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Abstract 

It is often claimed that functional programming languages, and in particular pure func­

tional languages. are suitable for formal reasoning. This claim is supported by the fact 

that many people in the functional programming community do reason about languages 

and programs in a forlllal or sellli-furIllal way. Different reasoning principles. such as 

equational reasoning, induction and co-induction, are used, depending on the nature of 

the problem. 

Using a computer program to check the application of rules and to mechanise the 

t.edious bookkeeping involved can simplify proofs and provide more confidence in their 

correctness. When reasoning about programs, this can also allow experiments with 

new rules and reasoning styles, where a user may not be confident about structuring a 

proof on paper. Checking the applicability of a rule can eliminate the risk of mistakes 

caused by misunderstanding the theory being used. Just as there are different ways in 

which formal or informal reasoning can be applied in functional programming, there are 

different ways in which tools can be provided to support this reasoning. 

This thesis describes an investigation of how to develop a mechanised reasoning 

system to allow reasoning about algorithms as a functional programmer would write 

them, not an encoding of the algorithm into a significantly different form. In addition, 

thl' work aims to develop a system to support a user who is not a theorem proving 

expert or an expert in the theoretical foundations of functional programming. The work 

j" aiUleJ luwarJs a :::.yslelll that cuulJ ue used by a fUllctional programmer developing 

real programs and wishing to prove some or all of the programs correct or to prove that 

two programs are equivalent. 
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Chapter 1 

Introduction 

It is often claimed that functional programming languages, and in particular pure func­

tional languages, are suitable for formal reasoning. This claim is supported by the fact 

that many people in the functional programming community do reason about languages 

and programs in a formal or semi-formal way. Different reasoning principles, such as 

equational reasoning, induction and co-induction, are used, depending on the nature of 

the problem. 

Using a computer program to check the application of rules and to mechanise the 

tedious bookkeeping involved can simplify proofs and provide more confidence in their 

correctness. When reasoning about programs, this can also allow experiments with 

new rules and reasoning styles, where a user may not be confident about structuring a 

proof on paper. Checking the applicability of a rule can eliminate the risk of mistakes 

caused by misunderstanding the theory being used. Just as there are different ways in 

which formal or informal reasoning can be applied in functional programming, there are 

different ways in which tools can be provided to support this reasoning. 

The rest of this chapter looks first at the reasoning tasks that can be supported and 

the types of tools that can be built to support them. It then outlines the specific aims, 

approach and contribution of this thesis. 

1.1 Reasoning and functional programming 

Two significant applications of reasoning to functional programming are proving prop­

erties and equivalence of programs and deriving new rules needed to prove these results. 

These activities require different levels of knowledge to produce a correct proof. 

The highest level of knowledge and formal rigour is required to derive new rules. New 

rules are derived within some semantic framework, typically an operational or denota-

1 



CHAPTER 1. INTRODUCTION 2 

tional semantics. For example, fixpoint induction is often derived from a denotational 

semantics, as is parametricity [Wad89). Leading advocates of coinduction often present 

work derived from an operational semantics framework [Gor94). 

In many cases there is work showing either that the rules derived from one semantic 

framework are transferable to other semantic frameworks, or that the semantic frame­

works are equivalent. It requires a greater range and depth of mathematical knowledge 

to understand how these results can be derived and combined in different semantic 

frameworks than to apply the rules to specific problems. But when a mixture of rules 

is used to reason about programs, without checking that the underlying semantics are 

compatible, then the resulting proofs, while quite possibly correct, are not as rigorous 

as they could be. 

Mechanised reasoning support can fill this gap by providing a framework for expert 

users to derive rules and for a more general group of users to apply them. This would 

allow the less expert user to apply the rules, without being aware of the underlying 

semantics, and with the knowledge that if the rule is applied incorrectly then the mech­

anised tool will detect the error. In addition, with a suitable level of automation a tool 

can also simplify the discovery of the proof itself. 

1.2 Supporting formal reasoning 

There are three main ways of developing a program to mechanise the construction of a 

proof about some property of a program or language. The choice of method is influenced 

by whether the aim is to reason about programs, to derive new rules to aid reasoning, or 

to reason about the language semantics. The first approach is to develop a tool with no 

mechanised formal basis but which can manipulate terms in the language. Such a tool 

could be a custom rewrite engine with a user interface [Gil96) or an informal translation 

of the function definitions and derived rules for the language into axioms in a theorem 

prover [Tho89, Tho93, Tho94]. Both are useful, but the lack of a formal basis means 

there is no way to check that the rules themselves are correct and no internal way of 

generating new rules. 

A second approach is to directly use the underlying logic in an existing theorem 

prover. Functions, and function definitions, can be expressed in the logics of most 

theorem provers. Some, such as HOL [GM93]' have a logic that restricts the functions 

that can be introduced to ones that are terminating and total, providing a useful, but 

limited, basis for reasoning about such programs. LCF [Pau87] provides a logic where 

non-terminating functions can be introduced, but it forces the user to reason about a 

'bottom element' in all types---€ven when this may be unnecessary because the bottom 
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element cannot arise [GMW79, Pau87]. While such systems are the simplest way to 

provide formal support for mechanised reasoning, the restriction on programs expressible 

and the inability to derive new rules directly from the semantics may prevent reasoning 

about many real programs. 

For example, syntactic restrictions on the form of programs to ensure termination 

can mean that to reason about a program it is necessary not just to extend it as in the 

requirement for totality, but to rewrite the program completely. In the lazy functional 

programming community, infinite data structures and non-terminating programs are 

used not just where inhnite behaviour is required, but also to simplify the structure of a 

program by allowing the programmer to writp functions that define an infinite structure 

and then relying on lazy evaluation to ensure the intinite structures are not generated. 

Restrictions on the termination behaviour will disallow many of the programs that are 

actually written. In addition, since new proof rules and other meta-theoretic results 

cannot be derived within the system, there will be restrictions on the range of proof 

styles that may be applied to problems. 

The third approach for developing a mechanised tool is to first define the semantics 

of the language in a theorem prover and then develop reasoning principles on top of this. 

This allows the meaning to be given to programs that cannot be expressed directly in the 

theorem prover's logic and provides a means to derive new rules from the semantics. As 

long as the semantics are correct, any program for the language will be able to be entered, 

and any new meta-theory should be derivable. Varieties of denotational semantics and 

operational semantics can be used to express the semantics of the language. 

Denotational semantics determines the meaning of a program by translation into a 

mathematical model. One of the advantages of this approach is that the meaning of the 

equalitv of two programs is easily expressed as the equality of the programs' denotations 

in the underlying model. The definitions of some lanuages within HOL have used this 

flpproflrh [Rf'g9fi. Agd}4j 

Operational semantics work:; by detining the meaning in terms of the program's exe­

cution on some abstract machine. The mathematical concepts used to give the meaning 

to programs are often simpler than in a denotational semantics, since nothing more 

complicated than relations is needed. This makes operational semantics suitable for ex­

pressing the meaning of terms in the language and for reasoning about the language, but 

not necessarily for reasoning about equality of programs since this is not given by the def­

inition of the abstract machine. The semantics of SML is specified using an operational 

semantics [MTH90, MT91, MTHM97]. Numerous systems have been built by formalising 

parts of this definition in a theorem prover [Sym92, Sym93. VG93, Van94, MG94, C092]. 

While equality of programs that yield a value can easily be expressed as the equality 
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of the results of the evaluation of both programs, there is no simple definition of equality 

for programs or functions that do not terminate to yield a value. Instead the equality can 

be defined as a new relation that captures the intended meaning and can be proved to 

be a congruence. The operational approach leads to a system that does not impose any 

restrictions on the programs that can be expressed. Any program that can be expressed 

in the language can be entered. 

Whether or not a particular semantics for a language, and hence the derived meaning 

of equality of two programs, correctly captures our intentions depends on the choices 

made in defining the semantics and equality. For domain theory most of these choices 

are distilled into the choice of the model for the semantics. In the operational approach 

the choiCe!> are divided between the choice of execution rules for the abstract machine 

and the choice of equivalence relation. Any of these choices may lead to a semantics that 

gives a different meaning to a program than the meaning intended by the programmer. 

For example, the semantics may specify a different termination behaviour from that 

expected by the programmer. Such a semantics may be incorrect, but there may also be 

no mathematical inconsistencies. One way to determine the correctness of the semantics 

is to compare the meaning given to programs with the meaning assigned by some other 

semantics we already believe to be correct. 

One definition of equivalence that is more abstract than either of the above ap­

proaches is contextual equivalence. This states that two programs are equivalent if they 

have the same behaviour when placed in any larger program or context. This is often 

used as the benchmark for full abstraction results about the semantics. The models most 

often used in the domain theory do not lead to a semantics that is fully abstract, although 

models can be found based on game theory that are [McC98, AJM94j. Correctness with 

respect to contextual equivalence is easier to obtain with an operational semantics and 

a defined equivalence than with a denotational semantics. The equivalence relation for 

the language could be defined to be contextual equivalence but using different relations 

Cdll g,i ve rise tu mure u:;cful reasuning principle:; for proving the equivalence of programs. 

1.3 Aims 

The aim of the work described here is to investigate how to develop a mechanised rea­

soning system to allow reasoning about algorithms as a functional programmer would 

write them, not an encoding of the algorithm into a significantly different form. In addi­

tioll. till' wurk aims to dcvelop d system to support a user who i:; not a theorem proving 

expert or an expert in the theoretical foundations of functional programming. The work 

is aim{'o towards a system that could be used by a functional programmer developing 



CHAPTER 1. INTRODUCTION 5 

real programs and wishing to prove some or all of the programs correct or just prove 

two programs are equivalent. Such a user will understand some of the concepts of induc­

tion and other proof principles but should not have to handle fine-grained mathematical 

details. 

Such a system removes two obligations from the programmer in the generation of 

rigorous proof: 

• the obligation to understand how proof rules are derived from the underlying se­

mantics, and 

• the obligation to produce and check every step of the proof. 

The system should be extensible, allowing the addition of new rules and tools. This 

involves supporting a second class of user who, as an expert in the theoretical foundation 

or theorem proving, can derive these new rules. 

The work is based on the definition of an operational semantics for a lazy functional 

programming language in a theorem prover. While this language is smaller and simpler 

than a full strength functional language, it still allows the expression of many of the 

styles of programming used. Such a set-up has in the past been used primarily to reason 

about language semantics; here it is extended with a definition and theory of equality. 

This provides a semantic base from which to define a range of reasoning principles. 

One primary difficulty with this approach is that much of the reasoning is at a very 

low level and consists of many more steps than a paper proof. One aim of the work 

here is to show it is possible to use sufficient automation and derived rules within the 

system to move towards a system that allows reasoning at the same or higher level than 

semi-formal reasoning on paper. 

1.4 Contributions 

A major product of the work described here is a system that satisfies the aims described 

in the previous section. In particular there is a theory, formalised in HOL, along with as­

sociated proof tools that allows reasoning, at a high level, about lazy functional programs 

without placing restrictions on the form and termination behaviour of the functions. The 

system makes use of a variety of tools written in the ML language and ideas from the 

functional programming community, such as strictness analysis, to achieve this level of 

reasoning. 

This result shows that it is possible to define the semantics of a language by a defining 

the syntax and a hierarchy of semantic relations and still recover a practical system by 

use of the ML language to construct proof tools. 
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Some more specific contributions that resulted from this work are: 

• A formalisation of coinduction, finite maps [CS95] and closing substitutions. These 

general theories, which have not previously been mechanised in HOL, are used 

throughout the rest of the formalisation and form libraries of results that could be 

used elsewhere. 

• The operational semantics of a small language has been embedded in HOL and 

a large collection of standard results, such as the uniqueness of type assignments 

and determinacy results about reduction, has been proved. The treatment here 

is different from other embeddings of functional languages in that it is aimed at 

reasoning about programs, rather than the semantics. 

• A mechanisation of Gordon's theory of applicative bisimulation [Gor95aJ. The 

equivalence relation is defined relative to an operational semantics and is proved 

to be a congruence. This was the first substantial development of this theory in a 

theorem prover and illustrates that deriving equality of functional programs from 

an operational semantics is feasible in a mechanised setting. 

• A mechanised operational treatment of a restricted form of parametric polymor­

phism ("theorems for free") [Wad89, Pit98]. Many presentations begin by setting 

up a semantic framework tailored to the development of parametric polymorphism 

but not the same semantic framework used to derive other results. The work here 

uses the same operational semantics that the rest of the work is based on. This 

shows that this semantic framework is suitable for extension with new reasoning 

principles. 

• A set of examples demonstrating the range of proofs possible, including results 

about programs that cannot expressed or proved correct without dealing with 

undefined and infinite values. 

While the work described here is not a fully fledged system suitable for general use­

it lacks a full-blown user interface, support for derived syntax, and a rich library of 

pre-derived results-it does illustrate the practicality of the approach and deals with 

many issues not brought together in one semantic framework and system before. 

1.5 Outline 

This thesis can be divided into three main parts. Chapters 2 to 4 contain a discussion of 

other tools and theory relevant to the rest of the thesis and an informal exposition of the 
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target language and its semantics. Chapters 5 to 7 discuss the development of the theory 

in the HOL theorem prover and the basic tools necessary to mechanise the semantics. 

Chapters 8 and 9 develop this platform further and describe the higher level tools to 

support reasoning and the development of extensions to the theory. These chapters also 

contain examples of the use of the tools developed. A more detailed breakdown of the 

contents is as follows: 

Chapter 2 - Background. This chapter describes some of the theory used in the sub­

sequent chapters. This includes a description of the HOL theorem proving system, 

a discussion of the style of operational semantics used, a brief introduction to 

coinduction, and a brief description of the finite map library. 

Chapter 3 - Design Choices. This chapter discusses some of the choices made in 

deciding the style of the development employed. The chapter looks in more detail 

at the language features to be supported, alternative styles of language semantics, 

and ways to embed languages in theorem provers. 

Chapter 4 - Overview of Language and Architecture. This chapter contains a dis­

cussion and informal overview of the syntax and semantics of the functional pro­

gramming language and the definition of equivalence. It also provides an overview 

of the structure of the reasoning system developed. 

Chapter 5 - Embedding the Syntax and Semantics. This is the first chapter dis­

cussing the development of the system itself. The embedding of the language 

:::;Yllil:l.X Cl.llJ :;CUlCl.lltiCi:i a.::; ucw typc:::; Cl.llJ rclatioui:i ill the HOL theorem prover is 

given and the main results about this embedding are proved. 

Chapter 6 - Automation of Low Level Inference. Use of the syntax and seman­

tics introduced involves a large number of trivial proof steps that make application 

of the rules by hand tedious and impractical. This chapter presents the tools that 

fully automate all these steps by using an implementation of the interpreter spec­

ified by the operational semantics and mirroring this execution in the logic by 

application of the rules. 

Chapter 7 - Equivalence. This chapter describes a theory of coinduction that is added 

to the HOL system and then used to define an equivalence relation. The key prop­

erties of this relation, including the fact that it is a congruence and is equivalent 

to contextual equivalence, are proved. 

Chapter 8 - Supporting Formal Reasoning. The tools to allow reasoning about 

the equality of programs are developed. These include tools for defining new func-
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tions and proving their basic properties, an equational reasoning system, and tools 

to partially automate proofs by coinduction. A range of examples is presented to 

illustrate the use of these tools. 

Chapter 9 - Styles of Reasoning. New reasoning principles are derived and the as­

sociated tools are developed to illustrate how the system can be extended. The 

principles derived include structural induction, a variant of parametric polymor­

phism, and the take lemma. 

Chapter 10 - Conclusions. This chapter provides some conclusions that can be drawn 

from this work and suggests further work to be considered. 



Chapter 2 

Background 

This chapter gives an overview of some existing tools and mathematical theory used in 

the rest of this work. There are several approaches that could have been used as the basis 

of this work; some of these alternative approaches are discussed in the next chapter. 

2.1 Theorem proving 

There are two constraints on the choice of theorem prover that will be the starting point 

for the system described here. It must support a formalism suitable for embedding the 

semantics of the language, and it must provide a means of writing a rich set of tools 

to partially automate proof. The logical requirements for developing the system are 

minimal; the major requirement for a mechanisation of the theory for both co-induction 

and operational semantics is simply the ability to reason about relations. 

The HOL theorem prover [GM93] was used because of its use of Standard ML as the 

meta-language. This is a fully featured programming language and allows complex proof 

tools to be programmed that can perform proof search if necessary. ML was first used 

as a meta-language in the LCF theorem prover [GMW79, Pau87]. The HOL theorem 

prover is one of the descendants of Edinburgh LCF and supports Higher Order Logic 

instead of the Logic for Computable Functions supported by LCF. In principle all the 

theory and tools developed here could be ported to other theorem provers in the LCF 

family. 

HOL is a theorem proving environment for classical higher order logic [GM93]. There 

is a tradition in the HOL community of taking a purely definitional approach to using 

logic; instead of postulating axioms to give meaning to new notations, as is typical in the 

use of theorem provers such as LP [GG89], new concepts are defined in terms of existing 

ones that already have the required semantics. For example, the user must define any 

9 
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new type in terms of a precisely suitable subset of an existing type. This is guaranteed 

to preserve the consistency of the system, but leads to complex definitions. Packages 

are provided to perform definitions automatically from natural specifications of some 

important classes of types and functions. It is also possible to add new axioms to HOL 

and, although most of the work here follows the definitional approach, two axioms, the 

characteristic theorems for the syntax of the language, are added. The automated tools 

that would normally be used to support the definitions of these do not support some 

features of the syntax but the axioms are relatively simple and easily justified on paper. 

The axioms are discussed in detail in chapter 5. 

HOL allows both forward and backward, or goal-directed, proof. For forward proof, 

an inference rule is applied to some theorems to derive a new theorem. One such inference 

rule is MP which implements Modus Ponens. This takes the theorems rl f- tl ::J t2 and 

r2 r- tl and yields the theorem r 1 Ur2 r- t2 where rl and r2 are sets of assumptions. 

Goal directed proof is supported by the HOL subgoal package. This allows the 

goal to be interactively decomposed into subgoals that can eventually be proved. The 

current goal is a term together with a list of terms representing the assumptions that 

are made when proving the goal. The decomposition of a goal is usually performed 

by tactics, functions that transform one goal into a list of subgoals. An example of 

a tactic is CONJ_TAC, which breaks a conjunction into subgoals corresponding to the 

conjuncts. Once each of these subgoals is proved the original goal is proved. The tactics 

can themselves be combined by other functions, tacticals, such as THEN, which allows 

the compositions of two tactics in sequence. 

An important feature of HOL is that the meta-language, Standard ML, is a fully 

featured programming language. This allows complex tactics to be programmed which 

llIay pt!rform arbitrary proof search. A proof in HOL is generated by an ML program. 

This is usually developed interactively and can be saved and used again. The program 

can also be modified so that if the goal to be proved is changed then the existing proof 

can be modified rather than having to develop a new proof. If a pattern exists in the 

proofs of similar properties for many terms, then a generalised proof tool can often be 

written to automatically generate the proofs for a whole class of problems. 

2.2 Operational semantics 

An operational semantics is the description of the meaning of a language in terms of an 

abstract machine. The machine is normally expressed as a relation that relates each term 

to the term that results from the evaluation of the first term. Its arguments may also 

include various pieces of context information, such as an environment mapping identifiers 
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to values or maintaining information about state. As the lazy language being discussed 

here contains no state, the latter is not needed in this work. If state were added to the 

language then many of the results relating to the semantics would be similar but the 

rules for proving the properties and equivalence of programs would not. 

One feature common to all the abstract machines is that, as with a compiler or inter­

preter, the form of the rules is dictated by the syntax of the language. There will typically 

be one or more rules for each syntactic construct of the language. Such presentations 

of the semantics are referred to as structural operational semantics [Plo91). There are 

several books that describe various approaches to the formalisation of an operational 

semantics for both functional and imperative languages [Win93, Gun92). The Defini­

tion of Standard ML [MTH90) is also given as an operational semantics. The semantics 

of a language is normally divided into two sections, the static and dynamic semantics, 

which describe how to type and evaluate programs respectively. These correspond to 

two important stages in any compiler or interpreter for a functional language. 

The discussion in the rest of this section will be illustrated by the rules for a simple, 

non-strict, functional language with variables, functions and numbers. The types for 

this language are 

ty ::= Nurn 

tYl ~ tY2 

and the expressions are 

exp ::= nurn num 

varid 

Natural number constant 

Variables 

Aid: ty. exp Function abstraction 

Function application 

2.2.1 Static semantics 

The static semantics is a collection of rules relating expressions to their type. The 

relation is written r f- e : 0, where e is the expression, 0 is the type assigned and r 
is the context that maps variables to their types. r[x t-+ 0) is a context with the same 

mappings as r, but mapping x to o. The rules defining this relation for the example 

language are 

fix 1-+ 0] f- var x : 0 r f- nurn n : Nurn 

r[x 1-+ 0) f- e : {3 r f- e 1 : (0 - (3) r f- e2 : 0 

r f- (AX: o. e) : 0 - {3 
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The rules here are straightforward. For example, the type of any lambda abstraction, 

Ax : G. e, is a function from the type of the argument, G, to the type of the body, (j. 

The type of the body is determined in a context where the bound variable is mapped to 

the type of the argument. 

2.2.2 Dynamic semantics 

The approach to the static semantics illustrated in the last section is standard and 

similar to that used in most static semantics. There are more varied approaches to the 

formalisation of the dynamic semantics. Some differences centre around how variable 

binding is formalised, which can be done by recording the mapping from variables to the 

values they are bound to in an environment, or by substituting the value to which the 

variable is bound throughout the expression. The substitution of an expression e2 for a 

variable x in expression el will be written e2[el/x]. It is not necessary to specify that 

the expressions are closed or well typed although we are mainly interested in expressions 

that are. Other differences centre on whether the meaning of a term is defined as what 

it evaluates to or in terms of several intermediate steps that are closer to the final value. 

A semantics that gives the meaning of a program in terms of its final value is called a 

"big step" semantics and will be represented by the relation.ij.. A semantics that gives 

the meaning in terms of several reduction steps is called a "small step" semantics and 

will be represented by the relation --+. For a substitution based semantics, the big step 

semantics of the small language above would be: 

nurn n.J.l. nurn n 
(2.1) 

Ax : t. {;J.J.l. Ax: t. EJ 
(2.2) 

(2.3) 

A small step semantics would be: 

(AX: t. e) el --+ e[eI/x] 
(2.4) 

(2.5) 

There are no reduction rules for numbers and lambda abstractions since these cannot be 

reduced further. The body of a lambda abstraction is reduced only after the function 

is applied to an argument. Other approaches would be possible but are not considered 

here. 
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The two styles give the same meaning to a program that returns a value, in this 

case a lambda abstraction or number. For the application ele2, repeated use of rule 2.5 

to el will either continue forever producing no value or will result in a value of the 

form AX : t. e3 that will be the same value produced by the big step evaluation relation 

el .lJ. AX: t. e3. Rule 2.4 will then apply giving an expression e3Ie2/xj. Other rules will 

then apply to reduce this to some term e4 that will be the same as that produced by the 

big step evaluation: 

It is also possible that no reduction rules will apply indicating a "run-time" error in the 

evaluation of the program. In the richer language described later, this may happen if 

the program uses partial functions. 

The difference in the two semantics relates to programs that do not evaluate to some 

value - such as partial or non-terminating. In this case the small step semantics allows 

for easier analysis of the intermediate results. Because of this, a big step semantics is 

often useful for specifying compilers where the main interest is in programs that return 

values. The small step semantics can be useful for theoretical work on languages and 

programs. 

If an environment is used instead of substitution, then the form of the relation changes 

from a relation between expressions to a relation between expressions in the context of an 

environment. The big step semantics is very similar in structure to the static semantics. 

(E, nurn n) .lJ. nurn n 

(E, et) .lJ. e2 

(E, AX: t. e3).lJ. AX: t. e3 

(E, et) .lJ. AX: t. e3 (E[x 1-+ e2], e3) .lJ. e4 
(E,(el e2» .lJ. e4 

A small step semantics using environments would look like this 

(EIX 1-+ ed, var X) -+ (E, e}) 

(E, (AT: t. e) ell ~ (E[x 1-+ ell, e) 

(El,et) -+ (E2,e3) 
(EI' el e2) -+ (~, e3 e2) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

In the rest of this thesis we use a small step semantics with substitution and derive a 

big step semantics with substitution. This is discussed is greater detail later. 
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2.3 Co-induction and bisimulation 

This section gives an overview of the motivation and theory for the use of co-induction 

and bisimulation. We begin with a description of process calculi, the problem area where 

many of the ideas were developed, and discuss how the same ideas have been applied 

to functional programs. This section concentrates mainly on the co-inductively defined 

relations, as these will be used later in this thesis. At the end of this section we discuss 

how this relates to co-inductively defined types that offer an alternative approach. 

2.3.1 Process calculi 

Many of the ideas related to co-induction and the labelled transition systems that will 

be used in the formalisation of equality in functional languages are closely related to the 

use of co-induction in process calculi such as ees [Mil89] and the 7T-calculus [MPW92a, 

MPW92b]. In particular these process calculi describe systems with infinite behaviour. 

Both these calculi have been embedded in the HOL theorem prover [Nes92, Me194J. This 

section gives a very brief overview of co-induction and equality in ees. 
ees models processes and the communication between them. An example of a simple 

process, or agent, in ees is the agent A defined by 

A = a.A 

where A is the name of the agent being defined and a is the name of a "port" waiting to 

send information. After sending, referred to as an output action, the agent returns to its 

initial state. This is represented by the recursive call to A. The semantics of ees are 

given in terms of labelled transitions that indicate the actions that happen and the state 

of the agent before and after the transition. For example the only possible transition for 

the above process is 

a.A -'!.... A 

This means that the agent a.A may perform an output action on a and then evolve into 

A. Since A = a.A, this transition could be then be repeated giving an infinite graph 

with every transition having the same label. The a in the above example refers to an 

output action on the port. An agent B which waits for an input action a and then 

returns to its initial state would be defined by 

B = a.B 

The over bar on the a indicates that an input is expected instead of an output. 
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A process that can perform more than one action is defined using a summation 

operator +. For example, a process which can perform either of two outputs with names 

a and b would be defined as 

C = a.C + b.C 

This process would have the transition graph 

C 

;/~ 
C C 

Agents can be combined using a composition operator I. The two agents A and B can be 

combined to form an agent AlB that could either perform an input or output transition 

with the label a. In addition, the two agents can also communicate, or synchronise, with 

each other since the output from A and the input to B have the same label a. The 

transition representing this internal communication is given a special label T. This gives 

three possible transitions for AlB. 

The final construction from CCS that is used is the restriction operator \. This operator 

restricts the labels that are visible outside of the agent. If the composition of A and B 

is restricted to exclude the label a 

(AIB)\{a} 

then this new construction cannot perform any transitions visible outside the new agent. 

The internal transition is the only possible one 

(a.A 1 a.B) \ {a} ...!... (A 1 B) \ {a} 

For the purpose of defining the equality of two agents, these internal transitions will not 

normally be taken into consideration. 

Agents will often be defined by mutually recursive definitions. For example two 

agents A and B could be defined by 

A = a.B 

B = b.A 

This process A Can make two transitions: 
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Now consider the process 

C = a.b.C 

This has transition graph 

C-2.....b.C~C 

16 

While A and C are not syntactically equivalent they have the same labels on the tran­

sition graph. This can be used to indicate the equivalence of the two agents. 

Finally an agent F can be defined, in terms of two simpler agents D and E, which 

includes some internal communication 

D = a.b.c.D 

E = c.E 

F = (DIE) \ {e} 

This gives a transition graph 

F = (DIE) \ {e} -2..... ((b.e.D)lc.E) \ {e} ~ ((e.D)lc.E) \ {e} ....:.... (DIE) \ {e} 

If the internal transition 7" is ignored then this is a transition graph with the same labels 

as A and C. There is no external transition that the two agents can make that allows 

them to be distinguished. We could therefore regard them as equal, and indeed take this 

property to define equality. 

The key idea in defining what it means to for the two processes A and F to be 

equivalent is captured by the set of pairs of states 

{(A, F), (B, ((b.e.D)lc.E) \ {e}), (A, ((e.D)lc.E) \ {e})} 

This set of pairs is called a bisimulation and has the following important properties: 

• For any pair, if one member of the pair can make a transition then the other can 

make a transition with the same label, or in the case of a 7"-actions do nothing. 

• The pair of results of these transitions is still in the set. 

• The pair (A, F) is in the set. 

The proof that two processes are equal will involve finding a relation containing the 

processes and proving that the relation is a bisimulation. The exact details of how to 

formalise these properties, particularly with respect to the 7"-actions is not given here. 

There are several different approaches that can give different meanings to the equality 

of processes [Mil89J. 
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2.3.2 Functional programming languages 

Lazy functional programs can exhibit similar behaviour to the processes in the previous 

section. For two functions to be equal they must accept the same arguments and produce 

the same results. In a functional language any two functions of the same type can accept 

the same arguments, but if two functions produce infinite lists then the results cannot 

be compared in full. Instead they must be compared in terms of what another function 

can do with the result. For a list, any processing of the result can be decomposed into 

taking the head and tail of the result and then processing these. If the heads are equal 

and the tails are equal then the results will be equal. To view the results in terms of 

transitions we consider the following two transitions for infinite lists. 

x:: xs~x 
TI x::xs-xs 

The labels Hd and TI represent taking the head and tail of the list respectively. The 

following example shows how these transitions can lead to a similar view of equality 

to that in the previous section. Consider the following three lists and a function that 

merges lists. 

tflist -- True::False::tflist mergeQ [I xs -- [ I 
flist -- False::flist merge xs [I -- [ I 
tlist -- True::t1ist merge (x::xs) (y::ys) -- x::y::(merge xs ys) 

The theorem 

I- tflist == merge tlist flist 

can be proven by analysing the transitions. The graphs of the transitions are: 

tflist merge tlist flist 

! 
True:: False::tflist 

! 
True::False::merge tlist flist 

H~I 
True False::tflist 

H~I 
True False::merge tlist flist 

H~I 
False tflist 

H~I 
False merge t1ist flist 

As the leaves of the graphs are either literals or the expression we started with, they are 

a finite presentation of all the possible transitions for these expressions. 

The role of the evaluation arrows is equivalent to the role of the r-actions in CCS. 

They represent some internal processing that is not visible to the outside world. In both 

cases equivalence can be defined in terms of the other observable transitions. 
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Although in this case the unlabeled evaluation arrows match, in general they need 

not and only the labelled transitions are considered. Whenever we take the heads of the 

two lists the results are the same. Whenever we take the tails then the left and right 

hand sides are one of the following two pairs: 

(tflist, merge tlist flist) (False::tflist, False::merge tlist flist) 

These pairs in fact make up a bisimulation. An equivalence based on these ideas is 

referred to as an observational equivalence. In the context of functional programming 

language the equivalence is referred to as applicative bisimulation. 

The above example is only one simple instance of using bisimulation to reason 

about functional programming. Much of the original work in this subject is due to 

Abra.msky [Abr90j and the approach used here is based directly on that used by Gor­

don [Gor93a, Gor93b, Gor94, Gor95a, Gor95bJ. Bisimulation can also be derived from 

a domain theoretic semantics [Pit94, Pit96J. Finally, a proof principle can be de­

rived from a co-inductive definition of a type rather than from a language seman­

tics [Pau94, Tur95, JR97j. These approaches will be discussed in the next chapter. 

The rest of this section describes how to formalise a co-inductive equality based on a 

small step operational semantics. 

2.3.3 Underlying theory 

Co-inductive definitions are the dual of inductive definitions [Acz77] and depend on 

much of the same relational theory. The definition of an inductively defined relation 

given below depends on two concepts, monotonic functions and F -closed sets. 

A function F, mapping sets to sets, is monotonic if 

VX Y. (X ~ Y) ~ (F(X) ~ F(Y)) 

and a set X is F-closed if F(X) ~ X 

The least fixpoint of F I denoted Ifp F, is defined to be the intersection of all F -closed 

sets. For any monotonic function F this can be proved to be the smallest F -closed set 

and a fixpoint. The principle of induction follow directly and is that for any X: 

F(X) ~ X ~ Ifp F ~ X 

To see how this relates to the most common form of induction. mathematical induction 

on natural numbers, consider an element 0 and a function s with appropriate behaviour 

for the successor function (if s is applied to 0 n times then this will return a different 
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value from any other number of applications). A monotone function F can be defined 

by 

F(X) = {O} U {s(x) I x E X} 

The natural numbers can be defined to be the least fixpoint of this monotonic function. 

Nat = Ifp F 

The principle of induction for this set will then be 

F(X) ~ X J Nat ~ X 

which simplifies to 

{O} U {s(x) I x E X} ~ X ::> Nat ~ X 

Suppose addition, +, is defined in terms of s by the following equations 

O+x = x 

s(x}+y = s(x+y) 

Then we can prove the property 

"Ix. x+O = x 

(2.13) 

(2.14) 

(2.15) 

by induction as follows. If Y is the set of terms for which this property holds then 

we can prove that it holds for all natural numbers by showing that Nat ~ Y. From 

equation 2.13 it is necessary to show that 

{O} u{s(x) I XEY}~ Y 

Simplifying this gives two cases, the base and step cases of an ordinary induction: 

0+0 = 0 

(x + 0 = x) ::> (s(x) + 0 = s(x)) 

Both of these are easily proved from the equations for addition. There are other ways to 

define the natural numbers and other proof principles that can be used to reason about 

them. The construction given above is used as an example because co-inductively defined 

relations are the dual of such inductively defined relations and because the corresponding 

principle of co-induction gives rise to the central proof principle for reasoning about the 

equivalence of programs introduced later. 

The definition of a co-inductively defined relation given below depends on the defi­

nition of monotonic functions and F-dense sets. A set X is F-dense if for the function 
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F, X ~ F(X). The greatest fixpoint of F, denoted gfp F, is defined to be the union 

of all F-dense sets. For any monotonic function F this can be proved to be the largest 

F -dense set and a fixpoint. The principle of co-induction is, for any X, 

X ~ F(X) :J X ~ gfp F 

A second principle, sometimes referred to as strong co-induction [Gor95a], can be easily 

derived from co-induction: 

X ~ F(X u gfp F) :J X ~ gfp F 

This variation can simplify the choice of the relation X in a proof by co-induction. 

The coinductive definition for the relation capturing what it means for two programs 

to be equal will involve choosing a suitable function F. In the work presented here this 

definition will be based on an small step operational semantics and a labelled transition 

system. 

2.3.4 Applicative bisimulation 

The operational semantics used will be similar to the semantics given by the rules 2.4 

and 2.5. For the small language presented there this has the effect of reducing every­

thing to a normal form where either the outermost construct is a number or lambda 

abstraction. The third possible outcome of repeated evaluation will be an infinite chain 

of reduction with no normal form being reached. The transition system will define what 

it means to observe properties of these expressions. In particular it will be possible to 

observe the value of a number or the result of applying a function to another term. 

num nn~nO appb 
a -'-'-+ a b 

It only remains to somehow integrate the reduction relation into the transition system. 

Following the CCS style of adding a T-action would be possible 

f- a: Num 

but the approach here is to include the reduction in an inductive definition of the tran­

sition system by adding rules of the form: 

b~c f- a: Num 
Q 

a ---+ c 

This has the advantage of simplifying the definition of equivalence since there are not 

extra r-actions to consider. In the two transition trees presented in section 2.3.2 this ap­

proach to the definition of transition would remove the unlabelled reduction arrows. It is 
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possible to take this simplified approach for the labelled transition systems for functional 

programs because the reduction relation is deterministic. In the semantics for ees the 

T-actions may represent a choice between two possibilities in a non-deterministic system. 

As the reduction in the functional language is deterministic there is no information that 

can be inferred and the reduction can be safely hidden. 

Equivalence is defined. by choosing a function F== based on the labelled transition 

system, so that two programs el and e2 are equivalent if they can make the same tran­

sitions to terms that are also bisimilar. The principle of co-induction derived from this 

definition allows a proof that x == y by finding a relation S such that: (x, y) E Sand 

for any (a, b) E S 

('Va'. 'VI. a~a':::> (3b'. b~b' " (a',b') E S V a' == b')) /I. 

('Vb'. 'VI. b ~ b' :::> (3a'. a ~ a' /I. (a', b') E S V a' == b'» 

This formalises the idea of looking at the two transition graphs and ensuring that every 

pair of nodes are either equal or in the relation S. 

2.4 Finite maps 

The results in subsequent chapters make heavy use of functions that are defined on 

finite domains. These functions, commonly referred to as finite maps or finite partial 

functions, are used in reasoning about the semantics of the functional language, where 

they model type contexts and substitutions. This section gives a brief introduction to a 

formalisation of finite maps developed for this work, in collaboration with Donald Syme. 

An updated version of a publication presenting this theory in is given in appendix B. 

The core theory of finite maps defines four constants. Finite maps are constructed 

from the empty mapping, FEmpty, and the update function that takes a map I and a 

pair (a, b) and returns the mapping that is equal to I but with a mapped to b, I[a ...... b]. 

The application of a finite map I to a term a is represented by FApply I a. This will be 

written I a when it cannot be confused with function application. Finally, the domain 

of a finite map I is given by FOom /. 
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The meaning of these constants is given by the following properties: 

't- "11 a b. (I[a t-+ bJ) a = b 

't- "Ix a. (x ¥ a) :) "11 b. (l[a t-+ bJ) x = 1 x 

't- "Ia c. (a ¥ c) :) 

"11 b d. 

l[a t-+ b][c t-+ d] = /[c t-+ d][a t-+ b] 

't- "11 abc. l[a t-+ b][a t-+ c] = l[a t-+ c] 

't- "Ia. -,(FOom FEmpty a) 

't- 'V/ a b X. FOom (I[a t-+ bJ) x = (x = a) V FOom / x 

together with an induction theorem 

't-"IP. 

P FEmpty 1\ 

("If, P f :) ("Ix. -,(FOom 1 x) :) "Iy. P (l[x t-+ yJ)) 

:) 

"If, P 1 

22 

Equality of two finite maps can be proved using the following theorems, which follow 

from the above facts. 

't- vi g. «FOom i = FOom g) 1\ ("Ix.j x = 9 x» = (/ = g) 

't- "Ii g. 
«FOom 1 = FOom g) 1\ ("Ix. FOom f x :) (I x = 9 x» 

= (j = g) 

A number of additional constants are defined to enrich the theory. All the basic 

constants introduced above either increase or preserve the domain of a finite map. A 

constant ORestrict can be defined which reduces the domain of a finite map to those ele­

ments satisfying some predicate. Some useful properties that can be proved of ORestrict 

are 

't-"I/p. 

("Ix. FOom (ORestrict 1 p) x = FDom f x 1\ P x) 1\ 

("Ix. FOom 1 x 1\ P x ~ (FApply (DRestrict J p) x = FApply f x» 

't- "Ip. DRestrict FEmpty p = FEmpty 

't- "11 p a b. 

DRestrict (I[a t-+ b]) p = 

«P a) =? «DRestrict 1 p)[a t-+ bJ) I (DRestrict 1 p» 
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The expression of the form b => el I e2 uses the HOL syntax for a conditional expres­

sion. This is equal to el if b is true and e2 if b is false. Another important concept 

is composition, either of two finite maps or a finite map and a function. Three infix 

composition functions are defined: 

Lo_f: ({3,-y)fmap -t (0:, (3)fmap -t (o:,-y)fmap 

o_f : (f3 -t -y) -t (o:,f3)fmap -t (o:,-y)fmap 

Lo : (f3, -y)fmap -t (0: -t (3) -+ (0:, -y)fmap 

The notation is designed to show the link with composition of functions 

o : (f3 -+ -y) -+ (0: -+ (3) -+ (0: -+ ')') 



Chapter 3 

Design choices 

This chapter discusses the choice of object language, language semantics and embedding 

technology on which the work in the rest of this thesis is based. For each aspect the 

whole space of design choices is outlined, the current research in the field reviewed 

and the choice made for the work here explained. The issues in each section are not 

independent and the chapter concludes with a summary of the set of consistent choices 

made here. 

3.1 Language 

Two strategies for introducing formal proof into the process of writing functional pro­

grams are to support proof about programs that have already been written and introduce 

new languages and methodologies that make formal proof easier or incorporate proof into 

the programming methodology itself. The latter approach will, in general, require less 

work to support in a theorem proving environment because restrictions can be made on 

the form of the programs being reasoned about. 

The ideal target for any project that aims towards a system that can be used by 

functional programmers to reason about their programs is an established program­

ming language. The two languages that have the greatest user bases are Standard 

ML [MTH90, Pau96j and Haskell [H+92, Bir98, Tho96]. These represent the two main 

styles of functional programming implementation. Standard ML is a strict language, 

where the arguments to a function are evaluated before the function application. Stan­

dard ML has side effects, assignment to state variables and exceptions. These features 

are the main obstacle to reasoning; they make the meaning of equality of two programs 

less clear and the need to deal with them significantly complicates the semantics. 

Haskell is a lazy language, where the arguments to functions are not evaluated before 

24 
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the application of functions. Haskell does not allow side effects. since the interaction 

between side effects and laziness makes it hard to determine the behaviour of programs. 

In particular, it can be difficult to determine in what order side effects occur. Instead, 

features that would normally be handled by side effects, such as exceptions and in­

put/output, are handled by use of laziness. 

Languages such as Haskell are claimed to be easier to reason about because it is 

easier to understand and model what it means for two functions to be equal and to 

consider the meaning of separate parts of programs separately and combine the results. 

In particular, even if an expression appears in different places in a program it will always 

evaluate to the same value. This is called referencial transparency and does not hold in 

languages with side effects where the value of an expression may depend on assignments 

elsewhere in the program. The disadvantage is that these languages allow the possibility 

of infinite data and non-terminating functions to occur throughout programs, even where 

they have no clear utility. Indeed such structures are fundamental to the programming 

styles used. 

3.1.1 Type theory 

There are some type theories for functional languages [Tho91J, such as The Calculus of 

Constructions [Lu094j or Martin-LOf Type Theory [NPS90j, where the type language for 

programs is much richer than in functional languages such as Haskell and ML. Instead 

of the types simply stating what kind of values a variable or program denotes, the types 

can contain more information. Instead of just lists, types such as "sorted lists" can be 

introduced. The richer language allows specifications of the programs to be included in 

their types. Proof that a program has a certain specification can be reduced to proving 

that the program has the specified type. 

There is a family of theorem proving systems, including Lego [LP92j, ALF [ACN90j, 

COQ [DFH+93j and NuPRL [CAB+86j, based on type theory. In these systems prop­

erties of functions can be proved by determining that they have a suitable type. In 

addition, programs can in principle be constructed from proofs. A proof of existence 

of an object with a particular type will give rise to a program with the property cor­

responding to the type. Thus a new methodology for writing programs is introduced 

where the program is derived by finding a witness for the existence of a program of a 

particular type. 

These systellls can be used to reasull abuut fUllctional programs written using this 

methodology without the need to develop any new tools. It is not the approach used 

here, since the aim of this work is to reason about programs as a functional programmer 
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would write them and investigate what can be achieved without imposing a new style of 

writing programs on the user. 

3.1.2 Inductive and co-inductive types 

The presentation of co-induction in the previous chapter concentrated on the use of co­

inductive definitions to define a new relation giving the meaning of equality for programs. 

This is not the only way that co-induction can be used to give rise to a theory of equality 

over infinite data structures. 

Instead of defining relations by co-induction an alternative is to define data types us­

ing co-induction. Such co-inductive types are the dual of inductive types. An inductive 

type is one where any member of the type is finitely generated by a set of constructors. 

For example, the list type is defined in many theorem provers to be the inductive type 

generated by the nil and cons constructors. Any list consists of a series of cons construc­

tors terminated by a nil constructor. Such lists must be finite. Lists in Haskell and other 

lazy languages cannot be defined in this way since they contain infinite elements. 

A (necessarily) infinite list can be defined as a co-inductive type. This can be thought 

of as a list which is always of the form cons x xs where the xs is another infinite list. 

The difference here is that there is no requirement to be able to enumerate the list in 

terms of only cons constructors. Indeed, for an infinite list this will be impossible since 

without a nil constructor there is no way to terminate the construction. Such types can 

be thought of in terms of destructors instead of constructors. An element of a type of 

infinite lists is a value to which two destructors head and tail can be applied. 

Lists which may be infinite or finite can also be defined in this way by adding the 

nil constructor. or a corresponding destructor. This would allow the possibility, but not 

the requirement, of enumerating the list. 

Inductive and co-inductive types can be defined using the same theory discussed in 

the previous chapter. Inductive types are the least fix-point of an equation describing 

the types and co-inductive types are defined in as the greatest fix-point of the same 

equation. This is mechanised in the Isabelle system [Pau94]. 

These types can also be derived using ideas from category theory. The induction 

theorem for a type follows from the initiaiity property of a type expressed as an algebra 

and the co-induction property from a type expressed as a co-algebra. This approach is 

explained in full by Jacobs and Rutten [JR97]. The Charity [FT96) system implements 

many of these ideas. 

Thrner [Thr95] advocates the use of these types along with a restriction to primitive 

recursion and co-recursion as a way of producing programs which are more easily under-
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stood. He refers to this as Strong Functional Programming. This gives an easier route 

to theorem proving support, as many of the complexities in real languages arise because 

of programming styles that are ruled out by these restrictions. 

This approach is, in effect, to take a well-behaved, common subset of both Haskell 

and ML - whether the language is lazy or not becomes an issue for compiler designers. 

The order of evaluation does not affect the meaning of programs in this setting, although 

it may affect the efficiency of the programs. 

As with the type theory approach, there is no need to develop new tools for this 

approach as existing theorem proving tools can be used. There is, however, the same 

requirement to write programs in a different style and the restriction to either write 

programs with very simple recursion, such as primitive recursion, which can be easily 

checked for termination conditions, or to prove properties of the recursion in a program 

in order to define new function. 

The aim of the present work is to design a system when programs can be entered 

into the system regardless of the form of the recursion used and without any distinction 

between data and co-data. 

3.1.3 The target language 

The use of either an advanced type theory or a system treating data and co-data sep­

arately would give a system that would be suited for deriving new programs to match 

a specification. But the required restrictions on the way in which the programs can be 

written would prevent this being applied to many existing programs or programming 

styles. Because of this, the target language for the rest of this thesis is a subset of 

Haskell specified by a semantics that allows reasoning about programs that can contain 

general recursion or partial functions even if the programs do not produce any result. 

This will allow reasoning about existing algorithms to determine when they produce a 

value and when they fail. 

A subset of Haskell is chosen because the Haskell community already uses informal 

reasoning to reason about their programs. For practical reasons of time and complexity, 

rather than supporting in full the large range of syntactic constructs in Haskell, only a 

small but significant subset is supported. The details of the language are given in the 

next chapter. 

In addition, formalising the semantics of the language in the login of a theorem prover 

allows reasoning about the language itself. The logic in the theorem prover can be used 

to express and prove properties of the semantics that cannot be expressed in terms of 

the language alone. Results such as parametric polymorphism require such reasoning. 
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3.2 Reasoning technology 

One method by which a language semantics can be embedded in the logic of a theorem 

prover is to translate its syntax directly into expressions within the logic. Each expression 

in the language is mapped meta-linguistically to its denotation in the logic. 

For example, a conditional operator would be represented as a function in the logic 

of type bool -+ a: -+ a: -+ a: that takes the condition as its first argument and is equal to 

the value of its second or third argument if the first argument is true or false respectively. 

The expression if-then-else true el e2 would be mapped to this function applied to true, 

el, and e2 and so would be provably equal to el in the logic. This approach is referred 

to as a shallow embedding [BGG+92]. 

A second method is to represent the syntax of the language by the values of one 

or more data types in the logic. Typically each expression in the language, such as a 

conditional expression or a function abstraction, will be represented using one of the con­

structors of these data-types. A denotational semantics can then be given to the language 

by defining a function within the logic to map each value of this type to its denotation. 

Alternatively, an operational semantics can be given by defining relations between the 

types representing the syntax. This is referred to as a deep embedding [BGG+92]. 

One obvious difference between the two approaches is that in a shallow embedding 

the syntax of the language does not appear in the logic. It then becomes impossible to 

state some meta-theoretic results that involve quantification over expressions within the 

language, since no type of expressions exists. 

The Definition of Standard ML [MTH90] has been the starting point for much of the 

work embedding the semantics of programming languages in theorem provers. The most 

complete approach to the dynamic semantics is the HOL-ML project [MG94, VG93]. 

Here the dynamic semantics of the language is investigated, including the imperative 

features and the module system. The project uses a deep embedding of the Definition 

of Standard ML in the HOL theorem prover. The major results of this project are 

meta-theoretic, such as confirmation that the dynamic semantics of Standard ML are 

deterministic. 

Little of the work embedding the semantics of programming languages in HOL has 

been based on a domain theoretic approach, due to the lack of formalisms of sufficient 

domain theory in theorem provers to make a deep embedding of a language with recursive 

types practical. Formalising domain theory in theorem provers like HOL is an area of 

current research [Age94, Reg95]. The LCF theorem prover [Pau87] provide a means to 

reason about a functional language with a mechanised logic using a domain theoretic 

approach. Here the domain theory is part of the theorem prover's logic rather than an 
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embedding in a logic such as Higher Order Logic. 

The work presented here uses a deep embedding for two reasons. Firstly, it is not 

possible to find a representation in the logic of most theorem provers for non-terminating 

or partial functions. Secondly, we can reason about the semantics of the language, allow­

ing proofs of properties of the semantics that give rise to new rules for use in reasoning 

about programs. For example, in a shallow embedding the types of the language will 

be types in the logic of the theorem prover. Results such as parametric polymorphism 

require reasoning about the types of terms. There is no mechanism by which to reason 

about the types of terms in the logic of a theorem prover such as HOL within the theorem 

prover itself. 

3.3 Semantics 

In order to be useful there are two main kinds of results that must be derivable for a 

program in the semantic framework used. These are the result of evaluating a program 

and a proof principle for showing equality of two programs. Where the definition of a 

language is presented in terms of an operational semantics, then the aim of the semantics 

is to state what a program evaluates to. While this is both important in its own right, 

and an important part of deciding what equality between programs means, it is the 

meaning of equality and how to prove equalities that are the main requirements for the 

work presented here. Equality can be defined in several ways. 

3.3.1 Contextual equivalence 

Contextual equivalence defines the meaning of the equality of two programs in terms of 

the behaviour produced when they are substituted into large programs, or contexts. 

A context C[ I is an expression in the language with a "hole" (formally modelled by 

a free variable). C[eJ will be used to denote a context with an expression e replacing 

this free variable. Two expressions, el and e2, are equal if for any C, C[el] and G[e2J 

either both diverge or both converge. It is not necessary to state that they converge 

to the same value for all contexts, as this follows from the definition. If there is some 

context, C[ ], for which they do not converge to the same value then there must be 

another context that would make one diverge and one converge. For example, if G[ell 

converges to a value VI and C[e2J converges to a value V2 then the extended context, 

Cl [ J is given by 

Cd J = if (C[ J = vI) then VI else J.. 
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where .L is a program which diverges. CI [ell converges and CI [e2] diverges if VI and V2 

differ. 

This is an abstract view of equality since it makes no reference to the language 

semantics. The other equalities described below refer to the semantics and are often 

evaluated for correctness relative to contextual equivalence. The main practical weakness 

of contextual equivalence is that it does not provide an easily used proof principle. In 

order to prove the equality of two programs it is necessary to quantify over all contexts, 

requiring a proof by structural induction over the syntax of the language. 

3.3.2 Models for equality 

Denotational semantics determines the meaning of a program by translation into a math­

ematical model. Each term in the language is translated to an element, its denotation, 

in the model. One of the advantages of this approach is that the meaning of the equality 

of two programs is easily expressed as the equality of the programs' denotations in the 

model. Domain theory provides a well-understood way of building these models. Some 

embeddings in HOL have used a domain theoretic approach [Reg95, Age94]. But any 

shallow embedding in a theorem prover can be considered to be a denotational semantics, 

with the logic of the theorem prover providing the model. 

The ability to inherit the meaning for equality, along with ways of proving properties 

of programs, is one of the advantages of a denotational semantics. A disadvantage is 

that in order to model recursive data types and programs, the mathematics used in the 

model is complex. In addition small changes to the language, or differences between 

different languages can require large changes to the model. 

Another problem is that while the equality of elements in the model may be genuine 

mathematical equality, the equality may not be the correct relation between terms in the 

programming language being defined. One way to test the equality is to compare it with 

contextual equivalence. If the two equalities coincide then the semantics is said to be 

fully abstract. Semantics based on domain theory are often not fully abstract. Because 

the semantics were developed to give meaning to the evaluation of terms, typically any 

terms that evaluate to return a value will be equal in the model and under a contextual 

equivalence. 

The problems usually arise with terms that do not return a value and are of in­

terest in proving equivalence of lazy functional programs but not in specifying a com­

piler [AJM94]. Recently, models based on game theory have been developed which are 

fully abstract [McC98]. There has been no work on embedding such models in theorem 

proving systems. 
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3.3.3 Bisimulation 

An alternative to defining equality via translation into a model is to take a semantics 

specifying how a term is evaluated and define explicitly what it means for two programs 

to be equal in terms of it. Observational equivalences and, in particular, a co-inductive 

definition of bisimulation, are one way of defining such an equivalence. This has the 

advantage of requiring much simpler mathematics than a denotational semantics, in 

part because the evaluation behaviour and meaning of equality are defined separately. 

Thi:s was introduced in the previous chapter. In addition similar definitions and theory 

can be applied to many different languages and it can be proved that such equivalences 

coincide with contextual equivalence. 

3.4 Summary 

This aim of this work is to develop a reasoning system for non-strict functional programs 

that does not restrict the programming style used to develop programs. For this reason 

a language based on advanced type theories or a language based on separate use of data 

and co-data were not chosen. This rules out a shallow embedding in a theorem prover 

and makes it necessary to make a deep embedding of the semantics of the language. 

Either an operational semantics with a defined equality or a denotational semantics 

could be used. The former is chosen because the theory required to produce a system 

in which the equality of programs is the desired equality, and is equal to contextual 

equivalence is simpler. In addition this approach will give rise to more results that can 

be reused for other languages. 



Chapter 4 

Overview of language and 

architecture 

This chapter discusses the syntax and semantics of the programming language which is 

to be embedded in HOL. Ideally the language used would be a full strength functional 

programming language such as Haskell [H+92]. But, for both practical and theoretical 

reasons, a simpler language is used. The language is a variety of second order lambda 

calculus with datatypes. The language is referred to as SDT to stand for Second order 

with Data Types. 

4.1 Language features 

There are several features that the language would ideally have. SDT is a compromise 

between these feature and constraints on the time and complexity of the embedding 

process. Two important inclusions in the language are polymorphism and datatypes. 

These are discussed separately later in this section. 

Many desirable features of a real language are left out. These include primitive 

support for pattern matching, a module system and a wider range of primitive operations 

and types. It is possible to add tool support for many of these. Pattern matching 

could be supported by providing tools to derive the correct underlying functions from a 

specification containing pattern matching and then proving that the rules given in the 

specification follow from the definition. Such a mechanism has been implemented for 

defining functions using pattern matching in the HOL logic by Konrad Slind [Sli96]. 

The Haskell module system is relatively simple compared to the more complex ML 

module system and the ability to reason at the level of these modules is not likely to be 

crucial to any proofs attempted using this system. Additional types and operations can 

32 
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be added by defining them in terms of the basic syntax. These possibilities are discussed 

in later chapters. 

4.1.1 Polymorphism 

On first inspection SDT's treatment of polymorphism is not similar to that in Haskell. It 

is similar to a language called core which is the language to which Haskell is translated 

in the Glasgow Haskell compiler [Jon96J. We know Haskell programs can be translated 

automatically to this language, but some difficulties with the practical use of such a 

translation are discussed in chapter 10. The fundamental difference is the need for 

explicit type abstraction and application. This change removes the need to do type 

inference, which is not trivial to express and reason about formally. As types guide 

much of the proof, this type inference has to be performed repeatedly, increasing the 

number of proof steps or slowing down automated tools. A similar motivation influenced 

the choice of core as the language in the Haskell compiler, because here the types drive 

the transformation steps and it is again inefficient to repeatedly infer types for terms 

and subterms. 

Additionally many theoretical results, such as parametric polymorphism, can be 

proved more easily in a second order language and these results can then be applied 

to Haskell terms by reasoning about their translation into second order terms. This 

translation can be done simply by removing the additional type information contained 

in the SOT term. Such a translation is not always possible. While Haskell style programs 

can be translated into SOT the reverse is not true for all SOT programs. The syntax 

of SOT allows for quantification over type variables inside type expression and not just 

at the top level as in Haskell. Programs such as these cannot be translated back into 

Haskell, but such programs are easily identified or avoided. 

4.1.2 Datatypes 

In order to reason about a range of real programs the language must contain datatypes 

and the datatypes available must be extensible by the user. The way in which the types 

are formalised must also give rise to usable reasoning principles for datatypes, such as 

induction and co-induction. 

It is possible to encode datatypes in terms of the function type in a second order 

language without the addition of primitive language constructs for datatypes. We do 

not take this approach since a programmer will expect the primitive constructs and any 

encoding would have to be hidden from the user. Maintaining this illusion when proving 

properties would be difficult during a proof attempt, particularly when automated tools 
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need to work with the underlying term. Reverse translation may be impossible if two 

syntactically different datatypes in the users view of the system have the same encoding. 

In this work, constructors and datatypes are introduced as primitive syntactic constructs 

and destructors are introduced as primitive transitions. Some aspects of this approach 

are similar to those used in Gordon's thesis [Gor94]. An example of how this works in 

practice is given for lists at the end of this chapter. 

4.2 Embedding of primitive types 

In order to reason about programs the language has to include, or be able to encode, 

some primitive types. This section considers natural numbers and booleans. There are 

three main ways to add these primitive types to the language. 

Datatypes In the previous section it was stated that the language will include the nec­

essary constructions to add new datatypes. Both naturals and booleans can be encoded 

as new datatypes in the language with the constructors true and false for booleans and 

zero and successor for naturals. The if-then-else and case statements are simply special 

cases of the case statement for datatypes. Because of this it is not necessary to explicitly 

provide any support for these types in the language. This is elegant but there are other 

alternatives, and the practical merits for some of these alternatives are discussed below. 

Primitive syntax Instead of defining types like numbers and Booleans in terms of 

existing language contructs, the syntax of the language can be extended to include them. 

In this approach a new type would be added for booleans or naturals and new syntax 

added for the constructors of the type. In this case booleans would require the addition 

of the constructors for true and false and a conditional statement. Numbers would 

require the addition of zero, successor and a case split function. 

In earlier work [Co196b], where the language considered did not contain the facility 

to define datatypes, this approach was used for booleans and numbers. The presence 

of the datatypes in the language considered here means this approach is not required, 

as the new constructors and if-then-else and case functions can be easily added using 

ttlf' ciatfltypps. Gpneral results for datatypes can be applied to numbers and booleans 

without needing to prove the result for each additional syntactic construct. 

Lifting of HOL types The above approaches both require definitions to be made for 

all common functions over natural numbers and booleans, and the proof of all basic 

properties of these functions. But since we are working in the HOL system, we are in 
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an environment where all these results have already been proven for the naturals and 

booleans. It would be of obvious practical advantage to make this existing body of 

results available for reasoning about programs written in SOT. Similar observations have 

previously been made by Agerholm [Age94]. 

For example, we can lift the type of numbers and some operators, such as addition, 

by adding new syntax to the language. Numbers would by expressed using a constructor 

nurn taking a HOL number as an argument. Addition could represented by another 

constructor pius. The expression 2 + 2 would be written plus (nurn 2) (nurn 2). The 

semantics would show that this evaluated to nurn (2 + 2). In the HOL logic this is 

provably equal to nurn 4. This works in HOL because all elements of the number and 

boolean types correspond to some literal. The reverse is not true. There are elements of 

the number type in SOT, such as non-terminating programs, that do not correspond to 

any literal and so do not have any corresponding element in the HOL numbers. In the 

terminology introduced earlier this is a shallow embedding of numbers in a system that 

is otherwise a deep embedding. 

The disadvantage of this approach is that it requires adding several new primitive 

elements to the syntax for each type and these new elements have to be handled as 

special cases in many places. 

The approach taken here is to encode booleans as an SOT datatype and naturals as 

a primitive type with the literals and operations lifted from HOL. The details of these 

encodings are given in the next chapter. The choice to lift naturals and not booleans 

is motivated in part by the greater desire to lift the naturals in the anticipation of 

more complex reasoning about numbers than booleans in the system and by the fact 

that naturals are not commonly thought of, by a programmer, as a type consisting of 

only zero and successor while booleans are thought of as a type with two elements. In 

addition, choosing to treat the types differently gives the opportunity to compare the 

two approaches. 

4.3 Syntax 

The syntax of the types is given in figure 4.1. The only unusual feature is the syntax for 

datatypes. A datatype has an identifier (a string) that will be used to make recursive 

calls to the definition. The finite map from strings to a list of types is a mapping from 

the constructors to the types of their arguments. A finite map is precisely the right 

formalism, since we require a finite number of distinct constructors. 

The syntax of expressions is given in figure 4.2. Most expressions are annotated with 



CHAPTER 4. OVERVIEW OF LANGUAGE AND ARCHITECTURE 

ty .. - Num 
Var id 

'tfid.ty 

tYl -+ tY2 

Data id (id 1-+ [tyJ) 

Figure 4.1: The syntax of SDT types 

exp .. - nurn num Natural number 
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nop (num -+ num -+ num) eXPl exP2 Binary operation on numbers 

bop (num -+ num -+ bool) eXPl exP2 

var id 

Aid: ty. exp 

eXPl exP2 

Aid. exp 

eXPty 

rec idty exp 

con idty [exp] 

case exp (id 1-+ exp) 

Binary relation on numbers 

Variables 

Function abstraction 

Function application 

Type abstraction 

Type application 

Recursive value 

Constructor 

Case expression 

Figure 4.2: The syntax of SDT expressions 

their types. For the expressions representing natural numbers and operations on natural 

numbers the syntax is a little strange since we are lifting the natural numbers from the 

underlying logic rather than defining them here. 

4.4 Substitution 

In order to give both the static and dynamic semantics of the language it is necessary 

to define the substitution of expressions or types for free expression or type variables. 

For example, an abstraction can have the form AX : a. e where x is a variable and e is 

some expr~ioIl, possibly containing x. Thil> can be applied to a term y of type a to 

produce the term formed by replacing x by y in e. Much of the detail in this thesis will 

involve the formalisation of the substitution by which the term y is substituted into e. 

This substitution will be represented bye[y/x]. 

The main complexity in the treatment of substitution arises because of the possibility 

of variable capture. If the variable x is substituted for y in AX : a. y x without renaming 

(Ax: a. y x)[x/y] = Ax: Q. (y x)[x/y] = AX: Q. x X 
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then the meaning is changed by the capture of the variable x by the binding. Instead 

we must rename the bound variable x to get 

(AX: o. y x}!x/y] = AX': o. (y x')[xjy] = AX': Q. X x' 

The terms AX : o. X x and AX' : Q. X .x' are different terms with different meanings and 

so correct treatment of substitution is important. Several other authors have already 

treated these issues in HOL [HM94, Mel94 , GM96] and the treatment discussed later is 

a variant of these. 

These issues may seem to have little relevance to real programming. When a well­

typed program is substituted into another well-typed program there are no free variables 

in the incoming program and so variable capture can never occur. Much of the work 

in this thesis involved identifying when such simplifying assumptions can be made and 

developing a simpler theory to cover these cases. 

Substitution itself can be formalised as a substitution of a single variable as described 

above, or as the simultaneous substitution of terms for several variables. As simultaneous 

substitutions are needed later we define this first and define the single substitution as a 

special case. 

In some work functions from variables to terms are used to formalise the substitution 

function. This thesis uses a finite map from variables to terms, as there are only a finite 

number of variables being substituted for at anyone time. A type substitution is a finite 

map from type variables to types and an expression substitution is a finite map from 

variables to expressions. 

A type substitution can be applied to either a type or an expression while an expres­

sion substitution can only be applied to expressions. The three simultaneous substitution 

functions are: 

eeSubs:exp -+ (string ....... exp) -+ exp 

teSubs:exp -+ (string ....... ty) -+ exp 

ttSubs :ty -+ (string ....... ty) -+ ty 

Instead of representing the application of a substitution s to an expression e as eeSubs e s 
we write [eli' The same notation is used for all three substitutions if the types of the 

substitution and term can be inferred. 

From these definitions of simultaneous substitution the definition for substituting for 

one variable can easily be derived: 

eeSub:exp -+ (string, exp) -+ exp 

teSub:exp -+ (string, ty) -+ exp 

ttSub: ty -+ (string, ty) -+ ty 

Details of the definitions of all the substitution functions are given in the next chapter. 
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r r num n: Num 

r r el : Num r r e2 : Num 
r r nop op el e2 : Num 

r r el : Num r r e2 : Num 
r r bop op el e2 : Bool 

r[x 1-+ tl] r e : t2 

r f- t~ : t .r not free in r 
r f- Ax. e : 'Vx.t 

fix ...... tl f- e : t 
r f- rec Xt e : t 

rr e: Data xM 

rlx 1-+ t] r var x : t 

rr(ele2):t2 

r f- e : 'Vx.t 

'v's.FDom c s ::> r r (c s) : (makefun t (m s))[Data x mix] 

r r case e c : t 

Figure 4.3: Static Semantics 

4.5 Static semantics 
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The static semantics of the language is given in figure 4.3. The general form of the rules 

has been explained in section 2.2.1. The only complex rules are the rules for constructors 

and for the case expression. The function makefun takes a list of types (the arguments 

to a constructor) and generates a function type (the type of a function to consume the 

arguments to a constructor). It is defined by 

makefun t [1 = t 
makefun t (x :: XS) = (x -+ (makefun t xs)) 

4.6 Dynamic semantics 

The dynamic semantics of the language is given in figure 4.4. This a small step semantics 

using substitution to handle variable binding as discussed in section 2.2.2. This is a 

subset of all the possible reduction rules. The subset chosen specifies the reduction order 
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(Ax: t. e) el - e[eI/x] 

/I-h 

rec Xt e - e[rec Xt elx] 

(Ax. e}t - e[tlx] 

case (con Xt [et .. en]) c - (c x) et .. en 

case et C --. case e2 c 

Figure 4.4: Reduction Rules 

label .. - numl num 

appl exp 

Appl exp 

destl string ty num 

Figure 4.5: Labels for labelled transition system. 
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and gives a non-strict semantics. There are no reduction rules for numbers, variables, 

functions or constructors as these cannot be reduced. 

4.7 Labelled transition system and equivalence 

The labelled transition system is central to the definition of equivalence. Before intro­

ducing the rules for the transition system, the syntax of the labels must be given. This 

is shown in figure 4.5. The rules for the transition system follow the examples given in 

section 2.3 and are given in figure 4.6. 

The choice of including datatypes as a primitive in the language is important here 

as there is only one destructor step to go from one element of a type to the elements 

of the component types. If an encoding were used, then more than one destructor step 

would be necessary. 

From this transition system applicative bisimulation can be defined as in section 2.3. 

This will give rise to a proof principle that will allow two programs, x and y, to be proved 

equivalent by finding a relation S that contains the pair x and y and is a bisimulation. 
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numlno numn --+ 

appl b b a --+ a 

I- b : tl 

I- con Ct 0 : Data x m 

[j destL c tOo con Ct --+ 

b~c 
Q a--+c 

I- a : 'VX.tl 
AppL t 

a --+ at 

I- a: Num 

I- con Ct tel .. en] : Data x m 
----...::.....:.[ -=--';';'j:""'des-t""'L-c-t-i --1 $ i $ n 

con Ct el .. en --+ ei 

I- a: Data x m 
<> 

u ---+ c 

Figure 4.6: Rules for labelled transition system. 

That is it has the property that for any (a, b) E S 

('Va'.'Va.a~a'-:J (3b'.b~b' A (a',b') E S V a' ==b')) A 

(Vb'. 'Va. b ~ b' -:J (3a'. a ~ a' " (a',b') E S V a' == b')) 

4.8 Example: lists 
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To illustrate many of the language constructs introduced in this chapter we discuss the 

introduction of the type of possibly infinite lists (streams). This also illustrates the use 

of logical constants of the HaL logic to give names to the new types and constructors. 

There are four identifiers that give rise to SOT types: Num, 'V, --+ and Data. The 

identifier Data is distinct from the rest in that it will not appear in programs but only 

in definitions. 

One instance of a datatype in SOT is 

Data nlist [nil ........ [], 

cons ........ [Num, Var nlistlJ 

This syntax corresponds to a list of numbers. It is a legitimate piece of syntax for an 

SOT type and could be used in programs. In order to make SOT programs look more 

familiar we assign this piece of syntax a name in HaL: 

nlist = Data nlist [nil ........ 0, 
cons ......... [Num, Var nlist]] 

where [Num, Var nlistJ is the list of types that should be supplied to the cons constructor. 

The nil constructor takes no arguments. nlist is a newly introduced logical constant in 

HaL. This constant can then be used in programs to represent the type of lists of 
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numbers. The same process can be repeated for constructors and for functions. The 

remainder of this section considers the more general type of polymorphic lists. 

4.8.1 Introducing the list type 

As the polymorphic type for lists is a generalisation of the type for lists of numbers, a 

first guess at the definition of the list type would be: 

list a = Data list [nil 1-+ 0, 
cons 1-+ [a, Var listlJ 

where a is an arbitrary type. This definition is incorrect because of the possibility of 

the capture of a type variable if a is instantiated to a type with the variable list free in 

it. The simplest example would be the instantiation of Q to Var list. This gives: 

list (Var list) = Data list [nil 1-+ [j, 

cons 1-+ [Var list, Var list]] 

which is in fact a type of lists with two tails and no heads. 

The solution is to state explicity that the instantiation of Q must use the renaming 

type substitution defined earlier. 

I· ( Data list [nil 1-+ [j, ) 1 
1st a = [ala 

cons 1-+ [Var a, Var list]] 

Instantiating Q to Var list with this definition and performing the substitution renames 

the bound list. 

list (Var list) = Data list [nil 1-+ 0, 
cons 1-+ [Var list, Var list]] 

As often happens, where there is possibility of renaming we can ensure that in practice 

this renaming will never occur. In particular, whenever such a substitution may occur, 

the rest of the program will ensure that the free variable is replaced by a closed type 

before the substitution needs to be evaluated. 

4.8.2 Introducing the constructors 

Out of the many possible fragments of code that can be formed from the SDT constructor 

syntax con, only two forms will be well typed with type list Q according to the static 

semantics. These are 

con ni~ist Q 0 
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con con.9J1st a [h ,t] 

We define new constants to represent these constructors. 

nila = con ni~ist a 0 
consa h t = con conSlist a [h , t] 

The following rules hold: 

(' I- t : list (\' 
C I-- nilo : list (.t C I-- conso h t : list (.t 
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It can also be proved that these introduced constants make no reductions and hence 

evaluate to themselves. The specialised case theorems are: 

C I- e : list Q C I- (c nil) : f3 C I- (c cons) : Q -+ list 0: -+ f3 
Cl-caseec:f3 

case nila C --+ (c niQ 

case (consa h t) c --+ (c cons) h t 

4.8.3 Labelled transitions for lists 

The three possible types of transitions for lists can be abbreviated by introducing three 

constants Nil, Hd and TI with the definitions 

Nila = destL ni~ist a 0 

Hd a = destL COnstist a 1 

Tla = destL COn.9Jilt Q 2 

The rules for the transitions for lists are: 

'1 ~O nlo 

I- (conSa h t) : list Q 

Hd 
(consQ h t) ~ h 

I- (consa h t) : list Q 

Q 
a--+c 

I- a : list Q 

The introduced constants and rules for lists are now identical to the rules given for 

PCF plus steams [CoI96aJ, with the addition of the type argument in places to allow for 

the more expressive type system used here. 



Chapter 5 

Embedding the syntax and 

semantics 

This chapter presents the formalisation in the HOL theorem prover of the language 

syntax and semantics discussed in the previous chapter. This is done by making a deep 

embedding of the syntax and semantics of the language [BGG+92] into HOL's logic. 

The abstract syntax of the types and expressions are represented by two new types in 

HOL. The substitution functions are implemented by functions in the HOL logic and the 

semantics are expressed as a series of relations in the logic. 

5.1 Syntax 

When using the HOL theorem prover there is a convention of taking a definitional ap­

proach to using logic. This has been discussed in chapter 2. The two definitions in 

this thesis that do not follow this convention are the definition, as new types in the 

logic, of the abstract syntax of SDT types and of expressions. These are introduced 

by axioms rather than deriving the characteristic properties. There is a. large amount 

of work involved in introducing such syntax and while automated tools are provided 

for introducing many kinds of abstract syntax [Me189J, none of these tools can handle 

the inclusion of finite maps in the definitions. The form of the two axioms introduced 

is standard and it has been shown elsewhere that syntax including finite maps can be 

introduced into HOL definitionally [CS95j. 

5.1.1 Types 

The syntax of types, as introduced into the HOL system, is given in figure 5.1. For the 

rest of this thesis however, the simplified notation first introduced in figure 4.1 is used. 
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Syntax in HOL Simplified Syntax 

ty .. - Num Num 

Varid Varid 

All id ty \;lid. ty 

tYl -+ tY2 tYl -+ tY2 

Data id (id, ty list)fmap Data id (id ...... tty]) 

Figure 5.1: The type of SOT types in HOL 

This type is characterised by the following axiom. 

Axiom 5.1 (Characteristic axiom for the type of types) 

"Iv n a d f. 
3!g. 

(VXI. 9 (Var xt) = tJ Xl) " 

(g Num = n) " 

(VXI X2. 9 ('VXI.X2) = a (g X2) Xl X2) " 

("Ix m. 9 (Data x m) = d «Map g) o_f m) X m) " 

(VXI X2· 9 (Xl - X2) = f (9 Xl) (g X2) Xl X2) 
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This axiom provides a complete characterisation of the type. It expresses the fact that 

functions can be defined over the type using primitive recursion. These functions are 

introduced as the unique function 9 satisfying the equations formed by a particular 

choice for v, n, a, d and f in the axiom. This axiom, and the corresponding axiom for 

expressions are the only axioms added to HOL. All other definitions and results have 

been formally developed and proved within HOL. This axiom is standard apart from 

the case for datatypes, which depends on the correct treatment of the finite map. This 

case is very similar to the theorem that could have been derived automatically if the 

constructors for the datatype had taken a list as an argument instead of a finite map. 

With this change the datatype case would be: 

VXI X2. 9 (Data List Xl X2) = d (Map (Map 9 0 Snd) X2) Xl X2 

In both the list and finite map versions, the recursive call of the function 9 is mapped 

across the list of types representing the arguments for each constructor. If the construc­

tors for the datatype are represented by a list, then this function is mapped over the 

list of constructors by the outer application of the Map function. If the constructors are 



CHAPTER 5. EMBEDDING THE SYNTAX AND SEMANTICS 45 

represented in a finite map, then the function Map 9 is applied to the range of the finite 

map. The list version could easily be added to HOL using Gunter's extension of the type 

definition package [Gun93]. 

From axiom 5.1 we can derive the induction theorem for types: 

Theorem 5.2 (Structural induction for the type of types) 

VP. 

("Ix. P (Var x» 1\ 

P Num 1\ 

(Vo..P 0. ::> (Vx. P (V'x.o.») 1\ 

(Vo. {3. P 0. 1\ P {3 ::> P (0. -+ {3» 1\ 

(Vy m. 
FEvery (Ax.Every P (Snd x» m ::> 

P(Data y m)) 

::> 

("10.. P 0.) 

Proof. Follows from the axiom 5.1. The proof is closely modelled on that used by the 

tools supplied with HOL for proving the corresponding theorem for the types that can 

be introduced automatically. 

The standard results about the distinctiveness and one to one properties of the construc­

tors can be derived. 

Theorem 5.3 Distinctness of types 

(Vx. Num ::f: Var x) 1\ 

("Ix 0.. Num ::f: V'x.o.) 1\ 

(Vo. {3. Num ::f: 0. -+ f3) 1\ 

('Vx m. Num ::f: Data x m) 1\ 

('Vx v 0.. Var x =/: V'v.o.) 1\ 

('Vx 0. {3. Var X =/:0. -+ {3) 1\ 

('Vx v m. Var x ::f: Data v m) 1\ 

('Vx 0. {3 "y. V'x.o: ::f: {3 -+ "y) 1\ 

(Vx v 0. f3. V'x.o: ::f: Data v m) 1\ 

(Vx m f3 "y • .,(Data x m ::f: (,B -+ "y») 
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Theorem 5.4 One-to-one property of types 

('''Ix y. (Var x = Var y) = (x = y» /\ 

("Ix a y {3. (Vx.a = 'Vy.{3) = (x = y) /\ (0 = {3» /\ 

(Va {3 "f o. «0 --+ {3) = h --+ 0» = (Q = "f) /\ ({3 = 0»/\ 

("Ix 711 y Ti. «Data x 711) = (Data y Ti» = (x = y) /\ (711 = Ti» 

Theorem 5.4 illustrates a problem with the given equality over these types; equality of 

two types requires bound variables to have the same names. But it is usual to equate 

tYPe!) up to a renaming of the bound variables. Possible solutions to this problem and 

the approach taken here are discussed later in this chapter, after giving the definition of 

substitution necessary to formalise and reason about the renaming. 

Using axiom 5.1 we can introduce recursive functions over types. One such function 

is the free type variable test. This function takes any type and a variable and tests 

whether that variable is free in the type. The definition makes use of the function Any, 

a disjunction operation over Boolean lists. 

Definition 5.5 The function Any is defined by: 

Any [1 = F 

Any (Cons x y) = x V Any y 

Using this the definition of the free variable function for types is: 

Definition 5.6 Free type variables 

ftv (Var xI) x 

ftv Num x 

ftv ('VXI.X2) x 

ftv (Xl --+ X2) x 

ftv (Data Xl m) X 

5.1.2 Expressions 

= 
= 
= 
= 
= 

(X = xt) 

F 

(X # Xl) /\ ftv X2 X 

ftv Xl X V ftv X2 X 

(X # xd /\ 
3y. FRange m y /\ Any (Map (>.z.ftv z x) y) 

The syntax of expressions as introduced into HOL is given in figure 5.2. For the rest of 

this thesis we will use the simplified mathematical notation for the syntax except where 

there is a risk of confusion with the HOL syntax for quantification and abstraction. The 

syntax for the constructors and case expressions was introduced in the previous chapter. 

The num, nnnop and nnbop constructs provide a means for lifting numbers from the HOL 

logic for use in SDT. 
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Syntax in HOL 

exp .. - num Dum 

nop (Dum - Dum - Dum) Dum Dum 

bop (Dum - Dum - bool) num Dum 

varid 

lambda id ty exp 

app expl exP2 

Lambda id ty 

App exp ty 

ree id tyexp 

con id ty (exp list) 

case exp (id, exp)fmap 

Simplified Syntax 

(where different) 

Aid: ty. exp 

eXPI exP2 

Aid. exp 

eXPty 

ree idty exp 

con idty [expJ 

case exp (id 1-+ exp) 

Figure 5.2: The type of SDT expressions in HOL 
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This type is characterised by an axiom added to the logic in a similar way to ax­

iom 5.1. 

Axiom 5.7 Chameteristie theorem for expressions 

"Inc nne nbc ve le re lte ae ate cc cae. 

3!y. 

(VXI' y (num Xl) = ne Xl} /\ 

(VXI el e2· Y (nop Xl el e2) = nne (yet) (y e2) Xl el e2} /\ 

(VXI el e2· Y (bop Xl el e2) = nbc (yet) (y e2) Xl el e2} /\ 

(VXI' y (var xt} = ve xt} /\ 

(VXI X2 X3· Y (AXI : X2· X3) = le (y X3) Xl X2 X3) I\. 

("Ix t Xl. Y (ree Xt xt} = re (y xt} X t xtll\. 

(VXI X2. Y (AXI' X2) = lte (y X2) XIX2} /\ 

(VXI X2· Y (Xl X2) = ae (y xt} (y X2) Xl X2) I\. 

(VXI t. Y (Xlt) = ate (y Xl) Xl t) /\ 

("Ix t Xl. Y (con Xt xt) = ee (Map y Xl) X t xt} /\ 

('<Ix m. y (case X m) = cae (y x) (y o_f m) X m) 

From this axiom, similar theorems to those derived from the axiom for types can be 

derived. These are the induction theorem for expressions and theorems stating that the 

constructors are distinct and there is a one-to-one correspondence. 
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Axiom 5.7 allows the definition of free variable functions for expressions. There are 

two functions, one to test for free type variables in expressions and one to test for free 

expression variables. 

Definition 5.8 Free expression variables in expressions. 

fv (var v) x = (x= v) 

fv (nurn n) x = F 

fv (nop n el e2) x = (fv el x) V (fv e2 x) 

fv (bop b el e2) x = (fv el x) V (fv e2 x) 

fv (el e2) x = (fv el x) V (fv e2 x) 

fv (te ) x = (fv e x) 

fv (,\y : t. e) x = (fv e x) 1\ (x =F y) 

fv (Ay. e) x = fvex 

fv (rec Yt e) x = fvex 1\ (x ~ y) 

fv (con Yt ys) x = Any (Map (>.z.fv z x) ys) 

fv (case e m) x = (fv e x) V (3y. (FRange m y) 1\ (fv y x» 

Definition 5.9 Free type variables in expressions. 

ftve (var v) x = F 

ftve (nurn n) x = F 

ftve (nop n el e2) = (ftve el x) V (ftve e2 x) 

ftve (bop n el e2) = (ftve el x) V (ftve e2 x) 

ftve (el e2) = (ftve el x) V (ftve e2 x) 

ftve (elt,) = (ftve el x) V (ftv tl x) 

ftve (>'Y : tl· el) = (ftve el x) V (ftv tl x) 

ftve (Ay. el) = (ftve el x) 1\ (x =F y) 

ftve (rec Yt, el) = (ftve el x) V (ftv tl x) 

ftve (con Yt ys) x = (ftv t x) V (Any (Map (,\y. ftve y x) ys» 

ftve (case e m) x = (ftve e x) V (3y. (FRange m y) 1\ (ftve y x» 

5.1.3 Adding booleans 

The syntax for types and expressions introduced in the last section contains the syntactic 

constructs necessary to lift the HOL type of numbers for use in SDT programs. The 

syntax does not make any such provision for the booleans, which will be defined in 

terms of datatypes as discussed in section 4.2. The definition of booleans is: 



CHAPTER 5. EMBEDDING THE SYNTAX AND SEMANTICS 49 

Definition 5.10 The three constants in HOL representing the boolean type and con­

structors are: 

Bool = Data "0001" [ "true" 1-+ [], "false" 1-+ [ ]] 

True = con "true"BooI [ 1 
False = con "false"BooI [ ] 

Constants for the booleans are introduced before the semantics of the language is 

defined so that the rules can, for clarity, be defined in terms of these constants. This 

is not essential. The rules for binary relations could be given directly in terms of the 

primitive syntax for datatypes and then rewritten with the definitions Bool, True and 

False later. 

5.2 Substitutions 

The six substitution functions were introduced in section 4.4. Their definition is neces­

sary in order to define both the static and dynamic semantics, and to express and reason 

about many of the meta-theoretic results. The approach here is to define a simultaneous 

substitution function, taking a substitution represented as a finite map of the appropri­

ate type. Substitution for a single variable is then defined as a special case. Only these 

simpler substitutions are used in the definition of the static and dynamic semantics, but 

simultaneous substitutions are needed for the meta-theory. 

The approach here is similar to that used by others to embed imperative pro­

grams [HM94] and the 7T-calculus [MeI94, GM96] in HOL. The definition of substitution 

depends on the definition of a function to pick new variables distinct from those free in 

a term. 

5.2.1 A choice function 

Before the definition of the functions can be given it is necessary to deal with the 

possibility of variable capture when substituting under a binding construct. A renaming 

function is defined which takes a variable, x, and a set of variables, s, and returns a 

variant of x that is not in s. Providing the set is finite it will always be possible to find 

such a variant. If x is not in s then the variant will be x itself. The set of variables is 

represented by its characteristic function. For any finite set L, the two key properties of 

the choice function, ch, are: 

"Ix L. ch(x, L) ~ L 

"Ix L. ch (x, L) = (x E L => ch (prime x, L) I x) 
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where prime is the function that adds a I to the string x. 

The choice function is not a primitive recursive function and cannot be defined easily 

using the standard function definition package in HOL. Instead it is defined using Konrad 

SHnd's TFL package [SH96] , the documentation for which contains a similar function 

definition. 

Definition 5.11 The choice function is introduced. with the property 

ch (x, L) = (x E L A Finite L * ch (prime x, L) I x) 

under the assumption that the function is terminating. This assumption is expressed. by 

a measure which is assumed. to be decreasing. The measure is 

A(x,L). CARD ({y I SLENGTH x $ SLENGTH y} n L) 

where CARD is the cardinality of a set and SLENGTH is the length of a string. 

To discharge the assumption that the measure is decreasing the following lemma is 

proved. 

Lemma 5.12 

"Ix L. FiniteL:J 

x E L:J 

CARD ({y I SLENGTH (prime x) $ SLENGTH y} n L) < 
CARD ({y I SLENGTH x $ SLENGTH y} n L) 

Proof By induction over the finite set L and simplification. 

This allows the required properties of the choice function to be proved. 

Theorem 5.13 The choice function, ch, has the property: 

"Ix L. FiniteL:J 

ch (x, L) = (x E L * ch (prime x, L) I x) 

Proof. Follows from definition 5.11 and lemma 5.12. 

An induction principle can be derived from the definition of the choice function 

Theorem 5.14 (Recursion induction) 

P. 
("Ix L. (x E L A FiniteL:J P (prime x, L)) :J P (x, L)) :J 

("Ix L. P(x, L)) 
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Proof. Simplification of the induction theorem introduced with definition 5.11 by 

lemma 5.12. 

Finally the correctness of the choice function can be stated. 

Theorem 5.15 

'Vx L. ch(x, L) ¢ L 

Proof. By induction using theorem 5.14 and simplification using theorem 5.13. 

This choice function is used to rename bound variables to avoid capture. If a type a 

with a free type variable x is substituted into the type "'x./3 then the free variable x is 

'captured' by the binding 'Vx. To avoid this the bound variable is renamed to a variable 

that cannot occur free in the body of the term after the substitution. 

If f is the appropriate free variable test (fv, ftv or ftve) then the set of variables in 

an abstraction with the body t and bound variable x is 

blfty" Y=F x } 

The free variables after substitution are the variables in this set which are not replaced 

by the substitution, plus the free variables in the image of this set under the substitution. 

Two new functions freeR and free capture this informal description in HOL. 

Definition 5.16 If f is a free variable junction and s a substitution then freeR tests for 

the free variables in the mnge of s and is defined by: 

freeR f s x = 3e. FRange s e /\ f e x 

Definition 5.17 If f is a free variable function, s a substitution and 9 represents a set 

of variables, then free tests for the free variables in the image of the set represented by 9 

under the substitution s or in the variables of 9 that are not replaced by s. free is defined 

by: 

free f s 9 x = (freeR f (DRestrict s g) x) V (g x " ....,(FDom s x)) 

For a substitution 8 applied to a type "'x./3 or any similar binding construct, the renaming 

of the bound variable is chosen to be: 

ch (x, free f s (Ay· f /3 y " y =F x)) 

For the example of a type, "'x./3, the function f would be ftv. 
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It remains only to show that this new variable is distinct from any of the free variables 

that could be captured. 

We begin with a series of lemmas about the finiteness properties of the free variable 

functions, lists, finite maps and the functions freeR and free. The first two are not of any 

real significance themselves but are included to illustrate a pattern that occurs in many 

later proofs and will not be shown in detail again. The important result is lemma 5.20, 

where the quantification is over expressions and types in the language. As some of the 

syntactic constructs contain finite maps and lists, some steps of an inductive proof for 

these constructs may require further inductive proofs over the lists and finite maps. The 

first two results are used in these proofs. 

Lemma 5.18 If f is a free variable function and ys is a list then 

Every {Ae. Finite (/ e)) ys :::> Finite(,\x. Any (Map «AZ. Z x) 0 f) ys)) 

Proof. Follows by an easy structural induction over the list ys. 

Lemma 5.19 If f is a free variable function for terms of type a and m is finite map 

from variables to a list of type a, then 

(Yx. FOom m x :::> Every (Ae. Finite (f e))(m x)) :::> 

Finite (AX. 3y. FOom my A Any (Map «Az. z x) 0 f) (m y))) 

Proof. Follows by an easy induction over the finite map iii and lemma 5.18. 

Lemma 5.20 Each free variable function ftv, fv and ftve, produces only a finite number 

of free variables. 

'<Ia. Finite (ftv a) 

'<Ie. Finite (fv e) 

'<Ie. Finite (ftve e) 

Proof. Each lemma is proved by a structural induction over the term or type using 

lemmas 5.18 and 5.19. 

The following two lemmas capture the finiteness properties of the function freeR and 

free. The assumption 

{'<Ie. Finite (f e)) 

that appears in these lemmas can be discharged by the above results and so the lemmas 

can be instantiated for each free variable function. 
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Lemma 5.21 

"If. ("Ie. Finite (! e» ~ ("Is. Finite (freeR I s)) 

Proof. Follows by an easy induction over the finite map s. 

Lemma 5.22 

Vlg. ('Ve. Finite (f e)) /\ Finite g :::> ('Vs.Finite (free I s g» 

Proof. Follows from definition 5.17 and lemma 5.21. 

Finally, theorem 5.13 can be instantiated to the particular set of variables used here and 

the assumption about the finiteness of this set simplified using theorem 5.22. This gives 

the behaviour of the choice function as it will be used in the next section. 

Theorem 5.23 

'VI. ('Ve. Finite (f e» ~ 

('Ve s v. 
ch (v, free I s (AX. I e X /\ (x:/: v») 

= 

«v E (free I S (AX. I e x /\ (x:/: v)))) 

=* (ch (prime v, (freel S (AX. I e x /\ (x:/: v))))) 

I v» 

As with the previous two theorems, the function I can be instantiated to any of the 

free variable functions and the assumption about the finiteness of I discharged. 

A useful property of the choice function is that if it is applied to a variable and an 

empty set of variables, then the function returns the original variable. The empty set of 

variables is represented by the function Ax.F that always returns false. 

Theorem 5.24 

'Vx. ch (x, >.x.F) = x 

Proof. A simple corollary of theorem 5.13 
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5.2.2 The substitution functions 

The definition of the simultaneous substitution function 

ttSubs : ty -+ (string, ty)fmap -+ ty 

which substitutes types into types is given figure 5.3. The application of a substitution 8 

to a type 0, ttSubs a s, is abbreviated by [oj,. 
From this, the single substitution function 

ttSub : ty -+ (string, ty) -+ ty 

is easily defined. If the substitution of {3 for x in the type 0, ttSub a (x, (3), is abbreviated 

by a[{3/x], the definition is as follows. 

Definition 5.25 (Substitution for a single variable) 

a[{3/x] = [0] [x>-81 

The substitution functions for types into expressions and expressions into expressions 

are similar. Their definitions are given in figures 5.4 and 5.5. From these the single 

substitution functions can be defined in exactly the same way as for types. 

5.3 Properties of substitution 

This section gives some of the properties of the substitution functions. Unless specifically 

mentioned, these properties have been proved for all the varieties of substitution. Many 

of the following results are concerned with simplifying the mappings used in substitution. 

This is essential for many of the proofs in later sections. 

The first result states that a substitution can be restricted in its domain to the free 

variables in the term it is applied to. 

[Var vJs = 
[Numls = 
['v'v.als = 

[a -+ {3Ji = 
[Data x lis = 

«FDom s v) =* s v I Var v) 

Num 

let y = ch (v, free ftv S (AX. ftv Q X 1\ x # v)) 

in 'v'y. [a!s[v>-vilr 1/) 

[aJi -+ !{3]i 

let y = ch (v, free ftv s (Ax. ftv Q x " x # v» 

in Data x (Map (Aa. !a],[X' .... .vilf 1/)) o_f I) 

Figure 5.3: Substituting types into types 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 
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[num n]. = num n (5.6) 

[nop n el e2]i = nop n [ell.. [e2J.; (5.7) 

[bop n el e2]i = bop n [ells [e211 (5.8) 

[var v],; = (FDom s V =* S v I var v) (5.9) 

[AY: a. eli = let Z = (ch (y, (free fv S (Ax. fv ex 1\ X:F y)))) 

in (Az : Ct. [e].(v ..... var z)) (5.10) 

[Ax. elli = Ax. [ell. (5.11) 

tel e2]i = [ell. [e2). (5.12) 

[ela ). = [el).a (5.13) 

[ree Ya e). = let Z = (ch (y, (free fv 8 (Ax. fv e x 1\ x:F Y)))) 

in (ree Za [e].(y>-+var z)) (5.14) 

[con Co xs]. = con Co (Map (Ax. [x).} xs) (5.15) 

[case e m)i = case [eli «Ael. [el).) o_f m) (5.16) 

Figure 5.4: Substituting expressions into expressions 

[num n]s = numn ( 5.17) 

[nop n el e2)i = nop n [ell. [e2). (5.18) 

[bop n el e2). = bop n [ells [e2]. (5.19) 

[var v). = var v (5.20) 

[AY : a. eli = AY : [a) •. [e). (5.21) 

[Ax. ell, = let y = ch (x, free ftv S (Az. ftve el Z 1\ x::f: z)) 

in (Ay. [el].(Xt-OVar v)) (5.22) 

tel e2]. = tel]' [e2h (5.23) 

[ela ]' = [el)'a (5.24) 

[ree Ya e]. = ree Y(aJ, [e). (5.25) 

[con Co xs). = con CIa), (Map (Ax. [x],) xs) (5.26) 

[case em]. = case Ie). «Ael. le1].) o_f m) (5.27) 

Figure 5.5: Substituting types into expressions 
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Theorem 5.26 If [.1 is a substitution function and f a free variable function then 

"It s. [tl, = [tloRestrict i (f t» 

Proof. By structural induction over types or expressions, depending on which of the 

three substitution functions is being considered. 

It can be shown that the identity substitution, which maps variables to themselves, 

leaves a term unchanged. 

Theorem 5.27 If I_I is the function for substituting types into types or expressions then 

"It s. ("Ix. FOom s x :::> S x = Var x) :::> Itls = t 

If I-I is the function for substituting expressions into expressions, then 

"It s. ("Ix. FOom s x :> S x = var x) :> [t], = t 

Proof. By structural induction over types or expressions, according to which substitu­

tion function is used, and then simplification with the definitions of ch, free and freeR. 

The proof relies on the fact that an identity substitution cannot cause renaming of 

variables. 

It follows from this that the empty substitution also leaves a term unchanged. 

Theorem 5.28 

"It. [t]FEmpty = t 

Proof. Follows from theorem 5.27, since the empty mapping satisfies the property 

"Ix. FOom FEmpty x :> FEmpty x = var x 

Another immediate consequence of theorem 5.27 is that replacing a variable by itself 

leaves the term unchanged. 

Theorem 5.29 

"Ix t. t[Var x/x] = t 

Proof. Follows immediately from theorem 5.27 and the definition of single substitution. 

The final result is that if two terms are equal under all substitutions then they are the 

same term. 
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Theorem 5.30 

Proof. Since [tds = [t21s holds for all substitutions s it also holds for the empty 

substitution. This gives [tdFEmpty = [t21FEmpty. The result follows from theorem 5.28. 

The above theorems have been proved without having to deal with renaming of variables, 

since the identity and empty substitutions do not cause renaming. Another important 

class of substitutions that do not cause renaming are those where the range consists only 

of terms with no free variables. The next section considers how to formalise this and the 

results that can be proved. 

5.4 Closed substitutions 

In practice the need to consider whether or not to rename variables can greatly compli­

cate proofs. But in almost all cases, this can be eliminated by considering properties of 

the expressions that we are substituting into the program. In particular, if the expression 

being introduced contains no free variables, then variable capture cannot occur. 

The key idea is that at the top level of a program we have well-typed functions 

(which can be shown to have no free variables) and that these are applied to closed 

terms as arguments. The application generates a new substitution with a closed term 

in the range. As substitutions are propagated throughout the term, all the terms in the 

range of the substitution are closed. When looking at a subprogram in isolation there 

may be free variables, but we can work under the assumption that these variables will 

always be replaced by a closed term. This assumption will be propagated through the 

proofs and will eventually be discharged. 

There are a number of exceptions to this ideal model. The first is the creation 

of identity substitutions when renaming does not occur. This can happen in all the 

substitution functions where the choice function is used. Any substitution containing 

identity mappings can be proved equal to a substitution without; this is detailed later 

in this section. 

A more significant exception is that while function application will behave as de­

scribed above, type application may cause a renaming because a well-typed expression 

may contain free type variables. In section 5.5.1, some results will be considered for 

substitutions that map to types where renaming does occur. 

Before examining the properties of the substitution functions, we introduce some 

predicates to capture the idea of closed substitutions and to simplify the presentation of 

results and propagation of information. 
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Definition 5.31 The lact that a tenn t is closed with respect to some free variable 

function I is stated by: 

Closed I t = "Ix . ...,(f t x) 

One important and frequently used property of a closed term is that it is unchanged by 

any substitution. This can be shown for each of the substitution functions and I is used 

to stand for the appropriate free variable function. 

Theorem 5.32 

Vt. Closed / t ::> (V8. [tJs = t) 

Proof. By theorem 5.26, the domain of the substitution 8 can be restricted to the free 

variables in t. As t is closed, there are no free variables, so [tis is equal to [tlFEmpty. The 

result then follows from theorem 5.28, which states that the empty substitution has no 

effect on a term. 

From the definition of a closed term, we can define a closed substitution. 

Definition 5.33 For any free variable function / 

FClosed / s = (Vy. FOom 8 y ::> Closed / (8 y» 

A closed finite map can be built from an empty finite map, which is closed, by adding any 

closed terms to the range of the mapping. The following results capture this construction. 

Theorem 5.34 

"1/. FClosed / FEmpty 

V/ 8 Ck. FClosed / 8 1\ Closed / a ::> ("Ix. FClosed / (s[x 1-+ a]) 

Proof. Both results are proved by simplifying with the definitions of closed terms and 

simple properties of finite maps. 

For any expression, if there is a closed finite map whose domain covers all of the free 

variables then we sometimes refer to this finite map as closing substitution for the ex­

pression. 

Definition 5.35 

V/ 8 Q. Closing / sa = FCiosed / s 1\ ("Ix. / a x ::> FOom 8 x) 

The definition of FClosed substitutions allows us to prove properties which state that 

they do not cause renaming. For the substitution into types, the two clauses where a 

substitution is moved through a bound variable can, when the substitution is closed, be 

simplified as follows. 
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Theorem 5.36 

"Iv t s. 
FCiosed ftv s :::> 

['Vv.tJ;. = 'Vv.[tJ.[v ..... Var v] 

"Ix , s. 
FClosed ftv s ::> 

[Data x ni = Data x (Map p.t. [tli[Xl-+Var ~]) oJ /) 

Theorem 5.37 

'Vy s. 
FClosed fv s :::> 

[.>.y : a. eJ. = .>.y: a. [eJ,[~ .... var II] 

'Vy s. 
FClosed fv s :::> 

[ree Yo e], = rec Yo [eh[~ ..... var III 
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Proof. From the definition of substitution and properties of the choice function, it can 

be shown that renaming does not occur. The clauses in the definitions of substitution 

can then be simplified to produce the above results. 

The theorems above indicate one remaining problem with the use of FClosed substitutions 

to simplify proofs. While the substitution that is applied to the abstractions is closed 

the substitution generated and applied to the body of the abstraction is not. This can 

lead to a problem in several proofs later in the section where there is an induction over 

the structure of an expression of type. For types, a general example is form: 

'Vt s. FClosed ftv s ::> P([tJi) (5.28) 

In attempt to prove this by induction over t, the step case for type quantification will 

be 

'Vs. FClosed ftv s :::> P(['Vx.tJ,) (5.29) 

under the assumption 

"It s. FCiosed ftv s :::> P([tJi) 

This will typically be simplified using the definition of substitution and other properties 

to 

(5.30) 
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under the assumptions 

'Vt i. FClosed ftv i ::) P([t],) 

FClosed ftv i 
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As sIx t-+ Var xl is not closed the induction hypothesis cannot be applied. In the 

remainder of this section we show that a substitution that is closed apart from identity 

mappings has the same effect as a closed substitution and so the induction hypothesis 

in the previous example can be applied. Substitutions which map variables to either the 

same variable or a closed term are described as follows: 

Definition 5.38 

Ty_FClosedJd 8 = ('Vx. FOom 8 x::) ((Closed ftv (8 x» V ((8 x) = Var x») 

Exp_FClosedJd s = ("Ix. FOom 8 x::) (Closed fv (s x» V «8 x) = var x») 

In the rest ofthis section only the function for types, Ty.FClosedJd, will be considered. 

The results all hold for the equivalent version for expressions. Some simple properties 

are: 

Theorem 5.39 

'V'S. Ty.FClosedJd i :::> ('Vx. Ty_FClosed.ld (s[x t-t Var x)))) 

'Va a. Ty_FClosedJd a 1\ Closed ftv a ::) ('Vx. Ty.FClosedJd (sIx t-t aJ)) 

Proof. Both results are proved by simplifying with the definitions above and simple 

properties of finite maps. 

By replacing FClosed by Ty..FClosedJd in the inductive proof above the inductive hy­

pothesis will apply. While some theorems can be proved this way, the problem can 

be tackled more easily using two more results. The first states that any substitution 

satisfying Ty_FClosedJd can be transformed into a closed substitution by removing the 

identity mappings. 

Theorem 5.40 

'V'S. Ty_FClosedJd a ::) FClosed ftv (ORestrict 8 (AX. s x :f= Var x» 
Proof. By induction over the finite map a and simplifying with properies of FClosed, 

Ty_FClosedJd and finite maps. 

This closed substitution generated from a substitution satisfying Ty_FClosedJd has the 

same effect as the original substitution. 

Theorem 5.41 

'Va s. Ty.FClosedJd s :) [a], = [a]ORestrict i (>.%. i % ;: Var %) 
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Proof. By structural induction over the type Q: and simplifying with properies of 

Ty_FClosedJd, FClosed and finite maps. 

These results are sufficient to apply the inductive hypothesis in the example goal (5.30). 

This technique is used in the induction step of the proof of the following theorem. 

Proofs about the semantics of the language will often proceed by rule induction [Win93] 

over the appropriate semantic relation. Some rules, including those for type and function 

application, generate a single substitution. In the inductive step it is often necessary to 

rearrange the order in which this single substitution and a simultaneous substitution of 

a finite map takes place. The key theorem is: 

Theorem 5.42 III is Bome free variable function then 

'It 8 tt. FClosed f 8 /\ Closed f tl :) ('Ix. [t[ttf x)). = [tl.[z .... Var z) [ttf x]) 

Proof. By structural induction over t. 

While the version of this theorem for expressions is sufficient to prove the required 

results later in this thesis, the version for substitutions of types is not. In particular the 

condition that the type t} is closed will not hold. In the next section we prove a variant 

of this theorem without the condition that t} is closed and with a weaker conclusion. 

5.5 Equality for expressions and types 

The definitions of the types of SDT types and expressions in HOL gives rise to types for 

which the standard logical equality is not the equality that is required. In many pre­

sentations of lambda calculi and other such languages the syntax of binding constructs, 

such as type abstraction, is normally assumed to be equal up to alpha conversion. That 

is, two expressions or types will be equal if they differ only in the names of bound vari­

ables. For the types and expressions introduced in the last section this does not hold. 

The types 

Vx.var x 

and 

Vy.Var y 

are not equal unless the strings x and y are equal. 

To solve this problem new relations are introduced to define equivalence for both 

expressions and types. Very different approaches are taken for each. For types, a relation 

is introduced which captures precisely equivalence up to renaming of bound variable. For 
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Num=oNum 

Var v=oVar v 

'Ie. FOom xs e ::> 

all2 (=0) (xs e) (Map (_[Var x/y])(ys c)) 

Data x xs =0 Data y f1S 
...,(ftv (Data y ys) x) 

(FDom xs = FDom ys) 

Figure 5.6: The defintion of =0 
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expressions, a new relation will be introduced later which will have equivalence up to 

renaming of bound variables as a property. This will be a co-inductively defined equality. 

The definition of this relation for expressions, and the proof of the correct properties, 

form a major part of this work and are given in chapter 7. 

5.5.1 Alpha equivalence for types 

The equivalence relation for types, =0' is defined as the inductive relation given in 

figure 5.6. The function all2 takes a binary relation and two lists and returns true if 

the lists are the same length and corresponding elements of the two lists are related by 

the binary relation. This definition was introduced in HOL using Harrison's inductive 

definition» package [Har95]. The definition has a side condition stating that the relation 

is monotonic. This is easily proved. 

The definition also produces an induction theorem. 
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Theorem 5.43 (Rule induction for alpha equivalence) 

'VR. 

R Num Num 1\ 

("Iv. R (Var v)(Var v» 1\ 

('Vtl t2 t3 t4' 

R tl t3 1\ R t2 t4 ::> R (tl - t2) (t3 - t4» 1\ 

("Ix y tl t2· 

R tl (t2l\'ar x/y]) 1\ ..,(ftv ('Vy.t2)X) ::> R ('Vx.td ('Vy.t2» 1\ 

("Ix m y n. 
("Ie. FDom me::> 

all2 R (m c) (Map (~z. zl\'ar x/y]) (n e))) 1\ 

...,(ftv(Data y n) x) 1\ 

(FDom m = FDom n) ::> 

R (Data x m) (Data y n» 

::> 
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A more useful version of the induction theorem can be derived, and is referred to as 

strong rule induction [Gor95a]. For the rest of this thesis, where induction theorems are 

derived from a relation, only the strong rule induction version will be given. 
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Theorem 5.44 (Strong rule induction) 

VR. 
R Num Num 1\ 

('Iv. R (Var v)(Var v)) 1\ 

(Vtl t2 t3 t4' 

R tl t3 1\ R t~ t4 1\ tl =0 t3 1\ t2 =0 t4 ::J R (tl ..... t2) (t3 ..... t4)) 1\ 

(V'x y t1 t2' 
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R tl (tl[Var .ely]) 1\ t1 =0 (t2[Var .1'Iy]) 1\ .(ftv (Vy.t2)X) ::J R (Vx.td ('Vy.t2)) 1\ 

('Ix m y n. 
('Ie. FDom me:) 

all2 R (m c) (Map (AZ. z[Var xly]) (n c))) 1\ 

all2 (=a) (m c) (Map (AZ. z[Var xly)) (n c))) 1\ 

-,(ftv(Data y n) x) 1\ 

(FDom m = FOom n) :) 

R (Data x m) (Data y n)) 

::J 

(Val a2. al =a a2 :) R al a2) 

Proof. Follows from theorem 5.43 by instantiating R in that theorem with 

AQ f3.a =a f3 1\ R a f3 

and simplifying. 

The relation is an equivalence relation. 

Theorem 5.45 FUT any types 0:, p, I' 

a =a a 

a =a f3 ::J f3 =a a 

a =a f3 1\ f3 =a 'Y :) a =a 'Y 

Proof. Reflexivity follows by a simple structural induction over the type a. Symmetry 

and transitivity follow by rule inductions with theorem 5.44 and some tedious but routine 

reasoning about free variables and substitutions. 

Alpha equivalence relates two terms up to renaming of bound variables. 

Theorem 5.46 

'Ix y a. -.(ftv ('Vx.a) y) ~ ('Vx.a) =Q ('Vy.a[Var y/x]) 
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Proof. Follows from the definiton of =0 and the reflexive and symetric properties. 

We can now return to the variant of theorem 5.42 mentioned in the previous section. 

Theorem 5.47 

Proof. By structural induction over t. 

5.6 Static semantics 

The static semantics are formalised by an inductively defined relation [MeI92] 

Type: (string, ty)fmap -+ exp -+ ty -+ boo} 

which takes a context, an expression and a type and returns true if the expression has 

the given type in the context. We will normally write the typing judgement 

Type rea 

ff-e:a 

The Type relation is given in figure 5.7. The definition makes use of function, makefun, 

which takes a result type of a case expression, a, and a list of types representing the 

arguments of a constructor, [/h,.82, ... ,.8n], and returns the syntax of a function type 

which takes the same arguments as the constructor: 

f31 -+ f32 -+ ... -+ f3n -+ a 

Definition 5.48 

makefun a [I = a 

makefun a (Cons x xs) = (x -+ (makefun a xs)) 

Alpha equivalence for types is used in a number of places in the definition, but not 

everywhere it could be used. For example, the rule for function application could have 

been written as: 

.8 =0 fJ 
r f- (e I (;2) : ,3 

This is unnecessary since the reason for weakening equality to alpha equivalence is so 

that the following statement will be true. 

'VI' e a. f f- e : a :::> ('1.8. a =0.8 :::> r I- e : .8) 
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r I- el : Num r I- e2 : Num 

r I- num n : Num r f- nop ap el e2 : Num 

/3 =0 'Y C I- el : Num C I- e2: Num 

r[x ~ /3] I- var x : 'Y r I- bop op el e2 : Bool 

r[x ~ /3]1- e : 0 {3 =0 'Y 

r I- (AX: {3. e) : 'Y - 6 

r f- el : (/3 - 'Y) r f- e2 : /3 
r f- (el e2) : 'Y 

r I- e : /3 X not free in r 'Y =0 Vx.{3 
r f- Ax. e : 'Y 

r f- e : Vx.(3 0 =0 (3blx] 

r[x 1-+ f3] I- e : {3 'Y =0 {3 
r I- rec x{j e : 'Y 

FDom m c 
all2 (Type r) xs (Map ("y. y[Oata x mix]) ts) 

ts = m c) r I- con CDau x iii xs: {3 
{3 =0 (Data x m) 

r I- e : Data x m 

'Vs.FOom c s ::> FOom m s 1\ 

r I- (c s) : (makefun {3 (m s»[data x mix] 

r f- case e c : (3 

Figure 5.7: The typing rules 
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In order to prove this, it is necessary to weaken the equality of only the types which 

occur, or have components which occur, on both sides of the I:' in the type assignment. 

Thus the weakening is unnecessary for the rule for function application, but necessary 

for type application where {3 and 'Y occur in different places in the conclusion r r- efj : "y. 

Similarly, the equivalence, {3 =0 'lr/x.'Y is necessary in the rule for type abstraction since 

x and {3 occur separately in the conclusion r t- Ax. e : {3. 

The typing relation is again introduced using the inductive definitions package and 

the rules are proved to be monotonic. This gives rise to an induction theorem. A stronger 

version of this theorem, strong rule induction, can also be proved. The statement of the 

theorem is given in figure 5.S. 

Typically we consider only well typed programs, so it is useful to introduce a second 

relation, Prog, which holds of a type Q and an expression e only if e has type Q in the 

empty context. 

Definition 5.49 

Prog e ex = Type FEmpty (; ex 

For clarity, Prog e Q will often be written e : Q. 

A major property of expressions that can be typed in the empty context is that they 

cannot contain free expression variables. 

Theorem 5.50 

'rIe Q. e : Q :,) Closed fv e 

The significance of this theorem, in conjunction with theorem 5.37, is that when a closed 

expression is a.pplied to another closed expression, only closed substitutions are formed 

and so no renaming will occur. 

5.7 Properties of the typing relation 

There are some important properties of the relationship between typing judgements a.nd 

alpha conversion. The two crucial theorems are given below. 

Theorem 5.51 'rI r e Q. r r- e : Q :,) ('rI{3. Q =0 f3 :,) r r- e : (3) 

Proof. Follows by a straightforward rule induction with theorem 5.8. 

The next theorem of this section expresses the fact a term has a unique type, when 

the types are considered equal up to renaming of the bound variables. 



CHAPTER 5. EMBEDDING THE SYNTAX AND SEMANTICS 

"IT. 

("In r. T r (num n) Num) /\ 

("In e2 el r. 
T r el Num /\ T r e2 Num /\ r f- el : Num /\ r f- e2 : Num ::> 

r r (nop n el e2) Num) /\ 

("In e2 el r. 
T r el Num /\ T r e2 Num /\ r f- el : Num /\ r f- e2 : Num ::> 

T r (bop n el e2) Bool) /\ 

("Iv r a f3. a =Q f3 ::> T r[v 1-+ tJ (var v) (3) /\ 

(V-y a e f3 y r. 
T r[y 1-+ f3J e a /\ r[y 1-+ f3]1- : e a /\ f3 =0 -y ::> 

T r (AY : f3. e) b -+ a) /\ 

(Ve2 a f3 elr. 

T r el (f3 -+ a) /\ T r e2 f3 /\ r f- el : (f3 -+ a) /\ r I- e2 : f3 ::> 
T r (el e2) a) /\ 

(Vf3 x a e r. 
Trea /\ rl-e:a/\ 

(Vy . ...,(FDom r y /\ ftv (r y) x)) /\ f3 =0 (Vx.a) ::> 
T r (Ax. e) (3) /\ 

(Vf3 a -y x e r. 
T r e ('v'x.-y) /\ r I- e : 'v'x."r) /\ a =0 (-y[f3fx]) ::> 

rf(f'8)n)t\ 

(VfJ e a y r. T (fly 1-+ .8]) e a /\ fly 1-+ fJ] f- e : a /\ fJ =Q a :) 
T r (ree Yo e) (3) /\ 

(Va C ts m x xs r. 
all2 (T r) xs (Map (_[Data x mix!) ts) /\ 

all2 (Type r) xs (Map (_[Data x mix!) ts) /\ 

FDom m c /\ (ts = m c) /\ a =0 Data x m :) 
T r (con C(Datum) xs) a) /\ 

(Va n m x e r. 
T r e (Data x m) /\ r I- e : Data x m /\ 

("Is. 

:) 

FDom n s :) FDom m s /\ 

T r (n s) (makefun a (Map (_ [Data x mix]) (m s» :) 

T r (case e n) a) 

(W e a. r f- e : a :) T rea) 

Figure 5.8: Strong rule induction for Types 
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Theorem 5.52 Uniqueness of types up to alpha equivalence 

VI' e a. r ... e : a :::> (Vf3. r I- e : f3 :::> a =0 (3) 

Proof. Follows by rule induction over the typing judgement r ... e : a. 

It is useful to know that a term has only one type. Much of theory that follows 

depends on the analysis of the types of terms and this analysis is easier if there is only 

one type to consider for each term. 

This chapter has introduced closed substitutions and expressions that have a type 

in a context and in the empty context. The following results express the relationship 

between the type of expressions with free variables and the type of expressions with 

closed terms substituted for the free variables. 

If an expression e is typeable in a context r then a substitution that maps variables 

to expressions with the type corresponding to that variable in the context will be known 

as a closure. This is defined as: 

Definition 5.53 

Closure r s = (FOom r = FOam s) A (Vx. FOom r x :::> (s x) : (r x)) 

One useful property of closures is that the substitution is itself closed. 

Theorem 5.54 

VI' s. Closure r s :::> FClosed fv s 

Proof. From definition of Closure we know that every expression in the range of the 

substitution is well-typed in the empty context and hence, from theorem 5.50, contains 

no free expression variables. The result follows from the definition of FClosed. 

An important property of closures is that the substitution for any term typeable in the 

empty context is itself empty. 

Theorem 5.55 

Va. Closure FEmpty a = (a = FEmpty) 

Proof. Follows immediately from the definition of Closure and properties of finite maps. 

The key theorem, which will be used extensively in Chapter 7, relates the type of an 

expression in a context to the type of the closed term produced by a closure for that 

context. 
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Theorem 5.56 

\fT e a. r I- e : a :J ('Vs. Closure r s :J [eJs: a) 

Proof. By rule induction over the typing judgement and the properties of substitution, 

typing and closures. 

A variant of this theorem can be proved that takes account of type substitutions as 

well. This theorem will be used in the theory for parametricity in Chapter 9. This 

extends theorem 5.56 by relating the type of an expression in a context to the type of 

that expression under both expression and typing substitutions. 

Theorem 5.57 

'V rea. 

rl-e:a :J 

( 'Vs t. FClosed fv 8 /I. FClosed ftve 8 /I. FClosed ftv t /I. 

('Vx. FOom r x :J (FOom 8 x /I. 8 x : [rxjl')) 1\ 

('Vx. ftve e x :J FOom t x) :J 

[[elill' : [al1') 

Proof. By strong rule induction on the typing judgement r I- e : Q and tedious reasoning 

about the substitutions. 

5.8 Dynamic semantics 

The dynamic semantics introduces a family of relations based on one relation, --+. From 

this, many step reduction, --+*, and reduction to normal form or evaluation, .1.1-, can be 

defined. 
The reduction relation is defined inductively in the same way as the static semantics. 

The rules are given in figures 5.9 and 5.10. The choice of rules for the semantics has been 

discussed previously. The definition gives rise to the usual rule induction and strong rule 

induction theorems. In what follows, we consider the semantics of numbers separately 

to the semantics of the other syntactic constructs. Figure 5.10 gives the semantics for 

numbers and figure 5.9 gives the semantics for the other constructs. 

5.B.1 The dynamic semantics of numbers 

The dynamic semantics for numbers is given in full in figure 5.10. Here only the num­

bers and the binary operations are embedded, although more could easily be added by 

extending the syntax introduced in figure 5.2. There is an important difference between 
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rec Ya e --+ e[rec Ya ely] 

(Ay. e}a --+ e\a/y] 

case (can Xa xs) in --+ applyfun(m x) xs 

case el in --+ case e2 in 

Figure 5.9: The dynamic semantics 

the type of nwnbers in SOT and the HOL logic. In the logic all expressions with the type 

of numbers, including arbitrarily complex expressions, denote some unique number. In 

SOT an expression of number type may be non-terminating or contain a partial function 

which does not return a result. When moving between the two representation of num­

bers it is important that these differences are handled correctly. In this section a specific 

example of the behaviour of the binary relation "less than or equal" is considered. 

Suppose el,e2 and e3 are expressions with type Nurn, nl and n2 are numbers in the 

HOL logic, and $ is the "less-than-or-equal" function in the logic. The rules for this 

binary relation on numbers are: 

el --+ e2 
bop $ el e3 --+ bop $ e2 e3 

e2 --+ e3 

bop ~ (nurn nd (nurn n2) --+ nurn (nl ~ n2) 

If ~ is applied to numbers which reduce to a value by repeated application of the first 

two rules, then the third rule will apply and the application of $ can be pushed down 

into the HOL numbers and the result lifted. But if one of the arguments does not reduce 

to a value, then one of the first two rules can be applied indefinitely, or the argument 

contains a partial function and at some point no rule applies. In either case the third rule 

will not apply and a result of the form nurn n will never be returned. This means that, 

unlike the type of numbers in HOL, the number expressions in SOT may not represent 

any numeric literal. 
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nop f num n el --+ nop f num n e2 

bop f nurn n el --+ bop f nurn n e2 

Figure 5.10: The dynamic semantics of numbers 

5.8.2 Derived relations 

The reduction relation is a small step evaluation relation, where a term can be reduced 

repeatedly until a value is returned. It is useful to define a second relation, the relexive 

tra.nsitive closure of reduction, which can express many reduction steps in one relation. 

The relation --+* is an inductively defined many step reduction relation. 

Definition 5.58 

e-*e 

If an expression has been reduced to a value (function, type abstraction, number or 

constructor) then it cannot be reduced any further. These normal forms of the reduction 

function can be defined by 

Definition 5.59 

NF c = 3x Q as. c = con XQ as V 

3n. c = nurn n V 

3x Q e. c = AX: Q. e V 

3x e. c = Ax. e 

Reduction to normal form, .\.I., can then be defined as 

Definition 5.60 

el .\.I. e:l = (el --+* e2 " NF e2) 



CHAPTER 5. EMBEDDING THE SYNTAX AND SEMANTICS 73 

Rules can be proved for this relation which are identical to the rules that would have 

been defined for a large step reduction relation, as discussed in chapter 3. One example 

is the rule for function application: 

et .lJ. (.\y: a. e) (ele2/yJ) .lJ. c 
(et e2).JJ.c 

Later, it will be useful to state that an expression e evaluates to some normal form 

without needing to worry about the form of that result. 

3c. e.JJ. c 

This statement will be abbreviated by e .JJ.. 

5.9 Properties of reduction 

The reduction relation has been written in such a way as to specify the reduction order. 

At no point can more that one rule apply to any expression. It follows from this that 

the relation is deterministic. 

Theorem 5.61 

Proof. By a rule induction on the reduction el ---+ e2· 

The reduction relation is untyped and so the rules may also be applied to untyped 

expressions. Whenever the rules are applied to well-typed expressions it is important 

that the type is preserved. 

Theorem 5.62 (Subject Reduction) 

f- Vet e2. e} ---+ e2 :J (Va. e} : a :J e2: a) 

Proof. By a rule induction on the reduction e} ---+ e2· 

5.10 Related work 

In this chapter the syntax of the SDT language was represented by types in the logic with 

a structural equality between terms of the type. For SOT types, a new equivalence was 

defined to identify types up to a renaming of bound variables. An alternative approach, 

which has been applied to simple languages with binding constructs, would be to define 

the types in a different way so that the standard equality has this property [GM96]. 

While this would simplify the problems of alpha equivalence and single substitutions 
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it would not remove the need to reason about simultaneous substitutions later in this 

thesis and so would not allow any of the work on substitutions to be omitted. 

The work in this chapter is similar in some ways to the deep embeddings of functional 

languages discussed in chapter 3. These embeddings also introduced new types for 

the syntax and new relations for the semantics. The language that has been most 

commonly embedded in theorem provers is the semantics of Standard ML, due to the 

availability of the a complete operational semantics for the language [MTH90, MT91, 

MTHM97]. Donald Syme embedded core ML in HOL [Sym93, Sym92]. The HOL­

ML project developed an embedding of the core language (VG93, Van94] and looked at 

the module language and variants of the module language with the aim of comparing 

features [MG94]. 

These embeddings of ML differ from the embedding here. With all the ML embed­

dings, the aim was to reason about the language semantics, not to produce a reasoning 

system for programs in the language. The style in which the semantics is formalised is 

very different. The meaning of a function is defined relative to a complex environment 

containing state information. Function application is formalised not by substitution 

but by adding function closures to the environment. This avoids the complex reason­

ing about substitutions described here, but similar issues would arise in an attempt to 

compare different programs for eqUality. The environments would have to be compared 

which would involve renaming of variables in the environments. 



Chapter 6 

Automation of low level inference 

The work described in the previous chapter establishes the theoretical foundations for 

reasoning about the syntax and semantics of SDT programs. This chapter deals with 

the practical aspects of reasoning about the typing and reduction of programs. 

Results such as a proof that an expression evaluates to a specific value can be obtained 

by working out which rules to apply by hand or by conducting a long interactive goal­

directed proof. The number of rules to be applied may be very large and applying all the 

rules by hand may not be practical. As type judgements may be in the side conditions for 

the application of many other theorems it is important that their proofs are as automatic 

as possible. Similar problems occur when proving many results about programs. There 

are often a large number of obvious or trivial proof steps to be carried out. 

Many of the small steps in a proof will arise from calculating the type or value of 

a program and so tools have been developed to automate these proofs. The typing 

and reduction relations can be thought of as specifications of how to type or reduce 

expressions on an abstract machine. It is possible to write, in ML, a program that 

implements this specification. 

For the reduction and typing relations, these programs and the relations will both 

be deterministic. The way in which the programs calculate the types or values will 

correspond exactly to the way in which the rules need to be applied to prove the same 

result. Because of this the programs can be used to return information about the rules 

applied and this can be used to generate the proof. This method provides a structured 

proof, following the definition precisely, rather than trying to solve a search problem or 

attempting the exhaustive application of rewrite rules. 

Although HOL and the tools are both implemented in ML, they are treated as sepa­

rate systems with an interface between them. A translator converts from the HOL types 

for the syntax of expressions and types to the ML types used in the tools. This allows 
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the tools to be developed and tested separately from the rest of the system. The ML 

types contain additional type constructors. For example we represent HOL variables and 

HOL constants with separate type constructors as discussed in the next section. 

One advantage of developing an external system to find the proof and then using 

a theorem prover such as HOL to check the proof and manipulate the results is that 

checking a proof may be much more efficient than searching for a proof. The resulting 

system is still guaranteed sound; if the interpreter is not correct then an incorrect proof 

will fail when checked. There are also applications, such as finding the witness for 

solving existential goals, for which discovering the type of the term may be enough 

without completing the proof. 

The reducer and type checker also provide useful tools for experimenting with pro­

grams before deciding which direction a proof should take. In this case the reducer and 

type checker can be run without performing any proof at all and invoked only to provide 

a proof when the overall strategy has been established. 

For the type checker, the results returned are always of the form 

r ~ e: a 

There are two variations of the reducer. The first, simple version returns a result of the 

form 

while the more general version returns results of the form 

For any expression el there are many such results depending on how many reductions 

are performed. Parameters supplied to the reducer determine how many reduction steps 

are applied. For any specific parameter values, the result will be deterministic. 

6.1 Translation of syntax 

There is a translation from the HOL types for the syntax of expression to ML datatypes 

representing the syntax. This is not a one-ta-one translation, as the ML types contain 

additional constructors. For example, we represent HOL variables and HOL constants 

with separate constructors and add constructors representing the substitution functions. 

This allows easier manipulation of these aspects of a term. 

The ML types for the syntax could he extended in the future to handle heuristics 

such as rippling [BSvH+93j that can be used to control the application of rewrite rules in 
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an equational reasoning system to rewrite the step case of an induction to the induction 

hypothesis. 

6.2 Definition of new types and functions 

In general, most programs entered into the system will not consist only of primitive 

syntax. Most will consist mainly of previously-defined functions and types. This section 

discusses how the tools handle the definition of these constants and how this information 

will be made available to other tools. 

6.2.1 Datatype definition 

The definition of lists in terms of the primitive syntax of the language was given in 

section 4.8. Some care was needed to ensure the definition behaved correctly with 

respect to the renaming of type variables. The differences between the naive definition 

and the correct one are predictable and the correct definition can be automatically 

deduced from the naive one. In addition to defining the type it is also necessary to 

define the logical constants representing the type and its constructors. The ML function 

define_datatype takes a specification of a type and produces a definition of the type 

and the logical constants and proves and stores some useful theorems about them. For 

lists define_datatype is called as follows: 

define_datatype 

{Name-"List" , 

Def= Data ("List",[("Nil", []),("Cons", [Var "a", Var "List"])])} 

This function call defines a new constant in the logic, List, and two constants, Nil and 

Cons. These constants have the following definitions: 

list a = [a/ a] 
(

Data list [nil 1-+ 0, ) 
cons 1-+ [Var a, Var list]] 

nilo = con ni~ist 0 0 
conso h t = con COn8!ist 0 [h ,t] 

The typing rules for the constructors will normally be defined automatically using the 

tools presented later in this section. For the constructors for lists the following theorems 

will be proved: 

C I- Nilo : list a 
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datatype ty - HOLvar_ty of string 
I HOLconst_ty of string * ty list 

Var of string 

Mum 
Data of string • (string*ty list) list 
Fun of ty * ty 
All of string * ty 

HOLty of term 

ttsub of ty • string * ty 

and exp • HOLvar_exp of string 
HOLeonst_exp of string * arg list 

num of term 

var of string 

con of string * ty * exp list 

lambda of string * ty * exp 
app of exp * exp 

Lambda of string * exp 

App of exp * ty 

Rae of string * ty * axp 

Case of exp * (string * axp) list 
aesub of exp * string * exp 

tesub ofaxp * string * ty 
HOLexp of term 

DDIlOP of tarm * exp * exp 

nnbop of term * exp * exp 

and arg - Ty of ty I Exp of exp 

Figure 6.1: The ML types for the abstract syntax of expressions 
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C I- h : a 1\ C I- t : list a :> C I- ConSo h t : list a 

To make these definitions and typing rules available to the other tools in a uniform and 

efficient way they are stored in a global state. The ML records that are stored for each 

constructor are: 

type Tyconinfo = {Name:string. 

Def:thm. 

} 

type Coninfo • {Name:string, 

Def:thm. 

Ty:thm option. 

} 

(*The name of the constuctor*) 

(*The theorem defining the constant*) 

(*The name of the constuctor*) 

(*The theorem defining the constant*) 

(*The theorem giving the type*) 

The theorem for the type of the constructor is an option type that can return either 

the value NONE indicating there is no type stored or return SOME t where t is the the­

orem required. This is to allow the function define_datatype to fail gracefully if, for 

any reason, it cannot prove the typing rule for the constructor. For constructors the 

automatic tools should always prove the type theorem but this is adopted as a design 

decision for all stored theorems. Future chapters will extend the range of theorems that 

will be stored and some of these may not be able to be proved automatically. A set of 

functions is provided which, given the name of a constant, look up that constant in the 

state and return the corresponding record. 

6.2.2 Expression definition 

The tool for expression definition takes the specification of an expression and defines 

the new logical constant. It also produces theorems about evaluation and typing. The 

function map used can be introduced in this way. The definition of map is given in 

figure 6.2. 
The theorems produced by this are the theorem storing the definition of map and 

the evaluation and typing theorems in figure 6.3. The evaluation theorem is just one 

unwinding of the recursive function. The theorems produced by the definition are stored 

in the system's state and can be accessed in a similar way to the information about type 

definitions. 
The type of the record storing this information is: 

type Expinfo • {Def :thm. 
Eval:thm option, 
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map = ree mapI : ('Va {3. (a -. (3) -. List a -. List (3) 

Aa. A{3. 

AI: a -- {3. A x : list a. 

case x of 

nil t-+ nil{3 I 
cons t-+ (A hd : a. A tl : List a. 

(consfj (f hd) (map/a fj 1 tl))) 

Figure 6.2: The definition of map 

I- 'Va {3. mapa fj -* .x 1 : a -. {3. A x : List a. 

case x of 

nil t-+ nil{3 

cons t-+ (A hd : a . .x tl : List a. 

(cons{3 (I hd) (mapa (3 1 tl))) 

I- 'Va {3. maPa {3 : «a -- (3) -. list a -. list (3) 

Figure 6.3: The reduction and typing theorems for map 

Name:string. 

Ty:thm option} 

6.3 Automating type inference and reduction 

80 

The tools for type inference and reduction are similar and this section concentrates on 

a description of the type inference tools. As an example typing the application of the 

identity function to a number is discussed. The expression (Act . .xx : a. x)Num 1 has type 

Num. This can be proved by the following sequence of inferences. 

[x t-+ a) I- x : a 

I- .xx : a. x : a -. a 

I- Aa . .xx : a. x : 'Va.a -. a 
I- 1 : Num 

I- (Aa . .xx : a. x)Num : Num - Num 

I- (Aa. AX : a. x)Num 1 : Num 

Type inference is done by recursively decomposing the expression, calculating the type 

of the expressions at the leaves of the tree and using these to derive the type of the initial 

expression. The types of constants are found by looking up the type in the global state. 
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The algorithm for doing this is much simpler than type inference in languages such as 

Haskel and ML. This is because SOT is explicitly typed and no unification is necessary 

to determine the type of expressions. 

While a conventional implementation would simply return the type of the expression, 

the tool devised here returns a derivation tree that can be used to reconstruct the proof 

in HOL. The type of the result of type inference is defined in terms of 

datatype 'a Result • Node of 'a * 'a Result list; 

This type is used for the result of both the typing and reduction tools. For type inference 

the result type is 

«string. ty) list * exp * ty) Result 

The three elements in the type correspond to the context, expression and type in the 

typing judgement. This encodes the derivation tree corresponding to the inferences 

shown in the diagram above. The tree can then be traversed from the nodes to the root, 

building a forward proof about the type of a term using the rules in figure 5.7. 

The tools for reducing a term are similar. For single step reduction, the expression 

is broken down and the proof built up according to dynamic semantics given in the 

previous chapter. 
For the many step reduction there are different strategies possible. The simplest 

would be to apply the tools for single step reduction repeatedly until they failed. This 

is inefficient since it involves repeatedly traversing the expression. Instead a new set 

of rules is proved and used to gain a more efficient proof. These rules are designed to 

resemble a big step semantics. For example, the rule for function application is 

el _. (>.y : a. e) (e[e2/yJ) _. c 

(el e2) --+. C 

The advantage of using many step reduction, --+., instead of reduction to a value, .\j., 

is that if any part of the term cannot be reduced then the rule 

e-*e 

can always be invoked to terminate the proof of some reduction property. This may not 

be reduction to a normal form but will allow the term to be reduced as far as possible. 

Later in this section the use of HOL variables as meta variables and how the reducer can 

reason about these is considered. 

Two choices to be made when developing the tools are how to handle substitution 

and how to deal with variables. 
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6.3.1 Substitution 

There are a number of different options for handling substitution when reducing and 

type checking expressions. The current system expands out all substitutions as they 

arise. This is the simplest approach, but is inefficient for a number of reasons . 

• Evaluation of expressions before substitution can simplify the expression and re­

duce the number of substitutions. 

• Syntactic checks can remove substitutions. If an expression contains no free vari­

ables then any substitution will leave the expression unchanged and so the substi­

tution need not be applied. 

An alternative method would be to only evaluate the substitution function when neces­

sary. This approach could lead to a more efficient system and could form the basis for 

further work 

6.3.2 Variables 

While the mechanism for dealing with HOL constants in SDT expressions is straightfor­

ward, HOL variables raise a more complex problem. This problem arises because instead 

of always reasoning about fully expanded SDT expressions, we often reason about ex­

pressiOns contain a HOL variable representing as arbitrary expression. When the proof 

tools encounter such a variable they should attempt to deduce as much as possible auto­

matically but should raise appropriate proof obligations or fail sensibly if they cannot. 

The need to fail with a sensible result is important. Such failures may indicate an error 

in the program and a sensible error message or a proof obligation that cannot be proved 

can help find the error. 

A goal of the form 

a: Nurn 

where the theorem a = nurn 2 occurs on the assumption list could be solved by first 

rewriting with the assumption and then calling the type-checker. This is not satisfactory 

because goals such as this should be solved automatically and rewriting unnecessarily 

with the assumption list could complicate the goal. 

The solution adopted is to write conversions [GM93] that take a list of terms rep­

resenting known facts about the variables of the current term as an argument. These 

conversions have the type [term] -> term -> thm. The theorem produced will have 

the form 
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where All A2, ... , An are the assumptions made to prove el = e2. These assumptions 

can then be discharged from the assumption list or turned into new proof obligations 

by tactics provided to handle these assumptions. In normal use the assumptions of the 

theorem made will be a subset of the assumption list and can be discharged automat­

ically. If the evaluator or type checker is unable to prove some theorem, this may also 

be added to the assumptions of the theorem and eventually be turned into a new proof 

goal by the tactic applying the conversion. This goal may not be able to be proved and 

hence indicate an error in the proof attempt. 

As an example of the use of these conversions, suppose we wished to prove the goal 

(f x) : {3 

under the assumptions 

I- /:0-+8 

I- x: 0 

The assumptions are essential because they are the only source of the information that 

the type of x is o. If TYPE_CONV is the function written to call the type checker and it is 

called with the arguments [I: 0 -+ {3, x: 0] and applied to (f x) : {3 it will return 

1 : 0 -+ {3, x: 0 I- (f x) : {3 = T 

The type checking will have occurred by looking up the type of 1 and x from the 

assumptions. 
This tool cannot make use of arbitrary facts from the assumption list. In the current 

system only theorems about the definition of expressions, equality of expressions, evalu­

ation of expressions and the type of closed expressions will be used. This allows a large 

class of problems to be simplified automatically while not generating too large a proof 

search. Tactics are provided to search the assumption list for suitable assumptions, call 

the conversions, and discharge the assumptions. 

The tactics and conversions also take a list of statements that may be supplied by 

the user. These will be searched as if they were in the assumption list and, if used, will 

give rise to new subgoals. These goals would then need to be proved separately. This 

can be useful if the user knows that a fact is easily proved and believes that it will be 

useful in an automatic proof but it will not be proved automatically. 

Support for variables in terms that are to be reduced instead of type checked is 

similar. For a variable x, assumptions of the form x -- e, x ---- e and x = e will be 

used in the proof about the reduction of a term. 

The collection of techniques used to deal with variables and constants allows auto­

matic reduction of a term as far as possible using information about the constants and 
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variables in the assumption list. In contrast to the mechanisms for pushing through 

reduction as far as possible it is sometimes desirable to reduce the number of reduction 

steps. In particular, it may only be necessary to reduce a term by expanding a few vari­

ables and constants. The reducer can be supplied with a list of constants and variables 

and will only expand the variables or constants in that list. 

6.4 Related work 

The use of an SML interpreter, the Kit Compiler IBRTT93], with HOL-ML IVG93] to 

perform a similar task was investigated in [CoI94] and summarised in [CG94]. This work 

did not deal with the symbolic evaluation of expressions. The symbolic evaluation of 

programs that are partially made up of HOL variables was investigated by Camilleri and 

ZammitlCZ94] . 
Richard Boulton's Claret system IBou97, Bou98j can automatically generate many 

similar tools to those in this chapter. Claret takes a specification of the syntax and 

a specification of the semantics in a denotational style and returns the syntax of the 

language both as ML types and types in the HOL logic along with pretty printers and 

parsers. The specification of the denotational semantics is used to generate rules in the 

logic and to generate tools for mechanizing those rules. While the Claret tools could 

have been used to automate some of the work discussed here if they had been available 

at the time, the style of semantics used is incompatible with that used here. 

Donald Syme has developed a theorem proving environment, Declare, which is de­

signed for reasoning about operational semantics !Sym97, Sym98j. Declare uses a declar­

ative style of theorem proving. Many of the results and tools in this chapter may be 

able to be reproduced more easily using Declare as it contains automation specific to 

the task of reasoning about semantics relations similar to those here. Declare was not 

available when the work described here was carried out. 



Chapter 7 

Equivalence 

The previous chapters have defined the semantics of SDT and tools for reasoning about 

the semantics. This chapter considers what it means for two programs to be equal. 

As the main relations are defined co-inductively this chapter begins by formalising co­

inductive relations and the labelled transition system which, together with typing and 

reduction, form the components used in the definition of equivalence. The chapter 

concludes with the proofs that the relation introduced satisfies the required properties 

of equivalence. The proofs of some of these properties involve some long and complex 

theory development and proofs. These are necessary to prove that equivalence is a 

congruence but are not used in later chapters. 

7.1 Co-induction 

Chapter 2 introduced co-induction with familiar but informal set notation. While the 

notation suggests a representation of relations 88 sets of pairs, we choose instead to 

represent a binary relation 88 a function from two arguments to a boolean. Thus a 

relation R between two expressions will have type 

R : exp --+ exp --+ bool 

and the membership for the relationship, (x, y) E R is written R x y. In a later section 

we shoW how this theory can be reworked for unary relations and how it could be 

generalised. This theory will be used to define equivalence from the labelled transition 

system. Subset and union for relations expressed 88 functions can be defined as follows: 

Definition 7.1 If Rand S are binary relations, represented as junctions, the subset, 

C and union, U, are defined to be: -, 

R ~ S = "Ix y. R x y ~ S x Y 
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R U S = "Ix y. R x y Y S x Y 

The usual theorems about subset and union can be easily proved. Some examples are 

given in the following theorem. 

Theorem 7.2 

Tlx y. x C Y /\ Y ~ x :J (x = y) 

Tlx y. x ~ (x U y) 

"Ix y. y ~ (x U y) 

"Ix y z. x ~ z " y ~ z :::> (x U y) ~ z 

"Ix y. y ~ x :::> (x U y = x) 

Proof. All the results follow directly from the definitions and some simplification. 

The important definitions for the development of the theory for co-induction are 

Definition 7.3 We define what it means lor I from binary relations to binary relations 

to be monotonic by 

Monotone I = "Ix y. x ~ y :::> I x S; I y 

Definition 7.4 II I is a function from binary relations to binary relations and x is a 

binary relation then we define what it means lor x to be I -Dense by 

Dense 1 x = x ~ (I x) 

Definition 7.5 II I is a function from binary relations to binary relations then gfp I 
is defined to be the function 

gfp 1 = ).a b. 3x. Dense I x " x a b 

This definition does not define gfp I to be the greatest fix point of I but instead provides 

a way of constructing the greatest fix point. The following results show that this is the 

greatest fix point. 

If 1 is a function from binary relations to binary relations then gfp I contains any 

relation which is I-dense. 

Theorem 7.6 

'V I. Dense I x :::> x ~ gfp I 
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Proof. Follows easily from the definitions of gfp and Dense. 

The greatest fixpoint is itself an I-dense relation 

Theorem 7.7 

"'I. Monotone I ::> Dense I (gfp f) 
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Proof. Follows from the definitions of Monotone, Dense and gfp, along with theorem 7.6. 

Theorems 7.6 and 7.7 show that the greatest fixpoint is the largest I-dense relation 

associated with a monotonic function I· It is also a fix point 

Theorem 7.8 

'V I. Monotone I ::> (gfp I = I (gfp f)) 

Proof. Follows from theorem 7.6 and theorem 7.7 and the definitions of the constants. 

The priniciple of co-induction can now be stated and proved. 

Theorem 7.9 (Co-induction) 

'VI. (Monotone I /I. Dense I x )::> x ~ (gfp f) 

Proof. Follows immediately from theorems 7.7 and 7.6. 

This theorem will be used in defining a new relation, R say, as the greatest fixpoint of 

some monotonic function I· With these assumptions theorem 7.9 simplifies to: 

"'I. Dense I x ::> x ~ R 

To shoW that some pair of values a and b are related by R (R a b) we only need to find 

a relation S such that 

Sab (7.1) 

and 

Dense I S (7.2) 

From equation 7.2 and theorem 7.9 we get that S ~ R and so from the definition of 

subset we get 

Sab ~ Rab 

A stronger version of theorem 7.9 can also be derived. 



CHAPTER~ EQUIVALENCE 88 

Theorem 7.10 (Strong co-induction) 

r- 'If. Monotone I ::> (x ~ (f (x U (gfp f)) ::> x ~ (gfp f) 

Proof. Follows from the definitions and basic properties of the constants. 

All the above results are for binary relations. An identical theory can be developed for 

relations taking any number of arguments. In chapter 9 a theory of co-induction for 

unary functions (predicate sets) is used. The same theory can be proved for a set of 

definitions in this form. For example, the definition of subset and union would be: 

Definition 7.11 Sunset and union lor unary predicates. 

x ~ y = Va. x a ::> y a 

x U Y = Aa. x a V y a 

These definitions are identical to those in the HOL predicate sets library. The proofs of 

the theorems corresponding to theorems 7.1 to 7.5 are a simple adaptation of the proofs 

of these theorems. It would be possible to generate these theorems automatically for 

predicates with any number of arguments to get a package with the same functionality 

as John Harrison's induction package [Har95]. 

7.2 Labelled transition system 

The labelled transition system is used to represent the observable properties of terms. 

If an expression evaluates to a number or to a datatype constructor with no arguments 

then we can observe the value of the number or constructor. If an expression evaluates 

to a constructor for a datatype with one or more arguments then we can make further 

observations of each argument. If an expression does not evaluate to a literal then it 

must be either a type abstraction, a function abstraction or an undefined expression. If 

the expression is undefined then we can never make an observation about the expression 

while if it is an abstraction we can apply it to an arbitrary term of the right type and 

then make observations. This process must eventually lead to the observation of literals 

or constructors or to undefined expressions. The possible observations will give rise to a 

tree of possibly infinite depth, with the observation of numbers and nullary constructors 

at the leaf nodes. 
The labelled transition system is introduced in two stages, the definition of the labels 

and the definition of the transitions relation. 
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label .. - numl num 

appl exp 

Appl exp 

destl string ty num 

Figure 7.1: Labels for labelled transition system. 

7.2.1 Labels 

89 

The labels for the transition system are introduced as a new type in HOL using the 

recursive type definition package [MeI89]. The syntax is given in figure 7.1. In some 

settings, such as CCS [Mil89], these labels are known as actions. 

The argument of the numl label is simply the value observed. The arguments to the 

appl and Appl labels are the terms to which the abstraction is applied. The arguments 

to the destructor label destl are the name of the constructor, the datatype which it is a 

constructor for and the argument being observed. For a constructor with no arguments 

the only possible observation will have this number being O. For a constructor with n 

arguments there will be n observations with numbers 1 to n. The possible observations 

for each expression are formalised by the transition relation. 

As with all syntactic types introduced, a series of characterising theorems can be 

derived. The important facts about the labels are that they are distinct and their 

constructors are one to one. 

7.2.2 Transition relation 

The labelled transition system is introduced as a relation 

l TS : exp - exp - label - bool 

where label is the type of labels. l TS el e2 a means that under the rules for l TS the 

expression el can make a transition to e2 with label a. In the rest of this thesis this will 

be represented by the notation 

The rules are given in figure 7.2. The expression 0 is a non-terminating, or bottom, 

element of type Num. This type is unimportant, as the only purpose of 0 is to give an 

element of which no observations can made. 0 is defined as the function 

rec XNum x 
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numLn 0 nurn n ---+ 

I- a: Nurn 

I- con Co 0 : Data x ffi I- con Co [e} •• en] : Data x Tn 

[]
destcoOo 

con Co ---+ 

I 
e2 ---+ ea I- el : Data x m 

Figure 7.2: Rules for labelled transition system. 

The bottom element of any type can be generated by the function 

J. = Aa. rec Xo x 

so that 

Theorem 7.12 Rule induction for labelled transition system. 

VL. 
("In. L (nurn n) Zero (nurnL n))1\ 

(Vel e2 a /3. el : Q - /3 1\ e2: /3 :> L e} (el e2) (appL b)) 1\ 

(Vel Q /3 x. e} : (Vx./3) :> L el (el,B) (AppL /3)) 1\ 

(\leI e2 e3 Q. L e2 e3 Q 1\ el : Nurn 1\ el -- e2 :> L el e3 a) 1\ 
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(Vel e2 e3 x m a. L e2 e3 a 1\ el : Data x m 1\ el -- e2 :> LeI e3 a) 1\ 

(Vc Q. L (con Co [ ]) 0 (destL c a 0» 1\ 

(Vc 0 xs i. 0 < i 1\ i:S LENGTH xs :> 

L (con Co xs) (EL (PRE i) xs) (destL co i)) 

:> 
(Vel e2 Q. el ..!!.. Q :> L el e2 a) 

We can show by rule induction over the transition relation that if there is a transition 

from an expression el to an expression e2 then el and e2 are both well typed. 

Vel e2 1. el ~ e2 :> (30. el : 0) 

Vel e2 l. el ~ e2 :> (30. e2 : 0) 

In general el and e2 may not have the same type. 
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1.2.3 Passive and active types 

The labelled transition system makes a distinction between two classes of types. The 

observable behaviours of functions and type abstractions depend only on their types 

while the behaviours of all the other types depend on their values. Using the same 

tenninology as Gordon [Gor95a), these classes are referred to as passive and active types 

respectively. The active types are the only types where we are interested in observing 

the their value. For expressions of passive types we only make observations of the values 

created by applying them to other expressions. Two predicates over the syntax of the 

types, Passive and Active, are defined to test which class a type belongs to. 

Definition 7.13 Active a = (a = Num) V (3x m. a = Data x m) 

Definition 7.14 Passive a = (3/3 'Y. a = /3 - 'Y) V (3x /3. Q = 'Vx./3) 

This distinction is important in considering the behaviour of the relations defined from 

the equality to be defined over terms. The proof that two expressions are equivalent will 

involve applying passive types to types and expressions as appropriate until an active 

type is produced. The main work of the proof will involve considering the possible 

transitions of the expression of active types. 

This has important consequences for deciding the meaning of equality. If 1.0 is a 

non-terminating element of type a then it is necessary to decide if the expressions 

AX: Q. loa 

are equivalent. They clearly have different behaviour with respect to the given dynamic 

semantics. The first expression can make no reductions and evaluates to itself while 

the second can make an infinite series of reductions and hence evaluation will never 

terminate. With the choice of active and passive types given above these terms can both 

make the same transitions. Both can be applied to another expression and then can 

make no more transitions. This reftects the decision that it is not possible to observe 

the behaviour of a function without applying it to something. 

Other choices could have been made in defining active and passive types. The func­

tion type could have been made active by including the following two rules instead of 

the one given above 

t- (AX: Q. ell : Q - {3 f- b: a 
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then the expressions AX : Q • .la and .la ..... a would have different transition graphs. 

One useful property, which is true of active types but not passive types, is that 

reduction has no effect on the possible transitions. If an expression el reduces to e2 then 

el can make a particular transition if and only if e2 can make the same transition. 

Theorem 7.15 

'Vel e2 e3 l. (3a. el : a /\ Active a) /\ el -- e2 ::) (el -.!... e3 = e2 -.!... e3) 

Proof. From the definition of active types, the rules for the labelled transition system 

and theorem 5.61. 

7.3 Equivalence relation 

This section considers the formal definition of the equivalence relation between expres­

sions in the language. The definition is guided by the intended co-induction property 

discussed earlier. For any two programs, X and y we should be able to prove their equiv­

alence by finding a relation S which contains the pair x and y and is a bisimulation. 

That is, it has the property that for any (a, b) E S 

('Va'. 'VI. a ..J.... a'::) (3b'. b ..J.... b' /\ (a', b') E S V a' == b'» /\ 

('Vb'.'Vl.b...!.....b'::> (3a'.a-.!...a' /\ (a',b') E S V a'==b'» 

This is the usual property given in other treatments of the theory. But because we 

do not have a type of well-typed expressions it is necessary to either introduce this type 

or to define the behaviour of equivalence for terms that are not well-typed. As in the rest 

of this work we choose not to introduce a new type and instead modify the equivalence 

relation to deal with this issue. 
Given that only the equivalence of well-typed terms is of interest the choice of how 

to handle terms that are not well-typed is not crucial. If every theorem involving the 

equivalence relation also includes the assumptions that all expressions involved are well­

typed, then the issue will not arise in practice. But in order to simplify theorems we 

would prefer that such side conditions were not always necessary. Thus some consider­

ation must be given to the various possible interpretations of the equality function for 

non well-typed expressions. There are three main possibilities. 

• Consider all terms which are not well typed to be equal. This could thought of as 

modelling some universal error value. 

• Define equivalence such that terms that are not well typed are equal to themselves 

and not to any other. 
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• Define equivalence such that terms that are not well typed are not equivalent to 

any term, including themselves. 

For pragmatic reasons the third possibility is chosen. This means any theorem of the 

form 

carries more meaning than the other two possibilities. With the approach here the 

theorem states the equivalence of two terms and the fact that they are well typed. 

The other approaches would require a proof that the terms were well typed before any 

information about the structure or semantics of the terms could be deduced. 

This approach distils the disadvantage of not creating a new type of well-typed 

expressions into one weakness. The equivalence relation will not be able to be proved 

to be reflexive without an assumption that the expression is well typed. That is, the 

statement 

"Ie. e == e 

is false while the statement 

"Ie. (30. e : 0) ::) e == e 

is true. 
In practice most of the assumptions of the form e : 0 will already have been proved or 

be easy to prove. The interaction of the need to prove this assumption and the automatic 

proof tools designed for the system is discussed in the next chapter. 

To capture the effect on untyped terms in the definition of equivalence we change 

the meaning of a bisimulation to 

Vel el. (el,e2) E S ::) (7.3) 

(30. el : 0 /\ e2: 0)/\ 
I ( I (Ve3' Vl. el --+ e3::) 3e4. e2 --+ e4 /\ (e3,e4) E S V e3 == e4)) 1\ 

(Ve4' Vl. e2 ...i... e4 ::) (3e3. el ...i... e3 1\ (e3, e4) E S V e3 == e4)) 

This property could be derived by defining the equivalence relation, ==, as the 

greatest fixpoint of a function, F, with the property 

"IS el e2. (F S) el e2 = (7.4) 

(30. el : 0 " e2 : 0) /\ 

(Ve3 I. el -..!..... ea ::) (3e4' e2 .J..... e4 " S es e4)) /\ 
I I 

(Ve4 l. e2 --+ e4 ::) (3e3. el --+ es 1\ S es e4)) 
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The property given in equation 7.3 is the property required for a proof using strong co­

induction (theorem 7.10) with this de6nition of ==. Instead of following this approach, 

all the definitions are made in terms of simulation. This will allow the simplification of 

the definitions and proofs by exploiting the symmetry of the definition of bisimulation. 

The property of a simulation relation will be 

Vel e2. (el' e2) E S :::> 

(30. el : 0 /\ e2 : 0)/\ 
I I 

(Ve3. Vl. el -- e3:::> (3e4' e2 -- e4 /\ (e3, e4) E S)) 

(7.5) 

An equivalence relation, ==, with the required properties will be defined in terms of the 

this relation. 

1.S.1 Simulation 

Simulation is defined in terms of the function FSIM with property 

Deftnition 7.16 

(FSIM 8) et e2 = 
(3a. et : 0 /\ E2: 0)/\ 

(Ve3. VI. et ...!... e3:::> (3e4. e2 ...!... e4 1\ S es e4 » 
This function is a monotone function. 

Theorem 7.17 

Monotone FSIM 

proof. By the definition of Monotone and simplification. 

Simulation is defined as the greatest fixpoint of FSIM. 

Deftnition 7.18 

SIM = gfp FSIM 

A principle of coinduction follows from theorem 7.9. 

Theorem 7.19 

\Ix y. (38. Dense FSIM 8 1\ S x y) :> SIM x 11 
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If the definitions of Dense and FSIM are expanded out, then this theorem simplifies to 

V'x y. 

(3S. 

('lei e2· 

S el e2 ::> 
(30. el : 0 1\ e2 : 0) 1\ 

(V'e3. V'l. el ....L e3::> (3e4' e2 ....L e4 1\ S e3 e4 ))) 

1\ S x y) 

::> 

SIM xy 

This theorem can be used to prove other properties of the simulation function. First, it 

is reflexive for well typed programs and transitive for all programs. 

Theorem 7.20 

'Ix a. x : a ::> SIM x x 

'Ix y z. SIM x y 1\ SIM y z ::> SIM x z 

Proof. For reflexivity the proof is a simple coinductive proof using the relation S R 

where 

SR x Y = (30. x : a) 1\ (x = y) 

For transitivity the proof is again by coinduction using the relation ST where 

ST X Z = 3y. SIM x y 1\ SIM y z 

7.3.2 Bisimulation 

Bisimulation can now be defined in terms of simulation. The function op that reverses 

the order of elements in a relation given as 

Definition 7.21 

(op S) T Y = S Y T 

The definiton of the function on which bisimulation is based is 

Definition 7.22 

F== S x y = (FSIM S X y) 1\ (op (FSIM (op S» x y) 
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This is a monotone function and h88 the same property 88 the function described in 

equation 7.4. 

'VS el e2· (F S) el e2 = 
(30. el : 0 1\ C2 : 0) 1\ 

I I 
('Vea l. Cl ---+ C3 ::> (3C4. C2 ---+ e4 1\ S C3 C4» 1\ 

I I 
('Ve4 l. C2 ---+ e4 :::> (3e3. e} ---+ e3 1\ S Ca e4» 

The equivalence relation between expressions that is central to this work can now be 

defined as follows 

Definition 7.23 

The principles of co-induction and strong co-induction follow easily from the definiton 

and theorems 7.9 and 7.10. 

Theorem 1.24 (A co-induction principle for ==) If there is a relation S such that 

S x y and for any a, b for which S a b 

('Va'. 'Va. a ~ a':::> (311. b ~ II " S a' II» " 

('Vb'. 'Vo. b ~ II :::> (3a'. a ~ a' " S a' b'» 

then x == y. 

Theorem 1.25 (A strong co-induction principle for ==) If there is a relation S 

such that S x y and for any a, b for which S a b 

('Va'. 'Va:. a ~ a':::> (3b'. b ~ b' 1\ Sa' b' V a' == b'» 1\ 

('Vb'. 'Va. b ~ II :::> (3a'. a ~ a' " Sa' b' V a' == II» 

then x == y. 

This relation is an equivalence relation. 

Theorem 7.26 

'Vx a. x : a ::> x == x 

'Vx y. x == y::> Y == x 

'Vx Y z. x == Y 1\ Y == z ::> x == z 
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Proof. The proofs of the three theorems are by co-induction using the relation SR, S8 

and ST respectively: 

SR x y = (30. x: 0) " (x=y) 

S5 x y = op --
ST x Z = 3y. x == y " y==z 

Many other properties can be proved for the relation. The first that is investigated is 

the proof that the relation is a congruence. 

7.4 Congruence 

This section presents the proof that the equivalence relation, ==, is a congruence. This 

will form the basis of the equational reasoning system developed in the next section. The 

congruence rules are not proved directly but are derived from a more general theorem 

depending on a concept of contexts, closing substitutions for these contexts (closures), 

and the properties of extensions of a relation between closed terms to a relation between 

open terms (open extensiOns) in conjunction with closures of the terms. 

The proof, using Howe's Method [How89J, works by proving properties of an open 

extension of ==. The proof of congruence is long and involves the introduction of an 

additional inductively defined relation that is easily proved to be a congruence, and then 

proving that the two relations are equal. The mechanised proof mirrors very closely a 

proof on paper [Gor95aJ. 

A special case of the result will be that for an expression C with one free variable x, 

any two substitutions 81 and 82 with the property that 

give 

The congruence rules are then obtained by specialising the context C. 

For the rest of this section we discuss simulation instead of bisimulation, as the results 

for simulation are simpler and the bisimulation results follow easily. 

7.4.1 Compatible refinement 

The concept of congruence is formalised using a new relation, Compref, called the com­

patible refinement of a relation. The rules defining Compref R for some relation R 

between expressions are given in figure 7.3. A relation is a precongruence if it contains 
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Compref R r a(var e)(var e) 

Compref R r Num (num n) (num n) 

Compref R r Num el e2 Compref R r Num II 12 
Compref R r Num (nop n el e2) (nop nil 12) 

Compref R r Num el e2 Compref R r Num 11 12 
Compref R r Bool (bop n el e2) (bop n il h) 

R r (a -+ (J) edl R r a e212 
Compref R r {3 (el e2)(ft 12) 

R (r[x t-+ oJ) {3 el e2 
Compref R r ('y -+ {3) {.\x: a. ell (Ax: a. e2) "Y 

=0 a 

R r a el e2 V 
Compref R r "y (Ax. etl(Ax. e2) "y =0' x.a 

R (r[x t-+ aDa el e2 {3 =0 a 
Compref R r {J (ree XQ et}{rec Xo e2) 

FDom m C 
all3 (R f) (Map (AY, y[Data:r mix!) ts) eSI eS2 _ 

)( ts = m C 
Compref R r {J (con Co eSI con Co eS2) 

R r (Data x d) el e2 

FOom c'i S = FOom C2 s 

"Is. FOom ci s ::> 

FOom d s 1\ 

{J =0' (Data x m) 

R r (makefun a (Map (Ay. y[Data x d/x)) (d 8» (ci 8) (C2 8» 

Figure 7.3: The definition of compatible refinement 
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its own compatible refinement and a congruence if it is also an equivalence relation. 

Compref is easily proved to be a monotone function. 

7.4.2 Open extensions 

An open extension of a relation is a relation which takes the same argument as the 

original along with closures of those arguments. 

Definition 7.27 For any relation R the open extension Open R is defined by 

The useful properties of this definition include the reflexivity of the open extension of 

simulation. 

Theorem 7.28 

vr e a. r ~ e : ~ Open SIM rae e 

Proof. Using definiton 7.27 this simplifies to the goal 

with the assumptions Closure r 8 and r ~ e :. These assumptions and theorem 5.56 give 

[xl. : a 

The result follows from theorem 7.20. 

The open extension of simulation does not distinguish between alpha-equivalent types. 

Theorem 7.29 

VI' Q {3 el e2. Q ==0 {3 ~ Open SIM r Q el e2 = Open SIM r {3 el e2 

Proof. From the definition of open (definition 7.27) and the theorem relating typing 

judgements with alpha-equivalent types (theorem 5.51). 

7.4.3 Precongruence and congruence 

Instead of directly proving that simulation is a precongruence, a new relation which can 

be easily proved to be a precongruence is introduced. The fact that simulation is a 

precongruence will be proved by showing that the open extension of simulation is equal 

to this new relation. This relation, which will be referred to as the candidate relation, 

is defined as follows: 
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Definition 7.30 

Compref Cand r a el e2 Open SIM r a e2 ea 
Cand r a el ea 
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This relation and the structure of the proof that it is equal to the open extension of 

simulation is very close in form to the presentation in Gordon's report (Gor95aJ. A 

range of simple properties can again be proved including reflexivity results. 

Theorem 7.31 

'tfI' e a. r r- e : a ::> Cand rae e 

Proof. By rule induction over the typing judgement. Each case follows from defini­

tion 7.30, the reflexivity of open simulation (theorem 7.28), the definition of compatible 

refinement (figure 7.3), and the typing rules. 

Theorem 7.52 

'VI' e a. r r e : a ::> Compref Cand rae e 

Proof. By rule induction over the typing judgement. Each case follows easily the rules 

for compatible refinement (figure 7.3) and from theorem 7.31. 

From the definition it is easy to prove that the relation, Cand, is a precongruence. 

Theorem 7.53 

Proof. Follows immediately from the definition of Cand and the refiexivity of the open 

extension of simulation (theorem 7.28). 

The proof that the relation, Cand, and the open extension of simulation are equal is done 

by showing that both relations contain the other. The first direction is straightforward. 

Theorem 7.34 

Proof. For any r,a,el and e2 we have Open Sim r a el e2. This and definition 7.27 

give r r el : a. From this and theorem 7.32 we get Compref Cand r a el e2. The result 

follows from using the definition of Cando 

The proof in the other direction requires a number of lemmas expressing the relationship 

between the candidate relation and the open extension of simulation. 
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Lemma 7.35 

Proof. Follows from the definition of Cand and the transitivity of simulation and open 

extentensions. 

Cand is the smallest relation satifying theorems 7.33 and 7.35. 

Lemma 7.36 

'r/R. 
«VT 0 el e2. r r e2 : 0 ~ Compref R r 0 el e2 ~ R r 0 ele2)/\ 

(VT 0 e el e2. R roe e2 /\ Open SIM r 0 e2 el ~ R roe el)) 

~ 

(VT 0 el e2. Cand r 0 el e2 ~ R r 0 el e2) 

Proof. By rule induction using the induction theorem arising from the definition of 

Cando 

If two expressions are related by the candidate relation and two further expressions 

related by the candidate relation are substituted into these expressions, then the resulting 

expressions are also related by the candidate relation. 

Lemma 7.37 

VT 0 el e2. Cand r 0 el e2 :J 

(VTI x {3 II h· (r = (rIlx ~ (3])) :J 

Cand rl {3 It h ~ Cand rl 0 (el[lt/x]) (e2[h/x])) 

A related theorem states that if a substitution is made for all the free variables in the 

expressions related by the candidate relation, then the resulting expressions are related 

by the candidate relation with an empty context. 

Lemma 7.38 

VT 0 el e2. Cand r 0 el e2 ~ 

(Va. Closure r a ~ Cand FEmpty 0 [ell. [e2li) 

Proof. Both the results are proved by a rule induction over 

Cand r Q el e2 

then reasoning about the compatible refinement relation and substitution. 

The final collection of results needed relate to the relation S defined by 

S el e2 = (30. (and FEmpty 0 el e2) 

with the properties 
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Lemma 7.39 

Proof. By rule induction over the reduction relation. 

Lemma 7.40 

Vel e2 l.el ..l.... e2 :) (Ve3. S el e3 :) (3e4' e3..l....4 1\ S e2 e4» 

Proof. By rule induction over the transition relation and using lemma 7.40. 

It follows from this that the relation S is contained in the simulation relation 

Lemma 7.41 

Proof. By co-induction using lemma 7.40 to show that S is a simulation. 

Lemma 7.42 
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Proof. Follows immediately from the definition of open extension and lemma 7.41. 

Lemma 7.43 

Proof. Follows from the definition of Open and lemma 7.38. 

From these properties of Cand the following theorem can be proved. 

Theorem 7.44 

Open Sim = Cand 

Proof. From lemmas 7.42 and 7.43 we get the result 

and theorem 7.34 gives the result in the other direction. 

From this it follows that Open Sim is a precongruence since Cand is a precongruence 

(theorem 7.33). 
To relate the results for simulation to bisimulation it is necessary to show the relation-

ship between the open extension of simulation and the open extension of bisimulation. 
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Theorem 7.45 

'vT a el e2· 

(Open SIM f a el e2 " Open (op SIM)r a el e2) :> 

(Open (==»f a el e2 

Proof. Follows from the definitions of Open and op and the relationship between bisim­

ulation and simulation. 

Using this and the congruence of the open extension of simulation it is easy to prove 

that the open extension of bisimulation is also a congruence. 

Theorem 7.46 

'II' a el e2· 

f ~ e2 : a :> Compref (Open (==) r a el e2) :> (Open(==)r a el e2) 

To relate this theorem to the congruence rules for closed programs we need one further 

result. 

Theorem 7.47 

'leI e2. el == e2 = (3a. Open (==) FEmpty a el e2) 

Proof. The proof is straightforward using the definition of Open and the fact that the 

substitutions generated by expanding the definition of Open must be empty and hence 

have no effect of the terms. 

A set of congruence rules for expressions are easily proved from the last two theorems 

and the definition of compatible refinement. For example, the rule for application is: 

'leI e2 e3 e4 a {J. 

el : a - {J "e2: a " el == e3 " e2 

7.5 Properties of equivalence 

This section describes some useful and important results including the fact that equiv­

alence is preserved by reduction. This proof will make use of the following result about 

the possible transitions for active types. 

Theorem 7.48 

'Vel e2. el - e2 :> 
(3a. Active a" el : a) :> ('Ve3 l. el .J.... e3 = 

Proof. By rule induction over the reduction relation. 
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Theorem 7.49 

Vel e2. el -* e2 :J 

(30. Active a /\ el : a) :J (Ve3 l. el -1-. e3 = e2 -1-. e3) 

proof. By induction over the definition of many step reduction. 

The key theorem is 

Theorem 7.50 

Va b. a --+ b ::> a == b 

Proof. This is proved by c~induction using the bisimulation Aa b. a -- b and a case 

analysis over all possible transitions. If the type of a is active then the result follows 

easily from theorem 1.48. 

Results relating the transition relation with evaluation can also be proved. These 

are used in the proof of contextual equivalence and in the tools described in the next 

chapter. 

Theorem 7.51 

Vel e2 I. el -1.... e2 ::> (30. el : a /\ Active a::> el-U-) 

proof. By rule induction over the transition el -1-. e2. 

Although it has been proved that the defined equivalence relation, ==, is a congru­

ence it is not true that equivalence equals equality. The theorem 

Vel e2 : expo (el == e2) = (el = e2) 

does not hold. The two expressions 

(AX: a:.X)(Ax : a:.x) 

and 

AX: a.x 

are equivalent, since the first evaluates to the second, but are not equal, since the first 

is an application and the second is a lambda abstraction. 

In practise this does not present a problem, unless we are reasoning about a predicate 

over expressions that does not respect equivalence. This issue arises in chapter 9 and 

some solutions are discussed there. 

It would be possible to define a new type by taking the quotient of the expression type 

with the equivalence relation. This would effectively disallow the definition of predicates 

over the new type that do not respect equivalence. Instead we take the approach of 

restricting the predicates allowed in certain situations. 
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1.6 Contextual equivalence 

Contextual equivalence was introduced in section 3.3. The informal definition given 

there stated that two expressions are equal when substituted into a larger expression (the 

context) and the convergence behaviour of that larger expression is the same for both 

expressions. In formalising the definition there are number of considerations, particularly 

relating to the possible types of the context. In section 7.2.3 active and passive types 

were introduced. Equivalent expressions of active types will have the same evaluation 

behaviour while equivalent expressions of passive types may not. For this reason we 

restrict the definition of contextual equivalence to contexts of active type. A context is 

defined to be 

Definition 7.52 

Context x 0 e = (3p. Active p 1\ [x t-+ 0] I- e : P) 

As with the other results in this section we do not prove that applicative bisimulation and 

contextual equivalence coincide directly but instead prove the equivalence of simulation 

and contextual order. Contextual order can be defined as follows. 

Definition 7.53 

co el e2 = 30. et: 0 1\ e2: 0 A 

ftlx e. Context x 0 e :> «e[el/x» ~:> (e[e2/x» ~» 

The proof that contextual order includes simulation is relatively simple. 

Theorem 7.54 

\let e2. SIM el e2 :::> CO el e2 

Proof. For any context e we need to show that if SIM el e2 then 

Since simulation is a precongruence we know that SIM (e[et/x)) (e[e2/x)). Now, if 

(e[et/xJ) ~ then it reduces to normal form and can make a transition. From this we 

know that e[e2/x] makes the same transition and, from theorem 7.51, that (e[e2/x)) ~. 

It can also be proved that simulation includes contextual order. 

Theorem 7.55 
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proof. The result follows immediately from a proof that contextual order is a simulation. 

This proof uses a case analysis of all the possible transitions and properties of the 

transition and evaluation relations. In the following chapters only the co-inductively 

defined equivalence is used. It would be possible to develop other proofs using contextual 

equivalence but this is not investigated here. 

7.7 Related work 

All the theory in this section is based on Oordons work on operational theories for func­

tional programming language [Gor93b, Oor94, Gor93a, Gor95a, Gor95bJ. The general 

structure of the theory and the structure of many individual proofs follows this work 

closely. The main differences are the details of the language. 

Other approaches can be used for developing a co-inductively defined equivalence 

for a functional programming language without introducing a labelled transition sys­

tem. This can be done by defining equivalence in terms of a large step evaluation 

relation [00194, Pit97). Expressions are equivalent if they have the same termination 

behaviour and evaluate to terms that are equivalent. This approach has been used by 

Ambler and Crole (AC99) 88 a basis of a mechanised theory similar to that presented in 

this chapter. 
The small step semantics and labelled transition system was used here because it is 

finer grained and provides more information about the wayan expression is decomposed. 

This can be useful when reasoning about infinite structures and for finding errors in 

expression~ during a proof attempt. 



Chapter 8 

Supporting formal reasoning 

This chapter discusses various reasoning principles that can be developed from the theory 

of equivalence derived in the previous chapter. These are used to develop the tools that 

are necessary to make reasoning practical. 

The tools described in chapter 6 can automate the proofs of many facts about the 

evaluation and typing relations. Although this allows the automation of many of the 

trivial steps in a proof. the tools described are not sufficient to raise the level of inter­

action to a high level. The typing and evaluation conversions must still be applied by 

hand, as must the theorems we need about labelled transition systems. This section gives 

some examples of how the tools can be combined with commonly used meta-theorems 

to produce the higher level proof tools that give the desired level of interaction. This 

chapter then gives a series of examples of the use of the tools. 

8.1 Constants, equivalence and transitions 

Chapter 6 introduced ML programs that simplified the definition and use of SDT datatypes 

and functions. These tools stored theorems about the typing and reduction for the new 

constants introduced. In the last chapter the transition system and equivalence relation 

were added. The tools can be extended to store results about these for the introduced 

constants. 
The data stored for constructors is updated with two new fields. One stores a theorem 

stating the possible transitions for a given constructor and the other stores a congruence 

rule. The expanded record is: 

type Coninfo • { Name:string, 

Def : tbJD , 

Ty: tbJD option, 

(.The name of the constuctor.) 

(.The definition of the constructor.) 

(.The theorem giving the type.) 

107 
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Lts:tba option, (*'l'he theor_ giving the transitions.) 

Cong:tba option (*The congruence rule.) 

} 

For lists the new theorems for the possible transitions would be: 

"Ie a I. Ni1a ~ e = (e = Zero) "(l = destL Nil (list a) 0) 

I 
"Ie el e2 I a. ConSa el e2 -- e = 

(e = e.) " (I = destl Cons (list a) 1) V 

(e = e2) " (I = destL Cons (list a) 2) 

The congruence rule for Cons is 

"Ix 1/ xs 1/S a. 

x : a " xs: List a " x == 1/ " xs == "s :::> COOSa x X8 == Consa " 1/S 

The data stored for a datatype is updated by adding one new field. This stores the 

possible transitions that any expression of that type can make. This is simply the sum 

of the possible transitions for the constructors of the type. 

The definition and reduction rules for map given earlier differ from the normal rules 

that would be used to define map. The use of the case split would normally be replaced 

by pattern matching. The rules would be 

maPa / [I == 0 
maPa / (COMo x xs) == COOSa (/ x) (maPa / xs) 

for correctly typed arguments. These rules can be easily proved from the definition of 

map. The next section introduces tools for rewriting with equivalence and it is useful 

to have the rules representing these pseudo-definitions stored to be used for rewriting. 

A new field is added to the functions record to store this information although at the 

time of definition no theorem is stored. These can be added later if they are proved. In 

principle an automated tool could be added to take a specification in this more natural 

form, work out the necessary underlying function and then prove these rules. This could 

form the basis of future work. 

8.2 Equational reasoning 

This section introduces the equational reasoning system that is based on the congruence 

results in the previous chapter. The rewriter simply takes a list of equivalences and 

an expression and traverses the expression substituting terms from the list where they 

match sub-expressions. 
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The rewriter is based on the fact that the relation == is a congruence. An ML 

function is defined to prove the appropriate congruence results when needed. Such a 

function is called a conversion. The type of a conversion is cony which is equal to the 

type term -> thm. A conversion takes a term t and returns a theorem of the form 

I- t = t'. Thus a conversion proves the equality of a term to some other term and 

returns a theorem stating this equality. Following Paulson, conversions are used as the 

basis for implementing rewriting [Pau83]. 

The function used here to prove congruence results, cong_CONV:tbm -> conY, is a 

slight variation on this general pattern. It takes a theorem of the form ~ el == e2 and 

returns a conversion that proves that any expression e is equivalent to the expression 

formed by replacing all occurrences of el in e by e2. If the new expression is denoted 

bye' then the theorem returned is of the form e == e'. Note that it does not return 

e = e'. 
This conversion can then be used as a basis for a tactic 

EQUIV_REWRlTE_TAC : thm list -> tactic 

which takes a list of theorems of the form el == e2. The tactic reduces a goal of the 

form e == e' by rewriting all sub-terms of this goal matching the left hand sides of 

one of the list of theorems to the right hand side. A variation on this is the tactic 

ASM~UIV ...REWRITE_TAC : thm list -> tactic which also rewrites with any assump­

tions of the form el == e2· 

Type checking may be required to complete the rewriting process, since the reflexive 

property and congruence rules must be used and these contain typing judgements as side 

conditions. The rewriting conversions will use the type checker to automate these proofs 

where possible. If any of these proofs fail then the side condition will be turned into an 

assumption of the resulting theorem in a similar way to the treatment of variables in 

chapter 6. 

8.3 Variables 

The type-checker and reducer introduced in chapter 6 contain support for handling logi­

cal variables in the expressions they are applied to. This section discusses the extension 

of these tools to also make use of facts about the equivalence of expressions. 

For type checking there are several additional types of assumption which are useful 

for deciding the type of an expression. These can be searched efficiently for additional 

information. The new assumptions that are handled include statements of the form 

x == e where x is a variable. If the type checker is applied to an expression containing 
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the variable x then it will try to type check e and use that result in the proof. This is 

often preferable to rewriting the goal to replace x with e. If e is a large term then such 

a rewrite may increase the size of the goal considerably, particularly if x appears more 

than once. 
This approach could be extended to include a wider variety of statements, such 8B 

an equivalence consisting of a term other than a variable on the left hand side. This 

would require more to find a proof automatically. In most cases, adding a new term to 

the list of facts used by the tools can be used instead and the resulting subgoal proved. 

The same extensions cannot be made to the reducer. When trying to prove that a 

term el reduces to a term e2, the fact that e1 contains a variable x and x == e cannot 

be used in reducing el· The central problem is that, while the statement 

(8.1) 

is true, the statement 

is not in general 

8.4 Coinduction 

The tactics for co-induction and strong co-induction work by manipulating the goal, 

applying a theorem and then simplifying the resulting subgoals. The tactics take a 

relation S and manipulate the goal, such 8B stripping away some universal quantifiers 

and assumptions, so that it is in the form a == b suitable for the application of one 

of the principles of co-induction. The tactics then tidy up the resulting subgoals and 

attempt to solve any subgoals involving only type checking. For some simple cases they 

also prove that S a b. 

In general the work here will not try to determine what the bisimulation relation S 

is. One tactic GUESS_CO INDUCT _TAC will try the simplest relation. For an equivalence 

el == e2 this will be the relation containing pairs of the form (et. e2) generalised over 

any HOL variables in the expressions. Dennis [Den99] h8B investigated the use of proof 

planning to work out the bisimulation relations for functional programming languages. 

8.4.1 Labelled transition system 

There are a number of theorems about the labelled transition system that depend on 

the evaluation and typing relations. Rather than force the user to apply the evaluation 



CHAPTER 8. SUPPORTING FORMAL REASONING 111 

and type tactics explicitly, higher level tools are provided to apply the lower level tools 

automatically. 

For example, a tool to apply a result about the labelled transition system is the 

conversion that applies theorem 7.49. The theorem is 

'Vel e2. el ~. e2 :::> 

(30. Active 0/\ el : 0) :::> (\fe3 l. el --!..... e3 = e2 --!..... e3) 

The conversion LTS..REDUCE_CONV : term list -) conv takes a list of terms, typically 

derived from the assumption list as in chapter 6, and tries to prove the equation 

by evaluating elt then instantiating the theorem above to the appropriate terms and 

using the reduction theorem to remove the antecedent of the implication. The condition 

that the type is active is proved by using the type checker to decide the type of el or 

raising this as a separate proof obligation if that fails. A tactic, LTS..REDUCE_TAC, applies 

this conversion to any transitions in the goal. 

For exa.mple, the fUllction map was introduced earlier and the function iterate can be 

defined easily. The following equations specify the behaviour of these functions. 

maPa {3 ! Ni1a == Nil{3 

maPa {3 ! (Conso x xs) == Cons (f x) (map! xs) 

iteratea ! x == Conso x (iterate! (f x» 

The following statement can be proved by co-induction using the tools described here. 

\f!ax.!:a-a /\ x:a :::> 

iterateo ! (f x) == maPa a ! (iterateo f x) 

First the tactic GUESS_COINDUCT_TAC is applied. The relation that this tactic chooses to 

use is the one relating any expression a and b where 

a = iterateaf' (I' xl) 

b = mapa a f' (iterateo f' xl) 

for some !' and x'. The tactic also automatically proves that a and b have the correct 

type and that the left and right hand sides of the original goal are in the relation. It only 

remains to show that the relation is a bisimulation. There are two subgoals generated, 
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the first of which is 

a~a' ~ (311. b~V A 

«31 x. 

( a' = iteratea I (I x» A 

(b' = mapa a I (iterateal x»A 

I: 0 - oA 

x: o)V 

a' == V)) 

a = iteratea I' (/' x') 

b = maPa a I' (iteratea I' X') 

I': 0 - 0 

r:o 

112 

The second goal is similar and relates to matching any transitions for b with transitions 

for a. The proofs of the two goals are identical so only the first is considered here. If 

LTS..REJ)UCE-TAC is applied to the goal, then the expressions on the left hand side of the 

transition are reduced to give a new goal. 

Consa (I' x') (iteratea I' (I' (I' x'»)) ....!... a' :::> 

(3b'. Consa (/' x') (mapa a I' (iterate f' (I' x'»))....!... b' A 

«31 x. 

(a' = iteratea I (I x)) A 

(b' = maPa a I (iterateal X»A 

l:o-oA 

x: o)V 

a' == V») 

The next step in the proof is to analyse the possible values of the label and right hand 

sides of the transition. 

Thit; is done using a second conversion, LTS_CASE_CONV, or associated tactic, LTS_CASE_TAC, 

which performs a case analysis on the structure of an expression to determine the possible 

transitions. For the example above the transistion 

ConSa (I' x') (iteratea I' (1'(1' x'))) ....!... a' 

can be simplifed using the theorem about the possible transition for Cons that is stored 

in the global state. The theorem is 

I 
"'Ie el e2 l o. Consa el e2 -- e = 

(e = et) A (l = destl Cons (list 0) 1) V 

(e = e2) A (l = destl Cons (list 0) 2) 
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In the example this means that either 

a' = !' x' and 1 = destL Cons (list a) 1 

or 

a' = iteratea !' (f'(f' x'» and I = destL Cons (list a) 2 

The first case is solved by letting 11 = (f' x'), since (f' x') == (f' x') by reflexivity. 

The remaining case is solved by letting 11 = (mapa a I' «iteratea 1') (I' x'»). The 

result follows since the values for a' and b' are in the bisimulation. This is shown by 

proving that 

31 x. 

(a' = iteratea I (I x» " 
(11 = maPa a I (iterateQI x» A 

l:a--+aA 

x:a 

This can be done by choosing I' as the witness for I and I' x' as the witness for x. 

This proof is typical of examples where the programs are generating lists. In this 

case we do not have to reason about undefined lists. There are added complications 

when this simplification cannot be made and these are discussed in a later example. 

8.S Strictness of functions 

There are some programs that cannot be reduced sufficiently to allow case analysis 

of the possible transition and additional information must be derived before the tools 

described above can be applied. For example, suppose the map function is applied to 

some unknown list xs 

maPa {J I xs 

If xs is the empty list then the program will evaluate to Nil and if xs is a Cons then the 

program will evaluate to a Cons. But xs may be undefined, in which case we cannot 

evaluate the application of map. This is because map is strict in its second argument; if 

the second argument of an application of map cannot be evaluated then neither can the 

application of map. In many cases it is possible to make use of this strictness information 

in co-inductive proofs. 

Consider a goal of the form 

(mapa (3 I xs .J..... e) ::) P 
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Although %8 is a variable, this does give sufficient information about the reduction 

behaviour of xs to perform the case analysis described above. We can prove that if any 

program of list type makes a transition, then it must also evaluate to some value. So 

maPa {J f X8 can be evaluated and because map is strict in its second argument we know 

that xs evaluates. Inspection of the type of x will give the possible values of x and then 

LTS....REDUCE-CONV and LTS_CASE_COHV can be applied. 

8.5.1 Evaluation to normal forms and strictness 

The argument in the example above was phrased in terms of the strictness of map 

in its second argument. There are different ways to handle the propagation of such 

information. For example, a predicate Strict could be defined to test if any function is 

strict in an argument 

Strict f = (30 (3. f : a: - f3 A f 1.0 == l.{J) 

and a theory built up from this to allow reasoning about the strictness of functions. 

The approach taken here is not to reason directly about the strictness of functions 

but instead to reason about the evaluation behaviour of the functions. An alternative, 

equivalent definition of Strict would be that 

Strict f = (30 f3. f: a: - (3) A (Ve. (f e) ~:::> e~) 

although this is not used explicitly. The results about evaluation behaviour are defined 

when needed and not stored as theorems involving the constant Strict. 

The main results in this section relate to the mechanism for propagating the infor­

mation about the evaluation of an expression and its sub-expressions through a goal. 

For example, a common goal will be of the form 

F[e]~z 

G[e}.!!.... y 

where F and G are expressions containing the expression e as a sub-expression. If G is 

strict in e then we can make use of the assumption that G[e] makes transition and hence 

has a normal form to show that e must reduce to some value. Theorem 7.51 is used to 

get the initial evaluation result that forms the basis for the proof. This theorem states 

that 

'Vel e2 ,. el ..1..... e2 C (30. el : a: A Active a::::> el~) 

If we can propagate the fact that G[e1 has this evaluation behaviour in the above goal to 

a result about e, then we will be able to deduce the possible transitions for F[e]. Some 

results which show this propagation are: 
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Theorem 8.1 Propagation of normal form results into expressions. 

'in. num n.u. 

Vc es. case c es JJ.:::> c JJ. 

Vop a b. (nop op a b) JJ.:::> a JJ. 

Vop a b. (nop op a b) JJ.:::> b.IJ. 

From these theorems a series of conversions and tactics are built that can prove results 

about the propagation of evaluation information. In the above example these will prove 

that e .IJ. since Gle].IJ.. Since the type of x is known, and it is known that it reduces to 

normal form, all the possible values of x can be determined and a case split made on 

these values. This is discussed in more detail for a specific example in the next section. 

8.6 Application of the tools 

This section presents a series of small examples showing the different ways of using the 

tools to reason about the equivalence of expressions. 

8.6.1 map-compose 

This example involves the interaction of two functions, map and compose. The theorem 

we aim to prove is 

VI 9 x ttl t2' 

f : tl - t2 A 9: t - tl A x: List x :::> 

maPU2 (comJ)05e& tl t2 I g) x == maPtl t2 I (maPt h 9 x) 

The definition of map is given in figure 6.2 and the definition of compose is 

Definition 8.2 

A natural equational definition can be derived from this definition. An equational 

theorem for compose is 

(composet t1 t2 f g) x == I (g x) 

for all appropriately typed I, g, and x. 
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As with the map-iterate example, the proof is by strong co-induction, using a relation 

8 with definition 

Sab = 31 gx. 

(a = mapU2(comf>OSet '1 '2 I g) x) " 

(b = maPtl '2 I (mapt'l 9 x» " 
Prog (tl -+ t2) I 1\ Prog (t -+ tt) 9 " Prog (List t) x 

The proof begins by applying the tactic for strong co-induction. In addition to applying 

co-induction this performs some automatic proof about the types of the terms and proves 

the theorem 

~ S (map, t2(comPoset '1 t2 I g) x) (maptl t2 I (mapt tl 9 x» 

which states that the left and right hand sides of the original goal are included in the 

relation S. It remains to be shown that S is included in F==(S U ==). Two goals are 

generated. 

1. Va' act. lTS a a' act ::> (311. (lTS b II act) 1\ (S a' b' V a' == II)) 

2. VII act.lTS b II act ::> (3a/.(lTS a a' act) " (8 a' II V a' == II)) 

where we have assumptions 

a = maPt t2 (comp05et tl '2 I' tI) x, 

b = map'l '2 l' (map! tl tI x') 

for some f', g, and x'. We cannot proceed as in the first example because we cannot 

evaluate either a or b unless we can evaluate x'. But, from the strictness of map, the 

assumption that a makes some transition and the type of x', the system can deduce 

that x' must evaluate to nil or some cons cell. Two goals are generated, with the new 

assumptions 

Eval x' nilt 

Eval x' (cons hi t') 

for some hi and t' with the correct types. 

With the possible values for x' known, a and b can be evaluated and the goal simplified 

using LTS..EVAL_TAC and LTS..DISCH_TAC as in the previous example. If x evaluates to nil 

then a and b evaluate to nil and the transition must be the Nil transition. If x evaluates 

to cons hi t' then two goals corresponding to the Hd and TI transitions are generated. 

Each of the goals is solved by choosing a witness for II and followed by some simple 

equational reasoning. 
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8.6.2 rotate 

If we introduce the tree type into SDT and define the function rotate with the properties 

I- Vo: a. a : 0: ::) rotatea (Leaf a) == (Leaf a) 

I- Vo: I r. I : tree 0: 1\ r : tree 0: ::) 

rotatea (Node I r) == Node (rotateQ r) (rotateQ l) 

we can prove the following theorem 

I- Vt 0:. t : tree 0: ::) rotatea(rotateQ t) == t 

The trees t for which this theorem hold may be finite, infinite or undefined. The proof 

is by co-induction using the trivial relation 

{(rotatea(rotatea f), f)} 

The proof involves a simple analysis of the transition system. It requires some strictness 

analysis to start the proof. In order to analyse the transitions we need to know more 

about the tree t'. Because we know that rotate is strict in its first argument we know that 

the whole expression is dependent on the value of t'. We can then perform a case analysis 

over the possible constructors of tree type (Node or leaf) and the possible transitions. 

In our system the whole proof is fully automated, including the strictness analysis. The 

actual proof script used is 

GUESS_CO_INDUCT_TAC THEN 

LTS_STRICT_TAC THEN 

LTS_SIMP_TAC 

This script is very general and will prove a wide variety of goals for a range of different 

datatypes. 
It is for proving results like this that co-induction is particularly useful. An alter­

native inductive proof would require a side condition that the tree was finite. This 

side condition would then need to be proved before using the theorem in subsequent 

rewriting. 

8.6.3 Extending the bisimulation 

In the earlier examples in this section the bisimulations have been trivial and consist 

of only the original pair of terms generalised over some of the variables. While a large 

class of problems can be solved by these simple bisimulations, there are problems where 

a more complex relation is needed. There are two common methods for adding more 

elements to the bisimulation. The first is to add additional pairs of terms with a different 



CHAPTER 8. SUPPORTING FORMAL REASONING 118 

pattern. Section 2.3.2 included an example of a problem where there are two pairs in 

bisimulation. The theorem that can be proved is 

.- tflist == merpBool t1ist flist 

This can easily be proved using ~induction with the bisimulation 

tflist 1\ e2 == merge tlist fUst) V 

False::tflist 1\ e2 == False::merge tlist flist) 

The second method used to the extend the bisimulation is to pick new functions which 

evalua.te to the function in the initial goal for some inputs. The following example, used 

by Dennis [DG97J, illustrates this generalisation. 

h = rec h : (V'a. (0 - 0) - a - list 0). 

Aa. >../: a - a. >..x: a. Consa X (map a a / (he / x» 

This function is another way of defining the iterate function. The theorem 

"1/ x Q. / : Q - a 1\ x: Q ::> ha I x == iteratee / x 

should hold. This is not provable using the simple bisimulation consisting of the pairs 

of the form 

(ha / x, iteratea / x) 

because each step in the production of the list from the application of h introduces a 

new application of the map function into the result. The solution is to introduce a new 

function which will be used to capture the repeated applications of map or any other 

function. 

fexp = ree /exp : (V'a .. (0 - 0) - Num - a -. 0). 
Aa.A/ : a - a. AX : Num. AY : Q. 

case (x = 0) of 

True 1-+ y I 
False 1-+ / (fexpe / (x - 1) y) 

This allows the bisimulation for the proof to be written down as a generalisation of 

the original goal 

Vel e2· (3n. el -- fexP(list a) (mapa e f) n (ha / x) 1\ 

e2 -- iteratea / (fexPe / n x» 

The equivalence of h and iterate can then be proved by co-induction using this relation. 
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8.6.4 An example using filter 

One function that is simple to define but is hard to reason about is filter. It can be 

easily defined in SDT and proved to have the properties 

filtera P U -- D 
filter a P (ConSa % %8) -- case (p %) of 

True ...... Consa % (filtera P %8) 

False .... filter Q P %8 

If filter is applied to an infinite list and the predicate p is false for all elements of the list 

then the function will never return a value. This means that the termination behaviour 

depends on the value of its inputs and not on the structure of the input as with functions 

like map. It is possible to reason about the function, by co-induction, with arbitrary 

arguments but this requires a rule induction over the reduction relation. There are ways 

of performing this rule induction once and deriving a new proof principle that is similar 

but more complex than the proof based on bisimulation [Gor95a] but this has not yet 

been mechanised. 

With the tools described here the function can still be entered into the system and 

properties proved of programs using filter without proving general properties of filter. 

For example the goal 

filterBooi istrue tflist == tlist 

can be proved with a trivial co-induction argument. 

8.7 A model of circuits 

This sections discusses some experiments with using SDT to investigate a translation 

of Ruby [SJ90j, a relational hardware description language, into Haskell [H+92]. The 

purpose of the translation is to allow the execution of specifications in Ruby. This 

new functional model of circuits, known as the Slack Circuit model, was developed by 

Jonathan Hogg. This section does not discuss the details of the model or all the results 

shown using SDT. These are covered elsewhere [CH97j. 

8.7.1 The Slack-Circuit Model 

The problem with embedding relation languages, such as Ruby, in a functional language 

is the need to consider dataflow with functions. But, the problem is not in the presence 

of dataftow as such, since most circuits have well-defined dataflow implicit in them; the 

problem is in the need to explicitly specify the directions in the combinators. 
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The Slack-Circuit model takes a different approach to other translations by modelling 

relations, not as functions from inputs to outputs, but as functions from a domain/range 

pair to a new domain/range pair. The new domain and range represent the state of the 

circuit's signals after the circuit has notionally executed. Consider an inverting circuit 

described as a relation: 

a inv b~a=b 

This specifies that the domain, a, is the logical opposite of the range, b. Although the 

directions are not specified here, we can implicitly determine two possible dataftows: a 
as input and b as output, or b as input and a as output. The following function, inV, 
gives an interpretation of this relation. 

inV :: ([8001],[8001]) -> ([8001],[8001]) 

inV (as,bs) • (map not bs, map not as) 

The domain and range types are streams of booleans. Because Haskell is a lazily evalu­
ated functional language, these streams can be infinite. The question is which way is this 
circuit executed? Here we take advantage of another property of laziness to determine 
the appropriate order of execution. Consider the following Haskell expression: 

ys • snd (loV (xs,ws» 

If we evaluate y8 then the second map in the definition of inV will be evaluated such that 

y8 • map not X8. If we consider the evaluation of y8 to be the act of obsenling the inV 

circuit, then the direction of the circuit can be said to be determined observationally. 

TiS could be any value without affecting the result. 

Circuit combinators can be specified in a similar manner. The standard Ruby circuit 

combinator is the serial composition operator which connects the range and domain of 

two respective circuits: 

.£ (R; S) z <===? 3y . .r R y & y S z 

The encoding for the Ruby serial combinator into Haskell is shown below using the 

symbol <->. 

«-» :: Circuit a b -> Circuit b c -> Circuit a c 

«-» r s (a,c) • (a',c') 

where 

(a',bl) • r (a,b2) 

(b2,c') • s (bl,c) 

where Circuit a b is the type (a, b) -> (a, b). The way in which this functions works 

is not clear, depends heavily on laziness and polymorphism, and contains mutually 
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recursive definitions of a and b. The function does behave correctly when tested on 

inputs representing well-formed circuits and it can be encoded in SDT. This function, 

and many others in the model, could not be expressed directly in the logic of theorem 

provers such as HOL. The rest of this section discusses some experiments in using SDT 

to investigate the behaviour of these functions. 

8.7.2 Formal execution 

The first, and one of the most useful, attempts at reasoning about the model was to 

formally execute some circuits to investigate their behaviour. SOT allows symbolic eval­

uation and fine control over how far the evaluation proceeds. In particular this allows 

reasoning about circuits that are not behaving correctly to investigate why. Typically 

problems with circuits were caused by a subtle mistake in the strictness properties of the 

circuit. While not yielding interesting proofs, this process did prove an effective form of 

debugging. 

8.7.3 Sinnple Circ~t8 

The next level of check on the behaviour of the model is to attempt to prove correctness 

of some simple circuits. We prove that the composition of two inverters is just the 

identity circuit. The theorem we want to prove is: 

.... 'TId r. d: [Bool] A r: [BooI] ::> (inV<->inV) (d, r) == iD[BooI)(d, r) 

The inverter was defined by mapping the not function over the inputs. In order to prove 

this theorem we prove the following result about map . 

.... VXI. XI : [BooI] ::> map not (map not X8) == X8 

The proof follows the usual pattern for simple co-inductive proofs described earlier in this 

chapter. We use the obvious bisimulation relation and use the fact that map is strict in 

its second argument. The proof concludes with some simple equational reasoning about 

the not function. The proof of the theorem about the inverter follows by some simple 

evaluation and rewriting. Similar results can be easily proven about other simple gates. 

8.7.4 Connbinator proofs 

The most important proofs about the correctness of the model are the proofs of the prop­

erties of the combinators. We begin with a discussion of the relatively simple converse 
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combinatory, which "reverses" the direction of a circuit. 

converse = 
Aa.A{3.AR : (Pair a (3) - (Pair a (3).AS : Pair {3 a. 

case S of pair - Ab: {3. Aa : a. 

(case (R (a, b»of 

pair - Aal : {3.Abl : {3. (b1, ad) 
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As pattern matching is not part of SOT it is necessary to use the case expression to 

decompose the pair. 

This function illustrates one of the subtle differences introduced into the embedding 

of Lilt:: Slack-Circuit Model in HlUlkell. There are a number of rules in Ruby for this 

combinator. One of the rules is 

r 'Va {3 R s. R: circuit a {3 " s : (a, (3) ::> 

converse ( converse R) 8 == R 8 

This law is not provable for the Slack-Circuit Model. The provable version is 

r 'Va {3 R d r. R: circuit a {3 " d: a " r: (3 ::> 

converse ( converse R) (d, r) == R (d, r) 

The difference between these two rules is in the conditions on the structure of the signal. 

Regardless of the definition of converse it is always possible to find a circuit and signal 

that will behave differently when reversed twice. For our definition of converse consider 

the circuit with behaviour 'Vx. R x = (U, U> and the signal.1., the undefined value. The 

circuit returns m, U> while the circuit after reversing returns.1.. This can be fixed by 

making converse less strict, but another pair of circuit and signals can be found to cause 

a similar problem. This is caused because the definition of converse decides whether the 

converse of a circuit is strict on its input and not the strictness property of the circuit. 

This was only noticed while attempting the proof of the above result. 

The next combinator we consider is serial composition. AB the purpose of the trans­

lation from a relational language to a functional one is to execute circuit specifications, 

the llIust important property is that serial composition decomposes to function compo­

sition if the directions of data fiow can be resolved. What this illustrates is that for any 

concrete circuit, the translation from Ruby to the Slack-Circuit Model does have an ad­

vantage over a translation to a functional style. We can defer resolving the directions in 

the relational descriptions until after the translation and the directions will be correctly 

resolved by evaluation. We do not prove this for general circuits but give an example 

using the following function which converts a function into a circuit with a left to right 

data fiow. 

wraplr = Aa.A{3.Af: a - {3. >'8: (a, (3). (ZZo, f (fst 8» 
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Using serial composition to compose two functions converted to circuits decomposes into 

function composition as expected. 

I- 'VI 9 dr. I : 0 - {3 1\ 9 : {3 - "y 1\ d: 0 1\ r : "y ::) 

snd «wraplrQ ,8f)<->(wraplr,8"Y g)(d, r» == 9 (f d) 

A similar result holds for a right to left data flow. We have also proved the decomposition 

for the parallel and serial compositions of functions with data flows in different directions. 

While not a general proof of correctness these proofs were useful for checking the 

correctness of the composition operators. We can speculate that this can be extended to 

all circuits that conform to some notion of being well-formed. Such conditions would not 

apply to Ruby and this illustrates one difference in moving between the two models. This 

is consistent with having to determine the directionality in the circuit before making a 

translation to a more conventional functional model. In the Slack-Circuit model we are 

able to defer such reasoning about directionality to the point where it is necessary to 

complete a proof. 

The final result we look at for serial composition is associativity. In Ruby the theorem 

I- R<->(S<->T) == (R<->S)<->T 

hold for for any circuits R, S and T. We would hope to be able to prove a similar 

theorem for the Slack-Circuit Model. Unfortunately, the proof requires reasoning about 

the directions of the data-flows. The circuits may have arbitrarily complex data-flows 

and as this is determined by the circuit definitions and not just their types this would 

require us to formalise a directional type system for the language. This formalisation 

has not yet been attempted. 

We can prove the result for any specific functions. For example, we can express the 

fact that a circuit I has no right to left data flow by assuming that 

3/1 h· R (d, r) == (11 d, h d) 

This says that the circuit R returns a well formed pair and is only a function of it's 

domain. The associativity theorem can be easily proved for circuits of this form and for 

any specific combination of such circuits. 

A number of other laws for the Ruby combinators, not involving serial composition, 

have been proved. The results in this section are all consistent with the expectation that 

the Slack-Circuit Model gives a correct translation of well-formed Ruby specifications. 

8.8 Related work 

The main focus of the work here has been to formalise proofs by co-induction where the 

bisimulation to be used is known. Other that the trivial bisimulation relations that can 
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be found using GUESS_COINDUCT_TAC, and are sufficient to solve a large class of problems, 

this work does not consider any automatic means of finding the relations to be used in a 

co-inductive proof. Louise Dennis has investigated how to use proof planning to do this. 



Chapter 9 

Styles of Reasoning 

The previous chapters have developed a system based on a theory of a co-inductively 

defined equivalence. Using the theory, we can do proofs using evaluation, equational 

reasoning and co-induction. In practise this is not sufficient. A stated aim of this work 

is to have an extensible system for which new types of reasoning can be added. This is 

done by proving some new results from the semantics of the la.nguage and the definition 

of equivalence. This chapter gives some examples of the extension of the system with 

new styles of reasoning. It begins with a discussion of induction for finite data structures. 

9.1 Induction over finite data 

Co-induction provides a proof principle for reasoning about the equality of infinite data 

structures. When proving properties of finite data structures, structural induction is 

both adequate and easier to apply. This section presents a theory of induction for finite 

lists derivable in the setting presented in previous chapters. None of the techniques in 

this section are specific to lists and could be applied to any datatypes. 

The conventional form of induction for lists is 

'<IP. 

P []/\ 
('<Ih : Q t : List Q. P t :J P(Consa h t)) 

:J 

'Vl : List Q. P l 

As it stands this theorem is not true in our system. There are two problems. First we 

Ullliit ft:Strict the lists quantified over to be finite. Second we must deal with the fact 

that the predicate P may not preserve equivalence. That is, P is a predicate over the 

125 
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syntax of lists, and could distinguish equivalent values. This issue was introduced in 

section 7.5. 

The first problem is to restrict the induction theorem to apply only to finite lists. 

There are two ways to express this. The first is to say that every finite list is equivalent 

(==) to some list constructed only using nil and cons, rather than function applications 

or other expressions. A meta-level relation concrete is defined below that tests if a list 

is of this form. 

Concrete Nilar a 

Concrete xs a 

Concrete (Consu x xs) a 

The second way to express this is to define an object language function length to calculate 

the length of a list and define a list l to be finite if (length l) --+. n for some natural n. 

Definition 9.1 

length = ree length: 'Va.List a - Num. 
AOt. ~l : List a. 

case l of 

Nil ..... 0 I 
Cons ..... ~x: a. ~xs : List a. 1 + (lengtha xs) 

A finite list can now be defined as a list that has a length. The length function will not 

terminate for infinite lists. 

Definition 9.2 Finite l a = 3n. lengthQ l --+. n 

The relationship between finite lists and concrete lists is given by the following theorem 

Theorem 9.3 

'VI n a. Finite 1 a = (3l1' 1== l} " Concrete II a) 

Proof. We can prove that a finite list is equal to some concrete list by induction over 

the length of the list and show that a concrete list is finite by rule induction. 

The second difficulty with the statement of the induction theorem arises because a 

predicate P of type exp - boo} is a predicate over the syntax of expressions. Two 

expressions which are equivalent may have different syntax and the predicate P may 

refer to the syntax. This problem was introduced in section 7.5. The equivalence relation 

== partitions all expressions into equivalence classes and it is necessary to either define 
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the predicate P over only one member of each equivalence class or to ensure that the 

predicate does not distinguish between different members of the equivalence classes. 

The first, unsatisfactory, solution is to define the induction theorem only over a 

sublset of all finite lists, one representative for each equivalence class. The discussion of 

how to restrict induction to finite lists introduced the predicate Concrete and showed 

that every finite list will be equal to a list satisfying this predicate. Restricting reduction 

to lists satisfying the predicate Concrete restricts induction to one specific representative 

of each equivalence class. 

Theorem 9.4 

VP. 

P Ni1a 1\ 

("It: 0 h : List o. P t :) P (Consa h t» 
:::> 

VI : List o. Concrete I 0:) P I 

Proof. By rule induction for concrete lists. 

The alternative restriction is to ensure the predicate P yields the same result for any 

two members of an equivalence class. This can easily be expressed by imposing the 

restriction Vh 12.h == 12 :) P II = P l2. The alternative induction theorem is: 

Theorem 9.5 

V P. (VII'. I == I' :) P I = PI') :::> 

P Ni1a 1\ 

(Vt : 0 h: List a .. P t :::> P (Consa h t» 
:) 

VI : List o. Finitel:::> P I 

Proof. By induction over the length of the list. 

There are some simple syntactic conditions which are sufficient to allow the automatic 

proof of the precondition that the predicate preserves equivalence. In particular, many 

predicates will be of the form CIl'] == C2 [1] where C1 [I] and C2[1] are larger programs 

containing I. If I == I' then Cdl'] == C2["] follows immediately by rewriting. 

9.2 The take lemma 

The take lemma [BW88] provides a simple means to prove many theorems about infinite 

lists. The theorem states that you can prove the equality of two infinite lists by proving 

that all the initial segments of the list are equal. This allows the proof to be reduced 
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to a proof about finite Usts. The function take is defined 90 that the following equations 

hold: 

takea 0 %6 

takea (n + 1) [ ] 

-- [] 
( ] 

takea (n + 1) (COIlSa % %6) -- ConSo % (takea n %.) 

The definiton in SOT which gives rise to these equations is: 

Definition 9.6 

take = rec take! : V'Q.Num - list Q - list Q. 

All. An : Num. AXs : list Q. 

case (n = 0) of 

The key theorem is 

7rue 1-+ Nila I 
False 1-+ case x. of 

Nil 1-+ Ni1a 

Cons 1-+ Azl: Q. Az8l : List Q. 

(ConSa Xl (take! a (n - 1) x.t> 

Theorem 9. 'T (The take lemma) 

lrixy. (Vn. takea n % == takea n y) " x: List Q " y: list Q = (x -- y) 

Proof. By ~induction using the relation 

..xx y. (lrin. takea (n + 1) x == takea (n + 1) y) A x: list Q A Y : list Q 

and some reasoning about the evaluation behaviour of the expressions. 

The reverse implication from that given in the take lemma is not interesting and is easily 

proved by equational reasoning. 

The shape of a proof using the take lemma will be very similar to a proof using 

co-induction but is more restrictive. Using the take lemma an induction over the lengths 

of the initial segments is performed. For the base case n = 0 the result is trivial since 

take 0 %8 = U for any list %8. For the step case we prove that the heads are equal and 

the tails have a pattern (the inductive hypothesis). 

9.3 Parametric polymorphism 

Parameteric Polymorphism, or "theorems for free" as it is sometimes known [Wad89], 

allows the mechanical derivation of properties of expressions from their type alone. Most 
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presentations of parametric polymorphism is based on a domain theoretic semantics. In 

this section a restricted version of parametric ploymorphism is considered bued on the 

operational semantics discussed earlier. 

There are two main restrictiOJl5 which have been made to simplify the problem. 

These are to ignore both the recursion operator and datatypes. It is believed that 

these restrictions could be removed by additional work. Other, more recent, work on 

parametric polymorphism may provide a better approach to this proof [Pit98] than what 

follows. 

The key idea is to define, for each type a, a relation [oj. This relation will be referred 

to as an Action on the type. The main result of this section will be to prove that 

(a, a) E (01 

Interesting results about functions of type a can be derived from this theorem and the 

definition of the relation corresponding to a. 

For a function with the type of the identity function, Ir/a.a -+ a, then the following 

holds. 

I- (I, f) E ('ta.a -+ oJ 
One theorem which can be derived from this is: 

"ria ;3 x y. /fJ (g x) = 9 (fax) 

Th(' details arc given below. 

9.3.1 Admissible relations 

Relations will be introduced in this sections which have several useful properties. These 

will be called admissible relations and are relations R between terms of two closed types 

such tha.t: 

• R relates only terms of the appropriate types. 

• R respects equivalence. 

• R relates a divergent terms (.i) to another divergent term. 

The formal definition is 

Definition 9.8 

AdRel R a {3 = Closed ftv a 1\ Closed ftv {3 1\ 

'<Ix y. (R x y) :::> x: a 1\ y: {3 1\ 

(lr/x' y'. x == x' 1\ Y == y':::> R x, y') 1\ 
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In particular, consider a strict function a and the relation that relates the pairs 

(x,a x) where x is any expression of the correct type. This is an admissible relation. 

Another useful result is that all admissible relations are non-empty. An admissible 

relation between types a and {3 contains relates .La and .L.a. 

9.3.2 Actions on types 

While the types we eventually consider will all be closed, the definition of the action on 

a type will need to consider free type variables. This is due to the clause in the definition 

for the type abstraction that involves defining a relation for the body of the abstraction, 

which is not closed. We use a new type context, mapping types to relations between 

expressions of particular types. In use these relations will be restricted to admissible 

relations. We write the actions on a type a as labt where 'R is the mapping from types 

to relations. 

Definition 9.9 

lam ='Ro 
INunh e ~ = e : Num /\ e' : Num /\ (e == e'» 
10 -Ib I I' = "Ie e'. lab e e' :> lib (J e) (J' e') 
('Ix.am e e' = (3Ti. FClosed hv Tl /\ e : (Vx.o}Ti)/\ 

(3T2. FClosed hv T2 /\ e' : (Vx.alTi)/\ 

('VA {3 -yo AdRel A (3 -y :> lobi-A) e.a e'..,} 

The first result to be proved is that an action over a type is an admissible relation. 

The goal 

AdRel lob a Q 

is similar to the goal we want but is incorrect since t may not be a closed type. Instead 

we prove 

AdRel (ofR [alTI [alT2 

for appropriate closing type substitutions Ti and Ti and relation context "R. The condi­

tions for these maps is formalised by a relation RelProp defined as: 

RelProp 'R Ti T2 f = 

FClosed hv Ti /\ 
FClosed hv T2 /\ 
'Vx. f x :> Dom R x /\ Dom Ti x /\ Dom T2 x/\ 

AdRel"Rx Tix Tix 
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The function f will normally by the function ftv a representing the list of free type 

variables in the type a. One important property of RelProp which shows how the maps 

can be extended is: 

vll Ti" T2 x f. RelProp II Ti 12 f :) 
VA a {3. AdRel A Q {3 :) 

RelProp "Rlx ..... A) Ti[x ..... oj T2[x ..... {3) {Ax. (x = 8) V f x) 

With this and similar lemmas proved we can prove that the action on a type is 

admissible. 

Theorem 9.10 

Va "R Ti 1'2. RelProp "R Ti 1'2 (ftv a) :) AdRel lab [alr. [alT:i 

Proof. By induction over the type a. 

9.3.3 The parametricity theorem 

The result we are aiming at is 

Ve: a.l~ e e 

The proof is by rule induction over the derivation of the type of e. We again need to 

generalise to non-empty relation enviroments and closing substitutions for the types to 

get the proof to work. The side conditions on the relations and substitutions are given 

by: 

v"R f Ti T2 !i' 12 f· 
respects "R f Ti Ti sr 82 f = 

FClosed fv sr 1\ FClosed fv 82 1\ 

FClosed ftve sr /\ FClosed ftve 82 /\ 

(Vx.aFOom f x :) FOom SI x /\ FDom 82 x /\ 

sr x : [f x)r.) /\ 82 x : If x)T:i»/\ 

(Vx. FDom f x :) "R(f ~ [[xlillTi [[xlr,lT;) 1\ 

(RelProp "R Ti T2 f) 

Theorem 9.11 (Parametricity) 

'<If e a. f I- e : a :) 

{VR Ti 12 al a2· 

respects R f Ti T2 al Ci2 (ftv a) :) lab Helorl,,! [[e14 :a lr. 
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Proof. By rule induction OWl' the typing judgement and properties of substitution. 

The version of the theorem for closed terms can be proved by setting all the substi­

tutions and contexts to empty. The side condition is trivial to prove in this case. 

Theorem 9.12 

"'lea. e : a. [oll e e 

9.3.4 Example: The identity functions 

For any function I with type Va.a - a the following holds. 

('v'a.a - ~ I I 

The w;eful theorem can be derived by expanding out the definition of actions on types. 

For any admissible relation A between types a and /3 

[a - ~Qt-OAI la IIJ 

By expanding again 

"'Ix 1/. A x 1/ :) A (fax) (fll 1/) 

Take A to be the relation such that A x 11 if 11 == 9 x where 9 is a strict function 

of type a - /3. 

"'Ix y. Y == 9 x ::> III Y == 9 la x 

Finally some rewriting gives the result. 

"'Ix y. IIJ (9 x) = 9 (fax) 

9.4 Invariants over infinite data 

All the theory and tools presented so far have dealt with proving the equivalence of 

two programs. None have dealt with more general properties. This allows the proof of 

correctness only with respect to a specification written in the same language. 

To prove a more arbitrary property of a program, such as the fact that a program 

produces a sorted list, we need some different machinery. Many such properties can be 

expressed as local properties extended to the whole list. For example, a sorted list is 

one in which each pair of adjacent elements of the list are ordered. These predicates can 

be expressed as the greatest fixpoint of a function capturing the local property and the 

proofs can proceed by co-induction. 
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This section considers some simple examples of sorted lists. The definition and proofs 

are very similar to the theory for bisimulation. We begin by defining a function that 

takes a set and produces the set of all lists that have the first two elements ordered and 

the tail in the given set. 

Definition 9.13 

FORD 8 l = 30. I : List Q 1\ (isconSa I == True) :) 

((heada l <= heada(taila l» == True) 1\ 8(taila l) 

This function is monotone and the set of ordered is lists can be defined as its' the greatest 

fixpoint. 

Definition 9.14 

ORO = gfp FORD 

A co-induction priniciple can be easily derived: 

Theorem 9.15 

Vi. (38. Dense FORD 8 1\ 8 l) :) ORO l 

Infinite lists can now to be proved to be ordered by finding a set containing the list 

which satisfies the Dense property for FORD. That is: 

VI.8 l:J 30. l : list Q 1\ (isconsQ I == True) :) 

((heada l <= heada(taila l» == True) 1\ 8(taila l) 

If ones is the infinite list containing only the number 1, then it can be proved to be 

ordered using the set characterised by the function: 

AX. X == ones 

Finally, if plustwo is a function that takes any number n and returns the infinite list 

[n, n+2, n+4, ... ] 

then for any n this can be proved to be ordered using the set 

AX. 3n. X == plustwo n 
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9.5 Restricted principles of definition 

It has been discussed in earlier chapters that both supporting reasoning and the reasoning 

itself are easier if range of functions that can be defined are restricted in some way. This is 

particularly true of the possible termination behaviour of programs. The work here does 

not insist on any restricted use of the programming language, but it does, in principle, 

allow theory and tools to be developed to allow a programmer to obtain easier proofs if 

a different method of programming is used. 

This section discusses one example of such a style of programming. This involves 

defining recursive functions that consume finite lists in terms of the fold operator [Hut98J. 

While this may seem restrictive, all primitive recursive functions can be defined in this 

way. In this section only the fold operator for lists is discussed but similar functions can 

be defined for other types. 

Fold is defined so that: 

Deftnition 9.16 

folda (1 I t1 Nilo == v 

folda (1 I t1 (Conso x xs) -- I x (foldo (1 I t1 xs) 

Properties of fold can be proved that allow some reasoning about recursive functions 

defined in terms of fold to be reduced to equational reasoning. One example of this is 

the fusion theorem, which is proved by induction. 

Theorem 9.17 For any finite list xs 

VI 9 h abo: f3. 

l:o-{3 A g:{3-o-o A h:o:-f3-{3 A a:o:A b:{3A 

(Vx. (f x) ~::> x~) A 

I a == b A 

(Vx y. I (g x y) == (h x) (f y)) ::> 

I (fold(1 a 9 a xs) == (folda (jh b xs) 

Proof. This is proved for finite lists using structural induction. 

It is not proved for infinite lists here due to the same problem as with the filter example 

(8.6.4). In fact filter can be defined in terms of fold. 



Chapter 10 

Conclusions 

In this work a system has been developed to support formal reasoning about programs 

written in a small, non-strict functional programming language. The system has been 

developed in the HOL theorem prover, which provides security and basic reasoning tech­

nology. The semantics of the language are defined in an operational style with a co­

inductively defined equivalence relation. This provides support for the two main styles 

of reasoning necessary for a useful, extensible system. The primary use is to support 

reasoning about functional programs, particularly those that cannot be expressed di­

rectly in the logic of theorem provers. In order to do this, and to allow the extension of 

the system with new proof rules, it also supports reasoning about the semantics of the 

language. 

10.1 Reasoning about programs 

A major feature of this system is the ability to enter programs and express properties 

of these programs with little initial overhead. This work differs from other work using 

theorem provers in not imposing any restrictions on the form of the programs; any 

syntactically correct program can be entered. There are no restrictions on how recursion 

is used or on the termination behaviour of the programs. The advantages gained from 

this depend on the programs entered and the reasoning to be attempted. If it is intended 

to prove termination properties of programs for all inputs, or if a proof depends on these 

properties, then the work of proving the termination properties of the program will need 

to be carried out in any case. If the program uses only finite data then other tools such 

as TFL [SHOO] may lead to less work, as they are designed to support only programs 

such as these and automate much of the work to prove the termination properties. In 

many cases, proofs will require considering such properties of a program at the time of 
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writing to obtain an easy proof. It is recognised that the ability to enter any program 

does not make these proofs any easier. 

The advantage over other systems is strongest when the programs of interest cannot 

be rewritten in a style that makes termination properties easier to prove. The circuit 

model given in Chapter 8 was written without any consideration for the possibility of 

proving properties of the programs and many of the functions have no clear termination 

properties at all. The functions could not be written into a more proof-friendly form 

without fundamentally changing the meaning of the functions. The ability to reason 

about such functions is important and can lead to finding errors and to a clearer under­

standing of the functions. Even when a proof cannot be obtained, theorem proving can 

lead to a significantly improved understanding of a problem. The reason behind a proof 

failing can be greatly informative. Many functions perform correctly only for a limited 

set of inputs and a better understanding of that set is a useful result. Such lightweight 

use of theorem proving is impossible if there are large overheads involved in entering the 

functions into the system. 

A second example of the advantage of having a small overhead for entering functions 

into a theorem proving tool is where only part of a larger system is considered. If this 

part uses functions from the rest of the system then general properties of these other 

functions may not be important but only their performance over a limited range of inputs 

or for a specific input. These functions can still be entered and used and the necessary 

results proved for the reduced range of inputs only. The example in section 8.6.4 used 

the filter function although general properties of that function are not considered. This 

example could not be considered in any system where the termination properties of filter 

were required for it to be defined. 

10.2 Reasoning about semantics 

In this work, reasoning about the semantics of the language serves two main functions. 

The first, investigated in chapters 5 and 7, is to enable reasoning about the correctness 

of the semantics. A group of standard results were proved, including results stating that 

the typing and reduction rules were deterministic and that equivalence was correct with 

respect to contextual equivalence. 

The second function of the ability to reason about the semantics is to add new proof 

rules to the system. Chapter 9 presented some derivations of such results. This kind 

of extension is not possible unless the semantics of the language can be reasoned about 

and allows the system to be augmented in a safe way with proof rules that were not 

envisaged in the original design. These rules extend the capabilities of the system for 
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reasoning about programs and so can feed into reasoning about programs described in 

the previous section. 

10.3 Further work 

There are a number of ways in which the work presented here could be extended, adapted 

or improved. These changes can be divided into future work on the language, the proof 

tools, and the application of the work to different languages. 

10.3.1 The language 

There are two major changes that can be made to the language supported by the tools 

described here. First, the details of the semantics could be modified to bring the op­

erational semantics of the language more in line with the behaviour of real interpreters 

and compilers for functional languages. The semantics given here is a call by name 

semantics. The interpreters and compilers for Haskell and similar languages use lazy 

evaluation. In both evaluation strategies the arguments to a function are not evaluated 

when the function is called but are only evaluated when needed, and only evaluated as 

far as is necessary at any given time. In the call by name semantics given here these 

arguments may be duplicated when they are substituted into a term and hence evaluated 

more than once. In a true lazy semantics references are passed to the arguments and 

they are not duplicated. This makes no difference to the meaning of a program, but it 

increases the efficiency where it avoids the duplication of an argument. 

It would be interesting to base a formal reasoning system on a true lazy semantics. 

This would complicate the semantics but may lead to more efficient proofs. It is not 

clear if this efficiency would be worth the additional complexity. 

The second, and more obvious, change to the language would be to extend the syntax 

to allow more programming constructs to be used. There are three ways to do this. The 

syntax and operational semantics of the language could be extended to support new 

programming constructs such as pattern matching or list comprehensions. The work 

required to add new constructs depends largely on whether any new bindings can occur. 

Much of the work on the existing system was dealing with the existing binding constructs. 

Non-binding syntax is relatively easy to introduce. 

A second method would be to add more syntactic sugar to the language in a similar 

way to booleans were added. Many of the tools and meta-theory treat booleans as if they 

were primitive, so a user sees an expanded syntax compared to the underlying syntax. 

The final method would be to provide an automatic translation from a more general 

language, such as Haskell, to SOT. Indeed, for Haskell such a translator would be easy 
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to develop from the Glasgow Haskell Compiler, which contains a similar translation as 

one of the stages in compilation [Jon96]. The practical use of a mechanical translation 

may be limited because much of the information about the structure of the original term 

is lost in the mapping. To create a useful system it would be necessary to store enough 

information during the translation to allow the reverse translation when presenting the 

user with output from the system. This would be primarily an interface issue. 

On a smaller scale, pattern matching could be incorporated into the system by tak­

ing a specification using pattern matching, deriving the corresponding SDT expression, 

defining this and then proving the rules that incorporate the pattern matching. The 

underlying term need never be visible to the user. The mechanism for applying these 

rules already exists and was discussed in Chapter 6. The translation would be similar 

to tools which already exist in the HOL theorem prover [S1i96j. 

10.3.2 Additional proof rules 

The ability to extend the system by deriving new proof rules gives a clear avenue for 

further work. While a selection of proof rules has been presented here, there are still 

more that could be added. The parametricity theory could be reworked using more 

recent work [Pit98] to extend its applicability to the whole language. Examples, such 

as the behaviour of the filter function, could be tackled using variants of the current 

co-induction principle described by Gordon [Gor95a]. The fold function and its corre­

sponding theory have been treated here but the related function, unfold, dealing with 

the creation, rather than consumption, of lists has not yet been treated. Finally, there 

are families of well known laws, such as the monad laws [Bir98) which could be proved 

in the system. 
Most of these rules are aimed at capturing some pattern of recursion which is com­

monly used in programs and proving some result about all programs fitting that pattern. 

If a proof rule is developed which captures the necessary inductive argument then these 

programs can be reasoned about using only equational reasoning plus the appropriate 

rule. 

10.3.3 Tool support 

There are several ways that tools support for the reasoning in the system could be 

enhanced. One possibility would be the automatic generation of bisimulation relations 

for use in coinductive proofs. This could be done by integrating with a tools such as 

Dennis' Co-induction Critic [DG97], which uses proof planning [Bun88, BSvH+93) to 

generate an outline proof and corresponding bisimulation but does not formally check 
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the proof. A loose integration of the two systems could use only the bisimulation relation 

while a tighter integration could use the proof generated by the proof planning as the 

basis for a proof in HOL. Similar support could be developed for proofs by induction, the 

area to which poor planning was originally applied. Much of the technology to support 

such an integration has been developed by the Clam-HOL project [SBB98, SGBB98]. 

The second area where more tool support could be provided would be through a 

custom user interface. The current system uses the text based interface to the HOL 

theorem prover. This raises issues other than the usual issues relating to interfaces to 

theorem proving tools [AGMT98]. The main deficiency in the current interface is that 

the HOL logic itself contains functions, variables and constants, leading to the possible 

confusion between the syntax of the logic and the syntax of SDT programs. For example, 

function application is best represented in both languages by juxtaposition and variables 

by the name of the variables. The current interface uses the same syntax to pretty print 

both languages, but quotation and parenthesis to mark the blocks of SDT syntax. This 

can be confusing and a graphical interface would allow the use of colour to distinguish 

between the two. 



Appendix A 

Notation 

Expressions e.e', e}, e2 
Expresions (functions) /,/' 
Variable X,f/ 

Types t, t', t., t2 

Type variables Cl,P 
Relations R 

Finite maps (to Relations) 11. 
Finite maps (to Types) T,r 
Finite maps (to Expressions) i.ii',m 
Extension of finite map i[x ...... y) 

Application of finite map ix 

Substitution with finite map [e). 
Substitution for single variablee[el/x] 

140 



Appendix B 

A Theory of Finite Maps 

B.t Introduction 

Functions defined on only a finite domain occur frequently in computing science. One 

field in which theae functions, commonly referred to as finite maps or finite partial 

functions, are used is in reasoning about the semantics of programming languages, where 

they can model semantic objects such as type contexts and environments. 

A commonly-used representation for finite maps is simply the theory of lists; a finite 

map can be represented by a list of pairs, and functions to update and apply maps can 

be defined easily and will behave correctly when used. Unfortunately this simple use 

of lists is flawed because two lists that behave the same when used as finite maps may 

not be logically equal, a property that is essential where reasoning about the equality of 

finite maps is required. These issues are discussed in more detail later. 

This paper preaents a theory of finite maps that will be the basis for a finite maps 

library in the HOL theorem prover [GM93J. This work follows the HOL tradition of 

taking a purely definitional approach. We characterize the theory in terms of a small 

set of axioms that are sufficient to capture the intended meaning of finite maps. The 

choice of these axioms is discussed in section 2. A model for these properties is then 

constructed using types and constants that already exist in HOL. Section 3 describes 

the representation used for this model and how the characteristic theorems are proved. 

Section 4 describes how the theory can be enriched with more theorems and concepts 

using those already defined. Section 5 addresses the issue of defining recursive types 

containing finite maps. This potentially difficult problem has been the motivation for 

using lists to model finite maps in the past, as this provides a means to define such types. 

Section 6 describes some decision procedures we have implemented and section 7 gives 

an example that uses finite maps to represent contexts for the type system for a small 
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language· 

B.2 Finite maps 

This section describes the choice of axioms for the theory of finite maps. These axioms 

are intended to fully characteri8e the type, and must of course be chosen so as to be 

consistent. We determine that this is the case by providing a model for the axioms in 

later sections. It is also necessary that the choice of axioms be completej any property 

we wish to prove of finite maps should be provable from these axioms. A further result, 

interesting for theoretical reasoIl8, is that the axioms should be independent of each 

other; if any axiom is removed or weakened then the set of axioms will fail to completely 

specify finite maps. 

The type of finite maps will be introduced by a new binary type operator fmap. A 

finite map from type a to type {J has type (a, {J)fmap. An important concept is the 

domain of a finite map. This is the finite set of values over which the application of a 

finite map will be specified. 

B.2.1 Axioms for the constants 

Four constants are introduced, with informal definitions as follows: 

• Empty : The finite map with no elements in its domain. 

• Update f (x, y) : The basic operation to allow the extension of a finite map f with 

a new mapping from x to y. There should be no restriction on whether or not x 

is already in the domain of f· If x is in the domain then the value to which x is 

mapped will be updated to be y. Some other formalisms of finite maps restrict 

Update to extension of a finite map only with elements not in the domain. 

• Apply f x : If x is in the domain of f then Apply f x denotes the value to which x 

is mapped. 

• Domain f x : The function Domain tests whether an element x is a member of 

the domain of f. The domain is formulated in terms of a boolean function ra.ther 

than a set so that the resulting theory does not depend on a particular variety 

of set theory. It is a relatively trivial task to construct the domain set from the 

definitions given below in the user's choice of set theory. 

The above informal definitions still leave some ambiguities to be resolved. In partic­

ular nothing has been said about the outcome of applying a finite map to an element 
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not in its domain. (Apply f) : 0 -+ (3 should be a partial function, only defined on the 

domain of I. But all functions in HOL are total and so are defined for all elements of the 

correct type. The traditional solution in HOL is to leave a partial function unspecified 

for values not in the correct domain. Thus applying a finite map I of type (0, (3)fmap 

to a value that is not in the domain of I will return a value of type (3, but this value 

will be unspecified and it will not be possible to prove which member of the type (3 has 

been returned. 

An alternative approach, similar to that used in IGun93, Sym93j, is to define Apply to 

return a result of type /3 + one where one is the type with only one element, namely the 

value denoted by one. Returning one indicates that the finite map is undefined for that 

element. This has the advantage of reducing the number of constants that need to be 

"axiomatised" but the disadvantage of complicating the type of the value produced by 

Apply. This modified apply function can, however, be defined in terms of the constants 

Apply and Domain introduced above. 

It is claimed that the intended meaning of the constants Empty, Apply, Update and 

Domain can be formalised by the six basic axioms 

I- V' fa b. Apply (Update f (a, b)) a = b 

I- '<Ix a. (x i= a) :::> '<II b.(Apply (Update f (a, b)) x = Apply f x) 

I- '<Ia c. (a =F c) :::> 

'<I I b d. 

(Update (Update I (a,b)) (c,d) = Update (Update f (c,d)) (a,b)) 

l-'<Ilabc. Update (Update I (a,b)) (a,c) = Update I (a,c) 

I- V'a . ...,(Domain Empty a) 

1-V'/abx.Domain (Update I (a,b)) x = (x = a) V Domain I x 

together with a further induction axiom which is explained in the next section. 

B.2.2 Induction 

The axioms in the previous section do not express the fact that the partial functions 

being considered are finite. In addition to these axioms, an induction principle is needed: 

I- '<I P. 

P Empty 1\ ('<If. P f:::> (V'x y. P (Update f (x,y)))) 

:::> 

'<If. P f 
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This gives us the property that any finite map can be formed by a finite number of 

updates of the empty map. It easily follows from this that the domain of a finite map 

can be enumerated by some initial fragment of the natural numbers. 

This induction principle is not strong enough to derive the natural characterisation 

of equality for finite maps (see below). Indeed, it is possible to formulate a model in 

which the six basic axioms hold along with this induction axiom but the characterisation 

of equality shown below is false. 

The following stronger induction principle is sufficient to derive the characterisation 

of equality for finite maps. In the step case induction, this stronger principle allows us 

to assume that the element being added is not in the domain of the finite map. 

I- V P. 

P Empty A 

("1/. P /:::> ("Ix. -,(Domain / x) :::> Vy. P (Update / (x,y»))) 

:::> 

"If. P / 

An alternative to adding to this stronger induction axiom is to add the weaker induction 

theorem and the equality theorem below as axioms and derive the strong induction 

theorem. This would also replace other basic axioms for the constants discussed earlier. 

It was felt that it was better to use the basic axioms and derive the equality theorem as 

the basic axioms capture the intended meaning of the various constants more precisely. 

B.2.3 Equality 

We now consider a theorem characterising when two finite maps are equal. If the axioms 

above provide a complete characterisation of finite maps then it should be possible to 

derive such a theorem from them. We begin by considering how to formulate equality. 

The naive formulation 

I- "1/ g. ("Ix. Apply / x = Apply 9 x) = (f = g) 

does not hold because of a problem with the application of finite maps to elements not 

in their domain. Consider the two finite maps 

f = Empty 

9 = Update Empty (x, Apply Empty x) 
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where x is some arbitrary value. Then I and 9 are different finite maps, with different 

domains; but for any y 

Apply 9 y 

= Apply (Update Empty (x, Apply Empty x)) y 

Apply Empty y by 1\ case split on y = x and the axioms for Apply 

= Apply I y 

So we have two different finite maps that agree on all elements to which they are applied 

and hence are equal by the naive formulation of equality. To fix this we modify the 

characterisation of equality to say that two finite maps are equal only if, in addition to 

agreeing on all elements, their domains are equal. The following theorems can be proved 

I- TIl g. «Domain I = Domain g) 1\ (Apply I = Apply g» = (f = g) 

r VI g. 

«Domain I = Domain g) 1\ (Vx. Domain I x :::> (Apply I = Apply g» 

= (f = g) 

B.3 The logical definition of finite maps 

B.3.1 Possible representations 

Having decided on the characteristic axioms we now must supply a model from which 

these can be derived. From the view of a programmer the obvious choice is a list of 

pairs. This has practical merits since lists are well supported in HOL. But we soon run 

into difficulties if we take this path. Consider the two lists [(x, int), (x, int)] and [(x, int)]. 

These are clearly equal when considered as the finite maps mapping x to int, but are 

not logically equal lists. 

In the theory for HOL-ML [MG94, VG93] this problem was overcome by defining the 

update function so that only ordered lists with every element appearing at most once in 

the domain can be constructed. Thus the lists representing two equal finite maps will 

also be equal. The disadvantage here is that an ordering over the domain of the map is 

needed, an ordering that should not be needed. 

A variation is to define an equivalence relation relating all lists that are equal when 

considered as finite maps and then define the type of finite maps to be the quotient 

of lists with this relation. Each element in the defined type will be represented by an 

equivalence class of lists generated by the defined equivalence relation. 

Another possible representation is sets of pairs. This solves some of the problems 

indicated above but forces us to ensure that no two elements of the set have the same 
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first element. In set theory functions are represented as sets of pairs. This is a good 

representation of functions in terms of the fundamental object, namely sets. In HOL 

functions are the fundamental object and therefore sets offer us no advantage. The 

representation discussed in the next section therefore uses functions instead. This also 

avoids the need to restrict the theory to some particular set library. 

B.3.2 The representation used 

The representation used is a function from the type of the domain, 0:, to the type /3+ one. 

This function maps an element to one if it is not in the domain of the map and to the 

image of the element if it is in the domain. 

What remains is to define a notion of finiteness for functions of this type. A predicate 

is_fmap can be defined inductively by the following rules: 

is_fmap (Aa. (InR one)) 

is_fmap f 
is_fmap (Ax. (x = a) => Inl b I f x) 

This gives rise to an induction principle that expresses the finiteness of the functions for 

which is_fmap holds. 

rVP. 

P (Ax. InR one) 1\ 

(VI. PI::> (Va b. P(Ax. (x = a) => (Inl b) I (J x»))) 

:> 

(V f. isJmap I :> P f) 

The type (a, {J)fmap can then be defined to be the set of functions of type Q -+ ({J + one) 

for which is_fmap holds. The witness that this new type is non-empty is the function 

Ax. InR one, which represents the empty finite map. A bijection between the the type 

(0:. (3)fmap and the representation is defined by the functions fmap..ABS, of type (a -+ 

({3 + one) -+ (a, {3)fmap and fmap_REP, of type (a,!3)fmap -+ (a -+ (/3 + one». This 

process of defining a new type and the bijection is described in [GM93J. 

The constants Empty, Update, Apply, and Domain can be defined in terms of the 

representation as follows: 

r Empty = fmap..ABS (Aa. InR one) 

r Update f (a,b) = fmap..ABS (Ax. (x = a) => Inl b I (fmap_REP f) x) 

r Apply f x = Outl «fmap_REP f) x) 

r Domain f x = Isl «fmap_REP f) x) 
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From these definitions we can derive all the axioms given in section 2. Having done so 

the representation is not used again; all other theorems in the theory can be proved from 

just these seven axioms. 

The derivation of the characteristic axioms for each constant is straightforward. The 

axioms can be proved easily at the representation level and then "lifted" to the abstract 

level. The derivation for the stronger induction principle requires an induction over 

the size of the domain. This proof involves formaiising the concept of the size of the 

domain. The HOL implementation of these proofs currently employs a set library but 

this dependency on sets will be removed for the final finite maps library. 

B.3.3 Consistence, independence and completeness 

The axioms listed in section 2 are consistent because they are derivable from the model 

just described. Completeness of the axioms with respect to the model can be shown 

by assuming that the axioms hold and showing that the type specified by the axioms is 

isomorphic to the model. We show that the function rep with the defining property 

I- VI: (o:,j3)fmap. rep I = AX. (Domain I X '* InL (Apply I x) IlnR one) 

is a bijection from the type (0:, j3)fmap to the subset of the type 0: ...... (13 + one) satisfying 

the predicate is_fmap, using only the axioms and not the underlying model. This gives 

us a means by which to reconstruct the model from the axioms. 

This function rep is onto and one to one: 

I- VI: 0: ...... (13 + one). is_fmap I ::) (3g. rep 9 = f) 
I- "flU: (o:,{3)fmap) (g : (0:, (3)fmap). (rep I = rep g) ::) U = g) 

and its image is contained in the subset of 0: ...... (13 + one) defined by is_fmap: 

I- VI: (0:, (3)fmap. is_fmap (rep f) 

This is in effect an redefinition of the function fmap_REP using only the axioms and 

not referring to either fmap.ABS or fmap_REP. 

We believe that the axioms are also independent but have not attempted a formal 

proof. That is, we have not shown that a model can be found for each possible set of 

axioms with one axiom replaced by its negation. While still important for theoretical 

reasons, this property is not as important in practice; it does not affect either what can 

be proved or the consistency of the system. 
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B.4 Enriching the theory 

The seven theorems that characterise finite maps are sufficient to build a rich and use­

ful theory. The most important theorems that can be proved are those characterising 

equality, as discussed above. Many more theorems can also be proved about the basic 

constants, but this section concentrates on how the theory can be extended with new 

concepts built up from the seven axioms. 

The only method introduced so far for constructing finite maps is Update. In practice, 

functions are needed to update finite maps by extending them with other finite maps 

and to allow the domain over which a finite map is defined to be reduced. 

The constant Extend is defined so that 

d I) {
Apply I x if Domain I x 

Apply (Exten 9 x = 
Apply 9 x otherwise 

Formally, the defining property of Extend is: 

f- VI g. 

("Ix. Domain (Extend I g) x = Domain I x V Domain 9 x) " 

("Ix. Apply (Extend I g) x = «Domain I x) ~ (Apply I x) I (Apply 9 x))) 

This definition is made by first proving, by a straightforward induction over f, that a 

function with this property exists and then using the principle of constant specification 

to define Extend. More useful theorems about Extend can be derived from this definition. 

Some examples are 

I- Vg. Extend Empty 9 = 9 

f- V I. Extend f Empty = f 

f- VI 9 x y. Extend (Update I (x, y» 9 = Update (Extend f g) (x, y) 

f- VI 9 x y. Extend f (Update 9 (x,y» = 
«Domain f x) ~ (Extend f g) I (Update (Extend I g) (x, y») 

I- VI 9 x. Domain (Extend I g) x = Domain I x V Domain 9 x 

These results all follow by simple proofs using the basic axioms and the definition of 

Extend. 

All the constants discussed above either increase or preserve the domain of a finite 

map. A constant DRestrict can be defined which reduces the domain of a finite map to 

those elements satisfying some predicate. DRestrict is again defined by proving the exis­

tence of a function with the appropriate properties and then using constant specification. 
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The function is characterised by the theorem 

I- VI p. 

("Ix. Domain (DRestrict I p) x = Domain I x /\ P x) /\ 

("Ix. Domain I x II P x :::> (Apply (DRestrict I p) x = Apply I x» 

Some useful properties that can be proved of DRestrict are 

I- Vp. Restrict Empty p = Empty 

I- VI p a b. 

DRestrict (Update I (a,b)) p = 
{(P a) => {Update (DRestrict I p) (a, b)) I (DRestrict I p» 
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I- VI p q. DRestrict I (Ax. p x V q x) = Extend (DRestrict I p) (DRestrict I q) 

The proofs of these theorems are again straightforward. The function Delete, to remove 

a single element from a finite map, can be defined in terms of DRestrict. 

A related concept to the domain of a finite map is the range. An element is in 

the range if there is some element in the domain which is mapped to it. The function 

Range and RRestrict are defined with the same functionality as Domain and DRestrict 

but rela.ting to the the range rather the domain. 

Another important concept is composition, either of two finite maps or a finite map 

and a function. Three infix composition functions are defined: 

Lo_f: ({3, "()frnap -+ (0, {3)fmap -+ (0, "()fmap 

o_f : ({3 ~) ~ (G,{3)fmap -. (G, -y)fmap 

Lo : {{3,"()fmap -+ {o -+ {3) - {G,"()fmap 

The notation is designed to show the link with composition of functions 

o : {{3 -+ "() -+ (0 -+ (3) -+ (0 -+ "() 

Two of the other functions defined are Submap, a mapping that is defined on a subset 

of the domain of another map but maps the elements for which it is defined to the same 

values and EveryMap, a function that takes a predicate and tests whether it holds of 

every pair of (domain,range) elements inserted into the finite map. 

B.5 Finite maps and recursive types 

In this section we consider the problem of defining recursive types that include finite 

maps. It is a well known difficulty with the HOL system that types such as 

Val = CONST I RECORD num -+ Val (B.1) 
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may not be introduced into the system easily by automated or manual techniques. This 

is because the presence of the function num -+ Val results in a type that is too large 

for the trees used in the system's automatic type definition package [MeI89j. The user 

must therefore carry out a tiresome type construction manually. A possible solution is 

described in [Gun93j. 

A related problem is that of defining types of the form 

Val = CONST I RECORD (num, Val)fmap (B.2) 

Types such as this are often used to represent expression values in programming language 

formalisations such as the definition of Standard ML [MTH90j. This section describes 

how types of this form may be introduced into HOL manually, without needing a solution 

to the more general problem (B.I) above. 

The method we will use is as follows. First, we shall define a mapping between the 

type (0, f3)fmap and a subset of the type (n, {3)list. We then show that this mapping 

gives a unique list for each finite map, which we call its canonical representation. Next 

we manually introduce the concrete type 

ListVal = list_CONST I list_RECORD (num x ListVal)list (B.3) 

into HOL. We use a subset of this type as the representation for type (B.2). Finally 

we develop the necessary theorems which characterise type (B.2) independently of its 

representation. 

B.5.t Canonical representations for finite maps 

We introduce two operators FFst and FRest which decompose a finite map into a single 

element and a remainder. This does not need an ordering of elements in the finite map, 

since we appeal to the HOL choice operator. 

~ '<I f. 

FFst f = (€p. Domain f (FST p) A (SND p = Apply f (FST p»))) 

~ '<I f. FRest f = Delete (FST (FFst f) f 

A relation Canon_Rei between finite maps and paired lists can now be defined by primitive 

recursion on lists: 

~ ('<If. Canon_Rei f [) = (f = Empty» A 

('<Ifht. 

Canon_Rei f (Cons h t) = 
-,(1 = Empty) A (h = FFst f) A Canon_Rei (FRest f) t) 
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Intuitively this definition ensures that I is related to I if and only if I has the form 

[FFst I, FFst (FRest f), FFst (FRest (FRest I», ... J. Thus precisely one list is defined 

for each finite map. It is a lengthy process, but fairly straightforward, to prove that 

Canon_Rei defines a unique list for every map. 

Based on Canon_Rei, two functions Canon_oLFmap and Fmap_oLCanon can then be 

defined, giving an isomorphism between finite maps and their canonical representations. 

t- (VJ. Fmap_oLCanon (Canon_oLFmap f) = f) A 

(VI. 

Canon_Rei (Fmap_of _Canon I) 1 ::) 

(Canon_oLFmap (Fmap_oLCanon I) = l» 

B.5.2 Introducing the type List Val 

The type 

ListVal = List_CONST I list_RECORD (num x ListVal)list 

can be introduced manually using a technique similar to that for the type 

data = List-CONST I List-RECORD (data)list 

(B.4) 

(B.5) 

The manual method for doing this was described on the info-hol mailing list [Me191]. 

The only real complication is that we are defining a type where a recursive reference 

to the type occurs nested within a product type on the right-hand side. We derive the 

following characteristic theorem for the type, which states that a unique function exists 

for every primitive recursive specification over the type: 

t- Ve I. 3! In. 
(fn List_CONST = e) A 

(VI. In (list-RECORD l) = I (MAP (fn 0 SND) i) l) 

B.5.3 Introducing the type Val 

A subset of ListVal, isomorphic to our required type Val, is defined by a predicate Is_Val 

introduced by a primitive recursive definition: 

t- Is_Vallist_CONST A 

(Vi. Is_Val (List_RECORD i) = 
(3/. Canon_Rei / I) A ALLEL (Is_Val 0 SND) I» 

where ALLEL tests if a predicate is true of every element of a list. This definition ensures 

that each list within a List Val value is a canonical representation of some finite map. 
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The new type Val is now introduced based on the subset defined by Is_Val. The 

constructors CONST and RECORD are defined in terms of List-CONST and List_RECORD 

. The characteristic theorem for the type is derived from the characteristic theorem for 

List Val. The derivation is a lengthy forward proof, and relies on properties of FFst, 

F Rest , EveryMap and the functions Canon_oLFMap and FMap_oLCanon. The resulting 

theorem is: 

I- lie f. 3! fn. 

(fn CONST = e) A 

(lifmap· fn (RECORD fmap) = f (fn o_f fmap) fmap) 

where o_f composes a function with a finite map. This gives a full characterisation of 

the type Val. As with other HOL recursive types, an induction principle for Val may be 

derived from this theorem, along with theorems proving that the constructors CONST 

and RECORD are one to one and distinct. 

B.6 Decision procedures 

HOL theories typically corne with a set of tools for reasoning about the constructs defined 

in them. This section discusses some decision procedures for finite maps, and in partie· 

ular a conversion for determining the result of applying a finite map to an element. The 

decision procedures for finite maps fall into two categories; those which simplify terms as 

far as possible and return a single theorem capturing the result of this simplification; and 

those which will perform case splits and make additional assumptions to return more 

information. We first discuss an example of the former. 

B.B.1 Simplifying terms 

Function evaluation conversions can be introduced for all the constants defined in the 

theory. For example, the conversion Extend_CONV : cony simplifies the addition of finite 

maps as far as possible. For the finite map, 

Extend (Update Empty (1, T)) (Update Empty (2, F)) 

Extend.CONV will return the theorem 

I- Extend (Update Empty (1, T» (Update Empty (2, F» = 

Update (Update Empty (2, F» (I, T) 

Note that in this case the conversion has been able to remove the Extend operator 

completely. The conversion Restrict_CONV : cony - cony simplifies terms of the form 
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Restrict f p as far as possible. The first argument must be a conversion to evaluate 

applications of the restriction function p to individual elements of the domain of f· 

B.6.2 A reducer for Apply 

The most common decision procedure needed for finite maps is one to determine the 

result of applying a finite map to an element. A similar conversion computes whether 

an element is in the domain of a map. 

Finite maps are frequently used in formal descriptions of programming languages, 

and it is common to write symbolic evaluators for these languages once they have been 

embedded into HOL. Such a symbolic evaluator was constructed for the Standard ML 

Core language in [Sym92J. When writing a symbolic evaluator it is useful to have an 

application reducer capable of handling applications of finite maps containing HOL vari­

ables, as in the case Apply (Update E (x,200» y. This lookup may arise if the evalu­

ator were reducing a program expression such as "let x • 200 in y" in an arbitrary 

variable environment E. It is useful if the symbolic evaluator can make the necessary 

assumption that the variable y has some value in this environment, which can later be 

proved by type inference or some other method. We rarely want the symbolic evaluator 

to fail just because it cannot determine exactly the result of applying an arbitrary finite 

map to an element. 

The conversion described in this section does not halt when it cannot determine the 

result of an application. Instead it makes additional assumptions in order to compute a 

result. These are accumulated in the assumption list of the returned theorem. Sometimes 

the most important use of these assumptions is to help the users of the conversion find 

mistakes in their input. 

The apply reduction conversion, Apply_CONV, has type cony - convl. The type 

convl is a function from a term to a list of theorems corresponding to the results of 

evaluation under different assumptions. 1 The first argument should be a conversion 

that decides equality between members of the domain of the finite map. For example, 

applying Apply_CONV to num_EQ_CONV and the term 

Apply (Update Empty (2, F» x 

returns the theorems 

(2 = x) .- Apply (Update Empty (2, F»x = F 

(2 :F x) .- Apply (Update Empty (2, F))x = Apply Empty x 

lin the current implementation a lazy list or sequence is used. since the function could potentially 

return a large list of theorems. 
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In this example the equality conversion num_EQ_CONV has been unable to determine 

whether 2 = x. Thus, Apply_CONV has returned two theorems with different assump-

tions. 
Applying Apply_CONV to num_EQ_CONV and the term 

Apply (Update (Update (E : (num, booJ)fmap) (x, y)) (1, T)) 3 

returns the theorems 

(x = 3) ~ Apply (Update (Update E (x, y)) (1, T)) 3 = y 

(x ~ 3) ~ Apply (Update (Update E (x, y)) (1, T)) 3 = Apply E 3 

Here, the arbitrary finite map E extended with an arbitrary pair (x, y) and the pair 

(1. T) has been applied to 3. Apply_CONV has reduced the application as far as possible, 

making assumptions about whether or not x = 3. In practice Apply_CONV would be 

used in conjunction with the conversion Domain_CONV. 

Another kind of term we would like to be able to reduce a.re those of the form 

Apply (Extend f g) x. Adding two variable environments together is common in formal 

programming language descriptions, and hence the construct Extend f g will often arise. 

The conversion Apply_CONV is able to reduce applications of this form also, even if the 

Extend operators are nested arbitrarily. 

B.7 An example 

Much of the motivation for this work has come from research on embedding the semantics 

of programming languages in HOL. In this section we give an example of using finite maps 

to reason about a small language (a simply-typed ~-calculus). Finite maps can be used 

in two important places here. The first is in the type system, where a finite map can be 

used to store the context in which a typing judgement holds. Here the finite map used is 

a mapping from identifiers to types. Strictly speaking, there is no need for the mappings 

used here to be finite; for our purposes an infinite map would suffice. But there is also 

no need to allow infinite maps, and the restriction to finite maps provides an induction 

principle that is useful in proofs. 

The second place where finite maps are useful is in the definition of the evaluation 

relation. Here substitution functions or environments mapping identifiers to expressions 

ca.n be represented by finite maps. 

For the purpose of this example we concentrate on the type system. 
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B. 7.1 A small language 

Our aim is to construct a small language that includes variable binding. We define a 

type. ty. to be either an atomic type or a function type: 

ty ::= Atom string 

ty - ty 

and an expression, exp, to be either an identifier, function abstraction, or function 

application: 

exp ::= Id string 

Lambda string ty exp 

App exp exp 

The typing rules are defined as a relation of the form Type C e t where Type has type 

(string, ty)fmap - exp - ty - b001. This denotes true if the expression e has type t in 

the context C. The rules for this relation are: 

Type (Update C (v, t» (Id v) t 

Type (Update C (y, tl)) e t2 

Type C (Lambda y tl e) tl - t2 

Type C el (tl - t2) Type C e2 t) 

Type C (App el e2) t2 

An important point to note about these rules is that the expression Update C (v, t) is 

used to denote any finite map that maps v to t. The use of this expression does not 

imply that (v, t) must be the "last update" used to build the type context. This works 

in our theory because any finite map that maps v to t is equal to a finite map in which 

the last update was (v, t). This gives another illustration of the usefulness of a theory 

in which equality does not depend on the order of the updates. 

B.7.2 Context extension 

This section presents some theorems about how the context of a valid typing judgement 

can be extended. In semantics this is referred to as weakening the context, as we are 

adding surplus information. 
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The first theorem shows that the context can be extended by any mapping from an 

element not already present in the domain. 

~ 'Ve e t. 

Type e e t :J 

('Vx . ..... (Domain ex) ::> ('Vy. Type(Update e (x, y» e t» 
This is proved by an induction over the rules for the Type relation. The proof makes 

use of several of the theorems about finite maps, including the theorem that asserts 

the equality of maps with two elements inserted in a different order provided they are 

updating different elements of the domain. 

Further theorems, which can be proved by a simple induction over one of the contexts, 

show under what conditions extending the context with another context will preserve 

typing judgements. The simplest such theorem is 

~ 'Ve e t. Type e e t :J 'Ve'.Type (Extend ee') e t 

This says the context can be weakened by extension with any context and the type 

judgement will still be preserved. 

B.7.3 Restriction of the context 

An important and practical theorem about this language is that type judgements are 

preserved by restricting the context to the free variables in the expression being typed. 

A function Fv can be defined to test if a variable is free in an expression 

I- ('Vi x. Fv (Id i) x = i = x) 1\ 

(Vy t e x. Fv (lambda y t e) x = (y ~ x) 1\ Fv e x) 1\ 

('Vel e2 x. Fv (App el e2) x = Fv el x V Fve2 x) 

The theorem that can then be proved is 

~ 'Ve e t. Type e e t = Type (DRestrict e (Fv e» e t 

This theorem follows by using the two lemmas below: 

~ VC e t. Type (DRestrict e (Fv e» e t :J Type e e t 

~ 'VC e t. Type e e t :J Type (DRestrict e (Fv e» e t 

The first of these follows by observing that the expression Fv e x V ..... (Fve x) is true for 

any e and x. This is used to show that 

Type e e t 

= Type (DRestrict e «'xx. (Fv e x) V «,Xy . ..... (Fv e y» x») e t 

= Type (Extend (DRestrict C (Fv e) (DRestrict e (,Xy . ..... (Fv e y» e t 
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The result then follows from the theorem 

I- 'VG e t. Type Get :::> 'VG' Type (Extend G G') e t 

The other implication requires an induction over the rules for the relation Type. This 

decomposes the goal into three subgoals, each of which can be solved by manipulation 

of the contexts similar to that used above. 

Both the free variables in a term and the restriction of a context can be computed 

easily using simple conversions. The last theorem then provides a means to reduce the 

problem of type checking in a large context. 

The importance of this simple example is that much of the task of formalising and 

proving these results has been removed by the use of the finite maps library and the 

concepts and theorems developed there. 

B.B Conclusions 

Any theory based on a set of axioms must satisfy two essential properties. First, it 

must be consistent, a fact guaranteed here by the derivation of the axioms from a rep­

resentation in terms of functions. The axioms should also be complete with respect to 

the model. This has been proved and so the equivalent of any property provable in the 

model will be provable from our axioms. 

The principal motivation for this work was the need for a practical tool to aid in the 

development, within HOL, of semantics for programming languages. The theory makes 

the task of meta-reasoning, such as that in the example, significantly easier than it would 

be otherwise. Enough theorems have been proved to allow conversions to be written to 

reduce a variety of expressions involving finite maps to simpler forms. This has practical 

benefits when building systems like partial evaluators or type checkers using HOL. 

One reason that others have used lists to represent finite maps was the ability to 

define recursive types such as those discussed in section 5. We have shown here that 

such types can also be defined with the finite maps presented here, although this is not 

automated. The derivation of this type justifies the axiomatisation of a similar type 

used in [Sym92]. 
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