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Abstract 

Human cytomegalovirus (HCMV) is a highly host-specific, ubiquitous herpesvirus 

that results in asymptomatic infection for the majority of those infected. 

However, it produces serious clinical disease in neonates and 

immunocompromised individuals such as transplant recipients and AIDS patients. 

The majority of the 236 kbp genome is highly conserved, but there are a number 

of highly variable regions, coding and non-coding, scattered throughout the 

genome. Numerous studies have been published investigating the genotypes of 

hypervariable genes, most focussed on potential associations between genotype 

and clinical disease or tropism. In general, no convincing connections between 

genotype and disease have been found.  

The present study investigated two hypervariable HCMV genes, UL146 and 

UL139, in a large number of clinical samples (179) from a number of locations 

worldwide in Europe, Africa, Asia and Australia. A total of 14 UL146 genotypes 

(G1-G14) were detected, which agrees with previous findings based on many 

fewer samples. For UL139, eight genotypes were detected, three of them (G5, 

G7 and G8) novel. The genotypes of both genes appear to have evolved under 

constraint rather than positive selection. Possible bias in the geographical 

distribution of the UL146 and UL139 genotypes was investigated. In general, all 

genotypes were found in all areas and any variation from the expected 

distribution was probably a result of small sample numbers from certain regions, 

specifically Asia and Australia. This general finding is in agreement with that of a 

previously published study on gene UL73. 

No evidence for linkage disequilibrium between UL146 and UL139 genotypes was 

found. This is in accordance with a previously published study of linkage 

disequilibrium among six other genes (UL55, UL74, UL75, UL115, US9 and US28), 

and is consistent with the theory that recombination has played a role in HCMV 

evolution. The absence of linkage between highly variable genes complicates 

attempts to examine associations between genotype and disease, as many 

combinations of genotypes are possible. 

Investigation of transcriptional expression of UL146 and UL139 from HCMV strain 

Merlin in fibroblast cell culture revealed that UL146 is expressed with late 
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kinetics and UL139 with early-late kinetics. Northern blot and RACE data 

suggested that UL146 is 3’-coterminally expressed with UL147, UL147A, UL148 

and UL132, and that UL139 is 3’-coterminally expressed with UL140 and UL141. 

To determine whether the high degree of sequence divergence corresponds to 

structural divergence, the UL146 genotypes were homology modelled on the 

related human chemokines IL-8, gro-α and IF9S. All 14 genotypes were predicted 

to be structurally very similar, which suggests they may also be functionally 

similar. However, small differences between the structures of human 

chemokines are known to result in slightly differing binding affinities for cellular 

receptors, and therefore even small differences between UL146 genotypes could 

conceivably confer functional differences. 

UL139 has been predicted to encode a type 1 membrane glycoprotein. No 

information has been published regarding UL139 function, although a short 

region of similarity with the cellular signal transducer CD24 has been noted 

previously, tentatively suggesting an immunomodulatory role. Preliminary 

experiments to characterise UL139 were performed utilising recombinant 

adenovirus vectors expressing tagged UL139 variants from three genotypes (G1, 

G5 and G7). The tagged UL139 variants expressed proteins that were 

considerably larger in mass than predicted from amino acid sequences. This 

extra mass may be attributable to glycosylation as well as other forms of 

post-translational modification. 

Mixed infections of HCMV strains in immunocompromised individuals, such as 

transplant recipients, have been associated with enhanced pathogenesis and 

increased risk of transplant rejection. The presence of mixed infections also 

further complicates attempts to establish connections between genotype and 

disease outcome. In the analysis of UL146 and UL139 genotypes, multiple 

genotypes were detected in 14% of samples and in 29% when repeated 

experimental results were included, and even these values may be 

underestimations. The utility of a QPCR-based assay using genotype-specific 

primers was assessed as a means of more accurately determining the occurrence 

of mixed infections, and showed promise.  

Passage of HCMV strains in cell culture has been shown to result in various 

mutations. AD169, a commonly used laboratory strain, lacks 15 kbp sequence 
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that includes UL146 and UL139. An alternative stock of AD169 (AD169varUC) was 

obtained that was thought to contain most or all of the deleted region and, 

indeed, both UL146 and UL139 were detected. Further sequencing confirmed 

that this stock is derived from AD169 and revealed that it contains all but 

3.2 kbp of the 15 kbp absent from commonly used AD169 stocks. The 3.2 kbp 

deletion affects UL144, UL142, UL141 and UL140. This propensity of HCMV to 

undergo mutation during cell culture highlights the importance of studying 

characterised strains that are as close to wild type virus as possible. 
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1 Introduction  

1.1 The family Herpesviridae 

The family Herpesviridae consists of large, double-stranded DNA (dsDNA) viruses 

that have a distinctive virion structure, in which the genome is packaged in an 

icosahedral capsid surrounded by a proteinaceous tegument layer within a 

host-derived envelope decorated with viral glycoproteins. The human 

cytomegalovirus (HCMV) virion will be described in detail in Section 1.3.4. 

Herpesviruses have been isolated in a wide variety of hosts from mammals to 

invertebrates, and over 200 have been identified to date. All characterised 

herpesviruses have been shown to establish and maintain latent infections in 

their natural host. Further studies have shown that viral replication and capsid 

assembly occur in the nucleus, whereas maturation takes place in the cytoplasm. 

Production of infectious virus particles inevitably results in cell death.  

The family Herpesviridae contains three subfamilies, the Alphaherpesvirinae, 

the Betaherpesvirinae and the Gammaherpesvirinae (Davison et al., 2005a). The 

Alphaherpesvirinae are neurotropic and establish latency in neuronal ganglia. 

They exhibit broad host species range in vitro. Members that infect humans 

include herpes simplex virus types 1 and 2 and varicella-zoster virus (HSV-1, 

HSV-2 and VZV, respectively). The Betaherpesvirinae are characterised by slow 

replication in cell culture and restricted host range. They establish latency in 

peripheral blood monocytes (Kondo et al., 1991; Kondo et al., 1994). Members 

include cytomegaloviruses (CMVs) such as HCMV (also known as human 

herpesvirus 5 (HHV-5)) and murine cytomegalovirus (MCMV), and also human 

herpesviruses 6 and 7 (HHV-6 and HHV-7). The Gammaherpesvirinae are 

lymphotropic and infect lymphocytes in vitro. They establish latency in 

lymphocytes. Members include Epstein-Barr virus (EBV), equine herpesvirus 2 

(EHV-2) and Kaposi’s sarcoma-associated herpesvirus (KSHV) (which is also known 

as human herpesvirus 8 (HHV-8)). 

Recently, two new herpesvirus families have been established, the 

Alloherpesviridae (fish and frog herpesviruses) and Malacoherpesviridae 

(containing a bivalve herpesvirus) classified with the revised Herpesviridae 

(mammal, bird and reptile herpesviruses) into an order, the Herpesvirales (see 
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www.ictvnet.org) (Davison, 2002, 2002a, 2002b; Davison et al., 2005; McGeoch 

et al., 2006). Table 1.1 compares the previous and revised classification 

schemes.  

Table 1.1. Previous and Revised Herpesvirus Classification 

Taxon Level Previous Taxon Revised Taxon Examples 

Order  Herpesvirales  

Family Herpesviridae Herpesviridae  

Subfamily Alphaherpesvirinae Alphaherpesvirinae  

Genus Simplexvirus Simplexvirus 
HSV-1 

HSV-2 

Genus Varicellovirus Varicellovirus VZV 

Genus Mardivirus Mardivirus Marek’s disease virus  

Genus Iltovirus Iltovirus Infectious laryngotracheitis virus 

Subfamily Betaherpesvirinae Betaherpesvirinae  

Genus Cytomegalovirus Cytomegalovirus HCMV, chimpanzee CMV, rhesus 
CMV, African green monkey CMV 

Genus Muromegalovirus Muromegalovirus MCMV, rat CMV 

Genus Roseolovirus Roseolovirus HHV-6, HHV-7 

Genus  Proboscivirus Endotheliotropic elephant 
herpesvirus 

Subfamily Gammaherpesvirinae Gammaherpesvirinae  

Genus Lymphocryptovirus Lymphocryptovirus EBV 

Genus Rhadinovirus Rhadinovirus Herpesvirus saimiri, KSHV 

Genus  Macavirus Malignant catarrhal fever virus 

Genus  Percavirus EHV-2 

Family  Alloherpesviridae  

Genus Ictalurivirus Ictalurivirus Channel catfish virus 

Family  Malacoherpesviridae  

Genus  Ostreavirus Oyster herpesvirus 

 

Herpesvirus genomes vary considerably in size, the smallest being that of simian 

varicella virus (SVV) at 124 kbp and the largest being that of koi herpesvirus at 

295 kbp (Aoki et al., 2007; Gray et al., 2001). Their G+C content also varies 

greatly, ranging from 32-75 % (Honess, 1984). All members of the Alpha-, Beta-, 

and Gammaherpesvirinae are characterised by a set of 43 ‘core’ genes that have 

been inherited from a common ancestor, although one or two of these genes 

have been lost in some lineages. Most of the core genes encode proteins 

essential for viral DNA replication, viral DNA packaging and capsid structure and 
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assembly. Herpesviruses have evolved through nucleotide substitution, gene 

capture, gene duplication, recombination and genetic rearrangements. Other 

genes appear to be conserved only within subfamilies, genera or species (Davison 

et al., 2003, 2003a).  

Phylogenetic analyses of sequences from host species and the herpesviruses that 

infect them often reveal similar branching patterns, which suggests a large 

degree of co-evolution between virus and host (McGeoch et al., 2000; McGeoch 

et al., 2005). Figure 1.1 shows the five classes of herpesvirus genome structure 

characterised adequately to date. All contain unique regions bounded by internal 

or terminal repeat sequences in direct or inverse orientations. An example of 

class A is HHV-6, B, KSHV; C, EBV; D, VZV; E, HSV-1, HSV-2 and HCMV. 

1.2 Human herpesviruses 

Eight human herpesviruses have been discovered to date representing all three 

subfamilies of the family Herpesviridae.  Many infections by human 

herpesviruses are asymptomatic, but they can result in severe or even fatal 

disease in the very young or immunocompromised. Three members of the 

Alphaherpesvirinae infect humans: HSV-1, HSV-2 and VZV. HSV-1 and HSV-2 are 

closely related and cause clinically similar diseases, although HSV-1 is more 

commonly associated with oral lesions whereas HSV-2 is associated with genital 

lesions (Efstathiou and Preston, 2005). VZV causes chickenpox, a rash of small 

vesicles that rupture and can cause intense itching, and reactivation causes 

zoster (shingles) (Gershon et al., 1997).  

Three members of the Betaherpesvirinae infect humans: HCMV, HHV-6 and 

HHV-7. HCMV is the major infectious cause of congenital disease (Gandhi and 

Khanna, 2004). HHV-6 is related to HCMV and 67% of HHV-6 proteins are 

homologous to proteins in HCMV UL. However, the HHV-6 genome organisation 

differs significantly from that of HCMV (Figure 1.1) as it is composed of a unique 

long (UL) region bounded by terminal direct repeats (Gompels et al., 1995). 

HHV-6 has two variants, HHV-6A and HHV-6B. HHV-6B is more commonly 

associated with exanthem subitum, a febrile illness in children, and occasionally 

febrile seizures (Dewhurst et al., 1997; Kosuge, 2000).   



A Bradley 2008                                                                                                              Chapter 1 17  

  

  



A Bradley 2008                                                                                                              Chapter 1 18  

  

HHV-6A is highly neurotropic and it has been suggested it could be associated 

with neurological diseases such as multiple sclerosis (Berti et al., 2000). HHV-7 

has also been associated with exanthem subitum, and both HHV-6 and HHV-7 

may act as opportunistic pathogens in immunocompromised individuals such as 

transplant recipients (Carrigan et al., 1991).  

Humans are the natural host for two members of the Gammaherpesvirinae: EBV 

and KSHV. Primary infection with EBV can result in infectious mononucleosis in 

adolescents, followed by clearance and persistent infection in B-lymphocytes. 

EBV has also been implicated in nasopharyngeal carcinoma, Burkitt’s lymphoma 

and Hodgkin’s lymphoma (Kutok and Wang, 2006). KSHV is the causative agent of 

Kaposi’s sarcoma (KS), which is frequently found as a complication of HIV 

infection and in older men of Mediterranean or Eastern European background 

(Nascimento et al., 2004). KSHV is common in Africa, where it infects patients of 

all ages but adult KSHV infects predominantly males. It causes more severe 

symptoms in children and young adults (Dedicoat and Newton, 2003, Dedicoat et 

al., 2004; Wahman et al., 1991). 

1.3 Characteristics of HCMV 

HCMV is a member of the genus Cytomegalovirus in the subfamily 

Betaherpesvirinae. Viruses in the genus are characterised by restricted host 

range, long life cycle in cell culture and the production of nuclear and 

cytoplasmic inclusions in infected cells. HCMV was first described in the 1930s in 

association with cytomegalic inclusion disease (CID) in infants, and the 

characteristic ‘owl’s eye’ cytopathology was found in a number of cell types 

from infected patients. These enlarged cells (cytomegalia) resulted in the name 

cytomegalovirus.  

HCMV was first identified as the causative agent of CID in the 1950s (Craig et al., 

1957; Rowe et al., 1956; Smith, 1956). 

1.3.1 Disease and epidemiology 

HCMV can be transmitted via saliva, sexual contact, blood transfusion, 

transplantation (solid-organ and stem-cell), and also from mother to child via 
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the placenta, during delivery or through breastfeeding. The virus is ubiquitous, 

infecting 50-90% of the worldwide population. Where studied in the developing 

world, the majority of people are infected at an early age, with seroprevalence 

approaching 90% (Gandhi and Khanna, 2004).  

For the majority of those infected, primary HCMV infection is asymptomatic. 

Following initial lytic infection, the virus enters a latent state where it remains 

for the remainder of the host’s life. However, HCMV infection can result in 

serious disease in a number of patient types. Congenital infection is one of the 

most important clinical manifestations of primary HCMV infection. Babies 

infected in the first trimester are most at risk, particularly if their mother is 

seronegative. Primary HCMV infections are reported in 1-4% of seronegative 

mothers during pregnancy, and transmission of the virus to the foetus occurs in 

30-40% of these. Reactivation of the virus during pregnancy is reported in 10-30% 

of seropositive mothers and transmission of the virus to the foetus occurs in 1-3% 

of these. Of those infants infected congenitally, 5-10% develop irreversible 

symptoms, including hearing loss, encephalitis, visual impairment, mental 

retardation and sometimes death. HCMV can also be acquired perinatally and 

results in short-term, self-limiting symptoms in 30% of infants infected (Ahlfors 

et al., 1982; Boppana et al., 1992; Malm and Engman, 2007; Stagno et al., 1982, 

1982a). Unfortunately, there is no treatment other than counselling; therefore 

an HCMV vaccine has been given priority by the US Institute of Medicine 

(Stratton, 2000).  

 

HCMV infection is also a serious problem for immunocompromised individuals, 

including organ transplant recipients, allogeneic stem-cell recipients and AIDS 

patients. For transplant recipients, the combination of immunosuppression and 

post-operative stress can result in reactivation of HCMV that was latent in the 

recipient or the donor organ or cells.  

Seronegative patients in receipt of a seropositive organ are most at risk, as they 

have no HCMV-specific immune response. It has also been suggested that 

increased viral load in the infected organ results in increased risk of HCMV 

disease. Infection initiates in the infected organ but rapidly spreads and can 

result in pneumonitis, enteritis, and hepatitis, and can potentially involve the 

CNS (Gandhi and Khanna, 2004). HCMV infection occurs in approximately 17% of 

stem-cell recipients and is usually due to reactivation of latent virus in a 
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seropositive recipient (Zaia, 2002). Before the development of highly active 

antiretroviral therapy (HAART) for HIV-positive individuals, HCMV retinitis was 

found in 25% of patients. While this is no longer a problem in the developed 

world, there can be vitritis due to inflammation and encephalopathy due to 

replication of the virus in the CNS. In general, as AIDS progresses there is an 

increase in HCMV disease. It is not known whether this is a result of increasing 

immune dysfunction because of HIV progression or whether HCMV itself promotes 

progression of HIV (Gandhi and Khanna, 2004; Gerna et al., 1998). In addition, 

HCMV infection in HIV positive children is associated with enhanced mortality 

(Kovacs et al., 1999). 

 

Diagnosis of HCMV infection was previously performed by cell culture of the 

virus. However, owing to the long replicative life cycle of HCMV, it can take 

weeks for visible plaques to form, depending on the inoculum (Drew, 1988). The 

availability of a monoclonal antibody (MAb) to IE protein p72 (IE1/UL123) 

allowed virus to be detected in infected fibroblasts within 24 h by fluorescence 

microscopy (Gleaves et al., 1984). Diagnosis is now performed routinely by 

antigenaemia assay, ELISA, qualitative PCR and quantitative PCR.  Diagnosis of 

congenital infection is performed by isolation of the virus from urine, or 

detection of virus DNA by PCR in urine, saliva, blood or cerebrospinal fluid. The 

presence of maternal immunoglobulin G (IgG) antibodies in the first three weeks 

of the child’s life indicates congenital infection. Diagnosis of prenatal congenital 

infection is more difficult and is usually by detection of HCMV DNA in the 

amniotic fluid (Malm and Engman, 2007; Revello and Gerna, 2004). 

1.3.2 Immune response  

The virion envelope contains a number of glycoproteins and among these, 

glycoprotein B (gB, UL55) is the predominant target for neutralising antibodies 

(Kari and Gerhz, 1990). Glyocproteins H (gH) and gO are also important targets 

for neutralising antibody, which prevents cell-to-cell spread (Paterson et al., 

2002, Urban et al., 1996). The importance of the humoral response in HCMV 

infection is not fully understood. However it is thought that seronegative 

recipients of seropositive organs encounter more severe and more frequent 

primary infection because of the absence of HCMV-specific antibodies (Khanna 

and Diamond, 2006, Gandhi and Khanna, 2004). Natural killer (NK) cells are also 
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thought to play a role in viral clearance through perforin-dependent cytolysis 

and non-cytolytically through induction of interferon (IFN) β (Iversen et al., 

2005). One patient with recurring severe HCMV disease was found to be deficient 

in NK cells (Biron et al., 1989). It is notable that HCMV encodes at least six genes 

involved in NK evasion; UL16, UL142 and the microRNA, miR-UL112, prevent cell 

surface presentation of ligands for the NK cell activating receptor NKG2D, UL18 

encodes a major histocompatibility complex class I (MHC-I) homologue, and UL40 

upregulates expression of MHC-I E (also known as human leukocyte antigen E) 

(Tomasec et al., 2000, 2005; Wilkinson et al., 2008). 

 

MHC-I-restricted HCMV-specific T-cell responses are important in the control of 

viral replication (Chen et al., 2004). Previously it had been thought that CD8+ T 

cells against pp65 (UL83) or p72 (IE1/UL123) constitute the majority of T-cell 

responses in healthy carriers, but it is now known that they constitute only 40% 

(Day et al., 2007). CD8+ T cells against other HCMV antigens, such as pp50 

(UL44), gB (UL55), p86 (IE2/UL122), pp28 (UL99), pp150 (UL32), pp71 (UL82) and 

a number of proteins encoded in US, constitute the remaining 60% (Elkington et 

al., 2003). Indeed, it is this broad repertoire of T-cell responses that establishes 

successful immune control of HCMV infection. A study in which donor-derived 

HCMV-specific CD8+ T cells were given to allogeneic stem-cells recipients 

resulted in immunity for the recipients, thus providing evidence for the 

importance of the T-cell response in HCMV immune defence (Walter et al., 

1995). 

CD4+ T cells also play an important role in the control of HCMV infection. CD4+ T 

cells against pp65 (UL83), gB (UL55), gH (UL75), p72 (IE1/UL123), p86 

(IE2/UL122) and UL69 have been found in some individuals. It is thought that in 

some patients the CD8+ T cell and antibody responses are insufficient to control 

primary infection and that effector-memory CD4+ T cells are required, perhaps 

to help maintain the virus-specific CD8+ T-cell response. Evidence for this was 

found when children with prolonged viral shedding showed persistent deficiency 

of the virus-specific CD4+ T-cell immune response and no deficiency in virus-

specific CD8+ T cells (Chen et al., 2004; Tu et al., 2004). 

 

HCMV has evolved a number of mechanisms for controlling the host immune 

response, including the down regulation of MHC-I and MHC-II molecules, the 
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expression of MHC-I homologues, and NK evasion. HCMV also encodes 

homologues of interleukin 10 (IL-10), IL-8 and a number of chemokine receptors 

that could assist dissemination of the virus and prevent apoptosis. However, as 

discussed above, the virus does not avoid immune recognition and induces a 

broad range of CD8+ T cells. The finding that the recovery of HCMV-specific T-

cell responses resulted in decreased chances of developing HCMV disease led to 

attempts to restore cellular immunity.  

 

A number of methods to isolate HCMV-specific CD8+ T cells have been tried, 

including artificial antigen-presenting cells, peptide-pulsed dendritic cells and 

use of peptide-MHC-I tetramers. Experiments using adoptive transfer failed to 

elicit a virus-specific CD4+ T-helper response, but pre-emptive infusion of 

HCMV-specific CD8+ and CD4+ T cells resulted in expansion of the virus-specific 

T-cell response and reduced the incidence of HCMV disease in recipients (Walter 

et al., 1995). 

 

1.3.3 Treatment of infections 

As there is no vaccine available, preventative measures such as hand washing 

are important and have resulted in reduced virus transmission in the developed 

world, particularly in child care centres, which were previously an area of 

increased risk of infection (Bale et al., 1999). Antivirals such as ganciclovir, 

cidofovir and foscarnet (which inhibit the viral DNA polymerase (UL54)) are used 

to treat HCMV infection in immunocompromised individuals. Phosphorylated 

ganciclovir is a deoxyguanosine mimic that accumulates in infected cells and is 

incorporated into the growing DNA chain during viral replication; following its 

incorporation, one additional nucleotide is incorporated before the DNA 

polymerase stalls (Schaeffer et al., 1978). Cidofovir mimics deoxycytidine 

monophosphate. It is dephosphorylated by cellular enzymes and incorporated 

into the growing DNA chain during viral replication, but it does not result in 

stalling of the viral DNA polymerase unless two cidofovir residues are 

incorporated sequentially (Xiong et al., 1997). Foscarnet (phosphonoformic acid) 

is an analogue of pyrophosphate. Unlike ganciclovir and cidofovir it does not 

compete with deoxynucleoside triphosphates. Instead, it binds the site normally 

occupied by pyrophosphate and prevents normal pyrophosphate release, so that 

the polymerase cannot complete the catalytic cycle (Eriksson et al., 1982).  
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Fomivirsen is an oligonucleotide that is complementary to MIE messenger RNA 

(mRNA) and inhibits translation (Azad et al., 1993).  

 

Owing to teratogenic effects, none of the antivirals described above are licensed 

for use in congenital infections (Faqi et al., 1997). There have been a number of 

small-scale studies using ganciclovir in infants with congenital HCMV. However, 

although treatment suppressed viral replication temporarily, it did not prevent 

long-term damage (Whitley et al., 1997). More recently, Kimberlin et al., (2008) 

showed that treatment of symptomatic congenital HCMV with ganciclovir 

resulted in decreased clinical symptoms during treatment and improved 

outcome. However, viral load increased upon cessation of treatment.  

 

Long term use of HCMV antivirals, particularly in AIDS patients, has resulted in 

the occurrence of antiviral resistance, and more recently there have been 

reports of antiviral resistance in transplant recipients (Lurain et al., 2002). 

Resistance to ganciclovir is most commonly due to mutation in the viral 

phosphotransferase gene (UL97), which reduces phosphorylation of ganciclovir to 

the form required for inhibition of the viral DNA polymerase (Sullivan et al., 

1992). Mutations are also found in the DNA polymerase gene (UL54), and can 

confer resistance to both ganciclovir and cidofovir. Mutations within UL54 also 

confer resistance to forscarnet (Baldanti et al., 2004). Single UL54 mutations can 

confer resistance to all three antivirals (Chou et al., 2003). Resistance to other 

antivirals in development, such as benzimidazole ribonucleosides, have also 

been described (Krosky et al., 1998). This propensity for mutations conferring 

resistance to antiviral treatment increases the urgency for the development of 

an HCMV vaccine. 

 

There have been a number of attempts to develop a vaccine, the first using the 

highly passaged, attenuated Towne strain. This vaccine had few side effects and 

induced CD4+ and CD8+ T-cell immunity and antibody responses. It also reduced 

the severity of HCMV disease in renal transplant recipients. However, it did not 

prevent infection in seronegative women (Plotkin, 2001; Adler, 1995). The 

second was a recombinant vaccine combining parts of the genome from Towne 

and the low passage isolate Toledo. This is currently in clinical trials with 

seropositive individuals (Berstein et al., 2002; Heineman et al., 2006). However, 
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the long-term safety of such vaccines is a major concern, particularly for 

pregnant women.  

A potentially safer strategy is the use of subunit vaccines involving the most 

relevant antigens for vaccination. An attempt using gB (UL55) induced a strong 

neutralising antibody response but showed poor efficacy in preventing HCMV 

infection. A more recent proposal of combining gB with pp65 (UL83) may 

improve efficacy, as pp65 is a dominant cytotoxic T cell target (Pass et al., 

1999). Another proposal is the use of live viral vectors to deliver multiple HCMV 

antigens. Initial testing in seropositive individuals using a recombinant canarypox 

encoding gB (UL55) did not induce a strong gB-specific neutralising antibody 

response (Adler et al., 1999). More recently, a canarypox encoding pp65 (UL83) 

induced strong CD4+ and CD8+ T cell responses, and another poxvirus vector 

encoding gB, pp65 and pp150 (UL32) is being tested (Berencsi et al., 2001; Wang 

et al., 2004). 

1.3.4 Virion structure 

HCMV has a typical herpesvirus structure, consisting of the dsDNA genome 

encased in an icosahedral capsid, surrounded by a proteinaceous tegument 

layer, and enveloped in a host cell-derived lipid bilayer, which contains 

numerous viral glycoproteins (Figure 1.2A). The capsid, which is 130 nm in 

diameter, consists of an icosahedral (T=16) lattice consisting of 161 capsomers, 

which are composed of two distinct units, 150 hexamers (hexons) and 11 

pentamers (pentons) located at the vertices. The capsomers are linked by triplex 

complexes (Figure 1.2B). The hexamers are 15.8 nm apart (centre-to-centre) at 

the outer edge in the HCMV capsid. The average diameter of the HCMV scaffold 

is 76 nm.  

By analogy with HSV-1, the major capsid protein (MCP; UL86) forms hexons and 

pentons and the smallest capsid protein (SCP; UL48A) is located at the tips of 

the hexons. The minor capsid protein (mCP; UL85) associates with the mCP-

binding protein (mC-BP; UL46) in a 2:1 ratio to form the triplex structures that 

link the capsomers (Bhella et al., 2000; Butcher et al., 1998). UL104 encodes the 

portal protein, which forms a high-molecular weight complex, the portal 

complex (Dittmer et al., 2005). By analogy with HSV-1, the portal complex is 
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located at one of the vertices and the HCMV genome is translocated into a pre-

formed procapsid through it (Chang et al., 2007).  

Several capsid forms have been identified in the nuclei of infected cells by 

electron microscopy and sucrose gradient centrifugation. Type A capsids are 

devoid of DNA and are thought to be the result of abortive packaging. Type B 

capsids also lack DNA but contain viral scaffolding protein and are located in the 

nucleus (Gibson, 1996). Type C capsids contain the viral genome and can mature 

into infectious virions (Homa and Brown, 1997).  

The capsid is assembled initially through the formation of an internal protein 

scaffold. The scaffold is composed of the viral protease (encoded by UL80) and 

the assembly protein (AP, encoded by UL80.5) (Wood et al., 1997; Varnum et 

al., 2004). The AP forms a scaffold by self-interaction via N-terminal sequences 

and interacts with MCP via C-terminal sequences (Oien et al., 1997). Proteolytic 

processing of these proteins, removal of the scaffold and packaging of viral 

genome in the core are essential for capsid maturation and the production of 

infectious virions. 

In contrast to the capsid proteins, all of which have homologues in other 

mammalian herpesviruses, some tegument and envelope proteins have 

homologues only in other betaherpesviruses or a subset thereof. The tegument 

appears to be a largely amorphous proteinaceous coating of the capsid that 

maintains association between the capsid and the envelope. It has been 

suggested that, due to interaction with the capsid, the innermost tegument 

layer exhibits icosahedral symmetry (Chen et al., 1999). The tegument contains 

at least 27 proteins, and the majority are phosphophorylated and highly 

immunogenic (Britt and Boppana, 2004). Tegument proteins perform a diverse 

range of functions from transcriptional activation (UL26, Stamminger et al., 

2002) to cell cycle progression (UL82, pp71, Kalejta and Shenk, 2003) to 

envelopment (UL99, pp28, Silva et al., 2003). It may be that the majority of 

tegument proteins function specifically within the infected cell. In this respect, 

the tegument can be viewed both as a part of the virion structure and as a 

system for delivering viral proteins to the cell immediately upon infection. 

The envelope contains eight experimentally confirmed glycoproteins, but as 

many as 40 genes potentially encode glycoproteins, some of which may be  
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present in the envelope (Chee et al., 1990). Some of the more abundant 

glycoproteins such as gB (UL55), gM/gN (UL100/UL73) and gH/gL/gO 

(UL75/UL115/UL74) exist as disulfide-linked complexes  (gCI, gCII and gCIII, 

respectively) within the virion Figure 1.2A. All of these have been shown to be 

essential for production of infectious virus. A recent mass spectrometry-based 

analysis of the relative abundance of HCMV virion proteins confirmed that the 

most abundant virion protein is pp65 and showed that the predominant 

glycoprotein is gM. Virion preparations were found to contain 71 host cellular 

proteins, including cytoskeletal proteins, proteins involved in transcription 

initiation and elongation, structural proteins, enzymes and chaperones (Baldick 

and Shenk, 1996; Britt and Boppana, 2004; Gretch et al., 1988; Hobom et al., 

2000; Varnum et al., 2004). 

1.3.5 Genome structure 

HCMV has the largest known human herpesvirus genome. Its linear dsDNA 

genome is approximately 236 kbp in length and is predicted to contain 

approximately 165 genes (Dolan et al., 2004). The genome consists of UL and a 

unique short region (US) both flanked by inverted terminal repeats (TRL and IRL, 

TRS and IRS), yielding the overall genome configuration TRL–UL–IRL–IRS–US–TRS 

(Figure 1.1). The genome also possesses a short region (called the a sequence) 

present as a direct repeat at its termini and also in inverse orientation at the 

IRL–IRS junction (Spaete and Mocarski, 1985). UL and US can invert relative to 

each other resulting in four different isomers in virions (Mocarski and Courcelle, 

2001). 

1.3.6 HCMV genetic content 

The first HCMV genome to be sequenced was the highly passaged, commonly 

used laboratory strain AD169 (229,354 bp) (Chee et al., 1990). Subsequently, 

sequence errors were found: two in UL102, one of which results in an extension 

of the 5’-end (Smith and Pari, 1995), and one in US28 that results in extension of 

the 3’-end (Neote et al., 1993). Sequencing of the right end of UL in Towne and 

the low passage strain Toledo revealed that AD169 is a multiple mutant. 
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It contains a 15 kbp deletion at the right end of UL, which contains 19 additional 

ORFs in Toledo. The deleted sequences have been replaced by an inverted 

sequence from the left end of the genome, resulting in an expansion of RL in 

AD169 (RL1-RL12 and part of RL13) (Cha et al., 1996). AD169 also contains 

frameshift mutations in genes RL5A, RL13 and UL131A (Akter et al., 2003; 

Davison et al., 2003, 2003a; Yu et al., 2002). Some stocks of AD169 were found 

to contain additional mutations in UL42 and UL43 or UL36 (Dargan et al., 1997; 

Mocarski et al., 1997; Skaletskaya et al., 2001). In summary, AD169 differs 

significantly from wild-type HCMV strains. Moreover, the low passage strain 

Toledo retains sequences at the right end of UL but a substantial region is 

inverted in comparison to clinical HCMV isolates (Davison et al., 2003; Lurain et 

al., 1999). More recently, the low passage clinical isolate Merlin has been 

sequenced and is thought to represent wild type HCMV apart from a point 

mutation in UL128 that results in premature termination (Figure 1.3, Dolan et 

al., 2004). This suggests that even a small number of passages in human 

fibroblasts can result in mutation of the virus genome.  

A major difference between clinical HCMV isolates and highly passaged 

laboratory strains is their ability to infect different cell types in culture. Clinical 

isolates can infect fibroblasts, epithelial and endothelial cells whereas 

laboratory strains (invariably passaged in fibroblast cells) lose the ability to 

infect or replicate in epithelial and endothelial cells.  

This change in tropism is associated with mutation in one of three genes in the 

UL128 locus (UL128, UL130 and UL131A) (Akter et al., 2003; Gerna et al., 2005; 

Hahn et al., 2004). Although the UL128 locus is detrimental to growth in 

fibroblast cells, it is required for growth in epithelial and endothelial cells (Hahn 

et al., 2004).  Mutations have also been described in genes RL5A, RL13 and UL9 

(all related members of the RL11 family) following fibroblast adaptation of 

clinical isolates, and suggests roles in tropism for these genes (Dolan et al., 

2004). The function of these proteins is not known, but another member of the 

RL11 family (RL11) has been shown to bind the Fc domain of IgG (Atalay et al., 

2002). Mutational analysis of a bacterial artificial chromosome (BAC) of Towne 

has suggested roles for UL9 in cell tropism (Dunn et al., 2003).  
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1.4 Replication cycle 

A simplified diagram of the HCMV life cycle is shown in Figure 1.4. By analogy 

with other herpesviruses, the three major HCMV glycoprotein complexes, gCI, 

gCII and gCIII are thought to mediate attachment and entry via initial binding to 

a heparan sulfate cell receptor. gCI (gB) is the major heparan sulfate-binding 

protein and is thought to be necessary for entry into all cell types (Kari and 

Gehrz 1992). Additional cell surface components have been identified as HCMV 

receptors, including epidermal growth factor receptor, integrin αvβ3 (Wang et 

al., 2003), platelet-derived growth factor-  receptor (Soroceanu et al., 2008) 

and toll-like receptor 2 (Compton, 2004). Binding initiates a cascade of events 

that results in fusion of the viral envelope with the cell membrane and release 

of the capsid and tegument into the cytoplasm. The other glycoprotein 

complexes may facilitate entry into various cell types. The gCII complex 

(gN/gM:UL73/UL100) also facilitates entry into the cell by binding heparan-

sulfate. The gCIII complex (gH/gL/gO: UL75/UL115/UL74) facilitates entry into 

fibroblasts by fusion, whereas gH/gL complexed with proteins encoded by the 

UL128 locus may promote entry into epithelial and endothelial cells by 

endocytosis in a pH-dependent manner (Paterson et al., 2002, Ryckman et al., 

2008; Singzer et al., 2008). Alternative entry pathways have also been described 

for other herpesviruses, such as HSV-1 and EBV (Hutt-Fletcher, 2007; Nicola et 

al., 2005). After penetration, the HCMV capsid is transported along microtubules 

to the nucleus, which the viral genome enters through a nuclear pore (Dohner et 

al., 2005, 2005a). The tegument protein UL48 and the binding protein UL47 are 

both essential for replication (Dunn et al., 2003) and are thought to control 

uncoating and release of viral DNA at the nuclear pore (Bechtel and Shenk, 

2002).  

Once the genome enters the nucleus, viral genes are expressed in a temporal 

cascade, the first genes expressed being termed the immediate-early (IE) or α 

genes, followed by the early (E) or β genes, and then finally by the late (L) or γ 

genes. IE genes are expressed immediately upon cell entry and do not require 

expression of other viral genes. E genes require IE protein products for 

expression and can be subdivided into E or β1 and delayed-early (D-E) or β2, 

which are expressed at slightly differing times. L genes can also be subdivided 

into two subclasses, early-late (E-L) or γ1 and true L or γ2, which differ in their 
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dependence upon viral DNA replication (Mocarski and Courcelle, 2001). Indeed, 

only a few viral genes are true L, where expression depends absolutely on viral 

DNA synthesis (Mocarski and Courcelle, 2001; Spector, 1996). E genes tend to 

encode proteins involved in viral DNA replication or modulation of the host cell 

and host immune response. L genes tend to encode structural proteins.  

The tegument protein pp71 (UL82) is thought to play an important role in the 

control of IE gene expression. The mechanism by which it does this is unclear, 

although the interaction between pp71 and the cellular protein hDaxx is thought 

to be involved. It has been suggested that hDaxx allows translocation of pp71 to 

nuclear domain 10 (ND10), a site of viral IE transcription (Ishov et al., 2002). 

Other studies have suggested that pp71 relieves hDaxx-mediated repression of 

major immediate early (MIE) expression (Cantrell and Bresnahan, 2006). The 

pp71 protein is also involved in cell cycle control. It accelerates transition from 

G0 to G1 and progression through G1, the latter by binding members of the 

retinoblastoma (Rb) family and promoting their degradation by a novel 

proteasome-dependent, ubiquitin-independent mechanism (Kalejta et al., 2003). 

The most abundantly expressed IE genes are transcribed from the MIE locus and 

are IE1/UL123 and IE2/UL122 (Stenberg, 1996). Transcription occurs from a 

single transcription start site, and differential splicing and polyadenylation result 

in mRNAs whose products play an important role in the regulation of viral and 

cellular gene expression. Following expression of the MIE genes, the rest of the 

genome becomes transcriptionally active.  

Viral DNA replication results in the formation of head-to-tail concatameric 

genomes that need to be cleaved into unit-length genomes for packaging. First, 

the DNA undergoes site-specific cleavage at pac motifs within the a sequence 

(Spaete and Mocarski, 1985). Unit-length genomes are then encapsidated into 

preassembled capsids. This process is catalysed by a virus-encoded enzyme 

complex called the terminase, in an ATP-dependent manner. The terminase is 

composed of two proteins, pUL56 and pUL89 (Bogner et al., 1998; Giesen et al., 

2000; Spaete and Mocarski, 1985). Encapsidation of the HCMV genome is 

achieved via a larger capsid volume and a higher packaged DNA density than 

those of other herpesviruses (Bhella et al., 2000, Butcher et al., 1998). 
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Figure 1.4 Replicative life cycle of HCMV 
Once the virus enters the cell it is transported along microtubules into 
the nucleus, where it can establish latency (blue circle) or undergo 
productive infection (red circle).  
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The process of herpesvirus envelopment and egress from the nucleus is complex. 

The most commonly favoured model involves envelopment at the inner nuclear 

membrane followed by de-envelopment at the outer nuclear membrane, 

resulting in release of the capsid into the cytoplasm (Homman-Loudiyi et al., 

2003; Muranyi et al., 2002; Mettenleiter, 2004).  The tegument layer is then 

added in the cytoplasm via a complex system of protein-protein interactions. 

This is followed by secondary envelopment, which occurs by budding of the 

tegumented capsid into vesicles of the trans-Golgi network (Homman-Loudiyi et 

al., 2003) or post-trans-Golgi endocytic membranes (Fraile-Ramos et al., 2002).  

Mature virions are then transported to the cell surface using the cellular 

exocytic pathway. Both tegumentation and envelopment are mediated by 

specific protein-protein interactions (Mettenleiter, 2004). 

1.5 Latency 

Like other herpesviruses, HCMV establishes lifelong latent infection following 

primary lytic infection. The virus establishes latency at specific sites in the host 

without production of infectious virus and hence avoids immune recognition. For 

many years the exact site of HCMV persistence eluded detection. It was not until 

the advent of PCR that this question was addressed. HCMV DNA was detected by 

nested PCR combined with fluorescent-activated cell sorting (FACS) in the 

peripheral blood monocytes (specifically CD3- or non-T cells) of healthy, 

seropositive individuals (Taylor-Wiedemen et al., 1991).  

HCMV DNA has also been detected in CD34+ myeloid progenitor cells in the bone 

marrow (Mendelson et al., 1996). Interestingly, CD34+ cells give rise to 

monocytes, as well as to other cell types, including B cells, T cells and 

polymorphonuclear leukocytes (PMNLs). To date, HCMV DNA has not been 

detected in B cells, T cells or PMNLs. However, it has also been detected in 

CD14+ monocytes, dendritic cells (DCs) and megakaryocytes.  

The viral genome isolated from peripheral blood monocytes migrates as a 

circular plasmid on native agarose gels, suggesting that it is maintained as a 

circular episome (Bolovan-Fritts et al., 1999). No evidence for viral IE expression 

has been found, consistent with a situation in which HCMV can be carried in a 

true latent state (Taylor-Wiedemen et al., 1994).  
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Monocytes are non-permissive for viral replication, and it is only when they 

undergo differentiation into differentiated macrophages and immature DCs that 

productive infection is permitted (Sinclair and Sissons, 2006). Reactivation of 

viral gene expression, albeit in the absence of production of infectious virus, has 

been demonstrated by in vitro differentiation of monocytes (Taylor-Wiedemen 

et al., 1994). Supplementation with medium containing cytokines resulted in 

complete reactivation of infectious virus (Söderberg-Nauclér et al., 2001). More 

recently, ex vivo differentiation of CD34+ myeloid progenitors to mature DCs 

resulted in complete reactivation of infectious virus (Reeves et al., 2005).  

It is not known how the latent genome is maintained or whether HCMV encodes 

latent genome maintenance factors corresponding in function to EBV nuclear 

antigen 1 (EBNA-1). However, deletion of sequences near the MIE locus affected 

maintenance of HCMV genomes in experimentally infected undifferentiated 

granulocyte-macrophage precursors (GMPs) maintained in long-term cell culture 

(Mocarski, 2006). One interesting theory is that there is no viral replication in 

CD34+ myeloid progenitors, rather the HCMV genome is carried passively by 

these cells until they differentiate into macrophages and DCs where it then 

reactivates and is reseeded into peripheral blood monocytes (Sinclair and 

Sissons, 2006).  

An experimental model system of latency, using experimentally infected GMPs 

derived from foetal liver cells, was developed by Kondo et al. (1994). Using this 

system, several HCMV transcripts expressed in the absence of productive 

infection were identified. These transcripts, termed CMV latency-specific 

transcripts (CLTs), included novel spliced and unspliced RNA transcripts that 

map to the MIE locus. They have been detected in healthy seropositive 

individuals as well as during cell culture suggesting a role in latency (Kondo et 

al., 1994; Kondo and Mocarski, 1995).  

Jenkins et al. (2004) detected transcription from the UL111A locus using the 

same experimental model of latency. UL111A encodes a protein that is 

homologous to the immune modulator IL-10, termed viral IL-10 (vIL-10), which is 

expressed during productive infection (Kotenko et al., 2000). The UL111.5A 

transcript detected during latency displays an alternative splicing pattern, which 

results in premature termination of the protein. Jenkins et al. (2004) also 
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detected this incompletely spliced transcript in monocytes and peripheral blood 

cells of healthy carriers, suggesting that it is expressed during natural latent 

infection.  

Another study detected an antisense RNA in the bone-marrow monocytes of 

seropositive individuals that is antisense to the UL82 gene, which encodes pp71, 

a known transactivator of the MIE locus (Bego et al., 2005). This could indicate a 

role for latent transcripts in restriction of gene expression. Yet another study 

suggested a role for histone deacetylase in repression of the MIE locus in non-

permissive cells, and found that the MIE promoter associates with 

heterochromatin protein 1 (HP1) in peripheral blood monocytes. HP1 is a 

chromosomal protein that has been implicated in gene silencing (Murphy et al., 

2002). Further studies are required to elucidate the true mechanism of HCMV 

latency and subsequent reactivation, particularly in immunocompromised 

individuals where it has serious consequences.  

1.6 Variability in HCMV 

Whole genome comparisons of sequences from different HCMV strains have 

shown that the genome is highly conserved between strains at both the 

nucleotide and imputed amino acid (aa) sequence levels (>95%) (Murphy et al., 

2003; Dolan et al., 2004). However, highly polymorphic regions are dispersed 

throughout the genome in both coding and noncoding regions, with aa sequence 

identity of 50-80% in the former. Many hypervariable genes are predicted to 

encode glycoproteins that are potentially expressed on the surface of infected 

cells and possibly also embedded in the virion envelope, thus making them 

potential targets for the immune system.  

Figure 1.5 shows the nucleotide divergence between nine HCMV strains, which 

was calculated using an alignment of the sequences at the right end of UL. UL146 

and UL139 are the two most variable genes in this region (Dolan et al., 2004). 

UL146 and UL139 are the focus of this thesis and will be discussed in more detail 

in later sections (Sections 1.9 and 1.10).  
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The following section provides a brief description of gene variation in HCMV, 

focussing specifically on hypervariable genes, potential linkage disequilibrium 

strains  

Figure 1.5 Nucleotide divergence at the right end of UL in nine HCMV 
strains  
Nucleotide divergence between nine strains (Davis, Towne, Toledo, TB40/E, 
Merlin, 3157, 6397, 3301 and W) was calculated using an alignment of the 
sequences at the right end of UL. If all strains were not identical, a nucleotide 
position was counted as divergent, as were gaps in the alignment. The 
inversion in Toledo was corrected. The plot shows nucleotide divergence in a 
100 nucleotide window shifted by increments of three nucleotides. The protein-
coding regions in this region of the genome are shown below the plot, with a 
scale based on their position in strain Merlin. From Dolan et al. (2004). 
 

 



A Bradley 2008                                                                                                              Chapter 1 37  

  

between hypervariable loci, and association between genotype and disease 

outcome. Linkage disequilibrium is a term that describes the non-random 

association of alleles, or genotypes, at two or more loci. The information is 

summarised in Table 1.2. In addition, the occurrence of mixed HCMV infections, 

where more than one genotype is detected in the same sample, is described 

below, and also in more detail in Section 1.7.  

Currently, there is no universally accepted definition of what constitutes a 

genotype. For the purpose of this study, a genotype is defined by phylogenetic 

analysis with bootstrapping, where all sequences in a genotype cluster tightly 

together and nucleotide and amino acid identity is high (>97%). This differs from 

some groups’ interpretation, particularly He et al., 2006, who describe five 

groups for UL146 rather than the 14 genotypes described by Dolan et al., 2004 

and the present study. He and colleagues grouped strains from different 

genotypes together, resulting in aa and nt identities below 80%. 

1.6.1 RL11 family 

The RL11 family contains 14 members: RL5A, RL6, RL11-RL13, UL1, and UL4-

UL11. All members are in close proximity on the HCMV genome, and all but UL5 

and UL8 contain the characteristic RL11D domain. This domain consists of a 

region of variable length (65-82 aa) containing three conserved aas (W, C and C) 

and a number of potential N-linked glycosylation sites. Most RL11 proteins are 

believed to encode transmembrane glycoproteins, although their functions have 

yet to be determined. Several RL11 family members are hypervariable, 

particularly RL12, RL13 and UL9 (Dolan et al., 2004). Proteins containing the 

RL11D domain have also been identified in members of the family Adenoviridae, 

in the E3 region (Davison et al., 2003, 2003a; Dolan et al., 2004).  

Sekulin et al. (2007) analysed the sequences of the RL11D domain in several 

RL11 family genes (UL1, UL4, UL6, UL7 and UL10) in 70 unpassaged clinical 

isolates, and confirmed them as highly variable. UL1, UL7 and UL10 fell into 

three genotypes whereas UL4 and UL6 fell into four genotypes. UL1 showed the 

highest level of variation and in addition ~13% of samples contained frameshifts 

or point mutations that resulted in a stop codon and premature truncation of 

UL1. Multiple genotypes were detected in 28 samples (40%). Statistically 
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significant linkages between the genotypes of the genes examined were 

detected, which may be a consequence of their close proximity on the genome. 

Specifically, evidence for linkage disequilibrium was found between UL6 and 

UL7, UL4 and UL7, UL1 and UL4, and UL4 and UL6. As the clinical samples were 

obtained from a number of body sites, investigation of potential 

compartmentalisation was performed. No significant association was found with 

the exception of one UL7 genotype (B), which was detected exclusively in urine 

samples at the 5% significance level (Sekulin et al., 2007).  

 

1.6.2 UL4 major transcript leader 

UL4 is a member of the RL11 family and encodes a glycoprotein (gpUL4 or gp48) 

(Chang et al., 1989; Dolan et al., 2004). Expression of UL4 is controlled by an 

unusual translational mechanism, where the peptide product of a small ORF 

(uORF2) upstream of UL4 (within the 5’-leader sequence) apparently blocks 

translation termination at its own stop codon and causes ribosome stalling. This 

prevents other ribosomes from accessing the UL4 initiation codon. uORF2 has 

been shown to be hypervariable in the N-terminal region and this sequence 

variation results in variation in repressor activity (Alderete et al., 1999).  

A study by Bar et al. (2001) investigating UL4 leader sequences in ten AIDS 

patients and 21 bone marrow transplant recipients described four genotypes 

(1, 2, 3A and 3B) with 23% nucleotide divergence between sequences. 

Polymorphisms were dispersed throughout the leader sequence. More than one 

strain was found in five of the ten patients. In all but one patient with a mixed 

infection, different genotypes were isolated from different body sites, but 

genotype 3B, found in a single patient, was isolated from four different body 

sites, suggesting no association between genotype and tissue sample. The same 

study found no evidence for linkage disequilibrium between UL4 genotypes and 

gB genotypes (Bar et al., 2001). 

1.6.3 UL11 

UL11 is a member of the RL11 family (Chee et al., 1990). A study by Hitomi et 

al. (1997) investigated UL11 sequences in eight passaged clinical strains and 

compared them with UL11 in Towne and AD169. UL11 was found to be highly 
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variable towards the N-terminus, which is predicted to contain a signal sequence 

and an extracellular domain (Chee et al., 1990), whereas the C-terminal region 

was highly conserved. All sequences fell into three genotypes, with aa sequence 

identity only 57% in the N-terminal region (Hitomi et al., 1997). 

1.6.4 UL37 

The UL37 locus encodes three UL37 IE proteins, the UL37 exon 1 protein 

(pUL37x1), pUL37 (which is encoded mostly by UL37 exon 3) and pUL37M. All 

three proteins contain the same N-terminal signal sequence, a strongly charged 

acidic domain and two domains essential for their anti-apoptotic activity 

(encoded by UL37 exon 1). pUL37 and pUL37M are both N-linked glycoproteins, 

which are produced via alternative splicing and polyadenylation of UL37 RNA 

(Goldmacher et al., 1999). Investigation of UL37 exon 1 sequences in 26 HCMV 

strains, four of which were passaged, found them to be highly conserved 

(Hayajneh et al., 2001a). UL37 exon 3 encodes the C terminus of pUL37 and 

pUL37M, and was found to be variable in 20 clinical isolates (15 unpassaged and 

five passaged once on HFFs), with variation concentrated in the first three-

quarters of the exon (aa sequence divergence of 28%). In contrast, residues 

within the transmembrane region and cytosolic tail were highly conserved 

(Hayajneh et al., 2001). 

1.6.5 UL55 

UL55 encodes gB, which is essential for viral replication in vivo and in vitro, and 

has roles in virus attachment, cell entry and cell-to-cell spread (Section 1.4). 

Expression of UL55 results in a glycosylated precursor molecule that is cleaved 

after codon 461 to generate gp55 and gp116, which together form a dimeric 

complex called gCI through the formation of disulfide bonds (Britt and Vulger, 

1989). Variation in gB was first described by Chou and Dennison (1991), when 

restriction fragment length polymorphism (RFLP) analysis and partial sequencing 

revealed that HCMV strains fell into four main genotypes (gB1-gB4), based on 

variation around the cleavage site of gB. Variation towards the N terminus has 

also been described, whereas the C terminus is well conserved. Investigation of 

sequences at these three sites (i.e. the cleavage site, the N terminus and the C 

terminus) confirmed four genotypes (termed gBn1/gBcls1/gBc1/2, 
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gBn2/gBcls2/gBc1/2, gBn3/gBcls3/gBc3/4 and gBn4/gBcls4/gBc3/4) (Meyer-König et 

al., 1998).  

Three additional genotypes (gB5-gB7) have been detected since, albeit at very 

low frequencies, and these may actually be subtypes of gB1 and gB3 (Shepp et 

al., 1998; Trincado et al., 2000). The full degree of sequence divergence 

between gB genotypes has not been described, as most gB genotyping studies 

relied on RFLP and partial sequences. Some evidence has been presented for 

differences in geographical distribution of gB genotypes (Zipeto et al., 1998), 

and mixed infections have been detected (Aquino and Figueirdo, 2000). 

Investigation into potential differences in cell tropism between gB genotypes 

found that strains with gB1 did not infect T lymphocytes whereas those with gB2 

and gB3 did. However, this may reflect small sample size (ten), as all gB 

genotypes were detected in blood and urine samples (Meyer-König et al., 1998), 

which is in agreement with the findings of Carraro and Granato (2003). 

There have been numerous studies that utilised gB genotyping to investigate 

potential correlation with disease. In one study, gB1 was more commonly 

detected in bone marrow transplant recipients with non-fatal HCMV infection 

compared with fatal cases (Fries et al., 1994). AIDS patients who developed 

retinitis as a complication of HCMV infection were more frequently infected with 

gB1 than other genotypes (Rasmussen et al., 1997). Analysis of gB sequences 

from 15 congenital infections in Hungarian samples found that they all contained 

gB1 (Lukacsi et al., 2001). In contrast, investigation of gB in renal transplant 

recipients (n=34) revealed no association between gB genotype and the 

development of HCMV disease (Aquino and Figueirdo, 2000). Contradictory 

findings may reflect the fact that most of these studies used small sample sizes 

and different patient types. This, together with lack of linkage between gB 

genotypes and the genotypes of other variable genes, means that any 

conclusions need to be treated with caution. 

1.6.6 UL73  

UL73 encodes a type I transmembrane glycoprotein, gN, which together with 

gM/UL100 forms the glycoprotein complex gCII, which is a major heparin-binding 

complex (Section 1.4).  
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gN is a major target for the immune system and induces a neutralising antibody 

response. gM is thought to act as a chaperone for gN processing, and is highly 

conserved (Pignatelli et al., 2004). In contrast, gN is highly variable, with 

variation concentrated in the highly glycosylated N-terminal region. 

Phylogenetic analysis of 40 UL73 sequences from clinical isolates revealed four 

major genotypes (gN1-gN4), with gN4 divided into three subtypes (gN4a, gN4b 

and gN4c) and nucleotide sequence identity ranging from 80-87%. UL73 

sequences were found to be stable over time within patients and when passaged 

in cell culture (Pignatelli et al., 2001).  

A large scale study by Pignatelli et al. (2003), which examined UL73 sequences 

in 223 clinical samples (urine and saliva samples were passaged, whereas all 

other samples were unpassaged) from a number of locations worldwide, 

confirmed the existence of four main genotypes and also identified a novel 

subgroup within gN3, which resulted in division of gN3 into two subtypes (gN3a 

and gN3b). This study also investigated potential bias in the geographical 

distribution of genotypes and the possibility that these sequences were under 

positive selection. The genotypes gN1 and gN2 were found to have evolved under 

neutral selection, whereas gN3 and gN4 each contain regions that are under 

positive selection. No differences in genotypic frequencies between regions were 

observed and all gN genotypes were represented in all regions. Perhaps as a 

consequence of a much larger sample size, aa sequence divergence was found to 

be as high as 50% between some sequences.  

Dal Monte et al. (2004) considered whether there was any linkage between gN 

genotype and cellular tropism. They hypothesised that isolates collected from 

urine and saliva samples had epithelial cell tropism and isolates collected from 

blood or biopsy samples had endothelial cell tropism. They analysed UL73 

sequences in 102 samples with endothelial cell tropism and in 81 samples with 

epithelial cell tropism. However, no significant association between gN 

genotypes and epithelial or endothelial tropism was found.  

1.6.7 UL74  

The envelope glycoprotein complex gCIII (which is composed of gH/gL/gO) 

mediates cell entry and cell-to-cell spread through membrane fusion (see 
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Section 1.4). gH (UL75) and gL (UL115) are relatively well conserved between 

HCMV strains, although two gH genotypes (gH1 and gH2) have been described 

(Chou, 1992; Pignatelli et al., 2004). In contrast, gO (UL74) is hypervariable, 

particularly towards the N terminus where divergence reaches 40% (Paterson et 

al., 2002).  

Both gH (UL75) and gL (UL115) are found in all mammalian and avian 

herpesviruses studied to date, whereas gO is specific to betaherpesviruses. EBV 

also encodes a gH/gL complex that includes a third component, in this case 

gp42, which is unrelated to gO. gp42 is essential for infection of B lymphocytes 

but is not required for infection of epithelial cells (Wang and Hutt-Fletcher, 

1998). It has been suggested that variation in gO may confer differences in cell 

tropism (Jarvis and Nelson, 2007).  

Phylogenetic analysis of UL74 (gO) and UL115 (gL) sequences from 40 low-

passage clinical samples by Rasmussen et al. (2002) led to the description of four 

major genotypes for both genes, although UL115 sequences varied by less than 

2%. In contrast, UL74 sequences varied by as much as 46%. No association 

between genotype and patient type was found. 

Rasmussen et al. (2002a) also analysed gH (UL75), gL (UL115) and gO (UL74) in 

84 samples by RFLP and found evidence for genetic linkage between gH1 and 

gO1. This could be due to their close proximity on the genome (they are 

adjacent genes) or their functional interaction in the gCIII complex. However, 

this does not explain the lack of linkage observed between other gH and gO 

genotypes, nor does it explain the absence of linkage between gL and gO or gL 

and gH. It should also be noted that they grouped UL74 sequences into only four 

genotypes based on RFLP analysis rather than sequencing, therefore their 

suggestions of linkage should be treated with care. 

Mattick et al. (2004) sequenced the hypervariable N-terminal region of gO 

(UL74) in 50 unpassaged clinical isolates and described four major groups (gO1, 

gO2, gO3 and gO4) with some further division into subtypes: gO1a, gO1b and 

gO1c, and gO2a and gO2b. Intergenotypic variation was high, whereas within 

genotypes the sequences were highly conserved.  Phylogenetic analysis of 

intergenotypic alignments suggested that some residues were under positive 

selection and, when branch lengths were allowed to vary, positive selection was 
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detected close to the base of the tree. Based on this finding, the authors 

postulated that gO sequences were under positive selection early in their history 

and that if the sequences have since been under purifying selection, fixation of 

synonymous changes could mask other positively selected residues. As these 

workers had previously genotyped gN (UL73) and gB (UL55) in some of these 

samples, they investigated potential linkage between these genes and found 

strong evidence for linkage between gN and gO genotypes, which could reflect 

their proximity on the HCMV genome (they are only 28 nt apart on the genome). 

However, gH and gO are also adjacent genes, but they are over 400 nt apart and 

the lack of linkage between gH and gO genotypes may be a consequence 

increased recombination due to this increased distance. Mixed infections were 

detected, albeit at low frequencies (four of the 50 samples).  

1.6.8 UL123 

UL123 is a MIE gene that encodes the IE1 protein, which is essential for viral 

replication in vivo and in vitro and is a transactivator that positively 

autoregulates IE1/IE2 and U3 expression (Mocarski et al., 1996). Sequencing of 

the fourth exon of the IE1 gene (MIE exon 4) in seven samples from 

immunocompromised patients and the laboratory strains AD169 and Towne 

identified five aa sequence changes in two of the seven patients (Brytting et al., 

1992). The sequences were conserved over time both within patients and when 

passaged in cell culture. A mixed infection was identified in a single patient. 

A larger study by Retiere et al. (1998) sequenced MIE exon 4 in 25 clinical 

isolates, and phylogenetic analysis of these strains plus AD169 and Towne 

revealed three groups. These workers also sequenced gB in these isolates and 

found no evidence for linkage disequilibrium between MIE exon 4 genotypes and 

gB (UL55) genotypes, nor did they find any evidence for linkage between 

genotype and pathogenesis.  

A more recent study investigated sequences of MIE exon 4 (as well as gB (UL55) 

and UL97) in HCMV strains from six immunocompromised patients, plus AD169 

and Towne (Mousavi-Jazi et al., 2000). The aim was to evaluate a potential link 

between genotype and replication rate by monitoring HCMV gene expression and 

the production of infectious virus. No evidence for a connection between MIE 
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exon 4 genotype (or gB (UL55) or UL97 genotype) and viral replication was 

found, and all sequences fell into groups 1 and 3 as determined by Retiere et al. 

(1998).  

1.6.9 UL144  

UL144 encodes a tumour necrosis factor (TNF) α-like receptor that may play a 

role in HCMV virulence by facilitating evasion of the immune system (Benedict et 

al., 1999). This finding led to interest in UL144 as a potential marker of 

pathogenesis and to the discovery that UL144 is highly variable, with 21% 

nucleotide and aa sequence divergence between 45 clinical isolates (Lurain et 

al., 1999). Phylogenetic analysis revealed three major genotypes. Investigation 

of UL144 sequences in 62 passaged samples from congenitally infected neonates 

(23 from living neonates and 39 autopsy samples from ten foetuses) again 

revealed three major genotypes (A, B and C). 

Two recombinant subtypes A/B and A/C (i.e. an A type sequence in the N-

terminal part of the gene and a B- or C-type sequence in the C-terminal part of 

the gene) were also identified (Arav-Boger et al., 2002). Variation was 

concentrated in the N-terminal region and mixed infections were detected in 

eight of the ten autopsied samples. Some evidence for an association between 

UL144 genotype and disease outcome was found, suggesting that infection with 

the most commonly detected genotype, genotype B, conferred a more 

favourable prognosis.  

A number of studies have investigated UL144 sequences in various patient types, 

and all have described three major genotypes A, B and C, which were detected 

in 97% of samples. The recombinant subtypes (A/B and A/C) were detected in 

only 3% of samples. These subtypes may be due to a PCR artefact (Section 1.7), 

and duplicate experiments are required to confirm their presence. All genotypes 

were distributed amongst seropositive infants and adults and among 

symptomatic and asymptomatic foetuses, suggesting a lack of association 

between UL144 genotype and clinical disease (Bale et al., 2001; Mao et al., 

2007; Picone et al., 2005). 
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1.6.10 The a sequence 

The a sequence is a small repeat sequence (~600 bp) found at the HCMV genome 

termini and also in inverted orientation between IRL and IRS (see Figure 1.1 and 

Figure 1.3). It contains two conserved motifs, pac1 and pac2, both of which are 

required for cleavage and packaging of DNA during replication (Spaete and 

Mocarski, 1985). Phylogenetic analysis of the a sequence in 39 low-passage HCMV 

isolates revealed six distinct groups. The largest group contained 16 isolates with 

>95% nucleotide identity. The same study examined potential linkage between a 

sequence groups and gB (UL55) genotypes and found no evidence for linkage 

disequilibrium (Bale et al., 2001). A more recent study investigated the a 

sequence in 74 HCMV clinical isolates from 60 Japanese infants and children 

(collected from 1983 to 2003), and phylogenetic analysis revealed five groups 

(Tanaka et al., 2005). 

1.6.11 Short tandem repeats  

A short tandem repeat (STR) or microsatellite is a DNA sequence motif of 1-6 

nucleotides that is repeated. They are found in eukaryotes and some prokaryotes 

and tend to be hotspots of length mutation, possibly due to replication slippage 

(Field and Wills, 1998).  

The HCMV genome contains at least 24 STRs, and examination of their sequences 

in ten passaged clinical isolates plus AD169 and Towne revealed variation 

between strains (Davis et al., 1999). Many STRs are located in non-coding regions 

of the genome, and variation in length, as well as point mutations, occur. For 

the majority, two or three variants were detected, but ten variants were 

detected for one region.  

A later study by Walker et al. (2001) examined the sequences of ten STRs in 44 

clinical isolates plus AD169 and Towne, in order to examine the utility of STRs 

for HCMV strain characterisation. These workers developed a PCR-based assay, 

which utilised primers specific for ten STRs, to compare the STR patterns 

obtained for each, and found they could accurately differentiate between HCMV 

strains. They found STRs to be highly variable (one to 12 variants) and suggested 
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that multiplex STR analysis rather than multiple gene genotyping, which is time 

consuming, could be used for strain comparison. 

Table 1.2. A Selection of Studies of Variation in HCMV Genes 

Variable 

gene or 

region 

Protein Number of genotypes 

(% aa sequence 

divergence) 

References 

UL1 gpUL1  
(RL11 family) 

3  Sekulin et al., 2007 

UL4 gp48  
(RL11 family) 

4  Alderete et al., 1999; Bar et al., 2001; 
Sekulin et al., 2007 

UL6 gpUL6  
(RL11 family) 

4  Sekulin et al., 2007 

UL7 gpUL7  
(RL11 family) 

3  Sekulin et al., 2007 

UL10 gpUL10  
(RL11 family) 

3  Sekulin et al., 2007 

UL11 gpUL11  
(RL11 family) 

3 (43%) Davison et al., 2003a; Hitomi et al., 

1997 

UL37 gpUL37 and 
gpUL37M  

5 (28%), based on exon 
3 

Hayajneh et al., 2001, 2001a 

UL55 gB gB1-gB4 (9.5%) 
(3 rare gB5-gB7)  

Chou and Dennison, 1991; Meyer-König 
et al., 1998; Pignatelli et al., 2004; 
Shepp et al., 1998; Trincado et al., 

2000 
UL73 gN  gN1-gN4c  

(7 including subtypes) 
(50%) 

Mattick et al., 2004, Pignatelli et al., 
2001, 2002, 2003 

UL74 gO  gO1-gO5 
(7 including subtypes), 

20%  
(40% at N-terminus) 

Mattick et al., 2004, Paterson et al., 
2002; Rasmussen et al., 2003, Stanton 

et al., 2005  

UL75 gH  21% at nt level, only 5% 
at aa level 

Rasmussen et al., 2003 

UL123 IE1 Specifically within 
exon 3 (28%) 

Brytting et al., 1992; Mousavi-Jazi et 
al., 2000 

UL139 gpUL139 3  
(5 subtypes) 

Qi et al., 2006 

UL144 gpUL144  
(TNF-α-like 
receptor) 

gA,gB,gC (subtypes gAC 

and gAB) or g1,g2,g3 

(22%) 

Arav-Boger et al., 2002; Bale et al., 

2001; Coaquette et al., 2004; Lurain et 

al., 1999; Picone et al., 2005 

UL146 vCXCL-1 14 (G1-G14) Arav-Boger et al., 2005, 2006, 2006a; 
Dolan et al., 2004; Lurain et al., 2006; 
Stanton et al., 2005; He et al., 2006 

UL147 vCXCL-2  Arav-Boger et al., 2005; He et al., 

2006; Lurain et al., 2006 

STR N/A 24 STRs,1-15 genotypes Davis et al., 1999; Picone et al., 2005; 
Walker et al., 2001 

a 
sequence 

N/A 6 (65%) Bale et al., 2001; Tanaka et al., 2005 
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STRs have been described in other viruses and it has been suggested that 

variation in these elements may affect virulence. Variation in the length of 

trinucleotide repeats at the haemagglutinin glycoprotein cleavage site of avian 

influenza virus has been associated with enhanced virulence (Perdue et al., 

1997). Analysis of seven STRs in 47 HCMV clinical isolates from congenitally 

infected infants and immunocompromised individuals revealed a greater number 

of alleles for these STRs (up to 15 variants) than previously reported, although 

this may reflect the larger sample number. The same study found no evidence 

for association between STR alleles and clinical disease (Picone et al., 2005a). 

1.7  Mixed HCMV infections 

The occurrence of more than one strain in an HCMV infection (a mixed infection) 

complicates genotyping studies and consequent attempts to identify potential 

associations between genotype and disease. It also has important connotations 

for vaccine design, particularly since pre-existing immunity to one strain offers 

only partial protection against reinfection with another strain (Boppana et al., 

2001). With MCMV, mixed infections have been reported in 23-67% of free-living 

mice, and experiments using two MCMV strains found that laboratory mice could 

be infected simultaneously or successively with more than one strain, even in 

the presence of MCMV-specific antibody and CTL responses (Gorman et al., 

2006).  

Mixed infections may also have important implications for transplant recipients, 

where there have been reports that such infections may result in increased viral 

load, HCMV disease and subsequent rejection of the transplant (Coaquette et 

al., 2004; Gerna et al., 1992; Puchhammer-Stöckl et al., 2006). 

The proportion of mixed infections is likely to be underestimated as a 

consequence of methods employed for diagnosis and genotyping. Specifically, 

isolation of virus from clinical samples by cell culture may result in selection of 

certain virus variants and the loss of others. 

Additionally, analysis of a single hypervariable locus is insufficient for 

assessment of mixed infections, as, for example, patients with a single gB (UL55) 

genotype were found to have more than one gN (UL73) genotype (Puchhammer-
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Stöckl et al., 2006). This is not surprising, given the lack of linkage between 

hypervariable loci (Rasmussen et al., 2003). This is also likely to be a reflection 

of the higher level of variation observed for gN (UL73) when compared to gB 

(UL55), thus making it a more sensitive marker. 

Furthermore, PCR conditions need to be optimised, as the presence of multiple 

related sequences in a reaction can result in a recombination artefact, which is 

thought to be a consequence of incomplete primer extension during elongation 

steps. Incomplete extension can occur if short extension times are employed or 

the DNA secondary structure interferes with DNA polymerase binding, causing 

the polymerase to ‘fall off’ (Judo et al., 1998; Qiu et al., 2001). The 

incompletely extended primer can anneal to a different, partially 

complementary template in a subsequent cycle and undergo extension to 

produce a recombinant or ‘chimera’ (Judo et al., 1998). In regards to HCMV, 

identification of recombinant molecules by PCR following co-infection 

experiments suggested a high frequency of recombination between HCMV strains 

infecting the same cell (Sevilla-Reyes, 2007). However, this was shown to be due 

to the PCR artefact described above. 

It may be that coinfection with more than one strain facilitates 

complementation and results in enhanced virus fitness. Attenuated MCMV strains 

have been shown to benefit from coinfection and can complement each other in 

vivo via trans-complementation (Čičin-Šain et al., 2005). 

1.8 Recombination in HCMV 

Recombination produces genetic diversity and can accelerate genetic divergence 

as it produces new alleles or genotypes (Mayr, 2001). Homologous recombination 

and non-homologous (or illegitimate) recombination have both been described in 

herpesviruses (Dohner et al., 1988; Henderson et al., 1990; Nishiyama et al., 

1991). Homologous recombination is recombination between two pieces of DNA 

containing sequence homology, whereas non-homologous recombination occurs 

in the absence of sequence homology.  

Homologous and non-homologous recombination are likely to have played a role 

in HCMV evolution. For example, host genes are thought to have been captured 
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through recombination between the viral genome and host sequences and 

subsequent duplication of some of these genes has produced gene families such 

as the CXC-chemokines (UL146 and UL147). Duplication events are also likely to 

be the result of recombination (Arav-Boger et al., 2005; Davison et al., 2003a; 

Sahagun-Ruiz et al., 2004).  

The absence of linkage disequilibrium between hypervariable loci in HCMV is 

consistent with recombination having played an important evolutionary role 

(Rasmussen et al., 2003). Despite this, there has been no evidence of 

recombination within genes producing different genotypes at hypervariable loci, 

with the exception of rare forms of gB and one gO genotype (Mattick et al., 

2004).  

1.9 UL146  

The hypervariable gene UL146 encodes a CXC (or α) chemokine designated 

vCXC-1. UL146 in strain Toledo encodes a fully functional chemokine that 

produces chemotaxis, calcium mobilisation and neutrophil degranulation. vCXC-1 

binds to human CXCR2, and its activities are comparable to those of human 

chemokines IL-8 and gro-α (Penfold et al., 1999). UL146 is thought to promote 

virus dissemination through this ability to attract monocytes to the initial site of 

infection. Phylogenetic analysis of UL146 sequences in 17 unpassaged clinical 

isolates (urine, whole blood and tissue samples) identified 14 genotypes (Dolan 

et al., 2004). Variation is distributed throughout the gene. Only the 

characteristic CXC chemokine motif and four additional residues are completely 

conserved between genotypes. UL146 sequences are stable over time, both in 

vitro when passaged in fibroblasts, and in vivo by sequencing isolates from the 

same patient over a period of several years (Stanton et al., 2005; Lurain et al., 

2006). 

Numerous studies (some published during the course of this thesis work) have 

investigated whether UL146 genotype correlates with HCMV disease (Stanton et 

al., 2005; Hassan-Walker et al., 2004; Lurain et al., 2006; He et al., 2006). All of 

these studies utilised relatively small sample sizes (11–50 patients) and all, with 

the exception of one study (He et al., 2006), examined only 

immunocompromised individuals (neonates, AIDS patients and transplant 
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recipients). Connections between clinical outcome and UL146 genotype were not 

detected.  

He et al. (2006) investigated HCMV strains circulating in 25 infants or young 

children and all but two showed symptoms of HCMV-associated disease. This 

group did not use the genotype nomenclature established previously (Dolan et 

al., 2004), and instead divided UL146 sequences into three major groups (G1, 

G2, G3) with some divided into subgroups (G1A, G1B, G2A and G2B), making a 

total of five groups. No significant connection between UL146 genotype and 

clinical outcome was found, although it was noted that two asymptomatic 

individuals contained the same genotype (G2B). He et al. (2006) conceded the 

limitations associated with using such a small sample size. Based on these 

groupings, evidence for linkage between UL146 and UL144 genotypes was 

detected. However, this finding could have been compromised by the use of a 

smaller number of genotypes (three) than those reported previously (14, Dolan 

et al., 2004).  

Lurain et al. (2006) sequenced UL144, UL146, UL147, UL147A and the intergenic 

region (between UL146 and UL147) in 50 clinical isolates. UL146, UL147 and the 

intergenic region were highly variable. All UL146 sequences grouped into the 14 

genotypes described previously (Dolan et al., 2004). All UL147 sequences and 

intergenic sequences also clustered into 14 groups. No evidence for linkage 

disequilibrium between UL146 genotypes and UL144 genotypes was found. UL146 

was expressed as a true L gene on a single transcript (3.7 kb) that includes 

UL147, UL147A and UL132 (Lurain et al., 2006).  

HCMV encodes additional cytokines such as UL147 (a putative CXC-chemokine 

adjacent to UL146 for which no functional data has been reported) and UL111A 

(vIL-10). An alternatively spliced UL111A transcript (UL111.5A) is expressed 

during latency, which is speculated as encoding an IL-10 homologue that may 

prevent immune recognition (Jenkins et al., 2004). CCMV contains two 

homologues of HCMV UL146, CCMV UL146 and UL146A (Davison et al., 2003). 

CCMV UL146 is a functional CXC-chemokine that can induce calcium mobilisation 

and chemotaxis, although it binds CXCR2 with lower affinity than 

Toledo-encoded vCXCL-1 (Miller-Kittrell et al., 2007). RhCMV also encodes a 

number of UL146-related genes (Alcendor et al., 1993; Penfold et al., 2003).  
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1.10 UL139  

UL139 is predicted to encode a type I membrane glycoprotein. As observed for 

other hypervariable glycoproteins, variation is concentrated at the 5’-end of the 

gene encoding the putative ectodomain (Dolan et al., 2004). During the course 

of this thesis work, Qi et al. (2006) reported the sequences of UL139 in 19 low 

passage clinical isolates (fewer than ten passages in human embryonic lung 

fibroblasts) and seven urine samples from 26 HCMV-positive infants. All 

sequences fell into three major groups (G1, G2 and G3) with two divided into 

subgroups, making a total of six genotypes (G1A, G1B, G1C, G2A, G2B and G3).  

Variable numbers of predicted N-linked glycosylation, casein kinase II 

phosphorylation and N-myristoylation sites were reported. Mixed infections 

(three genotypes) were detected in three patients (~12%). No association 

between UL139 genotype and disease was found, although the authors conceded 

that the sample size was too small to make definitive conclusions in this regard. 

A region of sequence similarity between all variants of the UL139 protein and 

CD24 was noted (SETTTGTSSNSSQST). This region is rich in serine and threonine 

residues that could be potentially O-glycosylated. This region is located just 

downstream of the predicted signal sequence cleavage site and upstream of the 

highly conserved C-terminal region. 

CD24 is a cellular glycosyl phosphatidylinositol-linked glycoprotein that is a 

signal transducer involved in B cell activation (Fisher et al., 1990). Additional 

roles for CD24 in apoptosis and cell adhesion have also been suggested, and 

more recently in regulating the responsiveness of a chemokine receptor, CXCR4 

(Smith et al., 2006; Schabath et al., 2006). It has been suggested that CD24’s 

role as a ligand for P-selectin could help tumour cells exit from the bloodstream 

and hence promote metastasis (Kristiansen et al., 2004). Variation in 

glycosylation has been observed in CD24 and has been linked to differences in 

cell and tissue specificity (Goris et al., 2006; Poncet et al., 1996). This similarity 

to CD24 is intriguing as it suggests a possible immunomodulatory role or even a 

role in tissue tropism for UL139. However, no expression or functional data have 

been published for UL139. 
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1.11 Specific Objectives of the study 

UL146 and UL139 are two of the most hypervariable HCMV genes. Both probably 

have roles in regulation of the immune response, and indeed, Toledo-encoded 

UL146 has been shown to encode a functional chemokine (Penfold et al., 1999). 

To date, 14 UL146 genotypes (Dolan et al., 2004) and, during the course of this 

thesis work, six UL139 genotypes (Qi et al., 2006) have been described. The 

initial aim of this study was to characterize UL146 and UL139 sequences in a 

much larger panel of clinical isolates than examined previously, from a range of 

distinct geographical locations and clinical settings.  

Specific foci of the study were as follows: 

• The total number of UL146 and UL139 genotypes in circulation and their 

frequencies of occurrence 

• The geographical distribution of genotypes  

• The modes of evolution that may have given rise to the different 

genotypes 

• To understand the effects of in vitro and in vivo passage and the 

generation of hypervariation 

• The potential genetic linkage between UL146 and UL139 genotypes 

• The frequency of mixed infections  

• The potential structural differences between the proteins ecoded by 

UL146 genotypes 

• The transcription of UL146 and UL139  

• The basic characterisation of the UL139 protein  

 

UL146 and UL139 are located in the region at the right end of UL that is absent 

from laboratory passaged stocks of AD169 (Cha et al., 1996). However, a stock of 

AD169 (AD169varUC) included in the genotyping study was found to contain both 

genes. The sequence of the entire region at the right end of the UL that is absent 

from normal AD169 stocks was determined. 
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2 Materials and Methods 

Materials 

2.1 Viruses 

The collection of 184 HCMV virus strains used in the genotyping study 

(Chapter 3) consisted of 179 anonymised clinical samples from disparate 

geographical locations plus five commonly used laboratory strains (Davis, Merlin, 

TB40/E, Toledo and Towne). Some strains were derived by collaborators as 

routine diagnostic specimens grown in human fibroblast cell culture (maximum 

of 5 passages, indicated in Table 3.1). They were kindly supplied as DNA 

extracted from body tissues, urine, saliva or infected cells by collaborators as 

detailed in Table 2.1. Full details of the collection are summarized in Table 3.I. 

DNA extraction, PCR, cloning and sequencing of the Hungarian and Dutch 

samples (37) was performed by Ida Kovács (University of Szeged). Australian, 

Gambian, Hungarian, Dutch and Chinese samples were extracted using the 

Nucleospin Tissue kit (Macherey-Nagel) according to the manufacturers 

instructions for "Purification of CMV DNA from urine". Scottish samples were 

extracted using a robot and the Qiagen DNA extraction Kit (with the exception of 

the CSF samples which were extracted manually using Qiagen colums). German 

and South African samples were extracted using the Qiagen blood extraction kit, 

in a dedicated room in which no herpesvirus experiments were performed. All 

extractions were performed by experienced operators working to category II 

standards, taking strict precautions to prevent genomic contamination, which 

included negative controls.  

HCMV strain Merlin (previously called isolate 742;Tomasec et al., 2000; Dolan et 

al., 2004) was kindly provided by Prof. G. W. G. Wilkinson (Cardiff University) 

and was used in all transcript mapping studies. 

AD169varUC was generously provided by Prof. N. Lurain (University of Chicago) 

via Prof. P. Ghazal (University of Edinburgh). 
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2.2 Cells and cell culture media 

Phosphate buffered saline   8 g/l NaCl 

(PBS)      0.2 g/l KCl 

      1.44 g Na2HPO4 

      0.24 g KH2PO4 

Versene     0.2 g/l EDTA in PBS 

      0.002% (w/v) phenol red 

 

Giemsa strain    Sigma-Aldrich 

10 X trypsin solution   Invitrogen 

Polyfect transfection reagent  Qiagen  

Tetrachloroethylene   Acros Organics 

10 X citric saline solution   100.6 g/l KCl 

      44.12 g/l sodium citrate 

MEM non-essential amino acids 

100 X, without L-glutamine  Biosera Ltd 

L-glutamine (200 nM)   Invitrogen 

Penicillin-streptomycin    

(10000 U/ml)     Invitrogen 

Foetal calf serum (FCS)   Invitrogen 

2.3 Oligonucleotides  

Custom DNA oligonucleotides were designed for PCR, RACE (Table 2.2) and 

QPCR. QPCR genotypic primers are shown in Table 3.12. PCR and sequencing 

primers for the right end of UL in AD169varUC are shown in Table 2.3. All primers 
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were manufactured by Sigma-Aldrich and provided as lyophilised solids, which 

were resuspended in distilled water to a final concentration of 100 μM.  

Table 2.1. HCMV Strain Sources 
Samples Viral samples DNA extraction 
A1-A18 William D. Rawlinson and Gillian M. Scott, Prince 

of Wales Hospital, Sydney, Australia 
Derrick Dargan, MRC Virology 

Unit 
C1-C10 Paul K. Chan, Prince of Wales Hospital, Shatin, 

Hong Kong, China 
Derrick Dargan, MRC Virology 

Unit 
D1-D7 Thomas F. Schulz and Khaled R. Alkharsah, 

Hannover Medical School, Hannover, Germany 
Charles Cunningham, MRC 

Virology Unit 
E1-E12 Vincent C. Emery, Division of Infection and 

Immunity, Royal Free and University College 
Medical School, London, England.  

Paul A. Moss, University of Birmingham, 
Birmingham, England 

Derrick Dargan, MRC Virology 
Unit 

G1-G18 Steve Kaye, MRC Laboratories, Banjul, The 
Gambia 

Derrick Dargan, MRC Virology 
Unit 

H1-H30 Rozalia Pusztai and Ida J. Kovács, University of 
Szeged, Hungary 

Ida J. Kovács, University of 
Szeged 

I1-I7 Giuseppe Gerna, IRCCS Policlinico, San Matteo, 
Italy 

Derrick Dargan and Charles 
Cunningham, MRC Virology Unit 

N1-N6 Rozalia Pusztai and Ida J. Kovács, University of 
Szeged, Hungary 

Ida J. Kovács, University of 
Szeged 

S1-S45 William F. Carman and Bassam B. Ismaeil, 
Gartnavel General Hospital, Glasgow, Scotland 
Colin C. Geddes, Western Infirmary, Glasgow, 

Scotland 

Bassam B. Ismaeil, Gartnavel 
General Hospital 

U1-U5 Alistair McGregor, University of Minnesota, 
Minneapolis, USA 

Alistair McGregor, University of 
Minnesota.  

Derrick Dargan, MRC Virology 
Unit 

W2-W9 Gavin W. G. Wilkinson, Cardiff University, 
Cardiff, Wales 

Gavin W. G. Wilkinson, Cardiff 
University.  

Charles Cunningham, MRC 
Virology Unit 

Z1-Z15 Martin Dedicoat, Ngwelezane Hospital, 
Empangeni, KwaZulu-Natal, South Africa 

 Thomas F. Schulz and Khaled R. Alkharsah, 
Hannover Medical School, Hannover, Germany 

Khaled R. Alkharsah, Hannover 
Medical School 

 

2.4 PCR, QPCR and SMART RACE PCR 

Advantage 2 polymerase  

10 x PCR buffer 

Advantage UltraPure PCR  

dNTP mix     BD Clontech  



A Bradley 2008  Chapter 2    56  

  

SYBR® Green PCR master mix  Applied Biosystems 

(containing SYBR® Green 1 Dye, AmpliTaq Gold® DNA Polymerase LD,  

dNTPs with dUTP/dTTP blend, ROX and optimized buffer components) 

 
Table 2.2. Primers used for PCR, Sequencing and RACE  

Gene/Plasmid Primer Sequence (5’-3’) Locationa 

UL146 AB4 TAGACACTACGTCGTAAATG 180494-180513 

UL146 A162 TGTAGAATTAGTCTAGATTCCTGA 181524-181501 

UL146 UL146-4A GCTTGCGCGTTAGGATTGAGACAC 180571-180594 

UL146 UL146-3A ATACCGGATATTACGAATT 181341-181323 

UL139 AB1 GTCATTGTGAAAGTGACGTCTCAG 186389-186412 

UL139 AB2 ATCTACTGTAAACCCTCTGCTCTG 187148-187125 

UL139 UL140-3A GCGGCATTGGTGTACGCGTG 187058-187078 

UL139 UL140-11A GTGGAAATTTTTACGTCATT 186572-186553 

pGemT F21 ACGTTGTAAAACGACGGCCAG N/A 

pGemT R21 CACACAGGAAACAGCTATGAC N/A 

UL139 5’UL139RACE CAGCAGCTGGACACTTTACGTACTAGCC 186607-186634 

UL139 3’UL139RACE CTGCTGGTACCACTAACACGACTACACC 186790-186763 

UL140 3’UL140RACE TCGGCTTCATCGTTACGCTAC 186186-186166 

UL141 3’UL141RACE GTGTTGGTCGCCGAGGGAGAG 185250-185230 

UL146 5’UL146RACE CACCTGTTATCGTTGCGTTTGTCTAGCC 181009-181036 

UL146 3’UL146RACE GTGCATGGAACGGAATTACGCTG 181235-181213 

UL139 NthUL139FWD ATGCTGTGGATATTAGTTTTATTTG 186878-186853 

UL139 NthUL139REV TAAAGGTGGAGGCGGAGCCACT 186484-186462 

UL146 NthUL146FWD ATGCGATTAATTTTTGGTGCG 181292-181271 

UL146 NthUL146REV GGATCATCCAGACTTCCTTATT 180952-180930 

N/A SMART II A  AAGCAGTGGTATCAACGCAGAGTACCGGG N/A* 

N/A 5’ RACE CDS A (T)25VN (N=A,C,G,T; V= A,C,G) N/A* 

N/A 3’ RACE CDS A AAGCAGTGGTATCAACGCAGAGTAC(T)30VN   N/A* 

N/A Long UPM CTAATACGACTCACTATAGGGCAA 

GCAGTGGTATCAACGCAGGT 

 

N/A* 

N/A Short UPM CTAATACGACTCACTATAGGGC N/A 

pAL942 PMV100f GTGAACCGTCAGATCGCC N/A 

pAL942 PMV100r AGTACGGTTTCACAGGCG N/A 

UL54 UL54fwd ACGGCCAAACCATGTCATGACTCA 81670-81693 

UL54 UL54rev GTCATGTTCGACGGTCAGACG 81778-81758 
a With reference to RefSeq accession NC_006273.2 (HCMV strain Merlin). 

Where the second coordinate is larger than first, primers are in the rightward orientation on 
genome. Where the reverse is the case, primers are leftward oriented. 

* Supplied with SMART RACETM cDNA Amplification kit 
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Table 2.3: PCR and Sequencing primers for right end of AD169 

PCR 
Product Primer Sequence (5’-3’) Genome locationa 

RL5A C3 CAGAGTTATACTATAGTC 4928-4945 
 C5 GTTGACCTAGTTAGATTT 5493-5476 

RL13 A7 GATACATGCGTCGTATGCCGCCAC 8943-8966 
 A10 ATTCCAAACCGGATACGCTACATA 13096-13073 

UL11 A13 GTATGGAGGTCACTGTCAGAGTAG 17517-17540 
 A16 GGACAGCTGGTACGTCGCTCCTTG 19490-19467 

UL73 A76 CATGCAAACGAATTGCGCGTCCAG 106158-106181 
 A77 CATGCACGACTCGGACGACGTCCT 109057-109034 

UL131A UL132-11 GCCATGCAACCCGTCTCGCT 177903-177884 
 UL132-4 GTCATGCGGTTTGGAATACG 177085-177104 

UL148 UL146-8A CTGAGACGTCATGCTGGTAG 212553-212534 
 UL132-10A CAGCAACCCGAACGCGACCA 178612-178631 

UL122 A155 ACGGTACATAGTTACCCTCTCGAC 169963-169986 
A155 A156 TAGAGTTCTTTACCAAGAACTCAG 173170-173147 
A156 A121A CCTGTGGAAGGTAGATTACGACAG 170082-170059 

 A157 TGATCAATGTGCGTGAGCACCTTG 172996-173019 
 UL122-3 TGTCTTCTTATCACCATCAG 172195-172176 
 UL122-6 GGTTTAATAATCACCTTGAA 171947-171966 
 UL122-7 GAACAGGGTGAAGAAGTCGA 171810-171791 
 UL122-10 GCACACCCAACGTGCAGACT 171383-171364 
 UL122-11 TCCGCCACTGCTGCATTTCA 171577-171596 
 UL122-12 TAGCGTGGCATTGATGGTCA 170244-170263 
 UL122-14A GGCGCTCTCAACCTGTGCCT 170919-170900 
 UL122-15 TGTGCTCCATGAGGAAGGGA 171090-171109 
 UL122-16 GGACACTGTGTCTGTCAAGTCTGA 172473-172450 
 UL122-19A CCACACGTTAATACTGTCAC 170622-170641 
 UL122-20 GGGAGACTTAGAATCTCTTG 170459-170440 
 UL123-1C ACAGGCGTGACACGTTTATTGAGT 172217-172240 
 UL123-3 ACTAGGAGAGCAGACTCTCA 172704-172723 
 UL123-11 GGCTGAGAACAGTGATCAGGAAGA 172548-172525 
 UL123-12 TATGGATATCCTCACTACAT 172989-172970 

UL132 A159 CTCATATCGTCTGTCACCTATATC 175854-175877 
A159 A160 GTTTACTCCTCGTGTTGCAAGCAC 178752-178729 
A160 A158 TATTGAAAATGTCGCCGATGTGAG 176050-176027 

 A161 TGAGAACCTCGTCGGGAACCGCTG 178622-178645 
 UL123-2 CAACTACAATCCGTAAGTCT 176534-176515 
 UL123-10 CGCGGCACACATCCAGCCGTTTGT 176212-176235 
 UL128-1 ATCCCGCGAATCTCAGCCGT 176595-176614 
 UL130-1A CTGTAGTCCCGGAAGACGTG 177069-177088 
 UL132-1 TGGGACTCATGACGCGCGGT 176935-176954 
 UL132-2 AATGTTGCGAATTCATAAACGTCA 176859-176836 
 UL132-4 GTCATGCGGTTTGGAATACG 177476-177495 
 UL132-6 CCACATACTTGTAACGGGTT 177987-178006 
 UL132-8 ACGAACGACGTGTCCAAGTT 178463-178482 
 UL132-11 ATAGTGCGATGGCGTTTGTG 190758-190739 
 UL132-12 TGCGACGACAGCCGCGTGGT 189222-189241 
 UL132-13 TTGTATAGCAGCACACGCCT 188814-188795 

UL146 A161 TGAGAACCTCGTCGGGAACCGCTG 178622-178645 
 A161 A162 TGTAGAATTAGTCTAGATTCCTGA 181524-181501 
A162 A163 AATTCGTAATATCCGGTATTCCCG 181323-181346 
A160 HYP-2A GTGCAATGCATACTGTCCCAGTCG 179892-179915 

 UL132-3 ACCCGTGGTGGAAAATGTTG 179741-179722 
 UL132-5 ACAGATTCATCGTGCAGTAC 179241-179222 
 UL132-7 TTCAGCTTCATAGCGGTACT 178782-178763 
 UL132-9 GCGACGCAGCGTCCAGTTCA 179474-179493 
 UL132-10A CAGCAACCCGAACGCGACCA 179002-179021 
 UL146-2 GCGTACCGCAAATCACTAGG 180183-180202 
 UL146-4A GCTTGCGCGTTAGGATTGAGACAC 180571-180594 
 UL146-7B GCGAGCGAAAGCTGCAATCGTCAG 180653-180630 
 UL146-8A CTGAGACGTCATGCTGGTAG 180163-180144 
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UL144 A163 AATTCGTAATATCCGGTATTCCCG 181323-181346 
A162 UL144-1 TGTCTCCCTGGGCCACTCGG 184598-184579 
A162 Hyp-3A CTAGTGTTACATCGATACAGTGCC 181761-181738 

UL144-1 UL144-3A ATTCGGATACTTTGTGTCAT 184297-184278 
 UL144-5A ACTACCTGCATAGAAAGACT 183768-183749 
 UL144-6B AGGCTAGAGTATGACGACC 182331-182349 
 UL144-7A CACCTTACAGCATATGAGCA 183362-183343 
 UL144-8A CATAACTTCACTAACCCGCA 182831-182850 
 UL144-9 GGTAACTATCGTAAGTCGGTAGGC 184422-184445 
 UL144-10 TGAGATACGCGATGAATGTT 183989-184008 
 UL144-12A GTTTTCCGAACTTTTATACA 183056-183075 
 UL144-13 TGTATAAAAGTTCGGAAAAC 183075-183056 
 UL144-14 TTCTTCCGGTAGGAGGCATG 182753-182734 
 UL144-15 TGCCAACAGTGTTGCTCAAT 182253-182234 

UL140 UL144-9 GGTAACTATCGTAAGTCGGTAGGC 184422-184445 
UL144-9 UL138-1A CTGATCCGCTGTTGCGAGCTGTAC 187812-187789 
UL138-1A UL133-8 CATGGCTACGGTGGTGAACTGCGT 187468-187491 

 UL140-1 TGACATTCTCTGCTCGATCT 187394-187375 
 UL140-2 TATAGAAGTAGTTGCGTTGA 184776-184795 
 UL140-3A GTGGAAATTTTTACGTCATT 187077-187058 
 UL140-4 TCTCGGCCCACATCTTTTCG 185277-185296 
 UL140-5 CGTCACTTTCACAATGACGT 186406-186387 
 UL140-6 CTGATGAAGCTGCCAAGAGT 185714-185733 
 UL140-7 GTCGTACTAACAGCGTGTCA 186009-185990 
 UL140-8 GCGTCGCACGGTGGTCACCA 185520-185501 
 UL140-9 GCCACTTGGAATTTCTCGCA 185073-185054 
 UL140-10A GAGAAAGAAAAGTAGCGTAA 186155-186174 
 UL140-11A GCGGCATTGGTGTACGCGTG 186553-186572 
 UL140-12 CAGAGCAGAGGGTTTACAGT 187125-187144 
 UL144-1 TGTCTCCCTGGGCCACTCGG 184598-184579 
 UL144-9 GGTAACTATCGTAAGTCGGTAGGC 184422-184445 

UL136 UL133-8 CATGGCTACGGTGGTGAACTGCGT 187468-187491 
UL133-8 A164 CAGGCCCTTCCCGAAAACGCCGAC 189107-189084 

A164 UL133-10C ACGAACGACGTGTCCAAGTT 178463-178482 
UL138-1A UL133-13 TTGTATAGCAGCACACGCCT 188814-188795 

 UL133-14 CATCACGCCGATGATGGGTA 187903-187922 
 UL133-21 TCTGCCGCTCGTGGTGCCGA 188392-188411 
 UL133-22 TATCTCCCGCTACGTAAGAG 188049-188030 
 UL133-23 AGACATGCTCCACGATCTAT 188462-188443 

UL133 UL133-10C CCTTCATGACGCTCTGCACCGCCT 188872-188895 
UL133-10C UL133-7 TTCAGCTTCATAGCGGTACT 178782-178763 
UL133-7 UL133-11A ATAGTGCGATGGCGTTTGTG 190758-190739 

A164 UL133-12 TGCGACGACAGCCGCGTGGT 189222-189241 
UL150-1 UL133-15 GCGTAAGAACCTGAGCACGC 189194-189175 

 UL133-16 GACATCGGAACCCAAACCGA 190207-190188 
 UL133-17 ACGACGTCTTCTTTCGGA 189573-189590 
 UL133-18 ACCGGACTGGCTTCCCTGGT 189733-189714 
 UL133-19 CGGGTGGCATCTGCGGCATG 190035-190054 
 UL133-20 CACGCTGAACAGCAGCGGCT 190397-190416 

UL150 UL150-1 CTAGTAACACTCGTCCGACACTTC 190818-190841 
UL150-1 A165 GAACGCCGTGCACCACAAACTCTG 193757-193734 

A165 A166 GAACGTCGTCCTCCCCTTCTTCAC 193582-193605 
 UL133-2 CAGCGCCCAGGCGATCTCGCGCTC 191638-191615 
 UL133-7 TTCAGCTTCATAGCGGTACT 178782-178763 
 UL150-3 GCAGGATAGCGGTTAAGGAT 191237-191256 
 UL150-5 GCAGGATAGCGGTTAAGGAT 191237-191256 
 UL150-6 AACCCACGTTAACCGACCGT 191756-191775 
 UL150-7 TTCGTCCACGGTCTCCGAGA 193400-193381 
 UL150-8 CGACAACGCCATCAGGAGAT 192205-192224 
 UL150-9A GGATGGCCGTCCGTCGAAGC 191322-191303 
 UL150-10A CAGATAGTTCCACGGACAG 193651-193669 
 UL150-11B CCGCGACTCCTCCAGGTTG 192135-192117 
 UL150-12B GCTGCGTAAAGTACATCAG 192293-192275 
 UL150-13 CGGAGCTCGTTGGCGCGGAA 192645-192664 
 UL150-14 AACAGCGACGCGACTTTGGG 193179-193198 
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REND A166A AGCAGCGAGCTACGCAGACGGAAT 193248-193271 
A166A UL150-21 CGCTAYTCTTTATTAACGTC 194319-194300 

UL150-21 IRS-1A CGTTGGAGAATTGGTGGGATCGGT 193904-193927 
A165 IRS-7 GACGGCGAATGCAGCAGACGGTGT 194061-194084 
A166 JC TGGGCCATGTGTGGTGGCAG 194161-194180 

UL150-6 UL150-4B CTCGCTGTTGCGCCACCTCTT 193838-193818 
UL150-10A UL150-16 TCACAGCGACATGTTGCTTCGTC 194241-194219 

 Adrend1 AACGACACAGGCAAGGAC b 726-709/189672-189689 
 Adrend2 AACTAGTCGCCGTCCACAC b 88-70 
 

Adrend3 
GATCCACTGGAGCGCACAG b 190462-190447/229646-

229661 
RENDL JC TGGGCCATGTGTGGTGGCAG 194161-194180 

JC A167 GCCCAGCGCCAGGTACAGTCCGTC 196608-196585 
A167 

A122 
ATGGCCCAGCGCAACGGCATGTCG 195976-195999/234759-

234736 
 

JA ACCCAGCACACGGCCCGGAATGGA 
195645-195668/235090-

235067 
 

JB TCCATTCCGGGCCGTGTGCTGGGT 
195668-195645/235067-

235090 
LENDL A167 GCCCAGCGCCAGGTACAGTCCGTC 196608-196585 

A12, A167 A2 TTTCGGCGTGAAGTTGGACGGCGT 2204-2181 
JA A1 ACAGGCTTTCGCGCACACGATTCC 1883-1906 
JB IRS-5 CCCACATGCACCAGCAGTCGGCGT 1784-1761 
 Adlend1* CGACATGCCGTTGCGCTGG 195999-195981/234736-

234754 
 Adlend2* CTCAGCCACGGTTCACAATC 2152-2171 
 Adlend3* GACGCGGCGCGAACAGC b865-850/189533-189548 
 Adlend4* CCAACACCGTCCCGCACA b 818-801/189580-189597 
 Adlend5* CGACATGCCGTTGCGCTGGG 195999-195980/234736-

234755 
a With reference to RefSeq accession NC_006273.2 (HCMV strain Merlin) 

b With reference to Genbank accession BK_000394.2 (HCMV strain AD169) 
Note forward primers, where second coordinate is larger than first are in rightward orientation 

on HCMV genome, and those where the reverse is the case are leftward oriented. 
All primers with the exception of those marked with an asterix (*) were designed by Andrew 

Davison and ordered by Charles Cunningham. 
The PCR primers used to produce each PCR fragment are coloured blue (as is the PCR fragment). 

Primers used to amplify a product were also used to sequence a product. Additional sequence 
primers are shown in black. Where the sequence of a primer has already been given, the name of 
the primer used for sequencing is below the PCR product. UL146 and UL139 were both amplified 

by nested PCR and sequenced using primers listed in Table 2.2 as described in Section 2.11. 
 

2.5 Whole genome amplification 

REPLI-g whole genome amplification kit- 

REPLI-g DNA polymerase 

4 X REPLI-g buffer 

Control gDNA template (10 ng/μl) 

Solution B (stop solution) 

1 X PBS 

1 M DTT     Qiagen 
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2.6 Agarose gel electrophoresis 

Agarose     Sigma-Aldrich 

10 X TBE     109 g/l Tris                                                         

      55 g/l boric acid    

      9.3 g/l EDTA 

DF dyes     37.2 g/l EDTA    

      100 g/l Ficoll 400    

      5 X TBE     

      1% (w/v) bromophenol blue 

DNA marker (2 log ladder)   New England BioLabs 

Ethidium bromide    10 mg/ml aqueous solution 

Sigma-Aldrich 

Geneclean turbo spin kit-    

Turbo salt solution 

Wash concentrate 

Catch tubes and spin filters   Q-biogene 

PureLink Quick Gel Extraction kit- 

Gel solubilization buffer (GS1)  

Wash Buffer (W9)  

Catch tubes and spin filters  Invitrogen 

HiDi formamide    Applied Biosystems 

2.7 Plasmid preparation 

One shot TOP10 Escherichia coli strain K12 competent cells (Invitrogen).  

Genotype: F- mcrA Δ(mrr-hdRMS-mcrBC) φ80lacZM15 ΔlacX74 deoR recA1 

araD139 Δ (ara-leu) 7697 galU galK rpsL (StrR) endA1 nupG.  



A Bradley 2008  Chapter 2    61  

  

SW102 [SW101 ΔgalK (DH10B [lc1857 (cro-bioA)<>Tet] galK+ gal490)] cells 

containing pAL942 was used for production of recombinant adenoviruses 

(Warming et al., 2005) and was kindly supplied by Dr. Richard Stanton, Cardiff 

University. 

pAL942 contains the human adenovirus 5 genome (AdEasy system, Invitrogen) in 

a bacterial artificial chromosome (BAC) with the HCMV MIE promoter (containing 

tet operators), HCMV IE polyA site, amp, SacB, LacZ, and a C-terminal 

streptavidin (strep) tag. It was kindly supplied collaboratively by Dr. Richard 

Stanton, Cardiff University. 

pGEM-T Vector System I- 

pGEM-T vector 

T4 DNA ligase 

2 X ligation buffer 

Control insert DNA    Promega 

L-broth     10 g/l NaCl 

      5 g/l yeast extract 

      10 g/l tryptone peptone 

      Becton Dickinson 

L-broth agar     1.5% (w/v) agar in L-broth 

  

SOC medium     Invitrogen 

Ampicillin      

(made up to 100 μg/μl)   Melford Laboratories 

Chloramphenicol  

(made up to 100 μg/μl)   Sigma-Aldrich 

X-gal   

(5-bromo-4-chloro-3-indoyl-β- 

D-galactopyranoside in  40 mg/ml 

N, N’-dimethyl formamide Invitrogen 
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IPTG      30 mg/ml  

(isopropylthio-β-galactoside)  Invitrogen 

      

2YT broth     5 g/l NaCl 

      1% (w/v) bactopeptone 

      10 g/l yeast extract 

 

 

Restriction endonucleases  

and buffers     NEB/Roche 

 

QIAprep miniprep kit- 

Buffer P1, RNase A 

Buffer P2, buffer N3 

Collection tubes    Qiagen 

QIAfilter Plasmid Maxi kit- 

Qiagen-tip 500 

Qiafilter Maxi cartridges 

Buffer P1, RNase A 

Buffer P2, buffer P3 

Buffer QC, buffer QBT 

Buffer QF     Qiagen 

Electroporation cuvettes   BioRad 

2.8 RNA preparation and extraction 

Cycloheximide    Sigma-Aldrich 

Phosphonacetic acid (PAA)   Sigma-Aldrich 

((HO)2P(O)CH2CO2H) 

TRI reagent     Sigma-Aldrich  

Chloroform     Sigma-Aldrich 



A Bradley 2008  Chapter 2    63  

  

Isopropanol     Sigma-Aldrich 

2.9 Northern blotting 

10 X MOPS (MOPS [3-(N-morpholino)  

propanesulfonic acid])  41.2 g/l 

Loading buffer     500 μl/ml deionized formamide  

      166 μl/ml 37% formaldehyde  

      100 μl/ml 10 X MOPS   

      100 μl/ml 99% RNase-free glycerol 

RNA molecular weight marker I, 

digoxigenin-labelled   Roche 

 

20 X SSC     88.2 g/l tri-sodium citrate    

      174 g/l NaCl 

 

Maleic acid buffer    11.61 g/l maleic acid  

pH 7.5 with NaOH pellets   8.76 g/l NaCl 

Detection buffer    12.11 g/l Tris 

pH 9.5 with concentrated HCl   5.84 g/l NaCl  

Nylon membrane,  

positively charged    Roche 

3MM Paper     Whatman 

DIG-Northern starter kit-    

5 X Labelling mix 

5 X Transcription buffer 

SP6 RNA polymerase, 20 U/μl 

T7 RNA polymerase, 20 U/μl  

Anti-DIG-alkaline phosphatase antibody 

DNase I, RNase-free 
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CDP-Star chemiluminescent substrate 

Actin RNA probe, DIG-labelled 

DIG Easy Hyb granules  

10 X Blocking solution Roche  

Chemiluminescent film   Roche 

 

Diethylpyrocarbonate (DEPC)   

97%, density 1.12 g/ml   Sigma 

 

2.10 Western blotting 

Resolving gel buffer    181.5 g/l Tris 

(RGB)      4 g/l SDS 

Spacer gel buffer    59 g/l Tris 

(SGB)      4 g/l SDS 

Running buffer    6.32 g/l Tris 

      4 g/l glycine 

      1 g/l SDS     

Transfer buffer    3.025 g/l Tris 

      14.4 g/l glycine 

      0.3 ml/l concentrated HCl 

      200 ml/l methanol 

Acrylamide            

(N, N’-methylene-bis acrylamide) BioRad 

Ammonium persulphate (APS)  BioRad 

TEMED (N, N, N’, N’- 

tetramethylethylenediamine)  Sigma-Aldrich  

Rainbow markers RPN756   Amersham  
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Blocking solution    5% (w/v) Marvel milk 

      10% (v/v) FCS 

      10% (v/v) glycerol (99% v/v) in PBS  

Hybond (H+) nylon membrane  Amersham 

ECL detection reagents   GE healthcare 

Photographic film    Kodak Ltd 

2.10.1 Antibodies 

Anti-FLAG M2 antibody   Stratagene 

Anti-actin antibody    Sigma-Aldrich 

Goat anti-rabbit IgG HRP   BioRad 

Goat anti-mouse IgG HRP   BioRad 
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Methods 

2.11 Polymerase chain reaction 

For the genotyping of UL146 and UL139 in clinical samples, both genes were 

amplified separately by single or nested PCR, using primers in conserved regions 

(Table 2.2). Single (and first) round PCR of UL146 using AB4 and A162 generated 

a product of approximately 1 kbp, and second round PCR using UL146-4A and 

UL146-3A yielded an 800 bp product. Single (and first) round PCR of UL139 using 

AB1 and AB2 generated an 800 bp product, and nested PCR using UL140-3A and 

UL140-11A yielded a 500 bp product.  

PCR was performed as follows: 

10 X Advantage 2 Buffer 5 μl 

dNTPs (10 μM each)    1 μl  

Forward primer (10 μM)   1 μl  

Reverse primer (10 μM)   1 μl  

Sterile distilled water    40 μl 

Advantage 2 DNA polymerase  1 μl (1 U)  

Template (extracted DNA)   1 μl 

The conditions for amplification were 95°C for 2 min followed by 35 cycles of 

95°C for 2 minutes, 60°C (this temperature was adjusted for the melting 

temperatures of primers used) for 30 sec and 68°C for 1 min/kbp of product 

length. Second round PCR utilized 1 μl of first round PCR products as template 

amplified under the same conditions. PCR reactions were set up in a dedicated, 

PCR product-free room. Approximately one-third of the samples were tested in 

triplicate to examine the reproducibility of results. 

2.12 Agarose gel electrophoresis 

PCR products were electrophoresed through a 1% (w/v) agarose (1 X TBE) gel at 

100 V for approximately 2 h. Gels were stained with ethidium bromide (0.5 
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μg/ml) for 30 min and photographed under short wavelength UV light using the 

GelDoc system (BioRad). 

2.13 Recovery of DNA fragments and cloning 

2.13.1 Purification of PCR products 

PCR products were excised from an agarose gel under long wavelength UV light 

and purified using a Geneclean turbo kit according to the manufacturer’s 

instructions (Q-biogene). Smaller PCR products (<100 bp) were purified using a 

PureLink gel extraction kit according to the manufacturer’s instructions 

(Invitrogen). Products were eluted in 50 μl of sterile distilled water and stored 

at -20°C. 

2.13.2 Ligations 

Purified PCR products were ligated into the pGEM-T vector as follows: 

2 X T4 DNA ligase buffer   2.5 μl 

pGEM-T vector    0.25 μl 

Sterile distilled water   0.25 μl 

T4 DNA ligase    0.5 μl 

DNA insert (0.1-0.5μg)   1.5 μl 

Reactions were incubated at 4°C overnight. 

2.13.3 Bacterial transformations 

2.13.3.1 Chemical transformation 

Competent cells were allowed to thaw on ice for 15 min. Ligation mixture (1 μl) 

was added to a 17 μl aliquot of cells and incubated on ice for 30 min. Cells were 

heat-shocked at 42°C for 30 s and then chilled on ice for 5 min. SOC medium 

(250 μl) was added to each sample and the samples were incubated at 37°C with 

shaking (180 rpm) for 1 h. IPTG (10 μl) and X-gal (20 μl) were added to each tube 

and mixed, and the solution was spread on an L-agar plate (containing ampicillin 

at 100 μg/ml) using a sterile plastic spreader. The plates were allowed to dry at 
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room temperature (RT) for 1 h and then incubated upside-down at 37°C 

overnight. 

2.13.3.2 Preparation of electrocompetent cells 

A single colony of pAL942 was inoculated into 5 ml of LB (containing 100 μg/ml 

ampicillin and 40 μg/ml chloramphenicol) and incubated 32°C with shaking 

(180 rpm) overnight.  

An aliquot of this overnight culture (1 ml) was used to inoculate 50 ml of LB 

(containing 100 μg/ml ampicillin) and incubated at 32°C with shaking (180 rpm) 

until the culture had reached an OD600 of 0.6. The culture was split into 2 X 

50 ml Falcon tubes (i.e. 25 ml in each tube). One tube was incubated at 42°C for 

15 min to induce the λ red proteins and the other tube was incubated at 32°C for 

15 min as a negative control. Both tubes were then chilled on ice for 15 min. 

The cells were centrifuged at 2,200 x g for 5 min at 4°C. The supernatant was 

discarded and the pellet was resuspended in 1 ml of ice-cold water by gently 

swirling the tube. Once the pellet was resuspended, 25 ml of ice-cold water was 

added and the tube was centrifuged as before. This ‘wash’ step was repeated. 

Following centrifugation, the supernatant was discarded and the cells were 

resuspended in the small amount of liquid remaining (~100 μl).  

2.13.3.3 Electroporation 

Cells, cuvettes, DNA and tubes were chilled on ice. An aliquot of cells (25 μl) 

was placed in a tube to which 4 μl DNA (~0.5 μg) was added. This was then 

transferred to a 0.1 cm cuvette and incubated on ice for 5 min. The cells were 

electroporated at 2.5 kV, 25 μF and 400 Ω. Samples were recovered in 5 ml 

volume of LB at 32°C with shaking (180 rpm) for 4 h. A 50 μl volume of each 

sample (and a number of tenfold dilutions, 1:10, 1:100 and 1:1000) were plated 

on L-amp [without NaCl, with sucrose (6% w/v), chloramphenicol (40 μg/ml), 

IPTG (10 μl) and X-gal (20 μl)] plates and incubated at 32°C for 36 h. 
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2.14 Whole genome amplification 

The genomic DNA template (2 μl) was denatured by the addition of 2.5 μl of 

denaturation buffer [Buffer D1 (made up fresh, 10 μl solution A (containing KOH 

and EDTA), 70 μl sterile distilled water)]. The sample was mixed and incubated 

at RT for 3 min. A 5 μl aliquot of neutralisation buffer [Buffer N1 (made up 

fresh, 16 μl solution B (containing KCl, Tris-HCl and HCl), 14 μl sterile distilled 

water)] was then added and the sample was mixed again, this is the denatured 

genomic template used in the next step.  

The REPLI-g polymerase was allowed to thaw on ice and reactions were set up as 

follows: 

Denatured genomic DNA template 9.5 μl 

Sterile distilled water    27 μl  

4 X REPLI-g buffer     12.5 μl  

REPLI-g polymerase    0.5 μl  

Samples were incubated at 30°C for 8 h. 

The REPLI-g polymerase was then inactivated and reaction stopped by incubating 

the samples at 65°C for 3 min. 

2.15 Plasmid DNA preparation 

2.15.1 Miniprep plasmid purification 

Bacterial colonies grown on L-agar plates were inoculated into 1.5 ml of 2YT 

broth (containing appropriate antibiotic) and incubated at 37°C with shaking 

(180 rpm) overnight. For the production of recombinant adenoviruses (RADs) 

bacterial colonies grown on L-agar plates [with sucrose (6% w/v) for SW102 cells] 

were inoculated into 1.5 ml of LB (containing appropriate antibiotic) and 

incubated at 32°C with shaking (180 rpm) overnight.  

Plasmid purification was carried out using the QIAspin miniprep kit according to 

manufacturer’s instructions (Qiagen). 
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2.15.2 Maxiprep plasmid purification 

Bacterial colonies were inoculated into 5 ml of LB and incubated at 32°C with 

shaking (180 rpm) for ~8 h. The entire 5 ml culture was used to inoculate 500 ml 

of LB and incubated at 32°C with shaking (180 rpm) overnight.  

Large-scale plasmid purification was performed using the maxiprep kit according 

to manufacturer’s instructions (Qiagen). 

2.16 DNA sequencing 

Sequencing reactions were performed in 96-well plates as follows: 

5 X ABI buffer     1.75 μl  

BigDyes      0.5 μl   

Sterile distilled water    1.75 μl  

Primer (1.6 μM)    2 μl    

DNA       4 μl   

The sequencing programme consisted of a denaturation step of 95°C for 2 min 

followed by 30 cycles of 94°C for 10 sec, 50°C for 5 sec and 60°C for 4 min. 

Following this, the resultant DNA was ethanol-precipitated by the addition to 

each well of 62 μl of ethanol mix (containing 10 ml 100% ethanol, 3 ml sterile 

distilled water, 400 μl of 3 M sodium acetate). The plate was agitated to mix and 

centrifuged at 6,000 x g for 30 min at 4° C. The supernatant was removed by 

inverting the plate. The pelleted DNA was then washed by the addition of 150 μl 

of 70% (v/v) ethanol to each well and centrifugation at 6,000 x g for 30 min at 

4°C. This wash step was repeated before one final brief centrifugation (plate 

inverted) at 440 x g to dispel all remaining ethanol. The pellets were allowed to 

dry at RT before being resuspended in HiDi formamide for loading onto a 

capillary sequencer (ABI 3730). Electrophoresis of sequencing reactions and data 

collection were performed by an external service provider at the BHF Glasgow 

Cardiovascular Research Centre (Genomics Laboratory). 
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2.16.1 DNA sequence analysis  

Sequence chromatograms were viewed and processed using Editview (Applied 

Biosystems) and Pregap4 and Gap4 (Staden et al., 2000). All nucleotide and 

derived aa sequences were aligned using ClustalW (Thompson et al., 1994) and 

Mafft (Katoh et al., 2005), and alignments were corrected manually using 

Bioedit. Both ClustalW and Mafft are Unix-based programs. Nucleotide sequences 

were then realigned using the aa alignments as a template. ClustalW uses the 

progressive method to align sequences, firstly aligning the two most closely 

related sequences in a set by the neighbour-joining method using position 

specific gap penalties. It then successively aligns the next most closely related 

sequence to the alignment produced in the previous step. A phylogenetic tree is 

produced at the same time. The final alignment is constructed by combining all 

alignments produced, in the order specified by the tree, maintaining all gaps. 

One limitation of this method is that it depends heavily on the quality of the 

initial alignment. Mafft is an alternative multiple alignment program that offers 

three alternative strategies, one based on the progressive method and two based 

on an iterative method (with refinements available such as the weighted sum-of-

pairs score and consistency scores). The iterative method works similarly to the 

progressive method but it repeatedly realigns the initial sequences as well as 

adding new sequences to the growing alignment.  

The Phylip package (Felsenstein, 1989) and Mega 4.0 (Tamura et al., 2007) were 

used for the generation of phylogenetic trees based on the neighbour-joining 

method. Phylip (phylogeny inference package) is Unix-based and infers 

phylogenies (evolutionary trees) by parsimony, distance-matrix and likelihood 

methods. Mega (molecular evolutionary genetic analysis) is a multifunctional PC 

program that can be used for the analysis of an alignment. Mega can infer 

phylogenetic trees and test evolutionary hypotheses using a number of 

alternative methods.  

Frequencies of nonsynonymous and synonymous differences per site (dN and dS, 

respectively) and degree of sequence variability (nucleotide and aa) were 

investigated using Swaap 1.0.1 (Pride, 2004), MEGA4.0 and PAML 3.15 (Yang, 

1997). Swaap (sliding windows alignment analysis program) allows basic analyses 
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of an alignment such as sequence identity, nucleotide composition, 

transitions/transversions and dN/dS over a whole gene or a sliding window.  

Signal peptide and transmembrane sequences were predicted using Phobius (Kall 

et al., 2004, 2007). 

2.17 3D homology modelling  

Homology models were built using the Molecular operating environment (MOE) 

protein modelling and 3D bioinformatics software (Molecular Operating 

Environment 2003.02, The Chemical Computing Group Inc., 2003.).  

2.18 Quantitative PCR using SYBR green 

Quantitative PCR (QPCR) was performed in 96-well plates using an Applied 

Biosystems 7500 Fast Real-Time PCR instrument as follows: 

2 X SYBR Green PCR master mix  10 μl 

Forward primer (18 μM)   1 μl 

Reverse primer (18 μM)   1 μl 

Sterile distilled water   7 μl 

DNA      1 μl 

The conditions for amplification were 95°C for 10 min followed by 35 cycles of 

95°C for 15 sec, 60°C (this temperature was adjusted for melting temperature of 

the primers used) for 1 min and 72°C for 25 sec (with the plate read during the 

exponential phase) followed by dissociation analysis from 65-95°C, with the 

plate read at every 0.2°C increment and then held at 4ºC. PCRs were set up in a 

dedicated, PCR product-free room. 

2.19 Cell culture 

2.19.1 HFFF-2 cells 

Human foetal foreskin fibroblast (HFFF-2) cells (initially supplied by Dr. Derrick 

Dargan, MRC Virology Unit) were used for growth of HCMV strain Merlin and for 
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studies of both HCMV and RADs gene expression. HFFF-2 cells were grown in 

Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% (v/v) FCS, 

1% (v/v) non-essential amino acids, 1% (v/v) L-glutamine supplements and 1% 

(v/v) penicillin-streptomycin at 37°C in a humidified atmosphere of 95% (v/v) air 

and 5% (v/v) CO2. Confluent HFFF-2 cells were harvested by discarding the 

medium, washing the monolayer with versene (twice), and then detaching the 

cells from the flask using a 1:20 dilution of trypsin in versene. The cells were 

resuspended in 10 ml of fresh medium and seeded into 175 cm2 flasks at a ratio 

of 1:2 (i.e. one flask split into two new flasks), with 40 ml of fresh medium 

added per flask. 

2.19.2 HEK 293 cells 

Human embryonic kidney (HEK) 293 cells (initially supplied by Dr. Katarina 

Baluchova, MRC Virology Unit) were used for large-scale production and titration 

of RAD stocks. HEK 293 cells were grown in DMEM supplemented with 10% (v/v) 

FCS, 1% (v/v) L-glutamine and 1% (v/v) penicillin-streptomycin at 37°C in a 

humidified atmosphere of 95% (v/v) air and 5% (v/v) CO2. Confluent HEK 293 

cells were harvested by discarding the medium, washing the monolayer with 

versene (twice), and then detaching cells from flask using a 1:20 dilution of 10 X 

citric saline solution in versene. The cells were then resuspended in 10 ml of 

fresh medium and seeded into 175 cm2 flasks at a ratio of 1:2, with 40 ml of 

fresh medium added per flask. 

2.20 Preparation of virus stocks 

2.20.1 HCMV  

HFFF-2 cells were seeded into an 80 cm2 flask until they had reached 80% 

confluency. The medium was discarded and the cells were then infected with 

HCMV strain Merlin at multiplicity of infection (m.o.i.) of 0.1 p.f.u./cell in 4 ml 

of supplemented DMEM. The cells were incubated at 37°C for 1 h, after which a 

further 20 ml of medium was added to the flask and the cells were incubated at 

37°C. Cytopathic effect (CPE) was monitored by examining the infected cells 

under a light microscope each day. Once the cells had reached 80% CPE the 

infected cells were harvested and used to infect one 175 cm2 flask of HFFF-2 
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cells. When this flask had reached 80% CPE, the infected cells were harvested 

and used to infect four 175 cm2 flasks. When they had reached 80% CPE, the 

infected cells were harvested and used to infect 14 roller bottles, which were 

then incubated at 37°C until they had reached 100% CPE (usually 10-15 days post 

infection (p.i.)). The medium containing infected cells was decanted and cells 

were pelleted by centrifugation at 1,000 x g at 4°C for 10 min. The supernatant 

was decanted into large Sorvall tubes and centrifuged at 9,700 x g at 4°C for 

20 min. Cell pellets from both spins were combined and stored at -70°C. The 

supernatant was collected, aliquoted and stored at -70°C prior to titration.  

2.20.2 Recombinant adenoviruses  

2.20.2.1 Transfection of HEK 293 cells with recombinant adenoviruses 

HEK 293 cells were seeded into 25 cm2 flasks (106 cells/flask) and incubated at 

37°C overnight. RAD DNA (4 μg) was made up to 150 μl with DMEM 

(non-supplemented). Polyfect transfection reagent (40 μl) was added to the 

DNA, vortexed gently to mix and incubated at RT for 10 min. The monolayer was 

washed gently with PBS complete, and 3 ml of fresh medium was added. The 

DNA/polyfect mixture was made up to 1 ml with medium and added to the flask. 

The cells were incubated at 37°C overnight. Medium was discarded, fresh 

medium was added, and the cells were incubated at 37°C until they had reached 

100% CPE. 

2.20.2.2 Harvesting recombinant adenoviruses 

Cells were detached from the flask by gently tapping the side of the flask and 

transferred with the medium to a 15 ml Falcon tube. The tubes were centrifuged 

at 470 x g for 10 min at 4°C. The supernatant was discarded and the pellet was 

resuspended in 1 ml of versene by gently tapping the tube. An equal volume of 

tetrachloroethylene was added and mixed well. The tube was centrifuged at 

470 x g for 10 min at 4°C. The top layer was removed carefully and transferred 

to a fresh microcentrifuge tube. Half of this was removed and stored at -70°C. 

The other half was made up to 5 ml with medium to be used for large-scale 

production of RADs. This was used to infect ten 175 cm2 flasks, which were then 

incubated at 37°C until they had reached 100% CPE.  
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Cells were detached from all ten flasks by gently tapping side of flasks and 

transferred to 50 ml Falcon tubes. The tubes were centrifuged at 470 x g for 

10 min at 4°C. The supernatant was discarded and the pellets were resuspended 

in 1 ml of PBS. All pellets were then combined and centrifuged again. The final 

pellet was resuspended in 5 ml of PBS to which an equal volume of 

tetrachloroethylene was added. This was centrifuged at 470 x g for 10 min at 4°C 

and the top layer was carefully transferred to a tube before virus aliquots were 

prepared. 

2.21 Titration of virus 

2.21.1 HCMV  

HCMV titres were determined by plaque-assay on HFFF-2 monolayers grown in 

24-well tissue culture plates (5.104 cells/well). Virus stocks were serially 

diluted, and 100 μl of a range of dilutions (10-3, 10-4, 5.10-5,10-5, 5.10-6 and 10-6) 

were plated on cell monolayers in triplicate. Virus was allowed to adsorb to the 

cells for 1 h at 37 ºC, with gentle rocking every 15 min. Following virus 

adsorption, the cell monolayers were overlaid with 1 ml of supplemented 

medium and incubated at 37 °C until visible plaques were observed (10-12 days 

p.i.). The medium was removed and 1 ml of Giemsa stain was added, and 

incubated at RT for 6 h. After staining, the fixed cell layers were rinsed 

thoroughly and the plaques were counted using a light microscope.  

2.21.2 Recombinant adenoviruses 

RAD titres were determined by the TCID50 assay (the 50 percent effective tissue 

culture infective dose). HEK 293 cells were grown in 96-well flat-bottomed tissue 

culture plates (2.106 cells/plate, 100 μl/well). Virus stocks were serially diluted, 

and 100 μl of ten-fold dilutions from 10-2 to 10-10 were plated on the HEK 293 

monolayers in replicates of ten per plate. The plates were incubated at 37°C 

until visible plaques were observed (7-10 days p.i.). 
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2.22 Preparation of HCMV RNA 

HFFF-2 cells were seeded into 24-well plates at 60-80% confluency 

(106 cells/well) and incubated at 37°C for 16 h. HCMV strain Merlin was used for 

all infections. Immediate early (IE), early (E) and late (L) RNAs were prepared as 

follows. Mock-infected (MI) RNA was prepared similarly. 

2.22.1 IE RNA 

The medium was discarded and 2 ml of fresh medium (containing 200 μg/ml 

cycloheximide) was added to each well. The plate was incubated at 37°C for 1 h. 

The medium was discarded and virus was added at an m.o.i. of 3 p.f.u./cell to 

20 of the 24 wells (fresh medium was added to the remaining four wells for mock 

infected samples). The plate was incubated at 37°C for 1 h. The cells were 

washed three times with 2 ml of fresh medium (containing 200 μg/ml 

cycloheximide) per well. Fresh medium (2 ml containing 200 μg/ml 

cycloheximide) was added to each well, and the cells were incubated at 37°C for 

24 h. The medium was discarded, and the cells were washed three times with 

2 ml of fresh medium (containing 200 μg/ml cycloheximide) per well. TRI 

reagent (200 μl) was added to each well and the cells were homogenised by 

pipetting up and down and scraping the monolayer using the pipette tip. The 

homogenised samples were transferred to microcentrifuge tubes and stored at 

-70°C. 

2.22.2 E RNA 

The medium was discarded and 2 ml of fresh medium [containing 200 μg/ml 

phosphonoacetic acid (PAA)] was added to each well. The plate was incubated at 

37°C for 1 h. The medium was discarded and virus was added at an m.o.i. of 3 

p.f.u./cell to 20 of the 24 wells (fresh medium was added to the remaining 4 

wells for mock infected samples). The plate was incubated at 37°C for 1 h. The 

cells were washed three times with 2 ml of fresh medium (containing 200 μg/ml 

PAA) per well. Fresh medium (2 ml containing 200 μg/ml PAA) was added to 

each well, and the cells were incubated at 37°C for 48 h. The medium was 

discarded, and the cells were washed three times with 2 ml of fresh medium 



A Bradley 2008  Chapter 2    77  

  

(containing 200 μg/ml PAA) per well. TRI reagent (200 μl) was added to each 

well and the cells were homogenised by pipetting up and down and scraping the 

monolayer using the pipette tip. The homogenised samples were transferred to 

microcentrifuge tubes and stored at -70°C. 

2.22.3 L RNA 

The medium was discarded and 2 ml of fresh medium was added to each well. 

The plate was incubated at 37°C for 1 h. The medium was discarded and virus 

was added at an m.o.i. of 3 p.f.u./cell to 20 of the 24 wells (fresh medium was 

added to the remaining 4 wells for mock infected samples). The plate was 

incubated at 37°C for 1 h. The cells were washed three times with 2 ml of fresh 

medium per well. Fresh medium (2 ml) was added to each well, and the cells 

were incubated at 37°C for 72 h. The medium was discarded, and the cells were 

washed three times with 2 ml of fresh medium per well. TRI reagent (200 μl) was 

added to each well and the cells were homogenised by pipetting up and down 

and scraping the monolayer using the pipette tip. The homogenised samples 

were transferred to a microcentrifuge tube and stored at –70°C. 

2.22.4 Preparation of total cellular RNA 

Homogenised cell samples were allowed to thaw and incubated at RT for 5 min. 

Chloroform (200 μl) was added to each sample and mixed vigorously for 15 sec. 

The samples were incubated at RT for 10 min. They were then centrifuged at 

14,000 x g for 30 min at 4°C. 

The aqueous (upper) phase was transferred to a fresh microcentrifuge tube. 

Isopropanol (500 μl) was added to each sample and mixed. The samples were 

incubated at RT for 10 min. They were then centrifuged at 14,000 x g for 20 min 

at 4°C. 

The supernatant was removed, paying careful attention not to dislodge the 

pelleted RNA. An aliquot of 1 ml of 70% (v/v) ethanol was added to each tube to 

wash the pellet, and the tube was vortexed and centrifuged at 14,000 x g for 5 

min at 4°C. 
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The supernatant was removed, paying careful attention not to dislodge the 

pelleted RNA, and the pellet was air-dried for 10 min. The RNA pellet was 

dissolved in 10 μl of RNAse-free water (preheated to 55°C).  

2.22.5 Determination of RNA yield 

RNA was quantified using a spectrophotometer. To assess the quality of cellular 

RNA, 1 μg of total RNA was electrophoresed on 1% (w/v) agarose (1 X TBE) gel at 

100 V for 2 h, and the gel was stained with ethidium bromide (0.5 μg/ml) for 30 

min. RNA was visualised over a short-wave UV transilluminator, and 

photographed using the BioRad Gel Doc system. High quality RNA is expected to 

exhibit a ratio of 2:1 for the 28S and 18S rRNAs. Samples that produced smeared 

28S and 18S bands, or that deviated from the expected ratio of 2:1, were 

discarded. 

2.23 Northern blotting 

To avoid RNase contamination, disposable plastic-ware was used whenever 

possible and all plastic was autoclaved twice. Glassware was autoclaved and 

baked twice in a dry oven; gel tanks and other re-useable plastic-ware were 

washed with RNaseZap (SIGMA), rinsed in distilled water and allowed to air-dry. 

DEPC-treated water was used throughout, where DEPC was added at a 

concentration of 0.1% to sterile distilled water, incubated at 37°C overnight (to 

remove any RNAses), before being autoclaved to remove any residual DEPC. 

2.23.1 Agarose gel electrophoresis of RNA 

A formaldehyde-agarose gel was prepared by dissolving 1.5 g of agarose in 

141.9 ml of 1 X MOPS, then cooling to 55°C before the addition of 8.1 ml of 

formaldehyde. Loading buffer was prepared fresh, added to total RNA (1 μg) and 

RNA ladder (at ratio 2:1, v/v) and mixed. Samples and ladder were incubated at 

65°C for 10 min and chilled on ice for 5 min. The gel tank was filled with 1 X 

MOPS buffer, samples were loaded, and electrophoresis was carried out at 40 V 

for 6 h. The gel was allowed to cool for 15 min before manipulation. The gel was 

washed twice in 20 X SSC for 15 min (by shaking gently at 150 rpm) to remove 

formaldehyde. 
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2.23.2 Transfer of RNA to membrane 

RNA was transferred from the gel to a nylon membrane by capillary blotting. 

Nylon membrane was cut to size and pre-soaked in water (5 min) and then 20 X 

SSC for 20 min. 3MM paper was also cut to size and pre-soaked in 20 X SSC. The 

gel was placed on 3MM paper that descended into a reservoir of 20 X SSC. The 

nylon membrane was placed on top of the gel, followed by 3 MM paper and a 

stack of dry paper towels with a weight on top. 

RNA was allowed to transfer overnight. The membrane was then rinsed gently in 

water, dried for 20 min and RNA crosslinked to the membrane using a Stratagene 

UV crosslinker (12,000 J/cm2). 

2.23.3 Preparation of RNA probes 

RNA probes were generated using purified PCR products ligated into the multiple 

cloning site of the plasmid p-GemT, which is flanked by Sp6 and T7 RNA 

polymerase promoter sites. UL146 was amplified using the primers NthUL146FWD 

and NthUL146REV and UL139 was amplified using NthUL139FWD and 

NthUL139REV (Table 2.2). A number of independent clones were prepared and 

sequenced. Those plasmids that contained the gene in the correct orientation 

were linearised using a restriction enzyme (SalI or NdeI) that leaves a 

5’-overhang. Following restriction digestion, the linearised plasmid was purified 

using the Geneclean turbo spin kit (Q-biogene) according to the manufacturer’s 

instructions. Linearised plasmid DNA was eluted in 50 μl of sterile distilled water 

and quantified using a spectrophotometer. Transcriptional labelling of probes 

was performed as follows: 

5 X Labelling mix    4 μl 

5 X Transcription buffer   4 μl 

Sterile distilled water   5 μl 

T7 RNA polymerase    2 μl 

DNA (1 μg)     5 μl 

Reactions were set up on ice, vortexed gently to mix and centrifuged briefly 

before being incubated at 42°C for 1 h. DNase I (2 μl) was added to each tube 
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and the tubes were incubated at 37°C for 15 min to remove template DNA. A 2 μl 

aliquot of 0.2 M EDTA (pH 8) was added to each tube and the tubes were mixed 

thoroughly. Probes were stored at -20°C. 

2.23.4 Nucleic acid hybridisation 

Probes were quantified by preparing ten-fold serial dilutions from 10-2 to 10-6, 

and spotting the dilutions onto a nylon membrane. The probe spots were cross-

linked to the membrane using a Stratagene UV crosslinker (12,000 J/cm2). Bound 

probe was then detected as outlined in Section 2.23.5 (using one-fifth volume 

described for all buffers). A DIG-labelled actin probe was used as a positive 

control. 

The blot was placed in a hybridization tube and 15 ml of pre-warmed DIG Easy 

Hyb buffer was added. The blot was incubated with rotation at 68°C for 1 h. The 

amount of probe required (100ng/ml of Hyb buffer) was transferred to a 

microcentrifuge tube and made up to 50 μl with RNase-free water. The tube was 

incubated at 68°C for 10 min and then chilled on ice. The contents were then 

added to 3 ml of fresh, pre-warmed DIG Easy Hyb buffer. The 15 ml of DIG Easy 

Hyb buffer was discarded, and 3 ml of fresh buffer containing the probe was 

added to each hybridisation tube. This was incubated with rotation at 68°C 

overnight.  

The blot was washed (twice) in 20 ml of low stringency buffer at RT with 

shaking. The blot was then washed (twice) in 40 ml of pre-warmed high 

stringency buffer with rotation at 68°C for 15 min. 

2.23.5 Detection  

The membrane was transferred to a tray containing 100 ml of wash buffer and 

incubated at RT with shaking for 5 min. Wash buffer was discarded and 100 ml of 

blocking solution was added. The blot was then incubated at RT with shaking for 

30 min. The blocking solution was discarded and the blot was incubated in 20 ml 

of antibody solution at RT with shaking for 30 min. The membrane was washed 

(twice) in 100 ml of wash buffer at RT with shaking for 15 min. The membrane 

was equilibrated in 20 ml of detection buffer for 3 min. The detection buffer 
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was drained and the membrane was placed on a plastic sheet. CDP-star (about 4 

drops) was added to each membrane and spread evenly, and the membrane was 

then incubated at RT for 3 min. Excess CPD-star was removed and the plastic 

sheet was sealed (ensuring no bubbles were present).  

The sealed plastic envelope containing the blot was exposed to 

chemiluminescent film for varying lengths of time to obtain a range of images. 

2.24 5’- and 3’-RACE 

SMART RACE produces full-length cDNAs by reverse transcription using the SMART 

II oligonucleotide and murine leukemia virus reverse transcriptase (MMLV RT). 

When the MMLV RT reaches the end of the RNA template it acts as a terminal 

transferase and adds 3–5 residues (predominantly dC) to the 3' end of the first 

strand cDNA. The SMART II oligo (oligonucleotide) contains a terminal stretch of 

G residues (3-5), which anneal to the dC-tail, and this serves as an extended 

template for RT. MMLV RT then switches from the mRNA template to the SMART 

II oligo and generates a complete cDNA copy of the original RNA, which contains 

the additional sequence of the SMART II oligo. This cDNA is then used as a 

template for 5’- and 3’-RACE using a gene specific primer and a universal primer 

that binds to the SMART II sequence. 

2.24.1 Synthesis of 5’- and 3’-RACE-ready cDNA 

cDNAs were synthesised from total cellular RNAs using a SMART™ RACE cDNA 

amplification kit (BD Clontech) according to the manufacturer’s instructions, as 

follows: 

5’-RACE-ready cDNA   3’-RACE-ready cDNA 

5’-CDS Primer  1 μl  3’-CDS Primer 1 μl 

SMART II oligo  1 μl  Sterile water  3 μl 

Sterile water   2 μl  Total RNA (1 μg) 1 μl 

Total RNA (1 μg)  1 μl 
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The tubes were vortexed gently to mix and centrifuged briefly. The samples 

were incubated at 70°C for 2 min, and then chilled on ice for 2 min before being 

centrifuged briefly. The following was then added to each tube: 

5 X First-strand buffer   2 μl 

Dithiothreitol (DTT) 20 μM   1 μl 

dNTP mix (10 μM)    1 μl 

Powerscript reverse transcriptase 1 μl 

The tubes were vortexed gently to mix and centrifuged briefly. The samples 

were incubated at 42°C for 1.5 h. The tubes were then made up to 100 μl with 

TE buffer and incubated at 72°C for 7 min to stop the reaction. 

2.24.2 5’- and 3’-RACE PCR 

RACE PCR reactions were set up as follows: 

5’-/3’-RACE-ready cDNA   2.5 μl 

10 X UPM     5 μl 

Gene specific primer (10 μM)  1 μl 

Sterile distilled Water   34.5 μl 

10 X Advantage 2 buffer   5 μl 

dNTP (10 μM)    1 μl 

Advantage 2 polymerase   1 μl 

Thermocycling conditions were as follows: 5 cycles of 94°C for 30 sec, 72°C for 3 

min; followed by 5 cycles of 94°C for 30 sec, 70°C for 30 sec, and 72°C for 3 min; 

followed by 25 cycles of 94°C for 30 sec, 68°C for 30 sec and 72°C for 3 min. 

Second round RACE PCR utilized 1 μl of first round RACE products as template 

amplified under the same conditions using nested, gene-specific primers. RACE 

PCR products were purified and ligated into pGemT, and eight to ten clones 

were selected for sequencing. 
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2.25 Construction of recombinant adenoviruses 

Three synthetic variants of UL139 with FLAG-tags inserted internally or at the 

C terminus were provided commercially by GenScript and supplied as stab 

cultures containing the gene in the plasmid pUC57 (six tagged variants in total). 

The cultures were inoculated onto L-agar (containing 100 μg/ml ampicillin) 

plates and incubated at 37°C overnight. A single colony of each was inoculated 

into 2YT (containing 100 μg/ml ampicillin) and incubated at 37°C overnight with 

shaking (180 rpm). Plasmid DNA was purified using a Qiaprep miniprep kit 

according to the manufacturer’s instructions (Qiagen) and quantified using a 

spectrophotometer.  

The tagged gene [containing regions of homology with the adenovirus vector 

(pAL942)] was excised by digesting plasmid DNA with XbaI and BamHI. The 

excised band was purified using a Geneclean turbo spin kit according to the 

manufacturer’s instructions (Q-biogene) and quantified using a 

spectrophotometer. The DNA was electroporated into freshly prepared 

competent SW102 cells and the cells were recovered in 5 ml of LB at 32°C with 

shaking for 4 h (180 rpm). SW102 cells contain pAL942, the adenovirus BAC 

vector with which the tagged UL139 variants were to recombine, and the lambda 

red proteins (including Redα, a double strand specific 5′ to 3′ exonuclease, Redβ 

which mediates strand exchange and annealing and the λGam protein which 

protects the ends of its linear genome from degradation) that mediate 

recombination.  

A 50 μl volume of each sample (and a number of tenfold dilutions, 1:10, 1:100 

and 1:1000) were plated on L-agar [without NaCl, with sucrose (6% w/v), 

chloramphenicol (40 μg/ml), IPTG (10 μl) and X-gal (20 μl)] plates and incubated 

at 32°C for 36 h. pAL942 encodes β-galactosidase, an enzyme that converts X-gal 

into a blue product.  Recombination between the tagged UL139 variants and 

pAL942 results in interruption of the β-galactosidase gene. White bacterial 

colonies indicated that the β-galactosidase gene had been interrupted and that 

recombination had occurred, whereas blue colonies indicated an intact 

β-galactosidase gene. Independent white colonies were selected, inoculated into 

LB (containing appropriate antibiotic) and tested for the presence of UL139-

tagged inserts by PCR using PMV100 forward and reverse primers (Table 2.2). 



A Bradley 2008  Chapter 2    84  

  

2.26 Western blotting 

2.26.1 Preparation of proteins 

HFFF-2 cells (106) were seeded into a 25 cm3 tissue culture flask and incubated 

at 37°C overnight. The medium was removed and replaced with 1.5 ml of fresh 

medium. The cells were infected or mock-infected at an m.o.i. of 100 p.f.u./cell 

and incubated at 37°C with rocking for 1 h. The medium was removed and the 

cells were washed with 2 ml of fresh media. Fresh medium (5 ml) was then 

added to each flask and incubated at 37°C for 72 h. 

The medium was removed and the cells were washed with 5 ml of ice-cold PBS 

complete. Ice-cold PBS complete (4 ml) was added alongside pre-chilled glass 

beads and the flask was shaken to detach the cells. The flask contents were 

transferred to a pre-chilled Falcon tube through a sieve. The glass beads and 

flask were washed with PBS complete and all washings were transferred to the 

Falcon tube, which was then centrifuged at 835 x g for 10 min at 4°C. The 

supernatant was discarded and the cell pellet was resuspended in 1 ml of 

ice-cold PBS complete. This was then transferred to a pre-chilled 

microcentrifuge tube and centrifuged at 6,500 x g for 1 min at 4°C. The 

supernatant was discarded and the cell pellet was resuspended in 130 μl of ice-

cold PBS complete. A 30 μl aliquot was mixed with 30 μl of 1 X loading buffer 

and boiled for 10 min to denature proteins. The remainder of the sample was 

stored at -20°C. 

2.26.2 SDS-PAGE 

The Bio-Rad mini-protean II cell apparatus was used for the preparation of 

SDS-PAGE gels. The running gel (15% polyacrylamide) was prepared as follows:  

37.5% (w/v) acrylamide  6.25 ml 

RGB     3 ml 

TEMED     10 µl  

APS 10% (w/v)   100 µl  

Sterile distilled water  2.25 ml 
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The running gel (7.5 ml) was poured and water was added to ensure a level 

surface at the top of the gel. The gel was allowed to set for about 30 min. The 

water was drained off and excess water dried using 3MM paper. The stacking gel 

was prepared as follows:   

37.5% acrylamide   0.4 ml  

SGB     0.6 ml  

TEMED     3 µl   

APS 10%    20 µl   

Sterile distilled water  1.4 ml 

The comb was inserted and the stacking gel was poured, ensuring that no 

bubbles remained. The gel was allowed to set for about 30 min. A 10 µl aliquot 

of each protein sample and 3 µl of rainbow protein marker (Amersham 

Biosciences) was loaded onto the gel, which was then electrophoresed at 100 V 

until the dye front had reached the bottom of the gel. 

2.26.3 Transfer of proteins to membrane 

The Bio-Rad mini trans-blot apparatus was used to transfer proteins from the gel 

to an ECL nitrocellulose membrane. The gel was removed from the casting plates 

and placed in transfer buffer. 3MM paper and membrane were cut to size. The 

membrane was placed in methanol for 15 sec, water for 5 min and transfer 

buffer for 5 min. 3MM paper and foam pads were pre-soaked in transfer buffer. 

The apparatus was assembled for transfer as follows: (black side of cassette 

down), sponge, filter paper, gel, membrane, filter paper, sponge pad. Proteins 

were transferred at 100V for 120 min, using an ice pack to cool. 

2.26.4 Antibody detection of proteins  

The membrane was washed in 1 X PBST for 5 min at RT with shaking. The 

membrane was then blocked in 20 ml of blocking solution for 2 h at RT with 

shaking. The blocking solution was discarded and the membrane was sealed in a 

bag with 10 ml of blocking solution containing primary antibody at an 

appropriate dilution. The bag was incubated at 4°C with shaking overnight. The 

blot was removed from the bag and washed (three times) in 20 ml of PBST. The 

secondary antibody diluted in blocking solution was then added to each blot, 
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sealed in another bag and incubated at RT with shaking for 1 h. The blot was 

washed (three times) in 20 ml of PBST. ECLI and II (GE healthcare) were mixed 

(ratio 40:1) and 1 ml was added (per blot), spread evenly and incubated for 40 

sec. Excess ECL was drained and the blot was sealed in a bag and exposed to 

photographic film for varying lengths of time to obtain a range of images. 
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3 Genotyping of UL146 and UL139 

3.1 Introduction 

Calculation of nucleotide divergence between nine HCMV strains, using an 

alignment of the sequences at the right end of UL (Chapter 1, Figure 1.5), 

revealed that UL146 and UL139 are the two most hypervariable genes in this 

region (Dolan et al., 2004). In order to ascertain whether this was true for a 

larger number of strains, nucleotide divergence was calculated for 27 HCMV 

strains (Figure 3.1). The sequences were aligned using ClustalW and the 

consensus sequence was extracted, with any nucleotide position that differed 

between one or more strains and the others, plus any gaps, counted as divergent 

and represented by hyphens. The distribution of hyphens was counted using the 

GCG programme Window and the results were plotted using the GCG programme 

StatPlot (Figure 3.1). As observed in the earlier analysis, UL146 and UL139 show 

the greatest level of nucleotide divergence in this region. Indeed, for these 

genes nucleotide divergence levels approach 100% because the alignment 

process breaks down. Other genes in this region, such as UL144, also show 

substantial levels of nucleotide divergence, although these are less marked than 

in UL146 and UL139. 

The literature documents 14 UL146 genotypes (in 26 isolates; Dolan et al., 2004) 

and six UL139 genotypes (in 26 isolates; Qi et al., 2006). The present study 

investigated circulating genotypes of both genes in a much larger panel of 

clinical isolates from diverse geographical and clinical settings. The sequences 

were analysed to investigate genotypic frequencies, geographical distribution of 

genotypes, and possible modes of evolution. The predicted protein sequences of 

the 14 UL146 genotypes were used to build homology models in order to test to 

what extent sequence differences are likely to result in structural differences.  

3.2 UL146 and UL139 sequences 

A collection of DNA extracts from 184 virus samples was established, consisting 

of 179 anonymised clinical samples and five commonly used laboratory strains. 

Details of the samples (171) successfully amplified by PCR for at least one of the 

genes are summarized in Table 3.1 and include, where known, the clinical  
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Table 3.1: Information on HCMV Samples Used and Genotypes Determined 

Straina Sourceb Age/sexc Detailsd UL146 genotypee UL139 genotypee 
A1 U Adult/M I/CL G2 ND 
A2 U 7/M AA G9 ND 
A3 U 46/M R G4 (-) G8 (-) 
A4 U 9/M B G9 (G13) G7 (-) 
A5 U 1/F B G4 (-) G2, G7 
A6 U 15 d/F J/C G13 (-) G1, G4, G7 (-) 
A7 U 1/M SCID/C/B G13 G1 
A8 U 8 m/M C ND G2 
A9 U 2 m/F I G13 G2 
A10 U 1/M SCID/C/B G13 G4 
A11 U Infant C ND G4, G6 
A12 U Infant ? G7 (-) G2 (-) 
A13 U Infant ? ND G4 
A14 U Child B G5 (-) G7 (-) 
A15 U Infant C ND G7 
A16 A Adult/F C/C+ G2 G2 
A17 A Adult/F C/C+ G9 ND 
A18 TS Infant C/I G13 G4 
C1 U Adult KT ND (G12) G5 (G4) 
C2 U Infant C G2 (G9) G6 (G3, G5) 
C3 U Infant C G6, G9 (G7) G3 (G1, G4) 
C4 U Infant C ND (G7) G4 (-) 
C5 U Infant C G7 (-) ND 
C6 U Infant C G7 (-) ND (G4) 
C7 U Infant C G7 (-) G3 (G4) 
C8 U Infant C G1 (-) ND (G2, G3, G8) 
C9 U Infant C ND (-) G5 (-) 
C10 U Infant C G1 (G7) G1 (G8) 
D1 BL/P ? ? G5, G9 ND 

D2 BL/P ? ? G7 (G3, G12, 
G13) ND (G1, G4) 

D4 BL/P ? ? G12 G6 
D5 BL/P ? ? G12 (G4, G7) ND (G2, G3, G7) 
D6 BL/P ? ? G8 G5 

D7 (TB40/E) TS/P ? B G8 G4 
E1 ? Infant ? G7 ND 
E2 ? R ? ND ND 
E3 ? T ? G7 ND 
E4 ? Infant ? G13 (-) G7 (G1) 
E5 ? 3 ? G9 (G7, G12) ND (G4) 
E6 U Infant/M T G2 G1, G2 
E7 U Adult/M LT ND (G13) G4, G6 (-) 
E8 Ti Adult AIDS G10 G2 
E9 U Infant C ND G4 

E10 (AL) LT Adult H G10 (-)  G5 (G4) 
E11 (NT) T Adult H G4 G3 
E12 (W) LT Adult H G13 (G7) G1, G2, G7 (-) 

E13 U ? LT G9 ND 
G1 U Infant C G4  (-) G4  (-) 
G2 U Infant C G13  (-) G2, G3  (-) 
G3 U Infant C ND G2, G7 
G4 U Infant C G13  (-) G4 (G7) 
G5 U Infant C G13 G8 
G6 U Infant PN G14 G1 
G7 U Infant PN ND G2 
G8 U Infant PN G5 (G12, G13) G4 (G1, G2) 
G9 U Infant PN G2 ND 
G10 U Infant PN G5 G2 
G11 U Infant PN G9 ND 
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G12 U Infant PN G13 G4 
G13 U Infant PN ND G7 
G14 U Infant PN G7 (-) G1 (-) 
G15 U Infant PN G2 ND 
G16 U Infant PN ND ND 
G17 U Infant PN G8 G1, G5, G8 
G18 U Infant PN G3 (G7, G8, G12) G1 (-) 
H1 U Infant C G11 G2 
H2 U Infant C G9 ND 
H3 U Infant C G9 G4, G7 
H4 U Infant C G11 G2 
H5 U Adult/F C+ G13 ND 
H6 U 66/M CH G10 G4 
H7 U 55/M C+ G1 G4 
H8 U Adult/F C+ ND ND 
H9 U Infant C G7 G2 
H10 U Infant C G7 G4 
H12 U Infant C G12 G5 
H13 U Adult/F C+ ND ND 
H14 U Infant C G8 G7 
H15 U Adult/F C+ ND G1 
H16 U Infant C G11 G4 
H17 U Infant C ND G1 
H18 U Infant C G13 G4 
H19 U Adult/F C+ ND G4 
H20 U Infant C ND ND 
H22 U Infant C ND G2 
H26 U 10 w/F C+ ND G1 
H27 U Adult/F C+ ND ND 
H28 U Adult/F C+ G2 ND 
H29 U 14 m/M C+ G10 G2 
I1 U 5 m/M C G9 ND 
I2 U 2 d/M C G8 (-) ND (-) 
I3 C Adult/F P G7, G13 G4 
I4 A Adult/F ? ND G8 
I5 U 4 m/M ? G12 (-) G4 (G5) 
I6 B Adult/M HT G7 G2 
I7 C Adult/F P G13 G4 
N1 U Adult R G1 G4 
N2 U Adult R G12 G3 
N3 U Infant C G7 G2 
N4 U Infant C G7 G6 
N5 U Infant C ND G2 
N6 U Infant C ND G2 
S1 U 1/M C+ G1, G7 G1 
S2 U 45/F C+ G7 (G13) G2 (G4) 
S3 U 10/M B G7, G12 G2 

S4 P 35/M B G9, G12, G13 
 (G2, G7) G2, G5 (G1) 

S5 P 43/M B G13 ND 
S7 BL 56/M AP G7 (-) G6 (G5) 
S8 BL 45/M RF G14 ND 
S9 SR 58/M R ND ND 
S10 P 66/M H ND G4 
S12 U 2/M W G7 (G2, G9) G2 (G6) 
S13 TS 0/F P G2 (G4) G2 (G6) 
S14 U 29/F P G7 ND 
S15 P 58/F ? ND ND 
S16 TS 32/F ? ND ND 
S17 P 38/F H ND ND 
S18 SR 46/F A ND ND 
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S20 SR 31/F L ND G5 
S21 BL 81/M ? G12 ND 
S22 F 75/F PC G10 ND 
S23 P 49/M R G10  (G12) G5 (G4) 
S24 P 68/F R ND G5 
S25 BP 19/M R G5 ND 
S26 BP 48/F CCO G1, G10, G13 G5 
S27 U 14 w/M C G12 G5 
S28 P 36/M N/IM G3 G1 
S30 E 56/F CO G4 ND 
S31 BL 58/M L G13 G5 
S32 U 19/F ? ND ND 
S33 SP 40/M ? G13 (G9, G12) G4 (G1, G5) 
S34 P 44/F ? G12 G2 
S35 TS 68/M ? G7 (-) ND (G3) 
S36 TS 9/M AL ND ND 
S37 P 65/M R ND G3 
S39 U ? KT G13 G2 
S40 U Adult/M KT ND (G12) G1 (-) 
S41 B Adult/M KT G13 G1 
S42 U Infant/M C G10 G2 
S43 U Adult KT G13 G1, G4 
S44 U Adult KT G2 G6, G7 
S45 U ? KT G1 (-) G6 (G3) 
S46 U Adult KT ND G2 

U1 (Cincy) BAC  Adult AIDS G9 G2 
U2 

(AdvarUC) AD Child ? G9 G7 

U3 (Davis) BP Infant C G5 (-) G4 (-) 
U4 (Toledo) U Infant C G1 (-) G4 (-) 
U5 (Towne) U Infant C G7 G5 
W2 (711) U Infant C G1 G5 
W3 (4119) U Infant C G8 G2 
W4 (5234) A Infant C G1 G1 
W5 (6397) U Infant C G12 G4 
W6 (3301) U Infant C G9 G6 

W7 A Infant C G9 G6 
W8 (3157) U Infant C G7 G6 

W9 (Merlin) U Infant C G2 (-) G1 (-) 
Z1 S 28/F H/C+ ND G2, G5 
Z2 S 36/F C+ G1, G13 (G12) G5 (G1, G4) 
Z3 S 22/F C+ G9, G13 (-) G1 (-) 
Z4 S 20/F C+ G9 (G5) G2, G5 (-) 
Z5 S 18/F C+ G3, G14 G2 
Z6 S 20/F C+ G13 (G1, G7) ND (G4, G5) 
Z7 S 29/F C+ G1, G3, G9 (G7) G4 (G5) 
Z8 S 22/F C+ ND G5 
Z9 S 21/F C+ G9 ND 
Z10 S 26/F H/C+ ND G5 
Z11 S 26/F H/C+ G1 (G12) G1 (G4, G5) 
Z12 S 21/F H/C+ G9 ND 
Z13 S 30/F H/C+ G13 ND 

Z14 S 30/F C+ G3, G7, G13 
(G12) G5 (G2) 

Z15 S 23/F C+ G13 ND 
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a A, Australia; C, Hong Kong; D, Germany; E, England; G, The Gambia; H, Hungary; I, Italy; N, The 
Netherlands; S, Scotland; U, USA; W, Wales; Z, South Africa. The original strain designations of 
sequences listed in a previous study (Dolan et al., 2004) are given in parentheses. 
b A, amniotic fluid; AD, adenoids; B, blood; BAC, bacterial artificial chromosome; BL, 
bronchoalveolar lavage; BP, biopsy; C, cervical swab; E, endotracheal swab; F, faeces; LT, lung 
tissue; P, plasma; /P, passaged in cell culture; S, saliva; SP, sputum; SR, serum; T, thyroid; Ti, 
tissue (unspecified); TS, throat swab; U, urine; ?, unknown. 
C Ages are in years unless specified in days (d), weeks (w) or months (m). Sexes: F, female; M, 
male; ?, unknown. 
d AIDS, acquired immunodeficiency syndrome; A, acute myeloid leukaemia; AA, aplastic anaemia; 
AL, acute lymphoblastic leukaemia; AP, aplastic anaemia with pneumonia; B, bone marrow 
transplant; C, congenital; C+, HCMV positive by PCR or IgM in serum; CCO, Crohn’s disease with 
HCMV colitis; CH, chronic haemodialysis patient; CL, chronic lung disease; CO, colitis; H, HIV 
positive; HT, heart transplant; IM, immunosuppressed; J, jaundice; KT, kidney transplant; L, 
lower respiratory tract infection; LT, liver transplant; N, nephrotic syndrome; P, maternal HCMV 
positive (pregnancy); PC, pan-proctocolectomy; PN, postnatal; R, renal transplant; RF, respiratory 
failure; SCID, severe combined immunodeficiency; T, thrombocytopenia; W, Wilms’ tumour post-
nephrectomy. 
e Genotypes are denoted G1-G14 for UL146 and G1-G8 for UL139. Multiple genotypes are 
separated by commas. ND, not determined. Additional genotypes identified in subsequent 
experiments are in parentheses; -, no additional genotypes identified. 

 

source of the original sample, the age and sex of the patient and clinical details 

regarding the medical condition of the patient. Details of collaborators who 

collected and provided the samples and extracted the DNA are shown in Table 

2.1 (Chapter 2). 

3.3 UL146 genotypes 

A total of 184 HCMV DNA samples were tested for the presence of UL146. UL146 

was amplified successfully as a PCR product from 159 samples, and sequences 

were determined successfully from 134 PCR products (Table 3.1). UL146 (and 

UL139, see Section 3.4) were not amplified from 13 samples, which are excluded 

from Table 3.1. Some samples contained more than one sequence, and in total 

the 134 samples yielded 182 UL146 sequences. The phylogenetic and diversity 

analyses involved a total of 350 UL146 sequences, which included the 182 

sequences derived from the present study (Table 3.1) and all UL146 sequences 

reported by others in the literature or deposited in GenBank (Table 3.2).  

The UL146 coding sequences range in length from 342-378 bp (114-126 codons, 

including the stop codon). 
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Table 3.2: Additional UL146 sequences Used for Phylogenetic and Diversity 

Analyses 

Accession numbers Reference 

AY681088 - AY681116  Arav-Boger et al. (2005, 2006) 

AY446877-AY446893 Dolan et al. (2004) 

DQ115708-DQ115756 Lurain et al. (2006) 

AY582483-AY582530 Stanton et al. (2005) 

DQ229942-DQ229946, DQ229948  Ruan et al. (unpublished) 

DQ180366  Zhou et al. (unpublished) 

AY788113-AY788136 He et al. (2006) 

  

Amino acid sequence alignments and phylogenetic trees produced by the 

neighbour-joining method were employed to group the sequences into 

genotypes. All of the sequences fell into the 14 UL146 genotypes (G1-G14) 

defined previously (Dolan et al., 2004). An aa sequence alignment containing a 

representative of each genotype is shown in Figure 3.2. The protein encoded by 

each genotype contains a putative signal peptide sequence (highlighted in grey). 

UL146 is hypervariable throughout its length and only a few aas are completely 

conserved in the mature protein: three residues in the RCXC motif, two other C 

residues, and single W and P residues. All genotypes contain the characteristic 

RCXC motif, which is present as ELRCXC in 12 genotypes and as NGRCXC in two 

genotypes (G5 and G6). Table 3.3 displays a laboratory strain or previously 

published strain (Dolan et al., 2004) representing each of the fourteen 

genotypes. 

An unrooted phylogenetic tree showing the relationship between the HCMV 

UL146 genotypes and CCMV UL146 is shown in Figure 3.3. Bootstrap values under 

70 indicate regions of unresolved branching order. The genotypes cluster into 

four groups. Group A contains the most members but the order of genotypes 

within this group is not clear. However, G10 and G11 are more closely related to 

each other than to other members of the group, as are G12 and G13 and, 

similarly, G8 and G9. Group B contains three members, G1, G2 and G3. Group C 

contains two members, G5 and G6. In group D, G4 appears to be more closely 

related to the CCMV UL146 sequence than to any of the other HCMV genotypes.  
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Table 3.3: Laboratory strain corresponding to UL146 Genotype 

UL146 Genotype Laboratory strain 

G1 Toledo 

G2 Merlin 

G3 KSG 

G4 NT 

G5 Davis 

G6 ML1 

G7 Towne 

G8 TB40E 

G9 FS 

G10 Al 

G11 [F] 

G12 6397 

G13 KM 

G14 RK 

 

Genotypic frequencies were calculated from the total number of UL146 

sequences available (from the present study and in Genbank, a total of 350) 

(Figure 3.4). UL146 G7 and G9 were each detected in 14% of sequences or more, 

and UL146 G12 and G13 in over 12%. In contrast, UL146 G6 and G14 were each 

detected in less than 2% of sequences. The remainder of the UL146 genotypes 

were detected at frequencies of 2-10%. 

Amino acid sequence alignments were used to calculate the level of sequence 

identity between all strains within each individual genotype (using Swaap) 

(Figure 3.5). An aa sequence alignment (Figure 3.2) of a representative of each 

UL146 genotype was used to calculate identity among genotypes. The aa 

sequence identity among genotypes is low (range 18.5-68.2%, mean 36.9%), 

whereas within each genotype it is high (range 94.9-99.5%). Similarly, nucleotide 

sequence identity is low among genotypes (range 47.2-81.2%, mean 55.4%), 

whereas it is high within each genotype (range 97.2-99.8%). In contrast to the 

high level of identity within genotypes, identity within each of the four groups 

was low; therefore the four groups were not employed in further analyses. 
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Figure 3.4 Frequencies of occurrence of UL146 genotypes  
The frequencies were calculated using all available sequences
from the present study and those available in GenBank (a total of
350). 
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Figure 3.5 Sequence identity within and among UL146 genotypes 
 
Nucleotide (nt) and amino acid (aa) sequence identities were calculated within
each genotype (G1-G14) by pairwise alignment of all sequences in the relevant
genotype, and among all genotypes (All) by pairwise alignment of a
representative of each genotype (Figure 3.2). Mean and standard deviation
values are shown. 
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Figure 3.1: Amino acid sequence alignment of UL146 G1 sequences 

N1     MRLIFGALIIFLAYVYHYEVNGTELRCRCLHRKWPPNKIILGNYWLHRDPRGPGCDKNE
20M    MRLIFGALIIFLAYVYHYEVNGTELRCRCLHKKWPPNKIILGNYWLHRDPRGPGCDKNE  
2J     MRLIFGALIIFLAYVYHYEVNGTELRCRCLHKKWPPNKIILGNYWLHRDPRGPGCDKNE  
W4     MRLIFGALIIFLAYVYHYEVNGTELRCRCLHRKWPPNKIILGNYWLHRDPRGPGCDKNE  
W2     MRLIFGALIIFLAYVYHYEVNGTELRCRCLHRKWPPNKIILGNYWLHRDPRGPGCDKNE  
A9     MRLIFGALIIFLAYVYHYEVNGTELRCRCLHRKWPPNKIILGSYWLHRDPRGPGCDKNE  
C3     MRLIFGALIIFLAYVYHYEVNGTELRCRCLHRKWPPNKIILGNYWLHRDPRGPGCDKNE  
CH11   MRLIFGALIIFLAYVYHYEVNGTELRCRCLHKKWPPNKIILGNYWLHRDPRGPGCDKNE  
CH18   MRLIFGALIIFLAYVYHYEVNGTELRCRCLHKKWPPNKIILGNYWLHRDPRGPGCDKNE  
CH19   MRLIFGALIIFLAYVYHYEVNGTELRCRCLHRKWPPNKIILGNYWLHRDPRGPGCDKNE  
CH2    MRLIFGALIIFLAYVYHYEVNGTELRCRCLHKKWPPNKIILGNYWLHRDPRGPGCDKNE  
CH20   MRLIFGALIIFLAYVYHYEVNGTELRCRCLHKKWPPNKIILGNYWLHRDPRGPGCDKNE  
CH21   MRLIFGALIIFLAYVYHYEVNGTELRCRCLHRKWPPNKIILGNYWLHRDPRGPGCDKNE  
CH3    MRLIFGALIIFLAYVYHYEVNGTELRCRCLHRKWPPNKIILGNYWLHRDPRGPGCDKNE  
CH8    MRLIFGALIIFLAYVYHYEVNGTELRCRCLHKKWPPNKIILGNYWLHRDPRGPGCDKNE  
H7     MRLIFGALIIFLAYVYHYEVNGTELRCRCLHRKWPPNKIILGNYWLHRDPRGPGCDKNE  
S1     MRLFSGALIIFLAYVYHYEVNGTELRCRCLHRKWPPNKIILGNYWLHRDPRGPGCDKNE  
S26    MRLIFGALIIFLAYVYHYEVNGTELRCRCLHRKWPPNKIILGNYWLHRDPRGPGCDKNE  
NA     MRLIFGALIIFLAYVYHYEVNGTELRCRCLHRKWPPNKIILGNYWLHRDPRGPGCDKNE  
PT12   MRLIFGALIIFLAYVYHYEVNGTELRCRCLHRKWPPNKIILGNYWLHRDPRGPGCDKNE  
PT16   MRLIFGALIIFLAYVYHYEVNGTELRCRCLHRKWPPNKIILGNYWLHRDPRGPGCDKNE  
S11    MRLLFGALIIFLAYVYHYEVNGTELRCRCLHRKWPPNKIILGNYWLHRDPRGPGCDKNE  
Z11    MRLLFGALIIFLAYVYHYEVNGTELRCRCLHRKWPPNKIILGNYWLHRDPRGPGCDKNE  
Z2     MRLIFGALIIFLAYVYHYEVNGTELRCRCLHRKWPSNKIILGNYWLHRDPRGPGCDKNE  
Z6     MRLIFGALIIFLAYVYHYEVNGTELRCRCLHRKWPPNKIILGNYWLHRDPRGPGCDKNE  
Z7     MRLIFGALIIFLAYVYHYEVNGTELRCRCLHRKWPPNKIILGNYWLHRDPRGPGCDKNE  
SR     MRLIFGALIIFLAYVYHYEVNGTELRCRCLHRKWPPNKIILGNYWLHRDPRGPGCDKNE  
U4     MRLIFGALIIFLAYVYHYEVNGTELRCRCLHRKWPPNKIILGNYWLHRDPRGPGCDKNE  
TR     MRLIFGALIIFLAYVYHYEVNGTELRCRCLHRKWPPNKIILGNYWLHRDPRGPGCDKNE  
S45    MRLIFGALIIFLAYVYHYEVNGTELRCRCLHRKWPPNKIILGNYWLHRDPRGPGCDKNE 
C8     MRLIFGALIIFLAYVYHYEVNGTELRCRCLHRKWPPNKIILGNYWLHRDPRGPGCDKNE  
C10    MRLIFGALIIFLAYVYHYEVNGTELRCRCLHRKWPPNKIILGNYWLHRDPRGPGCDKNE  
UU     MRLIFGALIIFLAYVYHYEVNGTELRCRCLHRKWPPNKIILGNYWLHRDPRGPGCDKNE  
con    MRL--GALIIFLAYVYHYEVNGTELRCRCLH-KWP-NKIILG-YWLHRDPRGPGCDKNE 
 
N1     HLLYPDGRKPPGPGVCLSPDHLFSKWLDKYNDNRWYNVNITKSPGPRRINITLIGVRG  
20M    HLLYPDGRKPPGPGVCLSPDHLFSKWLDKRNDNRWYNVNITKSPEPRRINITLIGVRG  
2J     HLLYPDGRKPPGPGVCLSPDHLFSKWLDKRNDNRWYNVNITKSPEPRRINITLIGVRG  
W4     HLLYPNGRKPP..GVCLSPDHLFSKWLDKHDDNRWYNVNITKSPGPRRINITLIGVGG  
W2     HLLYLDGRKPPGPGVCLSPDHLFSKWLDKHNDDRWYNVNITKSPGPRRINITLIGVRG  
A9     HLLYPDGRKPPGPGVCLSPDHLFSKWLDKHNDNRWYNVNITKSPGPRRINITLIGVRG  
C3     HLLYPDGRKPPGPGVCLSPDHLFSKWLDKYNDNRWYNVNITKSPGPRRINITLIGVKG  
CH11   HLLYPDGRKPPGPGVCLSPDHLFSKWLDKYNDNRWYNVNITKSPGPRRINITLIGVKG  
CH18   HLLYPDGRKPPGPGVCLSPDHLFSKWLDKRNDNRWYNVNITKSPEPRRINITLIGVRG  
CH19   HLLYPDGRKPPGSGVCLSPDHLFSKWLDKYNDNRWYNVNITKSPGPRRINITLIGVRG  
CH2    HLLYPDGRKPPGPGVCLSPDHLFSKWLDKRNDNRWYNVNITKSPEPRRINITLIGVRG  
CH20   HLLYPDGRKPPGPGVCLSPDHLFSKWLDKRNDNRWYNVNITKSPEPRRINITLIGVRG  
CH21   HLLYPNGKKPP..GVCLSPDHLFSKWLDKHDDNRWYNVNITKSPGPRRINITLIGVGG  
CH3    HLLYPDGRKPPGPGVCLSPDHLFSKWLDKYNDNRWYNVNITKSPGPRRINITLIGVKG  
CH8    HLLYPDGRKPPGPGVCLSPDHLFSKWLDKRNDNRWYNVNITKSPEPRRINITLIGVRG  
H7     HLLYPDGRKPPGPGVCLSPDHLFSKWLDKHNDNRWYNVNITKSPGPRRINITLIGVRG  
S1     HLLYPDGRKPPGHGVCLSPDHLFSKWLDKRNDNRWYNVNITKSPEPRRINITLIGVRG  
S26    HLLYPDGRKPPGHGVCLSPDHLFSKWLDKRNDNRWYNVNITKSPEPRRINITLIGVRG  
NA     HLLYPNGKKPP..GVCLSPDHLFSKWLDKHDDNRWYNVNITKSPGPRRINITLIGVGG  
PT12   HLLYPDGRKPPGHGVCLSPDHLFSKWLDKRNDNRWYNVNITKSPEPRRINITLIGVRG  
PT16   HLLYPDGRKPPGPGVCLSPDHLFSKWLDKYNDNRWYNVNITKSPGPRRINITLIGVRG  
S11    HLLYPDGRKPPGHGVCLSPDHLFSKWLDKRNDNRWYNVNITKSPEPRRINITLIGVRG  
Z11    HLLYPDGRKPPGHGVCLSPDHLFSKWLDKRNDNRWYNVNITKSPEPRRINITLIGVRG  
Z2     HLLYPDGRKPPGHGVCLSPDHLFSKWLDKRNDNRWYNVNITKSPEPRRINITLIGVRG  
Z6     HLLYPDGRKPPGPGVCLSPDHLFSKWLDKYNDNRWYKVNITKSPGPRRINITLIGVRG  
Z7     HLLYPDGRKPPGHGVCLSPDHLFSKWLDKRNDNRWYNANMTKSPEPRRINITLIGVRG  
SR     HLLYPDGRKPPGPGVCLSPDHLFSKWLDKYNDNRWYNVNITKSPGPRRINITLIGVRG  
U4     HLLYPDGRKPPGPGVCLSPDHLFSKWLDKHNDNRWYNVNITKSPGPRRINITLIGVRG  
TR     HLLYPDGRKPPGHGVCLSPDHLFSKWLDKRNDNRWYNVNITKSPEPRRINITLIGVRG  
S45    HLLYPDGRKPPGHGVCLSPDHLFSKWLDKRNDNRWYNVNITKSPEPRRINITLIGVRG  
C8     HLLYPDGRKPPGHGVCLSPDHLFSKWLDKRNDNRWYNVNITKSPEPRRINITLIGVRG  
C10    HLLYPDGRKPPGHGVCLSPDHLFSKWLDKRNDNRWYNVNITKSPEPRRINITLIGVRG  
UU     HLLYPDGRKPPGPGVCLSPDHLFSKWLDKYNDNRWYNVNITKSPGPRRINITLIGVRG  
con    HLLY--G-KPP--GVCLSPDHLFSKWLDK--D-RWY--N-TKSP-PRRINITLIGV-G  
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Figure 3.6  Amino acid sequence alignment of UL146 G1 sequences 
 
All G1 sequences from the present study are included, plus those available
in GenBank (in italics). Completely conserved residues are shown in the
consensus row (con) and non-conserved residues are indicated by
hyphens. Dots indicate gaps in the alignment. Mismatched residues are
highlighted in yellow. The predicted signal peptide sequences are
highlighted in grey, and the conserved RCXC motif and two cysteine
residues are highlighted in pink. 
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A9 ATGCGATTAATTTTTGGTGCGTTGATTATTTTTTTAGCATATGTGTATCATTATGAGGTGAATGGAACAGAATTACGCTGCAGATGTCTTCATAGAAAATGGCCGCCTAATAAAATTA 
711 ATGCGATTAATTTTTGGTGCGTTGATTATTTTTTTAGCATATGTGTATCATTATGAGGTGAATGGAACAGAATTACGCTGCAGATGTCTTCATAGAAAATGGCCGCCTAATAAAATTA 
U4 ATGCGATTAATTTTTGGTGCGTTGATTATTTTTTTAGCATATGTGTATCATTATGAGGTGAATGGAACAGAATTACGCTGCAGATGTCTTCATAGAAAATGGCCGCCTAATAAAATTA 
H7 ATGCGATTAATTTTTGGTGCGTTGATTATTTTTTTAGCATATGTGTATCATTATGAGGTGAATGGAACAGAATTACGCTGCAGATGTCTTCATAGAAAATGGCCGCCTAATAAAATTA 
Z6 ATGCGATTAATTTTTGGTGCGTTGATTATTTTTTTAGCATATGTGTATCATTATGAGGTGAATGGAACAGAATTACGCTGCAGATGTCTTCATAGAAAATGGCCACCTAATAAAATTA 
N1 ATGCGATTAATTTTTGGTGCGTTGATTATTTTTTTAGCATATGTGTATCATTATGAGGTGAATGGAACAGAATTACGCTGCAGATGTCTTCATAGAAAATGGCCACCTAATAAAATTA 
UU ATGCGATTAATTTTTGGTGCGTTGATTATTTTTTTAGCATATGTGTATCATTATGAGGTGAATGGAACAGAATTACGCTGCAGATGTCTTCATAGAAAATGGCCGCCTAATAAAATTA 
PT16 ATGCGATTAATTTTTGGTGCGTTGATTATTTTTTTAGCATATGTGTATCATTATGAGGTGAATGGAACAGAATTACGCTGCAGATGTCTTCATAGAAAATGGCCGCCTAATAAAATTA 
SR ATGCGATTAATTTTTGGTGCGTTGATTATTTTTTTAGCATATGTGTATCATTATGAGGTGAATGGAACAGAATTACGCTGCAGATGTCTTCATAGAAAATGGCCGCCTAATAAAATTA 
CH19 ATGCGATTAATTTTTGGTGCGTTGATTATTTTTTTAGCATATGTGTATCATTATGAGGTGAATGGAACAGAATTACGCTGCAGATGTCTTCATAGAAAATGGCCGCCTAATAAAATTA 
C3 ATGCGATTAATTTTTGGTGCGTTGATTATTTTTTTAGCATATGTGTATCATTATGAGGTGAATGGAACAGAATTACGCTGCAGATGTCTTCATAGAAAATGGCCGCCTAATAAAATTA 
CH3 ATGCGATTAATTTTTGGTGCGTTGATTATTTTTTTAGCATATGTGTATCATTATGAGGTGAATGGAACAGAATTACGCTGCAGATGTCTTCATAGAAAATGGCCGCCTAATAAAATTA 
CH11 ATGCGATTAATTTTTGGTGCGTTGATTATTTTTTTAGCATATGTGTATCATTATGAGGTGAATGGAACAGAATTACGCTGCAGATGTCTTCATAAAAAATGGCCGCCTAATAAAATTA 
S11 ATGCGATTACTTTTTGGTGCGTTGATTATTTTTTTAGCATATGTGTATCATTATGAGGTGAATGGAACAGAATTACGCTGCAGATGTCTTCATAGAAAATGGCCGCCTAATAAAATTA 
Z11 ATGCGATTACTTTTTGGTGCGTTGATTATTTTTTTAGCATATGTGTATCATTATGAGGTGAATGGAACAGAATTACGCTGCAGATGTCTTCATAGAAAATGGCCGCCTAATAAAATTA 
S1 ATGCGATTATTTTCTGGTGCGTTGATTATTTTTTTAGCATATGTGTATCATTATGAGGTGAATGGAACAGAATTACGCTGCAGATGTCTTCATAGAAAATGGCCGCCTAATAAAATTA 
Z2 ATGCGATTAATTTTTGGTGCGTTGATTATTTTTTTAGCATATGTGTATCATTATGAGGTGAATGGAACAGAATTACGCTGCAGATGTCTTCATAGAAAATGGCCGTCTAATAAAATTA 
TR ATGCGATTAATTTTTGGTGCGTTGATTATTTTTTTAGCATATGTGTATCATTATGAGGTGAATGGAACAGAATTACGCTGCAGATGTCTTCATAGAAAATGGCCGCCTAATAAAATTA 
S26 ATGCGATTAATTTTTGGTGCGTTGATTATTTTTTTAGCATATGTGTATCATTATGAGGTGAATGGAACAGAATTACGCTGCAGATGTCTTCATAGAAAATGGCCGCCTAATAAAATTA 
S45 ATGCGATTAATTTTTGGTGCGTTGATTATTTTTTTAGCATATGTGTATCATTATGAGGTGAATGGAACAGAATTACGCTGCAGATGTCTTCATAGAAAATGGCCGCCTAATAAAATTA 
C8 ATGCGATTAATTTTTGGTGCGTTGATTATTTTTTTAGCATATGTGTATCATTATGAGGTGAATGGAACAGAATTACGCTGCAGATGTCTTCATAGAAAATGGCCGCCTAATAAAATTA 
C10 ATGCGATTAATTTTTGGTGCGTTGATTATTTTTTTAGCATATGTGTATCATTATGAGGTGAATGGAACAGAATTACGCTGCAGATGTCTTCATAGAAAATGGCCGCCTAATAAAATTA 
PT12 ATGCGATTAATTTTTGGTGCGTTGATTATTTTTTTAGCATATGTGTATCATTATGAGGTGAATGGAACAGAATTACGCTGCAGATGTCTTCATAGAAAATGGCCGCCTAATAAAATTA 
Z7 ATGCGATTAATTTTTGGTGCGTTGATTATTTTTTTAGCATATGTGTATCATTATGAGGTGAATGGAACAGAATTACGCTGCAGATGTCTTCATAGAAAATGGCCGCCTAATAAAATTA 
2J ATGCGATTAATTTTTGGTGCGTTGATTATTTTTTTAGCATATGTGTATCATTATGAGGTGAATGGAACAGAATTACGCTGCAGATGTCTTCATAAAAAATGGCCGCCTAATAAAATTA 
20M ATGCGATTAATTTTTGGTGCGTTGATTATTTTTTTAGCATATGTGTATCATTATGAGGTGAATGGAACAGAATTACGCTGCAGATGTCTTCATAAAAAATGGCCGCCTAATAAAATTA 
CH2 ATGCGATTAATTTTTGGTGCGTTGATTATTTTTTTAGCATATGTGTATCATTATGAGGTGAATGGAACAGAATTACGCTGCAGATGTCTTCATAAAAAATGGCCGCCTAATAAAATTA 
CH20 ATGCGATTAATTTTTGGTGCGTTGATTATTTTTTTAGCATATGTGTATCATTATGAGGTGAATGGAACAGAATTACGCTGCAGATGTCTTCATAAAAAATGGCCGCCTAATAAAATTA 
CH18 ATGCGATTAATTTTTGGTGCGTTGATTATTTTTTTAGCATATGTGTATCATTATGAGGTGAATGGAACAGAATTACGCTGCAGATGTCTTCATAAAAAATGGCCGCCTAATAAAATTA 
CH8 ATGCGATTAATTTTTGGTGCGTTGATTATTTTTTTAGCATATGTGTATCATTATGAGGTGAATGGAACAGAATTACGCTGCAGATGTCTTCATAAAAAATGGCCGCCTAATAAAATTA 
CH21 ATGCGATTAATTTTTGGTGCGTTGATTATTTTTTTAGCATATGTGTATCATTATGAGGTGAATGGAACAGAATTACGCTGCAGATGTCTTCATAGAAAATGGCCGCCTAATAAAATTA 
NA ATGCGATTAATTTTTGGTGCGTTGATTATTTTTTTAGCATATGTGTATCATTATGAGGTGAATGGAACAGAATTACGCTGCAGATGTCTTCATAGAAAATGGCCGCCTAATAAAATTA 
W4 ATGCGATTAATTTTTGGTGCGTTGATTATTTTTTTAGCATATGTGTATCATTATGAGGTGAATGGAACAGAATTACGCTGCAGATGTCTTCATAGAAAATGGCCGCCTAATAAAATTA 
con ATGCGATTA-TTT-TGGTGCGTTGATTATTTTTTTAGCATATGTGTATCATTATGAGGTGAATGGAACAGAATTACGCTGCAGATGTCTTCATA-AAAATGGCC--CTAATAAAATTA 
 
                                                                                                                 
A9 TATTGGGTAGTTATTGGCTTCATCGCGATCCCAGAGGGCCCGGATGCGATAAAAATGAACATTTATTGTATCCAGACGGAAGGAAACCGCCTGGACCTGGAGTATGTTTATCGCCCGA 
711 TATTGGGTAATTATTGGCTTCATCGCGATCCCAGAGGGCCCGGATGCGATAAAAATGAACATTTATTGTATCTAGACGGAAGGAAACCGCCTGGACCTGGAGTATGTTTATCGCCTGA 
U4 TATTGGGTAATTATTGGCTTCATCGCGATCCCAGAGGGCCCGGATGCGATAAAAATGAACATTTATTGTATCCAGACGGAAGGAAACCGCCTGGACCTGGAGTATGTTTATCGCCCGA 
H7 TATTGGGTAATTATTGGCTTCATCGCGATCCCAGAGGGCCCGGATGCGATAAAAATGAACATTTATTGTATCCAGACGGAAGGAAACCGCCTGGACCTGGAGTATGTTTATCGCCCGA 
Z6 TATTGGGTAATTATTGGCTTCATCGCGATCCCAGAGGGCCCGGATGCGATAAAAATGAACATTTATTGTATCCAGACGGAAGGAAACCGCCTGGACCTGGAGTATGTTTATCGCCCGA 
N1 TATTGGGTAATTATTGGCTTCATCGCGATCCCAGAGGGCCCGGATGCGATAAAAATGAACATTTATTGTATCCAGACGGAAGGAAACCGCCTGGACCTGGAGTATGTTTATCGCCCGA 
UU TATTGGGTAATTATTGGCTTCATCGCGATCCCAGAGGGCCCGGATGCGATAAAAATGAACATTTATTGTATCCAGACGGAAGGAAACCGCCTGGACCTGGAGTATGTTTATCGCCCGA 
PT16 TATTGGGTAATTATTGGCTTCATCGCGATCCCAGAGGGCCCGGATGCGATAAAAATGAACATTTATTGTATCCAGACGGAAGGAAACCGCCTGGACCTGGAGTATGTTTATCGCCCGA 
SR TATTGGGTAATTATTGGCTTCATCGCGATCCCAGAGGGCCCGGATGCGATAAAAATGAACATTTATTGTATCCAGACGGAAGGAAACCGCCTGGACCTGGAGTATGTTTATCGCCCGA 
CH19 TATTGGGTAATTATTGGCTTCATCGCGATCCCAGAGGGCCCGGATGCGATAAAAATGAACATTTATTGTATCCAGACGGAAGGAAACCGCCTGGATCTGGAGTATGTTTATCGCCCGA 
C3 TATTGGGTAATTATTGGCTTCATCGCGATCCCAGAGGGCCCGGATGCGATAAAAATGAACATTTATTGTATCCAGACGGAAGGAAACCGCCTGGACCTGGAGTATGTTTATCGCCCGA 
CH3 TATTGGGTAATTATTGGCTTCATCGCGATCCCAGAGGGCCCGGATGCGATAAAAATGAACATTTATTGTATCCAGACGGAAGGAAACCGCCTGGACCTGGAGTATGTTTATCGCCCGA 
CH11 TATTGGGTAATTATTGGCTTCATCGCGATCCCAGAGGGCCCGGATGCGATAAAAATGAACATTTATTGTATCCAGACGGAAGGAAACCGCCTGGACCTGGAGTATGTTTATCGCCCGA 
S11 TATTGGGTAATTATTGGCTTCATCGCGATCCCAGAGGGCCCGGATGCGATAAAAATGAACATTTATTGTATCCAGACGGAAGGAAACCGCCTGGACATGGAGTATGTTTATCGCCCGA 
Z11 TATTGGGTAATTATTGGCTTCATCGCGATCCCAGAGGGCCCGGATGCGATAAAAATGAACATTTATTGTATCCAGACGGAAGGAAACCGCCTGGACATGGAGTATGTTTATCGCCCGA 
S1 TATTGGGTAATTATTGGCTTCATCGCGATCCCAGAGGGCCCGGATGCGATAAAAATGAACATTTATTGTATCCAGACGGAAGGAAACCGCCTGGACATGGAGTATGTTTATCGCCCGA 
Z2 TATTGGGTAATTATTGGCTTCATCGCGATCCCAGAGGGCCCGGATGCGATAAAAATGAACATTTATTGTATCCAGACGGAAGGAAACCGCCTGGACATGGAGTATGTTTATCGCCCGA 
TR TATTGGGTAATTATTGGCTTCATCGCGATCCCAGAGGGCCCGGATGCGATAAAAATGAACATTTATTGTATCCAGACGGAAGGAAGCCGCCTGGACATGGAGTATGTTTATCGCCCGA 
S26 TATTGGGTAATTATTGGCTTCATCGCGATCCCAGAGGGCCCGGATGCGATAAAAATGAACATTTATTGTATCCAGACGGAAGGAAACCGCCTGGACATGGAGTATGTTTATCGCCCGA 
S45 TATTGGGTAATTATTGGCTTCATCGCGATCCCAGAGGGCCCGGATGCGATAAAAATGAACATTTATTGTATCCAGACGGAAGGAAACCGCCTGGACATGGAGTATGTTTATCGCCCGA 
C8 TATTGGGTAATTATTGGCTTCATCGCGATCCCAGAGGGCCCGGATGCGATAAAAATGAACATTTATTGTATCCAGACGGAAGGAAACCGCCTGGACATGGAGTATGTTTATCGCCCGA 
C10 TATTGGGTAATTATTGGCTTCATCGCGATCCCAGAGGGCCCGGATGCGATAAAAATGAACATTTATTGTATCCAGACGGAAGGAAACCGCCTGGACATGGAGTATGTTTATCGCCCGA 
PT12 TATTGGGTAATTATTGGCTTCATCGCGATCCCAGAGGGCCCGGATGCGATAAAAATGAACATTTATTGTATCCAGACGGAAGGAAACCGCCTGGACATGGAGTATGTTTATCGCCCGA 
Z7 TATTGGGTAATTATTGGCTTCATCGCGATCCCAGAGGGCCCGGATGCGATAAAAATGAACATTTATTGTATCCAGACGGAAGGAAACCGCCTGGACATGGAGTATGTTTATCGCCCGA 
2J TATTGGGTAATTATTGGCTTCATCGCGATCCCAGAGGGCCCGGATGCGATAAAAATGAACATTTATTGTATCCAGACGGAAGGAAACCGCCTGGACCTGGAGTATGTTTATCGCCCGA 
20M TATTGGGTAATTATTGGCTTCATCGCGATCCCAGAGGGCCCGGATGCGATAAAAATGAACATTTATTGTATCCAGACGGAAGGAAACCGCCTGGACCTGGAGTATGTTTATCGCCCGA 
CH2 TATTGGGTAATTATTGGCTTCATCGCGATCCCAGAGGGCCCGGATGCGATAAAAATGAACATTTATTGTATCCAGACGGAAGGAAACCGCCTGGACCTGGAGTATGTTTATCGCCCGA 
CH20 TATTGGGTAATTATTGGCTTCATCGCGATCCCAGAGGGCCCGGATGCGATAAAAATGAACATTTATTGTATCCAGACGGAAGGAAACCGCCTGGACCTGGAGTATGTTTATCGCCCGA 
CH18 TATTGGGTAATTATTGGCTTCATCGCGATCCCAGAGGGCCCGGATGCGATAAAAATGAACATTTATTGTATCCAGACGGAAGGAAACCGCCTGGACCTGGAGTATGTTTATCGCCCGA 
CH8 TATTGGGTAATTATTGGCTTCATCGCGATCCCAGAGGGCCCGGATGCGATAAAAATGAACATTTATTGTATCCAGACGGAAGGAAACCGCCTGGACCTGGAGTATGTTTATCGCCCGA 
CH21 TATTGGGTAATTATTGGCTTCATCGCGATCCCAGAGGGCCCGGATGCGATAAAAATGAACATTTATTGTATCCAAACGGAAAAAAACCGCCTGGA......GTATGTTTATCGCCCGA 
NA TATTGGGTAATTATTGGCTTCATCGCGATCCCAGAGGGCCCGGATGCGATAAAAATGAACATTTATTGTATCCAAACGGAAAGAAACCGCCTGGA......GTATGTTTATCGCCCGA 
W4 TATTGGGTAATTATTGGCTTCATCGCGATCCCAGAGGGCCCGGATGCGATAAAAATGAACATTTATTGTATCCAAACGGAAGGAAACCGCCTGGA......GTATGTTTATCGCCCGA 
con TATTGGGTA-TTATTGGCTTCATCGCGATCCCAGAGGGCCCGGATGCGATAAAAATGAACATTTATTGTATC-A-ACGGAA--AA-CCGCCTGGA------GTATGTTTATCGCC-GA

Figure 3.7 Nucleotide sequence alignment of UL146 G1 sequences 
(continued overleaf) 
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A9 TCACCTCTTCTCAAAATGGTTAGACAAACACAACGATAATAGGTGGTATAATGTTAACATAACGAAATCACCAGGACCGAGACGAATAAATATAACCTTGATAGGTGTTAGAGGA 
711 TCACCTCTTCTCAAAATGGTTAGACAAACACAACGATGATAGGTGGTATAATGTTAACATAACGAAATCACCAGGACCGAGACGAATAAATATAACCTTGATAGGTGTTAGAGGA 
U4 TCACCTCTTCTCAAAATGGTTAGACAAACACAACGATAATAGGTGGTATAATGTTAACATAACGAAATCACCAGGACCGAGACGAATAAATATAACCTTGATAGGTGTTAGAGGA 
H7 TCACCTCTTCTCAAAATGGTTAGACAAACACAACGATAATAGGTGGTATAATGTTAACATAACGAAATCACCAGGACCGAGACGAATAAATATAACCTTGATAGGTGTTAGAGGA 
Z6 TCACCTCTTCTCAAAATGGTTAGACAAATACAACGATAATAGGTGGTATAAGGTTAACATAACGAAATCACCAGGACCGAGACGAATAAATATAACCTTGATAGGTGTTAGAGGA 
N1 TCACCTCTTCTCAAAATGGTTAGACAAATACAACGATAATAGGTGGTATAATGTTAACATAACGAAATCACCAGGACCGAGACGAATAAATATAACCTTGATAGGTGTTAGAGGA 
UU TCACCTCTTCTCAAAATGGTTAGACAAATACAACGATAATAGGTGGTATAATGTTAACATAACGAAATCACCAGGACCGAGACGAATAAATATAACTTTGATAGGTGTTAGAGGA 
PT16 TCACCTCTTCTCAAAATGGTTAGACAAATACAACGATAATAGGTGGTATAATGTTAACATAACGAAATCACCAGGACCGAGACGAATAAATATAACCTTGATAGGTGTTAGAGGA 
SR TCACCTCTTCTCAAAATGGTTAGACAAATACAACGATAATAGGTGGTATAATGTTAACATAACGAAATCACCAGGACCGAGACGAATAAATATAACCTTGATAGGTGTTAGAGGA 
CH19 TCACCTCTTCTCAAAATGGTTAGACAAATACAACGATAATAGGTGGTATAATGTTAACATAACGAAATCACCAGGACCGAGACGAATAAATATAACCTTGATAGGTGTTAGAGGA 
C3 TCACCTCTTCTCAAAATGGTTAGACAAATACAACGATAATAGGTGGTATAATGTTAACATAACGAAATCACCAGGACCGAGACGAATAAATATAACCTTGATAGGTGTTAAAGGA 
CH3 TCACCTCTTCTCAAAATGGTTAGACAAATACAACGATAATAGGTGGTATAATGTTAACATAACGAAATCACCAGGACCGAGACGAATAAATATAACCTTGATAGGTGTTAAAGGA 
CH11 TCACCTCTTCTCAAAATGGTTAGACAAATACAACGATAATAGGTGGTATAATGTTAACATAACGAAATCACCAGGACCGAGACGAATAAATATAACCTTGATAGGTGTTAAAGGA 
S11 TCACCTCTTCTCAAAATGGTTAGACAAACGCAACGATAATAGGTGGTATAATGTTAACATAACGAAATCACCAGAACCGAGACGAATAAATATAACCTTGATAGGTGTTAGAGGA 
Z11 TCACCTCTTCTCAAAATGGTTAGACAAACGCAACGATAATAGGTGGTATAATGTTAACATAACGAAATCACCAGAACCGAGACGAATAAATATAACCTTGATAGGTGTTAGAGGA 
S1 TCACCTCTTCTCAAAATGGTTAGACAAACGCAACGATAATAGGTGGTATAATGTTAACATAACGAAATCACCAGAACCGAGACGAATAAATATAACCTTGATAGGTGTTAGAGGA 
Z2 TCACCTCTTCTCAAAATGGTTAGACAAACGCAACGATAATAGGTGGTATAATGTTAACATAACGAAATCACCAGAACCGAGACGAATAAATATAACCTTGATAGGTGTTAGAGGA 
TR TCACCTCTTCTCAAAATGGTTAGACAAACGCAACGATAATAGGTGGTATAATGTTAACATAACGAAATCACCAGAACCGAGACGAATAAATATAACCTTGATAGGTGTTAGAGGA 
S26 TCACCTCTTCTCAAAATGGTTAGACAAACGCAACGATAATAGGTGGTATAATGTTAACATAACGAAATCACCAGAACCGAGACGAATAAATATAACCTTGATAGGTGTTAGAGGA 
S45 TCACCTCTTCTCAAAATGGTTAGACAAACGCAACGATAATAGGTGGTATAATGTTAACATAACGAAATCACCAGAACCGAGACGAATAAATATAACCTTGATAGGTGTTAGAGGA 
C8 TCACCTCTTCTCAAAATGGTTAGACAAACGCAACGATAATAGGTGGTATAATGTTAACATAACGAAATCACCAGAACCGAGACGAATAAATATAACCTTGATAGGTGTTAGAGGA 
C10 TCACCTCTTCTCAAAATGGTTAGACAAACGCAACGATAATAGGTGGTATAATGTTAACATAACGAAATCACCAGAACCGAGACGAATAAATATAACCTTGATAGGTGTTAGAGGA 
PT12 TCACCTCTTCTCAAAATGGTTAGACAAACGCAACGATAATAGGTGGTATAATGTTAACATAACGAAATCACCAGAACCGAGACGAATAAATATAACCTTGATAGGTGTTAGAGGA 
Z7 TCACCTCTTCTCAAAATGGTTAGACAAACGCAACGATAATAGGTGGTATAATGCTAACATGACGAAATCACCAGAACCGAGACGAATAAATATAACCTTGATAGGTGTTCGAGGA 
2J TCACCTCTTCTCAAAATGGTTAGACAAACGCAACGATAATAGGTGGTATAATGTTAACATAACGAAATCACCAGAACCGAGACGAATAAATATAACCTTGATAGGTGTTAGAGGA 
20M TCACCTCTTCTCAAAATGGTTAGACAAACGCAACGATAATAGGTGGTATAATGTTAACATAACGAAATCACCAGAACCGAGACGAATAAATATAACCTTGATAGGTGTTAGAGGA 
CH2 TCACCTCTTCTCAAAATGGTTAGACAAACGCAACGATAATAGGTGGTATAATGTTAACATAACGAAATCACCAGAACCGAGACGAATAAATATAACCTTGATAGGTGTTAGAGGA 
CH20 TCACCTCTTCTCAAAATGGTTAGACAAACGCAACGATAATAGGTGGTATAATGTTAACATAACGAAATCACCAGAACCGAGACGAATAAATATAACCTTGATAGGTGTTAGAGGA 
CH18 TCACCTCTTCTCAAAATGGTTAGACAAACGCAACGATAATAGGTGGTATAATGTTAACATAACGAAATCACCAGAACCGAGACGAATAAATATAACCTTGATAGGTGTTAGAGGA 
CH8 TCACCTCTTCTCAAAATGGTTAGACAAACGCAACGATAATAGGTGGTATAATGTTAACATAACGAAATCACCAGAACCGAGACGAATAAATATAACCTTGATAGGTGTTAGAGGA 
CH21 TCACCTCTTCTCAAAATGGTTAGACAAACACGACGATAATAGGTGGTATAATGTTAACATAACGAAATCACCAGGACCGAGACGAATAAATATAACCTTGATAGGTGTTGGAGGA 
NA TCACCTCTTCTCAAAATGGTTAGACAAACACGACGATAATAGGTGGTATAATGTTAACATAACGAAATCACCAGGACCGAGACGAATAAATATAACCTTGATAGGTGTTGGAGGA 
W4 TCACCTCTTCTCAAAATGGTTAGACAAACACGACGATAATAGGTGGTATAATGTTAACATAACGAAATCACCAGGACCGAGACGAATAAATATAACCTTGATAGGTGTTGGAGGA 
con TCACCTCTTCTCAAAATGGTTAGACAAA--C-ACGAT-ATAGGTGGTATAA-G-TAACAT-ACGAAATCACCAG-ACCGAGACGAATAAATATAAC-TTGATAGGTGTT--AGGA

Figure 3.7 Nucleotide sequence alignment of UL146 G1 sequences  
 
All G1 sequences from the present study are included, plus those
available in GenBank (in italics). Completely conserved residues are
shown in the consensus row (con) and non-conserved residues are
indicated by hyphens. Dots indicate gaps in the alignment. Mismatched
residues are highlighted in yellow. Sequences encoding predicted signal
peptides are highlighted in grey, and those encoding the conserved
RCXC motif and two cysteine residues are highlighted in pink. 
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To illustrate further the high level of sequence conservation within each 

genotype, an aa sequence alignment of all UL146 G1 strains is shown in Figure 

3.6. The sequences are highly conserved, which is in agreement with the high 

overall identity value for this genotype (97.1%).  

Out of a total of 117 aas, only 17 (excluding deletions) differ between the 33 

sequences. Three sequences (W4, NA and CH21) also contain two deletions, 

indicated by dots in their sequences. Figure 3.7 shows a nucleotide sequence 

alignment of the UL146 G1 strains. All nucleotide sequences within this genotype 

are highly conserved. Out of 351 nucleotides, only 24 (excluding deletions) are 

not completely conserved in the 33 sequences. 

3.4 UL139 genotypes 

 A total of 184 DNA samples were tested for the presence of UL139. UL139 was 

amplified successfully as a PCR product from 168 samples, and sequences were 

determined successfully from 131 PCR products (Table 3.1). Some samples 

contained more than one sequence, and in total the 131 samples yielded 183 

UL139 sequences.The phylogenetic and diversity analyses involved a total of 300 

UL139 sequences, which included the 183 sequences derived from the present 

study (Table 3.1) and all other UL139 sequences reported by others in the 

literature or deposited in GenBank (Table 3.4).  

 

 

 

 

 

 

Table 3.4: Additional UL139 Sequences Used for 

Phylogenetic and Diversity Analyses 

Accession numbers Reference 

AY905263, AY905264, 

AY601874-AY601877, 

AY218873-AY218887 

Qi et al. (2006) 

DQ180386, DQ180358, 

DQ180374 

Zhou et al. (unpublished) 

AY999242-AY999271, 

AY805250-AY805303, 

AY818255-250 

Mao et al. (unpublished) 

DQ229942-DQ229948 Ruan et al. (unpublished) 
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The UL139 coding sequences range in length from 372-444 bp (124-148 codons, 

including the stop codon). The aa sequence alignments and phylogenetic trees 

produced by the neighbour-joining method were employed to group the 

sequences into genotypes. All of the sequences fell into eight UL139 genotypes 

(G1-G8). Table 3.5 displays a laboratory strain or previously published strain 

(Dolan et al., 2004) representing each of the eight genotypes. An aa sequence 

alignment containing a representative of each genotype is shown in Figure 3.8A. 

The protein encoded by each HCMV UL139 genotype contains a putative signal 

peptide sequence and a transmembrane region (both highlighted in grey).  

Unlike UL146, variation in UL139 is concentrated in the N-terminal region of the 

protein. Indeed, the C terminus is highly conserved between genotypes. An 

unrooted phylogenetic tree showing the relationship between the eight UL139 

genotypes and CCMV UL139 is shown in Figure 3.8B. Bootstrap values under 70 

indicate regions of unresolved branching order. G2 and G7 appear to be a 

related pair of genotypes, whereas G1 and G5 appear distant from the other 

UL139 genotypes.  

 
Table 3.5: Laboratory strain corresponding to UL139 Genotype 

UL146 Genotype Laboratory strain 

G1 Merlin 

G2 JP 

G3 NT 

G4 Toledo 

G5 Towne 

G6 3157 

G7 W 

G8 A3* 

* No Laboratory strain fell into G8 

 

Genotypic frequencies were calculated from the total number of UL139 

sequences available (from the present study and in Genbank, a total of 300) 



A Bradley 2008  Chapter 3    105  

  

(Figure 3.9). UL139 G2 and G4 were each detected in over 22% of sequences, and 

UL139 G1 in more than 15%. In contrast, some genotypes were detected at very 

low frequencies, for example G7 and G8, being identified in less than 5% 

sequences. The other three genotypes (G3, G5 and G6) were detected at 

frequencies of 7-10%.  

The aa sequence alignments were used to calculate the level of sequence 

identity between all strains within each individual genotype (using Swaap) 

(Figure 3.10). An aa sequence alignment of a representative of each UL139 

genotype (Figure 3.8A) was used to calculate identity among genotypes. The aa 

sequence identity among genotypes is low (range 54.9-97.2%, mean 80.15%), 

whereas within each genotype it is high (range 85.9-98.6%). Variation within 

genotypes tends to be higher in UL139 than in UL146, but lower among 

genotypes. Similarly, nucleotide sequence identity is low between genotypes 

(range 64.6-97.2%, mean 84.3%), whereas it is high within genotypes (range 94.6-

99.2%). Sequences in UL139 G1 exhibit a greater level of variation than those in 

the other UL139 genotypes (94.5% at the nucleotide sequence level, 90% at the 

aa sequence level). This is due to a small number of strains in G1 that may 

represent a subgenotype. Therefore despite the unresolved branching order, the 

clustering of sequences into eight groups with high sequence identity confirm 

the presence of eight genotypes. 

To illustrate further the high level of sequence conservation within each 

genotype, an aa sequence alignment of the 29 UL139 G3 sequences is shown in 

Figure 3.11. As some of the sequences obtained did not include the C terminus, 

this region was removed from all sequences in the set. The sequences are highly 

conserved, which is in agreement with the high overall identity value for this 

genotype (98.6%). 
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Figure 3.9  Frequencies of occurrence of UL139 genotypes  
The frequencies were calculated using all available sequences from the present study
and those available in GenBank (a total of 300). 
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Figure 3.10 Sequence identity within and among UL139 genotypes 
 
Nucleotide (nt) and amino acid (aa) sequence identities were calculated within
each genotype (G1-G8) by pairwise alignment of all sequences (these were partial
sequences as they lacked 29 amino acid-encoding codons from the highly
conserved C terminus) in the relevant genotype, and among all genotypes (All) by
pairwise alignment of a representative of each genotype (Figure 3.8A). Mean and
standard deviation values are shown. 

Mean 
sequence 
identity  
  (%) 
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Out of a total of 110 aas, only 10 (excluding deletions) differ between the 

sequences. Two sequences (D5 and N2) contain single deletions. Figure 3.12 

shows a nucleotide sequence alignment of the UL139 G3 sequences. Out of 330 

nucleotides, only 22 (excluding deletions) differ between the 29 sequences. 

3.5 CCMV UL139 

CCMV UL139 is much larger (359 codons) than HCMV UL139 (124-148 codons) 

(Davison et al., 2003). The predicted aa sequence of CCMV UL139 is related to 

two proteins: to HCMV UL139 in its C terminal region (shown in Figure 3.8A) and 

to the rhesus cytomegalovirus (RhCMV) protein encoded by rh174 gene in its N 

terminal region. Figure 3.13 shows an aa sequence alignment of the N-terminal 

portion of CCMV UL139 with the whole of rh174 and the C-terminal portion of 

CCMV UL139 with the whole of HCMV UL139 (G1). CCMV UL139 contains three 

hydrophobic regions: a signal sequence at the N-terminus that corresponds to 

that of rh174, an internal region that corresponds to the signal sequence of 

HCMV UL139, and a second internal region that corresponds to the 

transmembrane anchor of HCMV UL139. 

3.6 Mode of selection of UL146 and UL139 

A nucleotide substitution that results in an aa change is called a non-synonymous 

substitution, and a substitution that does not result in an aa change is termed a 

synonymous substitution. To assess the mode by which UL146 and UL139 have 

evolved, the frequencies of non-synonymous substitution (dN) and synonymous 

substitution (dS) were investigated. If a gene has evolved under neutral selection 

with non-synonymous and synonymous sites having evolved at equal rates, then 

dN=dS (i.e. dN/dS=1). This is often called the null hypothesis. If a gene has 

evolved under positive selection with non-synonymous sites having evolved 

faster than synonymous sites, then dN>dS (i.e. dN/dS>1).  
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D5              MLWILVLFALAASASETTTGTSSNSSQSSTSSSSTNTSNNTTSATTLSTECINGFGGN 
N2              MLWILVLFALATSASETTTGTSSNSSQSST.SSSTNTSNNTTSATTLSTECINGFGGN 
CH10M           MLWILVLFALAASASETTTGTSSNSSQSSTSSSSTNTSNNTTSATTLSTECINGFGGN 
CH13J           MLWILVLFALAASASETTTGTSSNSSQSSTSSSSTNTSNNTTSATTLSTECINGFGGN 
CH14J           MLWILVLFALAASASETTTGTSSNSSQSSTSSSSTNTSNNTTSATTLSTECINGFGGN 
CH15J           MLWILVLFALAASASETTTGTSSNSSQSSTSSSSTNTSNNTTSATTLSTECINGFGGN 
CH175           MLWILILFALAASASETTTGTSSNSSQSSTSSSSTNTSNNTTSATTLSTECINGFGGN 
CH181           MLWILVLFALATSASETTTGTSSNSSQSSTSSSSTNTSNNTTSATTLSTECINGFGGN 
CH18M           MLWILVLFALAASASETTTGTSSNSSQSSTSSSSTNTSNNTTSATTLSTECINGFGGN 
CH194           MLWILVLFALAASASETTTGTSSNSSQSSTSSSSTNTSNNTTSVTTLSTECINGFGGN 
CH27C           MLWILVLFALAASASETTTGTSSNSSQSSTSSSSTNTSNNTTSVTTLSTECINGFGGN 
CH282           MLWILVLFALATSASETTTGTSSNSSQSSTSSSSTNTSNNTTSATTLSTECINGFGGN 
CH290           MLWILILFVLAASASETTTGTSSNSSQSSTSSSSTNTSNNTTSATTLSTECINGFGGN 
CH291           MLWILVLFALAASASETTTGTSSNSSQSSTSSSSTNTSNNTTSATTLSTECINGFGGN 
CH29C           MLWILVLFALAASASETTTGTSSNSSQSSTSSSSTNTSNNTTSVTTLSTECINGFGGN 
CH38M           MLWILVLFALATSASETTTGTSSNSSQSSTSSSSTNTSNNTTSATTLSTECINGFGGN 
CH41M           MLWILVLFALAASASETTTGTSSNSSQSSTSSSSTNTSNNTTSATTLSTECINGFGGN 
CH45J           MLWILVLFALAASASETTTGTSSNSSQSSTSSSSTNTSNNTTSATTLSTECINGFGGN 
CH63J           MLWILVLFALAASASETTTGTSSNSSQSSTSSSSTNTSNNTTSATTLSTECINGFGGN 
CH83            MLWILILFALAASASETTTGTSSNSSQSSTSSSSTNTSNNTTSATTLSTECINGFGGN 
CH88            MLWILVLFALAASASETTTGTSSNSSQSSTSSSSTNTSNNTTSATTLSTECINGFGGN 
S37             MLWILVLFALAASASETTTGTSSKSSQSSTSSSSTNTSNNTTSATTLSTECINGFGGN 
E11             MLWILVLFALATSASETTTGTSSNSSQSSTSSSSTNTSNNTTSATTLSTECINGFGGN 
G2              MLWILVLFALAASASETTTGTSSNSSQSSTSSSSTNTSNNTTSATTLSTECINGFGGN 
C2              MLWILILFALAASASETTTGTSSNSSQSSTSSSSTNTSNNTTSATTLSTECINGFGGN 
C3              MLWILILFALAASASETTTGTSSNSSQSSTSSSSTNTSNNTTSATTLSTECINGFGGN 
C7              MLWILVLFALAASASETTTGTSSNSSQSSTSSSSTNTSNNTISATTLSTECINGFGGN 
C8              MLWILVLFALAASASETNTGTSYNSSQSSTSSSSTNTSNNTISATTLSTECINGFGGN 
E12             MLWILVLFALATSASETTTGTSSNSSQSSTSSSSTNTSNNTTSATTLSTECINGFGGN 
con             MLWIL-LF-LA-SASET-TGTS--SSQSST-SSSTNTSNNT-S-TTLSTECINGFGGN 
 
D5              NWTFPQLALFAASGWTLSGLLLLLTCCFCCFWLVRKICSCCGN.SESESKTT  
N2              NWTFPQLALFAASGWTLSGLLLLFTCCFCCFWLVRKICSCCGNSSESESKTT  
CH10M           NWTFPQLALFAASGWTLSGLLLLFTCCFCCFWLVRKICSCCGNSSESESKTT  
CH13J           NWTFPQLALFAASGWTLSGLLLLFTCCFCCFWLVRKICSCCGNSSESESKTT  
CH14J           NWTFPQLALFAASGWTLSGLLLLFTCCFCCFWLVRKICSCCGNSSESESKTT  
CH15J           NWTFPQLALFAASGWTLSGLLLLFTCCFCCFWLVRKICSCCGNSSESESKTT  
CH175           NWTFPQLALFAASGWTLSGLLLLFTCCFCCFWLVRKICSCCGNSSESESKTT  
CH181           NWTFPQLALFAASGWTLSGLLLLFTCCFCCFWLVRKICSCCGNSSESESKTT  
CH18M           NWTFPQLALFAASGWTLSGLLLLFTCCFCCFWLVRKICSCCGNSSESESKTT  
CH194           NWTFPQLALFAASGWTLSGLLLLFTCCFCCFWLVRKICSCCGNSSESESKTT  
CH27C           NWTFPQLALFAASGWTLSGLLLLFTCCFCCFWLVRKICSCCGNSSESESKTT  
CH282           NWTFPQLALFAASGWTLSGLLLLFTCCFCCFWLVRKICSCCGNSSESESKTT  
CH290           NWTFPQLALFAASGWTLSGLLLLFTCCFCCFWLVRKICSCCGNSSESESKTT  
CH291           NWTFPQLALFAASGWTLSGLLLLFTCCFCCFWLVRKICSCCGNSSESESKTN  
CH29C           NWTFPQLALFAASGWTLSGLLLLFTCCFCCFWLVRKICSCCGNSSESESKTT  
CH38M           NWTFPQLALFAASGWTLSGLLLLFTCCFCCFWLVRKICSCCGNSSESESKTT  
CH41M           NWTFPQLALFAASGWTLSGLLLLFTCCFCCFWLVRKICSCCGNSSESESKTT  
CH45J           NWTFPQLALFAASGWTLSGLLLLFTCCFCCFWLVRKICSCCGNSSESESKTT  
CH63J           NWTFPQLALFAASGWTLSGLLLLFTCCFCCFWLVRKICSCCGNSSESESKTT  
CH83            NWTFPQLALFAASGWTLSGLLLLFTCCFCCFWLVRKICSCCGNSSESESKTT  
CH88            NWTFPQLALFAASGWTLSGLLLLFTCCFCCFWLVRKICSCCGNSSESESKTT  
S37             NWTFPQLALFAASGWTLSGLLLLFTCCFCCFWLVRKICSCCGNSSESESKTT  
E11             NWTFPQLALFAASGWTLSGLLLLFTCCFCCFWLVRKICSCCGNSSESESKTT  
G2              NWTFPQLALFAASGWTLSGLLLLFTCCFCCFWLVRKICSCCGNSSESESKTT  
C2              NWTFPQLALFAASGWTLSGLLLLFTCCFCCFWLVRKICSCCGNSSESESKTT  
C3              NWTFPQLALFAASGWTLSGLLLLFTCCFCCFWLVRKICSCCGNSSESESKTT  
C7              NWTFPQLALFAASGWTLSGLLLLFTCCFCCFWLVRKICSCCGNSSESESKTT  
C8              NWTFPQLALFAASGWTLSGLLLLFTCCFCCFWIVRKICSCCGNSSESESKTT  
E12             NWTFPQLALFAASGWTLSGLLLLFTCCFCCFWLVRKICSCCGNSSESESKTT  
con             NWTFPQLALFAASGWTLSGLLLL-TCCFCCFWLVRKICSCCGN-SESESKT-  
 
 Figure 3.11  Amino acid sequence alignment of partial UL139 G3 sequences 

(continued overleaf) 
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Figure 3.11  Amino acid sequence alignment of partial UL139 G3 
sequences 
 
All G3 sequences from the present study are included, plus those available
in GenBank (in italics). As only the first 110 aa were obtained for some
sequences, C terminal residues have been trimmed. Completely conserved
residues are shown in the consensus row (con) and non-conserved
residues are indicated by hyphens. Dots indicate gaps in the alignment.
Mismatched residues are highlighted in yellow. The predicted signal
peptide sequences and transmembrane regions are highlighted in grey.  
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E11 ATGCTGTGGATATTAGTTTTATTTGCACTCGCCACATCGGCGAGTGAAACCACTACAGGTACCAGCTCTAATTCCAGTCAATCATCTACTTCATCTTCTTCCACTAATACCAGTAA 
N2 ATGCTGTGGATATTAGTTTTATTTGCACTCGCCACATCGGCGAGTGAAACCACTACAGGTACCAGCTCTAATTCCAGTCAATCATCTACTTCATCTTC...CACTAATACCAGTAA 
E12 ATGCTGTGGATATTAGTTTTATTTGCACTCGCCACATCGGCGAGTGAAACCACTACAGGTACCAGCTCTAATTCCAGTCAATCATCTACTTCATCTTCTTCCACTAATACCAGTAA 
CH88 ATGCTGTGGATATTAGTTTTATTTGCACTTGCCGCATCGGCAAGTGAAACCACTACAGGTACCAGCTCTAATTCCAGTCAATCATCTACTTCATCTTCTTCCACTAATACCAGTAA 
CH13J ATGCTGTGGATATTAGTTTTATTTGCACTTGCCGCATCGGCAAGTGAAACCACTACAGGTACCAGCTCTAATTCCAGTCAATCATCTACTTCATCTTCTTCCACTAATACCAGTAA 
CH18M ATGCTGTGGATATTAGTTTTATTTGCACTTGCCGCATCGGCAAGTGAAACCACTACAGGTACCAGCTCTAATTCCAGTCAATCATCTACTTCATCTTCTTCCACTAATACCAGTAA 
CH14J ATGCTGTGGATATTAGTTTTATTTGCACTTGCCGCATCGGCAAGTGAAACCACTACAGGTACCAGCTCTAATTCCAGTCAATCATCTACTTCATCTTCTTCCACTAATACCAGTAA 
CH41M ATGCTGTGGATATTAGTTTTATTTGCACTTGCCGCATCGGCAAGTGAAACCACTACAGGTACCAGCTCTAATTCCAGTCAATCATCTACTTCATCTTCTTCCACTAATACCAGTAA 
CH15J ATGCTGTGGATATTAGTTTTATTTGCACTTGCCGCATCGGCAAGTGAAACCACTACAGGTACCAGCTCTAATTCCAGTCAATCATCTACTTCATCTTCTTCCACTAATACCAGTAA 
G2 ATGCTGTGGATATTAGTTTTATTTGCACTTGCCGCATCGGCGAGTGAAACCACTACAGGTACCAGCTCTAATTCCAGTCAATCATCTACTTCATCTTCTTCCACTAATACCAGTAA 
CH45J ATGCTGTGGATATTAGTTTTATTTGCACTTGCCGCATCGGCAAGTGAAACCACTACAGGTACCAGCTCTAATTCCAGTCAATCATCTACTTCATCTTCTTCCACTAATACCAGTAA 
C2 ATGCTGTGGATATTAATTTTATTTGCACTCGCCGCATCGGCGAGTGAAACCACTACAGGTACCAGCTCTAATTCCAGTCAATCATCTACTTCATCTTCTTCCACTAATACCAGTAA 
CH290 ATGCTGTGGATATTAATTTTATTTGTACTCGCCGCATCGGCGAGTGAAACCACTACAGGTACCAGCTCTAATTCCAGTCAATCATCTACTTCATCTTCTTCCACTAATACCAGTAA 
C3 ATGCTGTGGATATTAATTTTATTTGCACTCGCCGCATCGGCGAGTGAAACCACTACAGGTACCAGCTCTAATTCCAGTCAATCATCTACTTCATCTTCTTCCACTAATACCAGTAA 
CH175 ATGCTGTGGATATTAATTTTATTTGCACTCGCCGCATCGGCGAGTGAAACCACTACAGGTACCAGCTCTAATTCCAGTCAATCATCTACTTCATCTTCTTCCACTAATACCAGTAA 
CH282 ATGCTGTGGATATTAGTTTTATTTGCACTCGCCACATCGGCGAGTGAAACCACTACAGGTACCAGCTCTAATTCCAGTCAATCATCTACTTCATCTTCTTCCACTAATACCAGTAA 
D5 ATGCTGTGGATATTAGTTTTATTTGCACTCGCCGCATCGGCGAGTGAAACCACTACAGGTACCAGCTCTAATTCCAGTCAATCATCTACTTCATCTTCTTCCACTAATACCAGTAA 
CH83 ATGCTGTGGATATTAATTTTATTTGCACTCGCCGCATCGGCAAGTGAAACCACTACAGGTACCAGCTCTAATTCCAGTCAATCATCTACTTCATCTTCTTCCACTAATACCAGTAA 
CH291 ATGCTGTGGATATTAGTTTTATTTGCACTTGCCGCATCGGCAAGTGAAACCACTACAGGTACCAGCTCTAATTCCAGTCAATCATCTACTTCATCTTCTTCCACTAATACCAGTAA 
CH29C ATGCTGTGGATATTAGTTTTATTTGCACTTGCCGCATCGGCAAGTGAAACCACTACAGGTACCAGCTCTAATTCCAGTCAATCATCTACTTCATCTTCTTCCACTAATACCAGTAA 
CH194 ATGCTGTGGATATTAGTTTTATTTGCACTTGCCGCATCGGCAAGTGAAACCACTACAGGTACCAGCTCTAATTCCAGTCAATCATCTACTTCATCTTCTTCCACTAATACCAGTAA 
CH27C ATGCTGTGGATATTAGTTTTATTTGCACTTGCCGCATCGGCAAGTGAAACCACTACAGGTACCAGCTCTAATTCCAGTCAATCATCTACTTCATCTTCTTCCACTAATACCAGTAA 
CH63J ATGCTGTGGATATTAGTTTTATTTGCACTTGCCGCATCGGCAAGTGAAACCACTACAGGTACCAGCTCTAATTCCAGTCAATCATCTACTTCATCTTCTTCCACTAATACCAGTAA 
CH10M ATGCTGTGGATATTAGTTTTATTTGCACTTGCCGCATCGGCAAGTGAAACCACTACAGGTACCAGCTCTAATTCCAGTCAATCATCTACTTCATCTTCTTCCACTAATACCAGTAA 
CH181 ATGCTGTGGATATTAGTTTTATTTGCACTTGCCACATCGGCGAGTGAAACCACTACAGGTACCAGCTCTAATTCCAGTCAATCATCTACTTCATCTTCTTCCACTAATACCAGTAA 
CH38M ATGCTGTGGATATTAGTTTTATTTGCACTTGCCACATCGGCGAGTGAAACCACTACAGGTACCAGCTCTAATTCCAGTCAATCATCTACTTCATCTTCTTCCACTAATACCAGTAA 
S37 ATGCTGTGGATATTAGTTTTATTTGCACTTGCCGCATCGGCAAGTGAAACCACTACAGGTACCAGCTCTAAGTCCAGTCAATCATCTACTTCATCTTCTTCCACTAATACCAGTAA 
C7 ATGCTGTGGATATTAGTTTTATTTGCACTTGCCGCATCGGCAAGTGAAACCACTACAGGTACCAGCTCTAATTCCAGTCAATCATCTACTTCATCTTCTTCCACTAATACCAGTAA 
C8 ATGCTGTGGATATTAGTTTTATTTGCACTTGCCGCATCGGCAAGTGAAACCAATACAGGTACCAGCTATAATTCCAGTCAATCATCTACTTCATCTTCTTCCACTAATACCAGTAA 
con ATGCTGTGGATATTA-TTTTATTTG-ACT-GCC-CATCGGC-AGTGAAACCA-TACAGGTACCAGCT-TAA-TCCAGTCAATCATCTACTTCATCTTC---CACTAATACCAGTAA 
 
 
E11 TAATACCACAAGTGCAACCACACTGTCAACAGAATGCATTAATGGTTTTGGCGGCAATAATTGGACATTTCCACAACTCGCGCTGTTTGCTGCTAGCGGCTGGACATTATCTGGAC 
N2 TAATACCACAAGTGCAACCACACTGTCAACAGAATGCATTAATGGTTTTGGCGGCAATAATTGGACATTTCCACAACTCGCGCTGTTTGCTGCTAGCGGCTGGACATTATCTGGAC 
E12 TAATACCACAAGTGCAACCACACTGTCAACAGAATGCATTAATGGTTTTGGTGGCAATAATTGGACATTTCCACAACTCGCGCTGTTTGCTGCTAGCGGCTGGACATTATCTGGAC 
CH88 TAATACCACAAGTGCAACCACACTATCAACAGAATGCATTAATGGTTTTGGCGGCAATAATTGGACATTTCCACAACTCGCGCTGTTTGCTGCTAGCGGCTGGACATTATCTGGAC 
CH13J TAATACCACAAGTGCAACCACACTATCAACAGAATGCATTAATGGTTTTGGCGGCAATAATTGGACATTTCCACAACTCGCGCTGTTTGCTGCTAGCGGCTGGACATTATCTGGAC 
CH18M TAATACCACAAGTGCAACCACACTATCAACAGAATGCATTAATGGTTTTGGCGGCAATAATTGGACATTTCCACAACTCGCGCTGTTTGCTGCTAGCGGCTGGACATTATCTGGAC 
CH14J TAATACCACAAGTGCAACCACACTATCAACAGAATGCATTAATGGTTTTGGCGGCAATAATTGGACATTTCCACAACTCGCGCTGTTTGCTGCTAGCGGCTGGACATTATCTGGAC 
CH41M TAATACCACAAGTGCAACCACACTATCAACAGAATGCATTAATGGTTTTGGCGGCAATAATTGGACATTTCCACAACTCGCGCTGTTTGCTGCTAGCGGCTGGACATTATCTGGAC 
CH15J TAATACCACAAGTGCAACCACACTATCAACAGAATGCATTAATGGTTTTGGCGGCAATAATTGGACATTTCCACAACTCGCGCTGTTTGCTGCTAGCGGCTGGACATTATCTGGAC 
G2 TAATACCACAAGTGCAACCACACTGTCAACAGAATGCATTAATGGTTTTGGCGGCAATAATTGGACATTTCCACAACTCGCGCTGTTTGCTGCTAGCGGCTGGACATTATCTGGAC 
CH45J TAATACCACAAGTGCAACCACACTATCAACAGAATGCATTAATGGTTTTGGCGGCAATAATTGGACATTTCCACAACTCGCGCTGTTTGCTGCTAGCGGCTGGACATTATCTGGAC 
C2 TAATACCACAAGTGCAACCACACTATCAACAGAATGCATTAATGGTTTTGGCGGCAATAATTGGACATTTCCACAACTCGCGCTGTTTGCTGCTAGCGGCTGGACATTATCTGGAC 
CH290 TAATACCACAAGTGCAACCACACTATCAACAGAATGCATTAATGGTTTTGGCGGCAATAATTGGACATTTCCACAACTCGCGCTGTTTGCTGCTAGCGGCTGGACATTATCTGGAC 
C3 TAATACCACAAGTGCAACCACACTATCAACAGAATGCATTAATGGTTTTGGCGGCAATAATTGGACATTTCCACAACTCGCGCTGTTTGCTGCTAGCGGCTGGACATTATCTGGAC 
CH175 TAATACCACAAGTGCAACCACACTATCAACAGAATGCATTAATGGTTTTGGCGGCAATAATTGGACATTTCCACAACTCGCGCTGTTTGCTGCTAGCGGCTGGACATTATCTGGAC 
CH282 TAATACCACAAGTGCAACCACACTATCAACAGAATGCATTAATGGTTTTGGCGGCAATAATTGGACATTTCCACAACTCGCGCTGTTTGCTGCTAGCGGCTGGACATTATCTGGAC 
D5 TAATACCACAAGTGCAACCACACTATCAACAGAATGCATTAATGGTTTTGGCGGCAATAATTGGACATTTCCACAACTCGCGCTGTTTGCTGCTAGCGGCTGGACATTATCTGGAC 
CH83 TAATACCACAAGTGCAACCACACTATCAACAGAATGCATTAATGGTTTTGGCGGCAATAATTGGACATTTCCACAACTCGCGCTGTTTGCTGCTAGCGGCTGGACATTATCTGGAC 
CH291 TAATACCACAAGTGCAACCACACTATCAACAGAATGCATTAATGGTTTTGGCGGCAATAATTGGACATTTCCACAACTCGCGCTGTTTGCTGCTAGCGGCTGGACATTATCTGGAC 
CH29C TAATACCACAAGTGTAACCACACTATCAACAGAATGCATTAATGGTTTTGGCGGCAATAATTGGACATTTCCACAACTCGCGCTGTTTGCTGCTAGCGGCTGGACATTATCTGGAC 
CH194 TAATACCACAAGTGTAACCACACTATCAACAGAATGCATTAATGGTTTTGGCGGCAATAATTGGACATTTCCACAACTCGCGCTGTTTGCTGCTAGCGGCTGGACATTATCTGGAC 
CH27C TAATACCACAAGTGTAACCACACTATCAACAGAATGCATTAATGGTTTTGGCGGCAATAATTGGACATTTCCACAACTCGCGCTGTTTGCTGCTAGCGGCTGGACATTATCTGGAC 
CH63J TAATACCACAAGTGCAACCACACTATCAACAGAATGCATTAATGGTTTTGGCGGCAATAATTGGACATTTCCACAACTCGCGCTGTTTGCTGCTAGCGGCTGGACATTATCTGGAC 
CH10M TAATACCACAAGTGCAACCACACTATCAACAGAATGCATTAATGGTTTTGGCGGCAATAATTGGACATTTCCACAACTCGCGCTGTTTGCTGCTAGCGGCTGGACATTATCTGGAC 
CH181 TAATACCACAAGTGCAACCACACTATCAACAGAATGCATTAATGGTTTTGGCGGCAATAATTGGACATTTCCACAACTCGCGCTGTTTGCTGCTAGCGGCTGGACATTATCTGGAC 
CH38M TAATACCACAAGTGCAACCACACTATCAACAGAATGCATTAATGGTTTTGGCGGCAATAATTGGACATTTCCACAACTCGCGCTGTTTGCTGCTAGCGGCTGGACATTATCTGGAC 
S37 TAATACCACAAGTGCAACCACACTATCAACAGAATGCATTAATGGTTTTGGCGGCAATAATTGGACATTTCCACAACTCGCGCTGTTTGCTGCTAGCGGCTGGACATTATCTGGAC 
C7 TAATACCATAAGTGCAACCACACTATCAACAGAATGCATTAATGGTTTTGGCGGCAATAATTGGACATTTCCACAACTCGCGCTGTTTGCTGCTAGCGGCTGGACATTATCTGGAC 
C8 TAATACCATAAGTGCAACCACACTATCAACAGAATGCATTAATGGTTTTGGCGGCAATAATTGGACATTTCCACAACTCGCGCTGTTTGCTGCTAGCGGCTGGACATTATCTGGAC 
con TAATACCA-AAGTG-AACCACACT-TCAACAGAATGCATTAATGGTTTTGG-GGCAATAATTGGACATTTCCACAACTCGCGCTGTTTGCTGCTAGCGGCTGGACATTATCTGGAC 

Figure 3.12 Nucleotide sequence alignment of partial UL139 G3 sequences 
(continued overleaf) 
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Figure 3.12 Nucleotide sequence alignment of partial UL139 G3 
sequences  
 
All G3 sequences from the present study are included, plus those
available in GenBank (in italics). The alignment shows the first 330
nucleotides. Completely conserved residues are shown in the consensus
row (con) and non-conserved residues are indicated by hyphens. Dots
indicate gaps in the alignment. Mismatched residues are highlighted in
yellow. Sequences encoding predicted signal peptides and
transmembrane regions are highlighted in grey. 

E11 TCCTTCTCTTATTTACCTGCTGCTTTTGCTGCTTTTGGCTAGTACGTAAAATCTGCAGCTGCTGCGGCAACTCCTCAGAGTCAGAGAGCAAAACAACC 
N2 TCCTTCTCTTATTTACCTGCTGCTTTTGCTGCTTTTGGCTAGTACGTAAAATCTGCAGCTGCTGCGGCAACTCCTCAGAGTCAGAGAGCAAAACAACC 
E12 TCCTTCTCTTATTTACCTGCTGCTTTTGCTGCTTTTGGCTAGTACGTAAAATCTGCAGCTGCTGCGGCAACTCCTCAGAGTCAGAGAGCAAAACAACC 
CH88 TCCTTCTCTTATTTACCTGCTGCTTTTGCTGCTTTTGGCTAGTACGTAAAATCTGCAGCTGCTGCGGCAACTCCTCCGAGTCAGAGAGCAAAACAACC 
CH13J TCCTTCTCTTATTTACCTGCTGCTTTTGCTGCTTTTGGTTAGTACGTAAAATCTGCAGCTGCTGCGGCAACTCCTCCGAGTCAGAGAGCAAAACAACT 
CH18M TCCTTCTCTTATTTACCTGCTGCTTTTGCTGCTTTTGGTTAGTACGTAAAATCTGCAGCTGCTGCGGCAACTCCTCCGAGTCAGAGAGCAAAACAACT 
CH14J TCCTTCTCTTATTTACCTGCTGCTTTTGCTGCTTTTGGTTAGTACGTAAAATCTGCAGCTGCTGCGGCAACTCCTCCGAGTCAGAGAGCAAAACAACT 
CH41M TCCTTCTCTTATTTACCTGCTGCTTTTGCTGCTTTTGGTTAGTACGTAAAATCTGCAGCTGCTGCGGCAACTCCTCCGAGTCAGAGAGCAAAACAACT 
CH15J TCCTTCTCTTATTTACCTGCTGCTTTTGCTGCTTTTGGTTAGTACGTAAAATCTGCAGCTGCTGCGGCAACTCCTCCGAGTCAGAGAGCAAAACAACT 
G2 TCCTTCTCTTATTTACCTGCTGCTTTTGTTGCTTTTGGTTAGTACGTAAAATCTGCAGCTGCTGCGGCAACTCCTCCGAGTCAGAGAGCAAAACAACC 
CH45J TCCTTCTCTTATTTACCTGCTGCTTCTGTTGCTTTTGGTTAGTACGTAAAATCTGCAGCTGCTGCGGCAACTCCTCCGAGTCAGAGAGCAAAACAACC 
C2 TCCTTCTCTTATTTACCTGCTGCTTCTGTTGCTTTTGGTTAGTACGTAAAATCTGCAGCTGCTGCGGCAACTCCTCCGAGTCGGAGAGCAAAACAACC 
CH290 TCCTTCTTTTATTTACCTGCTGCTTCTGTTGCTTTTGGTTAGTACGTAAAATCTGCAGCTGCTGCGGCAACTCCTCCGAGTCGGAGAGCAAAACAACC 
C3 TCCTTCTCTTATTTACCTGCTGCTTCTGTTGCTTTTGGTTAGTACGTAAAATCTGCAGCTGCTGCGGCAACTCCTCCGAGTCGGAGAGCAAAACAACA 
CH175 TCCTTCTCTTATTTACCTGCTGCTTCTGTTGCTTTTGGTTAGTACGTAAAATCTGCAGCTGCTGCGGCAACTCCTCCGAGTCGGAGAGCAAAACAACC 
CH282 TCCTTCTCTTATTTACCTGCTGCTTCTGTTGCTTTTGGTTAGTACGTAAAATCTGCAGCTGCTGCGGCAACTCCTCCGAGTCGGAGAGCAAAACAACC 
D5 TCCTTCTCTTACTTACCTGCTGCTTCTGTTGCTTTTGGTTAGTACGTAAAATCTGCAGCTGCTGCGGCAACT...CCGAGTCAGAGAGCAAAACAACC 
CH83 TCCTTCTCTTATTTACCTGCTGCTTCTGTTGCTTTTGGTTAGTACGTAAAATCTGCAGCTGCTGCGGCAACTCCTCCGAGTCAGAGAGCAAAACAACC 
CH291 TCCTTCTCTTATTTACCTGCTGCTTCTGTTGCTTTTGGTTAGTACGTAAAATCTGCAGCTGCTGCGGCAACTCCTCCGAGTCGGAGAGCAAAACAAAC 
CH29C TCCTTCTCTTATTTACCTGCTGCTTCTGTTGCTTTTGGTTAGTACGTAAAATCTGCAGCTGCTGCGGCAACTCCTCCGAGTCAGAGAGCAAAACAACC 
CH194 TCCTTCTCTTATTTACCTGCTGCTTCTGTTGCTTTTGGTTAGTACGTAAAATCTGCAGCTGCTGCGGCAACTCCTCCGAGTCAGAGAGCAAAACAACC 
CH27C TCCTTCTCTTATTTACCTGCTGCTTCTGTTGCTTTTGGTTAGTACGTAAAATCTGCAGCTGCTGCGGCAACTCCTCCGAGTCAGAGAGCAAAACAACC 
CH63J TCCTTCTCTTATTTACCTGCTGCTTCTGTTGCTTTTGGTTAGTACGTAAAATCTGCAGCTGCTGCGGCAACTCCTCCGAGTCAGAGAGCAAAACAACC 
CH10M TCCTTCTCTTATTTACCTGCTGCTTCTGTTGCTTTTGGTTAGTACGTAAAATCTGCAGCTGCTGCGGCAACTCCTCCGAGTCAGAGAGCAAAACAACC 
CH181 TCCTTCTCTTATTTACCTGCTGCTTCTGTTGCTTTTGGTTAGTACGTAAAATCTGCAGCTGCTGCGGCAACTCCTCCGAGTCAGAGAGCAAAACAACC 
CH38M TCCTTCTCTTATTTACCTGCTGCTTCTGTTGCTTTTGGTTAGTACGTAAAATCTGCAGCTGCTGCGGCAACTCCTCCGAGTCAGAGAGCAAAACAACC 
S37 TCCTTCTCTTATTTACCTGCTGCTTCTGTTGCTTTTGGTTAGTACGTAAAATCTGCAGCTGCTGCGGCAACTCCTCCGAGTCAGAGAGCAAAACAACC 
C7 TCCTTCTCTTATTTACCTGCTGCTTCTGTTGCTTTTGGTTAGTACGTAAAATCTGCAGCTGCTGCGGCAACTCCTCCGAGTCAGAGAGCAAAACAACC 
C8 TCCTTCTCTTATTTACCTGCTGCTTCTGTTGCTTTTGGATAGTACGCAAAATCTGCAGCTGCTGCGGCAACTCCTCCGAGTCAGAGAGCAAAACAACC 
con TCCTTCT-TTA-TTACCTGCTGCTT-TG-TGCTTTTGG-TAGTACG-AAAATCTGCAGCTGCTGCGGCAACT---C-GAGTC-GAGAGCAAAACAA--
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CCMV UL139       MTEL.....RLASSLLLAW......EILDMSLANSYTQGP....KIHANV 
RhCMV rh174      MMQPVSHKHAHALILLMMWPSGTSGEALRCA.SKDYTSNTDMKYQLPINM 
con       M----------A—-LL--W------E-L-------YT-----------N- 
 
CCMV UL139       TKCI.WKVKNETLVIGKYIDIKCEFTEVTDNITMGLMYTSCSNRSLSETT 
RhCMV rh174      TKVVSGPTKNETLS.GPYT.VTCIF..VSGECTRGIYFTACDQNATTQVY 
con          TK------KNETL—-G-Y----C-F—-V----T-G---T-C--------- 
 
CCMV UL139       MSYYNHTPQDRANYPFGKVEHSRSDTTATMTLRRCGLNCTGIHDCFKFDG 
RhCMV rh174      M.YKNHAP....IFPNDESKTSASNTNGFTMRWPVSPHAPGTYDCFSYDN 
con        M-Y-NH-P------P------S-S-T--------------G--DCF---D 
 
CCMV UL139       --QKMNITLRTSIAPIGTIYVNTKA.NQS.HDVFCAVNDTFPATVLLHNT 
RhCMV rh174      VTNIMNITQRTQVTPMGITYASKHSTNQSVYNVSCSFNSTFPGTVTLIVQ 
con        ----MNIT-RT---P-G--Y------NQS---V-C—-N-TFP-TV-L--- 
 
CCMV UL139       GNDHQLNITTNHTVKKCNRTLYYGYTV..QGISPPTQCSLFSSTCI.... 
RhCMV rh174      GAVNA.TVIHNETVKLCGQDLYWNYLVLTSGGTPTFQCTNKATNCLLSGY 
con        G---------N-TVK-C---LY—-Y-V---G--P—-QC------C----- 
 
CCMV UL139       .GLRSHTLTYPGTPLTPPAGISNCENYTAPN* 
RhCMV rh174      SRLWSNTTSTPGPPIPI...LHNCSTYSHPWWTTARPVTTPSVSTTQLTS 
con        --L-S-T---PG-P--------NC--Y--P 
       
RhCMV rh174      LSISASTSFTYNVSLVVYEAQYASRELHGLWILVVLIICAAVACWLRLPQ 
 
RhCMV rh174      VVVQMFRKCVASLQRKHNVYTNM 
 
 
CCMV UL139       MTVTVTLVALSSAVSAALASETTTGTSSNSSQSTS....STATTGTGCSN 
HCMV UL139G1     MLWILVLFALAAS.....ASETTTGTSSNSSQSTSAGTTNTTTPSTACIN 
con       M-------AL--------ASETTTGTSSNSSQSTS-----T-T--T-C-N 
 
CCMV UL139       ANDTNNNGLNQQQIIAGLLGGCGFLSLFFIFTCILCVWYCFRKLFPDCCG 
HCMV UL139G1     ASNGSDLGAPQLALLAA..SGWTLSGLLLIFTCCLCCFWLVRKVCS.CCG 
con       A-N----G--Q----A----G-----L--IPTC-LC-----RK----CCG 
 
CCMV UL139       GDPDEQQRQMTRGRYTYDNPVFPPP..TLPMGATGPAYPPPVSDGTAGPP 
HCMV UL139G1     NSSESE....SKATHAYTNAAFTSSDATLPMGTTG.SYTPPQDGSFPPPP 
con       ----------------Y-N--F-----TLPMG-TG--Y-PP-------PP 
 
CCMV UL139       AIPLTQDKVTYPRS 
HCMV UL139G1     ............R. 
con       ------------R- 

Figure 3.13 Amino acid sequence alignment of CCMV UL139 with RhCMV 
rh174 and HCMV UL139  
A) The N-terminal portion of CCMV UL139 aligned with the whole of RhCMV 
rh174 (accession number NC_006150). The residue marked by an asterisk in 
(A) immediately precedes the first CCMV UL139 residue in (B). B) The C-
terminal portion of UL139 CCMV aligned with the whole of HCMV UL139 (G1). 
Predicted signal sequences are highlighted in grey and predicted 
transmembrane regions are highlighted in yellow. Gaps in the alignment are 
represented by dots. Completely conserved residues are shown in the 
consensus row (con) and non-conserved residues are represented by hyphens. 
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If a gene has evolved under selective constraint (or purifying selection) with 

non-synonymous sites having evolved more slowly than synonymous sites, then 

dN<dS (i.e. dN/dS<1) (Nei and Gojobori, 1986; reviewed by Hurst, 2002). 

Intragenotypic dN/dS values were calculated from nucleotide alignments of all 

sequences in each UL146 (Table 3.6) and UL139 genotype (Table 3.7), using 

Swaap 1.0.2 (method of Nei and Gojobori, 1986). For UL146, dN/dS>1 was 

obtained for G1, G2, G4, G13 and G14. An intergenotypic dN/dS value was 

calculated for a nucleotide alignment of a representative strain of each UL146 

genotype and was <1 (Table 3.6). UL139 intragenotypic dN/dS values were 

calculated using a trimmed nucleotide alignment (first 330 nucleotides), as the 

reverse primer used to amplify some sequences is located with the UL139 coding 

region. For all UL139 genotypes, intragenotypic dN/dS values were <1 (Table 

3.7). Similarly, the intergenotypic dN/dS value for UL139 was <1. Representative 

strains for each UL146 and UL139 genotype were those used previously (Figures 

3.2 and 3.8). 

Table 3.6: UL146 Diversity 

Genotype Samples Frequency  Identitya dN/dSb Z-test d 
  % DNA % Protein %   

G1 34 9.71 98.82  97.11 2.21 P (p=0.068) 
G2 25 7.14 99.76  99.48  1.15 N (p=0.473) 
G3 10 2.86 99.05  98.43  0.38 N (p=1) 
G4 8 2.29 99.57  98.92 1.12 N (p=0.384) 
G5 16 4.57 99.31  98.79  0.37 N (p=1) 
G6 2 0.57 97.15  94.87  0.38 N (p=1) 
G7 57 16.3 98.96 97.91  0.54 N (p=1) 
G8 22 6.29 99.41  99.16  0.22 N (p=1) 
G9 49 14 98.36  96.79  0.49 N (p=1) 
G10 12 3.43 99.59  99.53  0.19 N (p=1) 
G11 19 5.43 99.43  98.84  0.57 N (p=1) 
G12 43 12.3 98.44  98.15  0.16 C (p=1) 
G13 47 13.4 99.29  98.37  4.94 P (p=0.042) 
G14 6 1.71 99.29  98.37  4.93 P (p=0.029) 
All 350 100 59.29 35.96 0.82c P (p=1) 

a Mean nucleotide and aa identity from Swaap 1.0.2.  
b Average dN/dS from Swaap 1.0.2. 
c Calculated from a comparison of a single member of each genotype. 
d Codon-based Z-test from Mega 4.0, N is neutrality, P is positive selection, and C is constraint.  
p is the probability that this genotype is evolving under positive selection  
 

In addition to this overall analysis, dN and dS values were calculated by pairwise 

comparison of all strains within each UL146 and UL139 genotype, using Swaap 

and the method of Nei and Gojobori (1986). Values of dN and dS for each pair of 

sequences were plotted on a scatter plot for each genotype, as shown in Figures 
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3.14 and 3.15. A diagonal line where dN/dS=1 was also plotted. When the 

majority of points are above the diagonal this indicates an excess of synonymous 

substitutions, and when the majority of points are below the diagonal this 

indicates an excess of non-synonymous substitutions. 

 

 

For UL146 G1 there are equal numbers of points above and below the diagonal 

(and one point on the line), indicating dN=dS (Figure 3.14). For G5, G6, G7, G8, 

G11, G12, G13 and G14 the majority of points are above the diagonal, and for 

G2, G3, G4, G9 and G10 the majority of the points are below the diagonal. For 

all UL139 genotypes the majority of points are above the diagonal (Figure 3.15). 

Values of dN and dS were also calculated by pairwise comparison of a 

representative strain of each UL146 genotype and plotted on a scatter plot. The 

majority of points are above the diagonal (Figure 3.16). Similarly, values of dN 

and dS were calculated by pairwise comparison of a representative strain of 

each UL139 genotype and all points are above the diagonal (Figure 3.16). 

Nucleotide sequence alignments of all strains in each UL146 and UL139 genotype 

were analysed further by performing a codon based Z-test using Mega 4.0, where 

the probability p of rejecting the null hypothesis (dN/dS=1) in favour of an 

alternative theory (i.e. positive selection, dN/dS>1 or constraint, dN/dS<1) was 

calculated (Nei and Kumar, 2000). The p values shown are the probability of 

rejecting the null hypothesis in favour of positive selection. This is a statistical 

test that compares the frequencies of dS and dN between sequences. Values of 

Table 3.7: UL139 Diversity 

Genotype Samples Frequency  Identitya dN/dSb Z-test d 
  % DNA % Protein %   

G1 48 16 94.56  89.97 0.57 N (p=1) 
G2 82 27.33 98.87  98.56  0.18 C (p=1) 
G3 29 9.66 98.37  98.57  0.12 C (p=1) 
G4 68 22.66 98.43  98.15  0.22 C (p=1) 
G5 28 9.33 97.71  97.19  0.19 C (p=1) 
G6 24 8 98.49  97.96  0.30 N (p=1) 
G7 14 4.66 99.22  98.51  0.66 N (p=1) 
G8 7 2.33 96.37  95.19  0.46 N (p=1) 
All 300 100 86.17 82.51 0.35c C (p=1) 

a Nucleotide and aa identity from Swaap 1.0.2. 
b dN/dS from Swaap 1.0.2. 
c Calculated from a comparison of a single member of each genotype. 
d Codon-based Z-test from Mega 4.0, N is neutrality and C is constraint. 
p is the probability that this genotype is evolving under positive selection 
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p<0.05 are significant at the 5% level, whereas p<0.01 are significant at the 1% 

level. 

Results from the Z-test are shown in Tables 3.6 and 3.7, and indicate whether a 

particular genotype scored is likely to have evolved under neutrality, constraint 

or positive selection. From this analysis, ten UL146 genotypes (G2-G11) scored as 

having evolved under neutrality, one (G12) under constraint, and three (G1, G13 

and G14) under positive selection, although the results were significant at the 5% 

level only for G13 and G14. Four of the eight UL139 genotypes (G2-G5) scored as 

having evolved under constraint and four (G1, G6, G7 and G8) under neutrality. 

A codon based Z-test was also performed on a nucleotide sequence alignment of 

a representative of each UL146 genotype, and UL146 genotypes scored as having 

evolved under positive selection, although this was not statistically significant. 

From the Z-test, UL139 genotypes scored as having evolved under constraint.  

The codeml program from the PAML package was used for further analysis of all 

sequences in the genotypes that showed some evidence for positive selection: 

UL146 G1, G2, G3, G4, G9, G10 and G13. This program carries out maximum 

likelihood analysis of protein-coding DNA sequences using codon substitution 

models (Goldman and Yang 1994; Suzuki and Gojobori, 1999; Yang et al., 2000; 

Yang and Nielsen 2002). Values of dN/dS>1 were obtained for UL146 G1, G2 and 

G13, but were only significant at the 5% level for G1 (p=0.046) and no residues 

under positive selection were identified. 

3.7 Geographical distribution of UL146 and UL139 
genotypes 

To analyse the geographical distribution of UL146 and UL139 genotypes, sample 

origin was divided into four continental regions: Africa, Asia, Europe and 

Australia. American samples were excluded owing to insufficient numbers. 

Table 3.8 shows the number of sequences in each UL146 genotype for each of 

the four regions. 

There are some examples of apparent geographical isolation of genotypes. For 

example UL146 G10 and G11 were detected only in European samples, and the 

single example of UL146 G6 was found in an Asian sample. 
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Figure 3.14 Pairwise comparison of dN/dS between all strains in each 
UL146 genotype (G1-G14) (continued overleaf) 
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Figure 3.14 Pairwise comparison of dN/dS between all strains in each 
UL146 genotype (G1-G14)  
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Figure 3.15 Pairwise comparison of dN/dS between all strains in each 
UL139 genotype (G1-G8) 
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The data in Table 3.8 are presented visually in Figure 3.17. The European and 

African samples show similar patterns of genotypic distribution, although G10 

and G11 were not found in African samples. 

 
Table 3.8: Geographical Distribution of UL146 Genotypes 

Genotype Africa Asia Europe Australia  
G1 4 2 7 0  
G2 2 1 7 2  
G3 4 0 2 0  
G4 1 0 4 2  
G5 3 0 2 1  
G6 0 1 0 0  
G7 5 6 21 1  
G8 2 0 5 0  
G9 6 2 11 3  
G10 0 0 8 0  
G11 0 0 3 0  
G12 5 1 16 0  
G13 11 0 17 6  
G14 2 0 1 0  

Totals 45 13 104 15 177 
 

The data in Table 3.8 were analysed further by a chi-square test in order to 

assess whether the observed frequencies differ significantly from the expected 

frequencies (displayed in Table 3.9). The expected frequencies are based on the 

null hypothesis, which assumes independent, random distribution of all 

genotypes in all regions. Yate’s correction was applied during chi-square analysis 

to correct for cells with frequencies below 5, however for cells where the 

frequency is zero, results obtained need to be regarded with caution.  

Table 3.9: Statistical Analysis of the 
Geographical Distribution of UL146 
Genotypes 

UL146 p 

G1 0.485 
G2 0.722 
G3 0.131 
G4 0.241 
G5 0.391 
G6 0.006 
G7 0.047 
G8 0.723 
G9 0.777 
G10 0.132 
G11 0.551 
G12 0.408 
G13 0.073 
G14 0.422 

Chi-square test applied across each row in 
Table 3.86. 
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UL146 G6 (p=0.006) and G7 (p=0.047) show statistically significant differences in 

their genotypic distributions, whereas UL146 G10 and G11 do not.  

Table 3.10 shows the number of sequences in each UL139 genotype for each of 

the four regions. No geographical isolation of UL139 genotypes was detected. 

The data in Table 3.10 are presented visually in Figure 3.18. The genotypic 

distribution patterns for Africa, Asia and Europe are similar, although G6 was not 

found in African samples. The data in Table 3.10 were analysed further by a chi-

square test, and the results are shown in Table 3.11. UL139 G3 (p=0.032) and G7 

(p=0.006) show statistically significant differences in their genotypic 

distributions. 

 

 
Table 3.10: Geographical Distribution of UL139 Genotypes 

Genotype Africa Asia Europe Australia  

G1 8 2 16 2  
G2 9 1 23 5  
G3 1 4 7 0  
G4 8 5 23 5  
G5 10 3 14 0  
G6 0 1 11 1  
G7 3 0 5 5  
G8 2 2 1 1  

Totals 41 18 100 19 178 

 

 
Table 3.11: Statistical Analysis of the 

Geographical Distribution of UL139 

Genotypes 

UL139 p 

G1 0.814 
G2 0.483 
G3 0.032 
G4 0.921 
G5 0.151 
G6 0.168 
G7 0.006 
G8 0.148 

Chi-square test applied across each row in 
Table 3.10. 

 

Identical nucleotide sequences were frequently obtained from geographically 

and, presumably, epidemiologically unrelated patients.  
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 For example, certain samples from The Gambia, Scotland and Hungary 

contained identical UL146 G12 sequences. UL139 G2, which was identified in 27% 

of samples, was represented by identical sequences from Hungary, the UK and 

The Gambia and also identical sequences in China and Germany. 

3.8 Linkage between UL146 and UL139 

UL146 and UL139 are 5.2 kbp apart on the HCMV genome (Figure 1.3). Potential 

linkage between the genotypes of these two genes was investigated in the 60 

strains for which single genotypes of both UL146 and UL139 were obtained. A 

total of 112 genotype pairs are possible (14 UL146 genotypes X 8 UL139 

genotypes). As shown in Table 3.12, 41 of these were observed at least once. 

Potential linkage between genotype pairs was assessed by a chi-square test. No 

significant variation from the expected distribution was observed, with one 

exception, across UL146 G9 row (p=0.02). 

 

 

3.9 Infections with multiple HCMV strains 

Multiple genotypes for one or both genes (UL146 and UL139) were detected in at 

least 14% of samples upon first analysis. Approximately one third of all samples 

were tested on three separate occasions to assess reproducibility of the results. 

As shown in Table 3.1, a number of these samples tested in triplicate yielded  

Table 3.12: Analysis of Linkage Disequilibrium 

UL139 genotype Chi-square 
(p) 

UL146 
Genotype 

G1 G2 G3 G4 G5 G6 G7 G8   
G1  1 0 0 3 1 0 0 0  0.88 
G2  1 1 0 0 0 0 0 0  0.99 
G3  1 0 0 0 0 0 0 0  1.00 
G4 0 0 1 1 0 0 0 1  0.06 
G5  0 1 0 1 0 0 1 0  0.58 
G6  0 0 0 0 0 0 0 0  - 
G7  1 4 1 3 2 1 0 0  0.98 
G8  0 1 0 1 1 0 1 0  0.73 
G9  0 1 0 0 0 2 1 0  0.02 
G10  0 3 0 1 0 0 0 0  0.99 
G11  0 2 0 1 0 0 0 0  1.00 
G12  1 1 1 1 2 1 0 0  0.71 
G13  2 2 0 5 1 0 0 1  0.76 
G14  1 0 0 0 0 0 0 0  1.00 

Totals 8 16 3 17 7 4 3 2 60  
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additional genotypes not found in the initial experiment. In addition to this, 

repeat experiments occasionally failed to detect the original genotype detected. 

When results from repeat experiments were included, the number of mixed 

infections increased to 29%. Thus, in the initial experiment, more than one 

genotype was detected in 11% of European samples, 16% of Gambian samples, 

47% of South African samples and 10% of Hong Kong samples. This increased to 

24%, 33%, 60% and 60%, respectively, when repeat experiments were included. 

Table 3.13 displays the age and clinical details of those samples containing 

multiple genotypes. Multiple genotypes were distributed equally among adults 

and infants. The majority of samples containing multiple genotypes were from 

immunocompromised individuals (81%), however 90% of samples sequenced were 

from immunocompromised individuals. Therefore, mixed infections were 

identified in 21% of samples from immunocompromised samples and 42% of 

samples from immunocompetent individuals. 

 
Table 3.13: Immune status and age of patients with multiple infections 

Straina Age/sexb Detailsc UL146 genotyped UL139 genotyped 

A4 9/M B G9 (G13) G7 (-) 

A5 1/F B G4 (-) G2, G7 

A6 15 d/F J/C G13 (-) G1, G4, G7 (-) 

A11 Infant C ND G4, G6 

C1 Adult KT ND (G12) G5 (G4) 

C2 Infant C G2 (G9) G6 (G3, G5) 

C3 Infant C G6, G9 (G7) G3 (G1, G4) 

C7 Infant C G7 (-) G3 (G4) 

C8 Infant C G1 (-) ND (G2, G3, G8) 

C10 Infant C G1 (G7) G1 (G8) 

D1 ? ? G5, G9 ND 

D2 ? ? G7 (G3, G12, G13) ND (G1, G4) 

D5 ? ? G12 (G4, G7) ND (G2, G3, G7) 

E4 Infant ? G13 (-) G7 (G1) 

E5 3 ? G9 (G7, G12) ND (G4) 

E6 Infant/M T G2 G1, G2 

E7 Adult/M LT ND (G13) G4, G6 (-) 

E10 (AL) Adult H G10 (-)  G5 (G4) 

E12 (W) Adult H G13 (G7) G1, G2, G7 (-) 

G2 Infant C G13  (-) G2, G3  (-) 

G3 Infant C ND G2, G7 
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G4 Infant C G13  (-) G4 (G7) 

G8 Infant PN G5 (G12, G13) G4 (G1, G2) 

G17 Infant PN G8 G1, G5, G8 

G18 Infant PN G3 (G7, G8, G12) G1 (-) 

H3 Infant C G9 G4, G7 

I3 Adult/F P G7, G13 G4 

I5 4 m/M ? G12 (-) G4 (G5) 

S2 45/F C+ G7 (G13) G2 (G4) 

S3 10/M B G7, G12 G2 

S4 
35/M B 

G9, G12, G13 

 (G2, G7) 
G2, G5 (G1) 

S7 56/M AP G7 (-) G6 (G5) 

S12 2/M W G7 (G2, G9) G2 (G6) 

S13 0/F P G2 (G4) G2 (G6) 

S23 49/M R G10  (G12) G5 (G4) 

S26 48/F CCO G1, G10, G13 G5 

S33 40/M ? G13 (G9, G12) G4 (G1, G5) 

S43 Adult KT G13 G1, G4 

S44 Adult KT G2 G6, G7 

S45 ? KT G1 (-) G6 (G3) 

Z1 28/F H/C+ ND G2, G5 

Z2 36/F C+ G1, G13 (G12) G5 (G1, G4) 

Z3 22/F C+ G9, G13 (-) G1 (-) 

Z4 20/F C+ G9 (G5) G2, G5 (-) 

Z5 18/F C+ G3, G14 G2 

Z6 20/F C+ G13 (G1, G7) ND (G4, G5) 

Z7 29/F C+ G1, G3, G9 (G7) G4 (G5) 

Z11 26/F H/C+ G1 (G12) G1 (G4, G5) 

Z14 30/F C+ G3, G7, G13 (G12) G5 (G2) 
a A, Australia; C, Hong Kong; D, Germany; E, England; G, The Gambia; H, Hungary; I, Italy; 
S, Scotland; Z, South Africa. The original strain designations of sequences listed in a 
previous study (Dolan et al., 2004) are given in parentheses. 
b Ages are in years unless specified in days (d), weeks (w) or months (m). Sexes: F, female; 
M, male; ?, unknown. 
c AP, aplastic anaemia with pneumonia; B, bone marrow transplant; C, congenital; C+, 
HCMV positive by PCR or IgM in serum; CCO, Crohn’s disease with HCMV colitis; H, HIV 
positive; J, jaundice; KT, kidney transplant; LT, liver transplant; P, maternal HCMV positive 
(pregnancy); PN, postnatal; R, renal transplant; T, thrombocytopenia; W, Wilms’ tumour 
post-nephrectomy. 
d Genotypes are denoted G1-G14 for UL146 and G1-G8 for UL139. Multiple genotypes are 
separated by commas. ND, not determined. Additional genotypes identified in subsequent 
experiments are in parentheses; -, no additional genotypes identified. 
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3.10 Computer modelling of UL146 genotypes 

The high degree of variation between the UL146 genotypes could indicate 

functional differences between the protein products. To investigate this, 

homology models of each UL146 genotype were constructed using the MOE 

protein modelling and 3D bioinformatics software (CCG), since the 3-D structure 

of UL146 has not been determined. 

Comparative modelling methods generally use structural templates that have the 

highest sequence similarity to the target protein. MOE contains a built-in library 

of experimentally determined high-resolution protein structures. A single 

template approach was used with application of the parameter ‘amber 99 

forcefield’, which is specific for smaller molecules. Twenty-five intermediate 

models were generated, and the final model was taken as the Cartesian average 

of all the intermediate models. The stereochemical quality of the polypeptide 

backbone and its side chains in this final model was evaluated using 

Ramachandran plots. A Ramachandran plot is a way to visualise dihedral angles 

between aas in a protein structure. Rotation about the N-C bond of a peptide 

backbone is denoted by the dihedral angle ϕ, and rotation about the C-C bond is 

denoted by the dihedral angle ψ. The values of ϕ and ψ are constrained 

geometrically due to steric clashes between non-neighbouring atoms. The 

permitted values were originally determined by Ramachandran and are usually 

indicated on a two-dimensional (2-D) map of the ϕ-ψ plane (i.e. Ramachandran 

plot), (Ramachandran, 1963; Creighton, 1993). Bad dihedral angles (termed 

outliers) plus a single residue on either side were selected and energy 

minimized, as a means of reducing the number of bad dihedral angles in the 

final model without altering the rest of the model.  

The entire aa sequence (including predicted signal peptide) of a representative 

of each UL146 genotype (as used previously, Figure 3.2) was input to MOE and 

used to search for similar proteins with known crystal structures in the MOE 

structural family database library. The MOE search uses a FastA-type local 

alignment tool for aa sequence and structure alignment of protein chains, 

followed by a family membership test based upon the alignment produced and Z-

score significance testing. A final adjustment of the similarity scores is carried 

out by Bayesian-based secondary structure prediction.  



A Bradley 2008  Chapter 3    130  

  

Only six UL146 genotypes (G2, G5, G6, G7, G13 and G14) found matches to 

proteins in this library. The complete aa sequences of the remaining eight UL146 

genotypes were then used to search for similar proteins in the Research 

Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) using 

the ExPASy server. Table 3.14 displays the percentage sequence similarity 

between each UL146 genotype and its closest match in RCSB PDB or the MOE 

library.  

 

Initial models were generated using the template with greatest sequence 

similarity to each genotype as determined by MOE or RCSB PDB (Table 3.14). 

Figure 3.19 displays UL146 G5 modelled on the chemokine 1F9s AB and G11 

modelled on the chemokine gro-α AB. Superposition of all 25 intermediate 

models for G5 and G11 shows good agreement and the majority of each structure 

remains highly conserved with the homology template, with no regions of 

substantial variability between intermediate models. The final energy minimized 

model for both molecules is also shown to the right in Figure 3.19. Table 3.14 

also shows sequence similarity between each UL146 genotype and the 

interleukin 8 A and B chains (IL-8 AB, a functional homologue of UL146 

(Chapter 1, Section 1.9), where the A and B subunits are identical).  

Table 3.14: Amino acid Sequence Similarity between UL146 Genotypes and Homology 

Templates 

Genotype Similarity to best protein match in MOEa 
or RCSB PDBb (%) 

Similarity to IL-8 AB (%) 

G1 24.8 (Nucleoredoxin-1) b 28.0 
G2 35.6 (gro-α AB) a 36.6  
G3 15.2 (IPCA, prostate cancer-associated 

protein) b 
26.8  

G4 23.6 (2PO7, a ferrochelatase) b 28.2  
G5 30.3 (1F9s AB, platelet factor 4) a 25.4  
G6 37 (1F9s AB) a 28.2  
G7 24.2 (1F9s AB) a 25.4  
G8 23.7 (Nucleoredoxin-1) b 26.8  
G9 27.5 (vMIP-I AB, KSHV macrophage 

inflammatory protein) b 
25.4  

G10 15.6 (1XK1, human heme, oxygenase-1) 23.9  
G11 30.1% (gro-α AB) b 23.9  
G12 0 hits 25.4  
G13 20.2 (1Z27, ookinete surface protein 

Pvs25) a 
26.8  

G14 33.3 (vMIP-I AB) a 28.2  
aMost similar protein as determined by MOE 
bMost similar protein as determined by RCSB PDB (no match found in MOE) 
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For many of the UL146 genotypes, the level of similarity between each genotype 

and IL-8 is actually higher than that observed for their closest homologous 

protein as determined by MOE or ExPASy (with the exception of UL146 G5, G6, 

G9, G11 and G14). For this reason and also the observed functional homology 

between UL146 (Toledo) and IL-8, the aa sequence of each genotype was 

modelled on the solved crystal structure of IL-8 AB. Nuclear magnetic resonance 

and crystallographic studies indicate that IL-8 forms dimers in solution, each 

consisting of six stranded antiparallel β-sheets (three strands from each subunit) 

and two antiparallel α-helices (one from each subunit) that lie across the β-

sheet (Clore et al., 1990; Baldwin et al., 1991). The structures of other 

chemokines, including gro-α, are similar to that determined for IL-8, and they 

also exist as dimers in solution (reviewed by Baggiolini et al., 1997). However, 

IL-8 has more recently been demonstrated to be functionally active as both a 

monomer (Baggiolini et al., 1995) and a dimer (Leong et al., 1997).  

Figure 3.20 shows superposition of all 25 models generated for UL146 G5 and G8 

modelled on IL-8 AB. The majority of each structure remains highly conserved 

with the homology template, with no regions of substantial variability between 

intermediate models. The final energy models are also shown in Figure 3.20. G5 

contains a single outlier, a serine residue at position 55 on the B chain. G8 

contains seven outliers but, as can be seen from Figure 3.20, contains no regions 

of substantial variability between intermediate models. The final models for G5 

and G8 are similar, both consisting of six antiparallel β-sheets and two 

antiparallel α-helices. Similar images were obtained for the remaining 12 UL146 

genotypes when all 25 intermediate models for each were superposed (Figure 

3.22). Figure 3.21 shows the final energy-minimized models obtained for these 

remaining 12 UL146 genotypes. All display the same conformation, six-stranded 

antiparallel β-sheets (three strands from each subunit) and two antiparallel 

α-helices (one from each subunit) that lie across the β-sheet. Figure 3.22 shows 

superposition of the final energy models generated for all 14 UL146 genotypes 

viewed from two different angles. The majority of each structure remains highly 

conserved, with no regions of substantial variability between each model. 
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3.11 QPCR using UL146 genotype-specific primers  

As discussed previously (Section 1.8), multiple HCMV genotypes were found in 

14% of samples and this number increased to 29% when data from repeat 

experiments were included. This suggests that the methodology used here and in 

most genotyping studies could result in an underestimation of the true frequency 

of mixed infections. A particular sample could contain a range of concentrations 

of genotypes, and the outcome of PCR could vary because of stochastic effects 

within the reaction, resulting in a particular strain being amplified first (usually 

the major strain). This section describes an initial assessment of the utility of 

QPCR using UL146 genotype-specific primers designed to distinguish between 

genotypes. 

To develop an assay for ascertaining the full extent of mixed infections, primers 

specific for each UL146 genotype were tested in a quantitative PCR assay (QPCR) 

utilising SYBR Green dye. SYBR Green is a fluorophore whose fluorescence 

increases 1000-fold in the presence of double-stranded DNA (dsDNA). It allows 

the measurement of amplification in real time, as the fluorescence intensity 

increases in proportion to the amount of PCR product. QPCR is therefore more 

sensitive than PCR, which relies on end point detection of amplified DNA. 

Four genotype-specific primer pairs were designed to amplify UL146 G1, G2, G5 

and G7 (Table 3.15). These genotypes were chosen based on the availability of 

template DNA confirmed to contain a single genotype. Primers were also 

designed for the other genotypes, but initial QPCR experiments were not 

followed up because of uncertainty about the templates representing a single 

genotype. The primers were chosen in regions that are conserved between all 

strains within each genotype so that they would produce amplicons of different 

sizes (113, 106, 132 and 143 bp, respectively). The primer design ensured that 

all primers had predicted melting temperatures of 60-65°C, and were predicted 

not to bind to other UL146 genotypes. Primers were checked to ensure they had 

no secondary structure using the Sigma-Aldrich website 

(www.sigmaaldrich.com), since primer dimers can result in artifactual 

fluorescence.  
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The presence of a particular genotype in a sample subjected to QPCR is deduced 

from fluorescence above a threshold and from the presence of a specific peak in 

the melting (dissociation) curve for the product. The baseline fluorescence is 

established between PCR cycles 3-15, and the threshold can then be set 

(automatically or manually), and Ct (i.e. the cycle threshold) is defined as the 

cycle at which fluorescence reaches the threshold level. 

Table 3.15: Genotype-specific UL146 Primers for QPCR 

Genotype Primer Sequence (5’-3’) PCR product size (bp) 

G1 UL146G1FWD GCATATGTGTATCATTATGAGGTG 

 UL146G1REV GGATCGCGGATGAAGCCAATA 

 

113 

G2 UL146G2FWD GGAATTACGCTGCAAATGTC 

 UL146G2REV GTTATTGCATCTGGGACCACC 

 

106 

G5 UL146G5FWD CTGAAGGTAATGGTCGTTGT 

 UL146G5REV CTATCTTTATCATGACTTGTCCC 

 

132 

G7 UL146G7FWD AGAGAATTGCGTTGTCCGT 

 UL146G7REV CATACAGGTTTACCTCGAGG 

 

              143 

 

The amplification data are displayed as a plot of Rn against the cycle number. 

Rn is the normalised reporter signal, which is the cycle-by-cycle ratio of 

fluorescence of the reporter dye, in this case SYBR Green, to that of the passive 

reference dye (ROX). ROX is a dye molecule that is included in the SYBR Green 

PCR master mix and does not interfere with the PCR.  

In dissociation analysis, all PCR products were melted at 95°C, annealed at 55°C, 

and subjected to a gradual increase in temperature to 95°C. Fluorescence data 

(in standard units) were collected during incremental increases in temperature. 

A characteristic dissociation curve was obtained by plotting fluorescence against 

increasing temperature. Due to differences in amplicon size and nucleotide 

composition of each amplicon, a different dissociation curve should be obtained 

for each genotype. The genotype-specific primers were first tested (in triplicate) 

on the appropriate templates to confirm specificity. A template for each of 

these genotypes was produced by amplifying UL146 from a sample known to 

contain a single HCMV strain, using primers in conserved regions outside UL146 

ORF (Chapter 2, Table 2.2.). The PCR products were quantified using a 

spectrophotometer. 
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Table 3.16: QPCR Template DNAs for Testing Genotypic 

Primers 

UL146 Genotype HCMV Strain 
G1 U4 (Toledo) 
G2 W9 (Merlin) 
G5 U3 (Davis) 
G7 U5 (Towne) 

 

A schematic diagram of one half of the 96-well plate layout for QPCR is shown in 

Figure 3.23. A specific genotype template was added to all wells with the 

exception of the no template control (NTC). Two genotypes were tested on each 

plate. Primers specific for HCMV UL54, which is a highly conserved gene 

encoding DNA polymerase, were designed and are shown in Table 2.2 

(Chapter 2). Three wells containing the template being tested and UL54-specific 

primers were included as an endogenous control. The endogenous control is 

included in order to normalise the results, as there may be variations in the 

amount of input DNA from well to well. 

Figure 3.24 shows the results from the specificity test of the four pairs of 

genotype-specific primers with G5 template DNA. For the control wells A1-A3, no 

amplification was detected. Wells A4-D12 contained G1-G14 genotypic primers 

(in triplicate) and UL146 G5 template. Amplification was observed only in wells 

B4-B6, which contained G5 primers and G5 template. No amplification was 

observed in wells D10-D12 that contained primers specific for UL54. The starting 

level of fluorescence was higher in wells containing UL54 primers and it 

remained relatively constant throughout all cycles. As there appeared to be 

insufficient genomic DNA present in the samples for amplification of UL54, the 

endogenous control was replaced with a positive control (G1 template with G1 

primers).  

The results from the specificity test of all genotype-specific primers with G1, G2 

and G7 template DNA are shown in Figures 3.25, 3.26 and 3.27, respectively.
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As observed for G5, no amplification was detected in the negative control wells 

and amplification was observed only in the wells containing genotype-specific 

primers that matched the template DNA. For those wells containing UL54-

specific primers (D10-D12), again no amplification was observed, although the 

starting level of fluorescence was even greater than that observed for the G5 

template DNA test and remained relatively constant throughout all cycles. 

Specific melting curve peaks were obtained for all the genotypes tested, but 

there is the potential for overlap between some genotypes, which means this 

measurement alone is insufficient for genotype detection. Figure 3.28 shows 

dissociation curves obtained for wells containing UL146 G1 genotype specific 

primers and G1 template (Tm of ~70°C), G2 genotype specific primers and G2 

template (Tm of ~ 67°C), G5 genotype specific primers and G5 template (Tm of 

~ 78°C), and G7 genotype specific primers and G7 template (Tm of ~ 75°C). No 

specific melting curves were obtained for any of the other wells on the plate, 

including those wells containing UL54 primers. 

The specificity of genotype specific primers was confirmed by agarose gel 

electrophoresis of QPCR products obtained. Bands were only visible for those 

samples that tested positive by QPCR (data not shown). 

3.12 Discussion 

The overall aim of this study was to characterize UL146 and UL139 sequences in 

a large panel of clinical isolates collected from Africa (South Africa and The 

Gambia), Asia (Hong Kong), Australia and Europe (various countries). Specific 

aims were to determine the total number of circulating genotypes, the 

frequencies at which they occur and any bias in their geographical distribution, 

and to investigate the mode of evolution that resulted in these genotypes and 

whether there is any evidence for linkage between UL146 and UL139. A total of 

182 UL146 sequences and 183 UL139 sequences were derived experimentally. 

These sequences were supplemented with 168 previously published UL146 and 

117 UL139 sequences for genotyping purposes and for investigation of the mode 

of evolution. All UL146 sequences analysed fell into the 14 genotypes described 

previously (Dolan et al., 2004), and no new genotypes were detected. UL146 is 

highly variable throughout its length, with only a few residues conserved in all 
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sequences (Figure 3.2). Twelve genotypes contain the ELRCXC motif, which has 

been shown to be essential for receptor binding and IL-8 activity (Clark-Lewis et 

al., 1991, 1995), and two contain the NGRCXC motif (G5 and G6), which has 

been shown to be important for interaction with T and B cells (Baggiolini et al., 

1997). UL146 G5 and G6 were found in only 5% of all samples, whereas genotypes 

with the ELRCXC motif make up the remaining 95%. This suggests that the 

ELRCXC motif is important in UL146 function and that the NGRCXC genotypes 

provide niche functions in specific situations. UL146 G4 appears to be most 

closely related to the CCMV UL146 sequence. This could indicate that UL146 G4 

is closer to the ancestral UL146 sequence, and that all other genotypes have 

diverged to a greater extent (Figure 3.3). However, the tree in Figure 3.3 was 

produced using a single CCMV UL146 sequence and has no molecular clock. It is 

likely that CCMV UL146 sequences have also undergone divergence and that the 

single CCMV UL146 sequence available is not representative of all those 

sequences in circulation in chimpanzees. Sequencing of additional CCMV isolates 

is required to investigate this question further.  

All UL139 sequences grouped into eight genotypes. A recent analysis of 26 

clinical samples (Qi et al., 2006) described three major groups (G1, G2 and G3), 

two of which were divided into subgroups (G1 into G1a, G1b and G1c and G2 into 

G2a and G2b). Subgroups G1b and G1c in the previous study correspond to G1 in 

the present study, subgroup G1a corresponds to G4, subgroups G2a and G2b 

correspond to G6 and G2, respectively, and G3 is named identically in both 

studies. Unlike UL146, variation in UL139 is concentrated in a region towards the 

N terminus and is due to substitutions or deletions of variable size in a region 

that is rich in S and T residues, and likely to contain O-linked glycosylation sites. 

This region also contains NXS or NXT motifs that may be N-linked glycosylation 

sites. The number of possible O-linked and N-linked glycosylation sites varies 

between UL139 genotypes, and it may be that selection focuses primarily on the 

glycosyl side chains rather than the underlying aa sequence. This feature has 

been described in other variable glycoprotein genes, such as UL73 (gN) and UL74 

(gO) (Mattick et al., 2004; Pignatelli et al., 2001, 2002, 2003). 

The analysis suggests that constraint has been the predominant factor in the 

evolution within UL146 and UL139 genotypes, with positive selection detected 

marginally at best. Although the sequence alignments within each UL146 and 
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UL139 genotype appeared reliable, the high level of variation made the 

alignments unreliable, particularly in the most variable regions. Investigation of 

the mode of selection that may have resulted in the diversification of the 

genotypes depended on the quality of the alignments, and thus the conclusions 

drawn within genotypes, rather than among them, are more reliable. For UL146 

the analysis suggests that most genotypes have evolved under constraint or 

neutrality. Some evidence for positive selection was found for UL146 G1, G2, G3, 

G4, G9, G10 and G13. However, further analysis using codeml, which tests 

different codon-substitution models, suggests that this is not significant for G2, 

G3, G4, G9, G10 and G13 and significant only at the 5% level for G1. 

Investigation of the mode of selection among UL146 genotypes also suggests they 

have evolved under constraint rather than positive selection. This is in 

agreement with another study that investigated the mode of selection among 25 

UL146 sequences (Arav-Boger et al., 2005). For UL139, all the analyses suggest 

that within and among genotypes the genes have evolved mainly under 

constraint or neutrality. This was concluded from analyses performed using a 

number of programmes, including pairwise dN/dS in Swaap and the codon based 

Z-test in Mega 4.0.  

Within and among genotypes, both genes appear to be under constraint rather 

than positive selection. It could be that the genotypes diverged early in human 

history and nonsynonymous changes became fixed as a result of purifying 

selection. Overall, the most likely scenario is that the genotypes developed in 

early human populations (or even earlier), becoming established via founder or 

bottleneck effects, and have spread and mixed worldwide in more recent times. 

The founder effect is the loss of genetic variation that occurs when a new colony 

is established by a small number of individuals from a larger population (Hey, 

2005). Originally, different genotypes may well have shown distinct geographical 

locations but are now found in all regions.  

In general, there is little evidence for linkage between UL146 and UL139 

genotypes. This is in accordance with other studies investigating potential 

linkage between variable HCMV genes (Rasmussen et al., 2003). However, it 

should be noted that the analysis of UL146 and UL139 might have been 

compromised by the relatively small sample number (60) in relation to the large 

number of possible genotype combinations (112). Chi-square analysis of UL146 
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G9 revealed a departure from the expected distribution (p=0.02), as there were 

two occurrences of UL146 G9 with UL139 G6. However this is likely a 

consequence of the fact that both samples were isolated from patients in the 

same location. In general, genetic linkages between HCMV genes are rare, and 

have only been found between genes that are proximate on the genome or share 

functional interactions, such as gN and gO (Mattick et al., 2004). 

In general, the occurrence of UL146 and UL139 genotypes was independent of 

geographical source. This is supported by the similar pattern of distribution 

observed for both UL146 and UL139 genotypes in European and African samples 

(Figure 3.17 and Figure 3.18). However, some bias in the geographical 

distribution of UL146 genotypes was evident from the analysis. This may reflect 

low sample number (albeit much larger than those utilized in previous studies) 

and the lack of detailed information on the ethnic origin of the samples. The 

apparent geographic isolation of some genotypes (UL146 G10 and G11 in 

particular) in European samples (Table 3.8, Figure 3.17) may reflect the 

availability of more samples from Europe than other regions. A number of 

sequences available in Genbank also fall into UL146 G10 and G11, some of which 

were from Chinese samples, which suggests that these genotypes are indeed 

found outside Europe. Similarly, the single example of UL146 G6 was detected in 

an Asian sample (p=0.006, Table 3.8). This is most likely due to the rarity of this 

genotype, as only two UL146 G6 sequences have been detected (in this work and 

Dolan et al., 2004).  

Similarly, some bias in the geographical distribution of UL139 genotypes was 

detected, for UL139 G7 (p=0.006) in particular. However, this finding may have 

been compromised by insufficient sample numbers in some regions and a lack of 

information on the ethnic origin of the samples (Table 3.9). Indeed, UL139 G7 

sequences from all regions are available in Genbank. Thus overall it appears that 

for UL146 and UL139, all genotypes are found in all regions, which is in 

agreement with another large-scale genotyping study that investigated the 

geographical distribution of UL73 (gN) and UL74 (gO) genotypes (Pignatelli et al., 

2003).  

In general, there is no convincing evidence for association between genotype 

and pathogenicity. All UL146 and UL139 genotypes were distributed among 
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clinical samples from both immunocompetent and immunocompromised 

individuals, and all were represented in urine samples. Several studies have 

been published on whether particular genotypes for variable HCMV genes (such 

as UL55, UL73, UL74 and UL146) are associated with disease outcome (Dal Monte 

et al., 2004; He et al., 2006; Pignatelli et al., 2003). These studies have been 

limited by factors such as the choice of gene, the origin of samples, the number 

of samples, the general absence of genetic linkage between genes and the 

common occurrence (and probable underestimation) of mixed infections 

(discussed below). The results are confusing and sometimes contradictory (Arav-

Boger et al., 2002, 2006a; Aquino and Figuerido, 2000; Dal Monte et al., 2004; 

Mattick et al., 2004; Puchhammer-Stockl et al., 2006). Nonetheless, most are in 

accordance with the findings of the present study. Thus, within the limits of the 

sample number, no convincing broad association of genotype with disease has 

emerged.  

Similarly, no correlation between genotype and sample type (as a potential 

indicator of cellular tropism or compartmentalisation) emerged. 

Compartmentalisation has been described for AIDS patients in respect of gB 

genotypes (Tarrago et al., 2003), and more recently during the investigation of 

gB genotypes in lung and blood compartments of transplant recipients.  

The Toledo-encoded UL146 protein has been shown to share functional homology 

with human IL-8, being capable of neutrophil degranulation, calcium 

mobilization and chemotaxis (Penfold et al., 1999). Variation has been observed 

in the promoter region of human IL-8 rather than within the coding sequence as 

seen for UL146, and IL-8 shows differential expression in response to various 

stimuli and in different tissue types (Baggiolini et al., 1995a, 2000). It is not 

known whether the UL146 genotypes possess different biological properties, and 

functional studies to investigate this question are required. However the 

function of a protein can sometimes be inferred from sequence or structural 

similarity. All UL146 variants contain the CXC motif and two additional cysteines 

found in many human chemokines. Comparative modeling is based on the 

general observation that evolutionarily related sequences tend to have similar 

3-D structures (Chothia and Lesk, 1986).  
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Since Toledo-encoded UL146 has functional homology with IL-8 and IL-8 is a CXC 

chemokine, IL-8 was chosen as a template for homology modeling of UL146 

variants (although models were also produced using other templates, such as 

gro-α and 1F9s AB). In solution, IL-8 exists as a dimer, of two identical subunits, 

each of Mr ~8000 (Clore et al., 1990). Therefore, two copies of each UL146 

genotype (complete aa sequence including predicted signal peptide) were 

homology modeled on the A and B chains of IL-8. All final energy models and, 

indeed, all intermediate models for all UL146 genotypes showed good agreement 

with the solved structure for IL-8. Despite extensive sequence variation among 

genotypes, each conformed to a similar 3-D structure containing an α-helix and 

three β-sheets (Figure 3.22). Many chemokines have similar structures. For 

example, human chemokines such as gro-α and 1F9s share this α-helix and three 

β-sheet conformation, despite having highly differing aa sequences, and they 

bind to the same cell surface receptors and have similar functions, albeit 

sometimes with differing affinities (Baggiolini et al., 1997; Mayo et al., 1995; 

Zhang et al., 2000). This could indicate that, despite the high level of sequence 

variation, the genotypes are functionally similar. 

As an initial experiment, UL146 G5 and G11 were modelled on the solved 3-D 

structures for chemokines 1F9s and gro-α, respectively. Good agreement was 

obtained between intermediate models and the template, and small numbers of 

bad dihedrals were derived in the final energy-minimised model (Figure 3.19). 

Although structurally very similar to IL-8, gro-α and 1F9s differ from IL-8 in 

N-terminal region, which contains the ELR motif and is thought to influence 

receptor binding. The receptor CXCR1 has high affinity for IL-8 and low affinity 

for other chemokines, whereas CXCR2 has high affinity for IL-8 as well as other 

CXC chemokines such as gro-α. This suggests that even small differences in the 

3-D structure of UL146 genotypes might affect receptor specificity (Baggiolini et 

al., 1997). Functional studies using different UL146 variants are required to 

investigate whether there are any functional differences between genotypes.  

Homology modeling of each UL146 genotype (complete aa sequence) on multiple 

templates (Table 3.14) was performed using the programme MOE (CCG). The 

best structural models, those which displayed a high level of agreement between 

intermediate models (Figure 3.22) and small numbers of bad dihedrals in the 

final energy minimised model, were obtained when chemokines with an α-helix 
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and three β-sheet conformation were used as the template (Figures 3.19-3.22). 

Despite the high level of aa and nucleotide sequence divergence, all UL146 

genotypes have similar predicted 3-D structures (α-helix and three β-sheet 

conformation). This indicates that different genotypes, as with different 

chemokines, are functionally similar, though small structural differences may 

prove advantageous depending on the cell type or host encountered.  

A region of sequence identity (SETTTGTSSNSSQST in Figure 3.8) has been noted 

between the UL139 protein and CD24, a cellular glycosyl phosphatidylinositol-

linked glycoprotein that is involved in B cell activation (Qi et al., 2006). This 

sequence is present in all of the UL139 genotypes identified in the present 

study, except for G5, and is also found in CCMV UL139. It is difficult to assess 

the significance of this similarity, especially as it is absent from UL139 G5 and is 

not conserved in CD24 orthologues from other mammals. However, as with 

UL139, variation in glycosylation has been observed in CD24, and this has been 

linked to differences in cell and tissue specificity (Goris et al., 2006; Poncet et 

al., 1996). Additional roles for CD24 in apoptosis and cell adhesion have been 

suggested, and more recently also in regulating the responsiveness of a 

chemokine receptor, CXCR4 (Smith et al., 2006; Schabath et al., 2006). The 

possibility that UL139 may be a CD24 homologue remains intriguing, but 

unproven. Preliminary studies towards characterising the UL139 protein and 

potential differences between genotypes are described in Chapter 4, Sections 

4.4, 4.5 and 4.6. 

An interesting observation was that CCMV UL139 is much larger than HCMV 

UL139 and contains the coding regions of separate homologues in other CMVs. 

The C-terminal region of CCMV UL139 is homologous to HCMV UL139, whereas 

the N-terminal region is homologous to rh174, an RhCMV gene that lacks a 

homologue in HCMV. This suggests that an ancestor of CCMV may have originally 

contained counterparts of both RhCMV rh174 and CCMV UL139, and that an in-

frame deletion resulted in fused coding regions (effectively yielding rh174-

UL139).  

Mixed HCMV infections were more frequently detected in samples from certain 

regions, namely Hong Kong, South Africa and, to a lesser extent, The Gambia. It 

is possible that this is a result of higher transmission frequencies. In one study 
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(Beyari et al., 2005), a higher seroprevalence frequency in children in Malawi 

compared to European countries and the USA was taken as possibly reflecting 

greater opportunities for transmission, but multiple genotypes were detected in 

only a small number of samples. In the present study, a single UL139 genotype 

and multiple UL146 genotypes, or vice versa, were detected in some samples. 

This could be due to different strains happening to contain the same genotype at 

one locus but not at the other, or to the limitations of amplifying different 

sequences present in different amounts in mixtures. A proportion of samples 

tested more than once were found to contain additional genotypes not apparent 

from the initial experiment, suggesting that the frequency of mixed infections 

was underestimated by the methodology used. In addition, the original genotype 

detected was not always detected in subsequent experiments. This is one of the 

limitations of PCR-based genotyping studies based on the use of conserved 

primers. Moreover, there is no guarantee that all genotypes will be detected, as 

the conserved primers are chosen on the basis of alignments of available 

sequences. Another potentially complicating factor is the possibility of cross 

contamination during DNA extraction from a clinical sample. Although all 

precautions were taken to avoid this, the possibility that multiple genotypes in a 

particular sample are a result of cross contamination cannot be ruled out with 

certainty.  

Although the present study detected a large number of sequences for both 

UL146 and UL139 and all previously published sequences fell into the genotypes 

defined from them, there is still a possibility that some UL146 or UL139 

genotypes have escaped recognition. These may be detected in future studies 

utilizing different or redundant primers or from whole genome sequencing. As 

reported in other studies, mixed infections were found in both 

immunocompromised (transplant recipients, neonates and AIDS) patients and 

healthy individuals (Table 3.1 and Table 3.14) (Arav-Boger et al., 2002, 2002a, 

2005, 2006; Coaquette et al., 2004; Gerna et al., 1992; Meyer-König et al., 

1998, 1998a; Puchhammer-Stöckl et al., 2006). In addition, mixtures were 

equally distributed among infants and adults suggesting age is not a factor. 

Multiple infections have important implications, not just for investigation of 

potential association between HCMV strain and disease but also for vaccine 

design. Indeed, numerous virus strains with distinct immunogens complicate 

vaccine candidate choice. In addition, there has been some suggestion that 
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mixed infections may have a negative impact on the course of HCMV infection in 

solid organ transplant recipients due to delayed viral clearance (Humar et al., 

2003; Puchhammer-Stöckl et al., 2006).  

Further work is needed to determine the true frequencies of mixed infections in 

clinical samples. A QPCR assay using genotypic primers and SYBR green showed 

promise in investigating whether the proportion of mixed infections is indeed 

underestimated. This assay is in the preliminary stages of development and 

further work is needed to validate it before it can be utilised on clinical 

samples. Other methods could also be employed towards this end, including 

QPCR using MGB Taqman probes, which are designed to be specific for a 

particular genotype and cannor fall foul of false positives due to primer dimers 

and/or non-specific PCR products. Alternatively, PCR could be carried out in the 

presence of an oligonucleotide substituted with locked nucleic acids. This 

suppresses the amplification of a specific sequence by a factor of approximately 

1000, thereby enabling the amplification of a second, different sequence 

(Prepens et al., 2007). 
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4 Transcript mapping of UL146 and UL139 and 
initial characterisation of the UL139 protein 

4.1 Introduction 

UL146 encodes a CXC (α) chemokine that may promote dissemination of the 

virus throughout the host through its ability to attract monocytes to the initial 

site of infection. UL139 is predicted to encode a type I membrane glycoprotein 

with a small region of homology to CD24, which suggests a possible 

immunomodulatory role for its protein product. Both genes are hypervariable 

and a number of studies have been published investigating UL146 sequence 

variation between clinical samples (Arav-Boger et al., 2005, 2006; Dolan et al., 

2004; Hassan-Walker et al., 2004; He et al., 2006; Lurain et al., 2006; Penfold et 

al., 1999; Prichard et al., 2001; Stanton et al., 2005), and UL139 sequence 

variation (Qi et al., 2006). The present study investigated UL146 and UL139 

sequences in a large panel of clinical isolates from a number of locations 

worldwide and found all UL146 sequences fell into the 14 genotypes previously 

defined (Dolan et al., 2004) and all UL139 sequences fell into eight genotypes 

(Chapter 3). 

This chapter reports on the investigation of the transcriptional patterns of UL146 

and UL139 in the HCMV strain Merlin by northern blot analysis. The 5’- and 

3’-ends of mRNAs were mapped using RACE. As an introduction, Figure 4.1 shows 

the arrangement of ORFs at the right end of UL from UL139 to UL132.  

During the course of this work Lurain et al. (2006) analysed transcriptional 

expression of UL146 in ten clinical isolates, four by northern blot analysis and 

seven by RT-PCR. It was determined that UL146 is expressed with early-late (E-L) 

kinetics. This is in agreement with another study, which utilised microarrays to 

analyse transcription from Towne and found that UL146 (designated UL152 in 

Towne) displays E-L kinetics (Chambers et al., 1999). These results differs 

somewhat from a previously published study that found that the UL146 protein 

product is expressed in Toledo at late (L) times post-infection (Penfold et al., 

1999). No information has been published regarding transcription of UL139. 
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4.2 Northern blot experiments 

Northern blot experiments were performed to determine the expression kinetics 

and size of transcripts from UL146 and UL139. DIG-labelled ssRNA probes were 

generated by amplifying the entire UL146 and UL139 protein-coding regions 

using the primers listed in Table 2.2. The PCR products were electrophoresed, 

purified, cloned into pGem-T and sequenced. Plasmids with the sequence 

inserted in the required orientation were selected and linearised. The DIG 

northern starter kit was used for in vitro transcriptional labelling of the probes 

(Chapter 2, Section 2.23.3). Duplicate blots were hybridised with a control DNA 

probe (GAPDH2). The results are shown in Figure 4.2. 

A UL146 transcript was detected in L RNA. A UL139 transcript was detected in L 

RNA, and to a much lower extent, E RNA.  Therefore UL146 was expressed with L 

kinetics and UL139 was expressed with E-L kinetics. The UL146 probe hybridised 

to a major band approximately 3.4 kb in size and a very minor band 5 kb in size. 

The UL139 probe hybridised to a band approximately 2.6 kb in size.  

4.3 RACE experiments 

In order to map the 5’- and 3’-ends of the UL146 and UL139 transcripts, 

experiments were performed using the SMART RACE kit (Chapter 2, Section 

2.24). This involves a PCR-based technique that amplifies the 5’- and 3’-ends of 

mRNAs using gene-specific primers (GSPs). The starting template is cDNA 

generated from viral RNA using an oligo (dT) primer. The dT primer has two 

degenerate nucleotide positions at the 3’-end that position the primer at the 

start of the polyadenylated (polyA) tail. Based on the northern blot results, a 

cDNA library was generated using L RNA only. The GSPs (Table 2.2) were 

designed downstream from the putative start codon and upstream from the 

putative stop codon. 

The 5’- and 3’-RACE PCR products were separated by agarose gel 

electrophoresis. Single bands of approximately 350 and 390 bp, were obtained 

respectively, for 5’-RACE for UL146 and UL139 (Figure 4.3).  
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Single bands were also obtained for 3’-RACE for UL146 and UL139, and were 3.1 

kbp and 2.4 kbp in size, respectively (Figure 4.3). These PCR products were 

purified and cloned into pGem-T and a number of clones were sequenced for 

each. The sequences were compared with the Merlin sequence using Blast and 

the 5’- and 3’-ends were defined.  

Table 4.1: 5’-ends of UL146 and UL139 mRNAs 

ORF Position of 5’-

enda 

Putative TATA 

element (5’-3’) 

Position of 

TATA boxa 

Number of 

clonesb 

Position of ATG 

codona 

UL146 181365/6  TACTTA 181395-181390 22 181292 

UL139 187003  TATAAT 187035-187030 10 186878 

a With reference to RefSeq accession NC_006273.2 (HCMV strain Merlin)  
b Total number of clones corresponding to the mapped 5’-end 

 

4.3.1 Sequences of 5’-ends  

A single 5’-RACE band for UL146 suggests a single 5’-end and, indeed, 

sequencing of 22 clones for UL146 confirmed this (Table 4.1). However, as there 

is a G residue at this position there is some ambiguity as to whether the 5’-end is 

at position 181365 or 181366 or both. This indicates that transcription initiates 

72-73 bp upstream of the UL146 initiation codon, and 27-28 bp downstream from 

a potential TATA element (TACTTA). Figure 4.5 shows the location of the 5’- end 

of the UL146 mRNA and the putative TATA element. 

Similarly, a single 5’-RACE band for UL139 suggests a single 5’-end, and, indeed, 

sequencing of ten clones for UL139 confirmed this (Table 4.1). This indicates 

that transcription initiates 125 bp upstream of the UL139 start codon, and 27 bp 

downstream from a potential TATA element (TATAAT). Figure 4.6 shows the 

nucleotide location of the 5’-end of the UL139 mRNA and the putative TATA 

element.  

4.3.2 Sequences of 3’-ends 

3’-RACE of UL146 yielded a single band and 11 clones mapped the 3’-end to the 

same position, with the polyA signal downstream from the UL132 stop codon 

(Figure 4.5, Table 4.2). 
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This is consistent with the size of the 3’-RACE product obtained (Figure 4.3). The 

distance from the 5’-end to the 3’-end as mapped by RACE (3216 bp) is 

consistent with the size of the UL146 transcript (~3.3 kb) estimated from 

northern blot analysis (Figure 4.2).  3’-RACE of UL139 yielded a single band 

(Figure 4.3) and eight clones mapped the 3’-end to the same position, with the 

polyA signal downstream from the UL141 stop codon (Figure 4.6, Table 4.2). This 

is consistent with the size of the 3’-RACE product (Figure 4.3). The distance 

from the 5’-end to the 3’-end as mapped by RACE (2640 bp) correlates with the 

2.6 kb transcript detected by northern blot analysis (Figure 4.2).  

4.3.3 Mapping the 3’-ends of UL140 and UL141 

Transcription of UL139 initiates upstream of UL139 and continues though UL139 

and adjacent protein-coding region of UL140 and UL141. This suggests that 

UL140 and UL141 are 3’-coterminal with UL139. 3’-RACE was performed for 

UL140 and UL141 (using GSPs shown in Table 2.2) to investigate this possibility. 

3’-RACE of UL140 yielded three bands, a major band 1.8 kbp in size and two 

minor bands, 0.65 and 0.5 kbp in length (Figure 4.4). Two clones derived from 

the 1.8 kbp band mapped the 3’-end of the UL140 transcript to the same 

position as that determined for UL139, confirming that UL140 is 3’-cotranscribed 

with UL139 (Figure 4.6).  

3’-RACE of UL141 yielded three bands, a minor band 2.2 kbp in size, and a 

doublet band of approximately 0.8 kbp in size (Figure 4.4). Minor 3’-RACE bands 

obtained for both UL140 and UL141 mapped to polyA tracts located within RL5A 

and are likely a result of mispriming. 

Table 4.2: 3’-ends of UL146, UL139, UL140 and UL141 mRNAs 

ORF Position of 

stop codona 

Position of 

3’-enda 

PolyA signal Position of 

polyA signala 

Distanceb 

(bp) 

Number of 

clonesb 

UL146 180932 178149  AATAAA 178174-178169 3216 11 

UL139 186464 184363  AATAAA 184382-184377 2640 8 

UL140 185707 184363  AATAAA 184382-184377 ND 2 

UL141 184398 184363  AATAAA 184382-184377 ND 5 
a With reference to RefSeq accession NC_006273.2 (HCMV strain Merlin) 

Distanceb is from the mapped 5’-end to the mapped 3’-end (from RACE) 
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GGGGGGTACTTATCGGGAATTGATGTGTCATGGACGCAGTTTTGAGTGATTTTCCGGGAATACCGGATATTACGAATTATTGGTAGTGACGTAAATAATA  181301 
        UL146 
         M  R  L  I  F  G  A  L  I  I  S  L  T  Y  M  Y  Y  Y  E  V  H  G  T  E  L  R  C  K  C  L  D       
AAATTATAATGCGATTAATTTTTGGTGCGTTGATTATTTCTTTAACGTATATGTATTATTATGAAGTGCATGGAACGGAATTACGCTGCAAATGTCTTGA  181201 
 
  G  K  K  L  P  P  K  T  I  M  L  G  N  F  W  F  H  R  E  S  G  G  P  R  C  N  N  N  E  Y  F  L  Y        
TGGTAAAAAACTGCCGCCCAAAACAATTATGTTGGGTAATTTTTGGTTTCATCGCGAATCTGGTGGTCCCAGATGCAATAACAATGAATATTTCTTGTAT  181101 
  
 L  G  G  G  K  K  H  G  P  G  V  C  L  S  P  H  H  P  F  S  K  W  L  D  K  R  N  D  N  R  W  Y  N         
CTAGGCGGAGGAAAAAAACATGGACCTGGAGTATGTTTATCGCCCCATCACCCTTTTTCAAAATGGCTAGACAAACGCAACGATAACAGGTGGTATAATG  181001 
  
V  N  V  T  R  Q  P  E  R  G  P  G  K  I  T  V  T  L  V  G  L  K  E  -   
TTAATGTAACAAGACAACCGGAACGAGGGCCGGGAAAAATAACTGTAACCCTAGTAGGTCTGAAGGAATAATATTTAGTATATATTTTAAACAGACAAGT  180901 

    UL147 
                                M  L  L  T  W  L  H  H  P  I  L  N  S  R  I  K  L  L  S  V  R  Y  L        
TTGTTAGAGCAGAAAATATCATGTTTTCAATATGTTGCTAACATGGTTACATCATCCGATTCTGAATTCGCGCATTAAACTTTTATCGGTACGATACCTG  180801 
  
 S  L  T  A  Y  M  L  L  A  I  C  P  I  A  V  R  L  L  E  L  E  D  Y  D  K  R  C  R  C  N  N  Q  I         
TCATTGACCGCATATATGTTACTTGCCATATGTCCCATAGCCGTCCGTCTTTTAGAACTAGAAGATTACGACAAGCGGTGTCGCTGTAATAACCAAATTC  180701 
  
L  L  N  T  L  P  V  G  T  E  L  L  K  P  I  A  A  S  E  S  C  N  R  Q  E  V  L  A  I  L  K  D  K  G       
TGTTGAATACCCTGCCGGTCGGAACCGAATTGCTTAAGCCAATCGCAGCGAGCGAAAGCTGCAATCGTCAGGAAGTGCTGGCTATTTTAAAGGACAAGGG  180601 
 
  T  K  C  L  N  P  N  A  Q  A  V  R  R  H  I  N  R  L  F  F  R  L  V  L  D  E  E  Q  R  I  Y  D  V        
CACCAAGTGTCTCAATCCTAACGCGCAAGCCGTGCGTCGTCACATCAACCGGCTATTTTTTCGGTTAGTCTTAGACGAGGAACAACGCATTTACGACGTA  180501 
  
 V  S  T  N  I  E  F  G  A  W  P  V  P  T  A  Y  K  A  F  L  W  K  Y  A  K  K  L  N  Y  H  Y  F  R         
GTGTCTACAAATATTGAGTTCGGTGCCTGGCCAGTCCCTACGGCCTACAAAGCCTTTCTCTGGAAATACGCCAAGAAACTGAATTACCACTACTTTAGAC  180401 
       UL147A 
L  R  W  -    M  S  L  F  Y  R  A  V  A  L  G  T  L  S  A  L  V  W  Y  S  T  S  I  L  A  E  I  N  E       
TGCGCTGGTGATCATGTCCCTATTTTACCGTGCGGTAGCTCTGGGCACACTAAGCGCTCTGGTGTGGTACAGCACTAGTATCCTCGCAGAGATTAACGAA 180301 
 
 N  S  C  S  S  S  S  V  D  H  E  D  C  E  E  P  D  E  I  V  R  E  E  Q  D  Y  R  A  L  L  A  F  S        
AATTCCTGCTCCTCATCTTCTGTGGACCACGAAGATTGCGAGGAACCGGACGAGATCGTTCGCGAAGAGCAAGACTATCGGGCTCTGCTGGCCTTTTCCC 180201 
 
L  V  I  C  G  T  L  L  V  T  C  V  I  -  
TAGTGATTTGCGGTACGCTCCTCGTCACTTGTGTGATCTGAGACGTCATGCTGGTAGCGTTTATGAGTCGGGCGGTGGCCGGCACGCCGCATTTCCTAAC 180101 
        UL148 
          M  L  R  L  L  F  T  L  V  L  L  A  L  Y  G  P  S  V  D  A  S  R  D  Y  V  H  V  R  L  L        
CCGCGCAGCATGTTGCGCTTGCTGTTCACGCTCGTACTGCTGGCCCTCTACGGACCGTCTGTCGACGCTAGCCGCGACTATGTGCATGTTCGACTACTGA 180001 
  
S  Y  R  G  D  P  L  V  F  K  H  T  F  S  G  V  R  R  P  F  T  E  L  G  W  A  A  C  R  D  W  D  S  M      
GCTACCGAGGCGACCCCCTGGTCTTCAAGCACACTTTCTCGGGTGTGCGTCGACCCTTCACCGAGCTAGGCTGGGCTGCGTGTCGCGACTGGGACAGTAT 179901 
  
  H  C  T  P  F  W  S  T  D  L  E  Q  M  T  D  S  V  R  R  Y  S  T  V  S  P  G  K  E  V  T  L  Q  L       
GCATTGCACGCCCTTCTGGTCTACCGATCTGGAGCAGATGACCGACTCGGTGCGGCGTTACAGCACGGTGAGCCCCGGCAAGGAAGTGACGCTTCAGCTT 179801 
  
 H  G  N  Q  T  V  Q  P  S  F  L  S  F  T  C  R  L  Q  L  E  P  V  V  E  N  V  G  L  Y  V  A  Y  V        
CACGGGAACCAAACCGTACAGCCGTCGTTTCTAAGCTTTACGTGCCGCCTGCAGCTAGAACCCGTGGTGGAAAATGTTGGCCTCTACGTGGCCTACGTGG 179701 
  
V  N  D  G  E  R  P  Q  Q  F  F  T  P  Q  V  D  V  V  R  F  A  L  Y  L  E  T  L  S  R  I  V  E  P  L      
TCAACGACGGTGAACGCCCACAACAGTTTTTTACACCGCAGGTAGACGTGGTACGCTTTGCTCTATATCTAGAAACGCTCTCCCGGATCGTGGAACCGTT 179601 
  
  E  S  G  R  L  T  V  E  F  D  T  P  D  L  A  L  A  P  D  L  V  S  S  L  F  V  A  G  H  G  E  T  D       
AGAATCAGGTCGCCTGACAGTGGAATTTGATACGCCTGACCTAGCTCTGGCGCCCGATTTAGTAAGCAGCCTCTTCGTGGCCGGACACGGCGAGACCGAC 179501 
  
 F  Y  M  N  W  T  L  R  R  S  Q  T  H  Y  L  E  E  M  A  L  Q  V  E  I  L  K  P  R  G  V  R  H  R        
TTTTACATGAACTGGACGCTGCGTCGCAGTCAGACCCACTACCTGGAGGAGATGGCCTTACAGGTGGAGATTCTAAAGCCCCGCGGCGTACGTCACCGCG 179401 
  
A  I  I  H  H  P  K  L  Q  P  G  V  G  L  W  I  D  F  C  V  Y  R  Y  N  A  R  L  T  R  G  Y  V  R  Y      
CTATTATCCACCATCCGAAGCTACAACCGGGCGTTGGCTTGTGGATAGATTTCTGCGTGTACCGCTACAACGCGCGCCTGACCCGTGGCTACGTACGATA 179301 
  
  T  L  S  P  K  A  R  L  P  A  K  A  E  G  W  L  V  S  L  D  R  F  I  V  Q  Y  L  N  T  L  L  I  T       
CACCCTGTCACCGAAAGCGCGCTTGCCCGCAAAAGCAGAGGGTTGGCTGGTGTCACTAGACAGATTCATCGTGCAGTACCTCAACACATTGCTGATTACA 179201 
  
 M  M  A  A  I  W  A  R  V  L  I  T  Y  L  V  S  R  R  R  - 
ATGATGGCGGCGATATGGGCTCGCGTTTTGATAACCTACCTGGTGTCGCGGCGTCGGTAGAGGCTTGCGGAAACCACGTCCTCGTCACACGTCGTTCGCG 179101 
      UL132 
                                     M  P  A  P  R  G  P  L  R  A  T  F  L  A  L  V  A  F  G  L  L        
GACATAGCAAGAAATCCACGTCGCCACGTCTCGAGAATGCCGGCCCCGCGGGGTCCCCTTCGCGCAACATTCCTGGCCCTGGTCGCGTTCGGGTTGCTGC 179001 
  
L  Q  I  D  L  S  D  V  T  N  V  T  S  S  T  K  V  P  T  S  T  S  N  R  N  S  V  D  N  A  T  S  S  G      
TTCAGATAGACCTCAGCGACGTTACGAATGTGACCAGCAGCACAAAAGTCCCTACTAGCACCAGCAACAGAAATAGCGTCGACAACGCCACGAGTAGCGG 178901 
  
  P  T  T  G  I  N  M  T  T  T  H  E  S  S  V  H  N  V  R  N  N  E  I  M  K  V  L  A  I  L  F  Y  I       
ACCCACGACCGGGATCAACATGACCACCACCCACGAGTCTTCCGTTCACAACGTGCGCAATAACGAGATCATGAAAGTGCTGGCTATCCTCTTCTACATC 178801 
  
 V  T  G  T  S  I  F  S  F  I  A  V  L  V  A  V  V  Y  S  S  C  C  K  H  P  G  R  F  R  F  A  D  E        
GTGACAGGCACCTCCATTTTCAGCTTCATAGCGGTACTGGTCGCGGTAGTTTACTCCTCGTGTTGCAAGCACCCGGGTCGCTTTCGTTTCGCCGACGAAG 178701 
  
E  A  V  N  L  L  D  D  T  D  D  S  G  G  S  S  P  F  G  S  G  S  R  R  G  S  Q  I  P  A  G  F  C  S      
AAGCCGTCAACCTGTTGGACGACACGGACGACAGTGGCGGCAGCAGCCCGTTTGGCAGCGGTTCCCGACGAGGTTCTCAGATCCCCGCCGGATTTTGTTC 178601 
  
  S  S  P  Y  Q  R  L  E  T  R  D  W  D  E  E  E  E  A  S  A  A  R  E  R  M  K  H  D  P  E  N  V  I       
CTCGAGCCCTTATCAGCGGTTGGAAACTCGGGACTGGGACGAGGAGGAGGAGGCGTCCGCGGCCCGCGAGCGCATGAAACATGATCCTGAGAACGTCATC 178501 
  
 Y  F  R  K  D  G  N  L  D  T  S  F  V  N  P  N  Y  G  R  G  S  P  L  T  I  E  S  H  L  S  D  N  E        
TATTTCAGAAAGGATGGCAACTTGGACACGTCGTTCGTGAATCCCAATTATGGGAGAGGCTCGCCTTTGACCATCGAATCTCACCTCTCGGACAATGAGG 178401 
  
E  D  P  I  R  Y  Y  V  S  V  Y  D  E  L  T  A  S  E  M  E  E  P  S  N  S  T  S  W  Q  I  P  K  L  M      
AGGACCCCATCAGGTACTACGTTTCGGTGTACGATGAACTGACCGCCTCGGAAATGGAAGAACCTTCGAACAGCACCAGCTGGCAGATTCCCAAACTAAT 178301 
  
  K  V  A  M  Q  P  V  S  L  R  D  P  E  Y  D  - 
GAAAGTTGCCATGCAACCCGTCTCGCTCAGAGATCCCGAGTACGACTAGGCTTTTTTTTTTGTCTTTCGGTTCCAACTCTTTCCCCGCCCCATCACCTCG 178201 
  
CCTATACTATGTGTATGATGTCTCATAATAAAGCTTTCTTTCTCAGTCTGCAACATGCGG   178140  

Figure 4.5 Location of the 5’- and 3’-ends of the UL146 
mRNA  
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Figure 4.5 Location of the 5’- and 3’-ends of the UL146 mRNA  
The nucleotide sequence of the region of the genome containing 
UL146, UL147, UL147A, UL148 and UL132 and the encoded amino 
acids are shown, with the Merlin coordinates on the right. All genes are 
shown in reverse orientation with respect to the Merlin genome, 
therefore they are oriented left to right.  
The position of the 5’-end of UL146 is highlighted in pink (181365/6).
The 5’-RACE primer is underlined and orientated right to left. The
putative TATA element (TACTTA) is highlighted in red and the initiation
codon is highlighted in blue. The UL146 stop codon is highlighted in
green. The initiation and stop codons of UL147, UL147A, UL148 and
UL132 are also highlighted blue and green, respectively.  
The position of the 3’-end of UL146 is highlighted in plum. The 3’-
RACE primer is highlighted in yellow and orientated left to right. The
putative polyA  signal (AATAAA) is highlighted in red.  



A Bradley 2008  Chapter 4    164  

  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

GTAGTGGAAATTTTTACGTCATTGGGAAACCCCAGAATGAAAGAGTATAATGTGCACATCACCGGGGGTTCCCTTTCAGTACGAATGTACACAACGCGGG 186981 
 
TTACATTACGATAAACTTTCCGGTAAAACGATGCCGATACAGCGTATATAACGCTGATTGTCACGACAAAGGGGTTCGTATATCAATTATATAGTAACGA 186881 
  UL139 
   M  L  W  I  L  V  L  F  A  L  A  A  S  A  S  E  T  T  T  G  T  S  S  N  S  S  Q  S  T  S  A  G  T       
ACATGCTGTGGATATTAGTTTTATTTGCACTTGCCGCATCGGCGAGTGAAACCACTACAGGTACCAGCTCTAATTCCAGTCAATCTACTTCTGCTGGTAC 186781 
  
  T  N  T  T  T  P  S  T  A  C  I  N  A  S  N  G  S  D  L  G  A  P  Q  L  A  L  L  A  A  S  G  W  T        
CACTAACACGACTACACCATCGACAGCATGTATTAATGCTTCTAACGGCAGTGATTTGGGGGCGCCACAGCTCGCGCTACTTGCCGCTAGCGGCTGGACA 186681 
  
 L  S  G  L  L  L  I  F  T  C  C  L  C  C  F  W  L  V  R  K  V  C  S  C  C  G  N  S  S  E  S  E  S         
TTATCTGGACTCCTTCTCATATTTACTTGCTGCCTTTGCTGTTTTTGGCTAGTACGTAAAGTCTGCAGCTGCTGCGGCAACTCCTCCGAGTCAGAGAGCA 186581 
  
K  A  T  H  A  Y  T  N  A  A  F  T  S  S  D  A  T  L  P  M  G  T  T  G  S  Y  T  P  P  Q  D  G  S  F       
AAGCCACTCACGCGTACACCAATGCCGCATTCACTTCTTCCGATGCAACGTTACCCATGGGCACTACAGGGTCGTACACTCCCCCACAGGACGGCTCATT 186481 
  
  P  P  P  P  R  -  
TCCACCTCCGCCTCGGTGACGCAGGCTAAACCGAAACCAACGTTGAACTTGACGCGGTTTCGGAAAGCCTGAGACGTCACTTTCACAATGACGTTCGTAG 186381 
  
ACACGTTGATCATAAAACACCGTAGAGGCTAAGGCTTCGGTAGGGAGACACCTCAACTGTTCCTGATGAGCACCCGCGCTCTCATCTCTTCAGACTTGTC 186281 
UL140 
 M  T  P  A  Q  T  N  G  T  T  T  V  H  P  H  G  A  K  N  G  S  G  G  S  A  L  P  T  L  V  V  F  G        
ATGACCCCCGCTCAGACTAACGGCACTACCACCGTGCACCCGCACGGCGCAAAAAACGGCAGCGGCGGTAGTGCCCTGCCGACCCTCGTCGTTTTCGGCT 186181 
  
F  I  V  T  L  L  F  F  L  F  M  L  Y  F  W  N  N  D  V  F  R  K  L  L  R  C  A  W  I  Q  R  C  C  D      
TCATCGTTACGCTACTTTTCTTTCTCTTTATGCTCTACTTTTGGAACAACGACGTGTTCCGTAAGCTGCTTCGCTGCGCTTGGATCCAGCGCTGCTGCGA 186081 
  
  R  F  D  A  W  Q  D  E  V  I  Y  R  R  P  S  R  R  S  Q  S  D  D  E  S  R  T  N  S  V  S  S  Y  V       
CCGCTTCGACGCGTGGCAAGACGAGGTCATCTACCGTCGTCCATCACGTCGTTCCCAAAGCGACGACGAGAGTCGTACTAACAGCGTGTCATCGTACGTT 185981 
  
 L  L  S  P  A  S  D  G  G  F  D  N  P  A  L  T  E  A  V  D  S  V  D  D  W  A  T  T  S  V  F  Y  A        
CTTTTATCACCCGCGTCCGATGGCGGTTTTGACAACCCGGCACTGACAGAAGCCGTCGACAGCGTGGACGACTGGGCGACCACCTCGGTTTTTTACGCCA 185881 
  
T  S  D  E  T  A  D  T  E  R  R  D  S  Q  Q  L  L  I  E  L  P  P  E  P  L  P  P  D  V  V  A  A  M  Q      
CGTCCGACGAAACGGCGGACACCGAACGCCGAGATTCGCAGCAACTGCTCATCGAGCTTCCGCCGGAGCCGCTCCCACCCGATGTGGTAGCGGCCATGCA 185781 
  
  K  A  V  K  R  A  V  Q  N  A  L  R  H  S  H  D  S  W  Q  L  H  Q  T  L  - 
GAAAGCGGTGAAACGCGCTGTACAAAACGCGCTACGCCACAGCCACGACTCTTGGCAGCTTCATCAGACCCTGTGACGCAGATAAACGTTCCTTCTTAAA 185681 
  
CATCCGAGGTAGCAATGAGACAGGTCGCGTACCGCCGGCGACGCGAGAGTTCCTGCGCGGTGCTGGTCCACCACGTCGGCCGCGACGGCGAGGGAGAGGC 185581 
  
AGCAAAAAAGACCTGTAAAAAAACCGGACGCTCAGTTGCGGGCATCCCGGGCGAGAAGCTGCGTCGCACGGTGGTCACCACCACGCCGGCCCGACGTTTG 185481 
         UL141 
                                                                     M  C  R  R  E  S  L  R  T  L  P      
AGCGGCCGACACACGGAGCAGGAACAGGCGGGCAGCGTCTCTGCGAAAAAGGGAAGAAAAGAATCATCATGTGCCGCCGGGAGTCGCTCCGAACTCTGCC 185381 
  
  W  L  F  W  V  L  L  S  C  P  R  L  L  E  Y  S  S  S  S  F  P  F  A  T  A  D  I  A  E  K  M  W  A       
GTGGCTGTTCTGGGTGCTGTTGAGCTGCCCGCGACTCCTCGAATATTCTTCCTCTTCGTTCCCCTTCGCCACCGCTGACATCGCCGAAAAGATGTGGGCC 185281 
  
 E  N  Y  E  T  T  S  P  A  P  V  L  V  A  E  G  E  Q  V  T  I  P  C  T  V  M  T  H  S  W  P  M  V        
GAGAACTATGAGACCACGTCGCCGGCGCCGGTGTTGGTCGCCGAGGGAGAGCAAGTTACCATCCCCTGCACGGTCATGACACACTCCTGGCCCATGGTTT 185181 
  
S  I  R  A  R  F  C  R  S  H  D  G  S  D  E  L  I  L  D  A  V  K  G  H  R  L  M  N  G  L  Q  Y  R  L      
CCATTCGCGCACGTTTCTGTCGTTCCCACGACGGCAGCGACGAGCTCATCCTGGACGCCGTCAAAGGCCATAGGCTGATGAATGGACTTCAATACCGCCT 185081 
  
  P  Y  A  T  W  N  F  S  Q  L  H  L  G  Q  I  F  S  L  T  F  N  V  S  T  D  T  A  G  M  Y  E  C  V       
GCCGTACGCCACTTGGAATTTCTCGCAGTTGCATCTCGGCCAAATATTCTCGCTGACTTTCAACGTATCGACGGACACGGCCGGCATGTACGAATGCGTG 184981 
  
 L  R  N  Y  S  H  G  L  I  M  Q  R  F  V  I  L  T  Q  L  E  T  L  S  R  P  D  E  P  C  C  T  P  A        
CTGCGCAACTATAGCCACGGCCTCATCATGCAACGCTTCGTAATTCTGACGCAACTGGAGACGCTCAGCCGGCCCGACGAACCTTGCTGCACGCCGGCGT 184881 
  
L  G  R  Y  S  L  G  D  Q  I  W  S  P  T  P  W  R  L  R  N  H  D  C  G  M  Y  R  G  F  Q  R  N  Y  F      
TAGGTCGCTACTCGCTGGGAGACCAGATCTGGTCGCCGACGCCCTGGCGTCTACGGAATCACGACTGCGGGATGTACCGCGGTTTTCAACGCAACTACTT 184781 
  
  Y  I  G  R  A  D  A  E  D  C  W  K  P  A  C  P  D  E  E  P  D  R  C  W  T  V  I  Q  R  Y  R  L  P       
CTATATCGGCCGCGCCGACGCCGAGGATTGCTGGAAACCCGCATGTCCGGACGAGGAACCCGACCGCTGTTGGACAGTGATACAGCGTTACCGGCTCCCC 184681 
  
 G  D  C  Y  R  S  Q  P  H  P  P  K  F  L  P  V  T  P  A  P  P  A  D  I  D  T  G  M  S  P  W  A  T        
GGCGACTGCTACCGTTCGCAGCCACACCCGCCGAAATTTTTACCGGTGACGCCAGCACCGCCGGCCGACATAGACACCGGGATGTCTCCCTGGGCCACTC 184581 
  
R  G  I  A  A  F  L  G  F  W  S  I  F  T  V  C  F  L  C  Y  L  C  Y  L  Q  C  C  G  R  W  C  P  T  P      
GGGGAATCGCGGCATTTTTGGGATTTTGGAGTATTTTCACCGTATGTTTCCTATGCTACCTGTGTTACCTGCAGTGCTGTGGACGCTGGTGCCCCACGCC 184481 
  
  G  R  G  R  R  G  G  E  G  Y  R  R  L  P  T  Y  D  S  Y  P  G  V  K  K  M  K  R  - 

GGGAAGGGGACGACGAGGCGGTGAGGGCTATCGACGCCTACCGACTTACGATAGTTACCCCGGTGTTAAAAAGATGAAGAGGTGAGAACACGCATAAAAT 184381 

AAAAAAATAAGATGTTAAAAAATGCAGTGTGTGAAATGTGAATAGTGTGATTAAAATATGCGGATTGAAT 184311

Figure 4.6 Location of the 5’- and 3’-ends of the UL139 mRNA 
(continued overleaf) 
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Figure 4.6 Location of the 5’- and 3’-ends of the UL139 mRNA  
The nucleotide sequence of the region of the genome containing
UL139, UL140 and UL141 and the encoded amino acids are shown,
with the Merlin coordinates on the right. All genes are shown in reverse
orientation with respect to the Merlin genome, therefore they are
oriented left to right.  
The position of the 5’-end of UL139 is highlighted in pink (187003). The
5’-RACE primer is underlined and orientated right to left. The putative
TATA element (TATAAT) is highlighted in red and the initiation codon is
highlighted in blue. The UL139 stop codon is highlighted in green. The
initiation and stop codons of UL140 and UL141 are also highlighted
blue and green, respectively.  
The position of the 3’-ends of UL139, UL140 and UL141 mRNA are
highlighted in plum. The 3’-RACE primers are highlighted in yellow and
orientated left to right. The putative polyA signal (AATAAA) is
highlighted in red.  
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Five clones mapped the 3’-end to the same position as that determined for 

UL139, with the polyA signal downstream of the UL141 stop codon, confirming 

that UL141 uses the same polyA signal as UL139 and UL140 (Figure 4.6). 

4.4 Construction of recombinant adenoviruses 
expressing tagged UL139 variants 

As shown in Chapter 1, seven of the eight UL139 variants share a small region of 

similarity with CD24. Similarity with CD24 could indicate a role in immune 

modulation for UL139, which is an intriguing prospect. Based on potential roles 

for UL139 in virus pathogenesis, immune modulation and tissue tropism, an 

initial characterisation of the UL139 protein was undertaken, with a focus on the 

apparent masses of the proteins produced by different genotypes. As described 

in Chapter 1 (Section 1.10), the primary translation product of UL139 from N to 

C terminus consists of a signal peptide sequence, the CD24-related region, a 

hypervariable region, a transmembrane anchor, and a highly conserved 

cytoplasmic tail (Figure 4.7). Thus, the ectodomain of the mature protein 

consists of the CD24-related domain (but not in G5) followed by the 

hypervariable region. As emphasized in Figure 4.7, the ectodomain is rich in S 

and T residues, which are potentially subject to O-glycosylation, and NXS/NXT 

motifs, which are potentially subject to N-glycosylation. The hypothesis was that 

the mature UL139 protein is highly glycosylated and therefore has an apparent 

mass much greater than that predicted from the aa sequence. Moreover, 

apparent mass would vary among genotypes.  

The UL139 protein was over-expressed in a RAD vector under the control of the 

HCMV MIE promoter. As no UL139 antibody was available, the proteins were 

FLAG-tagged to facilitate detection by immunofluorescence and immunoblot. 

The FLAG-tag was selected due its small size (~1 kDa) and the availability of a 

commercial highly specific antibody. Constructs were designed with the 

FLAG-tag at the C terminus or internally in three different genotypes: G1, G2 

and G5 (Figure 4.7). G1 is found in Merlin, which is being used increasingly as a 

laboratory strain. G2 differs considerably from G1 and yet still contains the 

region of similarity to CD24. G5 is the only UL139 genotype that does not contain 

the region of similarity to CD24.  
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The insertion sites for the FLAG-tag (Figure 4.7) were either internal, 

downstream of the hypervariable region, or at the C-terminus. The three 

internally tagged variants derived for different genotypes are referred to as 

RADUL139G1int, RADUL139G2int and RADUL139G5int. The three C terminally 

tagged variants are referred to as RADUL139G1ter, RADUL139G2ter and 

RADUL139G5ter. 

The six UL139 FLAG-tagged sequences were provided commercially by 

genesynthesis (Genscript Corporation) as inserts in the multiple cloning site of 

the plasmid pUC57. Briefly, genesynthesis is the chemical synthesis of 

oligonucleotides in a manner similar to the synthesis of primers (using 

phosphoramidites, normal nucleotides which have protection groups, allowing 

specific addition of each nucleotide) followed by ligation (Gupta et al., 1968). 

They were designed to contain regions or ‘arms’ of sequence homology with the 

adenovirus vector (pAL942) at the 5’- and 3’-ends. Each tagged UL139 variant 

was purified and electroporated into E. coli SW102 cells (Chapter 2, Section 

2.25). SW102 cells contain pAL942, the adenovirus BAC vector with which the 

tagged UL139 variants were to recombine. The cells were recovered and plated 

onto ampicillin plates. A total of 40-50 colonies were tested directly by PCR, 

which was performed using primers (PMV100f and PMV100r, Table 2.2) selected 

within the ‘arms’ of homology. Colonies containing the UL139 inserts were 

inoculated into L-broth containing appropriate antibiotics. The BAC DNAs were 

purified and sequenced. Five of the UL139 variants (RADUL139G1int, 

RADUL139G1ter, RADUL139G2int, RADUL139G2ter and RADUL139G5ter) 

successfully recombined with pAL942 as verified by sequencing. BAC DNA was 

excised to produce the adenovirus genome containing the relevant insert, and 

viral DNA was purified. The purified viral DNA was then transfected into HEK 293 

cells for large-scale RAD production for use in further experiments. 

4.5 Detection of UL139 FLAG-tagged variants by 
immunoblot  

To confirm that the FLAG-tagged UL139 variants were expressed and to examine 

the apparent masses of the proteins, HFFF-2 cells were infected with each RAD 

at an m.o.i. of 100 p.f.u./ml and harvested 72 hours p.i. An empty RAD (RAD942) 

was used as a negative control. Based on the otherwise unprocessed aa  
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     G1 (W9)   MLWILVLFAL.....AASASETTTGTSSNSSQS........TSAGTTNTTTPS...TACINASN....GSDLGAPQLALLAAS  
     G2 (E8)   MLWILVLFAL.....AASASETTTGTSSNSSQSTSSSSSSSTSSNSTATPT.S.ASIQCVESFG....GSNWTVAQLALFAAS 
     G3 (E11)   MLWILVLFAL.....ATSASETTTGTSSNSSQSSTSSSSTNTSNNTTSATTLS...TECINGFG....GNNWTFPQLALFAAS 
     G4 (U4)   MLWILVLFAL.....AASASETTTGTSSNSSQS........TSA..TANTTVS....TCINASN....GSSWTVPQLALLAAS  
     G5 (U5)   MTVVVMLTIAVAAV.AIV.S.....................SNNNTTNS.......TTCVDGTN....GTWWTVQHVGMLAAG 
     G6 (W8)   MLWILALLALT....AT.ASETTTGTSSNSSTSTN......SSNSTVAPTTPS...VACVQAFG....GSNWTFPQLALLAAS 
     G7 (E12)   MLWILVLFAL.....AASASETTTGTSSNSSQATSSSSSSSSTSSNNSTATPT...IECVQAFG....GSNWTVAQLALFAAS 
     G8 (A3)   MLWILVLFAL.....AASASETTTGTSSNSSQS.............TSVTTSS...TACINGSG....GSNWTVPQLALLAAS  
     cons     M-----L--------A---S--------------------------------------C---------G-----------AA- 
     CCMV   MTVTVTLVALSSAVSAALASETTTGTSSNSSQSTSS...........TATTGT....GCSNANDTNNNGLNQQQIIAGLLG.. 
 
 
 
 
 
     G1 (W9)   GWTLSGLLLIFTCCLCCFWLVRKVCS.CCGNSSESESKA.T.HAYTNAAFTSSDATLPMGTTGSYTPP..QDGSFPPPPR               
     G2 (E8)   GWTLSGLLLLFTCCFCCFWLVRKICS.CCGNSSESESKT.T.HAYTNAAFTSSDATLPMGTTGSYTPP..QDGSFPPPPR 
     G3 (E11)   GWTLSGLLLLFTCCFCCFWLVRKICS.CCGNSSESESKT.T.HAYTNAAFTSSDATLPMGTTGSYTPP..QDGSFPPPPR 
     G4 (U4)   GWTLSGLLLLFTCCFCCFWLVRKICS.CCGNSSESESKT.T.HAYTNAAFTSSDATLPMGTTGSYTPP..QDGSFPPPPR 
     G5 (U5)   GWSCFILLLMFVCCFCCFQLLRKLCG.CCGNS.QSDSKT.T.HAYTNAAFTSSDATLPMGTTGSYTPP..QDGSFPPPPR 
     G6 (W8)   GWTLSGLLLLFTCCFCCFWLVRKICS.CCGNSSESESKT.T.HAYTNAAFTSSDATLPMGTTGSYTPP..QDGSFPPPPR 
     G7 (E12)   GWTLSGLLLLFTCCFCCFWLVRKICS.CCGNSSESESKT.T.HAYTNAAFTSSDATLPMGTTGSYTPP..QDGSFPPPPR 
     G8 (A3)   GWTLSGLLLLFTCCFCCFWLVRKICS.CCGNSSESESKT.T.HAYTNAAFTSSDSTLPMGTTGSKTPP..QDGSFPPPA 
   cons      GW----LLL-F-CC-CCF-L-RK-C--CCGNS-QSDSKT.T.HAYTNAAFTSSDATLPMGTTGS-TPP..QDGSFPPP- 
   CCMV   GCGFLSLFFIFTCILCVWYCFRKLFPDCCGGDPDEQQRQMTRGRYTYDNPVFPPPTLPMGATGPAYPPPVSDGTAGPPAIPLTQDKVTYPRS 

DYKDDDDK 

DYKDDDDK 

Figure 4.7 FLAG-tag insertion sites in the eight UL139 genotypes 
 
This is a version of Figure 3.8, which displays an amino acid sequence 
alignment of UL139 genotypes, G1-G8, with the S and T residues in red 
font, the N of NXS/T motifs in green font and the region of homology with 
CD24 underlined. The two alternative FLAG-tag insertion sites in UL139 G1, 
G2 and G5 are indicated by a grey triangle above the sequences with the 
amino acid sequence of the FLAG-tag shown (8 aa in length).  
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sequences minus the signal peptides using the Compute pI/Mw tool on 

www.expasy.org, RADUL139G1int and RADUL139G1ter were predicted to encode 

UL139 proteins with a mass of 13.5 kDa, RADUL139G2int and RADUL139G2ter of 

14.7 kDa, and RADUL139G5ter of 12.3 kDa. 

The results from immunoblotting are shown in Figure 4.8. RADUL139G1ter (lane 

1) and RADUL139G1int (lane 2) are both 97 kDa in size, which is more than seven 

times their predicted size. RADUL139G2ter (lane 3), RADUL139G2int (lane 4) and 

RADUL139G5ter (lane 5) are ~110 kDa in size. Therefore all FLAG-tagged UL139 

protein variants appear to be much larger than predicted. The amount of protein 

detected was much greater for RADUL139G2int, and therefore a lower exposure 

image was included in lane 4.  

4.6 Discussion and future work 

The first aim of this chapter was to determine the transcription kinetics and map 

the 5’- and 3’-ends of the UL146 and UL139 transcripts. As described in Section 

1.4, there are three broad classes of HCMV gene expression; IE, E and L. The 

kinetic class of a particular HCMV gene can be determined by infecting cells in 

the presence of chemical inhibitors such as cycloheximide, a protein synthesis 

inhibitor that allows expression of IE genes, or phosphonoacetic acid (PAA), an 

inhibitor of viral DNA replication that allows expression of IE and E genes. All 

three classes of gene are expressed in the absence of these inhibitors. HFFF-2 

cells were infected with HCMV Merlin, and IE, E and L genes were expressed 

using cycloheximide and PAA. Total RNA was extracted and electrophoresed, and 

the UL146 and UL139 transcripts were detected by northern blot. UL146 was 

transcribed as a 3.3 kb RNA with L kinetics whereas UL139 was expressed as a 

2.6 kb RNA with E-L kinetics (Figure 4.2). 

Having established the kinetic classes of UL146 and UL139, the 5’- and 3’-ends of 

the transcripts were mapped in L RNA using RACE. HCMV E and L genes usually 

have a promoter structure that contains a TATA box, which is a consensus 

sequence (based on TATAAA), located 25-35 nt upstream of the transcription 

start site (TSS). The 5’-end of the UL146 RNA is located at position 

181365/181366 and the 3’-end is located at position 178149 on the Merlin 

genome (Figure 4.5). The location of the putative TATA element, 5’-end and 3’-  
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end of UL146 are conserved in other HCMV strains. Transcription begins 

upstream of the UL146 start codon and continues through UL147, UL147A, UL148 

and UL132 to a polyA signal downstream from the UL132 stop codon (Figure 4.5). 

It is likely that UL147, UL147A, UL148 and UL132 are 3’-coterminally transcribed 

with UL146, as the HCMV genome contains relatively few putative polyA signals 

therefore many genes share polyA signals (Wing and Huang, 1995). The putative 

transcriptional organisation for this locus is shown in Figure 4.1. During the 

course of this work Lurain et al. (2006) published data regarding transcription of 

UL146 and concluded that UL146 is indeed 3’-coterminally transcribed with 

adjacent genes. Further RACE experiments are required to map the 5’- and 

3’-ends of UL147, UL147A, UL148 and UL132.  

Penfold et al. (1999) found that UL146 was expressed with L kinetics, which is in 

agreement with the present study. However, Lurain et al. (2006) and Chambers 

et al. (1999) found that UL146 was expressed with E-L kinetics. Microarrays are 

unable to distinguish between overlapping transcripts, therefore discrepancies 

between the results of Chambers et al. (1999) and the present study may be a 

consequence of this technical limitation. The UL146 transcript detected by 

Lurain et al. (2006) with E-L kinetics (48 h p.i.) was faint, suggesting a low level 

of transcription. In contrast, the UL146 transcript detected 72 h p.i. was strong, 

which suggests a high level of transcription. Therefore, the discrepancy between 

their results and those of the present study may be a quantitative difference. 

In contrast to UL146, UL139 is expressed with E-L kinetics (Figure 4.2), although 

levels of E transcription were very low. Transcription initiates upstream of the 

UL139 start codon and continues through UL140 and UL141 to a polyA signal 

downstream from the UL141 stop codon (Figure 4.6). From these data it was 

postulated that UL139 is 3’-coterminally expressed with UL140 and UL141, and, 

indeed, all three genes use the same polyA signal located downstream from the 

UL141 stop codon (Figure 4.6, Table 4.2). The putative transcriptional 

organisation for this locus based on the data obtained is displayed in Figure 4.1. 

The location of the putative TATA element, 5’-end and 3’-end of UL139 and 3’-

ends of UL140 and UL141 are conserved in other HCMV strains. Moreover the 

putative TATA element for HCMV UL139 is also conserved in CCMV UL139, 

suggesting that transcription initiates within the gene known as CCMV UL139 to 
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produce a protein beginning with the methionine aligned with the start codon of 

HCMV UL139 (Figure 3.13). 

The second aim of this chapter was the initial characterisation of the UL139 

protein, with a focus on the apparent mass generated from the different 

genotypes. Three UL139 genotypes (G1, G2 and G5) were chosen and 

FLAG-tagged internally or C-terminally. These tagged sequences were 

recombined into an adenovirus vector and five RADs (RADUL139G1int, 

RADUL139G1ter, RADUL139G2int, RADUL139G2ter and RADUL139G5ter) were 

generated.  

Immunoblotting revealed that all five FLAG-tagged UL139 variants were 

expressed in infected HFFF-2 cells and all had molecular masses of ~97 kDa or 

more (Figure 4.8), much greater than their predicted masses of 12.3-14.7 kDa. It 

is possible that N-linked glycosyl groups (and other post-translational 

modifications) may account for the additional mass. Another HCMV glycoprotein, 

gO (UL74), is 466 aa in length and is predicted to have a molecular mass of 

54 kDa. However, the protein has an apparent mass of 125 kDa, and digestion 

with N-glycosidase produced a 65 kDa protein, suggesting that the N-linked 

glycosyl groups account for the additional 60 kDa (Huber and Compton, 1998). 

Based on this finding, Huber and Compton (1998) estimated that each N-linked 

glycosyl group adds 2-4 kDa of mass to a protein. Therefore, for N-glycosylation 

to account for the additional mass in the protein UL139, it would have to contain 

15-30 N-linked glycosylation sites. This is considerably more than the three (G1), 

one (G2) and two (G5) predicted, and suggests that O-linked glycosyl groups and 

perhaps other forms of posttranslational modification may contribute to this 

additional mass. 

Further experiments were not possible owing to time constraints, but the 

occurrence of glycosylation could be assessed through the use of deglycosylases 

and further immunoblotting. Other forms of post-translational modification, such 

as phosphorylation, may also contribute to the large mass of the UL139 protein. 

In addition, the RADs could be used to investigate UL139 localisation by indirect 

immunofluorescence, and to generate polyclonal antibodies against the UL139 

protein.  
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5 Assessment of the genetic content of an AD169 
variant that contains the UL/b’ region 

5.1 Introduction 

The following is a brief history of HCMV strain AD169. The virus was isolated in the 

USA at the National Institutes of Health (NIH) from the adenoids of an HCMV-positive 

seven year-old girl and passaged 14 times in human embryonic fibroblast cells (HEFs) 

to produce a stock named NIH 76559 (Rowe et al., 1956). AD169 has subsequently 

been distributed throughout the world and is one of the most commonly used 

laboratory strains of HCMV. As more than 50 years have passed since AD169 was first 

isolated, the precise passage history of individual stocks is unclear, and numerous 

stocks exist. The two lineages that set the context of the present work are 

AD169varUK, which was developed by passage of NIH 76559 in the UK, and 

AD169varATCC, which is a reference stock available from the American Type Culture 

Collection (ATCC).  

In the UK, NIH 76559 was passaged ten times in HFFFs, four times in HEFs, eighteen 

times in human embryonic lung fibroblast cells (HELFs) and eight times in MRC-5 

foetal fibroblasts cells. The resulting stock was then used to make batches of an 

HCMV vaccine by passaging 16-24 times in MRC-5 cells (Elek and Stern, 1974). A 

vaccine stock was plaque purified twice and used to produce a set of plasmid clones 

(Oram et al., 1982). These clones were then used to sequence the genome of AD169 

(AD169varUK), which was deposited in the public databases under accession number 

X17403 (Chee et al., 1990).  

The AD169varUK genome was characterised as being 229,354 bp in length, with UL 

166,972 bp, US 35,418 bp, RL (TRL and IRL) 11,247 bp and RS (TRS and IRS) 2,524 bp. 

The a sequence is 578 bp. Comparison with other HCMV strains revealed that the 

AD169varUK sequence contains frameshifts in three genes, namely RL5A, RL13 and 

UL131A (Akter et al., 2003; Davison et al., 2003, 2003a; Yu et al., 2002). As well as 

these frameshifts, comparison with strain Toledo showed that AD169varUK has a 

large deletion of a region at the right end of UL (15 kbp), termed UL/b’, which 

encodes 19 ORFs (UL148-UL150) (Cha et al., 1996; Davison et al., 2003a; Dolan et 

al., 2004). Moreover, this region has been replaced by an inverted duplication of a 
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sequence of 11 kbp from near the left end of the genome that contains RL1-RL12 and 

part of RL13. This duplication results in a substantial expansion of RL in comparison 

with low passage strains (Davison et al., 2003a; Dolan et al., 2004; Prichard et al., 

2001).  It is probable that these mutations are a result of selective pressure placed 

on the virus during passage in cell culture.  

In the USA, AD169 was deposited with the ATCC by W. A. Chappell (Centers for 

Disease Control and Prevention, Atlanta) and is now designated VR-538. The ATCC is 

unable to reveal the date on which it was deposited, but according to the literature 

this variant has been available from the ATCC since 1973 (Smith and de Harven, 

1973). AD169varATCC was cloned as a bacterial artificial chromosome (BAC) by 

insertion of a BAC vector immediately after US28 with no deletion of viral sequences 

(Yu et al., 2002). From this clone, AD169varATCC was sequenced (accession number 

AC146999) and used for further studies (Murphy et al., 2003). AD169varATCC has the 

same deletion of UL/b’ that characterises AD169varUK,as well as the duplicative 

expansion of RL and the frameshifts in RL5A, RL13 and UL131A. Therefore these 

mutations occurred prior to separation of the lineages that led to AD169varUK and 

AD169varATCC. Both variants also contain a single point mutation in UL36, which 

causes substitution of a C by an R residue and results in inactivation of the encoded 

inhibitor of apoptosis (Skaletskaya et al., 2001). 

Despite these shared mutations, AD169varATCC differs from AD169varUK in 

replication efficiency (Brown et al., 1995). In fact, various stocks of AD169varUK 

exist, and some contain an additional 929 bp of sequence within UL that results in a 

decrease in the length of UL42 and an increase in the length of UL43 (Dargan et al., 

1997). This additional sequence was also found in AD169varATCC and may contribute 

to the difference in replication efficiency (Mocarski et al., 1997). Direct comparison 

of the AD169varUK genome with the AD169varATCC genome by restriction 

endonuclease digestion revealed no other differences (Mocarski et al., 1997), but 

sequence comparison indicates approximately 50 additional nucleotide substitutions 

plus approximately ten small insertions or deletions. 

Unpublished work by Prof. N. Lurain (University of Chicago) using an AD169 virus 

stock, termed AD169varUC, which she received from Prof. Ken Thompson (University 

of Chicago) who in turn had obtained it from Prof. Marc Beem (University of Chicago) 

in 1981, indicated that this variant contains some of the genes in UL/b’ (N. Lurain, 
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personal communication). Similarly, DNA microarray studies performed on 

AD169varUC in the laboratory of Prof. P. Ghazal (Laboratory of Clinical and Molecular 

Virology, The Scottish Centre for Genomic Technology and Informatics, University of 

Edinburgh) revealed evidence for the expression of genes in this region. These 

findings suggest that this variant may be an alternative passage of AD169 that 

contains part or all of UL/b’. AD169varUC is the focus of this chapter.  

5.2 Validation of the identity of AD169varUC 

In initial experiments, several ORFs in AD169varUC were amplified by PCR and 

sequenced. RL5A, RL13 and UL131A were selected as they contain mutations in 

AD169varUK and AD169varATCC (Section 5.1). UL11 and UL73 were chosen as they 

are hypervariable, falling into three and seven genotypes repectively (Hitomi et al., 

1997; Pignatelli et al., 2003). The primers that were used to amplify and sequence 

these genes are listed in Table 2.3 and highlighted in blue as is the PCR product 

obtained. PCR products were either sequenced directly or cloned into pGemT with at 

least two clones being sequenced. The sequences were assembled and compared to 

those published for AD169varUK and AD169varATCC. A summary of the comparison is 

shown in Table 5.1.  

UL11, UL73, UL131A and RL13 are each identical in AD169varUC, AD169varUK and 

AD169varATCC. RL5A in AD169varUC has a single nucleotide difference from the 

other two variants with RL5A. To determine whether AD169varUC contains UL/b’, 

attempts were made to amplify and sequence three genes in this region (UL139, 

UL146 and UL148) using primers detailed in Table 2.3. All were detected (Table 5.1). 

UL139 and UL146 were sequenced as part of the genotyping study described in 

Chapter 3, the former falling into genotype G7 and the latter into genotype G9 

(Table 3.1). The part of UL148 that is present in AD169varUK and AD169varATCC is 

identical in AD169varUC (Table 5.1). 
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5.3 Sequence of the UL/b’ region in AD169varUC 

The UL/b’ region, plus flanking sequences, in AD169varUC was amplified as eight 

fragments by PCR (Table 2.3). The products were sequenced directly or as plasmid 

clones. The primers used for PCR and sequencing are listed in Table 2.3. Figure 5.1 

shows the annotated sequence. AD169varUC contains the remainder of gene UL148 

and the intact genes UL147A, UL147, UL146, UL145, UL139, UL138, UL136, UL135, 

UL133, UL148A, UL148B, UL148C, UL148D and UL150, all of which are absent from 

AD169varUK and AD169varATCC. In addition, the contiguous sequence that was 

obtained contains, to the right, the internal inverted repeat sequences  (IRL and IRS, 

which are described alternatively as b’-a’-c’), the latter of which contains part of 

gene IRS1, and, to the left, genes that are also present in AD169varUK and 

AD169varATCC, namely UL128, UL130, UL131A, UL132 (none of which are included in 

Figure 5.1) and the 5’-part of UL148. A non-contiguous sequence to the left of UL/b’ 

containing UL121 in its entirety and parts of UL122 and UL123 was also sequenced. 

The results of comparisons of these sequences with those of AD169varUK and 

AD169varATCC are shown in Table 5.2. 

The sequences of UL121, UL122, UL123, UL128, UL130, UL131A, UL132 and the 

shared part of UL148 are identical in the three variants. Unlike the other variants, 

AD169varUC contains most, but not all, of UL/b’. A 3.2 kbp sequence is absent, 

resulting in deletion of the entire UL141 and UL142 ORFs plus 148 bp at the 5’-end of 

the UL144 ORF and 27 bp at the 3’-end of the UL140 ORF.  This deletion is 

Table 5.1: Initial comparison of AD169varUC, AD169varATCC and AD169varUK 

ORF Length of ORF 
(bp)a 

Present in 
UK/ATCCb 

Nucleotide 
differencesC 

Number of 
Clonesd 

RL5A 271 Yes 1 0 

    RL13 444 Yes 0 2 (0) 

UL11 828 Yes 0 0 
UL73 417 Yes 0 3 

UL131A 391 Yes 0 5 
UL139 441 No NA 0 
UL146 357 No NA 0 
UL148 951 Yes 0 3 

aIncludes the stop codon.  
bUK, AD169varUK; ATCC, AD169varATCC. The ORFs listed are identical in sequence in these two 

variants. Only 402 bp at 3’-end of UL148 is shared by the three variants. 

cBetween AD169varUC and AD169varUK/AD169varATCC. NA, not applicable. 
dZero (0) indicates that the PCR product was sequenced directly. 
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highlighted in Figure 5.1. It results in a framshift near the 3’-end of the UL140 ORF, 

with the C-terminal 8 aa replaced by 71 aa in an alternative reading frame. The 

alternative C terminus is highlighted in grey in Figure 5.1. 

 

 
The sequences of UL147A, UL147, UL146 and UL145 (to the left of the deletion), 

UL139 (to the right of the deletion), and the residual parts of the UL144 and UL140 

ORFS were compared with sequences from other HCMV strains in Genbank using 

BLAST.  

 

 

 

Table 5.2: Further comparison of AD169varUC with AD169varATCC and AD169varUK 

 
PCR product 

name 
ORFs 

present 
Sequence 
obtained 

(bp) 

UC/UK UC/ATCC 
 

UK/ 
ATCC 

Length of ORF 
(bp)a 

Number 
of 

Clonesb 

RS1/RL1 TRS1 
RL1 

2711c 8 23 17 609/2367 
817/936 

0 

UL122 UL121 
UL122e 
UL123e 

3165 0 0 0 543/543 
1487/1743 
818/1476 

5 

0 0 0 516/516 
0 0 0 645/645 
0 0 0 391/391 

UL132 UL128 
UL130 
UL131A 
UL132 

2851 

0 0 0 813/813 

5 

0 0 0 813/813 
0 0 0 951/951 

NA NA NA 228/228 
NA NA NA 480/480 

UL146 UL132 
UL148 
UL147A 
UL147 
UL146 

2853 

NA NA NA 357/357 

3 

UL145 NA NA NA 393/393 0 
UL140 NA NA NA 765/765 
UL139 441/441 

Four smaller 
products 

UL138 

887 
1197 
890 
1240 

NA NA NA 
510/510 

0 

NA NA NA 510/510 
NA NA NA 723/723 

UL136 UL138 
UL136 
UL135 

1592 

NA NA NA 987/987 

0 

UL133 UL133 2073 NA NA NA 774/774 0 
NA NA NA 240/240 
NA NA NA 243/243 
NA NA NA 234/234 
NA NA NA 195/195 

UL150 UL148A 
UL148B 
UL148C 
UL148D 
UL150 

2892 

NA NA NA 1917/1917 

0 

aIncludes the stop codon. 

bA zero (0) indicates that the PCR product was sequenced directly. 
cThis comprised part of RS sequence and the entire RL, plus 878 bp from the left end of UL. 

Note- The PCR products UL132 and UL146, and UL136, UL133 and UL150 overlapped. 
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CTACCGACGCCGCGACACCAGGTAGGTTATCAAAACGCGAGCCCATATCGCCGCCATCATTGTAATCAGCAATGTGTTGAGGTACTGCACGATGAATCTG   100 
 -  R  R  R  S  V  L  Y  T  I  L  V  R  A  W  I  A  A  M  M  T  I  L  L  T  N  L  Y  Q  V  I  F  R         
 
TCTAGTGACACCAGCCAACCCTCTGCTTTTGCGGGCAAGCGCGCTTTCGGTGACAGGGTGTATCGTACGTAGCCGCGGGTCAGGCGCGCGTTGTAGCGGT   200 
D  L  S  V  L  W  G  E  A  K  A  P  L  R  A  K  P  S  L  T  Y  R  V  Y  G  R  T  L  R  A  N  Y  R  Y       
 
ACACGCAGAAATCTATCCACAGGCCAACGCCCGGCTGTAGCTTCGGATGGTGGATAATAGCGCGGTGACGTACGCCGCGTGGCTTTAGAATCTCCACCTG   300 
  V  C  F  D  I  W  L  G  V  G  P  Q  L  K  P  H  H  I  I  A  R  H  R  V  G  R  P  K  L  I  E  V  Q        
 
TAAGGCCATCTCCTCCAGGTAGTGGGTCTGACTGCGACGCAGCGTCCAGTTCATGTAAAAGTCGGTCTCGCCGTGTCCGGCCACGAAGAGGCTGCTTACT   400 
 L  A  M  E  E  L  Y  H  T  Q  S  R  R  L  T  W  N  M  Y  F  D  T  E  G  H  G  A  V  F  L  S  S  V         
 
AAATCGGGCGCCAGAGCTAGGTCAGGCGTATCAAATTCCACTGCCAGGCGACCTGATTCTAACGGTTCCACGATCCGGGAGAGCGTTTCTAGATATAGAG   500 
L  D  P  A  L  A  L  D  P  T  D  F  E  V  A  L  R  G  S  E  L  P  E  V  I  R  S  L  T  E  L  Y  L  A       
 
CAAAGCGTACCACGTCTACCTGCGGTGTAAAAAACTGCTGTGGGCGTTCACCGTCGTTGACCACGTAGGCCACGTAGAGGCCAACATTTTCCACCACGGG   600 
  F  R  V  V  D  V  Q  P  T  F  F  Q  Q  P  R  E  G  D  N  V  V  Y  A  V  Y  L  G  V  N  E  V  V  P        
 
TTCTAGCTGCAGGCGGCACGTAAAGCTTAGAAACGACGGCTGTACGGTTTGGTTCCCGTGAAGCTGAAGCGTCACTTCCTTGCCGGGGCTCACCGTGCTG   700 
 E  L  Q  L  R  C  T  F  S  L  F  S  P  Q  V  T  Q  N  G  H  L  Q  L  T  V  E  K  G  P  S  V  T  S         
 
TAACGCCGCACCGAGTCGGTCATCTGCTCCAGATCGGTAGACCAGAAGGGTGTGCAATGCATACTGTCCCAGTCGCGACACGCAGCCCAGCCTAGCTCGG   800 
Y  R  R  V  S  D  T  M  Q  E  L  D  T  S  W  F  P  T  C  H  M  S  D  W  D  R  C  A  A  W  G  L  E  T       
 
TGAAGGGTCGACGCACACCCGAGAAAGTGTGCTTGAAGACCAGGGGGTCGCCTCGGTAGCTCAGTAGCCGAACATGCACATAGTCGCGGCTAGCGTTGAC   900 
  F  P  R  R  V  G  S  F  T  H  K  F  V  L  P  D  G  R  Y  S  L  L  R  V  H  V  Y  D  R  S  A  N  V        
 
AGACGGCCCGTGGAGGGCCAGCAGGACAAGCGTGAACAGCAAGCGCAACATGCTGCGCGGGTTAGGAAATGCGGCGTGCCGGCCACCGCCCGACTCATAA  1000 
 S  P  G  H  L  A  L  L  V  L  T  F  L  L  R  L  M  UL148 
 
ACGCTACCAGCATGACGTTTCAGATCACACAAGTGACGAGGAGCGTACCGCAAATCACTAGGGAAAAGGCCAGCAAAGCCCGATAGTCTTGCTCTTCGCG  1100 
                    -  I  V  C  T  V  L  L  T  G  C  I  V  L  S  F  A  L  L  A  R  Y  D  Q  E  E  R        
  
AACGATCTCGTCCGGTTCCTCGCAATCTTCGTGGTCCACAGAAGACGAGGAGCAGGAGTTTTCGTTAATCTCTGCGAGGATACTAGTGCTATACCACACC  1200  
 V  I  E  D  P  E  E  C  D  E  H  D  V  S  S  S  S  C  S  N  E  N  I  E  A  L  I  S  T  S  Y  W  V         
  
AGAGCGCTCAGTGTGCCCAGAGCTACCGCACGGTAAAATAGGGACATGATCACCAGCGCAGTCTAAAGTAGTGGTAATTCAGTTTCTTGGCGTATTTCCA  1300 
L  A  S  L  T  G  L  A  V  A  R  Y  F  L  S  M  UL147A 
                                                   -  W  R  L  R  F  Y  H  Y  N  L  K  K  A  Y  K  W   
  
GAGAAAGGCTTTGTAGGCCGTAGGGACTGGCCAGGCACCGAACTCAATATTTGTAGACACTACGTCGTAAATGCGTTGTTCCTCGTCTAAGACTAACCGA  1400 
 L  F  A  K  Y  A  T  P  V  P  W  A  G  F  E  I  N  T  S  V  V  D  Y  I  R  Q  E  E  D  L  V  L  R         
  
AAAAATAGCCGATTGATGTGACGACGCACGGCTTGCGCGTTAGGATTGAGACACTTGGTGCCCTTGTCCTTTAAAATAGCCAGCACTTCCTGACGATTGC  1500 
F  F  L  R  N  I  H  R  R  V  A  Q  A  N  P  N  L  C  K  T  G  K  D  K  L  I  A  L  V  E  Q  R  N  C       
  
AGCTTTCGCTCGCTGCGATTGGCTTAAGTAATTCGGTTCCTATTGGCAGGGTATTCAACAGAATTTGGTTGTTACAACGACAGCGCCGGTCGTAATCTTC  1600 
  S  E  S  A  A  I  P  K  L  L  E  T  G  I  P  L  T  N  L  L  I  Q  N  N  C  R  C  R  R  D  Y  D  E        
  
CAGCTCTAGAAGATGGACAACTGGGGGACACACGGCAAATAACATATATGCGGTCAAAGACAGGTGTCGTACCGATAAAAGTTTTATATGCGAATTCGAA  1700 
 L  E  L  L  H  V  V  P  P  C  V  A  F  L  M  Y  A  T  L  S  L  H  R  V  S  L  L  K  I  H  S  N  S         
  
ATCGGATGATGTAACCATGTTAACATCATATCGAAAACATATTGCGTTATCGTTTCTTGTAAAAATTTTATCAACTATACACATATTACTGATTCGTTAA  1800 
I  P  H  H  L  W  T  L  M  UL147            - 
 
AATTTTAGTTTCCAAGGCGGACGTCCGTTACTAGCAGTTCTTTCCTCTACGTGCGGTCCACCACCACCTTTTGTTCTTAATAACACTTTGTGCCATGTGT  1900 
F  K  L  K  W  P  P  R  G  N  S  A  T  R  E  E  V  H  P  G  G  G  G  K  T  R  L  L  V  K  H  W  T  N       
  
TACTTGATTTGCCATGAAGCCATTTAGATAACACATGATCAGGAGACAAACACACAGGTTTACCTTTAGGAGGCAATAAAAAATGTTGCGGCTTTTCACA  2000  
  S  S  K  G  H  L  W  K  S  L  V  H  D  P  S  L  C  V  P  K  G  K  P  P  L  L  F  H  Q  P  K  E  C        
  
TTTAGGAGGATCTGGGGGATTATATCCAATCCAAAAAAAGCCACCTATTGGATAGCTTAAACCATTACTACCACAAGGGCAACGTAACTCCACACTCTCA  2100  
 K  P  P  D  P  P  N  Y  G  I  W  F  F  G  G  I  P  Y  S  L  G  N  S  G  C  P  C  R  L  E  V  S  E         
  
ACTTTATAGTACAACGCGATCAAAAGACCAAACAGACTAAAAATAAATCGCATAATTTTATTAGCTACGTCACTATCAGTAATTCGTAATATCCGGTATT  2200 
V  K  Y  Y  L  A  I  L  L  G  F  L  S  F  I  F  R  M  UL146 
 
CCCGGAAAATCACTCAAAACTGCGTCCATGACACATCGATTCCCGATAACTACCTCCCTTTGAAATCGGATCCCCCCACATACCAATCAATCACACAACA  2300 
 
CACAGGTTTAAAAATCGATCACACGTCAATTAGGTTTCAAAATCGATACTGTTTATTATCAGGAATCTAGACTAATTCTACAATGACAGCTCTGAATTTC  2400 
 
TCTCTCGTCTTTCTTGTCAGGTTCTCATCATCAATCTTCACTTCCACCCATCGAGGAGTCATCGTCGCTCCAAAACCCTTTGGGGTCGCTGGTTGGAAAA  2500 
                               -  D  E  S  G  G  M  S  S  D  D  D  S  W  F  G  K  P  D  S  T  P  F         
  
GTCTCTGACACGATCCAGGCACCCCGTACCCAGTCCGACTGATCTAGCTTACGGAGCATCTCAACAGGCATGAGCTGCAGGGCCACGGCTGTCACGGCAC  2600 
T  E  S  V  I  W  A  G  R  V  W  D  S  Q  D  L  K  R  L  M  E  V  P  M  L  Q  L  A  V  A  T  V  A  S       
  
TGTATCGATGTAACACTAGAGACTTTCTTTGCGATGTAGCCATCAACACGGCATATGCTCCATAGTTCGCGTGATACGACGCATGATGGGTTAAACGTTC  2700 
  Y  R  H  L  V  L  S  K  R  Q  S  T  A  M  L  V  A  Y  A  G  Y  N  A  H  Y  S  A  H  H  T  L  R  E        
  
CCATCCGGCAGTGCCGTCTCGGGTCCGTGCACACAACAGCTGCACGGCGTTATGATGCTTAAAATTAACCATAACGCTGGGGCTACTGATAAAGGAGTAG  2800 
 W  G  A  T  G  D  R  T  R  A  C  L  L  Q  V  A  N  H  H  K  F  N  V  M  V  S  P  S  S  I  F  S  Y         
  
TAATGAGCCAGGACGCCGTACATCGAAGGCAACAAGAAAGAGTGACAGCACGATAGCACCGGGCTCTTATGTAGGCGACAGCTTATTTTTCCTGACGTCG  2900 
Y  H  A  L  V  G  Y  M  UL145 
  
GCAAAAAGTACCTAAATTCCCCACAGATATTCAGACACGGTTCCGTAAAGTGCTTCTTTTTTTAGTGCAGGAATTGGAAAAAATAATAAAAAATATGAAC  3000 
  
AGCTCATCTGTAATTATCTGTGTGACTTCATCGTACCGTGATGTAAAAACAACAACAGGAAGCCTACAGGGTGCGGTAGAAAATTTTGCCGATTGAGCAA  3100 
                                                    
  

Figure 5.1 The nucleotide sequence of the right end of UL in AD169varUC 
(Continued overleaf)  
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Figure 5.1 The nucleotide sequence of the right end of UL in AD169varUC 
(Continued overleaf) 

CACTGTTGGCATCTCTCACTCCGATAGGCGGCTATAAGATAGAGAATTAAAAGTATGATACCCACGAGAAAGATGAAGAGGGACAACCAGGCTAGAGTAT  3200 
  S  N  A  D  R  V  G  I  P  P  -  L  I  S  F  -  F  Y  S  V  W  S  F  S  S  S  P  C  G  P  -  L  I        
 
 
GACGACCACTTTTCCCTTGTTTGACGGTTACATGTGCGGTATGATTTTGTCGTTGCTTGTGATGTTGGACGCCTGGAATGGAAAACGACGTATAATTCTT  3300 
 V  V  V  K  G  K  N  S  P  -  M  H  P  I  I  K  D  N  S  T  I  N  S  A  Q  F  P  F  R  R  I  I  R         
 
AGATGCGCATACGGTGTTATTAGTGGAAGTGCAGTTACGAATCGTAACCTCAGTGTCATTACACTCAGTGCAATTGGTACAATTGTAAAGCCCTGATACA  3400 
L  H  A  Y  P  T  I  L  P  L  A  T  V  F  R  L  R  L  T  M  V  S  L  A  I  P  V  I  T  F  G  Q  Y  M       
     
 
TACGTACCGTTAGGGCAAAGTGTACATGTTGTACTCGTATATTGTCGTGGCTGTGGCGCAGCGCGTTTTGTACAGCGCGTTTCACCGCTTTCTGCATGGC  3500  
  R  V  T  L  A  F  H  V  H  Q  V  R  I  N  D  H  S  H  R  L  A  N  Q  V  A  R  K  V  A  K  Q  M  A   
 
CGCTACCACATCGGGCGGGAGTGGCTCCGGCGGAAGCTCGATGAGCAGTTGCTGCGAATCTCGGCGCTCGGTGTCCGCCGTTTCGTCGGACGTGGCGTAA  3600  
 A  V  V  D  P  P  L  P  E  P  P  L  E  I  L  L  Q  Q  S  D  R  R  E  T  D  A  T  E  D  S  T  A  Y         
  
AAAACCGAGGTGGTCGCCCAGTCGTCCACGCTGTCGACGGCTTCTGTTAGTGCCGGGTTGTCAAAACCGCCATCGGACGCGGGTGATAAAAGAACGTACG  3700  
F  V  S  T  T  A  W  D  D  V  S  D  V  A  E  T  L  A  P  N  D  F  G  G  D  S  A  P  S  L  L  V  Y  S       
  
ATGACACGCTGTTAGTACGACTCTCGTCGTCGCTTTGGGAACGACGTGATGGACGACGGTAGATGACCTCGTCTTGCCACGCGTCGAAGCGGTCGCAGCA  3800  
  S  V  S  N  T  R  S  E  D  D  S  Q  S  R  R  S  P  R  R  Y  I  V  E  D  Q  W  A  D  F  R  D  C  C        
  
GCGCTGGATCCAAGCGCAGCGGAGCAGCTTACGGAACACGTCGTTGTTCCAAAAGTAGAGCATAAAAAGAAAGAAAAGTAGCGTAACGATGAAGCCGAAA  3900  
 R  Q  I  W  A  C  R  L  L  K  R  F  V  D  N  N  W  F  Y  L  M  F  L  F  F  L  L  T  V  I  F  G  F         
 
ACGACGAGGGTCGGCAGGGCACTGCCGCCGCTGCCGTTTTTTGCGTCGTGCGGGTGCACGGTGGTAGTGGCGTTAGTCTGAGCGGGGGTCATGACAAGTC  4000 
V  V  L  T  P  L  A  S  G  G  S  G  N  K  A  D  H  S  H  V  T  T  T  A  N  T  Q  A  P  T  M  UL140 
  
TGAAGAGATGAGAGCGCGGGTGCTCATCAGGAACAGTTGAGGTCTCTCCCTACCGAAGCCTTAGCCTCTACGGTGTTTTATGATGAACGTGTATACGAAC  4100 
  
GTCATTGTGAAAGTGACGTCTCAGGCCTTCCGAAACCGCGTTAGGTTCAACGTGGGTTTCGGTTTAGCCTGCGTCACCGAGGCGGAGGTGGAAATGAGCC  4200 
                                                                          -  R  P  P  P  P  F  S  G        
 
GTCCTGTGGGGGAGTGTACGACCCTGTAGTGCCCATGGGTAACGTTGCGTCGGAAGAAGTGAATGCGGCATTGGTGTACGCGTGGGTTGTTTTGCTCTCT  4300 
 D  Q  P  P  T  Y  S  G  T  T  G  M  P  L  T  A  D  S  S  T  F  A  A  N  T  Y  A  H  T  T  K  S  E         
   
GACTCGGAGGAGTTGCCGCAGCAGCTGCAGATTTTACGTACTAGCCAAAAGCAGCAAAAGCAGCAGGTAAATAAGAGAAGGAGTCCAGATAATGTCCAGT  4400 
S  E  S  S  N  G  C  C  S  C  I  K  R  V  L  W  F  C  C  F  C  C  T  F  L  L  L  L  G  S  L  T  W  D        
  
CGCTAGCGGCAAACAGCGCAAGTTGCGCGACTGTCCAATTACTGCCACCAAAGGCTTGAACACATTCAATGGTTGGTGTTGCAGTGCTGTTATTGCTACT  4500 
  S  A  A  F  L  A  L  Q  A  V  T  W  N  S  G  G  F  A  Q  V  C  E  I  T  P  T  A  T  S  N  N  S  S        
   
AATGGACGAAGAAGACGAAGACGACGAAGTAGCTTGACTGGAATTAGAGCTGGTACCTGTAGTGGTTTCACTCGCCGATGCGGCAAGTGCAAATAAAACT  4600 
 I  S  S  S  S  S  S  S  S  T  A  Q  S  S  N  S  S  T  G  T  T  T  E  S  A  S  A  A  L  A  F  L  V         
  
AATATCCACAGCATGTTCGTTACTATATAATTGATATACGAACCCGTTTGTCGTAACAATCAGCGTTATACACGCTGTATCGGCATCGTTTTACTGGAAA  4700 
L  I  W  L  M  UL139 
  
GTTTATCGTAATGTAACCCGCGTTGTGTACATTCGTACTGACAGGGAACTCCCGGTGATGTGCACATTATACTCTTTCATTCTGGGGTTTCCCAATGACG  4800 
  
TAAAAATTTCCACTACACAATAAAATTACGGACTCATGTGAAAAGTGTGCTTTTTATTAACAGAGCAGAGGGTTTACAGTAGATATATGTTTGCCAGGGC  4900 
  
CACCGTTTTCTAACACCGATCACCGCCACCATTACCACCCGTTGAACTCCACACCCGGGAGCCGCCTGATCGCCAGGGACTCCTCACCGTCCATCGTCCG  5000 
  
AACAAGCTCCCGCCACCGATGCTGCCACCATCACCGAGAGAAAAAACCGCTTGCTGCAGATACGCTTGGGCTCGCCTCCGTGCGGACGCCGTTTCGTGCA  5100 
  
GACGCTGAGTAGATCGAGCAGAGAATGTCAAAGCGACATTATCGCGATCCGCTCCCCTCTTTTTTCTTTTTCTCATTCACGTGTACTCTTGATGATAATG  5200 
                                                                             -  T  Y  E  Q  H  Y  H        
  
TACCATGGCTACGGTGGTGAACTGCGTCGCGGATCCCGTCACGGGTTTCAACAGATCGACGTCGGTCAGCGGCGCCGTCACCGCCATGTCCGGCGGAGGC  5300 
 V  M  A  V  T  T  F  Q  T  A  S  G  T  V  P  K  L  L  D  V  D  T  L  P  A  T  V  A  M  D  P  P  P         
  
ACGCTGTTTCTCTGGCTAGCGACGTGGACCGACGACGAAGACGATGAACCCGCGCGGCGGTCTGTTATCCGCGACGACGCGTAGCTGCACTGGGAAGACA  5400 
V  S  N  R  Q  S  A  V  H  V  S  S  S  S  S  S  G  A  R  R  D  T  I  R  S  S  A  Y  S  C  Q  S  S  V       
  
CTTCCTCCCAACGGACCAAGATCTCGTCGGGCCGTTCGGAGAAACGGTATCGTCTGTCCGACTCCCGCCGTACGGCGCCGAGGCCCAGAGACGACAGGTC  5500 
  E  E  W  R  V  L  I  E  D  P  R  E  S  F  R  Y  R  R  D  S  E  R  R  V  A  G  L  G  L  S  S  L  D        
 
CGCGAACCGGCGCTCGTACTCCCCGTACAGCTCGCAACAGCGGATCAGCCAGCGGTAGCTCAGAAACATGCGCACTAGTTTGAAGGTGTCGTGCCAGTGG  5600 
 A  F  R  R  E  Y  E  G  Y  L  E  C  C  R  I  L  W  R  Y  S  L  F  M  R  V  L  K  F  T  D  H  W  H         
  
TAAGCCAGATAGCAGAGGATGGCCACGATCAGCACGAGCATCACGCCGATGATGGGTAACCCGACATTCAGCGGCAGATCGTCCATGGTGACCGTCCTCT  5700 
Y  A  L  Y  C  L  I  A  V  I  L  V  L  M  V  G  I  I  P  L  G  V  N  L  P  L  D  D  M  UL138 
  
GTCCGGATCTACGTCCCAGTCTCTCTCTTTTGTACAGCACTCGCGCGGGAACGGCCCCCTCAACCCTCTTACGTAGCGGGAGATACGGCGTTCTCCCGCG  5800  
                                                                     -  T  A  P  S  V  A  N  E  R  P       
  
GGCCACTTACTTGCACGGTCGCTTGAACGGCGGCTTGGACCGCCACATGCACCGCATCCATCCATTCCGGCAGCAGCGCGTTCGGCGACGTCGTACGAGT  5900  
  G  S  V  Q  V  T  A  Q  V  A  A  Q  V  A  V  H  V  A  D  M  W  E  P  L  L  A  N  P  S  T  T  R  T        
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Figure 5.1 The nucleotide sequence of the right end of UL in AD169varUC 
(Continued overleaf) 

 

GCACATCCATGGCTCGCCGTCTCCTTCTCTGCCGCTCGTGGTGCCGACGGCACTTCTCGGGATAATGACAGCCGCAAAATAGATCGTGGAGCATGTCTCG  6200 
  V  D  M  A  R  R  R  R  R  Q  R  E  H  H  R  R  C  K  E  P  Y  H  C  G  C  F  L  D  H  L  M  D  R        
  
CCAACTGTCCTGGTGGTAATATCTTAAGTACGCGATGAGCGCGCCGATGGCCATAATCATAAGCGTAAGCAAAACGGCACAGATAACGTGAAACACCGCG  6300 
 W  S  D  Q  H  Y  Y  R  L  Y  A  I  L  A  G  I  A  M  I  M  L  T  L  L  V  A  C  I  V  H  F  V  A         
  
GTCATCCAAGTCGGGCGGCGTCGGGGACGCGGTGGGTCGGTTTCTCTTACGCCGGCGTCACTCAGCCACCACACCCGTAGCCGACATTCCCAGAACCGGT  6400 
T  M  W  T  P  R  R  R  P  R  P  P  D  T  E  R  V  G  A  D  S  L  W  W  V  R  L  R  C  E  W  F  R  H       
  
GAATGCGACTCAGGGCCTTTCGACGCCGCCATTTATTTCCAACGTCCAAGTCCCACGTCATTTCTGGCATCTCCACGCCCTTGACTGACATACTCTCTTT  6500 
  I  R  S  L  A  K  R  R  R  W  K  N  G  V  D  L  D  W  T  M  E  P  M  E  V  G  K  V  S  M  UL136        
 
  
CTCTCTCTTAGCTGCGGTGAAAAAGAGGGAAGGCGTGTGCTGCTATACAACTGTACAACGGACGCGCTCGCTCTTTCGGTCTCAGGTCATCTGCATTGAC  6600 
                                                                                  -  T  M  Q  M  S         
TCGGCGTCCTTCATGACGCTCTGCACCGCCTTTTCCAAGAGTTCCTCGATGTCCGACCATCGAGGAGGCGGGGCTAACTCGGAAACCGACACGATAGGCA  6700 
E  A  D  K  M  V  S  Q  V  A  K  E  L  L  E  E  I  D  S  W  R  P  P  P  A  L  E  S  V  S  V  I  P  L       
  
GCGTGGTCGGCTCCGTCGGCGTGCGGGGTCGGGGACAGGGACACGAGAGTCCCACCTTCGAGAGATTCTCCAGCCCGACGGTGCGCGGCAGTCTCGGATT  6800 
  T  T  P  E  T  P  T  R  P  R  P  C  P  C  S  L  G  V  K  S  L  N  E  L  G  V  T  R  P  L  R  P  N        
  
CCGCGGTGGCTTTTGTGGCGTCGGCGTTTTCGGGAAGGGCCTGGGCGTCACCGGCGGTGTCCAGCCGACCGGCTTGGGTTTCGTGGGCGGCGGTGTTTTC  6900 
 R  P  P  K  Q  P  T  P  T  K  P  F  P  R  P  T  V  P  P  T  W  G  V  P  K  P  K  T  P  P  P  T  K         
  
TTGGTGGGCGGCGTGCTCAGGTTCTTACGCGGCGCGGGTATCGGCGTCGGGGGCCTGTGCGACGACAGCCGCGTGGTGGGGGCCCGGACCGGCGGCGTAG  7000 
K  T  P  P  T  S  L  N  K  R  P  A  P  I  P  T  P  P  R  H  S  S  L  R  T  T  P  A  R  V  P  P  T  P       
  
GCGGCCGCTTCTTGCGCCCGGGCGGCGGAGGTGGCTTCCAGGATGGCGGCGGCTGATGCAGTACCGTGTCGACGCTGGCCGAGGACGACAAAGAGCTCGA  7100 
  P  R  K  K  R  G  P  P  P  P  P  K  W  S  P  P  P  Q  H  L  V  T  D  V  S  A  S  S  S  L  S  S  S        
  
CGAGGAGCAATGCGACGGAGATCGGCCGATGCTGGTCGGCGTTCCCGGCGTGGATACGTCGGGGATCTCGAATCGCGCCGGAGGAAACTCGGGTTTATCT  7200 
 S  S  C  H  S  P  S  R  G  I  S  T  P  T  G  P  T  S  V  D  P  I  E  F  R  A  P  P  F  E  P  K  D         
  
ATCGGCAGACCATCCTCTCCTATGTAGAGCGACGTACACCGCGGCACCTGCGGCGTCGGCGGGTGGGTGGCCACCCGCATGAGCCCCAGTTCCAGATCCA  7300 
I  P  L  G  D  E  G  I  Y  L  S  T  C  R  P  V  Q  P  T  P  P  H  T  A  V  R  M  L  G  L  E  L  D  L       
  
GCGGCTCGACGACGTCTTCTTTCGGAATTCGATAGCAGCACGCGCAGACACCACGCTTATCAGAAGCAGCACCCGGGAGCCGGCCTCGCGACGAAGTCTC  7400 
  P  E  V  V  D  E  K  P  I  R  Y  C  C  A  C  V  G  R  K  D  S  A  A  G  P  L  R  G  R  S  S  T  E        
 
GTCGGATCGCTTGCGGCCTCGGCGCTGGGTAAATAAGGAAATGGCCAGGACCAGGGAAGCCAGTCCGGTACCGCCGAGAAGCCCGACGCCGAGCCATATC  7500 
 D  S  R  K  R  G  R  R  Q  T  F  L  S  I  A  L  V  L  S  A  L  G  T  G  G  L  L  G  V  G  L  W  I         
  
CACACCATGATCTTCTCTCCTGCTTGGAATCTCAAACTCCGTGTCGGGAAGGGCCGGTGTACGGACATTTATGCCTTGGATTTCTGGAAACGTCATTTTT  7600 
W  V  M  UL135 
  
TGGCAAGGAATGTGTTTATTGTCCAAACACTGAGGAAGGAGATGTGGGCCAAGTCGGAAAATTCCTTATCACACCGGGGGCGGGTTACGTTCCGGTCTGA  7700 
                                                                                     -  T  G  T  Q         
  
TGCTGCTGCTGTTGTTGTAGAGCCGCGGCCACGGCCGCCTGCACGGCAGCTTGTACCGCCTCGGCCACGCCGGGTGGCATCTGCGGCATGGCGGGGGGAG  7800 
H  Q  Q  Q  Q  Q  L  A  A  A  V  A  A  Q  V  A  A  Q  V  A  E  A  V  G  P  P  M  Q  P  M  A  P  P  P       
  
GCGCATCGGGCGGACCGCCGGGCATCGCCGTCGGCTGCGACGGTGGTTGTGAACTCACCGTCGGCTCGCACGGAGGTTTGTCCTTCGGTCTATCCTTCGG  7900 
  A  D  P  P  G  G  P  M  A  T  P  Q  S  P  P  Q  S  S  V  T  P  E  C  P  P  K  D  K  P  R  D  K  P        
  
TTTATCTTTCGCCCTACCTTTTTTCGGTTTGGGTTCCGATGTCGGTGCTGGCGGCTGCGGTGGGATGACGGGCTGGTGGAACTCCTCCGACGGCGGGGGG  8000 
 K  D  K  A  R  G  K  K  P  K  P  E  S  T  P  A  P  P  Q  P  P  I  V  P  Q  H  F  E  E  S  P  P  P         
  
ACGAACACCGTCGGCGCCGAAACCGGGGGACTCTCGACTATCTCGCAGATCACCCTGTCGGGATCGTCGCCGTGTCCGGGACGCCGTCGATGACCGTATT  8100 
V  F  V  T  P  A  S  V  P  P  S  E  V  I  E  C  I  V  R  D  P  D  D  G  H  G  P  R  R  R  H  G  Y  Q       
  
GGACCATGTCGTAAATCATCGTCTCCTTGTAACACGCTGAACAGCAGCGGCTGCAGGGACCCGAAATGCATTTGCAACTGCACTTACAGCTACAGCTGCA  8200 
  V  M  D  Y  I  M  T  E  K  Y  C  A  S  C  C  R  S  C  P  G  S  I  C  K  C  S  C  K  C  S  C  S  C        
  
GTAGCGCACCCATCGGCAAGTTAAAATGTCGATTATGGAATCTTTAAAGAATTCCCGGTAGCGGATGAGGTACGCGCAGAGGAAAATCATGAAAACCGAG  8300 
 Y  R  V  W  R  C  T  L  I  D  I  I  S  D  K  F  F  E  R  Y  R  I  L  Y  A  C  L  F  I  M  F  V  S         
  
CAGCCGACCACGGCTGCAATACCGGGTCCAGAAGAGAAATCCGATGACCATCCCGCCAAACACCAAATTCCCAAGGCCGCGCATGTTATCCAGGCCACAA  8400 
C  G  V  V  A  A  I  G  P  G  S  S  F  D  S  S  W  G  A  L  C  W  I  G  L  A  A  C  T  I  W  A  V  I       
  
TAATCGTGGGAACGCCCCATTGGCATTGCCACGAAGGATCGTGCACGTCGCAACCCATCGCTACTGCGTTCTCCCACAAACGCCATCGCACTATTTATCC  8500 
  I  T  P  V  G  W  Q  C  Q  W  S  P  D  H  V  D  C  G  M UL133 
  
CTACAGCGGCTGCCGAGTCACGTCCGCCGGCGCCCATCGGCCGCGGCGATCTCCTAGTAACACTCGTCCGACACTTCCACCATCTCCAGCTCGGCCGGCG  8600 
                                                      -  Y  C  E  D  S  V  E  V  M  E  L  E  A  P  P       
   
GTTCGGCATCCTCCACCAGCGGCGTCGTCTCATCTTTTCCGCAGCAGCGAACGCACACCTTCTCCAGGCAGAACGCCACCAGCTGCCGCCGAACGTACCA  8700 
  E  A  D  E  V  L  P  T  T  E  D  K  G  C  C  R  V  C  V  K  E  L  C  F  A  V  L  Q  R  R  V  Y  W        
   
CAGGTACACGTGCAGACCTGCGAACAGGACTACGGAGGTCATGACAACCACGACGCACACGGGAATCCAGGGATCGAGATTTTCGGAACCCATGGCTATC  8800 
 L  Y  V  H  L  G  A  F  L  V  V  S  T  M  V  V  V  V  C  V  P  I  W  P  D  L  N  E  S  G  M  UL148A       
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ATTACGGTGACCCCCATGACTAGACCCACGCAGATAGCCAGCCCCGCTAGCGTATCCAGCGCCATCCCGTTCGCTCCCGTCGTCGTCTCCTGAACAAAGC  9200 
I  V  T  V  G  M  V  L  G  V  C  I  A  L  G  A  L  T  D  L  A  M  UL148B 
  
                                              UL148C   M  L  T  P  A  V  F  P  A  V  L  Y  L  L  A          
AACAACTCCACAGTCCCCGTTTTCAACCGTTTTTGTTTCCTTCTCCGCGACTAGATGTTAACGCCCGCGGTCTTTCCGGCCGTGCTCTACCTCCTGGCGC  9300  
 
L  V  V  W  V  E  M  F  C  L  V  A  V  A  V  V  E  R  E  I  A  W  A  L  L  L  R  M  L  V  V  G  L  M        
TTGTCGTCTGGGTTGAGATGTTCTGCCTCGTCGCCGTAGCCGTCGTCGAGCGCGAGATCGCCTGGGCGCTGCTGCTGCGGATGCTGGTCGTTGGCCTGAT  9400 
 
  V  E  V  G  A  A  A  A  W  T  F  V  R  C  L  A  Y  Q  R  S  F  P  V  L  T  A  F  P  -   
GGTGGAAGTCGGCGCCGCCGCCGCTTGGACCTTCGTGCGTTGTCTCGCCTATCAGCGCTCCTTCCCCGTGCTTACAGCCTTCCCCTGAAACCCACGTTAA  9500 
  
CCGACCGTCCCGAAAACGCCGGTGTTAACACAGGAAAAAAAGAAATCACGCAGGAACCGCGCAGGAACCACGCGGAACATGGGACATTATCTGGAAATCC  9600 
  
TGTTCAACGTCATCGTCTTCAGTCTGCTGCTCGGCGTCATGGTCAGTATCATCGCTTGGTACTTCACGTGAACCACCGTCGTCCCGGTTTAAAAACCATC  9700 
  
ATCGACGGCCGTTATAAAGCCACCCGGACACGCGCCGCGGCACTTGCCTACGGCGCTGCTCCAGGGAAACTCCTCTTCCTCCTGCTCTTCCTCCTCCGCC  9800 
  
                                                             UL148D   M  T  A  P  K  C  V  T  T  T          
GCAGGGATCGTTTCCCTCGACTAGGGACCCGCCGAAGCAACTGCCGGAACAACCTGGAGGAGTCGCGGCATGACGGCGCCCAAGTGTGTCACCACCACTA  9900 
  
T  Y  V  V  K  T  K  E  R  P  W  W  P  D  N  A  I  R  R  W  W  I  S  V  A  I  V  I  F  I  G  V  C  L        
CCTATGTGGTCAAGACCAAGGAACGGCCCTGGTGGCCCGACAACGCCATCAGGAGATGGTGGATCAGCGTTGCTATCGTCATCTTCATCGGAGTCTGTCT 10000 
  
  V  A  L  M  Y  F  T  Q  R  Q  A  Q  S  T  N  G  G  S  S  G  -   
GGTGGCCCTGATGTACTTTACGCAGCGGCAAGCGCAGAGCACCAACGGCGGCAGCAGCGGCTAGACAAGTTTGTGGCGGCTACAGCTCCAAGCGCCGTAG 10100  

- L  E  L  R  R  L        
  
CCGGCCCGCCTGCCGATCGCGACGTCGTGGAGCATCGAACAGAGACTCACGCGTACGAGACCTCGAGGTACGCCACGCGGTGCCTAACGCGGTATACCAC 10200  
 R  G  A  Q  R  D  R  R  R  P  A  D  F  L  S  E  R  T  R  S  R  S  T  R  W  A  T  G  L  A  T  Y  W         
  
ACCCGTACGGTCTGCAGTGCGGCGTACAACGTGTGGAAAAGGCGTCGTGTCGCAGAGTCCGCCACGTCCCTGTCTTGTCGCTCCCCAATCGGCTCCCGCA 10300  
V  R  V  T  Q  L  A  A  Y  L  T  H  F  L  R  R  T  A  S  D  A  V  D  R  D  Q  R  E  G  I  P  E  R  V       
  
CACCCCCCGCGGCACCCAGAGGGCGGGTGAGCCAAGTATTCTTAAGGCCGTTCTCTGTTGCATAGTCCATAAATTGTTGATTCCGGAGCTCGTTGGCGCG 10400  
  G  G  A  A  G  L  P  R  T  L  W  T  N  K  L  G  N  E  T  A  Y  D  M  F  Q  Q  N  R  L  E  N  A  R        
  
GAAATAGCCGGATAAGGGGAGCAACAACCGTCGGCGAAAGCCGTCCTGCTCATTCAGTCCGGGTTTTGCGTCCAGTCGGACGTGTGACCGTTGGGCAACG 10500  
 F  Y  G  S  L  P  L  L  L  R  R  R  F  G  D  Q  E  N  L  G  P  K  A  D  L  R  V  H  S  R  Q  A  V         
  
GAACGGCGTTTCACTGCCAAAATCGTATCGCGTAGTGTACGAGACGTCGACAGTGTAGAATGCGACTCGCGGCGTAGCTCGCCGTCGCTATGCGGCTCGT 10600  
S  R  R  K  V  A  L  I  T  D  R  L  T  R  S  T  S  L  T  S  H  S  E  R  R  L  E  G  D  S  H  P  E  D       
  
CGCCGTGTGGCGCGGCCTGGCCGGCTGTCTGCGTCCAGATCTGTTGGCTTTTTGGTTTCTCTGGCTGCTGCTGCGTGTGTGCTTTGGCAGACGCGGTGGC 10700  
  G  H  P  A  A  Q  G  A  T  Q  T  W  I  Q  Q  S  K  P  K  E  P  Q  Q  Q  T  H  A  K  A  S  A  T  A        
  
AGTGTGTGGTCTGCGGTAAGTGAGGATGTCGCCGAGCAGGCGCACTTGCGGCGCGTGGGCGGCACGCGTGTTATTGTAGGTTCGTTGCCAGATGGCAAAT 10800  
 T  H  P  R  R  Y  T  L  I  D  G  L  L  R  V  Q  P  A  H  A  A  R  T  N  N  Y  T  R  Q  W  I  A  F         
  
GCTGTCGACAGCAGACGTGGGCGGTCGGTGTATTTTTGTGGGTTGCGGTGAAAGTCGGCAGTCGGTGTTTTGAGAGTCATCTTAACCATCTGTGTTGCTT 10900  
A  T  S  L  L  R  P  R  D  T  Y  K  Q  P  N  R  H  F  D  A  T  P  T  K  L  T  M  K  V  M  Q  T  A  K       
  
TGAGCAGCGTCCAGAACAGCGACGCGACTTTGGGGATGGCCTCGTGCTCACCTCCGCGGAGAGCGCCGCCGGACCTGCTCGTCAGCAGCGAGCTACGCAG 11000  
  L  L  T  W  F  L  S  A  V  K  P  I  A  E  H  E  G  G  R  L  A  G  G  S  R  S  T  L  L  S  S  R  L        
 
ACGGAATATCTGGAGGAGAGTTACGTGTGTCACAGGAGAGCGCGGGTCACCGGCGGTAACGACGGCGGTGTCGTCGACACGTGTGCGGCCTGTTGTGCTC 11100  
 R  F  I  Q  L  L  T  V  H  T  V  P  S  R  P  D  G  A  T  V  V  A  T  D  D  V  R  T  R  G  T  T  S         
  
TGCGGAAAAGTGCCGGTCTTGGAGATCGTGGACGAAAAAGAGAACGCAGCAGCTACCGCTGGCGGCGGCGGCGTTAATGCAGCCGTTGATGTTCGACGTT 11200  
Q  P  F  T  G  T  K  S  I  T  S  S  F  S  F  A  A  A  V  A  P  P  P  P  T  L  A  A  T  S  T  R  R  Q       
  
GTGAGTACTCGGAAACAGCGGTGAGGCAGAAGGTCGATCCTCCAGGGAACGACAGTCGATGCGTGGTAGCTGCAGCAGGTGAGGTTGGGGCGGACAACGT 11300  
  S  Y  E  S  V  A  T  L  C  F  T  S  G  G  P  F  S  L  R  H  T  T  A  A  A  P  S  T  P  A  S  L  T        
  
GTTGCGGATCGTGGCGAGAACGTCGTCCTCCCCTTCTTCACCGCCCCACCCACCCTCGGTTTGTGTTTCTTTTTTCTTGTGTTCTGTAGATAGTTCCATG 11400  
 N  R  I  T  A  L  V  D  D  E  G  E  E  G  G  W  G  G  E  T  Q  T  E  K  K  K  H  E  T  S  L  E  M         
  
GACAGCGACGGCAAGTCCATAATCACCGGTGTGCAAGTGGTGGAACACGACGAAGATATCATAGCGCCGCAGAGTTTGTGGTGCACGGCGTTCAAGGAAG 11500  
S  L  S  P  L  D  M  I  V  P  T  C  T  T  S  C  S  S  S  I  M  A  G  C  L  K  H  H  V  A  N  L  S  A       
  
CCCTCTGGGATGTGGCTCTGTTGGAAGTGCCGCGTTGGGCGTGGCAGGGCTGGAAGAGGTGGCGCAACAGCGAGTCCGGGCGTCGGTGGAGTGCTGGGTC 11600  
  R  Q  S  T  A  R  N  S  T  G  R  Q  A  H  C  P  Q  F  L  H  R  L  L  S  D  P  R  R  H  L  A  P  D        
  
CGCGTCGGCCTCCAGCTTGTCTGACTTGGCGGGCGAGGCCGTTGGAGAATTGGTGGGATCGGTCGTCGCGTACGTGATCCTTGAACGTCTGTGGTTGGCA 11700  
 A  D  A  E  L  K  D  S  K  A  P  S  A  T  P  S  N  T  P  D  T  T  A  Y  T  I  R  S  R  R  H  N  A         
  
GCCAGAGGCTGGGTGTGCGAAACAGGTGTGGAAGCCGAGGAGGCCATGGTGCGGCGGCGACAGCGCATGCTGTGGCGTATGTTCTCTCGTGGAGGCGACG 11800  
A  L  P  Q  T  H  S  V  P  T  S  A  S  S  A  M  T  R  R  R  C  R  M  S  H  R  I  N  E  R  P  P  S  P       
  
GCGAATGCAGCAGACGGTGTTCGATGGAGATGGCGCGCGAGGAAGAAAGCGCCGTGTTGTGAGCAGACGACGTTGGATGCGGGACGTCGGAGCAGATGGG 11900  
  S  H  L  L  R  H  E  I  S  I  A  R  S  S  S  L  A  T  N  H  A  S  S  T  P  H  P  V  D  S  C  I  P        
  
CCATGTGTGGTGGCAGATGGCGGTGTCCACTTGTGCCTGTCGCGGTAGTGCACAGACGAAGCAACATGTCGTTGTGAAGAGATAGAGTGAGAGCATAGCT 12000 
  M  H  P  P  L  H  R  H  G  S  T  G  T  A  T  T  C  L  R  L  L  M  UL150 
   
GTATGCAGCGTTGTGTGTGGAAGCGGGGGGAATAAGACGTTAATAAAGAATAGCGGCGGTTCTGAGAGGGCGACCGCTGAAGCGAGTTGCGTGTGCGTGC 12100 
  
GGTTTGTGGTTCGAAGCGCAAAAGGCCCCCGGTCCCGCACATCCTCCGTCCCCGCAGGAGGCCTCGTCGCGGCCGCAAACTCTCCCCCGTCCCCGCACAC 12200 
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CCCCGTCCGCGCCGCAAACTGTCCCCGTCCCCAACGTAACCTCCCCGACGCGGCGCGAACAGCCCCGGCCCCAGCGCAACCCCCGTCCCCGGCCCCAACA 12300 
  
CCGTCCCGCACACCCCCCGTCTCCGCAACACCCCGGCAGCGCCGGCGGCCAGAACGCTCGAAAACCCCCGAGAAGCGCAGCGCCGAAACGACACAGGCAA 12400 
   
GGACCGTGGAACGCACCGGCAGCGCGCCGAAACACCGTCCCGAAGCCCGGTGCCGACAACAAATACCGTGGGACGACACGCACCGGCAGTGCGCAGGCAG 12500 
  
CGGCGGACACAACACGCTTACGGCCCTCAACACTCCCTCGAGGACCCACCACGCGGCCCGGAATGGACCACGCGGCCTCAGCCGGCGGTGTTTTGGGTGT 12600 
  
GTCGGGGCGCGGCCGGGTGGGTGTGTGCCGGGTGTGTCGCGGGCGTGTGTTGGGTGTGTCGGGGGTGTGTTGGCAGGGTGTGTCAGGGTGTGTCGCGGGC 12700 
  
GTGTGCCGGGTGTGTCGTGCCGGGTGTGTCGCGGGCGTGTGGCGGGTGTGCCGGCGGGGTGTGGTGGCGGGGTGTGTCGGCGGTGTGCGCGGCCTCGGGG 12800 
 
TGTGCGGCTTCGCAGGAACGAGTGTGTGGCCTCGCGGCCGTTATTTCCCCCGCGGTCCCCAGGGCCGTCGTCCCTCGCCCCCGGGCGTTGCTTTTCGTGT 12900 
  
GTCCCCAGGGACCCATGCTGCCGTCCCCCGGGAACTTCCTCTTTTCCCCGGGGAATCACACAGACACAGACACGCGTCTTCTTTTCGCCGTGCGCGCCGC 13000 
  
ACGTCGCTTTTATTCGCCGTCGCCGTCCTCCGCACCACACGCAACTAGTCGCCGTCCACACACGCAACTCCAAGTTTCACCCCCCCGCTAAAAACACCCC 13100 
  
CCCGCCCCTCGAGGACCCACCACGCGGCCCGGAATGGATGTCGGGCGTCCACCTAGATGGGTGCGCGCCCGGGAGGCGGCTGTGCGCTCCAGTGGTACGC 13200 
  
GCCTGCCGCGCGTCTTCCTTCGGGTAGCTGCCTTTCCCAGTCCACGGCCTTCCAGACTGCGTGGCGCCAAGGCGGCGCCAGCACGCGCCGTGCACGTCGC 13300 
  
TGCCTATAAAAGCCAGCTGCGTGTCGCCCGCGGCACACGGGCGACGAAGGCGTCCGCGTGTCTAAACCGCGTGCTCGCTGACGCGGGTTTGCTTCCTATA 13400 
        

            M  A  Q  R  N  G  M  S  P  R  P  P  P  L  G  R  G  R  G  A  G  G  P  S        
TAGTGGACGTCGGAGGTGTCCGGCGCCCATGGCCCAGCGCAACGGCATGTCGCCGCGCCCCCCGCCCCTTGGTCGCGGCCGCGGGGCCGGAGGGCCTTCG 13500 
      IRS1/TRS1 
 G  V  G  S  S  P  P  S  S  C  V  P  M  G  A  P  S  T  A  G  T  G  A  S  A  A  A  T  T  T  P  G  H         
GGGGTTGGTTCCTCTCCTCCTTCTTCTTGTGTGCCGATGGGAGCGCCGTCCACAGCGGGCACTGGTGCGAGTGCTGCGGCTACGACGACGCCGGGCCACG 13600 
G  V  H  R  V  E  P  R  G  P  P  G  A  P  P  S  S  G  N  N  S  N  F  W  H  G  P  E  R  L  L  L  S  Q       
GCGTCCACCGGGTAGAACCCCGCGGGCCGCCGGGCGCCCCTCCGAGTAGCGGCAACAATAGCAACTTTTGGCACGGCCCGGAGCGCCTGTTGCTGTCTCA 13700 
 
  I  P  V  E  R  Q  A  L  T  E  L  E  Y  Q  A  M  G  A  V  W  R  A  A  F  L  A  N  S  T  G  R  A  M        
GATTCCGGTGGAGCGCCAGGCGCTGACGGAGCTGGAATACCAGGCCATGGGCGCCGTGTGGCGCGCGGCGTTTTTGGCCAACAGCACGGGCCGCGCCATG 13800 
 
 R  K  W  S  Q  R  D  A  G  T  L  L  P  L  G  R  P  Y  G  F  Y  A  R  V  T  P  R  S  Q  M  N  G  V         
CGCAAGTGGTCGCAGCGCGACGCGGGCACGCTGCTGCCGCTCGGACGGCCGTACGGATTCTACGCGCGGGTGACGCCGCGCAGCCAGATGAACGGCGTGG 13900 
 
G  A  T  D  L  R  Q  L  S  P  R  D  A  W  I  V  L  V  A  T  V  V  H  E  V  D  P  A  A  D  P  T  L  G       
GCGCGACGGACCTGCGTCAACTGTCGCCGCGGGACGCGTGGATCGTACTGGTGGCTACCGTGGTGCACGAGGTGGACCCCGCAGCCGACCCGACGTTGGG 14000 
 
  D  K  A  G  H  P  E  G  L  C  A  Q                                                                       
CGACAAGGCCGGCCATCCCGAGGGTCTGTGCGCGCAG                                                                14037 
  
 

 
 
 
Figure 5.1 The nucleotide sequence of the right end of UL in AD169varUC 
 
The nucleotide sequence of the right end of UL in AD169varUC and its encoded amino 

acid sequences, with the co-ordinates on the right. Putative start codons are 

highlighted in blue and putative stop codons are highlighted in green. The right 

genome end of UL in AD169varUC is highlighted in red and the left genome end is 

highlighted in yellow. The location of the 3.2 kbp deletion is highlighted in pink. The 

alternative C terminus of UL140 is highlighted in grey. 
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Those strains that showed the highest level of sequence identity with AD169varUC 

are displayed in Table 5.3. No previously sequences strain is identical to 

AD169varUC. As in other strains of HCMV, the rightmost gene of UL in AD169varUC is 

UL150, after which the sequence continues into RL and subsequently RS (Dolan et al., 

2004; Murphy et al., 2003). This confirms that AD169varUC does not contain the 

inverted duplicated region (containing RL1-RL12 and part of RL13) that is present in 

AD169varUK and AD169varATCC. 

Table 5.3: Comparison of AD169varUC ORFs in UL/b’ with homologous sequences in other 

HCMV strains  

ORF Length of ORF (bp) a Sequence identityb (%) HCMV strainc 

UL139 441 99 W 
Partial UL140 548 98.7 

98 
97 

U3 
Towne 

W 
Partial UL144 375 100 Towne 

UL145 393 100 Towne 
UL146 357 100 FS 
UL147 480 100 

95 
CH25 

Towne 
UL147A 228 100 

91 
CH25 

Towne 
aIncludes the stop codon. 

bSequence identity between AD169varUC and other HCMV strains. 
cHCMV strains with the highest level of identity to the homologous ORF in AD169varUC. 

 

5.4 Sequence of the inverted repeat regions and left end of 
UL in AD169varUC 

In addition to sequencing UL/b’, the inverted repeat regions (TRL/TRS and IRL/IRS) 

were also sequenced. TRL and the part of TRS sequenced proved to be identical to 

the corresponding regions of IRL/IRS in AD169varUC. Figure 5.2 shows a nucleotide 

alignment of RS/RL and the flanking sequence at the left end of UL in the three 

variants. The comparisons revealed that 24 nucleotides differ, with AD169varUC 

differing from AD169varUK at 8 positions, AD169varUC differing from AD169varATCC 

at 23 positions, and AD169varUK differing from AD169varATCC at 17 positions.  

Also, there is a region of extensive difference in the a sequence between the three 

AD169 variants. This is largely due to an additional 492 bp in AD169varATCC, which is 

not present in AD169varUK or AD169varUC. It is likely to be due to duplication of a 

repeat element. In addition, AD169varUC contains an additional 18 bp not found in 



A Bradley 2008  Chapter 5    184  

  

AD169varUK and AD169varUC differs from AD169varUK in two of four nucleotides 

immediately downstream of this 18 bp insertion.  

5.5 Discussion  

Sequencing of a number of genes confirmed that AD169varUC is indeed a variant of 

AD169. In an initial investigation, the sequences of RL13, UL11, UL73, UL131A and 

the partial sequence of UL148 in AD169varUC were shown to be 100% identical to 

their equivalents in AD169varUK and AD169varATCC (Table 5.1). In further studies, 

UL121, the main exon of UL122, a portion of the main exon of UL123, UL128, UL130, 

UL131A and UL132 were shown to be 100% identical to AD169varUK and 

AD169varATCC (Table 5.1). Sequencing of RL5A in AD169varUC revealed that it has a 

single nucleotide mismatch with AD169varUK and AD169varATCC. As RL5A is mutated 

in all three strains and probably non-functional (Davison et al., 2003) this difference 

is unlikely to have any affect. 

The sequence of UL/b’ in AD169varUC revealed the presence of 15 genes (UL148, 

UL147A, UL147, UL146, UL145, UL139, UL138, UL136, UL135, UL133, UL148A, 

UL148B, UL148C, UL148D and UL150) that are absent from AD169varUK and 

AD169varATCC (Figure 5.1). However, AD169varUC contains only part of UL144 and 

UL140. It has undergone a 3.2 kbp deletion that results in deletion of the complete 

UL141 and UL142 ORFs, the first 148 bp of UL144 and last 27 bp of UL140. The 

residual portion of UL144 is unikely to be functional. It is not known whether the 

frameshifted variant of UL140 is functional.  

A comparison of the partial sequence of UL140, as well as the full sequences of genes 

on either side of the deletion, with sequences from other HCMV strains revealed that 

some genes are identical to those in one strain, whereas others are identical to those 

in other strains (Table 5.3). This result is not surprising, given the general lack of 

linkage between hypervariable genes across the HCMV genome (Rasmussen et al., 

2003) and the length of the deletion (3.2 kbp). Even overlooking the deletion, the 

sequence of UL/b’ in AD169varUC differs from other sequenced strains. 
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Figure 5.2 A nucleotide alignment of RL/RS in AD169varUK, AD169varATCC and 
AD169varUC (continued overleaf) 

 

varUC CTGCGCGCACAGACCCTCGGGATGGCCGGCCTTGTCGCCCAACGTCGGGTCGGCTGCGGGGTCCACCTCGTGCACCACGGTAGCCACCAGTACGATCCAC 
varUK CTGCGCGCACAGACCCTCGGGATGGCCGGCCTTGTCGCCCACCGTCGGGTCGGCTGCGGGGTCCACCTCGTGCACCACGGTAGCCACCAGTACGATCCAC 
varATCC CTGCGCGCACAGACCCTCGGGATGGCCGGCCTTGTCGCCCACCGTCGGGTCGGCTGCGGGGTCCACCTCGTGCACCACGGTAGCCACCGGTACGATCCAC 

                 RS 
varUC GCGTCCCGCGGCGACAGTTGACGCAGGTCCGTCGCGCCCACGCCGTTCATCTGGCTGCGCGGCGTCACCCGCGCGTAGAATCCGTACGGCCGTCCGAGCG 
varUK GCGTCCCGCGGCGACAGTTGACGCAGGTCCGTCGCGCCCACGCCGTTCATCTGGCTGCGCGGCGTCACCCGCGCGTAGAATCCGTACGGCCGTCCGAGCG 
varATCC GCGTCCCGCGGCGACAGTTGACGCAGGTCCGTCGCGCCCACGCCGTTCATCTGGCTGCGCGGCGTCACCCGCGCGTAGAATCCGTACGGCCGTCCGAGCG 
 
varUC GCAGCAGCGTGCCCGCGTCGCGCTGCGACCACTTGCGCATGGCGCGGCCCGTGCTGTTGGCCAAAAACGCCGCGCGCCACACGGCGCCCATGGCCTGGTA 
varUK GCAGCAGCGTGCCCGCGTCGCGCTGCGACCACTTGCGCATGGCGCGGCCCGTGCTGTTGGCCAAAAACGCCGCGCGCCACACGGCGCCCATGGCCTGGTA 
varATCC GCAGCAGCGTGCCCGCGTCGCGCTGCGACCACTTGCGCATGGCGCGGCCCGTGCTGTTGGCCAAAAACGCCGCGCGCCACACGGCGCCCATGGCCTGGTA 
 
varUC TTCCAGCTCCGTCAGCGCCTGGCGCTCCACCGGAATCTGAGACAGCAACAGGCGCTCCGGGCCGTGCCAAAAGTTGCTATTGTTGCCGCTACTCGGAGGG 
varUK TTCCAGCTCCGTCAGCGCCTGGCGCTCCACCGGAATCTGAGACAGCAACAGGCGCTCCGGGCCGTGCCAAAAGTTGCTATTGTTGCCGCTACTCGGAGGG 
varATCC TTCCAGCTCCGTCAGCGCCTGGCGCTCCACCGGAATCTGAGACAGCAACAGGCGCTCCGGGCCGTGCCAAAAGTTGCCATTGTTGCCGCTACTCGGAGGG 
 
varUC GCGCCCGGCGGCCCGCGGGGTTCTACCCGGTGGACGCCGTGGCCCGGCGTCGTCGTAGCCGCAGCACTCGCACCAGTGCCCGCTGTGGACGGCGCTCCCA 
varUK GCGCCCGGCGGCCCGCGGGGTTCTACCCGGTGGACGCCGTGGCCCGGCGTCGTCGTAGCCGCAGCACTCGCACCAGTGCCCGCTGTTGACGGCGCTCCCA 
varATCC GCGCCCGGCGGCCCGCGGGGTTCTACCCGGTGGACGCCGTGGCCCGGCGTCGTCGTAGCCGCAGCACTCGCACCAGTGCCCGCTGTGGACGGCGCTCCCA 
 
varUC TCGGCACACAAGAAGAAGGAGGAGAGGAACCAACCCCCGAAGGCCCTCCGGCCCCGCGGCCGCGACCAAGGGGCGGGGGGCGCGGCGACATGCCGTTGCG 
varUK TCGGCACACAAGAAGAAGGAGGAGAGGAACCAACCCCCGAAGGCCCTCCGGCCCCGCGGCCGCGACCAAGGGGCGGGGGGCGCGGCGACATGCCGTTGCG 
varATCC TCGGCACACAAGAAGAAGGAGGAGAGGAACCAACCCCCGAAGGCCCTCCGGCCCCGCGGCCGCGACCGAGGGGCGGGGGGCGCGGCGACATGCCGTTGCG 
 
varUC CTGGGCCATGGGCGCCGGACACCTCCGACGTCCACTATATAGGAAGCAAACCCGCGTCAGCGAGCACGCGGTTTAGACACGCGGACGCCTTCGTCGCCCG 
varUK CTGGGCCATGGGCGCCGGACACCTCCGACGTCCACTATATAGGAAGCAAACCCGCGTCAGCGAGCACGCGGTTTAGACACGCGGACGCCTTCGTCGCCCG 
varATCC CTGGGCCATGGGCGCCGGACACCTCCGACGTCCACTATATAGGAAGCAGACCCGCGTCAGCGAGCACGCGGTTTAGACACGCGGACGCCTTCGTCGCCCG 
                         
varUC TGTGCCGCGGGCGACACGCAGCTGGCTTTTATAGGCAGCGACGTGCACGGCGCGTGCTGGCGCCGCCTTGGCGCCACGCAGTCTGGAAGGCCGTGGACTG 
varUK TGTGCCGCGGGCGACACGCAGCTGGCTTTTATAGGCAGCGACGTGCACGGCGCGTGCTGGCGCCGCCTTGGCGCCACGCAGTCTGGAAGGCCGTGGACTG 
varATCC TGTGCCGCGGGCGACACGCAGCTGGCTTTTATAGGCAGCGACGTGCACGGCGCGTGCTGGCGCCGCCTTGGCGCCACGCAGTCTGGAAGGCCGTGGACTG 
 
varUC GGAAAGGCAGCTACCCGAAGGAAGACGCGCGGCAGGCGCGTACCACTGGAGCGCACAGCCGCCTCCCGGGCGCGCACCCATCTAGGTGGACGCCCGACAT 
varUK GGAAAGGCAGCTACCCGAAGGAAGACGCGCGGCAGGCGCGTACCACTGGAGCGCACAGCCGCCTCCCGGGCGCGCACCCATCTAGGTGGACGCCCGACAT 
varATCC GGAAAGGCAGCTACCCGAAGGAAGACGCGCGGCAGGCGCGTACCACTGGAGCGCACAGCCGCCTCCCGGGCGCGCACCCATCTAGGTGGACGCCCGACAT 
 
varUC CCATTCCGGGCCGCGTGGTGGGTCCTCGAGGGGCGGGGGGGTGTTTTTAGCGGGGGGGTGAAACTTGGAGTTGCGTGTGTGGACGGCGACTAGTTGCGTG 
varUK CCATTCCGGGCCGCGTGGTGGGTCCTCGAGGGGCGGGGGGGTGTTTTTAGCGGGGGGGTGAAACTTGGAGTTGCGTGTGTGGACGGCGACTAGTTGCGTG 
varATCC CCATTCCGGGCCGCGTGGTGGGTCCTCGAGGGGCGGGGGGGTGTTTTTAGCGGGGGGGTGAAACTTGGAGTTGCGTGTGTGGACGGCGACTAGTTGCGTG 

 Start of the a sequence 
varUC TGGTGCGGAGGACGGCGACGGCGAATAAAAGCGACGTGCGGCGCGCACGGCGAAAAGAAGACGCGTGTCTGTGTCTGTGTGATTCCCCGGGGAAAAGAGG 
varUK TGGTGCGGAGGACGGCGACGGCGAATAAAAGCGACGTGCGGCGCGCACGGCGAAAAGAAGACGCGTGTCTGTGTCTGTGTGATTCCCCGGGGAAAAGAGG 
varATCC TGGTGCGGAGGACGGCGACGGCGAATAAAAGCGACGTGCGGCGCGCACGGCGAAAAGAAGACGCGTGTGTGTGTCTGTGTGATTCCCCGGGGAAAAGAGG 
 
varUC AAGTTCCCGGGGGACGGCAGCATGGGTCCCTGGGGACACACGAAAAGCAACGCCCGGGGGCGAGGGACGACGGCCCTGGGGACCGCGGGGGAAATAACGG 
varUK AAGTTCCCGGGGGACGGCAGCATGGGTCCCTGGGGACACACGAAAAGCAACGCCCGGGGGCGAGGGACGACGGCCCTGGGGACCGCGGGGGAAATAACGG 
varATCC AAGTTCCCGGGGGACGGCAGCATGGGTCCCTGGGGACACACGAAAAGCAACGCCCGGGGGCGAGGGACGACGGCCCCGGGGACCGCGGGGGAAATAACGG 
 
varUC CCGCGAGGCCACACACTCGTTCCTGCGAAGCCGCACACCCCGAGGCCGCGCACACCGCCGACACACCCCGCCACCACACCCCGCCGGCACACCCGCCACA 
varUK CCGCGAGGCCACACACTCGTTCCTGCGAAGCCGCACACCCCGAGGCCGCGCACACCGCCGACACACCCCGCCACCACACCCCGCCGGCACACCCGCCACA 
varATCC CCGCGAGGCCACACACTCGTTCCCGCGAAGCCGCACACCCCGAGGCCGCGCACACCGCCGACACACCCCGCCACCACACCCCGCCGGCACACCCGCCACA 
 
varUC CGCCCGCGACACACCCGGCACGACACACCCGGCACACGCCCGCGACACACCCTGACACACCCTGCCAACACACCCCCGACACACCCAACACACGCCCGCG 
varUK CGCCCGCGACACACCCGGCACGACACACCCGGCACACGCCCGCGACACACCCTGACACACCCTGCCAACACACCCCCGACACACCCAACACACGCCCGCG 
varATCC CGCCCGCGACACACCCGGCACGACACACCCGGCACACGCCCGCGACACACCCTGACACACCCTGCCAACACACCCCCGACACACCCAACACACGCCCGCG 
 
varUC ACACACCCGGCACACACCCACCCGGCCGCGCCCCGACACACCCAAAACACCGCCGG............................................ 
varUK ACACACCCGGCACACACCCACCCGGCCGCGCCCCGACACACCCAAAACACCGCCGG............................................ 
varATCC ACACACCCGGCACACACCCACCCGGCCGCGCCCCGACACACCCAAAACACCGCCGGTCCATTCCGGGCCGCCCATTCCGGGCCGCGTGGTGGGTCCATTC 
 
varUC .................................................................................................... 
varUK .................................................................................................... 
varATCC CGGGCCGCGTGGTGGGTCCATTCCGGGCCGCGTGGTGGGTCCTCGAGGGAGTGTTGAGGGCCGTAAGCGTGTTGTGTCCGACGCTGCCTGCGCACTGCCG 
 
varUC .................................................................................................... 
varUK .................................................................................................... 
varATCC GTGCGTGTCGTCCCACGGTATTTGTTGTCGGCACCGGGCTTCGGGACGGTGTTTCGGCGCGCTGCCGGTGCGTTCCACGGTCCTTGCCTGTGTCGTTTCC 
 
varUC .................................................................................................... 
varUK .................................................................................................... 
varATCC GGCCGCGCCCCGACACACCCAAAACACCGACGTGCGGGGCCGCGTGGTGGGTCCTCGAGGGAGTGTTGAGGGCCGTAAGCGTGCTGTGTCCGACGCTGCC 
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varUC  ..........................CTGAGGCCGCGTGGTCCATTCCGGGCCGCGTGGTGGGTCCTCGAGGGAGTGTTGAGGGCCGTAAGCGTGTTGTG 
varUK  ............................................TGCGGGGCCGCGTGGTGGGTCCTCGAGGGAGTGTTGAGGGCCGTAAGCGTGTTGTG 
varATCC  TGTGTCGTTTCCGGCCGCG..............TGGTGGGTCCATTCCGGGCCGCGTGGTGGGTCCTCGAGGGAGTGTTGAGGGCCGTAAGCGTGTTGTG 
varATCCalt  TGTGTCGTTTCCGGCCGCGCCCCGACACACCCAAAACACCGACGTGCGGGGCCGCGTGGTGGGTCCTCGAGGGAGTGTTGAGGGCCGTAAGCGTGTTGTG 

        end of the a sequence 
varUC  TCCGCCGCTGCCTGCGCACTGCCGGTGCGTGTCGTCCCACGGTATTTGTTGTCGGCACCGGGCTTCGGGACGGTGTTTCGGCGCGCTGCCGGTGCGTTCC 
varUK  TCCGACGCTGCCTGCGCACTGCCGGTGCGTGTCGTCCCACGGTATTTGTTGTCGGCACCGGGCTTCGGGACGGTGTTTCGGCGCGCTGCCGGTGCGTTCC 
varATCC  TCCGACGCTGCCTGCGCACTGCCGGTGCGTGTCGTCCCACGGTATTTGTTGTCGGCACCGGGCTTCGGGACGGTGTTTCGGCGCGCTGCCGGTGCGTTCC 
 
varUC  ACGGTCCTTGCCTGTGTCGTTTCGGCGCTGCGCTTCTCGGGGGTTTTCGAGCGTTCTGGCCGCCGGCGCTGCCGGGGTGTTGCGGAGACGGGGGGTGTGC 
varUK  ACGGTCCTTGCCTGTGTCGTTTCGGCGCTGCGCTTGTCGGGGGTTTTCGAGCGTTCTGGCCGCCGGCGATGCCGGGGTGTTGCGGAGACGGGGGGTGTGC 
varATCC  ACGGTCCTTGCCTGTGTCGTTTCGGCGCTGCGCTTGTCGGGGGTTTTCGAGCGTTCTGGCCGCCGGCGATGCCGGGGTGTTGCGGAGACGGGGGGTGTGC 
 
varUC  GGGACGGTGTTGGGGCCGGGGACGGGGGTTGCGCTGGGGCCGGGGCTGTTCGCGCCGCGTCGGGGAGGTTACGTTGGGGACGGGGACAGTTTGCGGCGCG 
varUK  GGGACGGTGTTGGGGCCGGGGACGGGGGTTGCGCTGGGGCCGGGGCTGTTCGCGCCGCGTAGGGGAGGTTACGTTGGGGACGGGGACAGTTTGCGGCGCG 
varATCC  GGGACGGTGTCGGGGCCGGGGACGGGGGTTGCGCTGGGTCCGGGGCTGTTCGCGCCGCGTAGGGGAGGTTACGTTGGGTACGGGGACAGTTTGCGGCGCG 
 
varUC  GACCAGGGAACCCACCTCACCTATTTAACCTCCACCCACTCCAACACACACATGCCGCACAATCATGCCAGCCACAGACACAAACAGCACCCACACCACG 
varUK  GACCAGGGAACCCACCTCACCTATTTAACCTCCACCCACTACAACACACACATGCCGCACAATCATGCCAGCCACAGACACAAACAGCACCCACACCACG 
varATCC  GACCAGGGAACCCACCTCACCTATTTAACCTCCACCCACTACAACACACACATGCCGCACAATCATGCCAGCCACAGACACAAACAGCACCCACACCACG 

                     Start of UL 
varUC  CCGCTTCACCCAGACGCCCAACACACGTTACCCTTACACCACAGCAACACACAACCGCATGTCCAAACCTCGGACAAACACGCCGACGAAGAACACCGCA 
varUK  CCGCTTCACCCAGACGCCCAACACACGTTACCCTTACACCACAGCAACACACAACCGCATGTCCAAACCTCGGACAAACACGCCGACGAAGAACACCGCA 
varATCC  CCGCTTCACCCAGACGCCCAACACACGTCACCCTTACACCACAGCAACAGACAACCGCATGTCCGAACCTCGGACAAACACGCCGACGAAGAACACCGCA 
 
varUC  CACAGATGGAGCTCGACGCCGCAGACTACGCTGCTTGCGCACAGGCCCGCCAACACCTCTACGATCAAACACAACCCCTACTACTCGCATACCCCAACAC 
varUK  CACAGATGGAGCTCGACGCCGCAGACTACGCTGCTTGCGCACAGGCCCGCCAACACCTCTACGATCAAACACAACCCCTACTACTCGCATACCCCAACAC 
varATCC  CACAGATGGAGCTCGACGCCGCAGACTACGCTGCTCGCGCACAGGCCCGCCAACACCTCTACGATCAAACACAACCCCTACTACTCGCATACCCCAACAC 
 
varUC  CAACCCACAGGACAGCGCTCATTTTCCCACAGAGAATCACCATCAACTCACGCATCCACTTCACAACATTGGCGAGGGCGCAGCACTCGGCTACCCCGTC 
varUK  CAACCCACAGGACAGCGCTCATTTTCCCACAGAGAATCAACATCAACTCACGCATCCACTTCACAACATTGGCGAGGGCGCAGCACTCGGCTACCCCGTC 
varATCC  CAACCCACAGGACAGCGCTCATTTTCCCACAGAGAATCAACATCAACTCACGCATCCACTTCACAACATTGGCGAGGGCGCAGCACTCGGCTACCCCGTC 
 
varUC  CCCCGCGCGGAAATCCGCCGCGGCGGTGGCGACTGGGCCGACAGCGCAAGCGACTTTGACGCCGACTGCTGGTGCATGTGGGGACGCTTCGGAACCATGG 
varUK  CCCCGCGCGGAAATCCGCCGCGGCGGTGGCGACTGGGCCGACAGCGCAAGCGACTTTGACGCCGACTGCTGGTGCATGTGGGGACGCTTCGGAACCATGG 
varATCC  CCCCGCGCGGAAATCCGCCGCGGCGGTGGCGACTGGGCCGACAGCGCAAGCGACTTTGACGCCGACTGCTGGCGCATGTGGGGACGCTTCGGAACCATGG 
 
varUC  GCCGCCAACCTGTCGTCACCTTACTGTTGGCGCGCCAACGCGACGGCCTCGCTGACTGGAACGTCGTACGCTGCCGCGGCACAGGCTTTCGCGCACACGA 
varUK  GCCGCCAACCTGTCGTCACCTTACTGTTGGCGCGCCAACGCGACGGCCTCGCTGACTGGAACGTCGTACGCTGCCGCGGCACAGGCTTTCGCGCACACGA 
varATCC  GCCGCCAACCTGTCGTCACCTTACTGTTGGCGCGCCAACGCGACGGCCTCGCTGACTGGAACGTCGTACGCTGCCGCGGCACAGGCTTTCGCGCACACGA 
 
varUC  TTCCGAGGACGGCGTCTCTGTCTGGCGTCAGCACCTGGTTTTTTTACTCGGAGGCCACGGCCGCCGTGTACAGTTAGAACGTCCATCCGCGGGAGAAGCC 
varUK  TTCCGAGGACGGCGTCTCTGTCTGGCGTCAGCACCTGGTTTTTTTACTCGGAGGCCACGGCCGCCGTGTACAGTTAGAACGTCCATCCGCGGGAGAAGCC 
varATCC  TTCCGAGGACGGCGTCTCTGTCTGGCGTCAGCACCTGGTTTTTTTACTCGGAGGCCACGGCCGCCGTGTACAGTTAGAACGTCCATCCGCGGGAGAAGCC 
 
varUC  CAAGCTCGAGGCCTCTTGCCACGCATCCGGATCACCCCCATCTCCACATCTCCACGTCGGAAACCGCCGCACCCCGCCACATCCACCGCATCGCACCACC 
varUK  CAAGCTCGAGGCCTCTTGCCACGCATCCGGATCACCCCCATCTCCACATCTCCACGTCGGAAACCGCCGCACCCCGCCACATCCACCGCATCGCACCACC 
varATCC  CAAGCTCGAGGCCTCTTGCCACGCATCCGGATCACCCCCATGTCCACATCTCCACGTCGGAAACCGCCGCACCCCGCCACATCCACCGCATCGCACCACC 
 
varUC  CACATGCTTCGCCTCGGTCAGATCACACGCTTTTTCCTGTCCCATCTACACCCTCAGCCACGGTTCACAATCCCCGAAACT 
varUK  CACATGCTTCGCCTCGGTCAGATCACACGCTTTTTCCTGTCCCATCTACACCCTCAGCCACGGTTCACAATCCCCGAAACT 
varATCC  CACATGCTTCGCCTCGGTGAGATCACACGCTTTTTCCTGTCCCATCTACACCCTCAGCCACGGTTCACAATCCCCGAAACT 
 
 

Figure 5.2 A nucleotide alignment of RL/RS in AD169varUK, AD169varATCC and 
AD169varUC 

A nucleotide alignment of AD169varUK, AD169varATCC and AD169varUC sequence 
beginning within RS, through the a sequence into RL and the left end of UL. Nucleotide 
differences are highlighted in green. A region of extensive difference is highlighted in 
blue; this is largely due to duplication of a repeat sequence (underlined). The 
sequences of IRS/IRL and TRS/TRL differ somewhat in AD169varATCC; therefore the 
sequence of the other repeat (varATCCalt) is included to highlight their differences. 
Nucleotide positions of the genome termini are highlighted in red with the left end first 
and the right end second; the region between is the a sequence. The start of UL is 
highlighted in pink, the start codon of RL1 is highlighted in grey and the start codon of 
IRS1/TRS1 is highlighted in yellow. 
 
 



A Bradley 2008  Chapter 5    187  

  

AD169varUC, AD169varUK and AD169varATCC all stem from the same original stock 

(NIH76559) isolated by Rowe et al. (1956). Where sequence differences exist, 

AD169varUC is more similar to AD169varUK than AD169varATCC. One possibility is 

that AD169varUC was derived from a very early passage of AD169 (one of the first 14 

passages before NIH 76559 was established) and that the 15 kbp deletion and 

expansion of RL occurred at a later passage in this series (but prior to NIH 76559). 

After this, AD169varUK was established in the UK from NIH 76559, and AD169varATCC 

was derived from NIH 76559 that had been passaged many times in a US laboratory. 

The mutations present in all three variants would have occurred during the early 

passages before AD169varUC was derived. An alternative possibility is that the 15 

kbp deletion and expansion of RL (and perhaps some of the other shared mutations) 

occurred later, during the derivation of AD169varUK, and that this virus, was 

subsequently shipped to the USA, passaged many times, and submitted to the ATCC. 

Both of these theories are speculative, given that it has not proved possible to 

recover details of the origin of AD169varATCC. However, the characterisation of 

AD169varUC has revealed information about the genetic status of AD169 earlier in its 

history, specifically the sequence of most of the UL/b’ region. 
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6 Final discussion 

HCMV is a complex virus and has the largest genome of any human virus. It 

usually results in an asymptomatic infection that is followed by life-long latency. 

HCMV infects a large proportion of the population worldwide, usually during 

childhood (Gandhi and Khanna, 2004). . However, decreased breastfeeding with 

improved hygiene in the developed world has resulted in a larger proportion of 

uninfected adults. HCMV represents a serious disease risk for 

immunocompromised individuals, such as AIDS patients and transplant 

recipients, as well as for the unborn child. It is the leading infectious cause of 

congenital disease, and reactivation of latent infection in the recipient or the 

donor organ or cells can result in transplant rejection (Zaia et al., 2002). The 

majority of the genome is highly conserved (Murphy et al., 2003; Davison et al., 

2003), but several genes, including UL146 and UL139, are highly variable (Dolan 

et al., 2004; Qi et al., 2006). Infection with one strain of HCMV does not 

necessarily provide protection against reinfection with another strain, and 

multiple infections are detected frequently (Boppana et al., 2001). 

Numerous studies have been published that investigated the genotypes of 

hypervariable loci in clinical isolates, with an emphasis on the relationship 

between genotype and disease outcome. In general there is no convincing 

association between genotype and clinical disease, although there have been 

reports of links between certain gB and UL144 genotypes and disease, 

specifically gB1 and retinitis in AIDS patients (Rasmussen et al., 1997), gB2-4 and 

fatalities in transplant recipients (Fries et al., 1994) and UL144 genotypes A, C 

and subtypes A/C, A/B with more serious disease (Arav-Boger et al., 2002). In 

contrast, others found no evidence for any association between gB genotype and 

clinical disease (Aquino and Figuerido, 2000). The majority of these studies 

utilised small sample sizes and different patient types, and the results have 

proved contradictory. Mixed infections were identified in some studies, which 

further complicates any attempt to establish links between genotype and 

pathogenesis. 

This thesis investigated circulating genotypes of the two most variable genes at 

the right end of UL (UL146 and UL139), in a large collection of clinical isolates 

from geographically diverse locations in Africa, Europe, Asia and Australia. 
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Previously, 14 UL146 genotypes have been described (Dolan et al., 2004) and a 

single study investigating UL139 genotypes described six groups (Qi et al., 2006). 

The sequences of these genes were studied in 179 clinical samples and five 

commonly used laboratory strains. In addition, all UL146 and UL139 sequences 

available in public databases were included in the phylogenetic and diversity 

analyses. A total of 350 UL146 sequences were analysed, and all fell into the 14 

genotypes described previously. A number of previous studies had investigated 

UL146 sequences in passaged and unpassaged clinical isolates (Stanton et al., 

2005; Hassan-Walker et al., 2004; Lurain et al., 2006; He et al., 2006), but all 

used relatively small numbers of geographically related samples and all, with 

one exception (He et al., 2006), examined immunocompromised patients. 

Therefore, the current study is the first to have examined UL146 sequences in a 

large group of geographically and clinically diverse samples. For UL139, 300 

sequences were analysed, and all fell into eight genotypes, G1-G8. Five UL139 

genotypes (G1-4, G6) correspond to the six groups (G1, G1b, G1c, G2a, G2b, G3) 

described by Qi et al. (2006) who analysed 26 clinical samples. Therefore, three 

new UL139 genotypes have been identified. The large number of sequences 

analysed during this study does not exclude the possibility that other UL146 or 

UL139 genotypes may be in circulation that have yet to be discovered. The use 

of alternative PCR primers or sequencing whole genomes in future could address 

this question. 

Overall there was no significant association between the UL146 or UL139 

genotype of a strain and its geographical origin, a conclusion that is in 

agreement with that drawn by Pignatelli et al. (2003) from the genotypes of 

UL73 in a panel of 223 isolates from around the world.  In the present study, 

UL146 G10 and G11 appeared to be restricted to European samples. However, 

Chinese sequences available in Genbank fall into UL146 G10 and G11, indicating 

that these genotypes are found outside Europe. Chi-square analysis suggested a 

minor bias in the geographical distribution of genotypes. Specifically, UL146 G6 

(p=0.006) and G7 (p=0.047) showed statistically significant differences in their 

genotypic distributions, as did UL139 G7 (p=0.006). However, this is likely to 

have been a consequence of small sample numbers from some areas. Although 

Yate’s correction was applied during the chi-square analysis, results obtained 

need to be treated with caution due to frequencies of zero in some cells. 

Europe, for which there were more samples than any other region, displayed the 
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greatest diversity, containing all the UL146 and UL139 genotypes detected with 

the exception of UL146 G6, the only example of which was detected in an Asian 

sample. Overall, it appears probable that sufficient sample numbers would 

demonstrate that all genotypes are found in all regions. It remains unclear 

whether each genotype diverged in geographical isolation and has subsequently 

been transmitted worldwide, or whether the genotypes diverged during early 

human history and have since been maintained by the founder effect or due to 

geographical segregation following human migration out of Africa. 

The genotypes of UL146 and UL139 appear to have evolved predominantly under 

constraint (purifying selection) rather than positive selection. This is despite the 

high level of nucleotide and aa sequence divergence between genotypes, 

particularly for UL146. This conclusion is in agreement with a study by 

Arav-Boger et al. (2005), who investigated the mode of selection in UL146 and 

UL147 sequences in 28 clinical isolates and four laboratory strains. UL146 and 

UL147 encode related proteins (CXC chemokines), and both appear to have 

evolved under constraint, UL146 at a faster rate than UL147. The deduced mode 

of evolution suggests that selection pressures favour retention of these genes 

and that they are now evolving slowly. The finding that UL146 sequences are 

stable in vitro, when passaged in cell culture, as well as in vivo, in samples 

taken from the same patient over time, is in accord with this, although the time 

scales involved in these studies was short on an evolutionary scale (Stanton et 

al., 2005; Lurain et al., 2006).  

Published work on linkage disequilibrium between variable genes has produced 

positive evidence for genes that are near each other, such as UL6/UL7, 

UL4/UL7, UL1/UL4 and UL4/UL6 (Sekulin et al., 2007), gH/gO (UL75/UL74, 

specifically gH1/gO1) (Rasmussen et al., 2002) and gN/gO (UL73/UL74) (Mattick 

et al., 2004). Rasmussen et al. (2003) found no evidence for linkage 

disequilibrium between six generally more widely distributed genes (UL55 (gB), 

UL74 (gO), UL75 (gH), UL115 (gL), US9 and US28), and concluded that genetic 

linkage is rare. In accordance with these findings, the present study did not 

detect linkage disequilibrium between UL146 and UL139 genotypes, even though 

the two genes are only 5.2 kbp apart on the genome. These findings support the 

notion that HCMV has undergone multiple recombination events during its 

evolution.  
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UL146 is a CXC chemokine that is thought to promote virus dissemination by 

attracting neutrophils to the initial site of infection. Penfold et al. (1999) 

detected the UL146 protein at L times p.i., which is in agreement with the 

transcript mapping results in the present study, where the UL146 3.3 kb mRNA 

was expressed with L kinetics. The 3’-end of UL146 was mapped downstream 

from UL132, indicating that UL146 is 3’-coterminally expressed with UL147, 

UL147A, UL148 and UL132. This agrees with the results of a study published 

during the course of this work (Lurain et al., 2006), which investigated 

transcription of UL146 and adjacent genes by RT-PCR and northern blotting. 

However, in that study UL146 was characterised on an E-L transcript, albeit at 

low levels (due to faint band obtained). Therefore, differences between the 

findings of the present study (UL146 was characterised as a L gene) and those of 

Lurain et al. (2006) may be a consequence of quantitative differences. 

The high level of divergence of UL146 at both the nucleotide and aa sequence 

levels suggests that there may also be divergence at the structural and 

functional levels. Nonetheless, homology modelling using the solved crystal 

structure of the functionally related chemokine IL-8 predicted that all 14 UL146 

genotypes encode proteins with similar tertiary structures. This could indicate 

that, despite hypervariation, the UL146 genotypes are functionally similar to 

each other. However, other chemokines such as gro-α and 1F9s also share similar 

tertiary structures and yet display differing binding affinities for cellular 

receptors (Baggiolini et al., 1997). Functional studies are required to determine 

whether this phenomenon applies to UL146 genotypes. 

UL139 is predicted to encode a type I membrane glycoprotein (Cha et al., 1996). 

No information has been published regarding UL139 function, although a region 

of similarity with CD24, a signal transducer involved in B cell activation, has 

been noted (Qi et al., 2006). If this similarity is functionally significant, it would 

suggest a role for UL139 in regulation or modulation of the immune response. In 

the present study, UL139 from HCMV strain Merlin expressed in HFFF-2 cells was 

expressed with E-L kinetics. UL139 is 3’-coterminally expressed on a 2.6 kb 

mRNA transcript with UL140 and UL141. 

As an initial characterisation of the UL139 protein, recombinant adenovirus 

vectors expressing FLAG-tagged UL139 variants (three genotypes) were 
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produced. The tagged proteins were detected by immunoblot using an antibody 

against the tag. The UL139 protein was predicted to be highly glycosylated, and 

the preliminary experiment found the proteins to be much larger than those 

predicted from the unmodified aa sequences. The RADs generated in the present 

study will facilitate future experiments on localisation of the UL139 protein in 

the infected cell and virus, and on its interactions with cellular proteins. 

Mixed infections with different HCMV strains were identified in 14% of the 

samples genotyped and this number increased to 29% when the results from 

repeat experiments were included. This suggests that the number of mixed 

infections may be underestimated. Mixed infections were detected in 

immunocompromised and immunocompetent individuals, suggesting that 

infection with multiple strains occurs in both asymptomatic and symptomatic 

infections. Indeed, mixed infection in immunocompromised individuals, such as 

transplant recipients, has been associated with enhanced pathogenesis and 

increased risk of transplant rejection (Coaquette et al., 2004; Puchhammer-

Stöckl et al., 2006). The common occurrence of infection with multiple strains 

undermines any attempt to draw conclusions regarding association between 

genotype and clinical disease. Puchhammer-Stöckl et al. (2006) encountered a 

similar situation in an examination of gB (UL55) and gN (UL73) genotypes. The 

phenomenon of mixed infections highlights the complexity of HCMV and the 

problems facing HCMV vaccine development. Moreoever, samples cultured in 

vitro are likely to represent only a subset of strains present in the original 

clinical sample; it is important in such studies to analyse the clinical material. 

AD169 is a commonly used laboratory strain of HCMV that has a large deletion 

(15 kbp) at the right end of UL (Cha et al., 1996), a duplication of sequences at 

the left end of UL that replace the deleted region, and a number of other 

mutations (Akter et al., 2003; Davison et al., 2003; Yu et al., 2002; Skaletskaya 

et al., 2001). UL139 and UL146 are both located in this deleted region and are 

found in clinical material and low passage clinical isolates of HCMV such as 

Toledo and Merlin. Other immunomodulatory genes such as UL144, which 

encodes a TNF α-like receptor, are also located in this region. It is likely that 

the mutations observed in AD169 are a result of adaptation to serial passage in 

cell culture. A variant of AD169, AD169varUC, was acquired for which there was 

evidence that it contained some or all of the genes deleted in AD169varUK (N. 
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Lurain, personal communication). Initial sequencing of a number of genes 

(including UL146 and UL139) confirmed the identity of AD169varUC as derived 

from the original AD169 clinical material.  

The right end of UL in AD169varUC was sequenced and also found to be a 

mutant, as it contains a 3.2 kbp deletion. The deletion results in absence of 

UL141 and UL142, 3’-truncation of UL140 (although the C-terminal 8 aa are 

replaced with alternative 71 aa) and deletion of the first 148 bp of UL144. A 

similar sized deletion that affects the same genes (i.e. UL141, UL142, UL140 and 

UL144) has been noted in low-passage isolate VR1814 (A. Davison, personal 

communication). This suggests that this region is prone to deletion during cell 

culture. It is unclear whether AD169 first underwent this smaller deletion (3.2 

kbp) to yield AD169varUC and then underwent a larger deletion to yield 

AD169varUK and AD169varATCC or whether AD169varUC represents an 

alternative passage to the other variants that lost 3.2 kbp during cell culture.  

Another possibility is that AD169varUC is a mixture, a proportion of which 

contains this additional segment at the right end of UL, and the remainder 

contains the large deletion found in AD169varUK and AD169varATCC. PCR using 

primers designed either side of the 15 kbp deletion could be performed to 

investigate this possibility. 
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