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Abstract

Experimenting with novel algorithms and configurations for the automatic management

of Cloud Computing infrastructures is expensive and time consuming on real systems.

Cloud computing delivers the benefits of using virtualisation techniques to data centers

instead of physical servers for customers. However, it is still complex for researchers to test

and run their experiments on data center due to the cost for repeating the experiments.

To address this, various tools are available to enable simulators, emulators, mathematical

models, statistical models and benchmarking.

Despite this, there are different methods used by researchers to avoid the difficulty of

conducting Cloud Computing research on actual large data centre infrastructure. However,

it is still difficult to chose the best tool to evaluate the proposed research. This research

focuses on investigating the level of accuracy of existing known simulators in the field of

cloud computing. Simulation tools are generally developed for particular experiments, so

there is little assurance that using them with different workloads will be reliable. Moreover,

a predictive model based on a data set from a realistic data center is delivered as an

alternative model of simulators as there is a lack of their sufficient accuracy. So, this

work addresses the problem of investigating the accuracy of different modelling tools by

developing and validating a procedure based on the performance of a target micro data

centre.

Key insights and contributions are: Involving three alternative models for Cloud

Computing real infrastructure showing the level of accuracy of selected simulation tools.

Developing and validating a predictive model based on a Raspberry Pi small scale data

centre. The use of predictive model based on Linear Regression and Artificial Neural Net-

works models based on training data set drawn from a Raspberry Pi Cloud infrastructure

provides better accuracy.
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Chapter 1

Introduction

1.1 Introduction

Cloud computing infrastructure is composed of large-scale distributed systems with com-

plex architectural stacks (Armbrust et al. [32]; Mell and Grance [119]). Researchers are

thus often unable to deploy cloud computing experiments on real cloud infrastructures,

due to the prohibitive nature of the overheads in terms of time and cost, and therefore

they often use simulators to model pertinent aspects of a cloud computing infrastructure to

perform such experiments. This means that most cloud computing research is performed

using simulators. There are many such simulators available, and different simulators are

specialised for various cloud workloads and experiment types ("Makaratzis et al. [115];

Gustedt et al. [74]; Senyo et al. [132]). Developers of cloud computing systems may thus

choose from a wide variety of simulators for use in their empirical research projects (Barker

et al. [36]; Li and Deng [106]).

All software simulation tools provide opportunities to repeat experiments and to control

variables with respect to the architectural model of a target data centre environment;

however, simulators may have specific features and variants based on the typical use

case for simulation. There are thus many limitations and trade-offs to consider when

investigating data centre systems issues by means of simulation, which is one explanation

for the vast number of cloud simulators available. As an alternative, researchers have

therefore proposed employing micro data centres, based on micro servers (Hosman and
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Baikie [78]; Kyaw et al. [103]) used instead of normal servers to reduce costs. According

to Greenberg et al. [72], micro data centres have also been proposed for use alongside

normal servers to improve performance and reduce costs. Micro data centres can therefore

be used as platforms for researchers to conduct experiments Toosi et al. [143]. However,

questions have been raised about the efficiency of micro data centres as a replacement of

commercial servers by Zhao et al. [162], and different techniques that can be used to predict

the performance of cloud computing data centres such as predictive models and emulation

modeling are also popular. In this research, a predictive model is therefore applied to

examine the performance of Raspberry Pi infrastructure. The most important objective

of this research into a micro data centre built on Raspberry Pi is to use the predictions

of performance to validate existing cloud computing simulators and to generate a publicly

accessible data set for predicting the performance of large data centres with differing

architectures.

1.2 Problem and Motivation

When developing an efficient cloud computing simulator, the capability of the simulator

to model all aspects of cloud computing environments with appropriate levels of accuracy

is the main influential factor. The level of accuracy required for simulation models can

be checked by conducting a quantitative study via empirical comparison against actual

measurements. The simulator capability can also be investigated by qualitative study

that provides in-depth analysis of the existing simulator features. Despite the growing

popularity of Cloud Computing simulators, their general level of accuracy has not yet been

well investigated, however, and it is therefore difficult to choose an optimal simulator based

on reliability. The precision of results produced by various cloud computing simulators

relative to a particular real-world infrastructure can vary due to a number of factors,

including infrastructure topology, benchmark task characteristics, and the fidelity of the

simulator. Different network topologies clearly affect the performance of data centres in

term of total execution time, but it is also known that different workloads behave differently

based on the workflow of the workload and the way that it runs on the machines, whether
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in parallel or sequentially. As each simulator is generally built for a particular type of

experiment, the network topology and the workload behaviour must be considered during

the modelling.

Other modeling tools, such as predictive models, can be used to predict the performance

of data centre infrastructure. However, choosing accurate tools is difficult due to the lack

of investigation of levels of accuracy in the literature. The difficulty in investigating level

of accuracy lies in the complexity and cost of conducting the required cross validation

experiments against large data centres; this cross validation work needs to be repeated,

which makes it even more difficult to conduct verification work.

1.3 Thesis Statement

The purpose of the research statement is to articulate the way in which a methodology

for evaluating a range of cloud computing simulators is demonstrated. Despite the fact

that numerous cloud simulators have been designed to simulate cloud infrastructures, the

current work focuses only on three: CloudSim, Mininet, and GreenCloud. Thus, the

statement defines the scope of the research, as well as presenting a set of specific research

questions to guide the study.

One of the chief benefits associated with the utilisation of cloud simulators in the con-

text of business is dramatic reductions in capital expenditure and, critically, the freedom

not to have to provision or maintain data centres. As aforementioned, there is a wide range

of cloud infrastructure simulators available alongside the three that are analysed in the

current research, such as CloudAnalyst Wickremasinghe et al. [152], NetworkCloudSim

Garg and Buyya [70], and MDCSim Lim et al. [109]; in light of this, generating an under-

standing of various systems’ respective cores, novel features, and disadvantageous features

is the central motivating factor for developing an evaluation methodology.

This work is vital for cloud computing researchers using simulated models in their

research, as well as for developers of cloud computing simulators. Researchers can benefit

from understanding the level of accuracy, features, and advantages of several existing sim-

ulators, while this research is also important for developers of cloud computing simulators
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wishing to prove the validity and reliability of their simulators, based on doubts about the

validation of CloudSim in the work by Velho et al. [148].

Research Hypothesis: Different classes of modelling tools for Cloud

Computing experiments provide characteristically different levels of ac-

curacy. The accuracy of cloud computing simulators can, however, be

systematically characterised using empirical data drawn from micro data

centre configurations. Further, the run time of a micro data centre can

be accurately predicted using appropriate Machine Learning algorithms

trained on a data set of representative workloads.

Figure 1.1: The Hypothesis Overview Diagram, Showing Four Classes of Modelling Tools with
their Cost and Accuracy

Figure 1.1 shows the research hypothesis in terms of the differing levels of accuracy

and costs for the different tools researchers may use for cloud computing experiments. For

instance, simple simulators are generally cheaper than running experiments on commercial

data centres, and the level of accuracy of simulation models’ results is sufficient for many

different types of workloads. Moreover, there are other tools that can be used to conduct

experiments, such as prediction models based on machine learning models or the use of

micro data centres to predict the performance of other infrastructure features. Therefore,
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this research focuses on ascertaining and comparing the level of accuracy obtained by

various different tools that may be used for cloud computing experiments by applying

a comparative cross validation method on different modeling tools for Cloud Computing

and assessing the gaps between simulated results and actual performance. The computed

levels of accuracy will be presented for use in further research and the limitations and

drawbacks of the simulation tools thus identified will also be highlighted for investigation.

In this research, the following research questions are posed in order to address the overall

research statement:

RQ1 How are existing simulators categorised in terms of delivering the re-

quired modelling and features for experiments on Cloud Computing?

Chapters 3 and 5

RQ2 What methods and benchmarks should be used to evaluate any Cloud

Computing simulator? Chapter 6 and 7

RQ3 How do simulators accurately model Cloud Computing experiments?

Chapter 7

RQ4 Which types of modeling tools, such as simulation models or statistical

prediction modeling, can most accurately model a small scale data centre

based on Raspberry Pi devices? Chapters 7 and 8

This research is conducted with the aim of developing an accurate way to model cloud

computing infrastructure with fewer absolute and relative errors for future researchers to

use in their cloud computing research. This aim should be completed by fulfilling the

following objectives:

• To study existing techniques for cloud computing modeling, such as simulation tools

and predictive models, in terms of their drawbacks, advantages, and functional and

non-functional characteristics.

• To generate a data set for the performance of micro data centres running against

various benchmarks that can be used for evaluating existing models and as a training

data set for developing a predictive model.
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• To analyse the level of accuracy for existing simulation tools by applying a cross

validation method against micro data centre infrastructure built on Raspberry Pi

devices.

• To develop a predictive model based on the performance of Raspberry Pi devices

that acts to predict the performance when running applications on different devices

or different sizes of data centre.

• To validate the results from this predictive model by statistical analysis and cross

validation.

This thesis responds to the conundrum of choosing an appropriate simulator by pro-

viding a systematic procedure for selecting a suitable simulator based on in-depth analysis

of a set of existing simulators. This systematic procedure can be applied by researchers

to any set of simulators. Moreover, the study of these simulators should allow researchers

to characterise the different features of simulations relative to real cloud computing in-

frastructures. New features can then be developed for each individual simulator based on

the results of investigating the limitations of existing simulators. Furthermore, formally

analysing selected extensions should lead to a better understanding of how to extend a

new simulator from any existing simulator.

To address the other questions, two types of investigations are conducted. A qualitative

study into the advantages and limitations of a set of existing simulators in the cloud

computing field is undertaken, followed by a quantitative study on a set of three simulators

that applies cross validation experiments between the chosen simulators and a small scale

data centre based in the researcher’s university. This also offers the main source of data

collection for the evaluation component of this thesis.

In order to develop a methodology for evaluating the target cloud computing simulators

and for evaluating any cloud computing simulator, there are a range of techniques that

can be used to verify computer simulation models delivered by (Sargent [131]and Beckert

et al. [37]). In this research, we refer to empirical verification technique which has been

applied in the current research by fulfilling the following steps:
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• Carrying out a cross validation work between each simulator and the micro data

centre.

• Existing benchmarks with parameterised configurations are run on the micro data

centre.

• Modelling the benchmarks and infrastracture configurations on each simulator from

the set CloudSim, GreenCloud, and Mininet.

• The results compared across each simulator

This first requires the collection of data sets for both the evaluation results and micro-

benchmarks in order to sanity check the new simulators. This process is a critical part

of the evaluation as it facilitates the collection of specific data to a greater degree than

examining the general characteristics of each cloud simulator, which include flexibility,

scalability, functionality, and effective performance in various aspects.

The data set parameters examined can be categorized into three areas: simulators;

benchmarks and parameters; and other elements such as the topology and nodes forming

the target data centre architecture. Along with this, two non-functional characteristics are

also measured, as they are important factors when evaluating cloud computing simulators

for actual use: execution time and power consumption.

The level of precision for different simulators is compared by modelling different work-

loads based on various features such as size, communication type, and computation models

in all tested simulators. Selecting different workloads leads to modelling different types of

applications and experiments on the simulators, and allows the research to provide a real

infrastructure framework based on micro servers on Raspberry Pi v2 and v3 with profiling

tools that automatically profile the performance of real workloads on actual infrastructure.

This provides a standard framework for testing real infrastructure performance running

various types of workloads. The infrastructure is based on Raspberry Pi devices as these

are already used as data centres in several works in the literature on cloud computing

experiments such as Abrahamsson et al. [19], Varghese and Buyya [147] and Toosi et al.

[143].
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Several types of micro data centres are used for various research and commercial pur-

pose in field of cloud computing, as micro data centres offer excellent opportunities for

conducting research into cloud computing in developing countries because of their reduced

costs as compared to the containerised data centres often used in developed countries (Hos-

man and Baikie [78]).

Another way of modeling the cloud computing data centre infrastructure is prediction

modelling based on machine learning algorithms; this uses the data set generated from

an evaluation of a micro data centre to develop a predictive model for data centre archi-

tecture. This is used in this research to confirm the feasibility of using micro data centre

infrastructure to predict the performance of other types of data centre.

Overall, future researchers will be able to use this empirical study of the features

of existing simulators alongside other surveys in the literature to help select the most

suitable simulators for their experiments. It will also allow researchers to invent new

features for individual simulators or to develop new simulators with specific features.

Evaluating existing simulators which possess the same features for a particular type of

workload also helps provide a level of confidence for researchers conducting experiments

on more than one simulator. Furthermore, quantifying the simulated performance of a

cloud infrastructure relative to a matching real cloud infrastructure informs the developers

of the level of accuracy of the simulators to either prove the validity of the simulator or to

allow them to add new features to improve reliability and usability. Insofar as there are

already numerous forms of cloud architecture, the value of this development of an effective

evaluation methodology primarily lies in the fact that it addresses the current and growing

demand for effective cloud computing simulators in both industrial and academic settings.

As the evaluation methodology illuminates those areas most pertinent to cloud simulators,

an effective system that allows users to identify the ideal cloud simulator for their work in

the most efficient way is generated, helping to save energy, costs, and time. This work thus

constructs and characterises a general framework that offers different types of benchmark

performance to validate any new simulators arising.
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1.4 Contributions and Publications

This research makes the following contributions to the field of cloud computing modeling

and performance evaluation:

• A systematic literature review and a qualitative content analysis of existing simula-

tors for the selection of the most suitable tools at the earliest stages of conducting

cloud computing experiments. (Chapter 5)

• An evaluation of the performance of a micro data centre built on Raspberry Pi

devices running different types of workloads; these are a Data Traffic (DT) running a

message passing interface for high performance computing jobs; Apache Bench (AB)

for web server applications, a Cassandra-Stress for NoSQL database applications,

and word count on Spark for big data applications. (Chapter 6)

• Generating a method for accuracy and sanity checking any cloud computing simu-

lators based on micro data centre infrastructure, and more specifically, presenting

the level of accuracy of three extant cloud computing simulators, CloudSim, Green-

Cloud, and Mininet. (Chapter 7)

• Developing a predictive model for data centre performance based on micro data cen-

tre performance by applying Artificial Neural Networks (ANN) and Linear Modelling

(LM). (Chapter 8)

Figure 1.2 shows an overview of the contributions delivered in the research. During

the course of this research, two peer reviewed conference papers were also produced in

collaboration with the supervisory team Alshammari et al. [28, 29]. Material from these

papers is incorporated into chapters 5 and 6.

• D. Alshammari, J. Singer, and T. Storer, Does cloudsim accurately model

micro datacenters? in Proceedings of the 10th IEEE International Con-

ference on Cloud Computing (IEEE CLOUD). June 2017,

DOI: 10.1109/CLOUD.2017.97
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 Comparison Study for
 Simulation Tools

 Accuracy Test
for Prediction 

Model

Which Modeling tool for Actual DC Infrastructure is More Accurate?

Figure 1.2: The Outcomes of the Dissertation
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• D. Alshammari, J. Singer, and T. Storer, Performance Evaluation of

Cloud Computing Simulation Tools, in Proceedings of the 3rd IEEE Inter-

national Conference on Cloud Computing and Big Data Analysis. (IEEE

ICCCBDA) April 2018, DOI: 10.1109/ICCCBDA.2018.8386571

1.5 Dissertation Outline

This section provides overview and briefly describes the proposed dissertation in my re-

search as follow:

1. Chapter 1: Introduction

This chapter presents the research hypotheses, statements, and questions. The con-

tents of the thesis are briefly outlined to give the reader an overview of the disserta-

tion’s flow and content.

2. Chapter 2: Background

This chapter explains the concepts and architecture of the selected simulators, which

are CloudSim, GreenCloud, and Mininet. The concept of the micro data centre,

built on Raspberry Pi. is also outlined. These descriptions represent the core of

each platform without focusing on performance or validation. Existing verification

and validation techniques for computing simulation models are also presented in this

chapter.

3. Chapter 3: Literature Review

This chapter examines existing studies in the area of cloud computing, particularly

in the field of simulation modelling and verification. Key findings in the literature

are linked to the current research to highlight similarities and differences. In addi-

tion, the chapter examines several different parts of the evaluation work, including

evaluating the performance of cloud computing systems that built on micro servers,

evaluating simulators in cloud computing systems, and examining existing machine

learning models for predictive modelling of cloud computing experiments.
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4. Chapter 4: Research Methodology

This chapter presents the methods that used in the research. The first method

was to select the most suitable simulators based on a systematic review of existing

simulators, while the second method was to evaluate any cloud computing simulators

based on data on micro data centre performance.

5. Chapter 5: Qualitative Study of Existing Cloud Computing Simulators.

This chapter includes a description of several cloud computing simulators based on

their features, proposed goals, architecture, and other concepts. Simulators that

have not been explained and used in the verification analysis are reviewed and a

historical analysis offered. Finally, the relational links between simulators designed

for the same purposes are elucidated.

6. Chapter 6: Performance of Benchmarking a Micro Data Centre

This chapter presents the performance results of the micro data centre running

different workloads. More details about the tools and techniques are presented,

including data centre structure, workloads, profiling tools, and the analytic test.

The chapter reports on the performance of the micro data centre running intensive

workloads such as Cassandra and Spark for big data application, thereby passing

performance information into the public domain for further research. A comparison

of the micro data centre against the real cloud data centre will also constitute a key

component of the performance measurements.

7. Chapter 7: Performance Evaluation of CloudSim, GreenCloud, and Mininet

This chapter focuses on explaining the methods used to evaluate the selected cloud

simulators and presenting the results of simulated performance in existing simulators.

The respective levels of accuracy are also compared with the actual performance of

the micro data centre.

8. Chapter 8: Predictive Model for Cloud Computing Experiments

This chapter delivers the predictive model that the study contributes to predicting
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the performance of any data centre infrastructure; this is based on the performance

of the micro data centre as evaluated in chapter 6.

9. Chapter 9: Conclusion

This chapter concludes the work by presenting the key contributions, offering a

dissertation summary, and providing recommendations for further work.
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Chapter 2

Technical Background

2.1 Introduction

This chapter offers a general overview of the concept of cloud computing, the selected

simulators and the realistic data centre based on Raspberry Pi that form the background

of this research. This chapter thus defines and discusses cloud computing simulation, with

a focus on the attributes and structures of CloudSim, Mininet, and GreenCloud. The

Glasgow Raspberry Pi Data Centre is a small-scale data centre that is also examined in this

chapter, with details of its architecture and software design being provided. This chapter

also offers an overview of existing verification and validation techniques for computer

systems. The subsequent chapter then moves into a comprehensive literature review of

related research into cloud computing systems and tools.

2.2 A View of Cloud Computing

The concept of cloud computing emerged alongside the development of mainframe com-

puting in the 1950s and was supported by the virtualization technologies that appeared

in the 1970s Ahuja and Muthiah [22]. It is now widely accepted that cloud computing

brings great advantages to modern businesses and supports the use of information tech-

nology in general (Marinescu [116]; Wang et al. [150]; and Gupta et al. [73]. According

to Mell and Grance [119], "Cloud computing is a model for enabling ubiquitous, conve-
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nient, on-demand network access to a shared pool of configurable computing resources

e.g., networks, servers, storage, applications, and services that can be rapidly provisioned

and released with minimal management effort or service provider interaction".

The main characteristics of cloud computing are as follows (Mell and Grance [119]):

• On-demand self-service: Allows consumers to access the required services, such

as server time and network storage, without any human communication from the

service provider side.

• Broad network access: Cloud computing facilities are available and accessed via

network for several types of platforms from the consumer side.

• Resource pooling: Resources and facilities from the providers can be shared by

different consumers with separate specifications for each resource based on consumer

demand.

• Rapid elasticity: Efficiency of resource provision can be provided in automatic

way of scaling outward and inward resources for end users based on demand.

• Measured service: The cloud system can control the leverage and provision of

services through monitoring techniques for the utilized services for both providers

and consumers.

According to Dillon et al. [60]; Marinescu [116]; Wang et al. [150]; and Mell and Grance

[119] there are four classifications of cloud computing based on system accessibility:

• Public Cloud: Accessible at any time, from any place, by anyone via the internet.

Examples of a public cloud are the Amazon Web Services Amazon Web Services

(AWS) [10], Microsoft Azure [11], and Google AppEngine [12].

• Private Cloud: Specific to an organization, it overcomes the security issues regard-

ing sensitive information that can be accessed in the public cloud.

• Community cloud: Differs from the private cloud as the providing organization has

shared concerns e.g. security requirements, policy, and compliance considerations.
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• Hybrid Cloud: Delivers a combination of public and private systems, providing

services to both the providers themselves and the consumers.

There are three primary services that cloud computing provides to consumers:

• Software as a Service SaaS: This allows the consumer to use the providers’

applications via a client interface such as a web browser. Limited access to configure

the application may also be provided.

• Platforms as a Service PaaS: This allows end users to deploy and configure

their applications to run on top of the provider’s infrastructure, using the provider’s

libraries, programming languages, and other support tools.

• Infrastructure as a Service IaaS: This provides processing, storage, networks,

and other fundamental computing resources to the end consumers to allow them

to run their own software, operating systems, and applications. Users can deploy

their applications without any consideration for the low level infrastructure such as

network devices, storage, VMs, and CPU capacity; however, there are only limited

possibilities in terms of selecting networking components.

Cloud computing is widely used in many areas of information technology as it effectively

reduces costs and maximises benefits for contemporary business and companies ( Armbrust

et al. [32] Mell and Grance [119] Marston et al. [117]). However, cloud computing features

inherent challenges, such as security, cost modeling, energy management, and virtual

machine migration. Researchers thus conduct experiments to address cloud computing

issues by using physical infrastructures, simulators, or mathematical models (Ahmed and

Sabyasachi [21]; Barker et al. [36]).

The cloud computing field offers many pitfalls and opportunities for researchers. Work

by Barker et al. [36] has generally argued that the academic researcher should concentrate

their efforts more on software as a service and platform as a service aspects than on

infrastructure as a service. Non-reproducible results are also a general pitfall in cloud

computing research, as there are huge difficulties using real cloud infrastructure without a
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simulator application such as CloudSim (Calheiros et al. [46]) or GreenCloud (Kliazovich

et al. [100]).

Many academic researchers have been accused of simply rebranding grid activities and

research to focus on cloud computing, while industrial users of the cloud are increasing

production levels simply by using real cloud infrastructures. However, there appear to

be several opportunities concerning future cloud research, including user-driven research

and programming models, that could lead to more effective results in the academic field.

Focusing on the elastic applications of the cloud rather than working on its infrastructure

is thus advised.

2.3 Overview of Existing Cloud Computing Simulators

In order to evaluate simulation models for cloud computing experiment, the current work

focused on choosing popular simulators for various common types of experiments. This

led to the selection of CloudSim (Calheiros et al. [46]), GreenCloud (Kliazovich et al.

[100]), and Mininet (Min [8]), which offer a diverse range of simulation types in terms of

platform and purpose. All three simulators are able to simulate both computation and

communication; however, these simulators were developed with different focuses, these

being computation for CloudSim and communication in mininet, and power consumption

in GreenCloud. Moreover, these simulators are built on different platforms: Java for

CloudSim, C++ for GreenCloud, and a virtual environment to be run on top the physical

machine for Mininet.

The simulation tools used in this research are based on mathematical equations that

cause them to behave like the actual nodes. They have been programmed by developers

based on the characteristics of actual data centres in computer programming languages

such as Java, C, and Python. For example, in CloudSim, the class VM has attributes

representing the features of virtual machines, while the class Cloudlet has the features

of the tasks to be run on the machine. When executing a task, the VM is capable of

executing 1,000 Million Instructions Per Second (MIPS), so the time for a 1,000,000,000

instruction task will be one second in CloudSim, resulting in the mathematical expression:
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Execution time = Cloudlet. Number of Instruction / VM. MIPS

The predictive models in this research are based on the algebraic equations used to

train existing data sets based on actual measurements. The prediction models give the

predicted results based on the previous performance of the data centre and other data

centre characteristics. The prediction model can predict the performance of data centres

based on several types of data centre running similar workloads or the same data centre

running different types of workloads.

It is thus clear that the simulation tools are based on only mathematical equations

that are expected to behave like the actual data centre, while the predictive models are

based on algebraic methods trained using actual data sets to predict unknown data centre

performance.

In the next section, the base CloudSim, Mininet, and GreenCloud tools are described

in detail. It is necessary to understand the architecture and design principles of these

tools in order to appreciate the demand for extensions to the base CloudSim system made

in Chapter 5. Moreover, it is important to deeply investigate the design and architecture

of all tools involved in the research to justify the modeling results arising from the cross

validation experiments on the micro data centre.

2.3.1 CloudSim

Cloudsim (Calheiros et al. [46]; Buyya et al. [43]) is a configurable generic tool that

simulates and models cloud computing environments. Cloud concepts and entities are

modelled as a set of Java classes that simulate the entire operation of the cloud computing

systems and their workloads. It has several features that make it particularly flexible,

such as the possibility of simulating small- and large-scale cloud computing deployments,

including federated cloud and inter-cloud typologies.

Work by Calheiros et al. [46] generated a self-contained framework that can be used

to simulate the workload of the cloud using an end-to-end network architecture. Figure

2.2 shows the architecture of the CloudSim framework insofar as it consists of data centre,

hosts, virtual machines, and tasks. The CloudSim framework (Calheiros et al. [46]; Buyya

et al. [43]) is thus logically divided into various modules:
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Figure 2.1: The Architecture layers of CloudSim Framework Dubitzky et al. [62]

• User Code: code that implements the user requirements and the application config-

uration.

• Broker: algorithms that link user interfaces and the data centre and schedule policies.

• User Interface: acts as a bridge between the user and the simulator, which lies

between the user code and the underlying cloud resources.

• VM services: performs execution of the application and management of the VM

Cloud Services; this covers several activities such as provisioning VMs, and allocating

underlying physical resources (CPU, memory, etc).

• Cloud resources: CloudSim must coordinate low-level events in the data centre.

• Network: management of network features, such as message delay calculation and

network topology.

CloudSim core simulation is based on top of GridSim (Buyya and Murshed [44]),

which in turn is built on top simjava (Howell and McNab [79]). However, GridSim Buyya

and Murshed [44] manages the simulation inside the framework based on simjava’s event

simulation model, which is a tool-kit for building working models of complex systems.

However, CloudSim 2.0 and later releases manages event simulation internally, rather
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than using simjava (see Figure 2.2). This overcomes limitations in simjava, such as an

inability to reset events during the run time, overheads creation and complexity in the

multi threading nature of simjava. Instead, CloudSim stores future event in a queue until

they are due for execution, and then moves completed events to a DeferredQueue which

provides flexibility management of simulation. The CloudSim design enables four capa-

bilities for each event in the simulation: deactivation, switching of entities, creating new

entire and restarting the simulation at run time Calheiros et al. [46]. Figure 2.3 shows the

core event management framework for CloudSim. Several key CloudSim (Calheiros et al.

[46]) classes are outlined below as the fundamental classes that represent the simulation

of cloud computing environment in CloudSim:

• Cloudlet: to model application-level services.

• CloudletScheduler: to class is extended by the implementation of different policies

that determine the share of processing power among cloudlets in a VM.

• Datacenter: to model infrastructure-level compute services.

• Datacenter Broker: to simulate the broker in the cloud with responsible on linking

the layers SaaS with cloud providers.

• BwProvisioner: to model the policies of provisioning of bandwidth to the VM.

• CloudCoordinator: to extend the data centre of the cloud to the federation.

• Host: to models a physical nodes as resources in data centres .

• NetworkTopology: to indicate network behavior

• RamProvisioner: to allocate primary memory (RAM) to the VMs.

• SanStorage: to model a storage area network.

• Sensor: to be interface that must be implemented for Cloud Coordinator in moni-

toring specific performance parameters.



22 CHAPTER 2. TECHNICAL BACKGROUND

Figure 2.2: The Design of the CloudSim, reproduced from Buyya et al. [43]

• Vm: to model a virtual machine that runs on a particular host with its specifications

such as RAM

• VmmAllocationPolicy: to set provisioning policy that a VM Monitor utilizes for

allocating VMs to hosts.

• VmScheduler: to apply allocating processor cores to VMs by a Host component that

models the policies (space-shared, time-shared).

Figure 2.4 shows the class design diagram of CloudSim, demonstrating that CloudSim

has provision classes, allocation policy classes, and scheduler classes. Provision classes

are responsible for providing the cloud data centre with all its major components, such

as virtual machines, memory, and bandwidth; allocation policy classes manage time- and

space-sharing allocation policies; and scheduler classes are responsible for implementing

the time- and space-sharing allocation policies in terms of allocating cores for VMs (Cal-

heiros et al. [46]; Atiewi and Yussof [33]; Buyya et al. [43]).

Initial releases of CloudSim used SimJava (Howell and McNab [79]) as the discrete

event simulation engine, but CloudSim has been developed through six official public re-

leases, and the latest version of CloudSim is v4.0, which provides support for container
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Figure 2.3: CloudSim core simulation framework class diagram, reproduced from Calheiros et al.
[46]

Figure 2.4: The CloudSim design diagram, reproduced from Calheiros et al. [46] Buyya et al.
[43]
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Figure 2.5: Growth of CloudSim in Number of JAVA Files

virtualization, required by many mainstream cloud providers ( Clo [3]). The previous

release (v3.0.3) improved the mathematical accuracy and allowed the minimum time be-

tween events to be user-configurable. It also added a new constructor for defining the data

size to increase simulation granularity. Generally, new public releases of CloudSim aim to

improve simulations by modelling new entities (e.g. internal networks) or supplying new

policies (e.g. for VM selection) Clo [3]. Figures 2.5 and 2.6 show the growth of the frame-

work, with an increase in number of java files and code lines, since it was first publicly

released in 2010 to 2016.

CloudSim has been used as a simulator in different areas of cloud computing such as

resource allocation management (Abar et al. [18]) and energy consumption (Kord and

Haghighi [101]; Shaoling et al. [133]; Whittington et al. [151]). CloudSim has also been

extended to produce many alternative simulators such as NetWorkCloudSim (Garg and

Buyya [70]), DynamicCloudSim (Bux and Leser [42]), DartCSim (Li et al. [107]) and

Cloud2Sim (Kathiravelu and Veiga [89]) in order to provide more features and properties.
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Figure 2.6: Growth of CloudSim in Terms of Number of Lines of Code

2.3.2 Mininet

As a network emulator, Mininet (Min [8]) runs a collection of end-hosts, switches, routers,

and links on a single Linux kernel. Capitalising on the cryptographic network protocol

Secure Shell (SSH), hosts on Mininet are able to be connected as if they were real hosts.

Furthermore, Mininet hosts as described in De Oliveira et al. [56] can run real workloads

for web servers, an example being the HTTP benchmarking tool Apache Bench (ABa [1]),

iwhich is used in the current research. Mininet also permits the installation of several

profiling tools, including iperf and perf, which can be run to provide measurements of

application performance. As Mininet affords the possibility of creating a realistic virtual

network that resembles a hardware network based on several features, Mininet overcomes

the complexity and overheads that can be caused by the use of virtual networks or con-

tainers on physical machine as research tools ( Lantz and O’Connor [104]).

In this research, a Python script that models the ab benchmark was developed. This

Python script can be run on Mininet and the ensuing results can be comparatively ex-
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amined against actual performance using the Raspberry Pi data centre, with the latter

running actual benchmarks. In this research, Mininet was run on a machine with an intel

Core i5-4690 processor with 16GiB of memory and a 500 GB disk.

2.3.3 GreenCloud

As a packet-level simulator, the fundamental use case for GreenCloud relates to the domain

of energy-aware cloud computing data centres (Kliazovich et al. [100]). For the most part,

the data centres GreenCloud targets are associated with cloud communications. It is

thus important to recognise that the GreenCloud simulator represents an extension of the

widely-used NS2 network simulator, as released by a General Public License Agreement.

One of the strong points of the GreenCloud simulator is the potential it affords in modelling

levels of energy consumption associated with information technology equipment within a

data centre. The equipment that GreenCloud is most effective at modelling in this respect

includes computing servers, communication links, and network switches. Figure 2.7 shows

the GreenCloud Simulator’s architecture.

GreenCloud can be used to develop new techniques for resource allocation and workload

scheduling, and it has proven its value in the optimisation of communication protocols and

network infrastructures, the latter two applications being closely linked to the efficient

power management of data centre infrastructure. In the present research, the features

of the Raspberry Pi data centre (which runs MPI) were fed into GreenCloud, including

MIPS, algorithms, and execution time. This was done because it enabled a comparative

examination of the simulated results against real measurements of the serversâĂŹ energy

consumption. The focus was thus on the server segments of the simulated results. The

rationale for this stems from the fact that, within the selected infrastructure, only measure

the energy consumption of the Raspberry Pi nodes could be measured.

2.4 The Glasgow Raspberry Pi Cloud

A large-scale cloud computing infrastructure is difficult to use for experiments in cloud

computing research due to high costs and the time-consuming nature of such use. Repeat-
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Figure 2.7: The GreenCloud Architecture, reproduced from Kliazovich et al. [100]

ing experiments is possible using real cloud computing providers’ infrastructure, but it is

extremely difficult work. However, the limitations of cloud computing simulators can affect

the results of experiments that are run with a simulated environment. Low- cost Raspberry

Pi devices thus offer the opportunity to build scale-model cloud computing environments

such as data centres, virtual machines, and networks to examine their behaviours; these

can be tested as network nodes and offer valid results for such experiments.

Tso et al. [144] developed a cloud computing test-bed containing 56 Raspberry Pi

devices that are used to create a small data centre. This is called the Glasgow Raspberry

Pi Cloud, and they have provided the design and architecture of the network to the public.

The Glasgow Raspberry Pi Cloud is a part of Picloud, running Linux from a Sandisk 16GB

SD card storage device. As a cloud computing environment requires a server for the data

centre, authors have tended to use Raspbian as a server in the cloud infrastructure. It

is clear that Raspberry Pi has several advantages, such as its minimal power and cooling

needs, in terms of running any cloud computing experiment repeatedly. The Glasgow

Raspberry Pi Cloud has thus been structured as a scale model of a cloud computing
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data centre to allow authors to try to avoid the drawbacks of both real environments and

simulations of the cloud.

Avoiding the drawbacks of real cloud providers in terms of costs is a clear driver, and

the reasons for using Raspberry Pi devices as a substitute are obvious. However, simulator

systems have been used in a great deal of published research, and the exact limitations of

this approach are less clear. It would therefore be advantageous if real experiments were

done comparing the same workload attributes in all three cloud computing environments:

a cloud computing provider’s 56-machine test-bed, the Glasgow Raspberry Pi Cloud, and

an appropriate simulator system. Work on monitoring clouds, intrusion detection systems,

and power consumption of the cloud has been done to some extent in the work of Tso et al.

[144], who focused on replacing the virtualisation container, Linux Containers LXC, with

Docker and applying Spark Hadoop instead of Hadoop in order to increase the performance

of the data centre. Raspberry Pi version 2 from the University of Glasgow supports existing

small data centres becoming more powerful, however, as the Raspberry Pi 2 has several

enhanced features such as a 4-core CPU, 1 GHz clock speed, and 512 MB of storage. With

version 2 of Raspberry Pi, the small-scale data centre can be used to investigate a new

framework for an algorithm that matches three input rules (power consumption and cost

for cloud providers, quality of service attributes for consumers, and green cloud computing

requirements).

The low power consumption of Raspberry Pi devices leads to lower running costs, while

the capacity of version two Raspberry Pi provides better performance for different types of

workloads. In terms of green computing aspects, it is also clear that the way that Glasgow

Raspberry Pi Cloud built does not necessitate a cooling system, which reduces the impact

to the environment and lowers costs.

Figure 2.8 shows the system architecture of the Pi cloud and Figure 2.9 presents the

Pi Cloud software stack.
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Figure 2.8: System Architecture of the Pi Cloud, reproduced from Tso et al. [144]

Figure 2.9: The Pi Cloud software Stack, reproduced from Tso et al. [144]
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2.5 Verification and Validation Computer System Sim-

ulations

According to the work of Beckert et al. [37], the verification and validation of computer

system simulators is a checking process intended to ensure that various requirements have

been met. These verification processes are conducted during the preliminary stages of

software development and can be described as a static way to check the documentation of

the software by means of experts reviewing the software design. Validation is the process

of checking the output and the results of software against the expected outcomes, which

can be done either by the developing team or the end users. Once the final version of

the software has been produced, a further validation phase is conducted by testing the

capabilities and features of the software to ensure they meet requirements.

As indicated in Sargent [131], the verification of computer system simulations is not a

well-investigated topic in the literature, and specifying particular techniques or algorithms

to be applied for any computing simulators to determine the level of accuracy is not

adequately explained.

Validating simulators assesses the accuracy of the simulator for a particular experiment;

it is not possible to generalize how accurate the simulator is in general based on a specific

experiment. Validating the overall level of accuracy for simulators can thus be conducted

by either comparison with the real system, comparison with the analytic model, or by

applying engineering judgment (Lilja [108]). In the current research, testing was performed

different types of workloads and different attributes measured in various cloud computing

experiments in order to determine the level of accuracy achieved by the model within

different types of experiments.

A Multi-Stage Verification (MVS) approach was identified in Kleijnen [99]; this is a

combination of three stages that allows the computing model to be verified in its entirety.

The three stages for MVS are as follows:

1. Study the formulation and the core to determine whether the simulator for set hy-

potheses describes the behaviour of the system modelled in the simulation
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2. Produce test for the hypotheses in the system analysis section, thereby verifying the

models regarding the limitations of the existing statistical tests

3. Test the models’ ability to predict the computer system under study.

According to Twomey and Smith [146] four other basic approaches for validation and

verification of computer simulation tools are as follows:

1. Validation experiments are conducted by the developing team

2. If the team is small, the validation work can involve end users

3. Independent validation can be carried out by a third party to increase the objectivity

of the judgements; prior research generally agrees that the first two approaches

generate somewhat subjective results.

4. 4. The simulation can be tested on various aspects of various experiments and the

overall result for the different tests can then be calculated to generate what is known

as a Scoring Pass.

There is a need to test multiple scenarios and different types of experiments on each

specific simulation tool in order to generally state the validation and accuracy level of

any tools used. As the application of verification analyses can be used to evaluate any

simulator by comparing its outcomes with historical observations of either existing valid

simulators or actual test-beds, in the current research, analysis of different simulation and

prediction tools was applied by means of comparative studies against a micro data centre

performance.

2.5.1 Validating and Verification Techniques

Several techniques for validation and verification are collected in Sargent [130] and these

are defined as objective or subjective methods. Objectivity in this context refers to being

mathematically and statistically tested via an existing validity test such as hypothesis

tests or confidence intervals. These techniques for validation and verification include
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• Animation: Validating the simulation graphically through the duration of running

the simulation by changing some factors inside the model.

• Comparison to Other Models: Comparing the outputs of the simulation with existing

valid results from another model, such as a real test-bed or a valid simulation.

• Degenerate Tests: choosing an appropriate selection of values for the input and

internal parameters to validate the simulation behavior.

• Event Validity: Comparing events or occurrences in the simulation model with the

real system.

• Extreme Condition Tests: checking the models’ output to be plausible for any ex-

treme and unlikely combination.

• Face Validity: checking the behavior and logic of the system reasonableness by asking

individuals knowledgeable about the system.

• Historical Data Validation: using the existing data about the performance of the

system to test the new outcomes.

• Historical Methods: these are rationalism, empiricism, and positive economics. Ra-

tionalism is used when the assumptions of the system are recognized as true. Empiri-

cism requires every assumption of the system to be empirically validated. Positive

economics focuses only on the ability of predicting the future without concern for

the structure correctness and logic of the system.

• Internal Validity: running several experiments on the system to check the stability

of the outcomes graph.

• Multistage Validation: linking the three historical methods in one method in three

steps: 1) checking the assumption and logic of the system through its documentation;

2) validating the assumptions of the system empirically; 3) comparing the inputs and

outputs of the system with the real system.
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• Operational Graphics: checking the values of variables measurements through run-

ning time graphically to ensure that the software meets the expected performance

in a specific period of time.

• Parameter Variability and Sensitivity Analysis: applying signification changes in the

inputs of the system in order to check the changes on the outputs to be compared

with different statues statistically.

• Predictive Validation: predicting the systems’ behavior and subsequently comparing

it with the real system.

• Traces: tracing the behavior of the system on different specifications to check if the

models’ logic is correct.

• Turing Tests: checking with individuals who are experts in the system to see if

they can recognize the outputs from the model and differentiate them from the real

system output.

Sargent [130] has also also presented the modeling process and the validation and

verification steps for a simulation against the real world, as seen in Figures 2.10 and 2.11.

The main verification techniques arising from the existing research are:

• User modular programming concepts

• Testing entities into Model

• Checking the simulators based on arrays structures and logic

• Directional Analysis (the relationship between expected actions)

• Checking if the entities reach all parts of the module

The validation methods can be classified in three ways:

• Asking individuals to critically review the entire model.

• Asking individuals about the results in terms of which results are collected from the

modules and which are collected from the real system.
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Figure 2.10: Simplified Version of the Modeling Process Sargent [130]

• Statistically analyzing the outputs from the simulators and comparing with the real

system.

In this work, for the verification sections, the entities and models for each simulation

tool were checked before the model was simulated on the Raspberry Pi cloud to make

sure that it could be modelled without any modification to the simulator’s cores concepts.

Moreover, statistical tests were conducted on the outputs of each simulator and the results

compared with real test-bed outputs, a method listed as one of the validation techniques

in Sargent [130].
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Figure 2.11: Real World and Simulation World Relationships with Verification and Validation
Sargent [130]
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Chapter 3

Literature Review

3.1 Introduction

This chapter provides an overview of existing methods and techniques for modelling Cloud

Computing experiments, including simulators and machine learning models. The oppor-

tunity offered by using micro data centres and low cost and power computing resources is

also explored in the chapter, which highlights the usability of Raspberry Pi devices in the

field of Cloud Computing. This chapter also presents related work in terms of performance

evaluation and the prediction modelling tools for cloud computing and how these relate

to the current research.

3.2 Performance Analysis Goals

Measuring performance analysis for computer systems offers the possibility of comparing

alternatives, determining the impact of features of a system, and tuning and setting expec-

tations for future ideas of system capability (Lilja [108]). Computer system performance

can be evaluated by different methods that are delivered by Bukh [41] and Lilja [108] as:

• Predictive Modeling

• Real Time measurement.

Researchers who aim to conduct research on cloud computing will choose either simu-
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lation tools, mathematical models in case of using predictive modeling methods, or actual

infrastructure for the real time measurement methods. However, there are different levels

of accuracy and costs associated with using these different models. Lilja [108] claims that

simulation accuracy, simulation time, and the non-functional requirements of simulation

tools lead to complexity and decrease efficiency; thus, cloud computing simulators should

be evaluated where functionally correct, but this does not meet the expectations of a real

experiment.

3.3 Existing Cloud Computing Simulators

The use of cloud computing has rapidly increased, with many applications arising for di-

verse types of deployment. As it is difficult to measure and test application performance

in a real cloud environment, simulators have been employed to evaluate algorithms or

policies with more ease (Ahmed and Sabyasachi [21]; Senyo et al. [132]). Selecting the

appropriate simulation tool for an experiment can prove problematic for researchers, how-

ever. Although there are several simulation tools available, as discussed in Maarouf et al.

[113]; Kaleem and Khan [87]; [161]; Ahmed and Sabyasachi [21];Byrne et al. [45] there is

little guidance or information provided for researchers in terms of suitability or accuracy

for a specific function in each case. Moreover, cloud computing simulators are ill-equipped

for critical points of study in cloud systems, as they cannot model every case in the system

and are generally developed with the objective of duplicating the non-functional features

of the cloud system (Souri et al. [139]).

Ahmed and Sabyasachi [21] analysed existing simulator information and divided it into

different categories:

• Underlying Platform : some of the simulators are underlying of SimJava such as

CloudSim (Calheiros et al. [46]) and SimIC (Sotiriadis et al. [138]). Other simulators

are extensions from others simulator such as NetworkCloudsim (Garg and Buyya

[70]) which is an extension of CloudSim Calheiros et al. [46].

• Availability : most of the simulators are open source. However there are some
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simulators are not available yet -till the time of writing this thesis- such as SimIC

(Sotiriadis et al. [138]) and MR-Cloudsim (Jung and Kim [85]).

• Programming Language: Java, C++ and otcel

• Cost Modelling: CloudSim (Calheiros et al. [46]), CloudAnalyst (Wickremasinghe

et al. [152]), iCanCloud (Núñez et al. [121]), NetworkCloudSim (Garg and Buyya

[70]), EMUSIM (Calheiros et al. [47]), MR-CloudSim (Jung and Kim [85]), DCSim

(Tighe et al. [142]) and SimIC (Sotiriadis et al. [138]) provide opportunities to model

and simulate the cost of cloud computing architecture.

• Graphical User Interface GUI: Most of the simulators that been provided in this

paper do not support the GUI except CloudAnalyst and some limited GUI in Green-

Cloud Kliazovich et al. [100] and GroudSim Ostermann et al. [122].

• Communication Model: GreenCloud (Kliazovich et al. [100]), iCanCloud (Núñez

et al. [121]) and NetworkCloudsim (Garg and Buyya [70]) can fully model the com-

munication action on actual data centre infrastructure.

• Simulation Time: Seconds are likely to be the unit of execution time granularity

for simulated jobs and workloads. GreenCloud (Kliazovich et al. [100]) and DCSim

(Tighe et al. [142]) use minutes to calculate the time execution of the task in case

of intensive workload and big data models.

• Energy Model: Energy model is so important to be simulated as it is clearly known

that data centre infrastructures are consuming power and energy. This survey shows

that iCanCloud Núñez et al. [121], GroudSim (Ostermann et al. [122]) and DCSim

(Tighe et al. [142]) do not support the energy modelling.

• Federation Policy: CloudSim (Calheiros et al. [46]) and its extension have been

shown as simulators that can model the federation cloud. SimIC (Sotiriadis et al.

[138]) can also model the federation policies.

Kaleem and Khan [87] and Zhao et al. [161] provide descriptive studies of some existing

simulators, briefly describing them in terms of their underlying platform programming
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language, availability, supporting communication modeling, and simulator type (event

based or packet level). However, these works lack investigation into the structure and the

level of accuracy, or ways to select the optimum simulator based on features. Maarouf

et al. [113] provides details of existing simulators and their features and characteristics,

thus enabling researchers to gain an overview of each simulator prior to deploying them

in their experiments.

One of the existing simulators in the field of cloud computing is called DISSECT-CF

(Kecskemeti [91]) which was developed to overcome existing limitations in the simulation

of cloud computing system based on performance issues in scheduler techniques. This

simulator supports the energy evaluation of IaaS as applied in different scheduling policies.

It provides resource sharing models and complete IaaS stack simulations in order to easily

simulate the management of resource and data centre performance. However, as it focuses

on infrastructure cloud schedulers, it has limitations with regard to performance accuracy

and does not support packet level simulation. It has been validated by comparing its

simulated result against a small scale data centre for some workloads and by means of

a comparison study of its performance against that of other simulators (CloudSim and

GroudSim). However, DISSECT-CF has not been evaluated by testing different types of

workloads.

3.4 Modelling the Performance of Cloud Computing

Via Machine Learning Techniques

According to Alpaydin Alpaydin [27], machine learning (ML) can be defined as "the so-

lution of detecting certain patterns from large data and is a way to predict future actions

and performance based on past data and experience". Prediction Modelling has been

employed in many diverse research projects to resolve complex issues and overcome the

difficulty of conducting experiments on real infrastructure (Islam et al. [82]; Kim et al.

[97]).Machine learning applications can be divided and classified into supervised learn-

ing, unsupervised learning, and reinforcement learning. Each kind of machine learning

application has unique methods that generate a model based on the concept behind the
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application such as classification, regression, clustering, and so on. In supervised learning,

machines deal with input data that is already mapped to an output class by a supervisor,

while unsupervised learning uses only unlabelled input data; the unsupervised learner must

thus identify regularities in the input. Clustering is used in unsupervised applications to

group input data based on specific features.

Regression models have been applied by Khoshkbarforoushha and Ranjan [95]; Lee

and Brooks [105]; Martens and Dardenne [118] and Ozisikyilmaz et al. [123], in order to

predict the performance and power of the infrastructure of the data centre.

The Support vector machine is a machine learning algorithm that has been used in

existing works by Veni and Bhanu [149] and Ajila and Bankole [23], It is reported to be

more effective than linear regression and neural networks.

The work in Kim et al. [97] delivers a review of the existing workload predictors that

are used in resource scalability for cloud computing infrastructure. It is focused on the

predictors accuracy, efficiency and achieving the best cost and performance. Kim et al. [97]

evaluated the performance of the selected predictors via a simulator called PICS (Public

IaaS Cloud Simulator).

There are four styles of predictive scaling that have been applied in the evaluation:

• RR (Scale-Out: Reactive + Scale-In: Reactive)

• PR (Scale-Out: Predictive + Scale-In: Reactive)

• RP (Scale-Out: Reactive + Scale-In: Predictive)

• PP (Scale-Out: Predictive + Scale-In: Predictive)

Machine learning models have been used for different prediction tasks in the context

of cloud computing. We have divided them as to predict the workload execution time and

resource allocation. Overall, 21 predictors have been reviewed in the work (Kim et al.

[97]) and they were grouped into four groups as below:

• Workload Execution Time:
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1. Naive: predicts the next arrival job based on the mean of the previous job and

it can be applied on mean or recent mean, which only focuses on the recent

jobs.

2. Regression: there are two types of regression: (a) Global Regression which

predicts the next arrival jobs by generating a linear or polynomial regression

model using elements such as all prior job arrival times; and (b) Local Regres-

sion where in the predictive model there is a kernel function to choose samples

of job arrivals and subsequently create a linear or polynomial regression model

based on those samples.

• Resource Allocation:

1. Temporal (Time Series): there are seven methods that have been used

previously for cloud computing resource allocation research such as exponential

smoothing ES, auto regressive AR, auto regressive and moving average ARMA,

and auto regressive integrated moving average ARIMA.

2. Non-temporal: methods which have not previously been used for resource al-

location research in cloud computing: support vector machines SVMs, decision

tree, and ensemble methods.

The outcomes of the evaluation on these styles shows that workloads patterns (Grow-

ing, On/Off, Burst, and Random) should be considered before choosing the right predictor.

Furthermore, PP is the optimum style of predictive scaling as it has an overall better per-

formance than the others, with costs 30% lower, and an 80% lower rate of missed deadlines

than RR or RP. It also costs 14% less and has a 39% lower deadline miss rate compared

to PR.

In our research, in chapter 8, we consider the regression from the machine learning

predictors. From the scaling approaches, we use the PP approach as it is listed to be

the most accurate approach for predicting workload deadlines as we focus on workload

execution time. According to Zhai et al. [158], there are two approaches for predicting the

performance of parallel applications in large scale data centre; the first approach is building
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an analytic model based on historical data sets on the target platform, while the second

approach is to use a system simulator to model the behaviour of the target system based on

its characteristic and the functionality of the simulated system and applications. Analytic

modelling suffers from difficulty in generalising the predicted results to all applications on

the target platform, as each application behaves differently. Simulation tools also suffer

from a lack of accuracy in simulating large data centres; even though there is a possibility

that a simulator can predict large data centres accurately, this would be more expensive

in terms of CPU and memory requirements than analytical modelling, such as regression

based models, which predicts the execution time for workloads on particular processors

based on measurements of the workload on various processors.

Phantom predicts the execution time in three steps. It first generates traces by collect-

ing the communication time for a parallel application and sets the computation between

the communication operators as sequential to apportion the total time between communi-

cation and computation operations. The communication time is collected via profiling the

message characteristics such as message type, size, source, and destination. It then gath-

ers the sequential computation time for each processor on a single node from the target

architecture and updates the traces on the first step with the computation times recorded

on a single node. Finally, it feeds the traces results into a simulator called SIM-MPI Zhai

et al. [157] which is a trace driven simulator that can read the traces generated in step 1

and 2 against a particular network configuration in the simulator to predict the execution

time for the MPI application on the target data centre. Phantom has been evaluated by

means of a comparison study against traces produced from the SIM-MPI simulator and it

showed better accuracy than regression-based modeling as it takes into account the impact

of differences in communication time between nodes in parallel ap- plications. However,

it would be advantageous for Phantom to test various types of parallel applications as

well as considering the MPI application, as some parallel applications differ based on their

running status. For Example, some applications run on the native platform of the server

and some run on top of a JVM. Moreover, the memory footprint required for each parallel

application can be different based on the parallel application’s behaviours such as random

access to memory and shared memory.
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Neural networks have been used for load demand prediction for cloud computing data

centre Prevost et al. [127]; de Almeida et al. [55]). Prevost et al. [127] and the use of neural

networks to predict future resource requests for distribution applications. These different

approaches can be either stochastic or discrete modeling approaches: if the distribution

time between request arrival time and the time for the server transition is adaptable in the

model, this is a stochastic model, whereas in a discrete model, the client/server transfer

time is fixed. Linear predictors show good accuracy, as the experiments exhibit low root

mean square errors (RMSE). However, it would be advantageous to study different types of

real time workloads in addition to the URL resource requests on a WWW server at NASA

and a WWW server at EPA in order to show the performance of both neural networks

and linear predictors with respect to multiple types of applications. These attributes are

considered in the extension work on the produced prediction model in Chapter 8

3.5 Existing Micro Data centres in The Field of Cloud

Computing

According to Varghese and Buyya [147],low cost and low power servers such as Raspberry

Pi devices are likely to be applied more frequently in future generations of Cloud Com-

puting data centres for the decentralisation of data centre between multiple providers and

to deploy applications at lower levels. Micro data centres have also been used as parts of

the infrastructure of larger mega data centres to increase data centre performance and to

decrease power consumption.

The following subsections show the relative usage of micro data centres in the field of

Cloud Computing. To be more focused, we present details and statues of existing works

in the literature on Raspberry Pi devices. For example works by Huynh and Huh [81] and

Johnston et al. [84] showed the feasibility of using Raspberry Pi devices in maicro data

centre and proved the benefits of micro data centres.
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3.5.1 Feasibility of Using Raspberry Pi Devices in Micro Data

centres

Micro data centres have been used in different areas of the field of cloud computing for

many years. Abrahamsson et al. [19] focused on the delivery of a micro data centre built

using Raspberry Pi devices. That work did not, however, profile the performance of the

data centre, which is the focus of the current research, and providing information about the

performance of the data centre will allow further research to investigate the introduction

of new techniques or algorithms to the field of cloud computing by providing a baseline

for such effects’ measurement. It is also clear that while the implementers of the system

managed to configure and fully set up a data centre based on 300 nodes using Raspberry

Pi devices, the workloads run on this infrastructure were not fully explained and were not

profiled to demonstrate Raspberry Pi cloud performance.

Huynh and Huh [81] delivered a new technique for micro data centres that allows the

prediction of performance based on historical data sets using analysis of seasonality fore-

casts and time analysis. This provides predicted resource needs that allow the allocation

of workloads in micro data centres by using a method that determines the seasonal period

then develops a moving average forecast by finding the ratio of each observation, finding

the average of the ratio for each season or periodic unit, and dividing each of these ratios

by the average of the ratios.

Micro data centres are known to deliver the following benefits to the field of cloud

computing:

• Less heat waste generated.

• Lower energy consumption.

• Reducing costs due to distributing the workload among different regions based on

the cost of use.

Zhao et al. [162] delivered an evaluation of micro data centre performance in a compar-

ison study with conventional data centres. The micro data centre used in that work was

built on Intel Edison devices and this was compared to Dell servers. The authors stated
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that micro data centres could be used instead of conventional data centres to reduce

power consumption, as increasing the number of nodes can significantly improve perfor-

mance while keeping energy consumption lower than that of a conventional data centre.

Moreover, this research also proved the possibility of deploying two intensive workloads

on a cloud service in a micro data centre. Workloads that were implemented for that work

included web service applications and big data analytic benchmarks using the Hadoop

framework. However, the authors claimed that micro servers were not a great solution for

intensive computational workloads.

Toosi et al. [143] delivered work on Raspberry Pi devices connected as a research

platform for cloud computing research. Their work focused on research on SDNs and was

limited to a small number of nodes and switches as they tested the scalability of the device

by conducting an experiment on networking SDNs. An examination of existing micro data

centres in the field of cloud computing can be used to justify the current choice of the

Glasgow Raspberry Pi Cloud as a realistic data centre for the evaluation of existing Cloud

Simulators.

Johnston et al. [84] stated that, alongside the advantages of single board computers

built on a single circuit board being less expensive and more portable, single board com-

puters are known to be able to run common operating systems and handle a variety of

different workloads. Therefore, single board computers are acceptable devices for fog/edge

computing and Internet of things and can be used educational environments for teaching

computing parallelism concepts at low cost. Moreover, Johnston et al. [84] surveyed exist-

ing projects and case studies using single board computers and showed the feasibility of

using Raspberry Pi devices in the research community, quoting such works as Turton and

Turton [145]; Doucet and Zhang [61]. In the current research, the feasibility of the use of

Raspberry Pi devices running intensive real workloads is confirmed, as these are used for

the purpose of investigating the level of accuracy of existing cloud computing simulators

in educational work.



3.6. Power Consumption of the Cloud 47

3.5.2 Raspberry Pi Devices in Fog Computing

Fog computing is a new paradigm for cloud computing that is intended to improve the

performance of cloud computing systems by reducing the latency of applications run on

the fog infrastructure as compared to deploying them on a standard cloud infrastructure.

Fog computing generally uses micro servers, as they consume less power and can dis-

tribute certain applications more effectively among a number of servers to achieve optimal

performance (Krishnan et al. [102]).

Jalali et al. [83] further raised the possibility of using a micro data centres alongside a

centralised data centre to reduce energy consumption by reducing the number of hops be-

tween end users and the centralised data centre. This work was conducted using Raspberry

Pi nodes running an Internet of Things application.

Barik et al. [35] presented a state-of-the-art fog assisted cloud computing application

for Internet-of-Things in terms of its systems, architecture, and applications. This work

stated that Raspberry pi devices can be used in small scale data centres for fog computing

technologies. He et al. [75] also conducted work to evaluate analytic benchmarks experi-

ments using Raspberry Pi devices to produce workload models of various analytic jobs for

a multi-tier fog computing model.

Elkhatib et al. [63] confirmed the feasibility of using micro servers by evaluating Rasp-

berry Pi devices using four different experiments. The first experiment measured the

latency for an application running on a fog cloud; the second checked the possibility of

hosting multiple cloud containers on a single host Raspberry Pi; the third profiled the

I/O overhead, though this experiment showed relatively slow write speeds for the flash

memory used in Secure Digital (SD) cards; and the final experiment examined the boot

procedures of various Raspberry pi devices as compared with a t2.small EC2 instance

running Ubuntu.

3.6 Power Consumption of the Cloud

Power consumption is one of the most important aspects of cloud computing. Saving

energy, reducing costs, and being environmentally friendly by reducing the impact of
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computing infrastructures are widely touted as positive aspects of using cloud computing

technologies around the world. Providers of cloud computing infrastructures are, however,

usually focused on making profits in by reducing power costs and the response time of

their infrastructures.

Zhang et al. [160] showed a model for accurate estimation of cloud power usage, defin-

ing hardware and software configurations that can affect the power consumption of data

centres. Hardware configurations include CPU frequency, memory frequency, and hard

drive rotation speed; indeed, all hardware and software configurations can qualitatively

and quantitatively impact system-wide power consumption and performance.

Hoelzle and Barroso [77], noted that real data centre computing infrastructures have

air-conditioning equipment and cooling systems. These two factors considerably affect

the QoS and SLA between providers and consumers in case of any emergency actions

in the data centre. Moreover, just as the execution time of parallel tasks depends on the

number of nodes for three levels of communication intensity which are high communication,

medium communication and light communication. So increasing the number of nodes

increases the power consumption for the data centre. Simulators and cloud computing

models must thus be able to identify techniques and tools that can apply algorithms to

assess the power consumption of each application, based on the equipment required to

execute a given type of application.

The work in Bohra and Chaudhary [39] provided a model called VMeter to predict the

instantaneous power consumption of an individual VM hosted on a physical node as well as

the full system power consumption. They validated their model using industry-standard

and computationally diverse benchmarks. According to "Makaratzis et al. [115],simulators

of cloud computing can be used in power consumption modelling, and in the current

research, power consumption was calculated using these models by running an experiment

on GreenCloud Kliazovich et al. [100] based on the standard power consumption algorithms

described in Beloglazov and Buyya [38]. The power consumption of the simulation models

was validated by running simulations of the power consumption of a real-world workload

on a small-scale data centre based on existing tools such as the OpenEnergyMonitor

system and a power meter device, which measure the energy use and costs of running an
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experiment. The output results from previous experiments were compared using statistical

analysis to provide an appropriate level of accuracy for the GreenCloud simulator.

3.7 Critical Appraisal of Existing Techniques for Cloud

Performance Modelling

Maenhaut et al. [114] provided a general approach for validating cloud resource allocation

techniques. Simulations are often used to avoid the difficulties in running experiments on

actual test beds such as costs, dealing with underlying infrastructures, and time consump-

tion. Maenhaut et al. [114] that performance of simulation tools depends on the design of

the code, the structure of data-set used in validating the simulation results, and the type

of proposed workload in the simulation. To avoid such obstacles in both simulations and

real infrastructure, adapting the experiments to small scale data centre help validate ex-

periments before the work is applied to the intended infrastructure. The use of Raspberry

Pi in this case was to implement the designed costumed cluster management approach

for testing interconnections between a Master node and worker nodes. Another way to

implement this was tested on an open-stack private cloud. The work thus provides an ap-

proach and a well-designed testing cluster adapter and validation strategies that focus on

resource management in cloud environments. However, it lacks a means of implementing

real time workloads and testing Raspberry Pi performance. The approach is similar to

that taken in the current research, though the latter posits that performance of small scale

data centres can be used to predict the performance of large data centres and to validate

existing simulators.

Ahmed and Sabyasachi [21] classified some of the available cloud simulators by explain-

ing the important features of each. Their research gives a brief description of a number of

simulators, offering an informal first step for cloud developers looking to identify a suitable

simulator. Each simulator is described based on its unique features, with a brief description

of its capabilities in simulating different research areas within cloud computing. However,

Ahmed and Sabyasachi [21] did not characterise the level of accuracy or categorise the

characteristics for the surveyed simulator, which the current research redresses.
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Figure 3.1: A General Approach for Validating Cloud Resource Allocation Techniques Maenhaut
et al. [114]
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Antonescu and Braun [31] delivered a validation methodology for modelling complex

distributed systems using CloudSim (Calheiros et al. [46]). The validation experiment was

done with a small-scale distributed test-bed. However, the accuracy of evaluation for either

CloudSim or the small-scale distributed test-bed is not reported. Moreover, the small

scale data centre used in the experiment is not clearly described, limiting reproducibility

and failing to quantify the level of accuracy. The current work, however, compares the

performance simulation workload with a verified small scale data centre (the Glasgow

raspberry pi cloud). A machine learning model is added as an alternative cloud computing

model to allow the same experiment to be run again in order to provide further cross-

validation land allow meta-analysis of different types of cloud computing models.

NetworkCloudSim (Garg and Buyya [70]) is an extension of CloudSim that models

the concept of networking communication, it has been developed and integrated with

CloudSim version 3.0.3, and it models Message Passing Interface (MPI). Our work at-

tempts to validate CloudSim by comparing the result of running MPI benchmark DT on

either a single node or multiple nodes of Raspberry Pi. Iridis-pi designed by Cox et al.

[52], has delivered a small scale data centre based on a Beowulf cluster design, built using

64 Raspberry Pi, model B nodes with 700 MHz ARM processor. They give a brief de-

scription of the clustering distribution system in implementing Hadoop job on their data

centre, but our work is to profile and report the performance of the benchmarks on two

different clusters of Raspberry Pi v2 and v3.

Statistical models have been used to predict resource requirements for cloud computing

applications. Ganapathi et al. [69] modelled a framework for a Hadoop [6] application

with job scheduling, resource allocation and workload management using a ML technique

called Kernel Canonical Correlation Analysis (KCCA). In this work, we provide a multiple

machine learning models to predict the execution time for different types of workloads

with respect to each node, considering resource availability and average response time for

a particular workload. This would ensure the results of my predictive model for cloud

computing are comparable with the results from the work in Chapter 8.

Khoshkbarforoushha et al. [96]offered a statistical technique which uses mixture of

network topology and mixed models in order to provide a predictive model of resource
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usage based on probability density functions. However, their work was limited to the

investigation of CPU and memory usage, while the current ML model is based on the

features of an available small-scale data centre test bed. The model can thus be validated

by running cross-validation experiments to test its accuracy, as compared with the work

by Tso et al. [144].

The current research aim differs from that in the works of Ahmed and Sabyasachi

[21], Kaleem and Khan [87], Zhao et al. [161], and Maarouf et al. [113], which offer only

descriptions of different types of simulators in that it offers experiments in different types

of test environment in order to ascertain the level of accuracy in each test environment for

developers. There is a lack of work on the accuracy of simulators and little discussion of

any experimental testing except in research that delivers validation descriptions from the

developers of the simulators as in Kecskemeti [91]. It is thus advantageous for these cloud

computing simulators to be validated by either a third party or the end users in order to

provide results regarding the validation approaches seen in Twomey and Smith [146]. There

is currently relatively little research evaluating and comparing the accuracy of simulators

relative to real world benchmarks, and the current work thus focuses on evaluating the

tools used to evaluate cloud computing systems by deploying different types of workloads

to conduct an evaluation based on a diversity of types of workload; this is important, as

different workloads or scenarios cause systems to behave differently, and this make the

approach that the current research follows more appropriate to developing future work.

To sum up, as mentioned above that works Maarouf et al. [113]; Kaleem and Khan [87];

[161]; Ahmed and Sabyasachi [21];Byrne et al. [45] briefly describe the existing simulators

in the field of Cloud Computing, it is still not clear for researcher to choose the most reliable

tool. So our critical investigation in the literature leads to summaries the features and

characteristics of existing simulators in order to answer the research questions: how well

existing simulators deliver the required modeling features of Cloud Computing experiments

and how well accurately model the experiments.
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Chapter 4

Research Methodology

4.1 Introduction

This chapter outlines the two methods used in this research. The first method categorised

existing simulators into four categories based on their common salient features. This

method focuses on gathering together the features of the extensions of each simulators

in order to provide the opportunity to merge multiple simulators. The second method

evaluates existing cloud computing simulators by performing an experimental comparison

study against the actual performance of a Raspberry Pi data centre. Chapter 5 lists the

outcomes of examining existing simulators that are extensions of the same simulator, while

chapter 7 assesses the level of accuracy of the three simulators described in chapter 2.

4.2 Method to Select the Optimal Cloud Computing

Simulator

This section describes an approach that can be used to select the optimal cloud simulator

by utilising a guide based on a systematic review of existing simulators’ results. This

was achieved by collecting data about cloud computing simulators, and then creating

classification models that captured their salient features.
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4.2.1 How Do We Characterise Simulation Capability?

For simulator characterisations, the cloud computing characterisations listed in Mell and

Grance [119] should be considered; these are On-demand self-service, Broad network ac-

cess, Resource pooling, Rapid elasticity, and Measured service. This work focuses on the

simulators’ capabilities available over the network and accessed by heterogeneous client

platforms. Capabilities can be elastically provisioned and controlled automatically depen-

dent on the type of service (storage, processing, bandwidth, and active user accounts)

(Mell and Grance [119]). To test simulators’ capabilities, the selected simulators are cat-

egorised based on the target area of cloud computing data centre infrastructure under

focus, including Networking, Quality of Service, and Power consumption.

The characterisations of software presented in Losavio et al. [111] were also investi-

gated in order to categorise existing simulators. The major characteristics of software

are functionality, reliability, usability, efficiency, maintainability, and portability. The

method used in this research focused on functionality and usability, however, with the

validity characteristic added only in order to make the process of selecting a simulator

more straightforward.

Functionality refers to the degree of performance of the software as measured against

its intended purpose. Usability refers to the extent to which the software can be used

with ease. Validity refers to the level of accuracy of the simulator as compared with an

actual environment; in simple terms, it refers to the ability of the software to simulate the

performance properly on software platforms with a low level of relative errors.

4.2.2 Performance Evaluation Methods for Simulation Tools

A range of evaluation methods have been applied to simulation packages in the literature

within the different areas that use simulation models for research purposes. Alomair et al.

[26] delivered a review of existing methods such as evaluation criteria, multi-criteria deci-

sion making (MCDM), hierarchical frameworks, SimSelect, Smart Sim Selector, scenarios,

two-phase evaluation, and selection methodology and guidelines. The current method is

notable in that it unifies the advantages associated with scenarios, guidelines, and two-
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phase evaluation methods into a single system. It first analyses the capability of each

simulator within the proposed experimental scenario; following this, the features of the

selected simulators are examined in terms of their usability and availability; finally, the

level of accuracy for selected simulators is identified to determine whether there exists

a set of simulators that can model the proposed experiment, a step that is part of the

two-phase evaluation method.

4.2.3 Proposed Method for Selecting A Simulator from CloudSim

Extensions

The method is designed as a set of steps that begin with conducting a systematic review

as advocated by Kitchenham et al. [98], based on work on the existing surveys on cloud

computing simulators within the family of CloudSim extensions. The current work focuses

on providing details about the current CloudSim family of simulators, as these simulators

are built on the same platform; the research thus differs from other surveys in its focus on

categorising simulators based on their similarities and differences within the same family

of simulators. Individual simulators were selected as candidates for the review from two

distinct sources.

• We examined the public list of CloudSim extensions (known as related projects) on

the official CloudSim website Clo [2], on 1st April 2016. The investigation was re-

stricted to extensions that are associated with at least one peer-reviewed publication

available via Google Scholar.

• We identified other CloudSim extensions by searching for the single keyword ‘CloudSim’

on the IEEE Xplore portal, on 1st August 2017. We examined the first 50 links to

look for extension projects.

The method used categorises the CloudSim extensions based on the nature of the addi-

tional features of each extension, as reported through associated peer-reviewed publica-

tions. Finally, the ability and features of each of the cloud computing simulators were

divided into Functionality, Usability, and Validity, and they were thus categorised.
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In terms of functionality, the capability of the simulators was checked using work based

on common criteria for cloud computing experiments as in Zhang et al. [159] , such as net-

work modelling, power consumption modelling, and ability to simulate different types of

workload (Batch, Transactional processing, or Work flow) or types of infrastructure (Het-

erogeneous, Homogeneous, Hybrid, or Micro data centre), and by modelling the quality of

service features.

With regard to usability, the simulators’ abilities to support graphical user interfaces

and generate graphs for the simulated output were examined. Finally, the validity of the

simulators was tested in a manner that has been validated by running different types

of experiments, using a comparison study against real infrastructures or existing work-

load traces on actual public infrastructure. Following the algorithm generated by of this

method, a suitable simulator can be selected or, where no existing simulator is compatible

with the experimental requirements, a new type of simulator can be developed. This is

illustrated in 4.1.

4.3 Method for Evaluating Cloud Computing Simula-

tors

The simulation models were based on the Glasgow Raspberry Pi Cloud (Tso et al. [144])

and developed in CloudSim, GreenCloud, and Mininet by means of customizing the code

and configurations that characterize the compute nodes, network connectivity, and virtual

machine environments of the data centre instance to be simulated. In this section, two

different types of application (batch and transactional processing) are examined. Testing

different types of workloads supports the generalisation of the results for different types of

workloads. Different workloads were thus tested on the Raspberry Pi cluster to support

their availability to be used in experiments as profiled on Raspberry Pi devices or modelled

directly on CloudSim, GreenCloud and Mininet or by using an extensions. Standard

benchmarks were thus used for message passing interface (MPI) applications and a web

server benchmark called Apache Bench AB was used for that function. These workloads

were modelled in the simulators with appropriate characterisations by following the steps
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of the approach as outlined in Figure 4.2.

The benchmarks were run on Raspberry Pi v2 and Raspberry Pi v3 with different

numbers of parallel nodes that effectively formed one rack of the micro data centre; this

is explained further in Chapter 5. The experiments were repeated 30 times on each con-

figuration, to allow the elision of error bars.

The testing deployed 22 nodes of Raspberry Pi v2 and 15 nodes of Raspberry Pi v3

and four different workloads were run: high performance computing, databases, big-data,

and web-server applications.

The reason for using these numbers of nodes was the availability of the nodes for the

research. The Glasgow Raspberry Pi data centre is used by several other researchers and

thus the number of nodes available at the time of conducting the evaluation was limited.

However, small scale data centres are used extensively in the literature for evaluating and

validating different techniques and simulators in the field of cloud computing ( Zhao et al.

[162]; Garg and Buyya [70]; Kecskemeti et al. [92] ).

The work detailed in chapter 7 was conducted by applying an experimental method

to measure the performance of an existing small-scale data centre and modelling the

small-scale data centre in three simulators in order to evaluate them as compared to

the performance of the actual centre. Two different workload types (batch processing and

transactional processing) were run on the Raspberry Pi cluster, based on the following

requirements for the evaluation process:

• Open source workloads for the reproducibility of research.

• Able to be profiled on Raspberry Pi devices.

• Able to be modelled on CloudSim, GreenCloud and Mininet.

Figure 4.3 shows the approach followed to evaluate the selected simulators.

This research applied a method designed to check the fidelity of any simulation models

used for performance prediction of any realistic infrastructure. The cross-validation of

simulators with large scale infrastructure is difficult; thus, a sanity check cross-validation

of each simulator with a cut-down micro scale infrastructure is performed. If there are
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discrepancies between the simulator and the micro infrastructure, the simulator is deemed

to be inaccurate.

Finally, this research compared the results of the actual performance when running

workloads on a Raspberry Pi data centre (Tso et al. [144]) with the simulated perfor-

mance of each model sharing the same features in terms of workloads and infrastructure.

The low level properties of the Raspberry Pi data centre were gathered via standard Linux

monitoring tools such as perf (per [16]) and iperf (ipe [14]). These properties were then fed

into the simulators as parameters for modelling the equivalent Raspberry Pi Cloud infras-

tructure in each simulator. More details regarding these workloads, cluster characteristics,

and profiling tools are given in Chapter 6
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Figure 4.1: Method for Investigating Simulators Based on Their Capacity
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Figure 4.2: Cross-validate Performance Metrics for CloudSim and The Glasgow Raspberry Pi
Micro Data Centre
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Figure 4.3: Overview flowchart of the methodology
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Chapter 5

Qualitative Study of Existing Cloud

Computing Simulators

5.1 Introduction

A cloud computing data centre is a distributed system with a very complicated architecture

created by layer abstractions and the virtualisation migration model that emerges between

nodes. Therefore, researchers find it difficult to run experiments on actual data centre

infrastructures when developing new algorithms and techniques because of the time and

cost implications. Researchers require an environment that provides the opportunity to

repeat experiments and to control variables with respect to the architecture of real data

centre environments. All simulators have their own features and differ from each other

based on the purpose behind their development and the aim of the simulation. Developers

and cloud computing researchers thus have a wide variety of types of simulators available

to use in their research work, but there are still several limitations and obstacles in terms

of tackling actual data centre issues.

Developers of cloud computing systems also choose from a wide variety of simulators

for their empirical research (Barker et al. [36]; Li and Deng [106]). There are many

limitations and trade-offs inherent in investigating data centre system issues by means of

simulation, which offers an explanation for the vast number of simulators available. Ahmed

and Sabyasachi [21] noted that many researchers opt to use and extend open-source cloud
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simulators such as CloudSim and GreenCloud.

By applying the method for selecting the optimal simulator for any type of experiment

in Cloud Computing developed in Chapter 4, it is, however, possible to categorise a set

of simulators, which is done in this chapter based on their features to model netowrking,

quality of service and power consumption for Cloud Computing data centres.

This chapter thus provides an overview of the existing extensions of CloudSim, Green-

Cloud, and Mininet. In particular, it delivers a systemic review of the existing extensions

for CloudSim, as this is one of the most popular simulators in the field of Cloud Comput-

ing ( Byrne et al. [45] ) based on the number of citations on Google Scholar at the time

of writing this chapter. These are categorised based on their features and benefits. Sec-

tion 5.2 shows how the observed extensions of CloudSim are categorised into four groups

(Networking, Graphical User Interface, Quality of Service, and Power Consumption Mod-

elling). The contributions and future opportunities offered by this chapter are then given

in Section 5.3

With regard to GreenCloud and Mininet, the same procedural systematic review as

followed for CloudSim extensions was used to find and categorise extensions of GreenCloud

and Mininet. However, there is currently a lack of extensions of GreenCloud and Mininet

that provide new simulators.

For Mininet, an extension called MiniNAM (Khalid et al. [93]) is the main option; this

was developed to improve the usability of Mininet by providing a graphical user interface.

This extension therefore allows users to debug code without typing into the source code

of Mininet. The main advantage of this extension is thus the provision of the GUI for the

purposes of learning and teaching computer networks.

For GreenCloud, only one simulator has been developed as an extension; this is called

QoS-based GreenCloud simulation (Zhihua [163]) , and it was developed for modelling the

concept of Network as a Service (NaaS) which has recently been introduced into the Cloud

Computing field. The QoS-based GreenCloud simulator is supported by QoSbox (Christin

et al. [50]), which configures the IP routers to monitor loss, delays and throughput of traffic

in the network.
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Figure 5.1: Inheritance Tree for Surveyed Extensions of CloudSim

5.2 Existing Extensions of CloudSim

Byrne et al. [45] a review of existing cloud computing simulators in terms of their gen-

eral high-level features and high-level technical aspects. The features of the simulation

platforms were surveyed and the outcome of the survey illustrated that CloudSim can

act as a de facto base platform for simulation development and research; in all, over 20

extensions of CloudSim are used in various different areas of research. This chapter thus

delivers a systematic review focused on these extensions of CloudSim in order to explore

the similarities and differences between the various extensions.

Figure 5.1 shows the relationships between various extensions of CloudSim, in terms

of the provenance of their source code bases. A relationship A→ B denotes that system

B directly extends system A, either by adding to or modifying components of A.

The motivation for this section of the research is to provide a review of existing simula-

tors that have been developed based on a particular platform for future use by researchers

in cloud computing. Extensions of CloudSim support additional features such as hetero-

geneous data centres, graphical user interfaces and more complex distributed applications.

Therefore, in some cases, it may be more efficient for researchers to conduct cloud comput-

ing experiments with these extensions rather than modelling the required features directly

in CloudSim.

Various researchers have extended the original CloudSim system to model additional

data-centre features, to measure additional non-functional properties, and to enhance

simulator usability. In this survey, 20 such extensions were examined; these were selected

on a systematic basis as outlined in Section 4.2.3. Four sets of functionality were first

identified for CloudSim extensions, and each extension can thus be characterised in terms

of its membership of these sets, as outlined in Figure 5.2 which also shows how some
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extensions belong to more than one set as they satisfy multiple orthogonal criteria. In the

detailed description, the precise set membership of each extension is thus provided.

Figure 5.2: The Main Four Categories for CloudSim Family of Extension

• Modeling distributed applications and complex network configurations:
[
NET

]
There are clear distinctions in terms of data communication and infrastructure be-

tween cloud and grid computing (Li and Deng [106] Myerson [120]). Experiments

to model cloud computing applications and infrastructure need to be carried out

on reliable simulation environments (Garg and Buyya [70]). A number of simula-

tors that have extended CloudSim to model distributed applications and complex

network configurations:
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1. NetworkCloudSim Garg and Buyya [70].

2. DynamicCloudSim Bux and Leser [42].

3. Cloud2Sim Kathiravelu and Veiga [89].

4. MR-CloudSim Jung and Kim [85].

5. Cloud data storage framework Long and Zhao [110].

6. CloudAnalyst Wickremasinghe et al. [152].

7. WorkflowSim Chen and Deelman [49].

8. CloudSimSDN Son et al. [136].

9. CloudSim Automation Silva Filho and Rodrigues [134]

10. CloudSim4DWf Fakhfakh et al. [64]

11. EdgeCloudSim Sonmez et al. [137]

12. CloudSim Plus Silva Filho et al. [135]

Table 5.1 shows the advantages and drawbacks of extensions mainly developed for

the purpose of modelling network behaviour in Cloud Computing.

Simulator Validation Advantages Disadvantages

NetworkCloudSim Modelling a real-

istic application

with communi-

cations.

- Modelling data cen-

tre bandwidth.

Random access to

memory in shared

nodes is not applied

Cloudanalyst Simulating dif-

ferent scenarios

for large date

centre workloads

Modelling distributed

systems on different

regions.

Needs to provide more

mechanisms and al-

gorithms for resource

management for large

scaled DC.
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MR-CloudSim Simulating

different exper-

iments,without

a comparison to

actual system.

Modelling MapRe-

duce for big-data

computation

Lacks allocation algo-

rithms and validation

work.

Cloud Data Storage Not Explained Supporting stripping

file and replica strate-

gies for storage distri-

bution

Needs to be validated

via validation method

and to consider the en-

ergy consumption and

cost of the data cen-

tre infrastructure dur-

ing the distribution of

storage among nodes

Workflowsim Compared with

real traces gen-

erated by the

Pegasus Work

flow manage-

ment system

The provision of mod-

elling transient fail-

ures via a failure gen-

erator and a failure

monitor.

Limited to a specific

number of work flow

techniques.

Cloud2Sim Not explained Simulating storage

distribution by inte-

grating Hazelcast and

Infinispan clusters.

Needs to provide an

experimental work

to validate the sim-

ulator by comparing

its simulated perfor-

mance against actual

test-bed environment
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DynamicCloudSim Compared to

real cloud in-

frastructure on

EC2

Modelling heteroge-

neous data centre

in the performance

of computational

resources. - Modelling

dynamic changes to

the performance and

status of VMs during

execution time.

Needs to consider the

data locality for dy-

namic work flow.

CloudSim4DWf Comparison

study against

WorkflowSim

Modelling the dy-

namic adaptation

actions at work

flow instance level

(Running Time)

Needs to consider fed-

erated cloud infras-

tructures, and energy

consumption

EdgeCloudSim Limited compar-

ison study

Modelling Edge Com-

puting Architecture

Lacks supporting dif-

ferent parameters for

the decision maker for

how and where the

task will be done.

Table 5.1: Comparison of Extensions of CloudSim for Modelling Network in Cloud
Computing

• Graphical user interface for simulation:
[
GUI

]
The original CloudSim framework is configured programmatically, and thus variables

must be modified in the code before the project is recompiled to configure a new

simulation. Further, the results of a simulation run are dumped as raw text to

the standard output based on printf statements. Several extensions of CloudSim

incorporate more user-friendly front-ends for setting up simulations and reporting

results. These are generally GUI style front-ends.
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1. CloudAnalyst Wickremasinghe et al. [152].

2. CloudReports Teixeira Sá et al. [141].

3. Bazaar-Extension Pittl et al. [126].

4. DartCSim Li et al. [107].

5. CloudTax Pittl et al. [125].

6. CloudSimSDN Son et al. [136].

7. CloudSim4DWf Fakhfakh et al. [64].

8. CloudSimDisk Louis et al. [112].

Table 5.2 shows the advantages and drawbacks of the extensions that are supported

by graphical user interfaces.

Simulator Validation Advantages Disadvantages

DartCSim Not explained Improving the usabil-

ity level of CloudSim

with GUI and provid-

ing power consump-

tion classes

Built on basic func-

tionality of CloudSim

without any integrat-

ing of any extension of

CloudSim.

CloudSimSDN An empirical

study compared

with Mininet

Min [8]

Modelling of software-

defined networking

SDN - Managing

resource allocation

dynamically.

Lacks supporting mul-

tiple workloads on a

same link between re-

sources (Hosts).

Table 5.2: Comparison of Extensions of CloudSim with Graphical User Interface

• Applying cloud deployment options and Quality of Service Reliability Mechanisms:
[
QoS

]
Moving to Cloud depends on how trust, managerial capability, and technical capa-

bility can be developed by both the end clients and vendors of infrastructure who
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seek to achieve their goals by deploying cloud computing (Garrison et al. [71] Al-

Ghuwairi [24]). The following extensions of CloudSim thus model the concepts of

cloud deployment options and quality of service reliability:

1. CDOSim Fittkau et al. [65].

2. CloudTax Pittl et al. [125].

3. CloudMIG Fittkau [66].

4. Bazaar-Extension Pittl et al. [126].

5. Cloud data storage framework Long and Zhao [110].

6. CM Cloud Simulator Alves et al. [30].

Table 5.3 shows the advantages and drawbacks of extensions are that mainly devel-

oped for modelling the quality of service in Cloud Computing.

Simulator Validation Advantages Disadvantages

CloudMIG Providing differ-

ent violations on

different system

to evaluate the

simulation

Providing opportuni-

ties to exam the exist-

ing cloud providers for

a specific system.

Needs to be validated

on experiments on dif-

ferent cloud providers

for a specified system.

CDOSim Incorporating

Eucalyptus and

Amazon EC2

providers.

Providing evaluation

of cloud deployment

options (CDOs)

Lacks supporting dis-

tributed applications

among different data

centres.at run time

Bazaar-Extension Not explained Evaluating different

negotiation strategies

for cloud deployments.

Lacks of possibilities

in modelling different

strategies for negotia-

tions.
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CM Cloud Testing different

scenarios

Modelling the cost

of different cloud

providers.

Needs to add more

types of services to

make broader compar-

isons.

CloudTax Not explained Modelling different

tax systems

Needs to consider

the possibility of dis-

tributing VMs among

different regions in

large data centre with

live migrations of VM

during execution time

Table 5.3: Comparison of Advantages and Validation for Extensions of CloudSim
for Modelling Quality of Service

• Power consumption modelling :
[
PWR

]
A key motivation for resource consolidation is reduced energy demands. The ef-

ficiency of cloud computing data centres is thus a key metric (Al-Ghuwairi [24]),

and while the original CloudSim framework does not incorporate models for energy

estimation, several extensions have added this capability.

1. CloudReports Teixeira Sá et al. [141].

2. CloudSimDisk Louis et al. [112].

3. CloudSimSDN Son et al. [136].

4. CloudSim Automation Silva Filho and Rodrigues [134]

5. CloudSim Plus Silva Filho et al. [135]

Table 5.3 shows the advantages and drawbacks of the extensions mainly developed for

modeling the power consumption in Cloud Computing.

Simulator Validation Advantages Disadvantages
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CloudSimDisk Not explained Providing models to

simulate power con-

sumption on different

level in cloud data

centre. - Modelling

hard disk (HDD) stor-

age in both active or

ideal modes.

Has not been vali-

dated in comparison

with actual test-bed

infrastructure.

CloudReports Running a

simulation ex-

periment based

on data col-

lected from the

Google Cluster

Data project

Power Consumption

Modelling Providing

opportunities for

researchers to extend

the existing entities of

CloudSim core.

Lacks different re-

source allocation

algorithms for VMs.

CloudSim Plus Limited compar-

ison study

Improving maintain-

ability, reusability

and extensibility of

CloudSim original

source code

Lacks simulating dif-

ferent workloads sce-

narios

CloudSim automation Not explained Improves the readabil-

ity of the simulation

scenario using YAML

file

Lacks supporting dif-

ferent resources distri-

butions.

Table 5.4: Comparison of Advantages and Validation for Extensions of CloudSim for
Modelling Power Consumption

Table 5.5 lists the CloudSim extensions investigated in this work in order of their

availability and year of release. The differences between the selected simulators in terms
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Table 5.5: Availability of CloudSim Family of Simulators.

Simulator Year Availability Number of versions Reference LICENSE
CloudSim 2010 Open Source 4 Calheiros et al. [46] GNU LESSER GENERAL PUBLIC LICENSE

CloudAnalyst 2010 Open Source 1 Wickremasinghe et al. [152] -
NetworkCloudSim 2011 Open Source 1 Garg and Buyya [70] Integrated with CloudSim3.0.3 release
CloudMIG Xpress 2011 Open Source 1 Fittkau [66] Apache License V2.0

CDOSim 2012 Open Source Fittkau et al. [65]
WorkflowSim 2012 Open Source 1 Chen and Deelman [49] The Globus Toolkit Public License
MR-CloudSim 2012 Not Open Source - Jung and Kim [86] -
CloudReports 2012 Open Source 1 Teixeira Sá et al. [141] GNU GENERAL PUBLIC LICENSE
DartCsim 2012 Open Source 1 Li et al. [107]

Cloud data storage sim 2012 Open Source Long and Zhao [110]
DynamicCloudSim 2013 Open Source 1 Bux and Leser [42] GNU LESSER GENERAL PUBLIC LICENSE

CloudSim Automation 2014 Open Source 2 Silva Filho and Rodrigues [134] GNU GENERAL PUBLIC LICENSE
Cloud2Sim 2014 Open Source 1 Kathiravelu and Veiga [89]

CloudSimSDN 2015 Open Source 1 Son et al. [136] GNU GENERAL PUBLIC LICENSE
CloudSimDisk 2015 Open Source 1 Louis et al. [112] GNU LESSER GENERAL PUBLIC LICENSE

Bazaar-Extension 2016 Not Available - Pittl et al. [126] Not Available
CloudTax 2016 Not Available - Pittl et al. [125] Not Available

CM Cloud Simulator 2016 Open Source - Alves et al. [30]
EdgeCloudSim 2017 Open Source 1 Sonmez et al. [137]
CloudSim Plus 2017 Open Source - Silva Filho et al. [135]
CloudSim4DWf 2017 Not Available - Fakhfakh et al. [64]

of their functionality, availability, advantages, drawbacks and validity are then offered.

Tables 5.1 – 5.6 deliver an overview of the functionality, usability, validity and draw-

backs associated with the existing extensions of CloudSim. It is expected that this table

can act to guide researchers when they select suitable simulators for their experiments,

especially in terms of examine the respective capabilities of simulators to conduct com-

parative examinations.

The various CloudSim extensions provide additional features, of which many are or-

thogonal. Thus, it remains difficult to select the optimal extensions for a particular ex-

periment in all cases, as this would require manual source code investigation and docu-

mentation research.

5.2.1 NetworkCloudSim

NetworkCloudSim was implemented by Garg and Buyya [70] as an exercise to evaluate

the workload and scheduling policies in CloudSim for resource allocation in a more re-

liable environment for applications with communicating tasks. To run any networking

work flow experiment, NetworkCloudSim simulates networking topology and architecture.

NetworkCloudSim simulator enhances CloudSim Calheiros et al. [46], to model a realistic

application with communication elements such switches, routers and parallel application

work-flow. Developers of NetworkCloudSim have presented an evaluation work that shows

the importance of modelling the network architecture to test the scheduling policies and
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Table 5.6: Comparison of Features of CloudSim Family of Simulators.

Simulator Networking Typologies Graphical User Interface Energy Consumption
CloudAnalyst Yes Yes Limited

NetworkCloudSim Yes No Limited
CloudMIG Xpress Limited No No

CDOSim Yes No Limited
WorkflowSim Yes No No
MR-CloudSim Yes No No
CloudReports yes Yes Yes
DartCsim Limited Yes Limited

Cloud data storage sim Yes No No
DynamicCloudSim Yes No No

CloudSim Automation Yes No Limited
Cloud2Sim Yes No No

CloudSimSDN Yes Yes Limited
CloudSimDisk Limited Yes Yes

Bazaar-Extension Limited Yes Yes
CloudTax Limited Yes Yes

CM Cloud Simulator Limited No Limited
EdgeCloudSim Yes No No
CloudSim Plus Yes No Yes
CloudSim4DWf Yes Yes No

algorithms. There are new classes that model the work flow of the actual data centre

network topology, such as Switch and NetworkPacket, and there are also modelled classes

for application modelling such as NetworkCloudlet and AppCloudlet.

5.2.2 CloudSimSDN

CloudSimSDN is developed to extend network simulation features in CloudSim to support

software-defined networking (Son et al. [136]). The task of measuring how the network and

host capacity perform is facilitated by this extension as it affords researchers a simulated

medium for modelling cloud data centre. In addition, the resource management policies

that are relevant to the management of the cloud data centre based on SDN are assessed

by CloudSimSDN. The manner in which software-defined networking behaves can be ef-

fectively outlined with the help of the new classes (e.g. Switch and Network Operating

System classes) offered by CloudSimSDN. Software-defined networking behaves can be

effectively outlined with the help of the new classes (e.g. Switch and Network Operating

System classes) offered by CloudSimSDN. Furthermore, the transmission delay associated

with data transmitted among elements of data centres can be modelled and estimated
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with the help of CloudSimSDN as well. Due to the fact that a channel is made up of more

than one link, its bandwidth is used in CloudSimSDN to assign the channel to the data

amongst two hosts. In the context of CloudSimSDN, the user request is understood to

refer to abstraction calculations of computing processing with transmissions of packets.

In order to allow users to establish the input specifications and output results, the visual-

isation of data centre components is made possible by CloudSimSDN through a graphical

user interface.

5.2.3 Cloud2Sim

According to Armbrust et al. [32], running between distributed nodes and extensive clus-

ters, cloud computing applications are oftentimes of substantial size and display a high

level of complexity. In the case of such large applications, shared memory access and

distributed execution processing are not supported by CloudSim (Calheiros et al. [46]).

In response to this limitation, Cloud2Sim has been created as an extension of CloudSim

that can enable simulation of the storage distribution of VM, Cloudlet, and data centre

objects Kathiravelu and Veiga [89]. What is more, the simulation of the concurrent of the

execution to the cluster instances is an additional property of Cloud2Sim.

Running on top of a cluster underpinned by Hazelcast (haz [13]) and Infinispan (Inf

[7]), Cloud2Sim represents a concurrent and distributed cloud simulator. More specifically,

the distributed applications for the java.util.concurrent package are supplied by Hazel-

cast, while Infinispan represents a distributed key/value data grid serving as a cluster-

aware data-grid across more than one node. Applications that cannot be run on just

one node/computer because of resource insufficiency can be implemented with the help

of Infinispan (Kathiravelu and Veiga [89]). The incorporation of Hazelcast haz [13] and

Infinispan Inf [7] cluster into the simulator is made possible by the two specifically altered

packages CloudSim.hazelcast and CloudSim.infinispan that are contained in Cloud2Sim.
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5.2.4 MR-CloudSim

For purposes of management of extensive data calculations in sizable clusters and servers,

the CloudSim extension MR-Cloud-Sim has been designed for modellingMapReduce (Jung

and Kim [85]). Commonly employed for ample data and distributed application between

cloud data centres, MR-CloudSim is intended as an instrument of simulation for map-

reduce instructions. The present model encompasses a number of map-reduce attributes,

as that the workload may be independent of the size of file input, inclusion of one reduce

operation in every map output and the map operation is undertaken before the reduce

operation. Key alterations have been brought to the primary elements of CloudSim upon

incorporation of the MapReduce stages into the CloudSim core.

5.2.5 CloudAnalyst

CloudAnalyst is designed by Wickremasinghe et al. [152] to help understand how a sizable

Internet application behaves in the context of a cloud environment. The classes and

several novel functionality included in the CloudAnalyst facilitate a number of tasks and

procedures. These include simulation of the realistic behaviour model the same way as

traffic generators do, network delay with regard to the data that are transmitted over

the Internet, management of user requests amongst more than one data centre, as well as

provision of an extensive graphical user interface (GUI).

The major elements that make up the CloudAnalyst are outlined in Region, Internet,

Cloud Application Service Broker, User base, Internet cloudlet, Data centre controller,

VM load balancer and GUI.

5.2.6 DynamicCloudSim

When it comes to creation of models of dynamic work flow and of the non-homogeneous

nature of an actual cloud configuration, CloudSim (Calheiros et al. [46]) presents some

shortcomings. More specifically, among the cloud computing factors of instability that

CloudSim as a tool-kit is unable to model are heterogeneity, run time dynamic modifica-

tions, straggler VMs, as well as failure task executions Bux and Leser [42]. In order to
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overcome these shortcomings, DynamicCloudSim is created as a CloudSim extension with

the ability to achieve the simulation of all of the above mentioned cloud computing factors

of instability Bux and Leser [42]. The two researchers accomplished work flow produc-

tion in the context of DynamicCloudSim by employing the instrument of montage in the

empirical work they conducted. Each of their four experiments focused on one particular

cloud computing factor of instability, namely, heterogeneity (Het), dynamic changes at run

time (DCR), straggler VMs and failure task (SaF), and extreme parameters. A different

extension of CloudSim designed for simulating the network typologies of the data centre

configuration of a real cloud infrastructure as well as the node failures and the work flow

delay passing is WorkflowSim (Chen and Deelman [49]).

5.2.7 WorkflowSim

The creation of WorkflowSim (Chen and Deelman [49]) has been prompted by the need

to have a model of work flow management that could help address certain problems faced

by CloudSim, namely, the absence of support for distributed work flows and the over-

head associated with data flows in a non-homogeneous system. Since the task clustering

method targets failures and delays that take place at different levels of the systems of

work flow management, models with multiple layers are supported by WorkflowSim. This

CloudSim extension is made up of work flow mapper, clustering engine, work flow engine,

work flow scheduler, and task execution. WorkflowSim takes the form of directed acyclic

graphs (DAGs), the XML-formatted DAG files being imported by the workflow mapper

and allocated to the execution site in accordance with the list of tasks that this map-

per produces. Meanwhile, to decrease the scheduling overhead, tasks are combined into

jobs at the same horizontal levels by the WorkflowSim clustering engine. The connections

amongst job executions are managed by the workflow engine. Furthermore, the workflow

scheduler is responsible for establishing correlations between jobs and the worker nodes.
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5.2.8 CloudSim4DWf

CloudSim4DWf (Fakhfakh et al. [64]) is developed to simulate work flows while they are

being executed to investigate the impacts for unusual situations for tasks during execution

time. This extension has extended CloudSim with a new resource provisioning policy for

dynamic work flows. It has provided with components which are responsible for triggering

and monitoring the simulation events. Moreover, it has a graphical user interface that

allow users to evaluate their experiments on easier tool than coding platform.

5.2.9 Cloud Data Storage Framework

Cloud Data Storage Framework (Long and Zhao [110]) is an extension of CloudSim which

has been developed for conducting experiments on the file striping function on CloudSim.

Cloud Data Storage simulator has a layer called Data Cloud layer with the original layers

of CloudSim. This layer allows researchers to implement their own layout strategy, file

striping strategy and replica management strategy for storage distributions among nodes

in a data centre or even multiple data centres.

5.2.10 DartCsim

CloudSim forms the basis for the cloud computing simulation platform that is known as

DartCSim (Li et al. [107]) and that presents user-friendly features. This platform affords

users a visual approach to utilisation of the CloudSim, with no need for coding to visually

configure the simulation experiments. Thus, researchers do not have to concern themselves

with trying to understand and creating models of the CloudSim source code, being free

to focus instead on their empirical work. This is what makes DartCSim so advantageous.

The interface for project development that is provided by this platform is very easy and

straightforward to use, as it is not encumbered with technicalities and fine points about

the simulation. Configuration of network topology can be efficiently achieved by following

the straightforward steps specified by DartCSim (Li et al. [107]). Users can take advantage

of DartCSim not only to construct their network or resource configurations on XML, but

also to export them, or to import them if existing configurations are employed, without
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any difficulty.

5.2.11 CloudSimDisk

The modelling and simulation of energy-aware storage in the cloud system can be car-

ried out with the help of the CloudSim extension known as CloudSimDisk (Louis et al.

[112]). The hard disk drive (HDD) manufacturing specification is the aspect that this

extension is most concerned with. The elements that make up the HDD comprise a mix-

ture of read/write head traversal movement and platter rotational movement. Current

classes in CloudSim are enriched with new classes and parameters that are provided by

the CloudSimDisk, including requiredFiles and dataFile, which are capable of determining

the transaction time and have been incorporated into the Cloudlet model in CloudSim.

The data introduced in the data centre storage are indicated by the dataFile, while the

extracted data are indicated by the requiredFiles. To satisfy the specifications of the power

model, several alterations have been made to the simulation process in CloudSimDisk.

5.2.12 CloudReports

Researchers can carry out empirical work more easily by employing the graphical user

interface that is provided by CloudReports (Teixeira Sá et al. [141]). Being particularly

useful in the field of energy-aware cloud computing environments, CloudReports enables

researchers not only to document the results of their empirical work, but also to produce

and amend policies via the application programming interface (API). CloudReports has

introduced to CloudSim including the following components a:

• Persistence layer: This module makes sure that the entirety of the data related to

the application and simulation are stored in just one SQL database file for each

environment;

• Reports manager: This module makes use of the data from the database file created

in the persistence layer in order to produce the simulation report;

• Graphical user interface: The purpose of this module is to provide a GUI written
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with the Swing Java GUI widget tool-kit in order to help users to manage and

monitor their simulations.

5.2.13 CloudSim Automation

Both CloudSim (Calheiros et al. [46]) and CloudReports (Teixeira Sá et al. [141]) support

the CloudSim extension known as CloudSim automation (Silva Filho and Rodrigues [134]).

Researchers can gain a more comprehensive understanding and awareness of the overall

cloud environment of significant complexity by using this extension, which improves the

readability of the simulation files by enabling automation of the simulation scenario related

to a YAML file. In spite of this advantage, CloudSim automation presents a significant

limitation as well, namely, that it does not support different distributions of resources,

VM scheduling, or the power usage associated with the simulation.

5.2.14 CloudMIG

CloudMIG facilitates the exploration of a range of cloud provider options and negotiation

of the service level agreement (SLA) (Fittkau [66]). To make sure that the most suitable

cloud profile candidate is selected, CloudMIG is designed to compare various cloud en-

vironments (Frey and Hasselbring [67]). A comprehensive discussion with regard to the

attributes of CloudMIG has been provided in Frey and Hasselbring [67] and Frey and

Hasselbring [68]. CloudMIG delivers the following features to CloudSim:

• Retrieval of the architecture and use models of an existing system that is provided

by software as a service (SaaS);

• Selection of the most suitable cloud profile candidate;

• Creation of the target architecture and mapping models;

• Adaptation of the systems in order to ensure that they are compatible with the

target architecture;

• Verification and simulation of the architecture and performance of static analyses

prior to system conversion;
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• The culmination of the preceding steps is the conversion of the system into the

desired and selected cloud environment.

5.2.15 CDOSim

Selection of a suitable cloud provider that effectively meets the established specifications

is a significant challenge facing cloud computing users Ahmed and Sabyasachi [21]. The

modelling of cloud deployment options can be successfully carried out with the help of the

simulation environment that is supplied by Fittkau et al. [65]. CDOSim (Fittkau et al.

[65]) is intended not for cloud providers but for cloud users. It is capable of determining

the extent to which the general performance of an application may be influenced by the

ignorance of cloud users with regard to the structure of the cloud platform, conducting

this assessment with the help of a benchmark.

5.2.16 Bazaar-Extension

Service level agreements (SLAs) and quality of service (QoS) are important considerations

for both provider and consumer in cloud computing environments. Bazaar-Extension

(Pittl et al. [126]) is an extension of CloudSim that provides a simulation mechanism for

the negotiation process between providers and consumers based on resource allocation

using the offer-counteroffer negotiation protocol.

Bazaar-Extension characterizes VMs as resource by their processing power, storage,

RAM and prices. In this extension, there is a mechanism that used for resource allocation

called supermarket which lets providers sell their offer to consumer without customizing

the offer. Bazaar-Extension consists of three main component : Communication sup-

port between parties in negotiation, negotiation strategies and visualization of ongoing

negotiations and their outcomes.

5.2.17 CM Cloud Simulator

As is explained in Armbrust et al. [32], Cloud Computing services can be divided into three

categories: Software as a Service (SaaS), Platform as a Service (PaaS) and Infrastructure
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as a Service (IaaS). All of these types of service need to be investigated in any research

aiming to make improvements to services of benefit to both providers and consumers of

cloud computing services. When users apply for services, different providers have different

costs based on their specifications and conditions of service. However, there is no method

for evaluating the relative costs of services from providers as it is difficult and expensive

to evaluate costs for a specific cloud computing environment. As a result, CM Cloud

Simulator (Alves et al. [30]) has been delivered as an extension of CloudSim to overcome

the difficulties in running experiments on different cloud providers infrastructure.

5.2.18 CloudTax

CloudTax (Pittl et al. [125]) is en extension of Bazaar-Extension which is an extension

of CloudSim to investigate the negotiation process between providers and consumers.

CloudTax has added the feature of cost of tax based on basic economical literature to

analyse the impact of tax on market. Modelling the tax impact is important as they

influence strongly the efficiency of negotiation processes.

5.2.19 EdgeCloudSim

EdgeCloudSim is built upon CloudSim in order to provide the functionality and features

of edge computing infrastructure. It is clear that in Sonmez et al. [137] there are new

classes and modules for edge computing systems have been added to CloudSim such as

a Load Generator Module, Transmission delay in the WLAN and WAN, Edge Orches-

trator to handle the incoming request from client where to be processed and mobility

module to specify the location for the mobile device connected to the edge computing.

to Evaluate EdgeCloudSim, there is a comparison study with expected results for face

recueqntion simulated experiments on three different architecture for the simulated fog

computing system as single-tier, two-tier, and two-tier with edge orchestrator. It would

be advantageous if there was a comparison study against a real data traces of mobility

computing experiments.
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5.2.20 CloudSim Plus

CloudSim Plus (Silva Filho et al. [135]) is an extension of CloudSim framework to improve

its maintainability, reusability and extensibility in terms of adding classes for distributions,

network an power. These classes allow users to use more functionality rather than the basic

functions on CloudSim and having a fast implementation of simulation scenarios The

most important features have been added to CloudSim in This extensions are Extensible

Improvements , Reduced Code Duplication and Tests and Code Coverage. Extensible

improvements is conducted by allowing users to inherit interfaces. It is reported that

CloudSim Plus has scale down the number of duplicated lines of code from CloudSim

3.0.3 in 30% as the duplicated code well known in the literature to be major complication

for software maintenance and characteristic.

5.3 Conclusion

This chapter reviewed software simulators for cloud computing called CloudSim, Green-

cloud, and Mininet, and succinctly categorised a set of publicly available extension projects,

outlining their features and benefits. The main goal of this section of the work is to provide

a survey of the current CloudSim software ecosystem, which is intended to be useful for

researchers who may want to (a) use CloudSim or one of its extensions for an empirical

investigation, or (b) develop a new extension for CloudSim that addresses a factor that has

been neglected so far. The main features of the frameworks were presented in this chapter

based on their extensions’ advantages, limitations, and validations. These should allow

researchers to explore the similarities and differences between the various extension in

order to determine the most appropriate tool to use or extend for a particular experiment.

For instance, by applying the method for selecting a simulator to the set of simulators

that can provide an environment for workflow experiments, it becomes clear that four

extensions of CloudSim exist that support the modelling of the workflow process in cloud

computing. These extensions are supported by different features that may improve the

capability and usability of the simulation environment. While CloudSim4DWf (Fakhfakh

et al. [64]) supports a graphical user interface and dynamic changes, DynamicCloudSim
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([42]) affords the possibility of modelling a heterogeneous data centre.

Ahmed and Sabyasachi [21] stated that cloud computing faces some challenges such

as security, cost modelling, energy management, and virtual machine migration, and re-

searchers are working to solve these obstacles by trying new algorithms and techniques in

cloud data centres.

Therefore, based on the features a researcher requires, along with the available data

about the simulators presented in this study, the most suitable extension can be straight-

forwardly identified by applying the method. End users can also generate a mind map

based on the method’s steps for the selection of a suitable simulator based on the re-

searchers’ requirements.

5.3.1 Contributions

This work enables researchers to identify suitable simulation tools for their experiments.

In particular, CloudSim and its extensions have been examined with regard to their di-

verse features and relative limitations. This involved the categorisation and explanation

of existing features that have been added to the CloudSim extensions under investiga-

tion. Several common cloud computing research challenges are not modelled explicitly

in CloudSim or its extant extensions, however, and developers of CloudSim can therefore

easily identify missing features among the reviewed extensions of CloudSim, and may be

encouraged to contribute new extensions. For example, security risk is one of the highest

concerns in Cloud Computing (Khan et al. [94]), and although several projects have used

CloudSim to investigate security (Sun et al. [140]; Zardari et al. [156]; Karthik and Shah

[88]), it would be more helpful if there were a security-focused extension of CloudSim that

could model different aspects of monitoring tools and security risk management.

5.3.2 Future Opportunities

The various CloudSim extensions provide additional features, many of which are orthog-

onal. However, it is difficult to combine the features of multiple extensions into a single

coherent simulator, as this would require manual source code merging, conflict resolution,
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and extra integration work. The field of cloud computing research needs more capable

simulators, and it would therefore be advantageous for future CloudSim work to develop

an extension framework (perhaps resembling the Eclipse plugin interface) to enable com-

binations of extensions.

For example, DynamicCloudSim and WorkflowSim have similar features in terms of

providing the opportunity to model a heterogeneous data centre with a fault tolerance

mechanism. Further, there is still a clear need to investigate simulator accuracy and reli-

ability by reproducing existing simulated experiments on actual test-beds and comparing

the results. This is a major challenge for the cloud simulation community, however, and

it is not exclusively restricted to the CloudSim ecosystem.
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Chapter 6

Performance of Benchmarking a Micro

Data Centre

6.1 Introduction

This chapter offers an assessment of the performance of a prototypical micro data centre

operating on a range of intensive workloads. A series of experiments were carried out in

order to evaluate the scalability of Raspberry Pi devices running intensive workloads in

a cluster configuration. According to Bondi [40], scalability is the ability of a system,

network, or process to cope with an increasing amount of work, or its potential to be

expanded to handle such volumes of work. The acquired data and the outcomes of this

chapter should thus be valuable when utilised in the context of evaluating the performance

of single board computers and micro data centres. The automated scripts presented in

this evaluation deliver clear and detailed steps to allow data centre infrastructure to be

completely configured and benchmarked, offering a highly beneficial tool for researchers

to adopt during research projects. Using the scripts, written in Bash (a UNIX shell and

command language), as a starting point, fully setting up 30 nodes of Raspberry Pi in an

automated manner was accomplished in a straightforward manner during this research.

The workloads that were then run on top of the infrastructure are fully explained below;

these have been profiled to illustrate the Raspberry Pi cloud performance.

This chapter further describes the infrastructure and benchmarks already mentioned in
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the methodology chapter. This infrastructure is set up for comparison validation work as

seen in chapters 7 and 8, and the current chapter mainly links the methodology chapter and

the results of the accuracy check of the simulators given in Chapter 7. It is also delivered

to present the source of the data set used to develop a machine learning predictive model

seen in chapter 8.

Novelty: Generating a data set to examine the performance of a micro data centre

running different types of workloads on Raspberry Pi devices generates a performance

evaluation that can be used for the validation of different prediction modelling tools.

6.2 Performance of The Glasgow Raspberry Pi Data

Centre

This section describes the performance of the Glasgow Raspberry Pi data centre in terms of

running micro benchmarks and other existing benchmarks for the Map Reduce application

and key value database application. The main idea behind this section of the dissertation

is to provide a performance evaluation of actual workloads run on a physical data centre

to act as an open source data set for researchers to use for micro data centre performance

evaluation. These experiments profiling on the Glasgow Raspberry Pi Data Centre are

also used to evaluate the selected simulators and the predictive model in a set of cross

validation experiments in chapters 7 and 8.

6.2.1 Dataset

This data describes the performance of the Glasgow Raspberry Pi Cloud in terms of

the number of instructions that different workloads manage during the running time on

different cluster configurations, alongside measures of the network performance. The in-

frastructure and workloads have different features and specifications that are also delivered

in this data.

Graphs 6.3 - 6.14 show the number of instructions and the execution time for running

these workloads on different cluster sizes in the Raspberry Pi data centre. The data
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was gathered by calculating the arithmetic mean of running each workload 30 times in

each size of cluster. No inappropriate format type were allowed, based on errors and

inconsistent units; this was achieved by looking at logs files and monitoring tool results

for each workload, and matching these with the concepts modelled in the simulators in

the evaluation work presented in chapter 7. The approach for data collection takes a set

of nodes running these workloads and profiles a single node from the selected nodes by

using the arithmetic mean of the node measurements.

6.2.2 Experimental Design, Materials and Methods

A micro data centre was built on top of multiple Raspberry Pi devices. The specifications

of the Raspberry Pi devices are given in table 6.1 and Figures 6.1 and 6.2 show the design

and schematic architecture of the Raspberry Pi data centre. Different types of workload

(Batch Processing and Transactional Processing) were then selected and profiled. The

data shows the number of instructions per node based on profiling a single node in the

data centre. The averages of running the profiling tools on multiple nodes show relatively

similar results on each node. The result for performance is different from other works such

as Abrahamsson et al. [19]; Cox et al. [53])however, as it includes the total execution time

and number of instructions to demonstrate scalability in the micro data centre’s size and

a wide range of workloads was run, as shown in table 6.3. The following list describes the

steps used to conduct the performance evaluation experiments on the Raspberry Pi cloud.

• Raspberry Pi v2 and Raspberry Pi v3 clusters were generated, as the existing clusters

of Raspberry Pi v1 lacked the ability to profile the devices using the Perf profiling

tool.

• Various workloads (Web Servers, MPI framework, Big Data application and Key

value Data base) were installed.

• The network topology was set as a single level tree with open flow standard Ethernet

switches.

• A stock router was used to connect the nodes.
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Figure 6.1: Raspberry Pi Nodes in the Micro data centre

• Various different profiling and managing tools were installed to capture performance.

• The protocol Secure Shell (SSH) was utilised to open communication between nodes

as described in SSH (ssh [17]). SSH is a cryptographic network protocol that al-

lows remote login and other network services to operate securely over an unsecured

network (Ylonen and Lonvick [155]).

• ClusterSSH (Rankin [128]) towas used to manage the installation of the workloads

among the clusters and Ansible was used to script the steps required for of installing

the Spark and Cassandra installations.

All profiling tools and managing cluster tools are shown in Table 6.2 , and these were

used to gather the features of the Raspberry Pi Cloud as illustrated in table 6.1. These

are the features used to customize the modeling on CloudSim, GreenCloud, and Mininet

simulation tools and to build the predictive modeling tool for the Raspberry Pi Cloud in

this research.
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Figure 6.2: Schematic Architecture of Raspberry Pi data centre

Table 6.1: Features of The Raspberry Pi Cloud Infrastructure

1.2 GHz , 64bit quad core ARMv8
4 Cores CPURaspberry Pi 3
1 GB RAM
900 MHz, 32 bit quad core ARM CortexA7
4 Cores CPU

Node

Raspberry Pi 2
1 GB RAM

Storage SD Cards 16 GB
Topology Tree
Switches Standard ethernetNetwork
Bandwidth 100 Mbit/sec

6.3 Actual Workloads and Benchmarks Run on The

Raspberry Pi Cloud

In this section, we provide details with regard to the results of my experiment. We run a

variety of jobs on a Raspberry Pi cluster. Table 6.3 outlines the workloads that have been

profiled on the Raspberry Pi cloud.
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Table 6.2: Profiling and Managing The Raspberry Pi Cloud Tools

Tool Used for
perf Instruction Count
Dhrystone Machine Capacity
ntop Network Monitoring
iperf Network Bandwidth and Latency
ClusterSSH Cluster Management
HAproxy Load Balancer
Ansible Automated Scripting on multiple nodes
iptables Automated Scripting for network performance measurements

Table 6.3: Workloads Tested on Raspberry Pi Cloud

Type Benchmark Profiling Tool
High Performance Computing Data Traffic (DT) from NAS Bailey et al. [34] mpiP

Web Server Application Apache Bench ABa [1] iptables, iperf and perf
Database Application (NoSql) Cassandra-Stress Abramova and Bernardino [20] perf

Big-Data Application Spark - Word Count Dean and Ghemawat [57] Spark Log, iptables and perf

6.3.1 Message Passing Interface: NAS Benchmark – Data Traffic

DT

Parallel Benchmarks (NPB) are micro benchmarks that design to evaluate parallelism for

super computers. There are different types of benchmarks of NAS for different purposes

such as kernels, pseudo-applications, unstructured computation, parallel I/O, and data

movement Bailey et al. [34]. We run and profiled a benchmark for data movement (Data

Traffic benchmark DT), with input size set for Class: A on both types of infrastructure

Raspberry Pi 2 and 3. We choose and specified the DT benchmark as the other benchmarks

from NAS require large footprint of memory to be run on Raspberry Pi 2 and 3. We test

different sizes of high-performance computing applications on the cluster in order to gather

execution times for each application on a particular node. Figure 6.3 and 6.5 show the

number of instructions per node for the DT benchmark on Raspberry pi 2 and Raspberry

Pi 3 whereas, figures 6.4 and 6.6 show the total execution time.

6.3.2 Web Server: Apache Bench AB

Web servers are widely deployed in cloud computing data centre. A web server processes

requests via Hypertext Transfer Protocol (HTTP). We aim to profile the network per-
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Figure 6.3: Number of Instructions for DT Benchmark on Raspberry Pi 2

formance of our Raspberry Pi data centre implementing the Apache Bench ABa [1] that

used to measure concurrent HTTP requests between a client and server. We configure

the benchmark with 10000 concurrent requests from the client user to multiple servers in

the Raspberry Pi data centre. I have used the perf tool in order to count the number of

instructions per node on the server devices and showing the performance during scaling

up and down the number of servers responding to the client request. Figures 6.8, 6.7, 6.10

and 6.9 present the performance of Raspberry Pi 2 and 3 for Ab benchmark in terms of

Number of instructions and total execution time.

6.3.3 Spark: Word Count

Map reduce is widely used in large and commercial data centre like Google Cluster and

Amazon, It has been evaluated in the work Dean and Ghemawat [57]. Map reduce pro-

vides the advantages for scalability in dividing computation among cluster without much

consideration about how it distributes the workload from the end user thinking.

For a representative big data application we test the performance of Raspberry Pi devices

running map reduce job for a word count benchmark. My script for starting the spark
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Figure 6.4: Execution Time for DT Benchmark on Raspberry Pi 2

service and testing 3 GB text file for mapping and reducing the count over multiple nodes

is designed to be automatically run. Graphs 6.12 and 6.11 show the performance of the

benchmark in terms of the total execution time on multiple nodes and the number of

instructions per node.

6.3.4 Cassandra: Cassandra-stress

In this workload we profile the performance of Raspberry Pi data centre running NoSQL

database management system called Cassandra[12]. We choose the benchmark Cassandra-

stress to test writing and reading on and from large database that has been stored on our

Raspberry data centre. We install and test Cassandra service on Raspberry Pi data centre

by costmised Bash script to be publicly available for anyone to use for Linux based servers

on data centres. Figure 6.14 and 6.13 show the performance of Raspberry Pi 3 running

Cassandra stress with the configuration that is stored on (GitHub)
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Figure 6.5: Number of Instructions for DT Benchmark on Raspberry Pi 3

6.4 Profiling Tools: Perf, iperf and mpiP

The infrastructure specifications were collected via different profiling tools. All workloads

run on the data centre were profiled on a per-node basis using standard Linux perfor-

mance monitoring tools, while a Bash script including perf (per [16]) was implemented to

generally profile any workloads run on the Raspberry Pi cloud. The perf record was run

as it identifies the specific processor ID when gathering its hardware events. Another tool,

iperf (ipe [14]) was also used in order to measure and specify network features such as

latency, throughput, and bandwidth. The results of running iperf provided the bandwidth

and the throughput of the network, as it is a tool for active measurement of the maximum

achievable bandwidth on IP networks. It thus supports the tuning of various parameters

related to timing, buffers, and protocols (TCP, UDP, SCTP with IPv4 and IPv6). For

each test, the bandwidth as well as other specific parameters was recorded.

Moreover, mpiP (mpi [15]) was used as a profiling tool in order to profile cluster

performance by measuring the execution time of the jobs on each node in the cluster. MpiP

is a lightweight profiling library for MPI applications that collects statistical information

regarding MPI function-calls.
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Figure 6.6: Execution Time for DT Benchmark on Raspberry Pi 3

Dhrystone (Dhr [4]; Dhr [5]) measures the performance of nodes in the cluster in terms

of million instructions per second (MIPS).

The protocol Secure Shell (SSH) (Ylonen and Lonvick [155]) was also applied in the

experiments to open communication between nodes, as described in SSH (ssh [17]). SSH

is a cryptographic network protocol that allows remote login and other network services

to operate securely over an unsecured network.

For cluster management, a customised version of Ansible by Hochstein and Moser [76] ,

self-written scripts, and the ClusterSSH tool (Rankin [128]) were used for monitoring and

deploying packages and required libraries in an automated manner. For load balancing,

Haproxy (Kaushal and Bala [90]) was used.

In terms of network monitoring, an open source tool called ntop (Deri et al. [59]; Deri

and Suin [58]) was used to capture the throughput and total amount of data distributed

between nodes in the data centre during the execution time. This gives more details about

the network than iperf. It is a web-based application that reports the network traffic, and

which is able to conduct a traffic analysis for different types of data in the network such

as the HTTP server for web access. Other advantages of ntop include the fact that it
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Figure 6.7: Execution Time for AB Benchmark on Raspberry Pi 2

supports various network media types, and it can store traffic information in an SQL

database. Thus, ntop and iptable were used in the research to measure the amount of

data transferred during the execution time of the workload, run and profiled in automated

manner via Bash scripts. The idea behind using both was to confirm the distribution

amount of data transferred in all nodes involved in running each workload.

There are several main approaches to traffic accounting:

• Determine and count traffic flows (netflow, openflow).

• Intercept (catch) traffic data at the network interface (bpf, tcpdump).

• Use kernel iptables (ip accounting).

Of these, the iptables method was chosen as is it does not require additional equipment

or complex software. All required programs are included in every modern Linux distribu-

tion, as they are universal tools used in many different cases; iptables is a standard tool for

managing internal (kernel-based) Linux IPv4 firewalls, and it is thus installed and enabled

by default. It is used for adding permissive rules for interesting ports and interfaces and

the kernel then counts all packets corresponding to this rule. For the current case, when
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Figure 6.8: Number of Instructions for AB Benchmark on Raspberry Pi 2

there is a single application at the node at a very specific port and this application starts

to perform actions, IP accounting is the best and simplest measure. To perform a ’counter

reset’, it sufficient to flush the table, as the firewall is fully open. To cut the required data

from both scripts for perf or iptables, scripts collect the required data by commanding

the output using text processors: To cut required data from both scripts in my research

for perf or iptables, the scripts collect the required data by commanding the output using

some text processors such as:

• grep: To filter strings contains data for required interface and port;

• awk: To format output data according to conditions;

• tr: To remove end-of-line and return signs from the data.

Base system soft data was used to make a timestamp. These scripts generate reports

that are more ergonomic, human-readable, and in a standard CSV format.
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Figure 6.9: Execution Time for AB Benchmark on Raspberry Pi 3

6.5 Discussion

The measurement of three different factors within the dataset associated with the perfor-

mance of a realistic micro data centre is made possible by the fact that the profiling of

every workload was carried out using two kinds of machines, Raspberry Pi v2 and Rasp-

berry Pi v3. In order to determine the execution time, the approach adopted involved the

implementation of the command (time) in a BASH script. The unit of measurement in

which the calculated execution time was expressed was seconds. The BASH script written

for the implementation of the command (time) also comprised perf for the measurement

of the number of instructions in every workload during run-time. The measurement of

the volume of data transferred between servers during the execution time was undertaken

using the software program iptables, which was also included in the BASH script.

The execution times (S) associated with the DT benchmark for the MPI job on the

two kinds of machines employed (Raspberry Pi v2 and Raspberry Pi v3) are indicated

in Figures 6.4 – 6.6. These figures clearly show that an increase in the number of nodes

up to seven nodes within the cluster led to a marked reduction in time; subsequently

however, the compromise between the computation time and the communication time for
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Figure 6.10: Number of Instructions for AB Benchmark on Raspberry Pi 3

the application caused a gradual increase in time up to 15 nodes. It must be noted that,

in the case of Raspberry Pi v3, the overall execution time associated with the workload

was impacted by the fact that the number of instructions for each node was not constant.

Meanwhile, as seen in the Figure 6.9, the distribution exhibited by the benchmark AB

during execution time was balanced. The reason for this balanced distribution was that

the benchmark was quite small, owing to the compression work carried out on Mininet as

described in the sixth chapter, which necessitated the running of a small size system. The

number of instructions and the execution time were correlated as they achieved a balanced

distribution within the cluster, as definitively proven by the additional workloads, such

as DT, Cassandra Stress and Spark Word Count. The correlation between the number of

instructions and the number of nodes related to the Spark Word Count workload is shown

in the fourth figure below. The explanation for the existence of a correlation between the

number of instructions and the number of nodes is that, after the cluster expanded to

more than seven nodes, the intensity of the work on the memory in every node during the

execution time is diminished. As a result, the workload exhibited a steady performance

with a similar execution time. Furthermore, the number of instructions and the execution
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Figure 6.11: Execution Time for Spark-Word Count Benchmark on Raspberry Pi 3

time were directly and clearly correlated. What is more, this correlation existed despite

the fact that the communication time between the nodes in every cluster had an impact.

In spite of this impact of the communication time, overall computation time was not

restricted to communication time between the nodes, as attested to by the fact that it

showed up during the execution time associated with the workloads during the profiling

of the latter on nodes within the cluster that ranged in size from one to five.

The similarity of outcomes with regard to the number of instructions became even

closer when the number of nodes running the workloads was increased. This can be

clearly seen in Figures 6.3 – 6.14, which are related to the various benchmarks examined

on the two types of machines; these include the Mpi DT job, the AB benchmark, and

the Cassandra-Stress benchmark as well as the Spark Word Count. This observation was

made possible by the fact that the same experiment was carried out a thirty times, with

the number of instructions being gradually reduced; each node had more or less the same

number of instructions, which did not fluctuate, but remained stable and balanced.

Regarding the amount of data transferred between nodes in the infrastructure, the

total amount of data for each workload is presented in Graphs 6.15 – 6.22. The amount
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Figure 6.12: Number of Instructions for for Spark-Word Count Benchmark on Raspberry Pi 3

of data decreased when the number of paralleled nodes running the workload increased.

However, in the case of the Spark - Word Count benchmark, there was an increase in the

amount of data when the number of nodes increased after four nodes, due to the exchange

of system (hidden) data required for map reduce jobs.

6.6 Conclusion

Providing a report on the performance of the data centre is likely to be of benefit to

researchers in the future as they investigate either new techniques or algorithms in the

field of Cloud Computing by comparing the results of these evaluation against their own

work. In this chapter, the focus was placed on the number of instructions and network

performance in terms of describing the workloads. The number of instructions is widely

used as a metric for representing workloads in simulators such as CloudSim, GreenCloud,

iCanCloud, and extensions of CloudSim.

Different simulation tools are developed for particular types of experiments, though

by systemically comparing the results of different types of workloads on each particular

simulator with actual physical infrastructure, it is possible to present the level of accuracy
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Figure 6.13: Execution Time for Cassandra-Stress Benchmark on Raspberry Pi 3

for each simulator. Moreover, by using a range of workloads performance compared with

actual infrastructures, the level of accuracy can be determined and the simulator can be

updated based on the requirements of the type of experiments under consideration.

Researchers using any of the three simulators investigated would find it advantageous

to utilise the data centre performance report from this work as a guide for their own work

due to the fact that it provides a step-by-step instruction process, and also as a com-

parative tool in order to ensure the legitimacy and relevancy of their own data as their

projects progress. This data and evaluation can be used to sanity check any blatantly

false results, and to validate any further simulation tools for cloud computing by modeling

the characteristics of the different types of presented workloads based on their character-

istics and features, comparing the performance against the actual results generated by the

Raspberry Pi data centre.
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Figure 6.14: Number of Instructions for for Cassandra-Stress Benchmark on Raspberry Pi 3

Figure 6.15: Amount of Data Transferred in the Cluster for DT Benchmark on Raspberry Pi 2
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Figure 6.16: Amount of Data Transferred in the Cluster for DT Benchmark on Raspberry Pi 3

Figure 6.17: Amount of Data Transferred in the Cluster for AB Benchmark on Raspberry Pi 2
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Figure 6.18: Amount of Data Transferred in the Cluster for AB Benchmark on Raspberry Pi 3

Figure 6.19: Amount of Data Transferred in the Cluster for Cassandra-Stress Benchmark on
Raspberry Pi 2
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Figure 6.20: Amount of Data Transferred in the Cluster for Cassandra-Stress Benchmark on
Raspberry Pi 3

Figure 6.21: Amount of Data Transferred in the Cluster for Spark-Word Count Benchmark on
Raspberry Pi 2
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Figure 6.22: Amount of Data Transferred in the Cluster for Spark-Word Count Benchmark on
Raspberry Pi 3
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Chapter 7

Evaluation Method for Cloud

Computing Simulators

7.1 Introduction

This chapter presents the results of applying a cross validation method to evaluate cloud

computing simulators, namely CloudSim, GreenCloud and mininet. This chapter demon-

strates the methodology as a comparative performance evaluation of real-world workloads

on physical infrastructure against corresponding models of the workloads and infrastruc-

ture on the selected simulators. The level of accuracy for each tool is presented based on

the results of a sensitivity analysis, which study the Root Mean Square Error (RMSE)

for the relative and absolute error between the simulated and actual execution time and

energy consumption.

In this chapter, we use the results of the earlier performance evaluation of the Glasgow

Raspberry Pi Cloud from Chapter 5, to be a source of the inputs that we feed into the

selected simulators as workload and platform characteristics for the data centre.

Novelty: This is the first empirical comparison of multiple cloud simulators against

a scalable micro data centre system, to assess their relative consistency over a range of

non-functional metrics.
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7.1.1 Results for the Accuracy of CloudSim

Evaluation of MPI Application

CloudSim v 3.0.3 is designed to model the MPI application and the communication be-

tween tasks in the data centre as it contains the following Java classes:

1. Taskstage represents various stages a networkCloudlet can have during execution.

Four stage types which are possible( EXECUTION, WAIT-SEND, WAIT-RECV

and FINISH).

2. AppCloudlet class to represent an application which user submit for execution within

data centre. It consist of several networkClouds.

3. Workflowapp is also a class of AppCloudlet having communicating tasks Calheiros

et al. [46].

We measure the execution time for the NAS MPI Data Traffic benchmark (DT) Bailey

et al. [34] , Class:A on the actual test-bed. We have chosen and specified the DT benchmark

as the other benchmarks from NAS require a large footprint of memory than can be

run on Raspberry Pi 2 and 3. We tested different sizes of high-performance computing

applications on the cluster in order to gather execution times for each application on a

particular node. We obtain the output of each application using mpiP mpi [15] to generate

the profiling file for each benchmark running time on the cluster in order to be compared

with CloudSim.

Figures 7.1 and 7.2 show the execution time on Raspberry Pi v2 and v3 and the

simulated execution time calculated by CloudSim. The points on the lines represents the

mean of the execution time of running the benchmark (DT) 30 times on Raspberry Pi

nodes and the simulated execution time the model of the benchmark on CloudSim in

tandem with the increasing number of nodes.

Evaluation of Web server Application

In order to run Apache Bench (AB) ABa [1] on our Raspberry Pi data centre, we use an

external Ubuntu machine as a client for the web servers. We also use HAproxy Kaushal
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Figure 7.1: Actual and Simulated Performance of DT Benchmark on Raspberry Pi 2 and
CloudSim
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Figure 7.2: Actual and Simulated Performance of DT Benchmark on Raspberry Pi 3 and
CloudSim
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Table 7.1: Root mean square (RMS) for absolute and relative error of the simulated
performance on CloudSim

DT Benchmark - MPI Workload
Raspberry Pi2 Raspberry Pi3

RMS for Absolute Error 1.46 1.36
RMS for Relative Error 32.03 % 17.95 %

AB Benchmark - Web Server Workload
Raspberry Pi2 Raspberry Pi3

RMS for Absolute Error 56.81 21.10
RMS for Relative Error 75.80 % 60.96 %
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Figure 7.3: Actual and Simulated Performance of AB Benchmark on Raspberry Pi 2 and
CloudSim

and Bala [90] in our data centre as a load balancer to distribute the requests between the

Raspberry Pi nodes. Using HAproxy allowed us to expand the number of nodes serving

the request from the client. Figures 7.3 and 7.4 show the performance of the benchmark

AB on both actual tests, which were on Glasgow Raspberry Pi Cloud and the simulated

environment of CloudSim.

Table 7.1 shows the errors for the simulated environment on CloudSim with respect to the

execution time on Raspberry Pi.

Figures 7.1 – 7.4 show the execution time for the DT and AB benchmarks on both

Raspberry Pi v2 and Raspberry Pi v3 with the simulated execution time on CloudSim

for the model of the benchmark. The first point on each line represents the mean of the
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Figure 7.4: Actual and Simulated Performance of AB Benchmark on Raspberry Pi3 and
CloudSim

execution time of running the benchmark 30 times on a single nodes, and the second

point represents the mean of running the benchmark 30 times on two nodes, and so on

for the rest of the points on the line in increasing the number of nodes. From the highest

point in the lines represents the simulated execution time on CloudSim and the actual

infrastructure for the model of the benchmark, there is a clear similarity between actual

execution time and simulated execution time, except in the case of running the benchmark

on a single node. Running the benchmark on a single node will include the time to manage

the execution of the benchmark in terms of the buffer system and application buffer, which

causes delays in the task communications Hu et al. [80].

7.1.2 Results for the performance of Mininet and Green Cloud

Our data sets for the actual and predicted performance of all tools followed the normal

distribution. Considering this, we determine that using the technique of calculating the

root-mean-square error (RMSE) 7.1 was a sufficient way to demonstrate the degree to

which the tools used in this research were accurate Chai and Draxler [48]. To be more

specific, we applied RMSE to compare the predicted performance of the selected tools

against the actual performance of the Raspberry Pi cloud. The formula given in V.1
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comparatively examines the difference between the values for the actual execution time in

x1,t and the predicted performance in x2,t. With respect to the ratio of energy consumption

for servers in the data centre (i.e., those built on top of Raspberry Pi devices in Table 7.3),

the RMSE results for GreenCloud showed a high relative error when considered in relation

to the actual measurements from the Raspberry Pi cloud. For more information, see Figure

7.5. With respect to the performance of Mininet, we conducted an experiment to model

the network performance. The rationale for doing so stemmed from the fact that Mininet

focuses on communication rather than computation in experimental situations. Based on

the collected data, we confirm that Mininet was not able to run the ab benchmark with

10,000 concurrent requests in the benchmark. Therefore, we focus on the latency between

nodes in running the benchmark, and we sought to calculate the time via iperf on the actual

Mininet experiments. The reader is given a representation of the differences between the

two experiments (running the ab benchmark with 1,000 concurrent connections) in Figure

7.6. Given in Table 7.2 are the outcomes from the investigation of the selected tools.

Information pertaining to their advantages, drawbacks, and their levels of accuracy when

modelling the performance of the Raspberry Pi Cloud is presented.

RMSE =

√∑n
t=1(x1,t − x2,t)2

n
. (7.1)

7.2 Calibration in CloudSim for Calculating Link La-

tency in Cloud Environment

In the Cloud IaaS (Infrastructure as a Service) environment, total execution time for each

cloudlet can be calculated. From this, we can decide how many resources such as CPU,

memory, network, bandwidth and storage are necessary in order to execute all of the

tasks; we can also calculate costs, based on used resources. We implement a mechanism

available to calculate latency (time) in the cloud environment. The purpose of calculating

the delay is to discover the total execution time required including latency, propagation

and execution time. Then, based on this integrated time, cost of resources and data centre
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Table 7.2: Features and accuracy results of GreenCloud and Mininet

Evaluation Criteria GreenCloud Kliazovich et al. [100] Mininet Min [8]

Area Energy
Consumption Network

Advantages

Modelling all
communications
processes on packet
level

Running real code
including standard
Unix and Linux

Drawbacks

Does not
consider different
architecture for CPU
and workloads
characteristics.

Limited to the
physical resource.
Dose not support
CPU computations

Actual Experiment

Running
MPI job
Data Traffic (DT)
from NAS
Benchmark Bailey et al. [34].
Measuring
Real Power
consumption by a
monitoring
tool

Running Apache
Bench (AB) on
Raspberry Pi
Cloud.
Using iperf tool
to profile
network
performance.

Modelled
Experiment

Simulating
Raspberry Pi MIPS
and File specifications
on the simulator.
Selecting Round-
Robin algorithm
for resource allocation

Developing python
script involving AB
benchmark ABa [1] and
iperf commands
line to be run on
Mininet.

Accuracy
49.5 %
RMSE
Relative Error

27.05 %
RMSE
Relative Error

Table 7.3: Power Consumption for Raspberry Pi Devices Runing MPI Job

Ideal Full Utilization
Raspberri Pi 1 1.96 Watt 2.16 Watt
Raspberry Pi 2 1.03 Watt 2.70 Watt
Raspberry Pi 3 1.34 Watt 2.31 Watt
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Figure 7.5: Actual and Simulated Power Consumption (Raspberry Pi 3 Cluster vs GreenCloud)

Figure 7.6: Network Latency Between a Client and Servers (Raspberry Pi Cluster vs Mininet)
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performance can be calculated and measured. There are a number of reasons that make

this approach useful in decision making, for example, if total resource costs are increasing,

alternative choices should be made. Failing this, schedule changes can be made in an

attempt to reduce costs. We successfully apply a new mechanism to CloudSim that allows

users to model the network transmission and propagation of the data centre. Links in

CloudSim do not consider the effects that the transmission and propagation have on the

network, However, we add these parameters as we realised there is missing simulated time

in CloudSim from the actual time in my experiment. This is a result of CloudSim only

showing the CPU bound time and not the I/O bound time. Parameters to work on:

1. Transmission time.

2. Propagation time.

3. Execution time.

Proposed Mathematical Equation to calculate / Display Latency:

Total time = Transmission time + Propagation time + Execution time

7.2.1 Result of Applying Latency Calculation on Simulated Exe-

cution Time on CloudSim

Figure 7.7 shows the comparative result between actual execution time and simulated

execution time before and after adding the latency mechanism for transmission delay in

networking for Ab benchmark. The actualEx data point represents the actual execution

time taken to finish the jobs on Raspberry Pi cloud, whereas CloudSim refers to the

simulated execution time on CloudSim framework. Additionally, DhCloudSim means the

simulated execution time from the customised CloudSim with the latency mechanism, as

a result, reliability in DhCloudSim is increased more than just relying on the previous

execution time of the CloudSim framework.
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Figure 7.7: Comparison Graph Between Actual Execution Time and Simulated Time on
CloudSim for AB Benchmark

7.3 Conclusion

This chapter has presented an empirical approach to evaluate the software simulation

tools CloudSim Calheiros et al. [46], GreenCloud and mininet through a comparative

study with a micro data centre known as the Glasgow Raspberry Pi Cloud Tso et al. [144].

Two workloads have been profiled on a per-node basis using standard Linux performance

monitoring tools. I make the following four suggestions based on my experiences with

these simulation experiments:

1. CloudSim needs a richer set of input features to calculate workload execution time.

Currently, CloudSim requires number of instructions for the workload, and an in-

struction processing rate for the CPU. Our results show that there is clear execu-

tion time dependence on the CPU architecture, based on the discrepancies between

CloudSim results for data centre nodes featuring Raspberry Pi v2 and Raspberry Pi

v3.

2. CloudSim needs a more complex model of inter-node communication for distributed

applications. Our experiments show high relative error between the actual and
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simulated performance for a non-batch-processing workload, i.e. one which is likely

to be a representative cloud application.

3. GreenCloud needs to be improved to predict the energy consumption for micro server

instances, involving the energy consumption for different architectural components

such as CPU, RAM, and buses. This stems from the fact that these components

have a significant impact on the energy consumption of the servers in a way that is

dependent on the nature of the architectures and the nature of the workload type.

4. Mininet was associated with a higher level of accuracy when modelling the network

performance for Apache Bench when comparatively examined against CloudSim.

There is 60% relative RMSE in CloudSim performance on Apache Bench, a typical

transactional processing workload. However, an important consideration is that

Mininet is constrained by the capacity of the physical machine that it is installed

on, given that it is a full-system simulator based on virtual machine execution.

In conformance with the theoretical tenets of empiricism, the cross-validation method was

applied to derive insights about the tools in question, and the collected results indicate

that this was a reliable way in which to verify and validate the computer system simulators.

The immediate aim of this chapter has been to illuminate the degree to which a col-

lection of modelling tools can be viewed as accurate. This aim was achieved by designing

a methodology that applied sensitivity analysis for the results, specifically relating to the

actual and simulated performance of the models.

In respect of this chapter’s findings, the simulations are abstractions and can not repre-

sent full complexity of sufficient details of real infrastructure configurations or workloads.

So it would be more appropriate for researchers to conduct their experiments using alter-

native tools like prediction models.

Moreover, the following chapter will assess how to predict the performance of cloud

computing infrastructure using Machine Learning techniques based on the evaluation mea-

surements of our Raspberry Pi infrastructure. This will lead me to investigate the level of
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accuracy of the prediction models by comparing the predicted results with the measure-

ments from the tools that have been evaluated in this chapter.
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Chapter 8

Predictive Model for Cloud Computing

Experiments

8.1 Introduction

This chapter presents a prediction model for infrastructure performance for the Glasgow

Raspberry Pi cloud based on Artificial Neural Networks ANN and Linear Regression Model

LM. These prediction models built based on the data set that we generate by testing

different types of workloads on top the Glasgow Raspberry Pi cloud which is already

presented in Chapter 5. The idea behind this chapter is to compare the level of accuracy of

different machine learning prediction models against the level of accuracy of the simulation

tools that we already presented in chapter 6. The comparison will be shown the following

chapter which is the conclusion of my thesis. This chapter centre on modelling four

workloads performance and testing different types of cross validation method namely:

Randomly splitting, Leave One Out and the K-Fold Cross Validation methods on both

ANN and LM models in order to get the more accurate model.

Novelty: Presenting the level of accuracy of ANN and LM models based on The Glasgow

Raspberry Pi Infrastructure and shows how different methods behave differently based on

the selected workloads for modelling Cloud Computing experiments.
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Table 8.1: The Proposed data set for the predictive model

Raspberry Pi v2 & Raspberry Pi v3Infrastructure Type Cluster Size 1-15
Workloads Execution Time Number of Instructions Amount of Data

DT - MPI Job Seconds Instructions MByte
AB - Web Server Seconds Instructions MByte
Cassandra-Stress Seconds Instructions MByte
Spark-Word Count Seconds Instructions MByte

8.2 Overview of the Proposed Model

Prediction models are often used in various forms of research. They can be successfully

employed within investigations into the management of resource allocation, the power

consumption of a data centre, the performance of a database application, or even the

service level of agreement work Wu et al. [154], Al-Janabi et al. [25].

This experiment attempts to conduct an investigation into how accurate prediction models

are at achieving a predicted result that matches the actual result. Within this experiment,

the measured performance of a micro data centre will be predicted using prediction models.

Once results are obtained, these results will be employed, within this examination, to

attempt to predict the performance of other workloads. it would be also used for different

applications or may even contain a different size data centre. In addition, this examination

has also applied the predictive model to predict the performance of different types of

infrastructures. These infrastructures all operate with identical workloads.

Within the diagram 8.1 an overview is presented of the predictive model. This predictive

model was created specially for employment within this examination. In addition, this

predictive model was used within the examination to predict the performance of any

type of infrastructure. Once a general performance level was obtained, this result was

then compared and contrasted to the performance results which were previously obtained.

Previous performance results involved the performance of two operating systems: the

Raspberry Pi v3 and Raspberry Pi v2.

We used the machine learning models due to the nature of the data set we have

generated from the performance of the Raspberry Pi data centre as quantitative numeric.

The other non-linear model among the predictors created problems for other regression
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Figure 8.1: The Prediction Model Overview

models when attempting to predict computing time. Therefore, the Ann and LM are more

flexible models for the unknown underlying function that dictate execution time.

8.3 Data Preparation

As part of this data collection for this prediction models, the following steps were con-

ducted in order to prepare the data set:

• As previously discussed in Chapter 5, four different applications were profiled on two

different CPUs.

• A number of specific instructions were executed and the elapsed time for each CPU

was recorded.

• Amount of data transferred in the network was recorded.
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• The received data was documented and recorded.

• For each separate core that was used, four distinct factors were recorded: CPU, CPU

speed, RAM, and MIPS.

The data set we have generated from the work in Chapter 5 consists of 3600 ob-

servations, eight variables, seven predictors and one response which is time. The seven

predictors are workload categorical (4 levels, 900 observations each), machine categorical

(2 levels, 1800 observations each), nodes numeric (15 level). CPU (numeric dependent

attribute of machine), MIPS (numeric dependent attribute of machine), instructions (nu-

meric dependent attribute of workload) and amount of data (numeric dependent attribute

of workload).

8.4 Prediction Model Based on Machine Learning Al-

gorithms

In order to predict the performance of both of these operating systems, a Linear Regression

model LM and Artificial Neural Netwroks Model are used. The linear regression model can

be defined as a type of regression analysis in which observational information is obtained

through a linear combination of the model parameters. Typically, these model parameters

depend on at least one independent variable.

This model is selected by grid searching many different permutations of the model

as Hyper-Parameters. In Grid searching, a script is created that varies different models

parameters like structure, actavation function and convergence threshold. Then the model

is run and tested. Error and execution time are used to determine the best model which

provide low error and low execution time.

The Artificial Neural Networks and Linear Regression models are applied with splitting

the data randomly into a test 20% of data and training 80% of data set and trained on

the training set. Then the trained model is used to predict the test set. The prediction is

shown in Figure 8.3 for predicted values vs. actual values. Figure 8.2 shows the selected

designed structure of the ANN model showing the input, hidden and output layers of
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the model In this ANN, we split machine, application and number of nodes into separate

inputs and coded as -1 to 1, applying hyperbolic tangent activation function. Also we

match the number of neurons in the single hidden layer with the number of input neurons.

Model specifications were:

• Structure: 25-15-1

• Activation Function: Hyperbolic Tangent

• Convergence Threshold: 0.01

Figure 8.2: The Diagram of the Artificial Neural Networks Model

Figure 8.12 shows the predicted performance using Linear Regression Model in the

case of testing 20% of the data based on randomly splitting the data into 20% testing data

and 80% training data.

8.5 Leave One-Out Cross Validation

When randomly splitting the data into training and test sets the ANN Model performed

with good level of accuracy. However, in the leave-one-out (removing each Workload x
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Figure 8.3: Predicted Values vs. Actual Values - All Data

MACHINE combination 1-by-1), test Linear Models performed better than The ANN

Model. The following points are considered in my finding about the models:

• CPU and MIPS are not very helpful for the model. This because the variables

CPU and MIPS have only two levels and they are perfectly correlated with machine

this means that they are not ’independent’. Then, since there are only two unique

combinations of CPU and MIPS this means that these combined are only basically

as useful as the categorical labeling variables that we use for (RPI2 and RPI3).

• RAM and CORE are not useful in any statistical model because they are the same

value for RPI2 and RPI3 and thus these values RAM = 1 and CORE = 4 are

constants and cannot be included in the model. If we had more machines than 2,

and these machines had more unique levels of RAM and CORE, then these variables

would be very useful.

Figures 8.4 – 8.11 show the results of the leave one out method based on ANN prediction

model, whereas Figures 8.13 – 8.20 show the results of the leave one out method for each

workload based on linear regression model.
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Figure 8.4: Predicted Values vs. Actual Values for MPI on Raspberry Pi 2 Based on Other
Workloads Performance

8.6 K-Fold Cross-Validation

As shown in 8.5 that both statistical models LM and ANN struggle to predict an unknown

machine x app combination in the leave-one-out scenario. However, it was also shown that

for randomised splitting of the data into model testing and model training sets, the ANN

outperforms the linear model and produces fairly precise predictions. Thus, the goal of

this section of the analysis is to take a deeper dive into validation of the ANN model. This

was achieved through a technique known as K-Fold cross-validation K-Fold CV. This is

the process of randomly sub-setting your overall data set into k subsets. It is common to

use k = 5 (5-fold CV) and k = 10 (10-fold CV) Witten et al. [153]. K-Fold CV mainly is

used to increase confidence in how the model will generalise to an independent data set

(or a new data set that the model has not seen yet). Basically, it is a robust diagnostic

tool that helps set expectations for how well the model should work when applied to a

new or independent data set. The results of 10-fold CV are listed in the Table 8.3. The

data set was randomly split into 10 equally sized subsets (360 data points per subset).

For each split the ANN model was trained and tested on each subset for example if the

model is trained on subset (2,10), then it is tested on subset (1), similarly if the model is

trained on subsets 1 U (3,10), then it is tested on subset 2. This process of training and

test is run 10 times sequentially testing on subset 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10. Then this
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Figure 8.5: Predicted Values vs. Actual Values for MPI on Raspberry Pi 3 Based on Other
Workloads Performance

process was repeated a total of 3 more times testing at model convergence thresholds of

0.5, 0.1, 0.05, 0.01. Decreasing the convergence threshold takes more computing time, but

usually improves the prediction accuracy model until the point of over-fitting Rojas [129].

In over-fitting, the model has been overexposed to the training data, and is modeling its

noise (undesirable) in addition to its underlying structure (desirable). With the K-Fold

CV diagnostic technique, we can also see over-fitting when it is present Dangeti [54], it is

usually evident when the MSE, RMSE, are very low for the training data predictions and

very large for the test data predictions Perner [124].

From the 10-Fold CV results shown in Table 8.3, it is clear that a convergence threshold

of 0.01 for the ANN model is optimal and that it yields a test mean percent error (MPE) of

10-13% with a standard deviation of 3-5%. This could likely be improved by adding more

data to the model, but the current design with 3600 data points is an excellent starting

point. From the 5-Fold CV study in Table 8.4, the test mean percent error (MPE) ranged

9-13% with a standard deviation of 2-5%. This is similar to the 10-Fold CV result.



8.7. Discussion: 129

Figure 8.6: Predicted Values vs. Actual Values for Web-Server on Raspberry Pi 2 Based on
Other Workloads Performance

8.7 Discussion:

Table 8.2 shows the results of the RMSE of all cross validations methods that we con-

ducted to evaluate machine learning models to predict the execution time of different

types of workloads on Raspberry Pi infrastructure. With the ANN model, the leave-

one-out attempts are very poor predictions. ANN model needs to be built with more

continuous variables in our data set, otherwise it will always struggle with the leave-one-

out predictions. However, in this research, In the case of the leave-one-out trials, a Linear

Model outperforms the model in ANN. ANN is better than LM for TEST data and RAN-

DOM test/training split. LM is better than ANN for TEST data and LEAVE-ONE-OUT

test/training splits. In these cases, we consider the RMSE for TEST data for both random

and leave-one-out data split, we are not as interested in model performance on TRAIN

data, as performance on TEST data represents the scenario of interest where researchers

intend to predict an unknown (machine, workload) combination.

Overall, it seems that the ANN model is in this example and in principle a good way

to predict cloud computing execution time. The most accurate statistical models arise

from the designed experiments, where data is collected thoughtfully within a predeter-

mine structure. These experiments were well designed and thus a good basis for creating

an accurate and robust model. However, the ANN or any statistical model for that mat-
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Figure 8.7: Predicted Values vs. Actual Values for Web-Server on Raspberry Pi 3 Based on
Other Workloads Performance

Figure 8.8: Predicted Values vs. Actual Values for Cassandra-Stress on Raspberry Pi 2 Based
on Other Workloads Performance

ter, does struggle to predict an unknown test data set in the leave-one-out testing scenario

(where a single factor level is completely removed to be used as the test data). In essence,

this is because the design has a void where the ’unknown’ to the trained model data was

removed.
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Figure 8.9: Predicted Values vs. Actual Values for Cassandra-Stress on Raspberry Pi 3 Based
on Other Workloads Performance

Table 8.2: Results of the RMSE on ANN and LM

Metric RMSESplit Description Test Data
Split Type Test Data Train Data ANN LM
Random Random 20% Random 80% 5.87 10.37

Leave-One-Out MPI-DT-Rpi2 All other applications 106.44 38.52
Leave-One-Out MPI-DT-Rpi3 All other applications 232.46 38.10
Leave-One-Out WebServer-AB-Rpi2 All other applications 273.7 16.23
Leave-One-Out WebServer-AB-Rpi3 All other applications 1429.8 17.18
Leave-One-Out Cassandra-Stress-Rpi2 All other applications 377.6 38.35
Leave-One-Out Cassandra-Stress-Rpi3 All other applications 95.7 45.87
Leave-One-Out Spark-WC-Rpi2 All other applications 665.4 148.01
Leave-One-Out Spark-WC-Rpi3 All other applications 122.8 154.81
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Figure 8.10: Predicted Values vs. Actual Values for Spark Word-Count on Raspberry Pi 2 Based
on Other Workloads Performance

Figure 8.11: Predicted Values vs. Actual Values for Spark Word-Count on Raspberry Pi 3 Based
on Other Workloads Performance
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Figure 8.12: Predicted Values vs. Actual Values for All Selected Workloads on Raspberry Pi 2
and 3 Based on Other Workloads Performance

Figure 8.13: Predicted Values vs. Actual Values for DT Benchmark on Raspberry Pi 2 Based
on Other Workloads Performance
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Figure 8.14: Predicted Values vs. Actual Values for DT Benchmark on Raspberry Pi 3 Based
on Other Workloads Performance

Figure 8.15: Predicted Values vs. Actual Values for AB Benchmark on Raspberry Pi 2 Based
on Other Workloads Performance
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Figure 8.16: Predicted Values vs. Actual Values for AB Benchmark on Raspberry Pi 3 Based
on Other Workloads Performance

Figure 8.17: Predicted Values vs. Actual Values for Cassandra-Stress on Raspberry Pi 2 Based
on Other Workloads Performance
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Figure 8.18: Predicted Values vs. Actual Values for Cassandra-Stress on Raspberry Pi 3 Based
on Other Workloads Performance

Figure 8.19: Predicted Values vs. Actual Values for Spark Word-Count on Raspberry Pi 2 Based
on Other Workloads Performance
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Figure 8.20: Predicted Values vs. Actual Values for Spark Word-Count on Raspberry Pi 3 Based
on Other Workloads Performance
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Table 8.3: Results of the 10 -Fold Cross Validation of ANN Model

10 FOLD CROSS VALIDATION THRESHOLD=0.5 THRESHOLD=0.1 THRESHOLD=0.05 THRESHOLD=0.01

CHUNK TEST
RMSE

TRAIN
RMSE

TEST
RMSE

TRAIN
RMSE

TEST
RMSE

TRAIN
RMSE

TEST
RMSE

TRAIN
RMSE

1 16.5 17.0 6.9 7.8 7.1 8.5 6.6 6.9
2 12.7 13.0 13.2 11.1 7.0 8.9 4.7 6.8
3 15.1 15.1 7.5 9.6 6.0 7.8 5.0 7.2
4 17.6 11.9 15.0 8.4 11.9 7.0 13.0 5.9
5 18.7 18.2 9.8 7.5 10.2 7.9 9.0 6.4
6 19.4 19.3 9.8 10.6 4.9 7.3 4.6 7.2
7 11.5 10.9 7.5 7.7 6.6 7.1 6.5 7.0
8 26.0 28.2 7.0 7.7 8.2 8.2 8.1 7.4
9 15.0 13.3 10.1 7.3 9.8 7.1 10.2 7.3
10 9.9 11.6 6.6 8.0 6.6 8.3 5.4 7.2

MEAN 16.2 15.9 9.3 8.6 7.8 7.8 7.3 6.9
STDEV 4.6 5.2 2.9 1.4 2.2 0.7 2.8 0.5
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Table 8.4: Results of the 5-Fold Cross Validation of ANN Model

5 FOLD CROSS
VALIDATION

THRESHOLD=0.01 THRESHOLD=0.01 THRESHOLD=0.01 THRESHOLD=0.01 THRESHOLD=0.01

CHUNK TEST
RMSE

TRAIN
RMSE

TEST
RMSE

TRAIN
RMSE

TEST
RMSE

TRAIN
RMSE

TEST
RMSE

TRAIN
RMSE

TEST
RMSE

TRAIN
RMSE

1 8.6 6.3 6.0 6.9 4.3 7.6 8.5 6.7 8.1 6.5
2 7.7 7.1 9.0 7.7 5.4 6.8 4.1 6.9 7.1 7.1
3 6.4 7.5 10.8 6.4 9.5 6.2 4.4 7.2 6.2 6.8
4 4.5 7.0 6.6 7.0 9.9 7.3 5.7 7.0 6.1 7.1
5 7.2 6.7 6.5 6.7 4.4 6.9 6.7 7.2 6.6 7.3

MEAN 6.9 6.9 7.8 6.9 6.7 7.0 5.9 7.0 6.8 6.9
STDEV 1.6 0.4 2.1 0.5 2.8 0.6 1.8 0.2 0.8 0.3
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For checking the accuracy of the prediction model, there are different approaches such

as receiver operating characteristic ROC, precision/recall F measures, root mean square

error RMSE and mean absolute percentage error MAPE. Both ROC and precision/recall F

measures are used to characterise performance of binary classifiers and our models predict

a continuous value (Execution Time). So they are not appropriate for our model. For the

the continuous value the RMSE provided in the tables 8.2, 8.3 and 8.4.

8.8 Conclusion

Statistical models are often not particularly useful for interpolating and extrapolating e.g.

Coles et al. [51]. If we completely leave out a factor level like the Benchmark DT or the

machine Raspberry Pi v2, the model formed in its absence will struggle to predict its

behavior. In order to predict the behavior of an unknown factor level or system, three

approaches would be more effective in producing an accurate model:

• Create a statistical model, for example a machine learning model, where system

elements, the independent variables, application, machine, nodes, or other factors

are expressed as numbers. Run a designed experiment where as much as possible

the dependent variables are varied and combined in different ways, and the output

response execution time is recorded.

• Use varieties of these elements that expand the experimental design space, that is

the dependent variables or system elements should include extremes, or represent the

outermost boundaries that would be predicted within. This is because interpolation

is frequently more accurate than extrapolation in predictive statistical models Coles

et al. [51].

• Create a mechanistic or mathematical model relating the application, machine, nodes

and other relevant elements of the overall cloud computing system to its execution

time. In this type of model, the basic elements application, machine, nodes, and

other would be expressed in terms of their attributes, specifically the attributes that

effect execution time. These attributes should be expressed as continuous numerical
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values. The structure of the model, or way the elements are brought together should

reflect the underlying mechanisms in the cloud computing model.

As an answer for the RQ4 about which model for Cloud Computing is more accurate,

machine learning prediction algorithms give better accuracy than simulation tools whach

have been evaluated in chapter 6. They involve the performance of actual results with

different workload behaviours. This is necessary for confirming the accuracy of the pre-

dictive model to be evaluated by the cross-validation method, K-fold cross-validation or

the leave one out cross-validation method.
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Chapter 9

Conclusion

The research findings, contributions to knowledge and areas of prospective inquiry are

summarised below. The adoption of a Glasgow Raspberry Pi cloud dataset for testing

various workload forms as a means of establishing an estimation model, as well as identi-

fying the simulation techniques’ degree of precision, are this study’s principal contributions

to knowledge. The major experimental processes were threefold. First, the ability to ef-

fectively run four rigorous workloads using Raspberry Pi Cloud was tested. Secondly, the

Glasgow Raspberry Pi Cloud’s system and workload characteristics were tested in terms of

their absolute and relative errors, applying the developed model to contrast the simulated

outcomes of the three simulation techniques in terms of precision. Thirdly, instead of

depending on the identified simulation techniques, enhanced precision was sought through

construction of a predictive model based on the initial experiment’s dataset of results.

9.1 Research Results Summary

It will be beneficial in future for a particular relevant method to be adopted as a means

of investigating various simulation techniques’ degree of precision. Nevertheless, appropri-

ate experimental techniques must be identified through a rigorous process, as well as the

techniques offering a significant degree of precision, as a means of ensuring that the study

results are legitimate. Consequently, this study was initiated with the extant cloud com-

puting modelling techniques being evaluated. Given that the selection technique adopted
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was particular to a single platform, namely CloudSim, this specific method of extension

contrasted with the approach in other researches. In this regard, the shortcomings of

two simulators or more could be averted and their strengths amalgamated for a single

platform. Relevant here is that energy consumption apparatus is provided by certain ex-

tensions, while networking apparatus is offered by others, which is important for analysts

to note when adopting CloudSim as Chapter 5 detailed. Ultimately, different simulation

types have strengths that can be utilised to ensure that the platform’s existing simulation

techniques can be scrutinised and amended, given their identified shortcomings. Addi-

tionally, the degree of precision of relevant simulation techniques should be able to be

accurately determined, through evaluating a cross-validation technique in relation to a

specific test-bed.

Below, the appraisal of cloud computing modelling techniques is undertaken, based on

the study results and contributions. The initial stage was to utilise Raspberry Pi apparatus

as a foundation for an accurate information data system. In order to provide an overall

overview of every workload available via the Glasgow Raspberry Pi Cloud, as well as to

expand the dataset’s magnitude, Ansible and Bash were used to formulate automated

scripts and develop the volume of nodes. Subsequently, the power consumption of nodes,

the volume of cluster information, size of instructions relating to the workload, as well as

execution duration for the workload, were all tested as a means of determining the data

system’s efficacy.

Furthermore, numerous workloads were subjected to analysis. Given that micro data

centres have not been subject to analysis determining the efficacy of using various systems

for running separate workloads, it was significant for this research gap to be filled by

assessing a micro data centre. Spark Word-Count, Cassandra-Stress, Apache Bench and

Data Traffic were the four workloads that were run. The tying of workloads’ numerical

commands to the relevant execution durations was effective through the application of

CloudSim, as evidenced by the micro data centre analysis results. Evidently, compared to

using Raspberry Pi v2 to run the workloads, swifter implementation and a greater volume

of commands can be dealt with using Raspberry Pi v3 nodes. Therefore, this study

offers an assessment of the degree of precision of Mininet, GreenCloud and CloudSim as
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current simulators, while through categorising their specific characteristics and dynamics,

establishing guidelines for selecting the simulator with the greatest relevance and planning

future experimental studies.

Additionally, an estimative cloud computing system model has been established through

this study, drawing on LM and ANN as machine learning algorithms, with the extant simu-

lation techniques being contrasted with this model’s efficacy. Three methods were applied

for determining the degree of precision of each tool, which enabled the verification of the es-

timative model. Initially, 80% training and 20% testing data was arbitrarily distinguished

within the Glasgow Raspberry Pi Cloud dataset relating to efficacy. Subsequently, the

test-bed and test data were contrasted for their degree of precision, with the latter data

subjected to a cross-validation technique. The ’leave one out’ cross-validation technique

was a further precision method applied, which considers different workloads’ respective

efficacies in order to identify a specific workload performance to delete from the databank.

The third technique is the K-fold cross-validation method; five groups are established com-

prising a fifth of the overall dataset respectively. Following this, the arithmetic mean is

calculated for all groups, enabling the estimative model’s precision to be determined.

• Chapter 5 :

Informative guidance may be taken from this study for further inquiry into the set of

existing CloudSim extensions, by applying the results pertaining to them from this

research. By producing a single simulator through the amalgamation of numerous

extensions, the simulation techniques may be enhanced in future studies, particu-

larly drawing on the four sets of multiple extensions with matched characteristics

identified here.

• Chapter 6

The creation of a databank that may be applied for authenticating extant simula-

tion techniques, which also offers training data relating to machine-learning models

and the characteristics of energy consumption, data volume transmitted across the

network, execution duration and number of commands, was developed through the

running of myriad workloads, which enabled the Raspberry Pi Cloud’s efficacy to
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be appraised. Furthermore, Cloud Computing associated micro servers have no rele-

vant benchmark suites offered through SPEC SPE [9] or related companies and their

traditional benchmarking apparatus. Consequently, a contribution has been offered

through this investigation of an installation and implementation harness system

comprising of artificial workloads and benchmark applications, allowing clustered

network configurations to profile Raspberry Pi apparatus.

• Chapter 7

Building on Chapter Six, the Raspberry Pi Cloud’s actual measurements were tested

against the extant simulators for their degree of precision. The test-bed findings

were contrasted with the simulation techniques’ outcomes, which was made feasible

through system feature and workload modelling. As a means of confirming the

degree of precision according to various experimental forms and scenarios, numerous

workloads had to be incorporated into every simulator prior to analysis. This means

that the assessment of the various kinds of workload underpinned the determination

of each simulation’s degree of precision.

• Chapter 8

This chapter utilised a Raspberry Pi-based micro data centre’s efficacy databank,

as a means of formulating an estimative model. Numerous authentication tech-

niques were adopted to test it, namely K-Fold cross-validation, ’leave one out’ cross-

validation and cross-validation. An original contribution was developed in this re-

gard, as it was discovered that instead of depending on a simulator for assessing

a sole system form’s specific workload, various kinds of Raspberry Pi and specific

workloads’ efficacy could be estimated with greater precision.

Figure 9.1 presents the contributions on this research in a flow diagram to show the

relationships between all outcomes.
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Figure 9.1: The Outcomes of the Dissertation

9.2 Shortcomings of the Research

Infrastructure and workload are the two principal areas of shortcomings relating to this

study. Infrastructure: The Raspberry Pi Cloud’s present system was the sole infrastruc-

ture that I could rely on. Although a virtual machine and the University of Glasgow’s

local network devices were tested for running the workloads, the expenditure entailed with

using business infrastructure services for VM, as well as acceptability, both posed prob-

lems. Workload: Within the time allowed for this research, actual workloads and different

benchmarks could not be tested, given that the infrastructure available was also restricted.

Resultantly, as Chapter 6 outlined, evaluation was the emphasis in this study. Further-

more, Yahoo Cloud Serving Benchmark (YCSB) and others were run for Own-Cloud and

MongoDB, however, due to their significant memory footprint, such benchmarks were

challenging to profile via Raspberry Pi apparatus.
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9.3 Prospective Research

Given that the estimation of machine learning techniques’ efficacy has been proven as fa-

cilitated through this method, increasing the amount of assessed workloads and the cluster

size would be beneficial in further studies. Meanwhile, various infrastructure forms and

diverse workloads could be collated to establish a bigger databank for testing. Such a big

databank would allow various simulators to be tested in relation to various infrastructure

forms and the effect of distinct workload categories. Ultimately, a greater volume of in-

corporated data within a data set allows a cloud computing experimental model to be

developed that is characterised by greater precision, thus permitting more exact estima-

tions. Additionally, across the Computer Science discipline, various dynamics and their

relevant simulation techniques’ results could be estimated through further studies utilising

the cross-validation method.
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Appendix A

An Appendix

• The scripts and data set for running an profiling the selected workloads in my re-

search are stored in the repository on

https://github.com/Dhahi374/Dataset.git.

• The Modelling of the Glasgow Raspberry Pi Cloud on CloudSim is stored in:

https://Dhahi374@bitbucket.org/Dhahi374/grponcloudsim.
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