv Tl /\ e : (Vx.o}Ti)/\

(3T2. FClosed hv T2 /\ e' : (Vx.alTi)/\

('VA {3 -yo AdRel A (3 -y :> lobi-A) e.a e'..,}

The first result to be proved is that an action over a type is an admissible relation.

The goal

AdRel lob a Q

is similar to the goal we want but is incorrect since t may not be a closed type. Instead

we prove

AdRel (ofR [alTI [alT2

for appropriate closing type substitutions Ti and Ti and relation context "R. The condi­

tions for these maps is formalised by a relation RelProp defined as:

RelProp 'R Ti T2 f =

FClosed hv Ti /\
FClosed hv T2 /\
'Vx. f x :> Dom R x /\ Dom Ti x /\ Dom T2 x/\

AdRel"Rx Tix Tix

CHAPTER 9. STYLES OF REASONING 131

The function f will normally by the function ftv a representing the list of free type

variables in the type a. One important property of RelProp which shows how the maps

can be extended is:

vll Ti" T2 x f. RelProp II Ti 12 f :)
VA a {3. AdRel A Q {3 :)

RelProp "Rlx A) Ti[x oj T2[x {3) {Ax. (x = 8) V f x)

With this and similar lemmas proved we can prove that the action on a type is

admissible.

Theorem 9.10

Va "R Ti 1'2. RelProp "R Ti 1'2 (ftv a) :) AdRel lab [alr. [alT:i

Proof. By induction over the type a.

9.3.3 The parametricity theorem

The result we are aiming at is

Ve: a.l~ e e

The proof is by rule induction over the derivation of the type of e. We again need to

generalise to non-empty relation enviroments and closing substitutions for the types to

get the proof to work. The side conditions on the relations and substitutions are given

by:

v"R f Ti T2 !i' 12 f·
respects "R f Ti Ti sr 82 f =

FClosed fv sr 1\ FClosed fv 82 1\

FClosed ftve sr /\ FClosed ftve 82 /\

(Vx.aFOom f x :) FOom SI x /\ FDom 82 x /\

sr x : [f x)r.) /\ 82 x : If x)T:i»/\

(Vx. FDom f x :) "R(f ~ [[xlillTi [[xlr,lT;) 1\

(RelProp "R Ti T2 f)

Theorem 9.11 (Parametricity)

'<If e a. f I- e : a :)

{VR Ti 12 al a2·

respects R f Ti T2 al Ci2 (ftv a) :) lab Helorl,,! [[e14 :a lr.

CHAPTER 9. STYLES OF REASONING 132

Proof. By rule induction OWl' the typing judgement and properties of substitution.

The version of the theorem for closed terms can be proved by setting all the substi­

tutions and contexts to empty. The side condition is trivial to prove in this case.

Theorem 9.12

"'lea. e : a. [oll e e

9.3.4 Example: The identity functions

For any function I with type Va.a - a the following holds.

('v'a.a - ~ I I

The w;eful theorem can be derived by expanding out the definition of actions on types.

For any admissible relation A between types a and /3

[a - ~Qt-OAI la IIJ

By expanding again

"'Ix 1/. A x 1/ :) A (fax) (fll 1/)

Take A to be the relation such that A x 11 if 11 == 9 x where 9 is a strict function

of type a - /3.

"'Ix y. Y == 9 x ::> III Y == 9 la x

Finally some rewriting gives the result.

"'Ix y. IIJ (9 x) = 9 (fax)

9.4 Invariants over infinite data

All the theory and tools presented so far have dealt with proving the equivalence of

two programs. None have dealt with more general properties. This allows the proof of

correctness only with respect to a specification written in the same language.

To prove a more arbitrary property of a program, such as the fact that a program

produces a sorted list, we need some different machinery. Many such properties can be

expressed as local properties extended to the whole list. For example, a sorted list is

one in which each pair of adjacent elements of the list are ordered. These predicates can

be expressed as the greatest fixpoint of a function capturing the local property and the

proofs can proceed by co-induction.

CHAPTER 9. STYLES OF REASONING 133

This section considers some simple examples of sorted lists. The definition and proofs

are very similar to the theory for bisimulation. We begin by defining a function that

takes a set and produces the set of all lists that have the first two elements ordered and

the tail in the given set.

Definition 9.13

FORD 8 l = 30. I : List Q 1\ (isconSa I == True) :)

((heada l <= heada(taila l» == True) 1\ 8(taila l)

This function is monotone and the set of ordered is lists can be defined as its' the greatest

fixpoint.

Definition 9.14

ORO = gfp FORD

A co-induction priniciple can be easily derived:

Theorem 9.15

Vi. (38. Dense FORD 8 1\ 8 l) :) ORO l

Infinite lists can now to be proved to be ordered by finding a set containing the list

which satisfies the Dense property for FORD. That is:

VI.8 l:J 30. l : list Q 1\ (isconsQ I == True) :)

((heada l <= heada(taila l» == True) 1\ 8(taila l)

If ones is the infinite list containing only the number 1, then it can be proved to be

ordered using the set characterised by the function:

AX. X == ones

Finally, if plustwo is a function that takes any number n and returns the infinite list

[n, n+2, n+4, ...]

then for any n this can be proved to be ordered using the set

AX. 3n. X == plustwo n

CHAPTER 9. STYLES OF REASONING 134

9.5 Restricted principles of definition

It has been discussed in earlier chapters that both supporting reasoning and the reasoning

itself are easier if range of functions that can be defined are restricted in some way. This is

particularly true of the possible termination behaviour of programs. The work here does

not insist on any restricted use of the programming language, but it does, in principle,

allow theory and tools to be developed to allow a programmer to obtain easier proofs if

a different method of programming is used.

This section discusses one example of such a style of programming. This involves

defining recursive functions that consume finite lists in terms of the fold operator [Hut98J.

While this may seem restrictive, all primitive recursive functions can be defined in this

way. In this section only the fold operator for lists is discussed but similar functions can

be defined for other types.

Fold is defined so that:

Deftnition 9.16

folda (1 I t1 Nilo == v

folda (1 I t1 (Conso x xs) -- I x (foldo (1 I t1 xs)

Properties of fold can be proved that allow some reasoning about recursive functions

defined in terms of fold to be reduced to equational reasoning. One example of this is

the fusion theorem, which is proved by induction.

Theorem 9.17 For any finite list xs

VI 9 h abo: f3.

l:o-{3 A g:{3-o-o A h:o:-f3-{3 A a:o:A b:{3A

(Vx. (f x) ~::> x~) A

I a == b A

(Vx y. I (g x y) == (h x) (f y)) ::>

I (fold(1 a 9 a xs) == (folda (jh b xs)

Proof. This is proved for finite lists using structural induction.

It is not proved for infinite lists here due to the same problem as with the filter example

(8.6.4). In fact filter can be defined in terms of fold.

Chapter 10

Conclusions

In this work a system has been developed to support formal reasoning about programs

written in a small, non-strict functional programming language. The system has been

developed in the HOL theorem prover, which provides security and basic reasoning tech­

nology. The semantics of the language are defined in an operational style with a co­

inductively defined equivalence relation. This provides support for the two main styles

of reasoning necessary for a useful, extensible system. The primary use is to support

reasoning about functional programs, particularly those that cannot be expressed di­

rectly in the logic of theorem provers. In order to do this, and to allow the extension of

the system with new proof rules, it also supports reasoning about the semantics of the

language.

10.1 Reasoning about programs

A major feature of this system is the ability to enter programs and express properties

of these programs with little initial overhead. This work differs from other work using

theorem provers in not imposing any restrictions on the form of the programs; any

syntactically correct program can be entered. There are no restrictions on how recursion

is used or on the termination behaviour of the programs. The advantages gained from

this depend on the programs entered and the reasoning to be attempted. If it is intended

to prove termination properties of programs for all inputs, or if a proof depends on these

properties, then the work of proving the termination properties of the program will need

to be carried out in any case. If the program uses only finite data then other tools such

as TFL [SHOO] may lead to less work, as they are designed to support only programs

such as these and automate much of the work to prove the termination properties. In

many cases, proofs will require considering such properties of a program at the time of

135

CHAPTER 10. CONCLUSIONS 136

writing to obtain an easy proof. It is recognised that the ability to enter any program

does not make these proofs any easier.

The advantage over other systems is strongest when the programs of interest cannot

be rewritten in a style that makes termination properties easier to prove. The circuit

model given in Chapter 8 was written without any consideration for the possibility of

proving properties of the programs and many of the functions have no clear termination

properties at all. The functions could not be written into a more proof-friendly form

without fundamentally changing the meaning of the functions. The ability to reason

about such functions is important and can lead to finding errors and to a clearer under­

standing of the functions. Even when a proof cannot be obtained, theorem proving can

lead to a significantly improved understanding of a problem. The reason behind a proof

failing can be greatly informative. Many functions perform correctly only for a limited

set of inputs and a better understanding of that set is a useful result. Such lightweight

use of theorem proving is impossible if there are large overheads involved in entering the

functions into the system.

A second example of the advantage of having a small overhead for entering functions

into a theorem proving tool is where only part of a larger system is considered. If this

part uses functions from the rest of the system then general properties of these other

functions may not be important but only their performance over a limited range of inputs

or for a specific input. These functions can still be entered and used and the necessary

results proved for the reduced range of inputs only. The example in section 8.6.4 used

the filter function although general properties of that function are not considered. This

example could not be considered in any system where the termination properties of filter

were required for it to be defined.

10.2 Reasoning about semantics

In this work, reasoning about the semantics of the language serves two main functions.

The first, investigated in chapters 5 and 7, is to enable reasoning about the correctness

of the semantics. A group of standard results were proved, including results stating that

the typing and reduction rules were deterministic and that equivalence was correct with

respect to contextual equivalence.

The second function of the ability to reason about the semantics is to add new proof

rules to the system. Chapter 9 presented some derivations of such results. This kind

of extension is not possible unless the semantics of the language can be reasoned about

and allows the system to be augmented in a safe way with proof rules that were not

envisaged in the original design. These rules extend the capabilities of the system for

CHAPTER 10. CONCLUSIONS 137

reasoning about programs and so can feed into reasoning about programs described in

the previous section.

10.3 Further work

There are a number of ways in which the work presented here could be extended, adapted

or improved. These changes can be divided into future work on the language, the proof

tools, and the application of the work to different languages.

10.3.1 The language

There are two major changes that can be made to the language supported by the tools

described here. First, the details of the semantics could be modified to bring the op­

erational semantics of the language more in line with the behaviour of real interpreters

and compilers for functional languages. The semantics given here is a call by name

semantics. The interpreters and compilers for Haskell and similar languages use lazy

evaluation. In both evaluation strategies the arguments to a function are not evaluated

when the function is called but are only evaluated when needed, and only evaluated as

far as is necessary at any given time. In the call by name semantics given here these

arguments may be duplicated when they are substituted into a term and hence evaluated

more than once. In a true lazy semantics references are passed to the arguments and

they are not duplicated. This makes no difference to the meaning of a program, but it

increases the efficiency where it avoids the duplication of an argument.

It would be interesting to base a formal reasoning system on a true lazy semantics.

This would complicate the semantics but may lead to more efficient proofs. It is not

clear if this efficiency would be worth the additional complexity.

The second, and more obvious, change to the language would be to extend the syntax

to allow more programming constructs to be used. There are three ways to do this. The

syntax and operational semantics of the language could be extended to support new

programming constructs such as pattern matching or list comprehensions. The work

required to add new constructs depends largely on whether any new bindings can occur.

Much of the work on the existing system was dealing with the existing binding constructs.

Non-binding syntax is relatively easy to introduce.

A second method would be to add more syntactic sugar to the language in a similar

way to booleans were added. Many of the tools and meta-theory treat booleans as if they

were primitive, so a user sees an expanded syntax compared to the underlying syntax.

The final method would be to provide an automatic translation from a more general

language, such as Haskell, to SOT. Indeed, for Haskell such a translator would be easy

CHAPTER1~ CONCLUSIONS 138

to develop from the Glasgow Haskell Compiler, which contains a similar translation as

one of the stages in compilation [Jon96]. The practical use of a mechanical translation

may be limited because much of the information about the structure of the original term

is lost in the mapping. To create a useful system it would be necessary to store enough

information during the translation to allow the reverse translation when presenting the

user with output from the system. This would be primarily an interface issue.

On a smaller scale, pattern matching could be incorporated into the system by tak­

ing a specification using pattern matching, deriving the corresponding SDT expression,

defining this and then proving the rules that incorporate the pattern matching. The

underlying term need never be visible to the user. The mechanism for applying these

rules already exists and was discussed in Chapter 6. The translation would be similar

to tools which already exist in the HOL theorem prover [S1i96j.

10.3.2 Additional proof rules

The ability to extend the system by deriving new proof rules gives a clear avenue for

further work. While a selection of proof rules has been presented here, there are still

more that could be added. The parametricity theory could be reworked using more

recent work [Pit98] to extend its applicability to the whole language. Examples, such

as the behaviour of the filter function, could be tackled using variants of the current

co-induction principle described by Gordon [Gor95a]. The fold function and its corre­

sponding theory have been treated here but the related function, unfold, dealing with

the creation, rather than consumption, of lists has not yet been treated. Finally, there

are families of well known laws, such as the monad laws [Bir98) which could be proved

in the system.
Most of these rules are aimed at capturing some pattern of recursion which is com­

monly used in programs and proving some result about all programs fitting that pattern.

If a proof rule is developed which captures the necessary inductive argument then these

programs can be reasoned about using only equational reasoning plus the appropriate

rule.

10.3.3 Tool support

There are several ways that tools support for the reasoning in the system could be

enhanced. One possibility would be the automatic generation of bisimulation relations

for use in coinductive proofs. This could be done by integrating with a tools such as

Dennis' Co-induction Critic [DG97], which uses proof planning [Bun88, BSvH+93) to

generate an outline proof and corresponding bisimulation but does not formally check

CHAPTER 10. CONCLUSIONS 139

the proof. A loose integration of the two systems could use only the bisimulation relation

while a tighter integration could use the proof generated by the proof planning as the

basis for a proof in HOL. Similar support could be developed for proofs by induction, the

area to which poor planning was originally applied. Much of the technology to support

such an integration has been developed by the Clam-HOL project [SBB98, SGBB98].

The second area where more tool support could be provided would be through a

custom user interface. The current system uses the text based interface to the HOL

theorem prover. This raises issues other than the usual issues relating to interfaces to

theorem proving tools [AGMT98]. The main deficiency in the current interface is that

the HOL logic itself contains functions, variables and constants, leading to the possible

confusion between the syntax of the logic and the syntax of SDT programs. For example,

function application is best represented in both languages by juxtaposition and variables

by the name of the variables. The current interface uses the same syntax to pretty print

both languages, but quotation and parenthesis to mark the blocks of SDT syntax. This

can be confusing and a graphical interface would allow the use of colour to distinguish

between the two.

Appendix A

Notation

Expressions e.e', e}, e2
Expresions (functions) /,/'
Variable X,f/

Types t, t', t., t2

Type variables Cl,P
Relations R

Finite maps (to Relations) 11.
Finite maps (to Types) T,r
Finite maps (to Expressions) i.ii',m
Extension of finite map i[x y)

Application of finite map ix

Substitution with finite map [e).
Substitution for single variablee[el/x]

140

Appendix B

A Theory of Finite Maps

B.t Introduction

Functions defined on only a finite domain occur frequently in computing science. One

field in which theae functions, commonly referred to as finite maps or finite partial

functions, are used is in reasoning about the semantics of programming languages, where

they can model semantic objects such as type contexts and environments.

A commonly-used representation for finite maps is simply the theory of lists; a finite

map can be represented by a list of pairs, and functions to update and apply maps can

be defined easily and will behave correctly when used. Unfortunately this simple use

of lists is flawed because two lists that behave the same when used as finite maps may

not be logically equal, a property that is essential where reasoning about the equality of

finite maps is required. These issues are discussed in more detail later.

This paper preaents a theory of finite maps that will be the basis for a finite maps

library in the HOL theorem prover [GM93J. This work follows the HOL tradition of

taking a purely definitional approach. We characterize the theory in terms of a small

set of axioms that are sufficient to capture the intended meaning of finite maps. The

choice of these axioms is discussed in section 2. A model for these properties is then

constructed using types and constants that already exist in HOL. Section 3 describes

the representation used for this model and how the characteristic theorems are proved.

Section 4 describes how the theory can be enriched with more theorems and concepts

using those already defined. Section 5 addresses the issue of defining recursive types

containing finite maps. This potentially difficult problem has been the motivation for

using lists to model finite maps in the past, as this provides a means to define such types.

Section 6 describes some decision procedures we have implemented and section 7 gives

an example that uses finite maps to represent contexts for the type system for a small

141

APPENDIX B. A THEORY OF FINITE MAPS 142

language·

B.2 Finite maps

This section describes the choice of axioms for the theory of finite maps. These axioms

are intended to fully characteri8e the type, and must of course be chosen so as to be

consistent. We determine that this is the case by providing a model for the axioms in

later sections. It is also necessary that the choice of axioms be completej any property

we wish to prove of finite maps should be provable from these axioms. A further result,

interesting for theoretical reasoIl8, is that the axioms should be independent of each

other; if any axiom is removed or weakened then the set of axioms will fail to completely

specify finite maps.

The type of finite maps will be introduced by a new binary type operator fmap. A

finite map from type a to type {J has type (a, {J)fmap. An important concept is the

domain of a finite map. This is the finite set of values over which the application of a

finite map will be specified.

B.2.1 Axioms for the constants

Four constants are introduced, with informal definitions as follows:

• Empty : The finite map with no elements in its domain.

• Update f (x, y) : The basic operation to allow the extension of a finite map f with

a new mapping from x to y. There should be no restriction on whether or not x

is already in the domain of f· If x is in the domain then the value to which x is

mapped will be updated to be y. Some other formalisms of finite maps restrict

Update to extension of a finite map only with elements not in the domain.

• Apply f x : If x is in the domain of f then Apply f x denotes the value to which x

is mapped.

• Domain f x : The function Domain tests whether an element x is a member of

the domain of f. The domain is formulated in terms of a boolean function ra.ther

than a set so that the resulting theory does not depend on a particular variety

of set theory. It is a relatively trivial task to construct the domain set from the

definitions given below in the user's choice of set theory.

The above informal definitions still leave some ambiguities to be resolved. In partic­

ular nothing has been said about the outcome of applying a finite map to an element

APPENDIX B. A THEORY OF FINITE MAPS 143

not in its domain. (Apply f) : 0 -+ (3 should be a partial function, only defined on the

domain of I. But all functions in HOL are total and so are defined for all elements of the

correct type. The traditional solution in HOL is to leave a partial function unspecified

for values not in the correct domain. Thus applying a finite map I of type (0, (3)fmap

to a value that is not in the domain of I will return a value of type (3, but this value

will be unspecified and it will not be possible to prove which member of the type (3 has

been returned.

An alternative approach, similar to that used in IGun93, Sym93j, is to define Apply to

return a result of type /3 + one where one is the type with only one element, namely the

value denoted by one. Returning one indicates that the finite map is undefined for that

element. This has the advantage of reducing the number of constants that need to be

"axiomatised" but the disadvantage of complicating the type of the value produced by

Apply. This modified apply function can, however, be defined in terms of the constants

Apply and Domain introduced above.

It is claimed that the intended meaning of the constants Empty, Apply, Update and

Domain can be formalised by the six basic axioms

I- V' fa b. Apply (Update f (a, b)) a = b

I- '<Ix a. (x i= a) :::> '<II b.(Apply (Update f (a, b)) x = Apply f x)

I- '<Ia c. (a =F c) :::>

'<I I b d.

(Update (Update I (a,b)) (c,d) = Update (Update f (c,d)) (a,b))

l-'<Ilabc. Update (Update I (a,b)) (a,c) = Update I (a,c)

I- V'a,(Domain Empty a)

1-V'/abx.Domain (Update I (a,b)) x = (x = a) V Domain I x

together with a further induction axiom which is explained in the next section.

B.2.2 Induction

The axioms in the previous section do not express the fact that the partial functions

being considered are finite. In addition to these axioms, an induction principle is needed:

I- '<I P.

P Empty 1\ ('<If. P f:::> (V'x y. P (Update f (x,y))))

:::>

'<If. P f

APPENDIX B. A THEORY OF FINITE MAPS 144

This gives us the property that any finite map can be formed by a finite number of

updates of the empty map. It easily follows from this that the domain of a finite map

can be enumerated by some initial fragment of the natural numbers.

This induction principle is not strong enough to derive the natural characterisation

of equality for finite maps (see below). Indeed, it is possible to formulate a model in

which the six basic axioms hold along with this induction axiom but the characterisation

of equality shown below is false.

The following stronger induction principle is sufficient to derive the characterisation

of equality for finite maps. In the step case induction, this stronger principle allows us

to assume that the element being added is not in the domain of the finite map.

I- V P.

P Empty A

("1/. P /:::> ("Ix. -,(Domain / x) :::> Vy. P (Update / (x,y»)))

:::>

"If. P /

An alternative to adding to this stronger induction axiom is to add the weaker induction

theorem and the equality theorem below as axioms and derive the strong induction

theorem. This would also replace other basic axioms for the constants discussed earlier.

It was felt that it was better to use the basic axioms and derive the equality theorem as

the basic axioms capture the intended meaning of the various constants more precisely.

B.2.3 Equality

We now consider a theorem characterising when two finite maps are equal. If the axioms

above provide a complete characterisation of finite maps then it should be possible to

derive such a theorem from them. We begin by considering how to formulate equality.

The naive formulation

I- "1/ g. ("Ix. Apply / x = Apply 9 x) = (f = g)

does not hold because of a problem with the application of finite maps to elements not

in their domain. Consider the two finite maps

f = Empty

9 = Update Empty (x, Apply Empty x)

APPENDIX B. A THEORY OF FINITE MAPS 145

where x is some arbitrary value. Then I and 9 are different finite maps, with different

domains; but for any y

Apply 9 y

= Apply (Update Empty (x, Apply Empty x)) y

Apply Empty y by 1\ case split on y = x and the axioms for Apply

= Apply I y

So we have two different finite maps that agree on all elements to which they are applied

and hence are equal by the naive formulation of equality. To fix this we modify the

characterisation of equality to say that two finite maps are equal only if, in addition to

agreeing on all elements, their domains are equal. The following theorems can be proved

I- TIl g. «Domain I = Domain g) 1\ (Apply I = Apply g» = (f = g)

r VI g.

«Domain I = Domain g) 1\ (Vx. Domain I x :::> (Apply I = Apply g»

= (f = g)

B.3 The logical definition of finite maps

B.3.1 Possible representations

Having decided on the characteristic axioms we now must supply a model from which

these can be derived. From the view of a programmer the obvious choice is a list of

pairs. This has practical merits since lists are well supported in HOL. But we soon run

into difficulties if we take this path. Consider the two lists [(x, int), (x, int)] and [(x, int)].

These are clearly equal when considered as the finite maps mapping x to int, but are

not logically equal lists.

In the theory for HOL-ML [MG94, VG93] this problem was overcome by defining the

update function so that only ordered lists with every element appearing at most once in

the domain can be constructed. Thus the lists representing two equal finite maps will

also be equal. The disadvantage here is that an ordering over the domain of the map is

needed, an ordering that should not be needed.

A variation is to define an equivalence relation relating all lists that are equal when

considered as finite maps and then define the type of finite maps to be the quotient

of lists with this relation. Each element in the defined type will be represented by an

equivalence class of lists generated by the defined equivalence relation.

Another possible representation is sets of pairs. This solves some of the problems

indicated above but forces us to ensure that no two elements of the set have the same

APPENDIX B. A THEORY OF FINITE MAPS 146

first element. In set theory functions are represented as sets of pairs. This is a good

representation of functions in terms of the fundamental object, namely sets. In HOL

functions are the fundamental object and therefore sets offer us no advantage. The

representation discussed in the next section therefore uses functions instead. This also

avoids the need to restrict the theory to some particular set library.

B.3.2 The representation used

The representation used is a function from the type of the domain, 0:, to the type /3+ one.

This function maps an element to one if it is not in the domain of the map and to the

image of the element if it is in the domain.

What remains is to define a notion of finiteness for functions of this type. A predicate

is_fmap can be defined inductively by the following rules:

is_fmap (Aa. (InR one))

is_fmap f
is_fmap (Ax. (x = a) => Inl b I f x)

This gives rise to an induction principle that expresses the finiteness of the functions for

which is_fmap holds.

rVP.

P (Ax. InR one) 1\

(VI. PI::> (Va b. P(Ax. (x = a) => (Inl b) I (J x»)))

:>

(V f. isJmap I :> P f)

The type (a, {J)fmap can then be defined to be the set of functions of type Q -+ ({J + one)

for which is_fmap holds. The witness that this new type is non-empty is the function

Ax. InR one, which represents the empty finite map. A bijection between the the type

(0:. (3)fmap and the representation is defined by the functions fmap..ABS, of type (a -+

({3 + one) -+ (a, {3)fmap and fmap_REP, of type (a,!3)fmap -+ (a -+ (/3 + one». This

process of defining a new type and the bijection is described in [GM93J.

The constants Empty, Update, Apply, and Domain can be defined in terms of the

representation as follows:

r Empty = fmap..ABS (Aa. InR one)

r Update f (a,b) = fmap..ABS (Ax. (x = a) => Inl b I (fmap_REP f) x)

r Apply f x = Outl «fmap_REP f) x)

r Domain f x = Isl «fmap_REP f) x)

APPENDIX B. A THEORY OF FINITE MAPS 147

From these definitions we can derive all the axioms given in section 2. Having done so

the representation is not used again; all other theorems in the theory can be proved from

just these seven axioms.

The derivation of the characteristic axioms for each constant is straightforward. The

axioms can be proved easily at the representation level and then "lifted" to the abstract

level. The derivation for the stronger induction principle requires an induction over

the size of the domain. This proof involves formaiising the concept of the size of the

domain. The HOL implementation of these proofs currently employs a set library but

this dependency on sets will be removed for the final finite maps library.

B.3.3 Consistence, independence and completeness

The axioms listed in section 2 are consistent because they are derivable from the model

just described. Completeness of the axioms with respect to the model can be shown

by assuming that the axioms hold and showing that the type specified by the axioms is

isomorphic to the model. We show that the function rep with the defining property

I- VI: (o:,j3)fmap. rep I = AX. (Domain I X '* InL (Apply I x) IlnR one)

is a bijection from the type (0:, j3)fmap to the subset of the type 0: (13 + one) satisfying

the predicate is_fmap, using only the axioms and not the underlying model. This gives

us a means by which to reconstruct the model from the axioms.

This function rep is onto and one to one:

I- VI: 0: (13 + one). is_fmap I ::) (3g. rep 9 = f)
I- "flU: (o:,{3)fmap) (g : (0:, (3)fmap). (rep I = rep g) ::) U = g)

and its image is contained in the subset of 0: (13 + one) defined by is_fmap:

I- VI: (0:, (3)fmap. is_fmap (rep f)

This is in effect an redefinition of the function fmap_REP using only the axioms and

not referring to either fmap.ABS or fmap_REP.

We believe that the axioms are also independent but have not attempted a formal

proof. That is, we have not shown that a model can be found for each possible set of

axioms with one axiom replaced by its negation. While still important for theoretical

reasons, this property is not as important in practice; it does not affect either what can

be proved or the consistency of the system.

APPENDIX B. A THEORY OF FINITE MAPS 148

B.4 Enriching the theory

The seven theorems that characterise finite maps are sufficient to build a rich and use­

ful theory. The most important theorems that can be proved are those characterising

equality, as discussed above. Many more theorems can also be proved about the basic

constants, but this section concentrates on how the theory can be extended with new

concepts built up from the seven axioms.

The only method introduced so far for constructing finite maps is Update. In practice,

functions are needed to update finite maps by extending them with other finite maps

and to allow the domain over which a finite map is defined to be reduced.

The constant Extend is defined so that

d I) {
Apply I x if Domain I x

Apply (Exten 9 x =
Apply 9 x otherwise

Formally, the defining property of Extend is:

f- VI g.

("Ix. Domain (Extend I g) x = Domain I x V Domain 9 x) "

("Ix. Apply (Extend I g) x = «Domain I x) ~ (Apply I x) I (Apply 9 x)))

This definition is made by first proving, by a straightforward induction over f, that a

function with this property exists and then using the principle of constant specification

to define Extend. More useful theorems about Extend can be derived from this definition.

Some examples are

I- Vg. Extend Empty 9 = 9

f- V I. Extend f Empty = f

f- VI 9 x y. Extend (Update I (x, y» 9 = Update (Extend f g) (x, y)

f- VI 9 x y. Extend f (Update 9 (x,y» =
«Domain f x) ~ (Extend f g) I (Update (Extend I g) (x, y»)

I- VI 9 x. Domain (Extend I g) x = Domain I x V Domain 9 x

These results all follow by simple proofs using the basic axioms and the definition of

Extend.

All the constants discussed above either increase or preserve the domain of a finite

map. A constant DRestrict can be defined which reduces the domain of a finite map to

those elements satisfying some predicate. DRestrict is again defined by proving the exis­

tence of a function with the appropriate properties and then using constant specification.

APPENDIX B. A THEORY OF FINITE MAPS

The function is characterised by the theorem

I- VI p.

("Ix. Domain (DRestrict I p) x = Domain I x /\ P x) /\

("Ix. Domain I x II P x :::> (Apply (DRestrict I p) x = Apply I x»

Some useful properties that can be proved of DRestrict are

I- Vp. Restrict Empty p = Empty

I- VI p a b.

DRestrict (Update I (a,b)) p =
{(P a) => {Update (DRestrict I p) (a, b)) I (DRestrict I p»

149

I- VI p q. DRestrict I (Ax. p x V q x) = Extend (DRestrict I p) (DRestrict I q)

The proofs of these theorems are again straightforward. The function Delete, to remove

a single element from a finite map, can be defined in terms of DRestrict.

A related concept to the domain of a finite map is the range. An element is in

the range if there is some element in the domain which is mapped to it. The function

Range and RRestrict are defined with the same functionality as Domain and DRestrict

but rela.ting to the the range rather the domain.

Another important concept is composition, either of two finite maps or a finite map

and a function. Three infix composition functions are defined:

Lo_f: ({3, "()frnap -+ (0, {3)fmap -+ (0, "()fmap

o_f : ({3 ~) ~ (G,{3)fmap -. (G, -y)fmap

Lo : {{3,"()fmap -+ {o -+ {3) - {G,"()fmap

The notation is designed to show the link with composition of functions

o : {{3 -+ "() -+ (0 -+ (3) -+ (0 -+ "()

Two of the other functions defined are Submap, a mapping that is defined on a subset

of the domain of another map but maps the elements for which it is defined to the same

values and EveryMap, a function that takes a predicate and tests whether it holds of

every pair of (domain,range) elements inserted into the finite map.

B.5 Finite maps and recursive types

In this section we consider the problem of defining recursive types that include finite

maps. It is a well known difficulty with the HOL system that types such as

Val = CONST I RECORD num -+ Val (B.1)

APPENDIX B. A THEORY OF FINITE MAPS 150

may not be introduced into the system easily by automated or manual techniques. This

is because the presence of the function num -+ Val results in a type that is too large

for the trees used in the system's automatic type definition package [MeI89j. The user

must therefore carry out a tiresome type construction manually. A possible solution is

described in [Gun93j.

A related problem is that of defining types of the form

Val = CONST I RECORD (num, Val)fmap (B.2)

Types such as this are often used to represent expression values in programming language

formalisations such as the definition of Standard ML [MTH90j. This section describes

how types of this form may be introduced into HOL manually, without needing a solution

to the more general problem (B.I) above.

The method we will use is as follows. First, we shall define a mapping between the

type (0, f3)fmap and a subset of the type (n, {3)list. We then show that this mapping

gives a unique list for each finite map, which we call its canonical representation. Next

we manually introduce the concrete type

ListVal = list_CONST I list_RECORD (num x ListVal)list (B.3)

into HOL. We use a subset of this type as the representation for type (B.2). Finally

we develop the necessary theorems which characterise type (B.2) independently of its

representation.

B.5.t Canonical representations for finite maps

We introduce two operators FFst and FRest which decompose a finite map into a single

element and a remainder. This does not need an ordering of elements in the finite map,

since we appeal to the HOL choice operator.

~ '<I f.

FFst f = (€p. Domain f (FST p) A (SND p = Apply f (FST p»)))

~ '<I f. FRest f = Delete (FST (FFst f) f

A relation Canon_Rei between finite maps and paired lists can now be defined by primitive

recursion on lists:

~ ('<If. Canon_Rei f [) = (f = Empty» A

('<Ifht.

Canon_Rei f (Cons h t) =
-,(1 = Empty) A (h = FFst f) A Canon_Rei (FRest f) t)

APPENDIX B. A THEORY OF FINITE MAPS 151

Intuitively this definition ensures that I is related to I if and only if I has the form

[FFst I, FFst (FRest f), FFst (FRest (FRest I», ... J. Thus precisely one list is defined

for each finite map. It is a lengthy process, but fairly straightforward, to prove that

Canon_Rei defines a unique list for every map.

Based on Canon_Rei, two functions Canon_oLFmap and Fmap_oLCanon can then be

defined, giving an isomorphism between finite maps and their canonical representations.

t- (VJ. Fmap_oLCanon (Canon_oLFmap f) = f) A

(VI.

Canon_Rei (Fmap_of _Canon I) 1 ::)

(Canon_oLFmap (Fmap_oLCanon I) = l»

B.5.2 Introducing the type List Val

The type

ListVal = List_CONST I list_RECORD (num x ListVal)list

can be introduced manually using a technique similar to that for the type

data = List-CONST I List-RECORD (data)list

(B.4)

(B.5)

The manual method for doing this was described on the info-hol mailing list [Me191].

The only real complication is that we are defining a type where a recursive reference

to the type occurs nested within a product type on the right-hand side. We derive the

following characteristic theorem for the type, which states that a unique function exists

for every primitive recursive specification over the type:

t- Ve I. 3! In.
(fn List_CONST = e) A

(VI. In (list-RECORD l) = I (MAP (fn 0 SND) i) l)

B.5.3 Introducing the type Val

A subset of ListVal, isomorphic to our required type Val, is defined by a predicate Is_Val

introduced by a primitive recursive definition:

t- Is_Vallist_CONST A

(Vi. Is_Val (List_RECORD i) =
(3/. Canon_Rei / I) A ALLEL (Is_Val 0 SND) I»

where ALLEL tests if a predicate is true of every element of a list. This definition ensures

that each list within a List Val value is a canonical representation of some finite map.

APPENDIX B. A THEORY OF FINITE MAPS 152

The new type Val is now introduced based on the subset defined by Is_Val. The

constructors CONST and RECORD are defined in terms of List-CONST and List_RECORD

. The characteristic theorem for the type is derived from the characteristic theorem for

List Val. The derivation is a lengthy forward proof, and relies on properties of FFst,

F Rest , EveryMap and the functions Canon_oLFMap and FMap_oLCanon. The resulting

theorem is:

I- lie f. 3! fn.

(fn CONST = e) A

(lifmap· fn (RECORD fmap) = f (fn o_f fmap) fmap)

where o_f composes a function with a finite map. This gives a full characterisation of

the type Val. As with other HOL recursive types, an induction principle for Val may be

derived from this theorem, along with theorems proving that the constructors CONST

and RECORD are one to one and distinct.

B.6 Decision procedures

HOL theories typically corne with a set of tools for reasoning about the constructs defined

in them. This section discusses some decision procedures for finite maps, and in partie·

ular a conversion for determining the result of applying a finite map to an element. The

decision procedures for finite maps fall into two categories; those which simplify terms as

far as possible and return a single theorem capturing the result of this simplification; and

those which will perform case splits and make additional assumptions to return more

information. We first discuss an example of the former.

B.B.1 Simplifying terms

Function evaluation conversions can be introduced for all the constants defined in the

theory. For example, the conversion Extend_CONV : cony simplifies the addition of finite

maps as far as possible. For the finite map,

Extend (Update Empty (1, T)) (Update Empty (2, F))

Extend.CONV will return the theorem

I- Extend (Update Empty (1, T» (Update Empty (2, F» =

Update (Update Empty (2, F» (I, T)

Note that in this case the conversion has been able to remove the Extend operator

completely. The conversion Restrict_CONV : cony - cony simplifies terms of the form

APPENDIX B. A THEORY OF FINITE MAPS 153

Restrict f p as far as possible. The first argument must be a conversion to evaluate

applications of the restriction function p to individual elements of the domain of f·

B.6.2 A reducer for Apply

The most common decision procedure needed for finite maps is one to determine the

result of applying a finite map to an element. A similar conversion computes whether

an element is in the domain of a map.

Finite maps are frequently used in formal descriptions of programming languages,

and it is common to write symbolic evaluators for these languages once they have been

embedded into HOL. Such a symbolic evaluator was constructed for the Standard ML

Core language in [Sym92J. When writing a symbolic evaluator it is useful to have an

application reducer capable of handling applications of finite maps containing HOL vari­

ables, as in the case Apply (Update E (x,200» y. This lookup may arise if the evalu­

ator were reducing a program expression such as "let x • 200 in y" in an arbitrary

variable environment E. It is useful if the symbolic evaluator can make the necessary

assumption that the variable y has some value in this environment, which can later be

proved by type inference or some other method. We rarely want the symbolic evaluator

to fail just because it cannot determine exactly the result of applying an arbitrary finite

map to an element.

The conversion described in this section does not halt when it cannot determine the

result of an application. Instead it makes additional assumptions in order to compute a

result. These are accumulated in the assumption list of the returned theorem. Sometimes

the most important use of these assumptions is to help the users of the conversion find

mistakes in their input.

The apply reduction conversion, Apply_CONV, has type cony - convl. The type

convl is a function from a term to a list of theorems corresponding to the results of

evaluation under different assumptions. 1 The first argument should be a conversion

that decides equality between members of the domain of the finite map. For example,

applying Apply_CONV to num_EQ_CONV and the term

Apply (Update Empty (2, F» x

returns the theorems

(2 = x) .- Apply (Update Empty (2, F»x = F

(2 :F x) .- Apply (Update Empty (2, F))x = Apply Empty x

lin the current implementation a lazy list or sequence is used. since the function could potentially

return a large list of theorems.

APPENDIX B. A THEORY OF FINITE MAPS 154

In this example the equality conversion num_EQ_CONV has been unable to determine

whether 2 = x. Thus, Apply_CONV has returned two theorems with different assump-

tions.
Applying Apply_CONV to num_EQ_CONV and the term

Apply (Update (Update (E : (num, booJ)fmap) (x, y)) (1, T)) 3

returns the theorems

(x = 3) ~ Apply (Update (Update E (x, y)) (1, T)) 3 = y

(x ~ 3) ~ Apply (Update (Update E (x, y)) (1, T)) 3 = Apply E 3

Here, the arbitrary finite map E extended with an arbitrary pair (x, y) and the pair

(1. T) has been applied to 3. Apply_CONV has reduced the application as far as possible,

making assumptions about whether or not x = 3. In practice Apply_CONV would be

used in conjunction with the conversion Domain_CONV.

Another kind of term we would like to be able to reduce a.re those of the form

Apply (Extend f g) x. Adding two variable environments together is common in formal

programming language descriptions, and hence the construct Extend f g will often arise.

The conversion Apply_CONV is able to reduce applications of this form also, even if the

Extend operators are nested arbitrarily.

B.7 An example

Much of the motivation for this work has come from research on embedding the semantics

of programming languages in HOL. In this section we give an example of using finite maps

to reason about a small language (a simply-typed ~-calculus). Finite maps can be used

in two important places here. The first is in the type system, where a finite map can be

used to store the context in which a typing judgement holds. Here the finite map used is

a mapping from identifiers to types. Strictly speaking, there is no need for the mappings

used here to be finite; for our purposes an infinite map would suffice. But there is also

no need to allow infinite maps, and the restriction to finite maps provides an induction

principle that is useful in proofs.

The second place where finite maps are useful is in the definition of the evaluation

relation. Here substitution functions or environments mapping identifiers to expressions

ca.n be represented by finite maps.

For the purpose of this example we concentrate on the type system.

APPENDIX B. A THEORY OF FINITE MAPS 155

B. 7.1 A small language

Our aim is to construct a small language that includes variable binding. We define a

type. ty. to be either an atomic type or a function type:

ty ::= Atom string

ty - ty

and an expression, exp, to be either an identifier, function abstraction, or function

application:

exp ::= Id string

Lambda string ty exp

App exp exp

The typing rules are defined as a relation of the form Type C e t where Type has type

(string, ty)fmap - exp - ty - b001. This denotes true if the expression e has type t in

the context C. The rules for this relation are:

Type (Update C (v, t» (Id v) t

Type (Update C (y, tl)) e t2

Type C (Lambda y tl e) tl - t2

Type C el (tl - t2) Type C e2 t)

Type C (App el e2) t2

An important point to note about these rules is that the expression Update C (v, t) is

used to denote any finite map that maps v to t. The use of this expression does not

imply that (v, t) must be the "last update" used to build the type context. This works

in our theory because any finite map that maps v to t is equal to a finite map in which

the last update was (v, t). This gives another illustration of the usefulness of a theory

in which equality does not depend on the order of the updates.

B.7.2 Context extension

This section presents some theorems about how the context of a valid typing judgement

can be extended. In semantics this is referred to as weakening the context, as we are

adding surplus information.

APPENDIX B. A THEORY OF FINITE MAPS 156

The first theorem shows that the context can be extended by any mapping from an

element not already present in the domain.

~ 'Ve e t.

Type e e t :J

('Vx (Domain ex) ::> ('Vy. Type(Update e (x, y» e t»
This is proved by an induction over the rules for the Type relation. The proof makes

use of several of the theorems about finite maps, including the theorem that asserts

the equality of maps with two elements inserted in a different order provided they are

updating different elements of the domain.

Further theorems, which can be proved by a simple induction over one of the contexts,

show under what conditions extending the context with another context will preserve

typing judgements. The simplest such theorem is

~ 'Ve e t. Type e e t :J 'Ve'.Type (Extend ee') e t

This says the context can be weakened by extension with any context and the type

judgement will still be preserved.

B.7.3 Restriction of the context

An important and practical theorem about this language is that type judgements are

preserved by restricting the context to the free variables in the expression being typed.

A function Fv can be defined to test if a variable is free in an expression

I- ('Vi x. Fv (Id i) x = i = x) 1\

(Vy t e x. Fv (lambda y t e) x = (y ~ x) 1\ Fv e x) 1\

('Vel e2 x. Fv (App el e2) x = Fv el x V Fve2 x)

The theorem that can then be proved is

~ 'Ve e t. Type e e t = Type (DRestrict e (Fv e» e t

This theorem follows by using the two lemmas below:

~ VC e t. Type (DRestrict e (Fv e» e t :J Type e e t

~ 'VC e t. Type e e t :J Type (DRestrict e (Fv e» e t

The first of these follows by observing that the expression Fv e x V (Fve x) is true for

any e and x. This is used to show that

Type e e t

= Type (DRestrict e «'xx. (Fv e x) V «,Xy (Fv e y» x») e t

= Type (Extend (DRestrict C (Fv e) (DRestrict e (,Xy (Fv e y» e t

APPENDIX B. A THEORY OF FINITE MAPS 157

The result then follows from the theorem

I- 'VG e t. Type Get :::> 'VG' Type (Extend G G') e t

The other implication requires an induction over the rules for the relation Type. This

decomposes the goal into three subgoals, each of which can be solved by manipulation

of the contexts similar to that used above.

Both the free variables in a term and the restriction of a context can be computed

easily using simple conversions. The last theorem then provides a means to reduce the

problem of type checking in a large context.

The importance of this simple example is that much of the task of formalising and

proving these results has been removed by the use of the finite maps library and the

concepts and theorems developed there.

B.B Conclusions

Any theory based on a set of axioms must satisfy two essential properties. First, it

must be consistent, a fact guaranteed here by the derivation of the axioms from a rep­

resentation in terms of functions. The axioms should also be complete with respect to

the model. This has been proved and so the equivalent of any property provable in the

model will be provable from our axioms.

The principal motivation for this work was the need for a practical tool to aid in the

development, within HOL, of semantics for programming languages. The theory makes

the task of meta-reasoning, such as that in the example, significantly easier than it would

be otherwise. Enough theorems have been proved to allow conversions to be written to

reduce a variety of expressions involving finite maps to simpler forms. This has practical

benefits when building systems like partial evaluators or type checkers using HOL.

One reason that others have used lists to represent finite maps was the ability to

define recursive types such as those discussed in section 5. We have shown here that

such types can also be defined with the finite maps presented here, although this is not

automated. The derivation of this type justifies the axiomatisation of a similar type

used in [Sym92].

Acknowledgements

Thanks are due to Tom Melham for advice on all aspects of this work, from the theory

to the presentation style. Thanks must also go to the Engineering and Physical Sciences

Research Council for financial support of the first author.

Bibliography

[AbrOOj

[AC99j

Samson Abramsky. The Lazy Lambda Calculus. In David Thrner, editor,

Research Topics in Functional Programming, pages 65-116. Addison-Wesley,

1990.

Simon A Ambler and Roy L Crole. Mechanised Operational Semantics

via (Co)Induction. In Y. Berlot, G. Dowek, A. Hirschowitz, C. Paulin,

and L. Thery, editors, Proceedings of the 12th International Conference on

Theorem Proving in Higher Order Logics (TPHOLs'99), Nice, France, vol­

ume 1690 of Lecture Notes in Computer Science, pages 221-238. Springer,

September 1999.

[ACN90j L. Augustsson, Th. Coquand, and B. Nordstrom. A short description of

another logical framework. In G. Huet and G. Plotkin, editors, Preliminary

Proceedings of Logical Frameworks, 1990.

[Acz77j

[Age94j

P Aczel. An introduction to inductive definition. In J Barwise, editor,

Handbook of Mathematical Logic, pages 739-782. North Holland, 1977.

Sten Agerholm. A HOL Basis for Reasoning about Functional Programs.

Technical Report RS-94-44, Basic Research in Computer Science, University

of Aarhus, December 1994.

[AGMT98] J. S. Aitken, P. Gray, T. Melham, and M. Thomas. Interactive theorem prov­

ing: An empirical study of user activity. Journal of Symbolic Computation,

1998.

[AJM94j Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. Full ab­

straction for PCF (extended abstract). In Masami Hagiya and John C.

Mitchell, editors, Theoretical Aspects of Computer Software. International

Symposium TA CS '94, number 789 in Lecture Notes in Computer Science,

pages 1-15, Sendai, Japan, April 1994. Springer-Verlag.

158

BIBLIOGRAPHY 159

[BGG+92] Richard Boulton, Andrew Gordon, Mike Gordon, John Harrison, John Her­

bert, and John Van Tassel. Experience with embedding hardware description

languages in HOL. In V. Stavridou, T. F. Melham, and R. T. Boute, edi­

tors, Theorem Provers in Circuit Design: Theory, Practice and Experience:

[Bir98]

[Bou97]

[Bou98]

Proceedings of the IFIP WG10.2 International Conference, Nijmegen, pages

129-156. North-Holland, June 1992.

Richard Bird. Introduction to Functional Programming using Haskell. Pren­

tice Hall Press, 2nd edition, 1998.

R. J. Boulton. A tool to support formal reasoning about computer lan­

guages. In E. Brinksma, editor, Proceedings of the Third International

Workshop on Tools and Algorithms for the Construction and A nalysis of

Systems (TACAS'97), volume 1217 of Lecture Notes in Computer Science,

pages 81-95, Enschede, The Netherlands, April 1997. Springer.

R. J. Boulton. Generating embeddings from denotational descriptions. In

J. Grundy and M. Newey, editors, Proceedings of the 11th International

Conference on Theorem Proving in Higher Order Logics (TPHOLs'98), vol­

ume 1479 of Lecture Notes in Computer Science, pages 67-86, Canberra,

Australia, September/October 1998. Springer.

[BRTT93] Lars Birkdal, Nick Rothwell, Mads Tofte, and David N. Turner. The ML

Kit. Technical Report 93/14, Department of Computer Science, University

of Copenhagen, March 1993.

[BSvH+93] A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and A. Smaill. Rippling:

[Bun88]

[BW88]

A heuristic for guiding inductive proofs. Artificial Intelligence, 62:185-253,

1993.

A. Bundy. The use of explicit plans to guide inductive proofs. In R. Lusk

and R. Overbeek, editors, 9th Conference on Automated Deduction, pages

111-120. Springer-Verlag, 1988.

Richard Bird and Philip Wadler. Introduction to Functional Programming.

International Series in Computer Science. Prentice Hall, 1988.

[CAB+86! R. 1. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cremer,

R. W. Harper, D. J. Howe, T. B. Knobloch, N. P. Mendler, P. Panangaden,

J. T. Sasaki, and S. F. Smith. Implementing Mathematics with the NuPRL

Proof Development System. Prentice-Hall, 1986.

BIBLIOGRAPHY 160

[CG94j

[CH91]

[C092J

[Co194]

Graham Collins and Stephen Gilmore. Supporting Formal Reasoning about

Standard ML. Technical Report ECS-LFCS-94-31O, Laboratory for Foun­

dations of Computer Science, University of Edinburgh, November 1994.

Graham Collins and Jonathan Hogg. The circuit that was too lazy to fail.

Draft Report (http://www.collins-peak.net/academic.html). 1991.

A. Cant and M.A. Ozols. A verification environment for ML programs. In

Proceedings of the ACM SIGPLAN Workshop on ML and its Applicatins,

San Francisco, California, June 1992.

Graham Collins. Supporting Formal Re880ning about Standard ML. MSc

dissertation, University of Edinburgh, September 1994.

[CoI96a] Graham Collins. A Proof Tool for Reasoning about Functional Programs.

In J. von Wright, J. Grundy, and J Harrison, editors, Theorem Proving in

Higher Order Logics, volume 1125 of Lecture Notes in Computer Science,

pages 109-124. Springer-Verlag, 1996.

[Co196bJ Graham Collins. Supporting Reasoning about Functional Programs: An

Operational Approach. In 1995 Glasgow Workshop on Functional Program­

ming, Electroninc Workshops in Computer Science. Springer-Verlag, 1996.

[CS95]

[CZ94]

[Den99]

Graham Collins and Donald Syme. A Theory of Finite Maps. In E. Thomas

Schubert, Phillip J. Windley, and Hames Alves-Foss, editors, Higher Order

Logic Theorem Provin9 and its Applications, volume 971 of Lecture Notes in

Computer Science, pages 122-131. Springer-Verlag, 1995.

J. Camilleri and V. Zammit. Symbolic animation as a proof tool. In T. F.

Melham and J. Camilleri, editors, Higher Order Logic Theorem Proving and

Its Applications: 7th International Workshop, volume 859, pages 113-121.

Springer-Verlag, sept 1994.

Louise A Dennis. Proof Planning Coinduction. PhD dissertation, University

of Edinburgh, 1999.

[DFH+93] Gilles Dowek, Amy Felty, Hugo Herbelin, Gerard Huet, Chet Murthy,

Catherine Parent, Christine Paulin-Mohring, and Benjamin Werner. The

Coq Proof Assistant User's Guide. Rapport Techniques 154, INRIA, Roc­

quencourt, France, 1993. Version 5.8.

BIBLIOGRAPHY 161

[DG97]

[FT961

[GG89]

[Gil96]

[GM93]

[GM96]

A. Dennis, L.A. Bundy and I Green. Using a generalisation critic to find

bisimulations for coinductive proofs. In CADE-14, pages 276-290, 1997.

Also available as Edinburgh DAl Research Report, 834.

Tom Fukushima and Charles Tuckey. Charity User Manua~ January 1996.

(draft.http://wvw.cpsc.ucalgary.ca/projects/char1ty/home.htm1).

Stephen J. Garland and John V. Guttag. An Overview of LP, The Larch

Prover. In Nachum Dershowitz, editor, Rewriting Techniques and Applica­

tions, volume 355 of LNCS, pages 137-155. Springer-Verlag, 1989.

Andy Gill. A Graphical User Interface for an Equational Reasoning Assis­

tant. In 1995 Glasgow Workshop on Functional Programming, Electroninc

Workshops in Computer Science. Springer-Verlag, 1996.

M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A theorem

proving environment for higher order logic. Cambridge University Press,

1993.

A. D. Gordon and T. Melham. Five Axioms of Alpha-Conversion. In J. von

Wright, J. Grundy, and J Harrison, editors, Theorem Proving in Higher

Order Logics, volume 1125 of Lecture Notes in Computer Science, pages

173-190. Springer-Verlag, 1996.

[GMW79] M.J. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF : A Mech­

anised Logic of Computation, volume 78 of Lecture Notes in Computer Sci­

ence. Springer-Verlag, 1979.

[Gor93aj Andrew D. Gordon. An Operational Semantics for I/O in a Lazy Func­

tional Language. In Conference on Functional Programming Languages and

Computer Architecture, Copenhagen, pages 136-145. ACM Press, June 1993.

[Gor93b] Andrew D. Gordon. Functional programming and input/output. Technical

Report 285, University of Cambridge Computer Laboratory, February 1993.

[Gor94] Andrew D. Gordon. Functional Programming and Input/Output. Distin­

guished Dissertations in Computer Science. Cambridge University Press,

1994.

[Gor95a] Andrew D. Gordon. Bisimilarity as a Theory of Functional Programming.

Technical Report NS-95-3, Basic Research in Computer Science, University

of Aarhus, July 1995.

BIBLIOGRAPHY 162

[Gor95b) Andrew D. Gordon. A Thtorial on Co-induction and Functional Program­

ming. In 199~ Glasgow Workshop on FUnctional Programming, Workshops

in Computer Science, pages 18-95. Springer-Verlag, 1995.

[Gun92)

[Gun93)

[Har95)

[HM94]

[How89)

[Hut98]

[Jon96]

[JR91]

Carl A. Gunter. Semantics of Programming Languages: Structures and Tech­

niques. Foundations of Computing. The MIT Press, 1992.

Elsa Gunter. A Broader Class of Trees for Recursive Type Definitions for

HOL. In J. J. Joyce and C. J. H. Seger, editors, Higher Order Logic Theo­

rem Proving and its Applications, volume 180 of Lecture Notes in Computer

Science, pages 141-154. Springer-Verlag, 1993.

Paul Hudak et a1. Report on the functional programming language Haskell,

version 1.2. ACM SIGPLAN Notices, 21(5), May 1992.

John Harrison. Inductive definitions: automa.tion and a.pplication. In

E. Thomas Schubert, Phillip J. Windley, and Hames Alves-Foss, editors,

Higher Order Logic Theorem Proving and its Applications, volume 911 of

Lecture Notes in Computer Science, pages 200-213. Springer-Verlag, 1995.

Peter V. Homier and David F. Martin. Trustworthy Tools for Trustwor­

thy Programs: A Verified Verification Condition Generator. In Thomas F.

Melham and Juanito Camilleri, editors, Theorem Proving in Higher Order

Logics, volume 859 of Lecture Notes in Computer Science, pages 269-284.

Springer-Verlag, September 1994.

Douglas J. Howe. Equality in lazy computation systems. In Proceedings

of the ~th IEEE Symposium on Logic in Computer Science, pages 198-203,

1989.

Graham Hutton. Theorems for free. In 3rd ACM SIGPLAN International

Conference on FUnctional Programming. ACM, September 1998.

Simon Peyton Jones. Compiling haskell by program transformation: a re­

port from the trenches. In Proceedings of the European Symposium on Pro­

gramming (ESOP'96), Linkping, Sweden, volume 1058 of Lecture Notes in

Computer Science. Springer Verlag, January 1996.

B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction.

EATCS Bulletin, 62:222-259, 1997.

BIBLIOGRAPHY 163

[LP92]

[Luo94]

Z. Luo and R. Pollack. LEGO Proof Development System: User's Man­

ual. Technical Report ECS-LFCS-92-211, Department of Computer Science,

University of Edinburgh, November 1992.

Zhaohui Luo. Computation and Reasoning: A Type Theory for Computer

Science. Number 11 in International Seri~ of Monographs on Computer

Science. Oxford University Press, 1994.

[McC98] Guy McCusker. Games and Full Abstraction for a Functional Metalanguage

with Recursive Types. Distinguished Dissertations. Springer-Verlag, 1998.

[Me189] Tom F. Melham. Automating Recursive Type Definitions in HOL. In

G. Birtwistle and P. A. Subrahmanyam, editors, Current Trends in Hard­

ware Verification and Automated Theorem Proving, pages 341-386. Springer­

Verlag, 1989.

[Me191}

[MeI92]

[Me194]

[MG94]

[Mil89]

Tom F. Melham. Recursive Data Types. Message on info-hol mailing list,

9th November 1991.

Tom F. Melham. A Package for Inductive Relation Definitions in HOL. In

M. Archer, J. J. Joyce, K. N. Levitt, and P. J. Windley, editors, Proceedings

of the 1991 International Workshop on the HOL Theorem Proving System

and its Applications, Davis, August 199~, pages 350-357. IEEE Computer

Society Press, 1992.

Tom F. Melham. A mechanized theory of the 1I'-calculus in HOL. Nordic

Journal of Computing, 1:50-76, 1994.

Savi Maharaj and Elsa Gunter. Studying the ML Module System in HOL.

In Tom Melham and Juanito Camilleri, editors, Higher Order Logic Theo­

rem Proving and its Applications, volume 859 of Lecture Notes in Computer

Science, pages 346-361. Springer-Verlag, September 1994.

Robin Milner. Communication and conCUJTency. International Series in

Computer Science. Prentice Hall, New York, 1989.

[MPW92a] R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes, I.

Information and Computation, 100(1):1-40, September 1992.

[MPW92b] R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes, II.

Information and Computation, 100(1):41-77, September 1992.

BIBLIOGRAPHY 164

[MT91] Robin Milner and Mads Tofte. Commentary on Standard ML. The MIT

Press, 1991.

[MTH90] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard

ML. The MIT Press, 1990.

[MTHM97] Robin Milner, Mads Tofte, Robert Harper, and Dave MacQueen. The Def­

inition of Standard ML (Revised). The MIT Press, 1997.

[Nes92] M. Nesi. A Formalization of the Process Algebra CCS in Higher Order Logic.

Technical Report 278, Computer Laboratory, University of Cambridge, De­

cember 1992.

[NPS90] B. Nordstrom, K. Petersson, and J. M. Smith. Programming in Martin­

La! 's Type Theory: A n Introduction. International Series of Monographs on

Computer Science 7. Oxford University Press, 1990.

[Pau83]

[Pau87]

[Pau94]

[Pau96]

[Pit94]

[Pit96]

[Pit97]

[Pit98]

Lawrence Paulson. A Higher Order Implementaion of Rewriting. Science of

Computer Programming, 3:119-149, 1983.

L. C. Paulson. Logic and computation. Cambridge University Press, 1987.

Lawrence C. Paulson. Co-induction and co-recursion in higher order logic.

Technical report, University of Cambridge Computer Laboratory, 1994.

L. C. Paulson. ML for the Working Programmer. Cambridge University

Press, 2nd edition, 1996.

A. M. Pitts. A co-induction principle for recursively defined domains. The­

oretical Computer Science, 124:195-219, 1994. (A preliminary version of

this work appeared as Cambridge Univ. Computer Laboratory Tech. Rept.

No. 252. April 1992.).

A. M. Pitts. Relational properties of domains. Information and Computa­

tion, 127:66-90, 1996. (A preliminary version of this work appeared as Cam­

bridge Univ. Computer Laboratory Tech. Rept. No. 321, December 1993.).

A. M. Pitts. Operationally Based Theories of Program Equivalence. In

D. Dybjer and A. M. Pitts, editors, Semantics and Logic of Computation.

1997.

A. M. Pitts. Parametric polymorphism and operational equivalence (pre­

liminary version). Electronic Notes in Theoretical Computer Science, 10,

BIBLIOGRAPHY 165

[Plo91]

[Reg95]

[SBB98]

1998. Proceedings, 2nd Workshop on Higher Order Operational Techniques

in Semantics, Stanford CA, December 1997.

Gordon D Plotkin. A structural approach to operational semantics. Techni­

cal Report DAIMI FN - 19, Aarhus University, September 1981, Reprinted

April 1991.

Franz Regensburger. HOLCF: Higher Order Logic of Computable Func­

tions. In E. Thomas Schubert, Phillip J. Windley, and Hames Alves-Foss,

editors, Higher Order Logic Theorem Proving and its Applications, volume

971 of Lecture Notes in Computer Science, pages 293-307. Springer-Verlag,

1995.

Konrad Slind, Mike Gordonand Richard Boulton, and Alan Bundy. System

description: An interface between CLAM and HOL. In C. Kirchner and

H. Kirchner, editors, Proceedings of the Fifteenth International Conference

on Automated Deduction (CADE-15), Lindau, Germany, volume 1421 of

Lecture Notes in Artificial Intelligence, pages 134-138. Springer, July 1998.

[SGBB98J Konrad Slind, Mike Gordon, Richard Boulton, and Alan Bundy. An interface

between CLAM and HOL. In J. Grundy and M. Newey, editors, Proceedings

of the 11th International Conference on Theorem Proving in Higher Order

Logics (TPHOLs '98), Canberra, Australia, volume 1479 of Lecture Notes in

Computer Science, pages 87-104. Springer, September/October 1998.

[SJ90]

[Sli96]

[Sym92j

[Sym93j

Mary Sheeran and Geraint Jones. Circuit design in Ruby. North Holland,
1990.

Konrad SHnd. FUnction definition in higher-order logic. In J. von Wright,

J. Grundy, and J Harrison, editors, Theorem Proving in Higher Order Logics,

volume 1125 of Lecture Notes in Computer Science, pages 381-397. Springer­

Verlag, 1996.

Donald Syme. Supporting Formal Reasoning about Standard ML. Honours

Thesis, Australian National University, 1992.

Donald Syme. Reasoning with the Formal Definition of Standard ML in

HOL. In Higher Order Logic Theorem Proving and Its Applications, volume

780 of Lecture Notes in Computer Science, pages 43-60. Springer-Verlag,

1993.

BIBLIOGRAPHY 166

[Sym97] Don Syme. Declare: A prototype declarative proof system for higher order

logic. Technical Report 416, University of Cambridge Computer Laboratory,

feb 1997.

[Sym98] Donald Syme. Declarative Theorem Proving for Operational Semantics. PhD

dissertation, University of Campridge, 1998.

[Th089]

[Tho91]

[Tho93]

[Tho94]

[Tho96]

[Tur95]

[Van94]

[VG93]

[Wad89]

[Win93]

Simon J. Thompson. A logic for Miranda. Formal Aspects of Computing, I,

1989.

Simon Thompson. 7YPe Theory and FUnctional Programming. Addison­

Wesley, 1991.

Simon J. Thompson. Formulating Haskell. In Workshop on Functional

Programming, Ayr, 1992, Workshops in Computing. Springer-Verlag, 1993.

Simon J. Thompson. A logic for Miranda, revisited. Revised version of the

1989 article, 1994.

Simon Thompson. Haskell: The Craft of FUnctional Programming. Addison­

Wesley, 1996.

David A Turner. Elementary strong functional programming. In Func­

tional Programming Languages in Education, volume 1022 of Lecture Notes

in Computer Science, pages 1-13. Springer-Verlag, December 1995.

Myra VanInwegen. The formal specification of programming languages. PhD

Thesis Proposal, University of Pennsylvania, September 1994.

Myra Vanlnwegen and Elsa Gunter. HOL-ML. In J. J. Joyce and C. J. H.

Seger, editors, Higher Order Logic Theorem Proving and its Applications,

volume 780 of Lecture Notes in Computer Science, pages 61-74. Springer­

Verlag, 1993.

Philip Wadler. Theorems for free. In Functional Programming Languages

and Computer Architecture, pages 347-359. ACM, 1989.

Glynn Winskel. The Formal Semantics of Programming Languages. The

MIT Press, 1993.

	343911_001
	343911_002
	343911_003
	343911_004
	343911_005
	343911_006
	343911_007
	343911_008
	343911_009
	343911_010
	343911_011
	343911_012
	343911_013
	343911_014
	343911_015
	343911_016
	343911_017
	343911_018
	343911_019
	343911_020
	343911_021
	343911_022
	343911_023
	343911_024
	343911_025
	343911_026
	343911_027
	343911_028
	343911_029
	343911_030
	343911_031
	343911_032
	343911_033
	343911_034
	343911_035
	343911_036
	343911_037
	343911_038
	343911_039
	343911_040
	343911_041
	343911_042
	343911_043
	343911_044
	343911_045
	343911_046
	343911_047
	343911_048
	343911_049
	343911_050
	343911_051
	343911_052
	343911_053
	343911_054
	343911_055
	343911_056
	343911_057
	343911_058
	343911_059
	343911_060
	343911_061
	343911_062
	343911_063
	343911_064
	343911_065
	343911_066
	343911_067
	343911_068
	343911_069
	343911_070
	343911_071
	343911_072
	343911_073
	343911_074
	343911_075
	343911_076
	343911_077
	343911_078
	343911_079
	343911_080
	343911_081
	343911_082
	343911_083
	343911_084
	343911_085
	343911_086
	343911_087
	343911_088
	343911_089
	343911_090
	343911_091
	343911_092
	343911_093
	343911_094
	343911_095
	343911_096
	343911_097
	343911_098
	343911_099
	343911_100
	343911_101
	343911_102
	343911_103
	343911_104
	343911_105
	343911_106
	343911_107
	343911_108
	343911_109
	343911_110
	343911_111
	343911_112
	343911_113
	343911_114
	343911_115
	343911_116
	343911_117
	343911_118
	343911_119
	343911_120
	343911_121
	343911_122
	343911_123
	343911_124
	343911_125
	343911_126
	343911_127
	343911_128
	343911_129
	343911_130
	343911_131
	343911_132
	343911_133
	343911_134
	343911_135
	343911_136
	343911_137
	343911_138
	343911_139
	343911_140
	343911_141
	343911_142
	343911_143
	343911_144
	343911_145
	343911_146
	343911_147
	343911_148
	343911_149
	343911_150
	343911_151
	343911_152
	343911_153
	343911_154
	343911_155
	343911_156
	343911_157
	343911_158
	343911_159
	343911_160
	343911_161
	343911_162
	343911_163
	343911_164
	343911_165
	343911_166
	343911_167
	343911_168
	343911_169
	343911_170
	343911_171
	343911_172
	343911_173
	343911_174
	343911_175

