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Abstract 

 

The WASH complex is highly conserved and consists of the actin nucleation 

promoter, WASH, and several regulatory subunits; Strumpellin, SWIP, ccdc53 and 

FAM21.  Previously, it has been shown that WASH directs construction of actin 

coats on lysosomes.  This actin coat is required for removal of V-ATPase 

complexes from lysosomal membranes, allowing neutralization and maturation 

to post-lysosomes.  WASH null cells are blocked at the acidic lysosome stage and 

are thus unable to perform exocytosis. 

 

We now show that FAM21 acts at a different step in the same pathway.   FAM21 

nulls are still blocked in exocytosis, but the remaining complex is functional in 

removal of V-ATPase, allowing progression to post-lysosome.  We hypothesize 

that the role of FAM21 is to release the WASH complex from post-lysosome 

membranes in order to allow recycling back to newly formed acidic lysosomes.  

We have also shown that capping protein interacts with the WASH complex 

through FAM21, and this interaction is essential for progression to exocytosis, 

likely contributing to the mechanism by which FAM21 regulates and releases the 

WASH complex from post-lysosomal membranes. 

 

  



ii 

 ii 

Table of Contents 
 

List of Figures          v 

List of Tables         vii 

Acknowledgements        viii 

Author’s Declaration        ix 

Abbreviations         x 

 

1 Introduction         01 

1.1 Dictyostelium as a model organism     02  

1.2 The actin cytoskeleton       03 

1.3 Actin and the endocytic cycle      10 

1.4 Nucleation promoting factors      17 

1.5 The WASH complex        26 

 

2 Materials and Methods       38 

2.1 Molecular Biology        39 

2.2 DNA Constructs        40 

2.3 Cell Biology         41  

2.4 Dictyostelium Cellular Assays      44 

2.5 Mammalian Cell Assays       47 

2.6 Antibodies         50 

2.7 List of primers        50 

2.8 Buffer recipes        51 

	
  

3 Identification and Analysis of the WASH complex subunits  55 

3.1 The D. discoideum WASH complex           56 

3.2 WASH complex subunits form a constitutive complex   60 

3.3 WASH complex nulls are blocked in exocytosis    60 

3.4 Endocytosis is normal in WASH complex nulls    64 

3.5 Growth rates of WASH complex nulls     64 

3.6 Localisation of subunits       68 

3.7 Complex stability        68 

3.8 Loss of endosomal actin coats      71 

3.9 Lysosome maturation in nulls      74 



iii 

 iii 

3.10 Strumpellin mutations in Dictyostelium     75 

	
  

4 The role of FAM21 in the WASH complex    79 

4.1 FAM21 nulls contain enlarged endosomal vesicles   80 

4.2 Presence of intermediate endosomal actin    82 

4.3 Lysosomal neutralization and maturation    84 

4.4 FAM21 functions downstream of WASH     86 

4.5 WASH and FAM21 in mammalian cells     88 

4.6 Delay in lysosome neutralization      89 

4.7 Post-lysosomal exocytic block      92 

4.8 Fusion of post-lysosomes       94 

4.9 WASH sequestration on post-lysosomes     94 

4.10  WASH complex dynamics       96 

4.11 WASH recycling in mammalian cells     98 

4.12 WASH complex removal and actin     101 

	
  

5 FAM21 Structure and Interaction with capping protein  104 

5.1 FAM21 is composed of two distinct regions    105 

5.2 FAM21 tail structure       105 

5.3 The FAM21 head and tail are both essential    107 

5.4 Head and tail localisation        111 

5.5 The head region binds the WASH complex    111 

5.6 FAM21ΔCT is dominant negative      114 

5.7 Lipid binding analysis of the tail      117 

5.8 Endosomal specificity of the tail      119 

5.9 Species specificity of the tail repeats     120 

5.10 Capping protein binding of FAM21     122 

5.11 CPI is essential for FAM21 function     122 

5.12  FAM21ΔCPI is dominant negative      124 

5.13 FAM21 links WASH complex to CP      126 

 

6 Discussion         131 

6.1 Dictyostelium and the WASH complex     132 

6.2 Strumpellin and spastic paraplegia     132 

6.3 WASH builds endosomal actin coats     133 



iv 

 iv 

6.4 Regulatory subunits        134 

6.5 Loss of FAM21        135 

6.6 Structural analysis of FAM21      136 

6.7 The FAM21 tail        137 

6.8 WASH complex recycling       138 

6.9 FAM21 and capping protein      139 

6.10  Progression to exocytosis       141 

6.11 Localisation of the WASH complex     143 

6.12 Final summary        144 

 

Appendix I          145 

 

Bibliography          150 

	
  

  



v 

 v 

List of Figures 
 

1 Introduction 

1.1   Actin treadmilling        05 

1.2 Endocytic routes in mammalian cells     14 

1.3 Functions of WASP family proteins     20 

1.4 Homology and domains of nucleation promoting factors  22 

1.5 Dissociation of WASH before exocytosis     30  

1.6 WASH mediated removal of V-ATPase from vesicle membranes 31 

 

2 

2.1 Knockdown efficiency for siFAM21 and siWASH    49 

 

3   Identification and Analysis of the WASH complex subunits 

3.1 Coimmunoprecipitation of the WASH complex    58 

3.2  Colocalisation of WASH subunits      61 

3.3 Exocytosis assay        63 

3.4 Endocytosis assay        65 

3.5 Doubling times of null cell lines      67 

3.6 Expression of subunits in all mutants     70 

3.7 Endogenous levels of WASH protein in subunit nulls   72 

3.8 Detection of actin structures in nulls     73 

3.9 Neutralization assay with WASH subunit nulls    76 

3.10 Strumpellin SPG8 mutants       77 

 

4 The role of FAM21 in the WASH complex 

4.1 Imaging and quantification of vesicle size in FAM21 nulls  81 

4.2 Actin in FAM21 null cells       83 

4.3 V-ATPase localisation in cells      85  

4.4 Double WASH/FAM21 null cells      87 

4.5 Integrin recycling assay       90 

4.6 FAM21 null delay in neutralization     91 

4.7 Trafficking of TRITC-dextran in FAM21 nulls     93 

4.8 Fusion of post-lysosomes in FAM21 nulls     95 

4.9 GFP-WASH localisation in FAM21 nulls     97 



vi 

 vi 

4.10 FRAP of GFP-WASH in Dictyostelium     99 

4.11 FRAP of GFP-WASH in A2780 cells      100 

4.12 Latrunculin A treatment of FAM21 nulls     102 

 

5 FAM21 Structure and Interaction with capping protein 

5.1 Predicted secondary structure of FAM21     106 

5.2 FAM21 tail structural analysis      108 

5.3 Exocytosis assay with FAM21 fragments     110 

5.4 Localisation of head and tail fragments     112 

5.5 Dominant negative FAM21ΔCT      116 

5.6 Lipid blot assay        118 

5.7 Human and hybrid FAM21 proteins     121 

5.8 Coimmunoprecipitation of capping protein    123 

5.9 GFP-FAM21ΔCPI expression in FAM21 nulls    125 

5.10 GFP-FAM21ΔCPI expression in Ax2 cells     127 

5.11 Capping protein localisation      129 

 

6  Discussion 

6.1  Possible model of WASH complex removal    142 

  



vii 

 vii 

List of Tables 
 

 

3   Identification and Analysis of the WASH complex subunits 

3.1   Identification of Dictyostelium discoideum WASH complex 

members         57  
3.2   Localisation of GFP-tagged constructs in mutants   69 

 

5 FAM21 Structure and Interaction with capping protein 

5.1   Localisation of head and tail fragments     113 

5.2   Peptide identification for FAM21 immunoprecipitations  115 



viii 

 viii 

Acknowledgements 
 

A huge thanks to everyone who has contributed to this thesis and helped me 

through my PhD.  Thank you to my supervisor, Robert Insall, who has helped me 

develop the project and kept me motivated throughout my time here.  Pete 

Thomason, Jason King and Douwe Veltman all have my gratitude for answering 

my endless questions and giving me valuable advice and ideas.  I also thank 

Tobias Zech, especially for his help with the mammalian work, and contributing 

a great deal of time and effort into making the project a success.  Also, thank 

you to Michael Carnell, who supplied a sound foundation on which to build my 

project and taught me many of the experimental procedures.  Finally, thanks to 

everyone else in the Insall and Machesky labs for all their kindness and friendship 

over the last four years.  

 

 



ix 

 ix 

Author’s Declaration 
 

I declare that, except where explicit reference is made to the contribution of 

others, that this dissertation is the result of my own work and has not been 

submitted for any other degree at the University of Glasgow or any other 

institution. 

 

Signature: 

 

Printed Name: 



x 

 x 

Abbreviations 
 

 

cAMP    cyclic adenosine monophosphate 

ATP   adenosine triphosphate 

DNA   deoxyribonucleic acid 

F-actin  filamentous actin 

G-actin  globular actin 

ER   endoplasmic reticulum 

MLCK   myosin light chain kinase 

ROCK   Rho kinase 

Arp2/3  Actin-related protein 2/3 

ARPC1-5  Actin-related protein 2/3 complex 1-5 

WASP   Wiskott Aldrich syndrome protein  

N-WASP neuronal WASP 

Scar/WAVE  suppressor of cAR/WASP family verprolin homologous protein 

WHAMM WASP homologue associated with actin, membranes, and 

microtubules 

JMY  junction mediating and regulatory protein 

WASH  WASP and Scar homologue 

FH  formin homology 

Cobl  Cordon-bleu 

WH1/2 WASP homology 1/2 

Abp1  actin binding protein 1 

NPF  nucleation promoting factor 

N terminus amino terminus 

C terminus carboxyl terminus 

GBD  GTP-ase binding domain 

WHD1/2 WASH homology domain 1/2 

ActA  actin assembly-inducing protein 

SRA1  specifically Rac1-associated protein 1 

HSPC300  haematopoieitc stem/progenitor cell protein  

NAP1  nucleosome assembly protein 1 

ABI   abelson tyrosine kinase interactor 

Rac1  Ras-related C3 botulinum toxin substrate 1 



xi 

 xi 

IRSp53  insulin receptor substrate protein of 53 kDa 

mRNA  messenger ribonucleic acid 

WIP  WASP interacting protein 

Cdc42  cell division control protein 42 

GTPase guanosine triphosphatase 

V-ATPase vacuolar adenosine triphosphatase 

Capu  cappuccino 

TAP  tandem affinity purification 

EGF  epithelial growth factor 

Dia1  diaphanous 1 

Tf  transferrin 

EGFR  epidermal growth factor receptor 

SNX  sorting nexin 

VSP  vacuolar protein sorting-associated protein



1 
 

 1 

 

 

 

 

 

CHAPTER 1 

INTRODUCTION 

 

 

 

 

 

 

 

 

 



2 
 

 2 

1 Introduction 
 

1.1 Dictyostelium as a model organism 
Dictyostelium discoideum is an amoeba which naturally lives in the soil (Raper, 

1935) and has the ability to sense and move towards bacteria, its natural food 

source.  Under normal conditions, D. discoideum exists as a single cell, however 

starvation sets into motion a system whereby each cell signals to neighbouring 

cells by secreting pulses of cyclic adenosine monophosphate (cAMP; Gerisch and 

Wick, 1975).  These pulses of cAMP create a gradient up which the cells move 

(Tomchik and Devreotes, 1981) where they eventually aggregate and begin 

differentiation in order to form a multicellular structure known as a fruiting 

body (Olive and Stoianovitch, 1975).  This is composed of a stalk and spore head, 

containing spores which can be released when conditions are suitable to ensure 

survival of the cell population.   

 

The D. discoideum genome is composed of 6 chromosomes (Cox et al., 1990; 

Loomis, 1998) which have been fully sequenced (Eichinger et al., 2005).  Cells 

are haploid making it relatively easy to carry out manipulations to the cells and 

their DNA such as knocking out a gene, a process which is far more complex and 

time consuming in diploid mammalian cells.  Specific strains of D. discoideum 

were created by selection and mutagenesis of the wild type strain NC4, to allow 

them to live off a synthetic, nutrient rich, liquid medium (Loomis, 1971; 

Sussman and Sussman, 1967; Watts and Ashworth, 1970).  These cells, known as 

axenic cells, can be cultured aseptically to allow study in a sterile environment. 

 

Dictyostelium is a eukaryotic organism therefore many of the mechanisms which 

occur within the cells are parallel to those in mammalian systems, making it an 

ideal model in which to study many aspects of cell function.  Motility can be 

induced in cells by starvation or addition of cAMP (Gerisch and Wick, 1975) 

therefore cells are often used to investigate cell movement and chemotaxis 

(Devreotes and Zigmond, 1988).  The actin cytoskeleton is also studied 

extensively in Dictyostelium (de Hostos et al., 1993; Niewohner et al., 1997), as 

well as phagocytosis (Vogel et al., 1980) and many other processes. 
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1.2 The Actin Cytoskeleton 
1.2.1 Actin  
Actin is one of the most highly conserved, abundant proteins in the eukaryotic 

kingdom (Korn, 1982; Vandekerckhove and Weber, 1978).  It is essential for 

numerous processes such as cytokinesis (Maupin and Pollard, 1986), endocytosis 

(Taunton et al., 2000) and exocytosis (Muallem et al., 1995), transport of 

vesicles within cells (Hirschberg et al., 1998; Valderrama et al., 2001), pathogen 

invasion (Dramsi and Cossart, 1998) and cell motility (Cramer et al., 1994).  

There are several different isoforms of actin in mammals, with six different 

types known in humans classed into three groups (Vandekerckhove and Weber, 

1978).  α-actin is involved in muscle contraction; there are three isoforms 

specific for each of skeletal, smooth, and cardiac muscle.  There are two γ-actin 

isoforms; γ2-actin is also involved in smooth muscle contraction, whereas γ1-

actin and β-actin are both cytoplasmic forms, which constitute the cell 

cytoskeleton.  γ1-actin and β-actin are ubiquitously expressed in non-muscle 

mammalian cells and are involved in numerous cellular processes (Herman, 

1993; Khaitlina, 2001).  

 

1.2.2 Polymerization and polarization 
Actin exists in pools of monomers known as G-actin (globular actin), which have 

no known biological function in this form (Korn et al., 1987), but can polymerize 

to form filaments known as F-actin (filamentous actin; Rich and Estes, 1976).  

Actin dimers are relatively unstable, therefore for a trimer must form a nucleus 

from which polymerization can begin (Pollard, 1986).  The elongation of actin 

filaments is dependent on local concentration of G-actin (Oosawa and Asakura, 

1975; Korn, 1982).  At a high concentration, G-actin monomers bind both ends of 

the filament, elongating it in both directions.  At a low concentration, G-actin 

monomers dissociate from both ends.  At equilibrium, when there are equal 

concentrations of G-actin and F-actin, a constant exchange would take place 

between monomers at the ends and the filaments would remain in a ‘steady 

state’, however polarization favours elongation at the ‘plus’ end of filaments.  

G-actin monomers are bound to adenosine triphosphate (ATP), and once the 

actin monomer is incorporated into a filament, this is irreversibly hydrolysed to 

ADP-Pi (Carlier and Pantaloni, 1988; Kelleher et al., 1995).  This hydrolysis of 

ATP causes polarization of the filaments, leading to a bias in addition of ATP-
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bound G-actin monomers at the ‘plus’ end of the filament, and depolymerization 

of ADP-bound monomers at the ‘minus’ end (Kelleher et al., 1995; Wegner, 

1976; Bonder et al., 1983).  Even polarized filaments can be elongated or 

depolymerized from both ends if the concentration of G-actin is high or low 

enough, therefore a critical concentration of monomers is required which 

ensures addition of monomers only at the plus end, and depolymerization only at 

the minus end (Coue et al., 1987).  The elongation of filaments in one direction 

can result in a process known as ‘treadmilling’ (Wegner, 1976).  This occurs at 

sites of dynamic activity such as the leading edge of cells, whereby the actin 

filaments are constantly turned over (fig. 1.1). 

 

Actin filaments create a huge variety of different structures in cells, and their 

polarity can be exploited in order to create force.  In general, filaments are 

preferentially created in cells in the direction of the plus end extending towards 

the plasma membrane (Small et al., 1978).  Bundles and fibres can be formed by 

the creation of long, parallel filaments all polarized in the same direction, and 

these are involved in making finger-like protrusions at the cell membrane called 

filopodia (Goldman and Knipe, 1973; Small and Celis, 1978).  A network of 

shorter, more branched filaments can make mesh structures such as lamellipodia 

in many cell types (Abercrombie et al., 1970), which drive cell movement at the 

leading edge of the cell by providing the forward force on the plasma membrane 

(Miyata et al., 1999).  As well as providing force to extend the plasma 

membrane, actin is also involved in many intracellular processes, usually in the 

form of a coat or ring. Both endocytosis and exocytosis require actin, as do 

endosomal vesicles within the cytoplasm (discussed in detail later). These actin 

coats contribute to movement and scission of vesicles, and they also play an 

important role for trafficking of vesicles at the Golgi (Egea et al., 2006).  

 

1.2.3 Actin Binding Proteins 
Actin must be highly regulated in cells to ensure that filaments are appropriately 

polymerized at the correct location and form the correct structure.  Regulation 

of filaments by actin binding proteins (ABPs) allows control over their length and 

rates of elongation or depolymerization.  Regulation of available G-actin is also 

important.  Sequestration is required in order to prevent spontaneous nucleation 

within the cell (Fechheimer and Zigmond, 1993; Hartwig and Kwiatkowski,  
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ATP-actin

ADP-actin

labelled actin

  

Figure 1.1  Actin treadmilling 

ATP-G-actin monomers are added at the plus end of the filament, while 

ADP-actin is depolymerized from the minus end.  This results in a 

‘treadmilling’ action whereby the filaments grow in one direction. 
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1991).  It is also important to control local concentrations of G-actin; structures 

such as lamellipodia have a filament turnover rate higher than that possible 

under normal physiological conditions (Wang, 1985).  This is achieved by 

maintaining a high monomer concentration at the plus ends of filaments at the 

leading edge.  Normally, this high concentration would prevent depolymerization 

from the minus end, therefore proteins which sequester monomers from the 

minus end to allow depolymerisation are vital. 

 

Regulation of actin is achieved by an array of different ABPs which fall into three 

main groups; those that bind monomers of G-actin, those that bind the ends of 

filaments, and those that bind within actin filaments.  A few examples of ABPs 

are discussed here, most of which are ubiquitous among eukaryotes and essential 

to the correct function and regulation of actin structures in vivo. 

 

1.2.3.1 Capping proteins 
Filament length can be regulated by proteins which cap the plus or minus ends.  

Capping of the end of a filament prevents both further elongation and 

dissociation of monomers (Casella et al., 1986).  Capping of the plus end usually 

promotes disassembly of filaments, as fragmentation and depolymerization take 

place with no further elongation, whereas capping of the minus end, by proteins 

such as tropomodulin (Weber et al., 1994), is associated with stabilization of 

filaments by preventing depolymerization from the minus end while the filament 

continues to elongate at the plus end (Winder and Ayscough, 2005).   

 

CapZ is the most abundant plus end capping protein in eukaryotes (Schafer et 

al., 1996).  Originally identified in the Z-line of muscle, CapZ is a heterodimer 

which consists of an α- and β- subunit (Casella et al., 1987).  The H. sapiens 

genome contains four genes encoding the capping protein subunits; three genes 

encode CapZα1-3, and one gene encodes two different isoforms of CapZβ 

(Cooper et al., 1991; Hartmann et al., 1990).  Capping proteins are essential in 

regulation of filament elongation by restricting polymerization to selected plus 

ends, and this prevents the depletion of local G-actin (Pantaloni et al., 2001).  

For example, within lamellipodia, there is a highly branched network of short 

actin filaments and therefore potentially numerous free plus ends.  Capping of 

filaments restricts the growing filaments to those at the very front of the leading 
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edge which allows for the high rate of turnover required for cell motility (Bailley 

et al., 1999).  Filaments can also be uncapped to allow continuation of 

polymerization by a number of different methods.  Severing of filaments is one 

way by which to free a plus end from a previously capped filament (see below). 

Filaments are also uncapped when they interact with specific 

polyphosphoinositides, for example actin filaments in platelets have been shown 

to be uncapped through an interaction with phosphatidylinositol 4,5-

bisphosphate (PIP2; Hartwig et al., 1995). 

 

Gelsolins are a family of proteins able to both cap plus ends and sever filaments 

(Cunningham et al., 1991), hence the name of the D. discoideum orthologue, 

severin (Robinson et al., 1999).  Severing of filaments can result in a number of 

outcomes depending on its context.  By severing a filament, gelsolin exposes a 

plus end for elongation, but severing can also contribute to disassembly of 

filaments (Hartwig et al., 1995; Sun et al., 1999).  After severing a filament, 

gelsolin remains bound to the plus end as a cap, preventing the severed 

filaments from rejoining (Reichert et al., 1996). 

 

1.2.3.2 ADF/Cofilin 
One of the most studied families of depolymerizing factors is the ADF/cofilin 

group of proteins (Bamburg et al., 1980).  This family incorporates a huge 

number of different proteins such as ADF (actin depolymerizing factor), cofilin, 

destrin, and coactosin.  Only ADF and cofilin are found in vertebrates, and the 

major difference between the two are the tissues and stages of development at 

which they are expressed (Bamburg and Bray, 1987; Yonezawa et al., 1990). 

 

ADF/cofilin plays a role in the disassembly of actin filaments (McGough et al., 

1997).  It binds to two actin monomers incorporated into a filament which 

causes the filament to twist.  The strain put on the filament by this 

conformational change results in fragmentation.  ADF/cofilin have a higher 

affinity for ADP-F-actin therefore promoting depolymerization towards the minus 

end of the filament (Carlier et al., 1997).  Capping by gelsolin has been shown to 

alter the structure of filaments which enhances binding and depolymerization by 

ADF/cofilin (Ressad et al., 1998).  In general, severing of capped filaments 
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results in their disassembly, whereas severing towards the minus end of a 

growing filament increases its turnover and treadmilling.  

 

1.2.3.3 Monomer Binding Proteins 
Profilins have a high affinity for actin monomers.  They alter the conformation of 

monomers which opens the nucleotide binding cleft, and this enhances the 

exchange of ADP for ATP (Goldschmidt-Clermont et al., 1991; Pantaloni and 

Carlier 1993).  Actin monomers have a higher affinity for ATP than ADP, and the 

high concentration of ATP in cell cytoplasm means exchange is likely to occur 

rapidly on free and profilin-bound ADP-G-actin (Wanger and Wegner, 1983). 

 

Β-thymosins, the most well known being thymosin β4, are responsible for binding 

monomers to sequester the ADP-G-actin released from filaments.  They do the 

opposite of profilin, by preventing the exchange of ADP for ATP in the bound 

monomer (Goldschmidt-Clermont et al., 1992).  This contributes to preventing 

elongation from the minus ends of filaments, as well as spontaneous nucleation 

of actin within the cell.  The affinity of thymosin β4 for ATP-G-actin is actually 

much higher than that of ADP-G-actin (Carlier et al., 1993), therefore when 

localised at sites of polymerization, in concert with profilin it can actually work 

to enhance the exchange of ADP- for ATP-G-actin. 

 

1.2.3.4 Other actin regulators 
There are other proteins involved in the regulation of actin structures which 

work not to help extend or cap filaments, but to control the interaction between 

the filaments.  Cross-linking proteins bundle filaments together or link them to 

create networks.  Filamin forms a V-shaped dimer which loosely connects actin 

filaments to form a network (Gorlin et al., 1990; Weihing, 1988).  It is required 

to stabilize networks such as those that form lamellipodia at the leading edge of 

cells and is essential for efficient cell movement.  Fascin is another cross-linking 

protein which, as opposed to forming networks, packs filaments into tight 

bundles which can drive long, thin protrusions from the cell membrane involved 

in cell communication and movement (Otto, 1979).  These cross-linking proteins 

often have the ability to orientate the filaments to ensure they are all parallel 

and polarized in the same direction (Loomis et al., 2003). This allows movement 

of motor proteins along the bundles, or ensures directional force for motility. 
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1.2.4 Myosin 
Myosin proteins are involved in many cellular processes, such as motility, 

phagocytosis and cytokinesis, as well as muscle contraction in higher eukaryotes 

(Korn, 1978).  Mammals have nine different classes of myosins encoded by 28 

genes (Sellers, 2000).  Myosin molecules are composed of a head, neck and tail 

region (Korn and Hammer, 1988).  The head region of myosin has an ATP binding 

cleft and an actin binding site (Rayment et al., 1993).  The tail region forms a 

coiled-coil structure which allows an interaction between myosin molecules to 

form dimers (Cheney and Mooseker, 1992).  All myosins are composed of heavy 

and light chains.  Myosin II is composed of two heavy chains, each consisting of a 

head and tail domain, and two light chains, which associate with the neck 

regions of the heavy chains (Korn and Hammer, 1988).  Myosins are often 

regulated by phosphorylation of the heavy or light chains, but this varies greatly 

between types of myosin and species.  Myosin II is regulated by light chain 

phosphorylation in vertebrates, which allows it to bind actin (Moussavi et al., 

1993), and this is done by a number of kinases such as myosin light chain kinase 

(MLCK) and Rho-kinase (ROCK; Matsumura et al., 2001; Somlyo and Somlyo, 

2003).  In Dictyostelium, it is phosphorylation of the heavy chain that activates 

it for cytokinesis, rather than the light chain (De La Roche et al., 2002; Ostrow 

et al., 1994). 

 

1.2.4.1 Myosin II 
Myosin II is the only myosin which is able to assemble into filaments.  It is found 

in muscle cells where bipolar myosin II filaments work in association with actin 

filaments to cause muscle contraction (Hartman and Spudich, 2012).  During 

contraction, thick filaments composed of myosin II slide along thinner actin 

filaments, by repetitive interactions between the myosin head domains and the 

actin filament.  ADP-myosin binds actin (Korn and Hammer, 1988; Warrick and 

Spudich, 1987).  This ADP is then exchanged for ATP which causes a 

conformational change in the myosin molecule; the neck region rotates around 

the head region, detaching the head from the actin and moving it along the 

actin filament.  This ATP is then hydrolysed to ADP and the head reattaches to 

the actin filament (Holmes, 1997; Houdusse et al., 1999).  This cycle of binding 
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and release allows the myosin and actin filaments to slide past one another 

(Howard, 1997). 

 

Myosin II is also important in non-muscle cells.  It is involved in motility, allowing 

contraction of the rear of the cell in conjunction with the forward force created 

by actin at the leading edge (Iwadate and Yumura, 2008).  It is also essential for 

cytokinesis (De Lozanne and Spudich, 1987; Mabuchi and Okuno, 1977) 

contributing to the formation of the actomyosin contractile ring required to 

separate the two daughter cells.  

 

1.2.4.2 Myosin Motors 
Other myosins are motor proteins, many of which form dimers.  These motor 

myosins ‘walk’ along actin filaments using the same concept of binding and 

release of actin and ATP described above (De La Cruz and Ostap, 2004).  Myosin 

V is a motor involved in trafficking of ER vesicles along actin filaments in cells 

towards the plus ends (Kuznetsov et al., 1994; Tabb et al., 1998).  Myosins I and 

VI are also implicated in vesicle transport, from the Golgi to the plasma 

membrane (Buss et al., 1998; Fath et al., 1994; Montes de Oca et al., 1997).  

Myosin VI is thought to be specifically involved in transport to the minus ends of 

actin filaments, unlike most other myosin motors (Wells et al., 1999).   

 

Myosin I does not form dimers but consists of a single head domain and a short 

tail (Korn et al., 1987; Maruta et al., 1979; Pollard and Korn, 1973).  It 

encompasses the largest class of myosin motors involved in a huge range of 

cellular functions.  For example, Dictyostelium myosin I is required for correct 

spindle formation during cytokinesis (Rump et al., 2011).  Myosin I is also 

thought to be the main myosin motor associated with the endocytic pathway 

(Raposo et al., 1999). 

 

1.3 Actin and the Endocytic Cycle 
1.3.1 Types of endocytosis 
There are several ways in which a cell can take up external constituents, 

including phagocytosis, macropinocytosis and micropinocytosis.  While 

macropinocytosis is specifically for the bulk uptake of external fluid (Hacker et 

al., 1997), the role of micropinocytosis is to recycle membrane, and membrane 
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receptors.  Micropinosomes (pinosomes smaller than 0.2µm diameter) have a 

very large surface area to volume ratio in order to maximize the amount of 

membrane (Swanson and Watts, 1995), whereas the opposite is true for 

macropinosomes (Racoosin and Swanson, 1992).  Phagocytosis differs from 

pinocytosis because its purpose is to specifically engulf an object (Allen and 

Aderem, 1996).  Phagocytic protrusions are guided protrusions which sense and 

reach around the edges of the object to be consumed, whereas for 

macropinosomes the membrane is randomly protruded in order to form a 

pinocytic cup, which then closes to form an internalized vesicle. 

 

Many mammalian cell types use macropinocytosis, but those that constitutively 

perform macropinocytosis are cells such as dendritic cells and macrophages.  

These cells use macropinocytosis to sample their environment for antigens 

(Norbury, 2006) which, if detected, are then displayed for recognition by 

cytotoxic T cells (Sallusto et al., 1995).  Many cell types can be induced to 

perform macropinocytosis by addition of growth factors.  For example, epithelial 

cells can be stimulated to increase their rates of macropinocytosis with EGF 

(Epithelial Growth Factor; Sandvig and van Deurs, 1990).  As described earlier, 

wild type strains of Dictyostelium survive by phagocytosing and digesting 

bacteria found in the soil, however laboratory strains known as axenic strains 

survive solely off a diet of liquid medium which they take up by 

macropinocytosis.   

 

1.3.2 Mechanisms of Endocytosis 
The process of endocytosis, both for particle (Maniak et al., 1995) and fluid 

uptake (Hacker et al., 1997), is highly regulated by many different pathways in 

metazoans, however the involvement of actin is universal in eukaryotes and this 

is discussed here.  Endocytosis can be clathrin-dependent or –independent.  The 

clathrin-dependent pathway is mostly important in the uptake of external 

ligands through membrane receptors.  Clathrin coated pits are sites of 

endocytosis which form almost uniformly over the cell surface and are limited in 

size by the clathrin coat itself (Bretscher and Thomson, 1983).  Clathrin-

independent endocytosis occurs more randomly across the cell surface and there 

is no coat to restrict its size.  Macropinocytosis by axenic Dictyostelium cells is 
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clathrin-independent, although Dictyostelium cells are also able to perform 

clathrin-mediated endocytosis (Hacker et al., 1997). 

 

The involvement of actin in endocytosis depends not only on cell type, but also 

on the form of endocytosis taking place.  The process of macropinocytosis 

requires actin filaments in order to create the protruding arms of membrane 

which close over to form a macropinosome (Racoosin and Swanson, 1992).  In 

yeast, actin is not required for the initial recruitment of endocytic proteins to 

sites of endocytosis, such as adaptor proteins and actin nucleating machinery 

(Kaksonen et al., 2003).  In contrast, in mammalian cells actin is required for the 

initial formation of clathrin-coated pits (Yarar et al., 2005). For clathrin-

mediated endocytosis, actin has been shown to be essential for membrane 

invagination in all cells, however studies differ in concluding whether actin is 

responsible for creating the invaginations directly, or rather just acts to regulate 

the invagination by acting as a barrier (Rocca et al., 2008; Yarar et al., 2005).  

This is possibly dependent on cell type and context.  During the process of 

invagination, the actin machinery remains at the plasma membrane and does not 

move down into the cell with the incoming vesicle (Kaksonen et al., 2003).   

 

For most forms of endocytosis, actin plays a role in scission of the newly formed 

vesicle into the cytosol.  Polymerization and contraction of a ring of actin at the 

neck of the budding vesicle occurs at clathrin-coated pits, where the actin works 

in concert with dynamin to resolve the vesicle form the plasma membrane 

(Takenawa and Suetsugu, 2007).   

 

After endocytosis is complete, these actin structures dissociate from the vesicle 

within a minute (Konzok et al., 1999; Lee and Knecht, 2002; Maniak et al., 

1995), however actin continues to be important in vesicle progression along the 

entire endocytic pathway and is recruited for several other functions during this 

transit.  One of these is vesicle movement within the cytosol.  There is evidence 

that after vesicle formation, actin comets then project the vesicle away from 

the cortex directly after being endocytosed (Clarke and Maddera, 2006; Lu and 

Clarke, 2005), and also propel the vesicle through the cell (Rauchenberger et 

al., 1997).  Some pathogens such as Listeria monocytogenes high-jack the host 

actin machinery in order to propel them through the cytosol (Brieher et al., 
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2004; Cameron et al., 2001; Theriot et al., 1992; Welch et al., 1997).  In this 

case, the actin polymerization is restricted to the region of contact between the 

bacterium and the actin filaments, and is kept spatially separate from the 

remainder of the filaments where rapid depolymerisation occurs.  This ensures a 

highly dynamic turnover of the actin filaments to maximize the rate of 

propulsion. 

 

1.3.3 The Endocytic Pathways in Metazoans 
The pathways a vesicle can follow in mammalian cells vary greatly, dependent 

on the type of cargo within the vesicle, and the cell type.  The different possible 

routes are summarised in figure 1.2.  The different compartments of the 

mammalian endosomal system can be identified by known markers, 

predominantly Rabs, a family of small GTPases, which coordinate much of the 

transit of vesicles.  Rab4 is an early endosomal marker (van der Sluijs et al., 

1991), whereas Rab7 associates with late endosomes (Chavrier et al., 1990).  

These associations are also conserved in Dictyostelium (Buczynski et al., 1997; 

Bush et al., 1994).  Receptor-ligand complexes are often dissociated in the early 

or sorting endosome, and the receptor can then be recycled back to the plasma 

membrane whereas the ligand may follow a different route such as the 

degradative pathway into lysosomes. 

 

1.3.4 The Endocytic Pathway in Dictyostelium 
1.3.4.1 Early Endosomal Events 
Axenic Dictyostelium cells use constitutive macropinocytosis to take up liquid 

media for nutrients (Hacker et al., 1997).  After the initial uptake of a vesicle 

for either macropinocytosis or phagocytosis by the processes outlined above, 

acidification occurs within one minute (Hacker et al., 1997).  This is achieved by 

addition of V-ATPase complexes to the membrane of the vesicle by fusion with a 

number of smaller, V-ATPase decorated vesicles (Clarke et al., 2002b; Hacker et 

al., 1997).  Early endosomes undergo a number of fusion and fission events 

shortly after formation.  Their shape becomes more elongated and tubular, 

typical of the endolysosomal networks in both Dictyostelium and mammalian 

cells (Clarke et al., 2002).  Early endosomes fuse with other endosomes at the 

same stage of the cycle, which contributes to the addition of V-ATPase on the 

membrane, as well as beginning to concentrate and sort endosomal contents.  
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Figure 1.2  Endocytic routes in mammalian cells 

Mammalian cells can take up membrane, receptors and external 

constituents by numerous different methods, two of the major mechanisms 

being clathrin-mediated endocytosis and macropinocytosis.  After uptake, 

the cargo can follow a number of routes.  Initially, cargo is sorted in the 

sorting/early endosome.  From here, cargo such as receptors can be 

recycled to the cell surface via recycling endosome, whilst others can be 

transported through the degradative pathway, through the late endosome 

and into lysosomes.  Some cargo follows the retrograde pathway, being 

trafficked to the Golgi body.  

 

 

Figure derived from Marsh and Helenius, 2006. 
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1.3.4.2 Acidification and V-ATPase 
V-ATPase (vacuolar-ATPase) is a cellular proton pump, specific to vacuolar 

compartments.  In Dictyostelium, it is found on the membranes of endosomal 

vesicles (Adessi et al., 1995) and the contractile vacuole (Fok et al., 1993), an 

organelle responsible for regulation of cellular osmotic pressure (Heuser et al., 

1993).  Like other proton pumps, it uses the energy from the hydrolysis of ATP to 

actively pump protons across a membrane.  These H+ ions lower the pH of the 

lumen of vesicles, important for a number of purposes; dissociation of receptor-

ligand complexes for receptor recycling (Geuze et al., 1983) and providing an 

optimum environment for the function of digestive enzymes (Kakinuma et al., 

1981) are two examples of requirements for an acidic environment.  The V-

ATPase complex consists of two functional parts, the V1 and V0 domains, 

composed of eight and six different subunits, respectively.  The V1 domain binds 

and hydrolyses ATP (Arai et al., 1988; Ohira et al., 2006), while the V0 domain 

spans the membrane and transports the proton across it (Arai et al., 1988; Hirata 

et al., 2003; Powell et al., 2000). 

 

The addition of V-ATPase to newly formed endosomes results in a drop in pH to 

approximately 4.6 (Aubry et al., 1993).  At these early stages, endosomal 

vesicles often also undergo homotypic fusion, seen by the mixing of fluorescent 

markers taken up by cells (Clarke et al., 2002).  This fusion is regulated to 

ensure earlier compartments do not inappropriately fuse with later 

compartments, and this is controlled by proteins such as LvsB and vacuolin B, 

both negative regulators of vesicle fusion.  Mutants lacking LvsB have been 

shown to develop enlarged, acidic endosomal compartments through excessive 

fusion, and this is related to the Chediak-Higashi syndrome in humans (Barbosa 

et al., 1996; Harris et al., 2002).  Vacuolins A and B both mark late endosomes, 

and although loss of vacuolin A seems not to affect cells, the loss of vacuolin B 

results in a delay in exocytosis and enlargement of post-lysosomal compartments 

(Jenne et al., 1998).  

 

1.3.4.3 Endosomal Progression 
The acidic endosomes, known as lysosomes, remain acidic for approximately 30 

minutes, during which time nutrients and fluid are extracted, and the contents 

become concentrated (Clarke et al., 2002; Neuhaus et al., 2002).  Once the 
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vesicle is ready to mature, the V-ATPase molecules are removed from the vesicle 

membrane, allowing an efflux of H+ ions and neutralization of the lumen (Nolta 

et al., 1994; Rauchenberger et al., 1997).  The vesicle is then transported back 

to the plasma membrane where the indigestible contents are expelled by 

exocytosis, a total of 1-2 hours after initial uptake (Clarke et al., 2002). 

 

During progression through the endocytic cycle, actin coats have been observed 

on vesicles (Drengk et al., 2003; Insall et al., 2001; Maniak et al., 1995).  Lee 

and Knecht (2002) reported seeing a weak actin coat which persisted on post-

lysosomal vesicles.  These intermediate actin coats have been suggested to play 

a role in transport of vesicles through the cell or control of fusion between 

different populations, keeping them spatially separate from one another (Lee 

and Knecht, 2002; Maniak, et al., 1995).  This actin coat was shown to be 

insufficient for exocytosis (Lee and Knecth, 2002) for which further actin 

polymerization was required.  Rauchenberger et al. (1997) also showed that this 

earlier actin coat must first dissociate from the vesicle to allow fusion with the 

plasma membrane for exocytosis to occur.  This indicates that the vesicular 

actin coat seen on vesicles at this stage is separate from that seen on vesicles at 

exocytosis, described below.  It has now been shown that these intermediate 

actin coats have a different purpose and are the product of WASH activation of 

the Arp2/3 complex, described in detail later. 

 

1.3.5 Mechanisms of Exocytosis 
In all cell types, actin plays an essential role in exocytosis.  The first evidence of 

the involvement of actin in exocytosis was the build up of secretory vesicles in 

yeast cells with mutated actin (Novick and Botstein, 1985).   

 

In mammals, cells such as immune cells and neurons perform exocytosis, and can 

do so by a ‘kiss-and-run’ method, where the intracellular vesicle briefly docks 

with the plasma membrane, releases its contents to the exterior, and then 

detaches from the membrane (Valtorta et al., 2001).  Actin coating of the 

vesicular membrane in this case is often associated with stabilising the vesicle, 

to allow diffusion of the contents to the exterior.  These cells can also perform 

exocytosis by complete vesicular fusion, where the vesicle membrane fuses with, 

and becomes incorporated into, the plasma membrane on release of its 
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contents.  In this instance, the actin coat is often associated with myosin and 

uses a contracting force to expel the contents of the vesicle. 

 

Dictyostelium uses the complete fusion mechanism to excrete indigestible 

contents from vesicles (Maniak, 2003).  Actin strongly localises to vesicles as 

they dock with the plasma membrane, directly before the release of their 

contents (Lee and Knecht, 2002).  The actin coat squeezes the vesicle, rapidly 

reducing its volume and forcing it into the plasma membrane.  It quickly 

dissipates within a minute of release of the vesicular contents (Lee and Knecht, 

2002).   

 

1.4 Nucleation Promoting Factors 
1.4.1 Actin Filament Nucleation and the Arp2/3 Complex 
The initiation of polymerization from a pool of G-actin monomers is known as 

nucleation. This can either be de novo, or after a free plus end has been created 

by severing an existing filament (Condeelis, 1993, Zigmond, 1996).  Nucleation 

requires the initial formation of a trimer of G-actin monomers (Pollard, 1986).  

Two of the major components which are able to nucleate filaments are the 

Arp2/3 complex and formins. 

 

The Arp2/3 complex is the major nucleation machinery in many cells; it is a 

seven subunit complex consisting of Arp2, Arp3 and ARPC1-5, all of which are 

highly conserved throughout the eukaryotic kingdom (Machesky et al., 1994; 

Mullins et al., 1997).  When creating branched filaments, it binds existing actin 

filaments and is able to initiate polymerization of a branch at an angle of 70o to 

the mother filament (Mullins et al., 1998); this is known as the dendritic model 

of actin filament formation.  It is thought that ARPC2 and ARPC4 are important 

in binding the mother filament (Rouiller, 2008) while Arp2 and Arp3 mimic an 

actin dimer (Kelleher et al., 1995; Machesky et al., 1994; Mullins et al., 1997).  

To begin nucleation, the addition of a ‘third’ G-actin monomer is required to 

form a trimer.  Arp2/3 alone is inefficient at binding the monomer, as the Arp2 

and Arp3 subunits are not suitably aligned, however nucleation promoting 

factors (NPFs) such as Wiskott Aldrich Syndrome Protein (WASP) family proteins 

bind the Arp2/3 complex and cause a conformational change, bringing Arp2 and 

Arp3 into close proximity, and also bringing them into contact with an actin 
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monomer to form the trimer required to initiate nucleation (Robinson et al., 

2001). 

 

Other proteins can also nucleate actin filaments, such as Spire (Quinlan et al., 

2005), Cordon-bleu (Cobl; Ahuja et al., 2007) and formins (see below).  Spire 

and Cobl contain multiple WASP homology 2 domains (WH2; discussed in detail 

later; Ahuja et al., 2007; Otto et al., 2000; Wellington et al., 1999), which bind 

multiple actin monomers and allow these proteins to initiate de novo actin 

filament nucleation (Ahuja et al., 2007; Quinlan et al., 2005).  Spire is also able 

to sever and cap filaments, and sequester actin monomers, making it a multi-

tasking regulator of actin structures (Bosch et al., 2007). 

 

Formins work as dimers (Moseley et al., 2004) which nucleate and elongate actin 

filaments (Pruyne et al., 2002).  Unlike the Arp2/3 complex which remains at 

the base of the new filament, formins travel with the extending end 

(Campellone and Welch, 2010; Chesarone et al., 2010).  They are defined by the 

presence of formin homology (FH) 1 and 2 domains (Castrillon and Wasserman, 

1994).  The FH2 domain binds the plus ends of actin filaments to promote 

elongation (Pruyne et al., 2002; Sagot et al., 2002) whilst the FH1 domain acts 

by increasing the amount of local G-actin monomers to stimulate elongation 

(Gould et al., 2011).  It is also suggested that profilin binds the FH1 domain of 

formins, in order to deliver the actin monomer efficiently to extending filaments 

(Pring et al., 2002).  The filaments constructed by formins are involved in a 

number of cellular processes such as the contractile ring required for 

cytokinesis, filopodia and actin stress fibres (Faix and Grosse, 2006; Goode and 

Eck, 2007; Kovar, 2006).  Formins also nucleate actin along the endocytic 

pathway; RhoB has been shown to activate formin Dia1 to create actin coats 

around vesicles before they line up along peripheral stress fibres (Fernandez-

Borja et al., 2005).  Spire1 has also been implicated in endosome biogenesis; it 

was shown to be essential for maturation of early endosomes (Morel et al., 

2009).  

 

1.4.2 WASP Family Proteins 
There are two types of nucleation promoting factors (NPFs); class I and class II.  

Class I NPFs function by inducing a conformational change in Arp2/3 and 
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presenting an actin monomer to trigger nucleation (Robinson et al., 2001).  They 

are distinguished by their ability to bind both Arp2/3 and G-actin monomers 

through their VCA domain (Machesky et al., 1999; Marchand, 2001; Miki and 

Takenawa, 1998).  Class II NPFs, such as Saccharomyces cerevisiae actin-binding 

protein-1 (Abp1), function by stabilising the interaction between Arp2/3 and F-

actin filaments, but cannot bind G-actin and are subsequently less potent 

activators of Arp2/3 (Goode et al., 2001).   

 

WASP family proteins are class I NPFs.  These all contain the characteristic VCA 

domain for binding Arp2/3 and actin.  The V (verprolin homology) domain, was 

originally named after its homology to part of the S. cerevisiae actin cytoskeletal 

protein verprolin (Symons et al, 1996).  It is now more commonly known as the 

WASP homology 2 (WH2) domain.  This region forms an amphipathic α-helix 

which binds directly to actin (Marchand, 2001; Miki and Takenawa, 1998).  The A 

region is a stretch of acidic residues which nearly always contains a conserved 

tryptophan, and this region binds Arp2 (Machesky et al., 1999; Marchand et al., 

2001; Rebowski, 2008; Rohatgi et al., 1999).  The C region was originally known 

as the cofilin homology region, however it bears little resemblance to cofilin and 

is now known as the connecting or central region (Marchand et al., 2001).  It 

increases the binding affinity of the VCA domain for both actin and Arp2/3.   

 

The first identified class I NPF was ActA, a protein from L. monocytogenes (Kocks 

et al., 1992).  This pathogen uses ActA to activate the host cell Arp2/3 complex 

for invasion and propulsion in the cell (Welch et al., 1998).  Since then, 

endogenous activators of Arp2/3 have been identified in eukaryotic cells, the 

first being WASP (Wiskott Aldrich Syndrome Protein; Winter et al., 1999; Yarar et 

al., 1999).  Since the discovery of WASP, several other related class I NPFs have 

been discovered in eukaryotes and are now known as subclasses of the WASP 

family of proteins.  These are; Scar/WAVE, WASH and WHAMM, all discussed in 

detail below. 

 

Although the WASP family proteins are defined by their conserved C terminus, 

the N terminal regions of each subclass are extremely variable and account for 

the different actin structures they direct to be built and the different roles they 

play in cells (fig. 1.3).  WASP homologues are identified by the WASP homology 1  
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Figure 1.3  Functions of WASP family proteins 

The different WASP family proteins localise to different regions of the cell.  

Here they activate the Arp2/3 complex to create a variety of different 

actin structures.  At the leading edge, Scar/WAVE is responsible for 

creating a mesh network of actin filaments.  WHAMM and WASH both 

create vesicular actin coats to regulate vesicle trafficking between the 

Golgi and ER, and through the endosomal networks, respectively.  WASP 

and N-WASP are also responsible for the creation of actin coats around 

vesicles for endocytosis, and also for bundled filaments within podosomes. 
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(WH1) domain in the N terminal portion of the protein and a GTP-ase binding 

domain (GBD; Veltman and Insall, 2010).  Scar/WAVE proteins similarly contain a 

Scar homology domain (SHD), and WASH proteins contain two WASH homology 

domains, WHD1 and WHD2 (Veltman and Insall, 2010).  These different domains 

are illustrated in figure 1.4. 

 

WASP is expressed in hematopoietic stem cells (Derry et al., 1994), although 

neuronal-WASP (N-WASP) is ubiquitously expressed (Miki et al., 1996).  They both 

play a role in formation of structures such as podosomes, and in clathrin-

mediated endocytosis (Campellone and Welch; 2010 Merrifield, 2004).  N-WASP 

is also involved in endosomal rocketing (Benesch et al., 2002; Rozelle et al., 

2000; Taunton et al., 2000).  Pathogens Listeria (Tilney et al., 1992) and 

Shigella use Arp2/3 and N-WASP to propel themselves into and through cells 

which they invade using their own NPF, such as Listeria ActA (Suzuki et al., 

1998, Welch et al., 1997). 

 

WASP was discovered as the cause of Wiskott Aldrich syndrome (Derry et al., 

1994).  Mutations in the WAS gene encoding WASP cause defects in many cellular 

processes in immune cells such as proliferation, activation and motility (Dupre et 

al., 2002).  This is an X-linked disease, characterized by thrombocytopenia, 

eczema and immunodeficiency (Aldrich et al., 1954), and sufferers are at higher 

risk of developing lymphoma or leukaemia.   

 

The next member of the WASP family to be discovered was Scar.  This protein 

was first identified in Dictyostelium as Suppressor of Cyclic AMP Receptor (Bear 

et al., 1998).  The mammalian orthologues, of which there are three, are known 

as WAVE1-3 (WASP family verprolin homologous protein; Machesky and Insall, 

1998; Miki et al., 1998).  Scar/WAVE is found mainly at the leading edge of cells, 

and builds the actin network required to form lamellipodia (Hanhe et al., 2001; 

Stradal et al., 2001).  Scar/WAVE is contained within a highly conserved 

pentameric complex consisting of subunits SRA1, HSPC300, NAP1 and ABI (Eden 

et al., 2002).  IRSp53 also binds the proline-rich region of Scar/WAVE and 

enhances the association with active Rac1, an activator of the Scar/WAVE 

complex (Eden et al., 2002; Ismail et al., 2009; Miki et al., 2000). 
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Figure 1.4  Homology and domains of nucleation promoting factors 

All WASP family proteins contain a VCA domain, consisting of a verprolin 

homology domain (V), which binds actin monomers, a connecting or central 

domain (C), and an acidic domain (A) which binds the Arp2/3 complex.  

The distinguishing features of each group of WASP family proteins reside in 

the N terminal portion of the protein.  For example, all WASP proteins 

contain a WASP Homology 1 (WH1) domain, followed by a basic region and 

a GTPase Binding Domain (GBD) to which Cdc42 binds and activates the 

protein.  Scar/WAVE proteins contain the Scar Homology Domain (SHD), 

and a basic region.  WASH proteins contain WASH Homology Domain 1 

(WHD1) and WHD2, to which microtubules are known to bind.   

 

 

Figure derived from Veltman and Insall, 2010; Carnell et al., 2011. 
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WHAMM (WASP homologue associated with actin, membranes, and microtubules) 

and JMY (junction-mediating and regulatory protein) are both only found in 

vertebrates (Veltman and Insall, 2010), however some invertebrates contain a 

single orthologue which is a close match for the two mammalian counterparts.  

This is seen in Drosophila which has a single protein, Whamy, however its VCA 

domain does not contain the essential tryptophan found in mammalian WHAMM, 

but has a phenylalanine in its place suggesting it may not be able to activate 

Arp2/3 (Campellone et al., 2008; Veltman and Insall, 2010).  WHAMM localizes 

with the cis-Golgi and is important in anterograde trafficking from the ER, and is 

required to maintain Golgi shape and structure (Campellone et al., 2008).  It 

interacts with actin and microtubules to allow membrane tubulation and 

elongation.   

 

JMY was identified as a transcriptional coactivator of p53 (Shikama et al., 1999) 

to help control cell adhesion through cadherin expression.  Unlike most other 

WASP proteins, it has 3 WH2 domains which gives it the ability to bind numerous 

G-actin monomers (Zuchero et al., 2009).  This means it has intrinsic actin 

nucleating activity and forms unbranched filaments through this method.  It can 

also bind and activate the Arp2/3 complex, which gives rise to the normal 

branched filament structure produced by Arp2/3.  Originally thought to be 

exclusively nuclear, it appears that the localisation of JMY may vary greatly with 

cell motility.  In mouse embryonic fibroblasts, it was seen to be mainly nuclear, 

whereas in highly motile cells such as neutrophils, it was seen to colocalise with 

actin filaments at the leading edge (Zuchero et al., 2009).   

 

1.4.3 Discovery of WASH 
Linardopoulou et al. (2007) discovered WASH using genome analysis techniques.  

It had not previously been identified because the gene is located in the 

subtelomeric regions of human DNA which are dynamic regions of DNA breaks 

and repair (Matise et al., 2003; Rudd et al., 2007).  This makes them more 

difficult to sequence, and subsequently they are not as well characterized as the 

majority of coding regions in the human genome.  Linardopoulou et al. (2007) 

identified WASH as a WASP family member by the presence of the VCA domain at 

the C terminus.  Phylogenetic analysis revealed it appeared to represent a new 



24 
 

 24 

subclass of the WASP family, with the identification of two WASH homology 

domains (WHD1 and WHD2).  

 

WASH is very highly conserved throughout the eukaryotic kingdom, with most 

organisms having a single copy of the WASH gene in their genome (including D. 

discoideum), and the only group seeming to lack WASH is fungi (Veltman and 

Insall, 2010).  The human genome, however, has seven copies of the gene, 

although only one appears to code for a functional, full length WASH protein.  

This protein, WASH1, is expressed in most tissues, especially blood and brain 

(Linardopoulou et al., 2007).  Disruption of the Drosophila gene, washout, 

showed it is essential for development, as no advance was possible from the 

larval stage to the prepupal stage in the absence of WASH (Linardopoulou et al., 

2007).  The ability to progress to the larval stage was likely due to stores of 

maternal mRNA.  Further studies have since attempted to create mouse 

knockouts of WASH, which also showed loss of WASH is embryonic lethal in 

mammalian systems (Gomez et al., 2012). 

 

1.4.4 Regulation of Nucleation Promoting Factors 
There are different mechanisms controlling each of the NPFs, involving both 

activation and inhibition.  Both WASP and N-WASP have autoinhibitory 

mechanisms whereby the GBD binds the acidic region of the VCA (Kim et al., 

2000; Miki et al., 1998; Prehoda et al., 2000).  This conformation prevents the 

VCA domain from interacting with Arp2/3 or actin.  WASP interacting protein 

(WIP) stabilizes this binding to ensure inactivation of the proteins (Ramesh and 

Geha, 2009).  This inhibition is released upon binding of Cdc42, which activates 

it by releasing the VCA domain and exposing it to bind actin and Arp2/3 

(Martinez-Quiles et al., 2001; Rohatgi et al., 1999; Stradal et al., 2004; 

Takenawa and Suetsugu, 2007).   

 

Whereas WASP and N-WASP are constitutively inactive due to autoinhibition, 

Scar/WAVE and WASH are constitutively active alone (Eden et al., 2002; 

Innocenti et al., 2004; Linardopoulou et al., 2007; Machesky et al., 1999).  These 

NPFs are incorporated into complexes which prevent any inappropriate 

nucleating activity until activation (Derivery et al., 2009b; Ismail et al., 2009 Jia 

et al., 2010).  Some NPFs are activated by small GTPases; Rac1 is responsible for 
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the activation of the Scar/WAVE complex (Eden et al., 2002; Ismail et al., 2009; 

Miki et al., 2000), while Cdc42 activates WASP.  

 

1.4.5 Regulation of WASH 
The regulation of WASH is through incorporation into a complex (Derivery et al., 

2009; Gomez and Billadeau, 2009).  There are parallels between the WASH 

complex and the Scar/WAVE complex (Jia et al., 2010), showing that this form 

of regulation is not a unique mechanism.  WASH, like Scar/WAVE, is part of a 

pentameric complex consisting of FAM21, Strumpellin, CCDC53 and SWIP, with a 

more transient interaction with CapZ (Derivery et al., 2009; Gomez and 

Billadeau, 2009; Jia et al., 2010).  Originally, the WASH complex was purified 

using Tandem Affinity Purification (TAP) from 3T3 fibroblasts, and the subunits 

were identified by mass spectrometry (Derivery et al., 2009).  These results 

were confirmed using WASH purified from HeLa cells and bovine brain tissue, 

where the question was raised over the strength of the interaction between the 

WASH complex and CapZ (discussed later; Jia et al., 2010). 

 

There are many similarities between the Scar/WAVE complex and the WASH 

complex, with both containing one NPF and four regulatory subunits.  There are 

also parallels between the regulatory subunits themselves (Jia et al., 2010), for 

example SWIP and Strumpellin, like SRA1 and NAP1 of the Scar/WAVE complex, 

are both large proteins of predicted helical structure.  SWIP appears to have 

some homology to SRA1, and Strumpellin to NAP1.  Also, both CCDC53 and 

HSPC300 contain coiled-coil domains and are of a smaller size (Jia et al., 2010; 

Lupas et al., 1991).  

 

Liu et al. (2009) suggest that a potential activator of WASH could be the small 

GTPase Rho1.  Their studies in Drosophila show that WASH directly binds Rho1, 

and is released from inhibition by SpirD by the addition of Rho1, in the same way 

as the actin nucleators SpirC and Cappuccino (Capu).  These studies have not 

been confirmed in mammalian cells where the case may be different, as is seen 

with other NPFs in Drosophila such as WASP and Capu, which both lack the 

autoinhibitory mechanisms seen in their mammalian counterparts (Liu et al., 

2009; Rosales-Nieves et al., 2006).  It is also generally thought that Rho1 is a 

regulator of linear actin nucleators, such as Capu (Rosales-Nieves et al., 2006), 
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rather than branched actin nucleators like WASP family proteins, however it may 

have the capacity to do both. 

 

1.5 The WASH complex 
1.5.1 Localisation of WASH 
The first studies of GFP-WASH in mammalian cells claimed WASH was localised to 

actin structures at the cortex (Linardopoulou et al., 2007).  Subsequent findings 

suggested that this was an artefact of overexpression and that WASH is not seen 

at the cortex, but instead localises to intracellular vesicles.  In mammalian cells, 

WASH colocalised strongly with EEA1, a marker of early endosomes, and Rab5 

which labels newly formed endosomes (Derivery et al., 2009; Gomez and 

Billadeau, 2009).  WASH also colocalised with Rab11 and Rab4, markers of the 

recycling compartment where it seems to be predominantly present, although it 

was also observed on the lysosomal degradation pathway marked by Rab7 (Zech 

et al., 2011).  Data also show that WASH is localised to endocytic vesicles in 

Dictyostelium, specifically neutralising lysosomes (Carnell et al., 2011).   

 

1.5.2 WASH and Endosomal Actin 
WASH was identified by Linardopoulou et al. (2007) as an activator of Arp2/3 

due the presence of a VCA domain at its C terminus.  This was confirmed by 

pyrene-actin polymerization assays in which actin monomers were shown to form 

filaments in vitro in the presence of either full length WASH, or the WASH VCA 

domain, with Arp2/3 (Jia et al., 2010; Linardopoulou et al., 2007; Liu et al., 

2009).  In vivo, several groups have observed colocalisation between WASH and 

actin on endosomal vesicles in both mammalian cells and Dictyostelium (Carnell 

et al., 2011; Derivery et al., 2009; Duleh and Welch, 2010; Gomez and Billadeau, 

2009). 

 

To establish the role of WASH in mammalian cells, several groups performed 

siRNA targetted knockdown of WASH which resulted in tubulation of early 

endosomes.  This led to the idea that WASH was involved in maintaining 

endosomal morphology and regulating scission events (Derivery et al., 2009; 

Gomez and Billadeau, 2009).  WASH function was also studied in Dictyostelium, 

in which a total knockout of WASH was created (Carnell et al., 2011).  The actin 

structures previously observed on endolysosomal vesicles in Dictyostelium were 
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absent in WASH nulls.  The loss of WASH and actin did not result in an obvious 

change in morphology of endosomes, but in a failure of lysosomes to neutralise 

and a total block in exocytosis.  Recently, a line of WASH knockout mouse 

embryonic fibroblasts (WASHout MEFs) was created by Gomez et al. (2012).  

These cells did not display the tubulated phenotype previously seen in 

mammalian cells on knockdown of WASH, but instead the early endosomal and 

lysosomal compartments of cells were severely disrupted.  The actin normally 

associated with these vesicles was totally absent, but was rescued on expression 

of GFP-WASH but not GFP-WASHΔVCA, indicating that WASH is required to 

produce these actin structures and maintain integrity of the endolysosomal 

network in mammalian cells.  This data correlates with that obtained in the 

Dictyostelium WASH null cells. 

 

1.5.3 WASH in Mammalian Cells 
1.5.3.1 WASH and Receptor Recycling 

WASH is important for trafficking of receptors in mammalian cells, causing 

defects in the transport of several cargoes when WASH is depleted.  Two groups 

looked at Transferrin (Tf) recycling in HeLa cells which was seen to be defective 

in the absence of WASH (Derivery et al., 2009; Zech et al., 2011), although 

another two groups report that Tf recycling is unaffected by WASH (Duleh and 

Welch, 2010; Gomez and Billadeau, 2009), however these studies used different 

cell types and assays to measure the recycling.  WASH knockdown also resulted 

in defects in EGFR and α5β1 integrin trafficking.  In siWASH treated cells, EGFR 

is not efficiently transported to lysosomes as it should be and is held up in 

earlier compartments (Duleh and Welch, 2010), whereas α5β1 integrin is mis-

sorted into pre-lysosomal compartments, substantially delaying its transit 

through the recycling compartments back to the plasma membrane (Zech et al., 

2011).  This integrin is known to be important in cell motility and invasion in 

cancer cells (Caswell et al., 2007; Muller et al., 2009; White et al., 2007), and 

depletion of WASH in turn decreases the motility of these cells which rely on 

specific receptor localisation to direct cell movement and invasion (Zech et al., 

2011).  In WASHout MEFs, Tf was found to be normally recycled, whereas EGFR 

trafficking was disrupted, as seen in siWASH cells (Gomez et al., 2012), 

indicating that different receptors may possibly be trafficked through WASH-
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dependent and -independent pathways.  These results also support the idea that 

WASH is important in a variety of different endocytic routes in mammalian cells. 

 

1.5.3.2 WASH and Exocytosis 
Carnell et al. (2011) had established in Dictyostelium WASH nulls that exocytosis 

was blocked, therefore they used macrophages to see whether knockdown of 

WASH was detrimental to mammalian cell exocytosis as well.  They observed 

that upon feeding the yeast Cryptococcus neoformans to macrophages, the 

endocytosed yeast was contained within GFP-WASH-labelled compartments.  

Upon expression of the dominant negative GFP-WASHΔVCA in these cells, the 

yeast became trapped in the early endosomal compartments and cells had great 

difficulty expelling it from the cytoplasm.  This shows that mammalian cells also 

have a requirement for WASH in progression of cargo through the endocytic cycle 

and exocytosis. 

 

1.5.4 WASH in Dictyostelium  
The degradation and recycling pathways seen in mammalian cells are integrated 

in Dictyostelium, with endocytosed material passing through the lysosomal stage 

before being recycled to the plasma membrane to be exocytosed (Maniak, 2003).  

Carnell et al. (2011) found that GFP-WASH recruitment to endosomal membranes 

was simultaneous with removal of small budding vesicles containing V-ATPase 

(Clarke et al., 2002), indicating WASH was recruited to neutralising lysosomes.  

Loss of WASH resulted in a failure of V-ATPase to be removed from lysosomes, 

which consequentially were unable to neutralize.  This caused a block at this 

stage of the endocytic cycle and no further progression of vesicles was possible.   

 

1.5.4.1 Endocytosis and Exocytosis in WASH nulls 
Although exocytosis was completely blocked, endocytosis and early endosomal 

events were unaffected in WASH nulls (Carnell et al., 2011).  Cells were still 

able to perform macropinocytosis as normal, and the contents of early 

endosomes became concentrated due to the extraction of liquid and recycling of 

membrane (Clarke et al., 2002; Neuhaus et al., 2002).  This meant cells grown in 

liquid medium which contains very little indigestible material, could survive and 

grow at near normal rates.  Dictyostelium cells can also be grown on bacterial 

plates as axenic strains still retain the ability to engulf and digest bacteria as a 
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food source, however this posed a problem for WASH nulls.  The acidic lysosomal 

vesicles in WASH nulls became filled with the large amount of debris produced 

by digestion of bacteria (Carnell et al., 2011).  This decreased the survival rate 

of cells substantially as the rate of division and growth was not fast enough to 

compensate for the build-up of intracellular debris within the endosomal system. 

 

1.5.4.2 WASH in Lysosome Maturation 
To confirm the requirement of actin for lysosomal maturation, Carnell et al. 

added the drug latrunculin A (latA), which blocks polymerization, to wild type 

Dictyostelium cells which had been fed the pH sensitive FITC-dextran.  LatA was 

added to cells approximately 20 minutes after uptake of the FITC-dextran.  At 

this point, the FITC-dextran should be beginning to enter the neutralizing stage 

of the endocytic cycle (Clarke et al., 2002), however addition of LatA prevented 

the neutralization process for the duration of treatment.  Removal of the drug 

then allowed actin polymerization to restart, and neutralization to begin.  This 

shows that the presence of actin is required for maturation of lysosomes into 

neutral post-lysosomes. 

 

Once neutralisation is complete, WASH dissociates from the membrane of the 

vesicle before it is transported to the plasma membrane for exocytosis (fig. 1.5; 

Thomason, unpublished data).  WASH was never observed at the plasma 

membrane in Dictyostelium, nor was it localised to the vesicle during the 

process of exocytosis.  This indicates that WASH is not responsible for the actin 

recruited to vesicles at, and required for, exocytosis. 

 

1.5.4.3 Mechanism of V-ATPase Removal 
Carnell et al. (2011) hypothesized that the actin coat built by WASH was 

required to cluster the V-ATPase molecules within the lysosome membrane.  This 

would restrict it within a subdomain of membrane where budding occurs to 

remove it from the membrane (fig. 1.6).  The removal of V-ATPase through small 

budding vesicles has already been documented (Clarke et al., 2002, 2010).  

Several actin filament binding sites have also been identified on subunits of the 

V-ATPase complex (Holliday et al., 2000; Vitavska et al., 2003).  The patchy 

distribution of WASH on membranes also supports a role in clustering and 

defining subdomains (Derivery et al., 2009; Duleh and Welch, 2010).  Actin has  
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Figure 1.5  Dissociation of WASH before exocytosis 

Thomason (unpublished data) fed Ax2 Dictyostelium cells agarose beads.  

These beads became decorated with GFP-WASH and were observed over 

time until the bead was exocytosed.  The bead labelled with the red star 

above shows the dissociation of GFP-WASH from the bead approximately 15 

seconds prior to its exocytosis from the cell. 
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been previously shown to be required for the clustering of proteins and 

receptors into microdomains within membranes.  For example, the human 

immunodeficiency virus (HIV-1) uses the host cell cytoskeleton to cluster 

receptors, such as the T cell receptor CD4, to the site of cell-cell contact in 

order to bind HIV envelope proteins for invasion (Baranda et al., 2007; Dimitrov, 

2004).  Studies of the Tf receptor (TfR) in COS7 cells has shown that actin is 

required to act as a barrier against diffusion through the plasma membrane; 

treatment with latrunculin B resulted in a very diffuse pattern of TfR 

localisation, whereas treatment with the actin stabilizing drug jasplakinolide led 

to a much tighter clustering of the receptor (Lenne et al., 2006).  These 

examples show that actin may be involved in actively binding and clustering 

membrane components, but may also play a role in acting as a barrier against 

diffusion.  Either of these roles, or even a combination of both, may contribute 

to the actin coat on post-lysosomes regulating the localisation of V-ATPase 

within the vesicle membrane. 

 

1.5.5 Subunits of the WASH Complex 
Very little was previously known about any of the subunits before the discovery 

and study of the WASH complex.  All five members of the complex are highly 

conserved throughout the eukaryotic kingdoms, and species which contain one 

member generally contain the entire complex (Veltman and Insall, 2010).  

Ccdc53 had been previously found to interact with WASH in a yeast two-hybrid 

screen in Caenorhabditis elegans, but other than that nothing is known about 

the protein (Li et al., 2004).  Strumpellin has been identified as a cause of a 

specific type of spastic paraplegia.  SWIP and FAM21 had not previously been 

identified in any known role.  No known domains were identified in any of SWIP, 

FAM21 or Strumpellin, giving no clues as to their possible functions.  The only 

previously studied associate of the WASH complex was capping protein, well 

known for its role in capping the plus ends of actin filaments (Schafer et al., 

1996). 

 

1.5.5.1 FAM21 
There are several forms of FAM21 in humans; FAM21A-D of which A-C are full 

length, and D is a truncated form of approximately 300 amino acids of the C 

terminal portion.  It is composed of two parts; a helical N terminal region and 
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the remainder of the protein which is devoid of any known domains or structure 

being very proline rich, except for a CapZ binding motif.  The N terminal region 

of FAM21 is the part responsible for binding the WASH complex (Gomez and 

Billadeau, 2009; Harbour et al., 2010; Jia et al., 2010).  The C terminus was also 

shown to be able to localise independently to endosomes, possibly through 

binding a subtype of lipids (Jia et al., 2010), suggesting it may contribute to 

complex localisation.  

 

1.5.5.2 Strumpellin and Spastic Paraplegia 

The gene encoding Strumpellin is expressed ubiquitously in human tissues.  It has 

been identified in two separate screens for proteins overexpressed in prostate 

cancer (Duin et al., 2005; Porkka et al., 2003), however the main interest has 

been in its role in hereditary spastic paraplegia (HSP).  HSP is a 

neurodegenerative disease where neurons degrade over time, causing a variety 

of symptoms.  Pure forms of HSP involve motor neurons and affect movement of 

various parts of the body, whereas complicated forms also affect cognitive 

abilities and can produce symptoms such as retardation.  Varying severity of the 

condition means the onset of aggressive forms can be as early as 20s, whereas 

other forms do not become apparent until 60s.  The most common form of HSP is 

caused by mutations in the microtubule severing protein, Spastin, which 

accounts for ~40% of all dominant HSP cases (Fonknechten et al., 2000; Hazan et 

al., 1999).  Spastin has also been shown to localise to intracellular vesicles, 

including early endosomes (Connell et al., 2009).  It also interacts with 

numerous endosomal proteins including Atlastin, another protein known to cause 

spastic paraplegia (Evans et al., 2006; Sanderson et al., 2006).  This suggests 

that defects in endosomal trafficking, which is strongly linked with microtubules, 

may contribute to the pathogenesis of the disease.   

 

Strumpellin is involved in a pure form known as SPG8, which specifically affects 

the longest corticospinal neurons, resulting in loss of motor function of the lower 

limbs, but with no other symptoms.  SPG8 is an autosomal dominant disease, and 

Valdmanis et al. (2007) analysed the genomes of a number of families with the 

disease to find that 3 specific point mutations in Strumpellin, N471D, L619F, 

V626F, are responsible.  Over 500 controls, including members of the same 

families without the condition, were all negative for these mutations.  All three 
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mutations lie in very highly conserved areas of the protein, with the L619F and 

V626F mutations spanning an area with 100% conservation from human to rat.  

The area containing the N471D mutation is also highly conserved but is missing in 

Drosophila and Xenopus.   

 

All three mutations lie within α-helical secondary structures, and it is thought 

that the disruption of the structure by these mutations leads to malfunction of 

the protein (Valdmanis et al., 2007).  The V626 residue is also the first amino 

acid of exon 15 of the protein, therefore may interfere with exon splicing, 

however gene analysis shows that alternative splicing is rare in the Strumpellin 

gene. 

 

1.5.5.3 Capping Protein and the WASH Complex 
The Dictyostelium proteome contains orthologues of the human CapZ α and β 

subunits, which are Cap34 and Cap32 respectively (Cooper et al., 1991; 

Hartmann et al., 1990).  Several groups have identified CapZ as being a part of 

the WASH complex in mammalian cells.  It has been identified in 

immunoprecipitations of the WASH complex, as well as being shown to colocalise 

with WASH on endosomes (Derivery et al., 2009; Jia et al., 2010).  Jia et al. 

(2010) state that CapZ is only present in some of the pulldowns they performed, 

and suggest a more transient interaction with the WASH complex, rather than it 

being a constitutive member.  This is a possibility, as CapZ is not specific to the 

WASH complex and plays a part in the regulation of many other actin structures 

in the cell, for example Derivery et al. (2009) see it localise independently of 

WASH in lamellipodia.  CapZ is also stable in the cell regardless of the absence 

of any WASH complex members, whereas other WASH complex members exhibit 

a co-dependency, unable to be stably expressed unless a complete complex is 

present in the cell (Derivery et al., 2009; Gomez and Billadeau, 2009). 

 

The part of the complex responsible for binding CapZ, through a capping protein 

interaction site (CPI) is the C terminus of FAM21 (Hernandez-Valladares et al., 

2010).  The CPI motif is defined as LXHXTXXRPK(6X)P (Bruck et al., 2006) and is 

conserved in most FAM21 proteins, including H. sapiens FAM21, and more 

stringently in the D. discoideum FAM21 which has an exact match at position 

1201 in the amino acid sequence.  This interaction is supported by the fact that 
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purification of the C terminal portion of FAM21 alone does indeed coprecipitate 

CapZ (Harbour et al., 2010).  Jia et al. (2010) suggest that, like with proteins 

such as Carmil which also contain a CPI and bind CapZ, the purpose of the 

interaction with FAM21 may be to sequester the capping protein away from the 

actin coat formed by WASH, reducing capping activity.  Alternatively, FAM21 

could localise capping protein to the correct site in order to enhance its activity 

at that position, however whether its role is cooperative or antagonistic with 

WASH building F-actin is yet to be tested.  

 

1.5.6 Association of the Retromer Complex 
The purpose of the retromer is to direct retrograde transport of cargo from 

endosomes to the Golgi.  The retromer complex consists of the sorting nexins 

(SNX) which initiate endosomal tubulation (Cullen, 2008; Griffin et al., 2005; 

Rojas et al., 2007; Wassmer et al., 2007), and a cargo recognition complex, 

consisting of vacuolar protein sorting-associated protein 26 (VPS26), VPS29 and 

VPS35 in mammalian cells (Haft et al., 2000).  During maturation, the lipid 

composition of endosomal membranes changes, and much of the 

phosphatidylinositol (PI) is converted to phosphoinositide 3-phosphate (PI(3)P) by 

the kinase PI(3)K (Panaretou et al., 1997; Vieira et al., 2001; Volinia et al., 

1995).  Once the membrane becomes enriched with PI(3)P, the sorting nexins 

are recruited and begin to elongate the vesicles in order to create a tubular 

structure from which the vesicles can pinch off at the ends to facilitate 

transport of membrane and vesicular contents (Kerr et al., 2006).  

 

Links between WASH and the retromer were suggested due to the colocalisation 

seen between WASH with SNX1 and VPS29 (Gomez and Billadeau, 2009).  In 

addition, some sorting nexins were detected in immunoprecipitations of WASH, 

suggesting an interaction between the retromer and WASH complexes.  A direct 

interaction between the WASH complex and the retromer was shown by Harbour 

et al. (2012) to be through binding of VPS35 to the C terminal unstructured 

domain of FAM21.  This group suggested that this interaction is essential for 

targeting the WASH complex to endosomes, however Gomez and Billadeau (2009) 

show that the complexes are not codependent on one another, as each one is 

able to exist and localise to endosomes regardless of the presence or absence of 

the other.  Instead, they suggest that the loss of the WASH complex results in 
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the disruption to retrograde trafficking by the retromer through the deregulation 

of endosome morphology and lack of scission, impairing the ability of the 

retromer to retrieve its cargoes from tubulated endosomes. 

 

1.5.7 Aims of This Thesis 
1.5.7.1 Using Dictyostelium to Study the WASH Complex 
The model organism Dictyostelium offered a fast route to obtaining a complete 

knockout cell line of WASH for Carnell et al. (2011).  Mammalian systems at this 

time were limited by the fact that only knockdown of WASH was possible and no 

knockout cell line was available, therefore the phenotypes of these cells were 

ambiguous and it was difficult to determine the precise function of WASH.  Since 

the publication of Carnell et al. (2011), a total knockout of WASH in mouse 

embryonic fibroblasts was created by Gomez et al. (2012).  The data obtained 

using this cell line strengthened the evidence that WASH is involved in lysosomal 

and recycling processes, as seen in Dictyostelium.  This indicates that the results 

obtained using Dictyostelium are widely applicable to other cell types and can 

lead to advances in the knowledge of actin structures and the endocytic system.  

We will therefore continue to use Dictyostelium to study the function of the 

regulatory subunits of the WASH complex. 

 

1.5.7.2 WASH Complex Regulatory Subunits 
Up until now, the regulatory subunits of the WASH complex have not been 

studied in depth.  Little or no available data for each member gives few clues as 

to their various functions.  It is yet to be determined which of the subunits are 

essential for the function of WASH and how each one contributes to its 

regulation.   

 

The Strumpellin subunit has been identified as a cause of the disease spastic 

paraplegia in humans.  This is due to the presence of one of three specific 

mutations which are shown to be responsible for causing the malfunction of the 

protein.  It will be interesting to see whether these mutations affect the 

function of Strumpellin within the WASH complex in Dictyostelium, and if so, 

what effect they have on complex function. 
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It is currently unknown which of the subunits are responsible for the correct 

targetting of the complex to lysosomal membranes.  This is important in 

ensuring that the actin coats are constructed around the correct endosomal 

compartments.  Whether all of the subunits are required for the stability of the 

complex and the construction of the actin coat is also yet to be determined.  It 

has been suggested by Gomez and Billadeau (2009) that both correct localisation 

and stability of the complex rely on the FAM21 subunit, however this data is 

again based on knockdowns using siRNA, therefore we will determine whether 

the same in true in a total knockout cell line using Dictyostelium, currently 

unavailable for mammals. 

 

1.5.7.3 FAM21 and Capping Protein 
FAM21 is the only subunit to have been studied to any degree in mammalian 

cells.  It has been shown by Jia et al. (2010) that FAM21 interacts with the WASH 

complex through its N terminus, and that the C terminal region interacts with 

capping protein, through a CPI domain, and possibly lipids.  No other capping 

protein binding sites have been identified within the complex but it has not been 

tested whether or not this truly is the only domain through which capping 

protein can interact with the complex.  The functional significance of the 

interaction between the complex and capping protein is as yet unknown.  There 

have been suggestions, such as the theory of Jia et al. (2010) that the role of 

FAM21 is to sequester capping protein away from the actin coat created by 

WASH and Arp2/3, but the precise function of this interaction has not been 

investigated. 
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MATERIALS AND METHODS 
  



39 
 

 39 

2 Materials and Methods 
2.1 Molecular Biology 
2.1.1 Restriction Digests and Ligations 
All restriction digests were performed using NEB restriction enzymes and buffers 

unless otherwise stated, as per protocol.  Ligations were performed using T4 

DNA Ligase and T4 DNA Ligase Buffer (Fermentas) as per protocol.  Ligations 

were incubated for a minimum 1 hour at room temperature before 

transformation or storage at -20oC. 

 

2.1.2 Bacterial Strains, Preparation and Transformation 
Ligations and plasmids were propagated in chemically competent DH5α E. coli 

cells, generated using the CaCl2 method (Sambrook et al., 1989).  5µl of 

ligation, or 0.5µl of plasmid, were incubated on ice with 50µl cells for 30 

minutes.  The cells were then heat shocked at 42oC for 40s, before adding 500µl 

LB.  Cells were incubated at 37oC for 1 hour to allow them to start expressing 

antibiotic resistance before plating 200µl of mixture onto a LB agar plate 

containing the appropriate antibiotic for selection (100µg/ml ampicillin or 

50µg/ml kanamycin). 

 

2.1.3 Minipreps 
Single colonies from transformed ligations/plasmids were used to inoculate 2ml 

LB and grown at 37oC, 200rpm overnight.  Bacterial cultures were spun at 3000g 

for 5 minutes and supernatant was discarded.  Plasmid DNA was then purified 

from the pellets using a Qiagen 8000 Bio-Robot robot. 

 

2.1.4 Cloning of WASH Complex Genes 
cDNA was prepared from Dictyostelium Ax2 cells using the SuperScript® III 

CellsDirect cDNA Synthesis Kit (Invitrogen) as per protocol.  Genes were 

amplified from cDNA using primers designed against the specific cDNA sequences 

listed on dictyBase, with additional BamHI/BglII and SpeI/AvrII sites on the 5’ 

and 3’ ends respectively.  Human WASH1 and FAM21C cDNA clones were 

obtained from ImaGenes.  HsFAM21 was also amplified with added restriction 

sites using gene specific primers.  These PCR products were then blunt-ligated 

into pDM368 and fully sequenced.  The genes were then digested out of the 
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vector using the appropriate pair of restriction enzymes and subcloned into the 

desired expression vector.   

 

2.2 DNA Constructs 
2.2.1 Knockout Constructs 
Strumpellin cDNA in pDM368 was digested with MslI to remove the mid-section of 

the gene, and a blunt ligation was performed to insert the blasticidin resistance 

(BsR) cassette, digested out of pLPBLP using SmaI (Faix et al., 2004).  The FAM21 

knockout construct was made in the same way, with digestion using MfeI. 

 

The ccdc53 construct was acquired from Douwe Veltman (unpublished); 5’ and 3’ 

arms of the gene were amplified from cDNA and ligated into pDM368 either side 

of the BsR cassette as described.   

 

2.2.2 Fluorescent Tag Expression Constructs 
All fluorescent tag expression vectors used were obtained from Veltman et al. 

(2009) for single and coexpression.  For single gene expression, genes were 

cloned into pDM448 to create an N-terminal GFP tag construct for expression in 

Dictyostelium, selected by hygromycin.  pDM318 was used for N-terminal RFP 

tagged constructs, selected with neomycin.  Genes were cloned into pDM602 

shuttle vector for coexpressing with an N terminal RFP tag, and excised with 

NgoMIV.  The destination vector expressing a GFP-tagged gene was linearized 

with NgoMIV, and the RFP shuttle ligated in.  All clones were checked by 

digestion patterns to ensure presence and correct orientation of inserted genes. 

 

GFP-CRAC (pDM631) used as a positive control for the lipid blot assay, pDM317, 

an expression vector for GFP alone for use as a control, and RFP-actin (pDM463) 

were all obtained from Veltman et al. (2009).  vatB-GFP was obtained from 

Carnell et al. (2011).  Human GFP-WASH was created by cloning human WASH1 

into pEGFP-C1 (Invitrogen). 

 

2.2.3 Mutant Constructs 
FAM21ΔCPI; PCRs were performed using primers oLP067/166 and oLP167/140 to 

amplify FAM21 regions upstream and downstream of the CPI site, which is 
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located at base pairs 3601-3651 of the FAM21 cDNA sequence.  The primers 

oLP166 and oLP167 contain a region of complementary sequence which allowed 

the two products to anneal together, but also eliminated the CPI from the 

sequence.  The full length gene was then amplified using primers oLP067 and 

oLP140.  The product was then ligated into pDM368 and fully sequenced. 

 

FAM21ΔCT and FAM21ΔNT; PCRs were performed using primers oLP067/SoapNT 

and FAM21CT/oLP140 to amplify the head region (nucleotides 1-765) and tail 

region (735-4440) of FAM21 cDNA.  These products were then ligated into 

pDM368 and fully sequenced, named FAM21ΔCT and FAM21ΔNT respectively. 

 

hyFAM21; The D. discoideum N terminal portion of FAM21 was amplified using 

primers oLP067/oLP069.  The C terminal portion of H. sapiens FAM21C was 

amplified using primers oLP132/oLP133.  The primers oLP132 and oLP069 contain 

a region of complementary sequence which allows the two products to anneal 

together, and the full length hybrid gene to be amplified using primers 

oLP067/133.  The product was then ligated into pDM368 and fully sequenced, 

and the resulting construct coded for a protein consisting of residues 1-255 of D. 

discoideum FAM21, and 265-1341 of H. sapiens FAM21. 

 

SPG8 Strumpellin mutants; the Strumpellin gene 5’ region was amplified using F 

primer oLP001 with R primer oLP011, oLP013 or oLP015 for creation of the 

L607F, V614F or N459D mutant respectively.  Each R primer contains the altered 

nucleotide triplet to introduce the relevant mutation, followed by a short 

complementary sequence corresponding to that on the 3’ regions, amplified by F 

primers oLP012, oLP014 and oLP016 respectively, with R primer oLP002.  The 

corresponding 5’ and 3’ templates were then combined and the entire gene with 

the amplified triplet was in each case amplified with oLP001/oLP002.  The full 

length gene was then blunt ligated into pDM368 and fully sequenced. 

 

2.3 Cell Biology 
2.3.1 Transfection of Dictyostelium Cells 
Dictyostelium transfections were performed by adding 10-50ng plasmid to a 

2mm gap Electroporation Cuvettes PlusTM cuvette (BTX Harvard Apparatus) and 

adding between 3 x 106 and 1 x 107 cells suspended in 400ml E-buffer.  Cells 
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were electroporated at 500V using an ECM 399 Electroporation System (BTX 

Harvard Apparatus), left on ice to recover for 10 minutes and then plated out 

onto a 10cm dish containing 10ml HL5 medium.  Selective antibiotics were added 

24 hours later if required (50µg/ml hygromycin or 10µg/ml neomycin). 

 

2.3.2 WASH Complex Null Cell Line Generation 
WASH Ax2 knockouts were acquired from Carnell et al. (2011).  FAM21 Ax4 and 

SWIP Ax4 knockouts were acquired from Torija et al. (2006).  Ccdc53 Ax3 and 

Strumpellin Ax2 knockouts, and WASH/FAM21 double knockouts, were made by 

gene disruption through recombination.  A knockout construct containing the BsR 

cassette and at least 1kb of flanking sequence either side, was amplified by 8 x 

50ul PCR reactions.  Primers oLP179/064 were used to amplify the Strumpellin 

construct, oLP101/oLP069 for FAM21 and oDM552/oDM553 for ccdc53.  The PCR 

products were pooled for each gene and purified using a Zymo Research DNA 

Clean and ConcentratorTM-25 Kit as per protocol, and eluting in 30ul H2O.  The 

DNA was then transfected into cells as described.  After transfection, cells were 

resuspended in 60ml HL5 medium and plated out in aliquots of 100ul into 96-well 

plates.  After 24 hours, another 100ul of HL5 containing 20ug/ml (2 x 

concentration) blasticidin was added to select for transformants.  Recombinant 

clones were screened for by western blot probed with anti-Strumpellin 

generated against peptide CSHFQRPDSNPYPSD (BioGenes GMBH).  The ccdc53 

Ax3 knockout cell line was screened by Peter Thomason (unpublished). 

 

To make the double WASH/FAM21 knockout, WASH- cells were transfected with 

pDEX-NLSCRE to express Cre-recombinase in the cells.  This allowed the excision 

of the BsR cassette, which is flanked by loxP sites.  Transformants were plated 

out and selected for pDEX-NLSCRE expression using neomycin.  Clones in which 

the BsR cassette had been successfully excised became blasticidin sensitive.  

These clones were then removed from neomycin selection and grown for 3 days, 

then tested for loss of the extrachromosomal pDEX-NLSCRE plasmid by sensitivity 

to neomycin.  PCR was used to confirm the removal of the BsR cassette, and 

these clones were then transfected with the FAM21 knockout construct and 

selected as described. 
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2.3.3 Microscopy 
Unless otherwise stated, cells were incubated in LoFlo medium containing 5% 

dextran for 3 hours prior to imaging.  Cells were visualized using a Nikon A1R 

confocal microscope using a 60x 1.4 NA objective and images were captured 

using NIS-Elements AR3.1 software (Nikon).  Cells were imaged on MatTek 35mm 

glass bottom culture dishes.  Images were captured using 488nm excitation, and 

500-550 emission for FITC/GFP, and 561.4nm excitation, 570–620-nm emission 

for TRITC/RFP. 

 

2.3.4 GFP-Trap Purification 
40ul of bead suspension of GFP-Trap beads (Chromotek) were transferred to an 

eppendorf and washed twice with TNE buffer then resuspended in 40ul TNE.  

Cells were grown in shaking culture and 1x108 cells were harvested and washed 3 

times in ice cold KK2 buffer before resuspending in 1ml TNE plus 1:100 HALTTM 

Protease Inhibitor Single-Use Cocktail (ThermoScientific).  Cells were left on ice 

for 20 minutes to lyse, then lysates were spun at 4oC for 20 minutes at maximum 

speed to pellet debris.  Supernatant was decanted into a clean tube and 40ul of 

beads were added to each sample.  Samples were rotated overnight at 4oC to 

allow GFP-tagged protein to bind to the beads.  Beads were then pelleted by 

spinning at 3000rpm for 3 minutes and supernatant was removed.  Beads were 

washed in TNE 3 times before resuspending in 1x NuPAGE LDS Sample Buffer 

(Invitrogen) and boiling for 3 minutes.  Samples were cooled and then run on a 

gel as described. 

 

2.3.5 SDS-PAGE  
Dictyostelium cells were lysed by heating in 1x NuPAGE LDS Sample Buffer 

(Invitrogen) at 70oC for 10 minutes, then cooled on ice.  Samples were run in an 

Invitrogen tank using pre-cast Invitrogen SDS-PAGE Bis-Tris 10% gels for 50 

minutes at 200V.  Gels were then washed in water for 10 minutes before western 

blotting or analysis by mass spectrometry. 

 

2.3.6 Western Blotting 
Proteins were transferred from an SDS-PAGE gel onto an Amersham Hybond-P 

PVDF membrane (G E Healthcare) in a BioRad transfer tank at 240A for 2 hours.  

Membranes were blocked for 1 hour at room temperature in 5% dried skimmed 
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milk in TBS.  Membranes were then washed in TBS and incubated with primary 

antibody diluted in 2ml TBS in a 50ml Falcon tube by rotating at 4oC overnight.  

The membranes were washed 5 times in TBST before addition of secondary 

antibody at a dilution of 1:10,000 in TBST and incubation with rotation at room 

temperature for 40 minutes.  To develop, membranes were washed 3 times in 

TBST for 10 minutes each, before addition of ImmobilonTM Western 

Chemiluminescent HRP Substrate (Millipore), wrapping in Saranwrap (Dow 

Chemical) and visualization using a transilluminator.    

 

2.4 Dictyostelium Cellular Assays 
2.4.1 Exocytosis and Endocytosis Assays 
For the exocytosis assay, cells were grown in shaking culture overnight in HL5 

medium containing 2mg/ml FITC-dextran to take up fluorescent material.  

Cultures were then spun at 2000rpm for 2 minutes to pellet cells, washed twice 

in cold KK2 to remove the FITC-dextran, before resuspending cells in 20ml HL5 

medium and continuing to shake.  Samples of 0.5ml of medium were taken, 

starting immediately, at timepoints from 0-300 minutes.  Each sample was spun 

to pellet the cells, and washed twice in KK2 to remove any external fluorescent 

material.  Pellets were stored on ice until all timepoint samples were taken.  

Pellets were resuspended in 200µl of lysis buffer to release the FITC-dextran 

endocytosed by the cells before transferring the lysate to a quartz cuvette.  The 

fluorescence of the lysate was measured using a PTI fluorimeter with 470nm 

excitation and 515nm emission, to determine the amount of FITC-dextran 

remaining in the cells at each timepoint. 

 

For the endocytosis assay, cells were grown in shaking culture overnight in 20ml 

HL5 medium.  Cell numbers were adjusted to 1x106 cells/ml before adding 

2mg/ml FITC-dextran to the flask.  Starting immediately, to measure the rate of 

endocytosis of the fluorescent dextran, samples were taken and measured as per 

the exocytosis assay.  Fluorescence levels of samples was normalized to protein 

content, measured using Precision Red (Cytoskeleton). 

 

2.4.2 Neutralization Assay 
Cells were plated onto a glass bottomed dish and incubated in HL5 medium 

containing 5% unlabelled dextran, 0.4mg/ml FITC-dextran and 4mg/ml TRITC-
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dextran for 3 hours to allow the dextran to transit through the endocytic 

compartments.  For each experiment, Ax2 cells were examined using a Nikon 

A1R confocal.  The power for each of the 488 and 561 lasers was adjusted to 

maximum intensity possible without saturation to visualize both fluorophores in 

the vesicles.  These normalized settings were then maintained to examine the 

other cell lines in order to detect FITC fluorescence in neutralized 

compartments. 

 

2.4.3 Cell Fixation 
Cells were seeded on coverslips and incubated in HL5 plus 10% dextran for 2 

hours before picrate/paraformaldehyde fixative was added for 15 minutes to fix 

cells.  Coverslips were then washed in PBS and transferred into 70% ethanol for 2 

minutes.  Coverslips were washed sequentially in PBS, then PBS containing 0.1M 

glycine.  To stain for actin, cells were incubated in 33nM Texas red-phalloidin 

(Invitrogen) in PBS for 1 hour before washing in PBS, then water, and mounting 

on slides using ProLong Gold antifade reagent (Invitrogen). 

 

2.4.4 Enlarged Vesicle Imaging 
Cells were plated onto a glass bottomed dish in HL5 medium containing 10% 

dextran for a minimum of 3 hours to cause vesicle enlargement (in Ax2 cells, a 

slight enlargement made it easier to visualize vesicles, and in FAM21- cells, a 

gross enlargement was induced by addition of dextran).  To label endocytic 

compartments, 1mg/ml of TRITC-labelled dextran was added to the medium for 

3 hours prior to imaging unless otherwise stated.  For labelling whilst 

simultaneously imaging GFP constructs, TRITC-dextran was added at the lower 

concentration of 0.1mg/ml to prevent saturation which masked the GFP signal, 

to ensure GFP-labelled proteins were visible.   

 

2.4.5 Distribution of GFP-WASH  
The ratio of vesicular GFP-WASH on the enlarged post-lysosome membrane in a 

FAM21 null compared to total vesicular GFP-WASH in the cell was quantified 

using ImageJA v1.45.  The pixel intensity of a cytoplasmic area of a cell 

expressing GFP-WASH was measured, and this value was used as the threshold; 

only signal above this value was counted to rule out autofluorescence or 

cytoplasmic protein.  For FAM21 nulls, the threshold was set, then a whole cell 
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was selected and the total signal measured to give total vesicular GFP signal for 

that cell.  Then the membrane of the enlarged post-lysosome within the cell was 

selected individually, using a circular band selection tool of band width 0.5µm, 

and the GFP signal measured for the enlarged vesicle only.  For Ax2 cells, the 

same was done except up to 3 large vesicles in the cell were measured and 

pooled, and compared to total vesicular GFP-WASH.  

 

2.4.6 Doubling Times 
Cells were added to flasks containing 10ml HL5 medium with or without 10% w/v 

dextran (60-90kDa) at a density of 1x105 cells/ml and grown in shaking culture 

overnight.  Aliquots were taken at 24 and 42 hour timepoints and cell density 

measured using a Casy cell counter (Roche).  Doubling times of cultures were 

calculated by using the formula; 

 

Doubling time =               T               x 

              log2(C(T)/C(T0)) 

 

Where T = timepoint (hours of incubation), C(T) = cell number/ml at time T, 

C(T0) = cell number/ml at start 

 

2.4.7 Lipid Blot Assay 
The lipid blot assay was performed using the PIP ArrayTM (Echelon) kit.  Lipid 

membranes supplied were blocked for 1 hour at room temperature with 1% 

skimmed milk in PBS.  D. discoideum cells transfected with pDM317 (GFP 

control), GFP-CRAC, GFP-FAM21 or GFP-FAM21ΔCT were grown overnight in 

shaking culture in HL5 medium.  Cells were washed and resuspended in TBS 

containing HALTTM Protease Inhibitor Single-Use Cocktail (ThermoScientific).  

Cells were filter lysed using a syringe to pass the cells through a 5.0µm TMTP 

IsoporeTM Membrane Filter (Millipore) and cell lysate protein concentration was 

measured by adding 10µl of sample to 1ml of Precision Red protein assay reagent 

(Cytoskeleton) and measuring the concentration on a photometer.  The 

experiment was done twice, once using 1µg/ml and once using 2µg/ml of protein 

suspended in TBS with 1% skimmed milk to incubate the membrane at 4oC 

overnight.  The membrane was washed with TBST 3 times before incubation with 

mouse HRP-conjugated anti-GFP antibody (Abcam, AB5450) at 1:1,000 in TBS at 
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room temperature for 1 hour.  The membrane was then washed again 3 times 

with TBST and secondary anti-mouse antibody was added at 1:10,000 at room 

temperature for 1 hour.  The membrane was washed again 3 times in TBST 

before adding ImmobilonTM ECL substrate for 5 minutes and visualizing on a 

transilluminator.  

 

2.4.8 Fluorescence Recovery After Photobleaching (FRAP) in 
Dictyostelium cells 

Dictyostelium Ax2 and FAM21 null cells, both transfected with GFP-WASH were 

imaged with an inverted confocal microscope (Fluoview FV1000, Olympus) 

equipped with an uPlanSApo 60×/1.35 oil objective.  The images were acquired 

using software FV10-ASW1.7.  FRAP analysis of cells was performed using images 

of 520 x 520 pixels, and 5% power of 488 nm laser.  Effective photo-bleaching of 

GFP was achieved with 405 nm laser, 10 µs/pixel dwell time for one frame in the 

region of interest.  Images were captured at 1 frame/second over 10 seconds to 

observe recovery.   

 

2.5 Mammalian Cell Assays 
2.5.1 Transfection and Knockdown 
A2780 ovarian carcinoma cells were cultured in RPMI medium.  They were grown 

to confluency on a 15cm dish, before medium was aspirated and cells were 

washed in PBS.  2ml of 0.25% trypsin was added to cells and incubated at 37oC 

for 10 minutes to release adherence of cells from the surface of the plate.  10ml 

RPMI containing serum was then added to inactivate the trypsin.  Cells were 

transferred to a 15ml falcon tube and centrifuged at 1000g for 5 minutes.  

Medium was aspirated and cells were washed in PBS and centrifuged again.  Cells 

were resuspended in 100ml Amaxa T solution and transferred to a cuvette 

containing 20mM siRNA.  Cells were then resuspended in 6ml RPMI medium and 

2ml of this was added to a 15cm dish containing 20ml RPMI. 

 

The siRNA against human WASH1 used was pooled siW1 (Hs_WASH1_1) and siW4 

(Hs_FLJ00038_1) obtained from Qiagen.  The siRNA against human FAM21C used 

was pooled siF1-4 (Hs_FAM21C_9, Hs_FAM21C_10, Hs_FAM21C_11, Hs_FAM21C_12 

respectively) obtained from Qiagen. 
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To test knockdown efficiency, cells were lysed by addition of 200µl lysis buffer 

to a 10cm dish and use of a cell scraper.  30µl of SDS-PAGE sample buffer was 

added to 90µl of lysate before heating the sample at 70oC for 10 minutes.  The 

samples were cooled on ice before being run on a gel and analysed by western 

blotting as described (fig. 2.1). 

 

2.5.2 Integrin Recycling Assay 
An ELISA Maxisorb 96 well plate (Invitrogen) was prepared by coating overnight 

with 5µg/ml anti-human α5 integrin antibody (Pharmigen, 555651) in 0.05M 

Na2CO3, pH 9.6.  The plate was then blocked with 5% BSA in PBST before washing 

with PBST.  12 confluent 6cm dishes of cells for each of cells treated with 

siFAM21, siWASH or untreated were used, 11 of each were labelled with 

0.13mg/ml sulfo-NHS-SS-Biotin at 4oC for 30 minutes, and one dish of cells for 

each was left unlabelled as control until the lysis step.  Dishes were washed with 

PBS and incubated at 37oC for 30 minutes to allow internalization of labelled 

integrins.  Dishes were then washed again and incubated at 4oC with 15mg/ml 

MesNa in pH 8.6 buffer for 20 minutes to remove surface labelled proteins which 

were not internalized.  Dishes were either kept on ice for T=0 sample, or 

transferred to 37oC incubator for 15 or 30 minutes to allow recycling.  After 

recycling period, dishes were again washed and treated with MesNa to remove 

recycled, labelled proteins from cell surface.  Lysis buffer was then added to all 

dishes, and lysates were added to the ELISA plate and incubated overnight at 

4oC.  The ELISA plate was then washed with PBST before adding streptavidin-

conjugated horseradish peroxidase (BD Biosciences) at 1:1000 in PBST.  The 

plate was incubated for 1 hour before washing with PBST and developing using 

0.56mg/ml o-phenylenediamine dihydrochloride detection reagent in detection 

reagent buffer.  The reaction was stopped after 10-20 minutes by addition of 8M 

H2SO4 and imaged using a plate reader to measure absorbance at 490nm. 

 

2.5.3 FRAP in A2780 Cells 
FRAP was performed with Tobias Zech as described for Dictyostelium, with 

A2780 cells transfected with EGFP-WASH treated with siFAM21 or untreated, in 

an atmosphere of 5% CO2 at 37°C. FRAP analysis of cells was performed using  
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Figure 2.1  Knockdown efficiency for siFAM21 and siWASH 

A2780 cells were transformed with siRNA against WASH or FAM21C as 

described.  Anti-WASH and anti-FAM21C antibodies were then used to 

measure the efficacy of the knockdown by comparing the level of protein 

with that of non-transformed cells. 
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images of 640 x 640 pixels and 3% power of the 488 nm laser.  Effective photo-

bleaching of EGFP was achieved with 405 nm laser, 10 µs/pixel dwell time for 

one frame in the region of interest.  Images were captured over 66 seconds at 1 

frame/3 seconds.  

 

2.6 Antibodies 
For testing efficacy of knockdowns in A2780 cells, anti-WASH complex subunit 

FAM21C (Millipore, ABT79) and anti-WASH1 (Atlas Antibodies, HPA002689) were 

used.  For detection of Dictyostelium WASH, peptide anti-WASH antibody 

obtained from Carnell et al. (2011) was used.  For detection of Dictyostelium 

CAP32 subunit of capping protein, Anti-CapZ against human CapZβ (Abgent, 

AP2888a) was used. 

 

2.7 List of Primers 
oLP001 F 

CTGTGAGAATTCATGGTAAAAGAATTTTTAGGGGAAGGTAGTCAAGC 

oLP002 R 

CTGCTGGGATCCTTAATTATTATAATAATCAAAAATATAAGGTGGTACATAACC 

oLP011 R 

CCAATACCTTTCTAACATAACCAACGAATTCACCAGAGTAATACTCTGATACCG 

oLP012 F 

CGTTGGTTATGTTAGAAAGGTATTGG 

oLP013 R CATTTGTTTTGGTACGATTTCCAAAAACTTTCTAACATAACCAACCAATTCACC 

oLP014 F 

TTTTTGGAAATCGTACCAAAACAAATG 

oLP015 R 

GATTTCACCAAACCATTTTTGAAGATCTTCATTCTTTTTCACACGAGTTAACG 

oLP016 F 

GATCTTCAAAAATGGTTTGGTGAAATC 

oLP064 R  

CATCATGGATCCTTACCAATATATTTGACAACTCTTTTAGACG 

oLP067 F 

CATCATGGATCCAAAATGCCTGAAGAACAACCACAACAACAACAACAACCAGTTCGTGAA

CAACCATCGAACCC 

oLP069 R  
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ACTAGTTTCCTCATCTTCTTCATCTGAAGAATCAG 

oLP101 F 

CCAACTCGTTCTTTCACTGCCACTG 

oLP132 F  

CTGATTCTGATTCTTCAGATGAAGAAGATGAGGAATCTGAGAAGGAGGA 

GGAAGATATTGAG 

oLP133 R  

AGCTGAGGATCCCTGGCCTCCAAAGGCATTCAGG 

oLP140 R 

CCCGGGCCTAGGATCAAATAAATTTTCCACATTTTTAGCTTTTGGTTTTGATTTCGAAGG 

oLP166 R 

GACTCTGAAGAAAGTGAACCAGTTAAAGAAACTCGTAAATCTGGTACTTCTGCTCC 

oLP167 F  

GGAGCAGAAGTACCAGATTTACGAGTTTCTTTAACTGGTTCACTTTCTTCAGAGTC 

oLP179 F  

CGATCATTGCTGAATTACTTCGTTTAAGTGC 

FAM21NT R 

GGGGACCACTTTGTACAAGAAAGCTGGGTATCTAGATTATTCCTCATCTTCTTCATCTGA

AGAATCAGA 

FAM21CT F 

GGATCCAAAATGGATTCTGATTCTTCAGATGAAGAAGATGAGG  

 

2.8 Buffer Recipes 
DNA Gel Loading Buffer x6 (40ml); 

2.5% glycerol 

2.5mg/ml bromophenol blue 

10mM Tris pH 8.0 

 

E-Buffer 

16.5mM KH2PO4 

3.8mM K2HPO4 

50mM sucrose 

 

ELISA Detection Reagent Buffer 

25.4mM Na2HPO4 
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12.3mM citric acid 

0.003% H2O2 

pH 5.4 

 

Endocytosis/Exocytosis Lysis Buffer 

50mM Na2HPO4 

0.2% TritonX-100 

pH 9.3 

 

Fixative (Dictyostelium cells) 

2% (w/v) paraformaldehyde 

15% v/v saturated picric acid 

10mM PIPES 

pH to 6.5 

 

HL5 axenic medium 

1.43% peptone (Oxoid, L34) 

0.72% yeast extract (Oxoid, L21) 

3.6mM Na2HPO4, 3mM KH2PO4 

30% glucose 

0.5mg/ml vitamin B12 

1mg/ml folic acid, pH 9.0 

pH to 6.4 

 

KK2 

16.5mM KH2PO4 

3.8mM K2HPO4 

 

LB  

1% Bacto-tryptone (Difco) 

0.5% Bacto-yeast extract (Difco) 

17mM NaCl 

pH to 7.0 

(LB agar – 1.5% Bacto-agar (Difco)) 
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LoFlo Medium (1 litre) 

11g glucose 

5mM KH2PO4 

5g Casein peptone 

500mM NH4Cl 

200mM MgCl2 

10mM CaCl2 

5mM FeCl3 

4.84mg Na2-EDTA.2H2O 

2.3mg ZnSO4 

1.11mg H3BO4 

0.51mg MnCl2.4H2O 

0.17mg CoCl2.6H2O 

0.15mg CuSO4.5H2O 

0.1mg (NH4)6Mo7O2.4H2O 

pH to 6.5 

 

Mammalian Cell Lysis Buffer 

150mM NaCl  

10mM Tris 

1mM EGTA  

1mM EDTA  

pH to 7.5 

1% v/v NP-40 

 

PBS 

137mM NaCl 

2.68mM KCl 

7.98mM Na2HPO4  

1.47mM KH2PO4 

pH to 7.2 

 

TAE 

40mM Tris-acetate 

1mM EDTA 
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TE 

10mM Tris-HCl pH 7.5 

1mM EDTA 

 

TNE 

50mM Tris 

150mM NaCl 

1mM EDTA 

1% TritonX-100 

 

Western blotting buffer 

48mM Tris-Cl pH 6.8 

96mM glycine 

20% v/v methanol 
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CHAPTER 3 

IDENTIFICATION AND ANALYSIS OF 

THE WASH COMPLEX SUBUNITS 
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3 Identification and Analysis of the WASH 
Complex Subunits 

 

3.1 The D. discoideum WASH complex  
Dictyostelium discoideum has been shown by Carnell et al. (2011) to be a good 

model in which to study WASH complex function.  It has also been used 

extensively to study the actin cytoskeleton, and NPFs such as Scar/WAVE (Bear 

et al., 1998; Ibarra et al., 2005; Machesky and Insall, 1998; Pollit and Insall, 

2008).  We began by examining the fully sequenced genome of D. discoideum to 

confirm the presence of genes encoding the WASH regulatory subunits.  The 

human protein sequences for the five known members of the WASH complex, 

WASH, FAM21, Strumpellin, SWIP and ccdc53 (Derivery et al., 2009; Gomez and 

Billadeau, 2009), were entered into the basic local alignment search tool 

(BLAST) on the Dictyostelium database (dictyBase.org, 2010) to search for 

homologous predicted protein sequences.  All known WASH complex members 

were present in D. discoideum and the details of the relevant genes and proteins 

are listed in table 3.1.  As well as the five core members, capping protein is also 

thought to interact with the WASH complex and play a role in its regulation 

(Derivery et al., 2009; Gomez and Billadeau, 2009; Jia et al., 2010), and 

orthologues of the human CapZ α and β subunits were also identified in D. 

discoideum; Cap34 and Cap32 respectively.  

 

To ensure the subunits were all expressed and did indeed form a complex in 

vivo, as was seen in mammalian cells (Derivery et al., 2009; Gomez and 

Billadeau, 2009) we performed several coimmunoprecipitations.  We first 

created a GFP-tagged WASH construct, which was expressed in Ax2 cells then 

purified from the cells using GFP-Trap beads (Chromotek) as described in 

Materials and Methods.  GFP alone was also expressed in Ax2 and used as a 

negative control.  GFP-WASH and any bound proteins were eluted from the 

beads by boiling in SDS-PAGE sample buffer, and the eluent was then run on a 

Bis-Tris SDS-PAGE gel.  Sections of gel thought to contain unique bands were 

then cut out and analysed by mass spectrometry.  A large number of proteins 

were identified, many of which were also present in the GFP control, however 

some were exclusively present in the GFP-WASH sample.  These  
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Figure 3.1  Coimmunoprecipitation of the WASH complex 

GFP-WASH, GFP-CCDC53 and GFP-FAM21 were purified from Ax2 cells using 

GFP-Trap beads.  The purified proteins were analysed by electrophoresis 

on a 4-12% Bis-Tris gel, and mass spectrometry was used to identify the 

bands. (a) The complex members FAM21, Strumpellin and SWIP were all 

identified using GFP-WASH. (b) The subunits FAM21, Strumpellin, SWIP and 

WASH were all identified using GFP-ccdc53. (c) All WASH complex subunits, 

as well as the two subunits of the capping protein heterodimer, Cap34 and 

Cap32, were identified by mass spectrometry using GFP-FAM21. 

a. b. 

c. 
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included the complex members FAM21, Strumpellin and SWIP (fig. 3.1a), and 

also identified was the capping protein subunit, Cap34.  Although some of the 

other proteins identified were potentially interesting, these are not discussed 

further as we decided to focus solely on the known complex members.   

 

This initial coimmunoprecipitation did not appear to contain ccdc53 which was 

previously stated as being a core complex member in mammalian cells (Derivery 

et al., 2009; Gomez and Billadeau, 2009), and was identified in the D. 

discoideum genome.  To confirm whether it was part of the complex, we 

created a GFP-ccdc53 construct which was expressed in Ax2 cells and purified as 

described for GFP-WASH.  Analysis by mass spectrometry revealed all complex 

members copurified with GFP-ccdc53; WASH, FAM21, Strumpellin and SWIP, 

however neither of the capping protein subunits were identified (fig. 3.1b).  It 

has already been suggested that capping protein is not a constitutive member of 

the complex, and was only found in a proportion of the immunoprecipitations 

performed by Gomez and Billadeau (2009).  Also, evolutionarily, the five core 

subunits are always found together in an organism, however capping protein is 

found in many other organisms and has many other known roles (Veltman and 

Insall, 2010).  Finally, a third subunit, FAM21, was tagged with GFP, expressed in 

Ax2 cells and purified using GFP-Trap.  Analysis of this sample by mass 

spectrometry confirmed the presence of all complex members, including ccdc53, 

and both subunits of capping protein (fig. 3.1c).  Unfortunately, the gel was 

damaged and couldn’t be imaged, however the mass spectrometry data 

identifying the complex members is shown instead.   

 

FAM21 is known to contain a capping protein interaction site (CPI), the only one 

identified in the WASH complex (Hernandez-Valladares et al., 2010), and we 

have now shown that FAM21 copurifies with both subunits of capping protein.  It 

may be that the interactions between capping protein with WASH and/or ccdc53 

were not strong enough to remain intact through the purification process, 

however the direct interaction with FAM21 was plainly sufficient to allow 

purification of capping protein.  (Note; this immunoprecipitation was done later 

in conjunction with other constructs, described in Chapter 5). Combining the 

results of these three immunoprecipitations, it is clear that WASH is present in 

Dictyostelium and indeed forms a complex within the cell with the same four 
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subunits identified in mammalian cells.  It also suggests that there is a transient 

interaction between the complex and capping protein, potentially through 

FAM21. 

 

3.2 WASH subunits form a constitutive complex 
In both mammalian cells and Dictyostelium, WASH has been shown to localise to 

a subset of endosomal vesicles, where it is required for the formation of 

intermediate endosomal F-actin coats (Carnell et al., 2011; Derivery et al., 

2009, Duleh and Welch, 2010; Gomez and Billadeau, 2009; Zech et al., 2011).  

We decided to investigate the localisation of the remaining subunits of the WASH 

complex in Dictyostelium to see whether the regulatory subunits were localised 

to the same endosomal vesicles, and constitutively colocalised with WASH. 

 

Each subunit was N-terminally tagged with GFP and transfected into Ax2 cells.  

These cells were then fixed with paraformaldehyde and the actin stained with 

Texas Red-phalloidin.  The GFP-tagged subunits all colocalised to vesicular 

structures in the cells with actin (fig. 3.2a) but not to any other part of the cell.  

To verify that the subunits were indeed constitutively colocalised with WASH, a 

single subunit, FAM21, was tested.  A construct for coexpressing GFP-WASH and 

RFP-FAM21 was created and transfected in to Ax2 cells.  The two proteins were 

observed by live cell imaging using a confocal microscope and appeared to be 

colocalised at all times (fig. 3.2b).   

 

These results show that the five members of the WASH complex appear to be 

constitutively together as a complex, and do not have separate localisation to 

any other part of the cell individually.  Colocalisation between FAM21 and WASH 

was also previously observed in HeLa cells, supporting this data (Gomez and 

Billadeau, 2009).   

 

3.3 WASH complex nulls are blocked in exocytosis 
WASH and the vesicular actin coat it creates are clearly important for correct 

trafficking of material through the endocytic cycle (Derivery et al., 2009; Gomez 

and Billadeau, 2009; Harbour et al., 2012; Zech et al., 2011) and accordingly, 

Dictyostelium WASH mutants have a defect in exocytosis (Carnell et al., 2011).   
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Figure 3.2  Colocalisation of WASH subunits  

(a) GFP-SWIP, GFP-Strumpellin, GFP-FAM21 and GFP-ccdc53 were all 

expressed in Ax2 cells.  Cells were fixed with paraformaldehyde and 

stained for actin with Texas Red-phalloidin. (b) GFP-WASH and RFP-FAM21 

were coexpressed in Ax2 cells.  Live cells were imaged on a confocal 

microscope.  
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The importance of each of the regulatory subunits in the function of the WASH 

complex has not been studied as yet, therefore we created a total knockout cell 

line by gene disruption of each of the subunits of the WASH complex.  We first 

performed an exocytosis assay with each knockout cell line to determine 

whether exocytosis was blocked in the absence of each subunit.  

 

Strumpellin and ccdc53 knockout cell lines were created by inserting a 

blasticidin resistance cassette into the corresponding gene.  This cassette 

introduced a STOP codon at the site of insertion, and the disruption cassette was 

then transfected into cells whereby the endogenous gene would be disrupted by 

homologous recombination.  Blasticidin was then used to select for cells 

successfully transfected, and PCR and/or western blotting was used to ensure 

the wild type gene had been replaced.  FAM21 null and SWIP null cell lines were 

obtained from Torija et al. (2006).  To perform the exocytosis assay, cells were 

grown in shaking culture overnight in medium containing FITC-dextran.  The next 

day, cells were washed and resuspended in medium without dextran and shaken 

for another 5 hours.  A sample of cells was taken at t=0 to calculate starting 

intracellular fluorescence, then samples were taken at intervals for 5 hours.  

The fluorescence of the subsequent samples after t=0 was recorded as a 

percentage of the initial value to indicate the amount of FITC-dextran which had 

been exocytosed from the cells.   

 

We found that in all five knockout cell lines, WASH, FAM21, Strumpellin, SWIP 

and ccdc53 nulls, after 5 hours the internal fluorescence of the cells remained 

above 80% of the original level (fig. 3.3a) as previously seen in WASH null cells 

and were therefore blocked in exocytosis (Carnell et al., 2011).  As none of the 

knockout cell lines were able to perform exocytosis, we can confirm that all five 

of the subunits are required for a fully functional WASH complex and that loss of 

any one subunit results in a block in exocytosis. 

 

To confirm that there were no secondary effects and that the block in exocytosis 

was a direct result of the selected gene disruption in each case, we expressed 

the corresponding GFP-tagged protein in each cell line (for example, GFP-SWIP 

in SWIP nulls) to rescue the knockout phenotype.  We repeated the exocytosis 

assay for each cell line and found that in all cases, the block in exocytosis was at  
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Figure 3.3  Exocytosis assay 

(a) An exocytosis assay was performed for each WASH complex subunit 

knockout.  Cells were incubated overnight in shaking culture in medium 

containing FITC-dextran.  Cells were washed and resuspended in medium 

without dextran, and cell samples were taken at timepoints over 5 hours.  

The cell samples were lysed and the amount of FITC-dextran remaining in 

the cells at each timepoint was calculated by measuring the lysate 

fluorescence using a fluorimeter (n=3; error=SD). (b) Each null cell line was 

transfected with the corresponding GFP-tagged protein in order to rescue 

the null phenotype, and the exocytosis assay was performed as described. 

  

Time (mins) 

Time (mins) 
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least partially released, and the knockout phenotype rescued (fig. 3.3b). 

 

3.4 Endocytosis is normal in WASH complex nulls 
In WASH null cells, the process of endocytosis is not affected, and cells are still 

able to efficiently take up fluid by macropinocytosis at a normal rate (Carnell et 

al., 2011).  The same has not yet been established for the remaining subunits.  

In order to confirm that the exocytosis defect we see in each knockout cell line 

is not due to a problem with initial endocytosis, we performed an endocytosis 

assay. 

 

The endocytosis assay was very similar to the exocytosis assay except the FITC-

dextran was added at t=0 rather than removed.  Cells were grown in shaking 

culture overnight, and the next day FITC-dextran was added to the flask.  At this 

time, t=0, a sample of cells was taken as a start point, then samples were taken 

at intervals up to 5 hours.  The intracellular fluorescence was recorded and the 

increase in fluorescence relative to t=0 is shown in figure 3.4.  All subunit 

knockout cell lines were able to endocytose the FITC-dextran at a normal rate 

for the first two hours, after which internal fluorescence continued to increase 

until the end of the experiment.  

 

In Ax2 cells, equilibrium is reached after approximately 2 hours, where the 

amount of endocytosed FITC-dextran equals that being exocytosed from the cell 

(Klein and Satre, 1986; Neuhaus et al., 2002).  WASH null cells do not reach this 

equilibrium; they are unable to perform exocytosis therefore as they continue to 

endocytose the FITC-dextran, the fluorescence continues to increase indefinitely 

(Carnell et al., 2011).  Our results show that the subunit mutants appear to have 

no problem with the process of endocytosis, but as expected the inability to 

exocytose the FITC-dextran prevents the cells reaching equilibrium and internal 

fluorescence increases indefinitely. 

 

3.5 Growth rates of WASH complex nulls 
The liquid medium in which laboratory strains of Dictyostelium are normally 

grown contains nutrients for growth and survival but very little indigestible 

material.  Indigestible products such as dextran can be added to the medium, 

and this has been shown to build up and cause a growth defect in WASH null  
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Figure 3.4  Endocytosis assay 

An endocytosis assay was performed for each WASH complex subunit 

knockout.  Cells were incubated overnight in shaking culture in medium.  

Cells were washed and resuspended in medium containing FITC-dextran, 

and cell samples were taken at timepoints over 5 hours, starting 

immediately.  The cell samples were lysed and the amount of FITC-dextran 

taken up by the cells at each timepoint was calculated by measuring the 

lysate fluorescence using a fluorimeter (n=3; error=SD).  
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cells due to the fact that they can’t perform exocytosis (Carnell et al., 2011).  

This is also true when WASH nulls are grown on bacterial plates, due to the large 

amount of intracellular debris produced by bacterial digestion.  We hypothesized 

that the loss of any of the other WASH subunits would also incur a growth 

defect, as these cell lines were also unable to perform exocytosis.   

 

In order to determine whether this was true, each knockout cell line was grown 

in medium with or without 10% unlabelled dextran (w/v) for two days.  The cells 

were seeded at a known density, and at two timepoints over 48 hours, the cell 

densities of the cultures were measured again to calculate the doubling time 

(fig. 3.5).  We found that the doubling times of WASH, SWIP and FAM21 nulls 

were not significantly different to that of Ax2 in medium without dextran, about 

10 hours.  Both Strumpellin and ccdc53 nulls surprisingly appeared to have a 

growth defect in medium without dextran, their doubling time increasing to 

approximately 15-20 hours.  With the addition of dextran in the medium, all 

nulls exhibited a growth defect, however this was more severe in some than 

others.  WASH, FAM21 and Strumpellin nulls all appeared to have an 

approximately 1.5 fold increase in doubling time in medium containing dextran, 

with WASH and FAM21 null times increasing to ~15 hours, and Strumpellin to ~25 

hours.  However ccdc53 and SWIP nulls both increased by 3-4 fold, to up to 40 

hours. 

 

Ax2 cells are able to exocytose indigestible material (Klein and Satre, 1986) 

therefore the addition of dextran to the medium does not affect their growth 

rate at all.  The slow growth rate of Strumpellin and ccdc53 nulls in medium 

without dextran suggests that they play roles outside of the WASH complex in 

growth and/or division, as the cells appear to have a growth defect which is 

possibly independent of the endocytic cycle.  They may be responsible in some 

way for the extraction of nutrients from the vesicles on which they are located, 

or cause the remaining partial complex to hinder these processes some way in 

their absence.  The differences in growth rates in medium containing dextran, 

specifically for SWIP and ccdc53, are more likely attributed to their individual 

roles within the function of the WASH complex, which are as yet undefined. 
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Figure 3.5  Doubling times of null cell lines 

Null cell lines were grown in shaking culture in medium with or without 

10% unlabelled dextran for two days.  10ml cultures were started at a cell 

density of 1x104/ml.  Cell counts were done at two timepoints, 24 and 42 

hours (*significantly different to Ax2 in presence of 10% dextran, 

**significantly different to Ax2 without dextran, p=0.01, error=SD). 
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3.6 Localisation of subunits 
In order to start to determine the individual roles of the subunits of the WASH 

complex, we decided to look into which of them were required for the correct 

localisation of the complex to endosomal vesicles.  It has already been suggested 

in mammalian cells that the FAM21 subunit is the essential component for 

localisation of WASH (Gomez and Billadeau, 2009) therefore we wanted to see 

whether this was true for the Dictyostelium complex. 

 

We expressed each of the GFP-tagged subunits in each of the null cell lines and 

determined whether or not the vesicular localisation of the protein was 

maintained in each case.  We found that in all cases, vesicular localisation was 

maintained, except in the absence of SWIP (fig. 3.6 and table 3.2).  Loss of any 

other subunit did not appear to affect the localisation of any member of the 

WASH complex, however in SWIP nulls, neither GFP-WASH nor GFP-Strumpellin 

were localised to vesicles, and instead were cytoplasmic.  GFP-WASH was also 

expressed at a very low level.  Both GFP-FAM21 and GFP-ccdc53 were unaffected 

by the loss of SWIP and maintained their localisation. 

 

These results indicate that SWIP is the only subunit required for correct 

localisation of the WASH complex.  It may act as a platform for binding of WASH 

and Strumpellin to endosomal membranes.  Both FAM21 and ccdc53 can 

independently localise and therefore are likely to have their own localisation 

signals, not relying on any other subunits for recruitment.  One interesting 

finding is that, unlike data obtained in mammalian cells, FAM21 is not required 

for WASH localisation in Dictyostelium. 

 

3.7 Complex stability 
The extrachromosomal vectors used to express the GFP-tagged subunits in 

Dictyostelium are usually expressed far more highly than endogenous genes.  

Therefore, as GFP-WASH appeared to be expressed at a very low level in SWIP 

nulls, this was indicative that endogenous WASH may also be reduced in these 

cells.  Studies in mammalian cells also suggest that loss of FAM21 also causes a 

reduction in endogenous WASH protein (Gomez and Billadeau, 2009). 
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Table 3.2  Localisation of GFP-tagged constructs in mutants 

As shown in figure 3.6, each GFP-tagged subunit was expressed in all 

subunit null cell lines.  Localisation remained vesicular for all subunits in 

all nulls except SWIP null cells.  GFP-WASH and GFP-Strumpellin were 

delocalised to the cytoplasm in SWIP- cells, however GFP-FAM21 and GFP-

ccdc53 were unchanged.  Loss of no other individual subunit affected 

complex localisation.  
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Fig. 3.6  Expression of subunits in all mutants 

The results in Table 3.2 are illustrated here.  Each GFP-tagged subunit was 

expressed in all null cell lines and imaged on a confocal microscope.  A 

representative cell was chosen to indicate whether or not the GFP 

construct was able to maintain vesicular localisation in the cell line in 

which it was expressed.  All subunits were able to maintain vesicular 

localisation except for those highlighted in red boxes; although GFP-WASH 

and GFP-Strumpellin were able to be expressed (albeit at low levels) in 

SWIP nulls, neither was able to localise to vesicles.  In contrast, the 

absence of SWIP did not affect the localisation of either GFP-FAM21 or 

GFP-ccdc53. 
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As we had an anti-WASH antibody available, we decided to investigate the 

consequences of loss of each of the subunits on levels of endogenous WASH 

protein.  Cells from each null cell line were lysed, and lysates were analysed by 

western blot to determine the relative amounts of endogenous WASH in each 

one.  To ensure equal loading for all samples, total protein levels were 

measured on a photometer after addition of Precision Red protein assay reagent, 

and were normalized before loading.  We found that the level of WASH in SWIP, 

Strumpellin or ccdc53 nulls was reduced to less than 13% that of the protein 

level in Ax2, however FAM21 nulls still retained 66% of WASH (fig. 3.7).   

 

This confirms that not only SWIP, but also Strumpellin and ccdc53 are required 

to form a stable WASH complex, and that loss of any one subunit appears to lead 

to the degradation of WASH itself, with the exception of FAM21.  This would 

explain the WASH null-like phenotype seen in these cell lines and why they are 

all blocked in exocytosis.  This also supports the parallel seen between the WASH 

and Scar/WAVE complexes (Jia et al., 2010), whereby both complexes cannot 

survive incomplete. 

 

3.8 Loss of endosomal actin coats 
In mammalian and Dictyostelium cells, loss of WASH has been shown to cause a 

total absence of actin from the endocytic network (Carnell et al., 2011; Gomez 

et al., 2012).  As WASH levels are drastically reduced in most of the subunit 

nulls, we wanted to confirm whether the intermediate vesicular actin coats 

were still present in these cells.   

 

The null cell lines of each subunit were fixed with paraformaldehyde, and 

stained for actin using Texas Red-phalloidin, as was described previously.  GFP-

FAM21 was expressed in the cells in order to label the correct population of 

vesicles.  We chose this marker as we have already seen that it constitutively 

colocalises with WASH, and is stable and able to localise to vesicles in all the 

mutants.  To label the correct vesicles in FAM21 null cells, they were 

transfected with GFP-WASH.  Over 50 cells were observed for each cell line, and 

none of WASH, Strumpellin, ccdc53 or SWIP null cells contained any visible F-

actin on GFP-FAM21 labelled endocytic vesicles (fig. 3.8a).  Fixation was 

unsuccessful for many of the FAM21 null cells for reasons discussed later,  
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Figure 3.7  Endogenous levels of WASH protein in subunit nulls 

(a) Cell lysates were taken from all subunit nulls.  Total protein level of 

each lysate was measured by using Precision Red protein assay reagent and 

a photometer.  Equal amounts of total protein were loaded into wells of a 

4-12% Bis-Tris SDS-PAGE gel, before performing a western blot and 

detecting with anti-WASH.  (b) The bands were analysed using ImageJ and 

the ratio of the amount of WASH between mutant and Ax2 was quantified 

(n=4; error=SD). 
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Figure 3.8  Detection of endocytic actin structures in nulls 

(a) Subunit null cell lines were transfected with GFP-FAM21 to visualise 

WASH complex-decorated vesicles.  Cells were then fixed with 

paraformaldehyde and stained with Texas Red-phalloidin to co-visualize 

actin.  (b) GFP-WASH was expressed in FAM21 null cells to label endosomal 

vesicles.  The GFP was disrupted by the fixation, however actin structures 

were visible on endosomal vesicles within the cells. 
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however a few cells were observed and vesicular actin structures were clearly 

visible (fig. 3.8b).  Unfortunately, in no FAM21 null cells were the GFP-WASH and 

the actin coat both successfully fixed, therefore alternatives such as live cell 

imaging were used to confirm the presence of actin in these cells.  This is 

discussed in detail in Chapter 4. 

 

The absence of WASH in each of the subunit nulls, excluding FAM21, has resulted 

in the absence of intermediate endosomal actin coats in these cells.  This 

further supports the idea that all the subunits except FAM21 are required for 

formation and stability of a WASH complex, and that partial complexes are 

unable to exist or function. 

 

3.9 Lysosome maturation in nulls 
Carnell et al. (2011) showed that the intermediate actin coats in Dictyostelium 

are required for the maturation of acidic lysosomes to neutral post-lysosomes.  

They show that the absence of WASH results in a total failure of lysosomes to 

neutralize, and that the endocytic pathway is blocked at this point in WASH 

nulls, with no further progression to exocytosis.  This results in the accumulation 

of acidic lysosomes in the cytoplasm.  As we know that the other subunit nulls 

also lack endosomal actin structures, we performed a neutralization assay to see 

whether neutral vesicles were absent from the cells, as with WASH nulls. 

 

Dextran-conjugated fluorophores can be used to visualize the different stages of 

the endocytic pathway.  Dextran specifically labels the endocytic vesicles of the 

cell, as opposed to the contractile vacuole system (Jenne et al., 1998).  Red 

TRITC-dextran labels all endocytic vesicles, independently of pH, however green 

FITC is pH dependent, therefore FITC-dextran only fluoresces in vesicles with a 

neutral lumen (Aubry et al., 1993).  This results in acidic vesicles appearing red, 

while neutral vesicles, which fluoresce red and green, appear yellow.  We fed 

the cells a ratio of TRITC-dextran and FITC-dextran for approximately three 

hours to allow it to transit through the endocytic pathway of the cells.  We then 

observed the cells to see whether there were any neutral vesicles present.  The 

laser intensities of the microscope were normalized using control Ax2 cells which 

contain populations of both acidic lysosomes and neutral post-lysosomes.  None 

of WASH, Strumpellin, SWIP or ccdc53 nulls contained neutral vesicles, all 
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containing only red, acidic lysosomes (fig. 3.9).  In contrast, the FAM21 nulls did 

contain yellow, neutral post-lysosomes. 

 

Again, the lack of WASH in the nulls gives them a WASH null-like phenotype, 

whereas the FAM21 nulls have a different phenotype.  This is consistent with our 

data so far, that FAM21 null cells contain a partial but stable WASH complex, 

and endosomal actin structures unlike any of the other nulls.  Because of this 

difference, we decided to study specifically the FAM21 subunit in more depth.  

These cells are still blocked in exocytosis however it appears it may not be at 

the same acidic lysosomal stage as the other nulls. 

 

3.10 Strumpellin mutations in Dictyostelium 
The absence of Strumpellin in Dictyostelium cells causes a WASH null-like 

phenotype, where cells are unable to perform exocytosis.  Human Strumpellin 

has been identified as the protein which causes a form of spastic paraplegia 

known as SPG8 (Hedera et al., 1999; Reid et al., 1999).  There are three specific 

mutations, N471D, L619F and V626F, each of which can individually result in 

SPG8 (Valdmanis et al., 2007).  We were interested to see whether the 

Dictyostelium Strumpellin protein contained these mutated sites and if the 

mutations had an effect on the function of the WASH complex. 

 

We aligned the D. discoideum and H. sapiens Strumpellin proteins to reveal that 

they are extremely conserved, with over 50% homology between them, and are 

100% homologous in the regions containing the mutations (fig. 3.10a).  We 

therefore engineered the corresponding Dictyostelium mutations, N459D, L607F 

and V614F, into expression constructs for Dictyostelium to see whether these 

mutations had a direct detrimental effect on the function of the WASH complex.  

We transfected Strumpellin null cells with each of the three mutant constructs 

to see how effectively each one could rescue the null phenotype.  To test this, 

we performed the exocytosis assay on each of the cell lines.  We found that all 

three mutants were able to rescue the exocytosis defect of the cells as 

efficiently as wild type GFP-Strumpellin (fig. 3.11b).  It appears that these 

mutations do not hinder the function of Strumpellin when incorporated into the 

WASH complex, and that cells containing these mutants still have a functional 

endocytic cycle. 



76 
 

 76 

AX2 WASH null FAM21 null

Strumpellin null SWIP null Ccdc53 null

10μm

 

 

Figure 3.9  Neutralization assay with WASH subunit nulls 

Cells were fed 0.4mg/ml FITC-dextran and 4mg/ml TRITC-dextran for 3 

hours before being imaged on a confocal microscope.  Ax2 control cells 

were used to adjust the laser intensities to visualize the FITC-dextran at a 

point just below saturation, and the TRITC-dextran accordingly to ensure 

the contrast between the populations of vesicles containing fluorescent 

FITC (neutral) and quenched FITC (acidic).  
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Figure 3.10  Strumpellin SPG8 mutants 

(a) Human and Dictyostelium Strumpellin sequences were aligned.  The 

sites of the human mutations and their corresponding position in the 

Dictyostelium sequence are highlighted in red.  (b) The three 

Dictyostelium Strumpellin mutant constructs were each transfected into 

Strumpellin null cells and the exocytosis assay was performed (n=3; 

error=SD). 
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CHAPTER SUMMARY 
 

In this first chapter, we have shown that the WASH complex requires all four of 

the regulatory subunits in order for WASH to function as an NPF and direct the 

building of intermediate endosomal actin coats.  These actin coats are required 

for the maturation of lysosomes to post-lysosomes by the removal of V-ATPase.  

A failure to remove this prevents exocytosis, therefore loss of any one member 

of the WASH complex blocks exocytosis. 

 

We also have shown that the subunit SWIP is essential for the recruitment of the 

WASH complex to endosomal membranes, however FAM21 and ccdc53 both also 

contain their own localisation signals and are able to localise independently of 

any other subunits.  Also, the mutations in Strumpellin that cause spastic 

paraplegia in humans do not appear to affect the function of the WASH complex 

in Dictyostelium. 

 

The most interesting finding is that one of the subunits, FAM21, has a different 

phenotype to any of the other subunits.  Loss of WASH, Strumpellin, SWIP and 

ccdc53 causes a block at the same acidic lysosomal stage of the endocytic cycle 

in cells.  This is because these four subunits are all required to form a stable 

complex in cells.  FAM21 is dispensable for complex formation, and stable WASH 

protein is expressed in the cells.  Because loss of this particular subunit gives 

rise to such a different phenotype, we have made it the main focus of our study. 
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4 The Role of FAM21 in the WASH complex 
 

4.1 FAM21 nulls contain enlarged endosomal vesicles 
The loss of any one of the WASH complex subunits gives rise to a WASH null-like 

phenotype, with the exception of FAM21.  One of the key differences we have 

shown between FAM21 and WASH null cells is that FAM21 cells contain neutral 

endosomal vesicles (fig. 3.10).  While performing the neutralization assay, we 

observed that the neutral vesicles contained in the FAM21 nulls appeared 

noticeably larger than those seen in Ax2 cells.  This swelling of endosomal 

vesicles seemed to be a result of feeding the cells dextran, which is indigestible 

and would therefore accumulate in endosomes in cells which are unable to 

perform exocytosis.  In order to confirm this, we fed the cells labelled dextran 

and compared the size of the vesicles they contained. 

 

Ax2, WASH null and FAM21 null cells were all incubated in 5% unlabelled dextran 

in medium overnight, except for one dish of FAM21 nulls kept in medium without 

dextran as a control.  The next day, cells were all incubated with 1mg/ml TRITC-

dextran in the medium for 3 hours before being imaged to label the endosomal 

compartments.  Figure 4.1a illustrates the vesicles observed in each cell type.  

The WASH null cells contained numerous TRITC-filled vesicles which were all 

slightly bigger than the vesicles seen in Ax2 cells.  The FAM21 nulls incubated in 

unlabelled dextran overnight all contained a single, giant TRITC-filled vesicle in 

each cell.  The control FAM21 nulls which had not previously been incubated in 

unlabelled dextran did not appear to contain any vesicles bigger than those seen 

in Ax2 cells.  To quantify the size difference, the diameter of the biggest vesicle 

in each cell was measured.  These measurements were used to calculate an 

average of the cross-sectional area for the largest vesicles present in cells of 

each cell line (fig. 4.1b).  Ax2 cells rarely contained vesicles greater than 3µm2.  

WASH null vesicles were on average double the size of those in Ax2, but never 

greater than 8µm2, whereas FAM21 null cells commonly contained vesicles 

exceeding 30µm2, 10 times that of Ax2 cells. 
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Figure 4.1  Imaging and quantification of vesicle size in FAM21 null cells 

Ax2, WASH and FAM21 null cells were incubated overnight in medium 

plus 5% unlabelled dextran.  One control dish of FAM21 null cells was 

incubated in medium without dextran. (a) The following day, all cells 

were incubated with TRITC-dextran for 3 hours before imaging on a 

confocal microscope.  Experiment was performed on 3 separate days, 

each time 10 images for each cell line were taken.  (b) Cross-sectional 

area of the largest vesicle in each cell was calculated by measuring the 

diameter using the images captured.  Average vesicle area was 1.4µm2 

for Ax2 cells, 3.7µm2 for WASH null cells, and 14µm2 for FAM21 null cells 

(n=100). 
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Ax2 cells are able to exocytose indigestible material such as dextran, therefore 

it never builds up within the endosomal system to a degree which causes much 

of an increase in endosomal vesicle size.  WASH nulls are unable to exocytose 

the dextran, therefore their endosomal vesicles are prone to swell as the cells 

take up more and more dextran.  The fusion of acidic lysosomes is highly 

regulated, and after initial fusion events, the lysosomes such as those seen in 

WASH nulls remain relatively separate from one another (Clarke et al., 2002).  

This is why numerous, slightly larger vesicles are present in these cells.  In the 

control FAM21 null cells, the small amount of TRITC-dextran fed to label the 

cells is not sufficient to cause vesicle enlargement, however the FAM21 null cells 

fed a large amount of unlabelled dextran overnight each contained a single 

vesicle of an immense size.  The fact that the size of this vesicle is dependent 

on the presence of indigestible material in the medium, and that there is only 

one per cell in nearly all cases, suggests that all the dextran is being trafficked 

into this one compartment, or that all dextran-containing vesicles are fusing 

together. 

 

4.2 Presence of intermediate endosomal actin 
We had previously detected endosomal actin structures in fixed FAM21 null cells 

(fig. 3.9) however these cells, unlike the other subunit null cell lines, appeared 

to be difficult to fix effectively.  It is apparent now that this may have been due 

to the presence of the enlarged vesicles within these cells.  In order to better 

observe actin structures in FAM21 nulls, we tried a different tact by using live 

cell imaging.  In Ax2 cells, endosomal actin structures are visible with live cell 

imaging, but image quality is poor due to the small size of the vesicles and the 

thinness of the actin coat.  Therefore for most cells, fixation and staining is a 

much better way to observe these structures.  As FAM21 nulls have larger 

vesicles, we hypothesized that the actin might be more clearly visible in live 

cells. 

 

We transfected FAM21 nulls, and Ax2 cells for comparison, with RFP-actin.  The 

cells were then incubated in unlabelled dextran overnight before imaging.  Faint 

actin coats were observed in the Ax2 cells (fig. 4.2a), however the actin 

observed on the vesicles in FAM21 nulls was extremely clear (fig. 4.2b).  On the 

enlarged vesicles in FAM21 nulls, huge comets of actin were seen streaming off  
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Figure 4.2  Actin in FAM21 null cells 

RFP-actin was expressed in Ax2 and FAM21 nulls, and cells were imaged on 

a confocal microscope. (a) Images were captured of Ax2 cells, and an actin 

coat is indicated by the red arrow. (b) A sequence of images was captured 

for FAM21 nulls, with frames taken every 2 seconds to record the dynamic 

movement of the actin comet on the enlarged vesicle. (c) GFP-WASH was 

coexpressed with RFP-actin in FAM21 nulls and images were captured every 

4 seconds on a confocal microscope. 
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the vesicles.  These streams seemed to travel around the surface of the vesicle, 

although it was unclear whether this was due to the rotation of the vesicle, or 

the actin actively moving across the membrane.  This actin comet did not appear 

to be responsible for movement as the enlarged vesicles remain relatively 

stationary in cells, unlike smaller vesicles which move rapidly within the 

cytoplasm. 

 

To confirm that WASH was responsible for this excessive actin production, we 

coexpressed GFP-WASH with RFP-actin in FAM21 nulls.  These cells were again 

incubated overnight in unlabelled dextran before imaging.  Again the actin 

comets were observed in the enlarged vesicle membranes and we saw that these 

colocalised to patches of GFP-WASH on the membrane (fig. 4.2c).  This confirms 

that WASH appears to be polymerizing excessive actin to form these comet 

structures on the surface of the enlarged vesicles in FAM21 nulls. 

 

4.3 Lysosome neutralization and maturation 
As we see neutralization occurring in FAM21 nulls, we hypothesized that 

potentially the vesicles were progressing further along the endocytic pathway in 

a FAM21 null than in a WASH null.  This would mean that V-ATPase was being 

removed from lysosomes and they were able to mature to post-lysosomes.  

Alternatively, there could be deregulation of fusion between compartments in 

FAM21 nulls.  For example, Jenne et al. (1998) show that loss of vacuolin B 

results in deregulation of fusion between endocytic compartments, resulting in 

the aberrant fusion between early and late endosomes.  To confirm that the 

neutral vesicles in FAM21 nulls were true post-lysosomes, we decided to look at 

the dynamics of the V-ATPase complex in the cells. 

 

Ax2, WASH null and FAM21 null cells were transfected with vatB-GFP, the 

subunit used to observe the V-ATPase complex by Carnell et al. (2011).  The 

cells were fed a short pulse (10 minutes) of TRITC-dextran for which we then 

observed the transit through the endocytic cycle (fig. 4.3).  In Ax2 cells, after 

approximately 1 hour, the TRITC-dextran had been trafficked into vesicles which 

were no longer labelled with vatB-GFP.  WASH null cells were left for an 

extended time of 3 hours, but even after this time, all the TRITC-dextran 

remained contained within vesicles decorated with vatB-GFP.  FAM21 nulls  
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Figure 4.3  V-ATPase localisation in cells 

Ax2, WASH null and FAM21 null cells expressing vatB-GFP were fed a pulse 

of TRITC-dextran for 10 minutes, which was then washed off and chased 

through the cells with LoFlo medium containing unlabelled dextran.  Cells 

were observed over time for up to 3 hours.  Images were captured on a 

confocal microscope after 1 hour for Ax2, and after 3 hours for WASH and 

FAM21 nulls. 
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seemed to transit the TRITC-dextran more slowly through the cells, however 

TRITC-dextran was transited through acidic compartments into the enlarged 

compartment within 3 hours, which was not labelled with vatB-GFP. 

 

In an Ax2 cell, dextran takes approximately 40-60 minutes to transit through to 

neutral compartments (Clarke et al., 2002) which is what we observed.  As 

expected, in the WASH nulls, the TRITC-dextran remained within V-ATPase-

decorated vesicles from which progression is blocked.  In the FAM21 nulls, the 

TRITC-dextran was able to progress from the acidic compartment into the 

neutral compartment.  We can confirm from this that V-ATPase is indeed being 

removed actively from lysosomes in FAM21 null cells, to allow maturation into 

post-lysosomes.  This, in combination with the presence of endosomal actin in 

these cells, confirms that the WASH complex is functional in removing V-ATPase 

without the presence of the FAM21 subunit. 

 

4.4 FAM21 functions downstream of WASH 
We have now shown that WASH is able to function, at least in part, in the 

absence of FAM21, however the function of FAM21 is still vital to the completion 

of the endocytic cycle, as FAM21 nulls are still unable to perform exocytosis.  

Vesicles are also clearly able to progress further along the endocytic cycle in 

FAM21 nulls than in WASH nulls, therefore these data suggest that FAM21 has a 

function in the endocytic cycle which is downstream of WASH itself.  In order to 

confirm this, we created a double WASH null/FAM21 null cell line. 

 

The WASH null cell line was made sensitive to blasticidin by expression of Cre 

recombinase in cells, removing the blasticidin resistance cassette flanked by 

loxP sites.  This allowed us to insert another knockout construct for FAM21 into 

these cells, and select cells using blasticidin resistance again.  The double 

knockout phenotype was then confirmed using PCR.  To determine the 

phenotype of the double null cells, we performed a neutralization assay, as 

previously described.  We found that the double nulls contained no neutral 

vesicles, showing a WASH null-like phenotype (fig. 4.4a).  We then expressed 

either GFP-WASH or GFP-FAM21 in the cells to see whether this would rescue the 

phenotype, at least in part.  Upon expression of GFP-WASH, the cells converted 

to a FAM21 null-like phenotype, displaying enlarged neutral vesicles (fig. 4.4b).  
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Figure 4.4  Double WASH/FAM21 null cells 

(a) The neutralization assay was performed as previously described, 

revealing that the double WASH/FAM21 null cells did not contain any 

neutral vesicles. (b) Expression of GFP-WASH in the double nulls partially 

rescued the phenotype of the cells, and enlarged neutral vesicles were 

observed.  Note; GFP-WASH is not visible with the acquisition settings used 

for the neutralization assay. (c) Double null cells coexpressing GFP-WASH or 

GFP-FAM21 with RFP-actin were imaged using a confocal microscope.   
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We also looked at the presence of actin in the cells.  Coexpression of GFP-WASH 

with RFP-actin revealed the presence of endosomal actin coats (fig. 4.4c).  In 

contrast, the expression of GFP-FAM21 in the cells did not alter the phenotype at 

all.  Cells remained WASH null-like, and when coexpressed with RFP-actin there 

were no visible endosomal actin structures within the cells.  

 

Expression of FAM21 is unable to rescue the phenotype of the double null cells 

because its function is downstream of the point at which the cells are blocked by 

loss of WASH.  However, expression of WASH can partially rescue the cells 

because its action is upstream of the blockage caused by loss of FAM21.  This 

shows how these two subunits, although constitutively part of the same 

complex, function at different points within the endocytic cycle, with the 

function of WASH preceding that of FAM21. 

 

4.5 WASH and FAM21 in mammalian cells 
It has been previously shown that knockdown of WASH in A2780 ovarian 

carcinoma cells impairs the ability of the cells to recycle internalized α5β1 

integrin back to the cell surface via the recycling pathway (Zech et al., 2011).  

The integrin is retained within the cells, and may be mis-sorted into the 

degradative pathway.  The recycling pathway of mammalian cells is the most 

similar endocytic route to that of Dictyostelium (Maniak, 2003), therefore we 

used this assay to determine whether FAM21 and WASH also have separate roles 

in mammalian cells, as we have shown in Dictyostelium. 

 

NT, siWASH and siFAM21 A2780 cells were incubated with biotin to label cell 

surface proteins.  The cells were then incubated at 37oC to allow the 

internalization of the labelled proteins.  After removing the remaining biotin-

labelled proteins from the surface, the cells were incubated again for a specified 

time period to allow internalized proteins to be recycled back to the plasma 

membrane.  The cell surface was stripped of biotin once more before cells were 

lysed.  The lysate was then used in a capture ELISA assay to immobilise the 

biotin-labelled proteins that had remained inside the cell.  An anti-integrin 

antibody was then used to detect the amount of α5β1 on the ELISA plate.  This 

quantified the amount of biotin-labelled α5β1 integrin which had remained in 

the cell rather than being recycled back to the plasma membrane.  
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Figure 4.5 shows that recycling in siWASH cells was reduced compared to NT 

cells, as seen before by Zech et al. (2011).  However siFAM21 cells were able to 

recycle the integrin as efficiently as NT cells, and the integrin was not retained 

inside the cells.   

 

These results can be paralleled to the V-ATPase recycling in Dictyostelium cells; 

WASH is required for removal and recycling of V-ATPase complexes (Carnell et 

al., 2011), however we have shown that FAM21 is not required for this process, 

and V-ATPase recycling occurs normally in its absence.  In a similar way, 

mammalian cells require WASH for recycling of α5β1 integrin, however we have 

now shown that they do not require FAM21.  This confirms that in both 

Dictyostelium and mammalian cells, WASH and FAM21 appear to have separate 

functions within the endocytic pathway. 

 

4.6 Delay in lysosome neutralization 
We noticed whilst observing the transit of TRITC-dextran through FAM21 null 

cells that the dextran took longer to reach the neutral compartment than in Ax2 

cells.  We decided to quantify this by observing the neutralization process in the 

cells. 

 

Ax2 and FAM21 nulls, incubated overnight in unlabelled dextran or not, were fed 

FITC- and TRITC-dextran in order to mark endosomal compartments and indicate 

pH, as previously described.  We performed the assay with FAM21 null cells both 

pre-fed and not fed unlabelled dextran to rule out the possibility that the 

presence of the enlarged vesicle in the cells was the cause of the delay in 

transit.  In Ax2 cells, the first neutral vesicles began to appear after 

approximately 40-60 minutes (fig. 4.6).  In FAM21 nulls, whether the cells had 

been pre-fed unlabelled dextran or not, no neutralization was observed for 

approximately 3 hours. 

 

FAM21 nulls are able to mature lysosomes into neutral post-lysosomes as they 

contain functional WASH which removes V-ATPase.  However, the process of 

neutralization appears to take 3 times as long as in Ax2 cells.  This is not 

dependent on whether the post-lysosomal vesicles are swollen and enlarged in  
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Figure 4.5  Integrin recycling assay 

Surface proteins of NT, siWASH and siFAM21 A2780 cells were labelled with 

biotin.  Cells were incubated to internalize labelled proteins, and biotin 

was removed from the cell surface.  Cells were incubated again to allow 

recycling of labelled proteins to the surface.  Cells were lysed, and labelled 

proteins which remained intracellular were purified by capture-ELISA.  

α5β1 integrin was then detected using an anti-integrin.  A control whereby 

no recycling was permitted was used to calculate the total intracellular 

α5β1 integrin, and above is shown the relative percentage of α5β1 integrin 

recycled by each cell line (n=3, error=SD).   
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Figure 4.6  FAM21 null delay in neutralization 

Ax2 and FAM21 nulls, fed unlabelled dextran overnight or not, were used to 

perform the neutralization assay as previously described.  At t=0, the FITC- 

and TRITC-dextran combination was added, and cells were observed and 

imaged over time on a confocal microscope until neutral vesicles became 

visible.  Ax2 cells displayed neutralized vesicles after 60 minutes.  FAM21 

nulls did not display neutralized vesicles until ~180 minutes, whether they 

had been previously incubated in unlabelled dextran or not. 
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the cells, as FAM21 nulls not previously fed unlabelled dextran also took the 

same length of time to neutralize.  As previously stated, the relatively small 

quantity of dextran fed to cells during the course of this particular assay does 

not cause dramatic swelling of vesicle size, although some enlargement is visible 

by the end of the 3 hours in the cells not pre-fed dextran. 

 

4.7 Post-lysosomal exocytic block 
We have shown that vesicles in FAM21 null cells can progress at least to the 

post-lysosomal stage of the endocytic cycle.  This is further than the progression 

seen in the null cell lines of other WASH complex subunits, which are blocked at 

the earlier, acidic lysosome stage.  Despite this, FAM21 nulls are still unable to 

perform exocytosis (fig. 3.4) therefore this process is still blocked in this cell 

line.  We wanted to determine at exactly what stage the FAM21 null cells were 

blocked in the endocytic cycle, and whether there is any further progression 

towards exocytosis from the post-lysosomal stage.  To do this, we performed a 

TRITC-dextran chase assay to determine the end point in the cycle to which the 

dextran was trafficked. 

 

FAM21 null, WASH null and Ax2 cells were all fed a pulse of TRITC-dextran for 30 

minutes.  This was then washed off the cells and they were incubated overnight 

in medium containing unlabelled dextran.  The next day, cells were observed to 

see which endosomal compartments retained the TRITC-dextran (fig. 4.7).  Ax2 

cells no longer contained any TRITC-dextran, whereas WASH null cells contained 

numerous vesicles of TRITC-dextran.  The FAM21 null cells had accumulated all 

the TRITC-dextran into the single, enlarged vesicle within each cell. 

 

The Ax2 cells are able to exocytose the TRITC-dextran in a matter of hours, 

which is why there were no traces of the labelled dextran left in the cells after 

overnight incubation.  WASH nulls contain the TRITC-dextran in numerous acidic 

lysosomal vesicles which cannot be exocytosed (Carnell et al., 2011).  FAM21 

nulls appear to have trafficked all the TRITC-dextran into the enlarged post-

lysosomal compartment in each cell, and here the labelled dextran has persisted 

for >12 hours, indicating that it will progress no further within the cell.  It also 

supports our earlier data, that FAM21 nulls do not perform exocytosis.  This  
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Figure 4.7  Trafficking of TRITC-dextran in FAM21 nulls 

Cells were fed a pulse of TRITC-dextran for 30 minutes, then washed and 

incubated overnight in LoFlo containing 5% unlabelled dextran.  The next 

day, cells were imaged on a confocal microscope.  Above are images of 

representative cells for each cell line.  Assay was repeated on two 

additional days.   
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confirms that FAM21 null are blocked in exocytosis at the post-lysosomal stage of 

the endocytic cycle. 

 

4.8 Fusion of post-lysosomes  
We have established that the enlarged compartment of a FAM21 null is a neutral 

post-lysosome.  This giant vesicle is the end point of the blocked cycle in these 

cells, and accumulates indigestible material.  Unlike the tightly controlled fusion 

between early endosomal compartments, post-lysosomes normally remain in the 

cell for a very short period of time, minutes at most, before being exocytosed 

(Lee and Knecht, 2002).  As the post-lysosomes which form in FAM21 null cells 

are permanently stuck within the cell, it is possible that they fuse together to 

form the enlarged vesicles. 

 

To see whether this was the case, we incubated FAM21 null cells in unlabelled 

dextran overnight before feeding them FITC-dextran.  We watched the transit of 

the FITC-dextran through the cells and observed that small neutral vesicles form 

in the cells, but these seem to fuse with the enlarged compartment after a 

while, gradually trafficking the FITC-dextran into this compartment and 

enlarging it.  The fusion events were difficult to predict, and the smaller neutral 

vesicles difficult to follow for more than a few seconds.  Despite this, we 

managed to capture the fusion between two slightly larger neutral vesicles, 

which themselves had most likely formed through numerous fusion events, into a 

single, giant vesicle (fig. 4.8).  This confirms that the formation of the enlarged 

vesicle is through fusion of numerous, smaller neutralizing vesicles.   

 

4.9 WASH sequestration on post-lysosomes 
FAM21 null cells have a delay in neutralization, taking approximately 3 times as 

long to traffic material into neutral compartments compared with an Ax2 cell 

(fig. 4.6).  To try and determine the cause of this delay, we decided to 

investigate the localisation of GFP-WASH in these cells. 

 

We expressed GFP-WASH in FAM21 nulls and incubated the cells in unlabelled 

dextran to allow differentiation between the enlarged post-lysosome and other 

earlier endosomal vesicles in FAM21 nulls.  We observed that the majority of the 

GFP-WASH expressed in a FAM21 null appeared to be localised to the membrane  
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Figure 4.8  Fusion of post-lysosomes in FAM21 nulls 

FAM21 null cells were fed FITC-dextran for 10 minutes, then incubated in 

unlabelled dextran for 2-3 hours.  Cells were imaged using a confocal 

microscope during this time, and fusion between FITC-containing post-

lysosomal vesicles was observed in the cells.  One of these events was 

captured as a movie and is shown above.  This cell contained two large, 

neutral vesicles which fused together to form one.  NB. The cell is also 

expressing RFP-actin. 

FITC-dextran in FAM21 null 
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of the enlarged post-lysosome (fig. 4.9a).  Quantification of this revealed that an 

average of 70% (71.4% ±12.0) of the vesicular GFP-WASH in each cell was located 

on this single membrane, with up to 90% in some cells (fig. 4.9b;).  For 

comparison, we repeated this experiment in Ax2 cells.  The distribution of GFP-

WASH in Ax2 cells revealed that no more than 20% (13.38% ±6.88) of the 

vesicular GFP-WASH was ever located on a single vesicle within the cell.   

 

This biased distribution of WASH in FAM21 nulls indicates the possibility that it is 

being sequestered on the enlarged post-lysosomal membrane.  This would 

explain why there is a delay in neutralization in these cells, as the WASH may 

normally be recycled from post-lysosomal membranes back to new acidic 

lysosomes.  Sequestration of WASH on post-lysosomes would prevent this 

recycling and cause a delay in newly formed lysosome neutralization. 

 

In order to confirm whether this sequestration was of the entire complex, not 

just WASH itself, we also expressed the other GFP-tagged subunits in FAM21 nulls 

and observed the same biased localisation to the enlarged post-lysosomes (fig. 

4.9c). 

 

4.10 WASH complex dynamics  
Due to the size difference between a post-lysosome in a FAM21 null and an Ax2 

cell, it is difficult to conclude whether WASH truly is ‘stuck’ on the membrane in 

a FAM21 null.  The relative amounts of membrane and cell space dedicated to 

post-lysosomes in each cell type are already so different that we cannot confirm 

that the ratio of WASH distribution on post-lysosomes versus other vesicles is 

also different.  To better quantify the ability of WASH to recycle from post-

lysosomes in FAM21 nulls, we performed a FRAP (fluorescence recovery after 

bleaching) experiment. 

 

Ax2 and FAM21 nulls, both expressing GFP-WASH, were incubated in unlabelled 

dextran for 3 hours.  Selected GFP-WASH-decorated vesicles in Ax2 cells were 

then bleached and the recovery of fluorescence measured.  An entire vesicle 

was selected and bleached, and then followed for a 10 second period to measure 

the amount of recovery.  Unfortunately, vesicles in Ax2 cells move extremely 

rapidly therefore longer recovery times were unachievable, despite attempts to  



97 
 

 97 

FAM21 null Ax2
GFP-WASH

0 

20 

40 

60 

80 

100 

Ax2 FAM21 null 

GFP-Strumpellin GFP-SWIP GFP-CCDC53

2μm

  

Figure 4.9  GFP-WASH localisation in FAM21 nulls 

Ax2 and FAM21 null cells expressing GFP-WASH were fed unlabelled dextran 

overnight before being imaged on a confocal microscope. (a) Example images of 

GFP-WASH distribution in FAM21 null and Ax2 cells. (b) GFP-WASH distribution 

was quantified using 10 images taken over 3 days for each cell type.  In FAM21 

nulls, the ratio of GFP-WASH localised to the enlarged vesicle membrane versus 

total vesicular GFP-WASH was determined using ImageJ software (n=33).  In Ax2 

cells, the ratio of the total GFP-WASH on the 1-3 largest vesicles in each cell 

versus total vesicular GFP-WASH was determined (n=11; error=SD). (c) FAM21 

null cells expressing either GFP-Strumpellin, GFP-SWIP or GFP-ccdc53 were 

imaged using a confocal microscope to show vesicular distribution. 
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overlay cells with agarose.  For the FAM21 nulls, the enlarged post-lysosome was 

selected and bleached, and the recovery of fluorescence measured over the 

same time period. 

 

During the 10 second recovery period, we did see recovery of fluorescence in 

Ax2 cells (fig. 4.10), indicating that there is indeed dynamic exchange of the 

complex on vesicle membranes.  In the FAM21 nulls, the recovery of 

fluorescence on the enlarged post-lysosome membrane was relatively low, 

indicating that there is little exchange of WASH complex occurring on these 

membranes.  This confirms that WASH is being sequestered on the post-

lysosomes in FAM21 nulls, and a role for FAM21 in promoting removal and 

recycling of the WASH complex. 

 

4.11 WASH recycling in mammalian cells 
We have determined that FAM21 and WASH play distinct roles within the 

endocytic cycle in both Dictyostelium and mammalian cells.  We wanted to see 

whether the role of FAM21 in complex recycling was also conserved across cell 

types.  In order to do this, we repeated the FRAP experiment in A2780 cells 

treated with siFAM21, measuring recovery of WASH on vesicle membranes.  

 

In non-targetted (NT) cells, we selected EGFP-WASH-decorated vesicles, and 

bleached the whole vesicle.  The recovery of EGFP-WASH on the vesicle 

membrane was measured over a period of over 60 seconds (possible in 

mammalian cells due to the relative stability of cytoplasmic vesicles).  FRAP was 

performed in the same way in siFAM21 treated cells however the relative 

amount of recovery in FAM21 knockdown cells was still substantially less (<10%) 

than that seen in NT cells (~25%; fig. 4.11; thanks to Tobias Zech for performing 

the mammalian FRAP experiment). 

 

This shows that the role for FAM21 in recycling of the complex that we observed 

in Dictyostelium cells is likely to be conserved in mammalian cells.  It has not 

been quantified in mammalian cells whether siFAM21 treated cells have any 

difference in endosomal vesicle size compared to wild type, although there were 

no obvious enlarged compartments observed during this experiment.  Despite  
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FAM21 null 

Ax2 

Figure 4.10  FRAP of GFP-WASH in Dictyostelium 

(a) FRAP was performed with Ax2 and FAM21 null cells expressing GFP-

WASH.  Cells were fed unlabelled dextran overnight.  For Ax2 cells, a GFP-

WASH coated vesicle was selected and bleached for 1 frame before imaging 

recovery over 10 seconds at 1 frame/sec.  For FAM21 nulls, the enlarged, 

GFP-WASH coated vesicle was bleached and imaged in the same way. The 

experiment was repeated twice more and images were used to quantify 

recovery for each cell type (n=28; error=SEM). (b) Example images of an 

Ax2 and a FAM21 null cell recovering after bleaching, bleached vesicle is 

highlighted by a red circle. 

a. 

b. 
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Figure 4.11  FRAP of GFP-WASH in A2780 cells 

(a) FRAP was performed as described for Dictyostelium cells, with NT and 

siFAM21 A2780 cells expressing EGFP-WASH.  Cells were bleached for 1 

frame before imaging recovery for 66 seconds at 1 frame/3 secs (n=30; 

error=SEM). (b) Example images of NT and siFAM21 cells recovering after 

bleaching, bleached vesicle is highlighted by a red box. 

  

a. 

b. 
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this, it appears that WASH may still be sequestered on some compartments of 

the endosomal system in mammalian cells. 

 
4.12 WASH complex removal and actin 
FAM21 nulls are blocked at the post-lysosome stage and progression to exocytosis 

is prevented.  We have shown that that the WASH complex is sequestered on 

post-lysosomal vesicles at this point, and excessive actin is polymerized as a 

result.  These actin comets seen on the FAM21 null post-lysosomes may act as a 

barrier to prevent removal of the WASH complex directly, or to prevent budding 

or fission of the post-lysosomes for progression.  In order to test whether this 

was true, we treated cells with latA to remove the potential actin barrier and 

see whether any progress towards exocytosis occurred. 

 

FAM21 nulls expressing GFP-WASH were fed a pulse of TRITC-dextran, and were 

then incubated in medium with unlabelled dextran to swell the post-lysosomal 

compartment.  LatA was then added to cells and this abolished the endosomal 

actin structures associated with the post-lysosomes (fig. 4.12a).  We observed 

the cells for 2 hours, until secondary effects of the drug became apparent and 

cells begin to round up and detach from the plate.  For the entire duration of 

the treatment, the post-lysosomes remained within the cells, filled with TRITC-

dextran, and did not appear to change in any way.  GFP-WASH also continued to 

decorate the membrane (fig. 4.12b).  We then repeated the experiment, 

treating the cells for 30 minutes with LatA before washing off the drug and 

resuspending in medium in an attempt to see whether brief removal of the actin 

could shunt the pathway along, however again there was no change to the cells 

(data not shown). 

 

It appears that removal of the excessive actin coat/comets from the enlarged 

post-lysosomes in FAM21 nulls does not cause any visible dissociation of WASH 

from the vesicle membrane.  There was also no budding of smaller vesicles of 

removal of the TRITC-dextran from the lumen of the vesicle in any way.  This 

suggests that actin is not acting as a barrier preventing WASH dissociation from 

the membrane, nor is it preventing budding events from ‘breaking up’ the 

enlarged vesicle. 
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Figure 4.12  Latrunculin A treatment of FAM21 nulls 

(a) FAM21 null cells coexpressing GFP-WASH and RFP-actin were treated with 

10µg/ml latA in LoFlo containing unlabelled dextran.  Addition of the drug 

prevented formation of endosomal actin coats. (b) FAM21 nulls coexpressing 

GFP-WASH and RFP-actin were fed TRITC-dextran for 1 hour.  Cells were 

washed and incubated in LoFlo medium containing unlabelled dextran for 3 

hours.  LatA was added to cells, which were then imaged on a confocal every 

20 mintues for 2 hours. 

 

a. 

b. 
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CHAPTER SUMMARY 
 

We have now determined that loss of FAM21 still causes a block in in the 

endocytic cycle, but at a different stage from loss of WASH.  Vesicles are able to 

progress further along the cycle in FAM21 nulls, indicating that the block in 

these cells is further downstream.  From this, we have determined that FAM21 

has a separate function from WASH, which is also downstream from that of 

WASH itself.   

 

The partial WASH complex that remains in FAM21 nulls is able to efficiently 

remove V-ATPase from lysosomal membranes, but the failure in these cells is in 

removal of the WASH complex from post-lysosomal membranes which must occur 

for progression to exocytosis.  FAM21 nulls contain very enlarged post-lysosomes 

which form through fusion of neutral vesicles, and it is on the membrane of 

these vesicles which the WASH complex is sequestered in these cells.   

 

We hypothesize that the function of FAM21 is to remove the WASH complex from 

the membrane at this point in the cycle in order to allow progression to 

exocytosis.  We will now therefore focus on this function of FAM21 and look into 

the mechanisms of how it might achieve this. 
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5 FAM21 Structure and Interaction with Capping 

Protein 
 

5.1 FAM21 is composed of two distinct regions 
The FAM21 mutant is unique among the WASH complex subunit mutants in having 

a different phenotype.  It clearly plays a vital but separate role from WASH 

itself, and to further elucidate its function, we looked in more detail at the 

structure and domains of the protein.  Analysis of the human and Dictyostelium 

FAM21 protein sequences using SMART (Simple Modular Architecture Research 

Tool; Schultz et al., 1998) revealed that the proteins contained no known 

domains.  We then aligned FAM21 protein sequences from different eukaryotic 

species using ClustalW (v1.83) multiple sequence alignment in order to try and 

detect any particular conserved regions.  We found that the N terminal region of 

FAM21 appeared to be far more conserved between species than the remainder 

of the protein sequence.  This is clearly illustrated in Appendix I, where an 

example alignment of 8 species is shown, and the histogram under the sequences 

represents the level of homology of the residues.  Analysis of the D. discoideum 

FAM21 by Scratch Protein Prediction (SSpro v 4.5; Cheng et al., 2005), a program 

to predict the secondary structure of proteins, indicated that the N terminal 

~300 amino acids, or ‘head’ region of FAM21 contains a number of predicted α-

helices, however the remaining ‘tail’ of the protein is very unstructured (fig. 

5.1).  This is likely due to the large number of proline residues present in this 

region of the sequence (Gomez and Billadeau, 2009).  These data correlate with 

findings in mammalian cells that the conserved N terminal head of FAM21 is 

responsible for binding the WASH complex (Gomez and Billadeau, 2009; Harbour 

et al., 2010). 

 

5.2 FAM21 tail structure 
The tail sequences of the various FAM21 proteins at first appeared to have a 

relatively low conservation. A more in depth look revealed that the tail regions 

appeared to contain a number of short repeats.  Using a Pustell protein matrix 

analysis, where regions of a protein are aligned against itself to detect repeats, 

we found this was indeed the case.  Repeats were present throughout the tail of  
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Figure 5.1  Predicted secondary structure of FAM21 

Dictyostelium discoideum FAM21 was analysed by SSpro v4.5 (Cheng et al., 

2005) and the predicted secondary structure is shown here.  The blue 

bands represent preicted α-helices, and the red bands represent predicted 

β-sheets. 
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the human FAM21 protein (fig. 5.2a).  Analysis of other species revealed that, 

although the actual sequence of the repeats was not always conserved, there 

were distinct repeats present in FAM21 proteins from all species analysed.  A 

particularly good example is the FAM21 protein of Trichomonas vaginalis, a 

parasitic protozoan, in which a large number of stringent repeats was identified 

throughout the tail region of the protein (fig. 5.2b).  The examples in figure 5.2 

also both show that the repeats are confined to the tail region of the protein, 

and little if any are present in the first ~300 amino acids composing the head 

region.  The repeats in the sequences of H. sapiens, D. discoideum and T. 

vaginalis FAM21 proteins were identified and aligned by hand.  Figure 5.2c shows 

that the number and stringency of the repeats was highly variable, with D. 

discoideum having around 22 repeats, following a relatively weak consensus.  In 

contrast, the T. vaginalis protein has 42 repeats with high fidelity to the 

consensus.  These repeats are likely to bind a ligand of low complexity such as a 

lipid. 

  

5.3 FAM21 head and tail are both essential 
We wanted to determine how important each of the two regions of the FAM21 

protein were, and whether one region alone was sufficient for some or any of 

FAM21 function.  To do this, we created two Dictyostelium FAM21 fragments, 

one of the head region only and one of the tail region only, which we expressed 

in FAM21 nulls to see whether they were able to rescue the phenotypes of the 

null cells. 

 

The head region, FAM21ΔCT, consisted of the first 255 amino acids of the 

protein.  The tail region, FAM21ΔNT constituted the remaining amino acids 245-

1480 of unstructured sequence.  First of all, these constructs were both tagged 

with GFP and transfected into FAM21 null cells.  The exocytosis assay was 

performed as previously described in order to see whether either portion of the 

protein alone was able to rescue the block in exocytosis.  We found that on 

expression of either FAM21ΔCT or FAM21ΔNT, the internal fluorescence of cells 

did not decrease below 80% over 5 hours, indicating that these cells were unable 

to perform exocytosis (fig. 5.3).  This shows that the full length FAM21 protein is  

 



108 
 

 108 

     

Figure 5.2  FAM21 tail structural analysis 

A Pustell protein matrix analysis (scoring matrix: pam250) of FAM21 protein 

sequences was used to detect repeats.  The black marks on the graph 

represent repeated sequence.  The x and y axis values correspond to the 

two positions within the protein of the repitition.  (a) Human FAM21 

protein analysis.  (b) Trichomonas vaginalis FAM21 protein analysis. 

a. 

b. 
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Figure 5.2  FAM21 tail structural analysis cont. 

(c) The repeats in D. discoideum, H. sapiens, and T. vaginalis FAM21 

proteins were identified and aligned by hand.   

c. 
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Figure 5.3  Exocytosis assay with FAM21 fragments 

GFP-FAM21ΔCT and GFP-FAM21ΔNT were expressed in FAM21 nulls.  The 

cells were used to perform the exocytosis assay as previously described.  

Full length GFP-FAM21 was used as a control. 
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necessary for exocytosis, and that the head or tail region alone are not 

functional. 

 

5.4 Head and tail localisation 
The FAM21 subunit does not require any of the remaining subunits of the WASH 

complex to localise correctly in cells, therefore the protein must contain 

localisation signals of its own.  To determine which of the regions of FAM21 was 

responsible for localising the protein, we expressed the two fragments in the 

WASH complex mutants and observed their localisation. 

 

GFP-FAM21ΔCT and GFP-FAM21ΔNT were first each expressed in FAM21 null cells 

and observed on a confocal microscope.  We found that both regions were able 

to localise correctly to endocytic vesicles (fig. 5.4a).  We then expressed each 

fragment in each of the WASH complex null cell lines to see whether any other 

subunits were required for localisation of either fragment.  Figure 5.4b and table 

5.1 illustrate that the GFP-FAM21ΔNT construct was able to maintain its 

localisation in all of the knockout cell lines.  In contrast, GFP-FAM21ΔCT was too 

unstable to be expressed in any knockout cell lines, except for FAM21 null, in 

which it was localised to vesicles. 

 

These results show that the tail of FAM21 appears to require no other subunit for 

either stability or localisation in cells.  It must therefore contain its own 

localisation signal.  The head of FAM21 appears to be dependent on the 

existence of a stable WASH complex for expression, and as loss of any complex 

member apart from FAM21 causes instability, this is the only cell line in which it 

was successfully expressed.  We can see, however, that the head must have an 

additional localisation signal, not requiring the tail region for vesicular 

localisation in FAM21 nulls. 

 

5.5 The head region binds the WASH complex 
As previously stated, FAM21 has been shown to bind the WASH complex through 

the head region in mammalian cells (Gomez and Billadeau, 2009; Harbour et al., 

2010).  We wanted to establish whether this is also true for Dictyostelium.   
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a. 

b. 

Figure 5.4  Localisation of head and tail fragments 

GFP-FAM21ΔCT and GFP-FAM21ΔNT were expressed in (a) FAM21 nulls and 

(b) the remaining WASH complex subunit knockout cell lines.  The cells 

were fed unlabelled dextran in LoFlo medium and imaged on a confocal 

microscope.  The localisation of each fragment in the different cell lines is 

summarized in table 5.1. 
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 GFP-FAM21ΔCT GFP-FAM21ΔNT 

Ax2 Vesicular Vesicular 

WASH null Not expressed Vesicular 

FAM21 null Vesicular Vesicular 

SWIP null Not expressed Vesicular 

Strumpellin null Not expressed Vesicular 

Ccdc53 null Not expressed Vesicular 

Table 5.1  Localisation of head and tail fragments 

The localisation of each fragment of FAM21, GFP-FAM21ΔCT and GFP-

FAM21ΔNT, expressed in the knockout cell lines of WASH complex subunits 

was recorded, corresponding to the images in figure 5.4. 
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In order to do this, we expressed full length GFP-FAM21, GFP-FAM21ΔCT and 

GFP-FAM21ΔNT in FAM21 null cells, as well as a GFP only control, and purified 

the proteins from cell lysate using GFP-Trap beads as previously described.  The 

purified proteins and any bound proteins were analysed by mass spectrometry.  

Unfortunately, the expression of the GFP-FAM21ΔCT construct was too low, even 

in FAM21 null or Ax2 cells, to allow sufficient protein to be purified for this 

experiment, therefore only GFP-FAM21ΔNT was available for comparison with 

the full length protein.  The results of the mass spectrometry analysis are shown 

in table 5.2.  In the sample purified using GFP-FAM21, all WASH complex 

subunits were identified, including both subunits of the capping protein 

heterodimer, as shown in figure 3.1.  The sample purified using GFP-FAM21ΔNT 

did not contain any of the WASH complex subunits, however again both subunits 

of capping protein were present.   

 

These results show that the interaction with the WASH complex is through the 

head domain of FAM21 in Dictyostelium, as it is in mammalian cells.  This may 

be the reason the head domain of FAM21 is able to localise without the tail, 

because it can bind to and use other WASH complex members to localise it 

correctly to vesicles.  They also confirm that the tail of FAM21 is responsible for 

the interaction with capping protein, most likely through the CPI domain 

identified within the sequence. 

 

5.6 FAM21ΔCT is dominant negative  
Upon expression of GFP-FAM21ΔCT in Ax2 cells, we noticed that the vesicles 

within the cells seemed larger than normal, reminiscent of the FAM21 null 

phenotype.  In order to look into this more closely, we looked at vesicle swelling 

on addition of dextran in these cells, and whether their rate of exocytosis was 

affected by expression of this fragment. 

 

Ax2 cells expressing GFP-FAM21ΔCT were fed 5% unlabelled dextran plus TRITC-

dextran overnight.  The following day, the cells were imaged on a confocal 

microscope.  These images were used to quantify the size of the vesicles the 

cells contained.  We found that Ax2 cells expressing this fragment had enlarged 

vesicles similar to those seen in FAM21 nulls (fig. 5.5a).  We then performed the  
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Figure 5.5  Dominant negative FAM21ΔCT 

GFP-FAM21ΔCT was expressed in Ax2 cells. (a) Cells were fed unlabelled 

dextran and TRITC-dextran and imaged on a confocal microscope. (b) The 

exocytosis assay was performed as previously described, with Ax2 and 

FAM21 null cells as controls. 
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exocytosis assay as previously described, and we found that the cells were able 

to perform exocytosis, but the rate was slower compared to Ax2 cells (fig. 5.5b). 

It appears that expression of this head region fragment of FAM21 has a dominant 

negative effect in Ax2 cells.  This partial FAM21 null-like phenotype, with 

enlarged vesicles and a slight delay in exocytosis, are likely due to the 

incorporation of the head of FAM21 into constructed WASH complexes.  The tail 

region does not bind FAM21 which is why this portion of the protein does not 

have this effect (data not shown) however the head region may compete for 

binding with the full length endogenous protein, resulting in some mutant 

complex formation.  These mutant complexes are not fully functional, and 

hinder the activity of the normal WASH complexes in the cell. 

 

5.7 Lipid binding analysis of the tail 
The tail of FAM21 is able to localise independently of the WASH complex in both 

Dictyostelium cells (table 5.1) and mammalian cells (Gomez and Billadeau, 2009; 

Harbour et al., 2010).  As described, the repeats it contains suggest a binding 

partner of low complexity, such as a lipid, which may also account for its ability 

to bind the vesicle membranes independently.  To determine whether the ligand 

of the repeats was a specific lipid, we performed a lipid blot assay, or PIP-array.  

This works on the same principles as a western blot, whereby an array of known 

phospholipids is fixed to a membrane surface.  The ligand in question is then 

incubated with the membrane before visualising binding through use of 

enhanced chemiluminescence (ECL).   

 

To perform this experiment, GFP-FAM21ΔNT was expressed in FAM21 null 

Dictyostelium cells and purified using GFP-Trap beads.  GFP alone was used as a 

negative control, and GFP-CRAC, which has a known interaction with 

phosphoinositol-3-4-5-trisphosphate (PI(3,4,5)P3; Parent et al., 1998), was used 

as a positive control.  The purified GFP-tagged proteins were then incubated 

with the PIP-array membrane overnight.  The next day, the membrane was 

incubated with an anti-GFP antibody and then developed.  We found that the 

controls were correct; there were no positive spots for GFP alone, and there 

were positive spots for GFP-CRAC with PI(3,4,5)P3 and a weaker interaction with 

PI(3,4)P2.  No positive spots were detected for GFP-FAM21ΔNT (fig. 5.6).   
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Figure 5.6  Lipid blot assay 

A lipid blot was performed using a PIP Array (Echelon) membrane.  Listed 

above are the lipids and concentrations fixed to the membrane.  GFP, GFP-

FAM21ΔNT and GFP-CRAC were expressed in FAM21 null Dictyostelium cells 

and purified using GFP-Trap beads.  The membrane was incubated with the 

purified proteins overnight and binding was visualized using ECL.   
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In mammalian cells, a similar experiment using a PIP-array was performed by Jia 

et al. (2010) with a GST-C terminal fusion of human FAM21.  They detected 

interactions with a number of lipids including PI(3)P and PI(3,5)P2, both known 

to be involved in the transition between early and late endosomes (van Meer et 

al., 2008) however they also saw interactions with a number of other lipids such 

as PI(4)P, which is associated with the Golgi (Audhya et al., 2000; Hama et al., 

1999), and PI(5)P, about which little is known.  It may be that the tail of FAM21 

can bind to lipids, however the correct in vivo conditions are required for 

specificity and efficacy of binding, hence the ‘all or nothing’ results seen using 

the PIP-arrays for our data and other groups.  

 

5.8 Endosomal specificity of the tail 
We wanted to determine whether expression of the tail region of FAM21 was 

specific to the same endosomal membranes as the remainder of the WASH 

complex.  We hypothesized that without the head region, it could not be 

correctly targetted to the WASH complex and may decorate the membranes of 

other vesicle populations.  Coexpression of the tail with another subunit would 

reveal whether the two were constitutively colocalised, or that the tail region of 

FAM21 had a more dispersed localisation, present on membranes both with and 

devoid of the WASH complex. 

 

To begin with, we created a coexpression construct for GFP-FAM21ΔNT and full 

length RFP-FAM21, however GFP-FAM21ΔNT failed to show any localisation in Ax2 

or FAM21 nulls when coexpressed with full length FAM21.  We tried switching the 

fluorescent tags to create a GFP-FAM21/RFP-FAM21ΔNT construct but the result 

was the same, as was GFP-WASH/RFP-FAM21ΔNT.  We found this unusual, 

because as single constructs, both GFP- and RFP-FAM21ΔNT are expressed and 

localised normally in cells.   

 

It may be that the tail region of FAM21 is competing with the full length protein 

for binding sites, therefore overexpression of the full length protein at the same 

time prevents FAM21ΔNT from localizing.  Similarly, when coexpressed with 

WASH or another member of the complex, the same principle is true; 

overexpression of the complex leads to less availability of binding sites.  

Complexes containing full length FAM21 are likely to have a higher affinity for 
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membrane binding sites as the complex contains several different localisation 

signals. 

 

5.9 Species specificity of the tail repeats 
The repeats found in the tail of FAM21 vary greatly in stringency throughout the 

individual proteins, and between species.  They also vary in length and number.  

As shown in figure 5.2, one common inter-species pattern is that the repeats 

consist of 3 or more acidic residues, normally preceded (or in the case of 

Dictyostelium, followed by) by a lysine and a phenylalanine residue.  In order to 

test how specific these repeats are for binding their ligand, we decided to test 

the efficacy of human FAM21 protein in Dictyostelium.   

 

We obtained cDNA of human FAM21C, and inserted it into a Dictyostelium GFP-

tagged expression vector.  This GFP-HsFAM21 construct was then expressed in 

FAM21 null Dictyostelium cells.  GFP-HsFAM21 was able to correctly localise in 

cells (fig. 5.7a), however it was unable to rescue the block in exocytosis (fig. 

5.7b).  We also expressed the head region of HsFAM21 alone, GFP-HsFAM21ΔCT, 

in FAM21 nulls.  This construct was unable to localise in cells and remained 

cytoplasmic (fig. 5.7a).  The HsFAM21 head region was unable to localise, which 

is likely to be because it couldn’t interact with the Dictyostelium WASH 

complex.  This means that the full length human protein must be using the tail 

region to localise to vesicles, as we have already shown this portion of the 

protein contains its own localisation signal. 

 

We then engineered a hybrid FAM21 protein, which consisted of the 

Dictyostelium FAM21 head region, and the human FAM21 tail region.  This 

protein in theory should be able to localise through the tail, and bind the WASH 

complex through the head, therefore giving a fully functional FAM21.  We 

expressed GFP-HyFAM21 in FAM21 nulls and found that it was still able to 

localise (fig. 5.7a).  However, it was not sufficient to rescue the block in 

exocytosis (fig. 5.7b).  This may be because the linking region between the head 

and the tail is important, and is disrupted with our hybrid protein.  

Alternatively, it may be that, apart from being able to localise to endosomes, 

the tail region has another purpose which is more specific, like the  binding of 

the head region to the complex, and this is not conserved between species. 



121 
 

 121 

GFP-HyFAM21 
in FAM21 null

GFP-HsFAM2ΔCT 
in FAM21 null

GFP-HsFAM21 
in FAM21 null

10μm

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

+!"

#!!"

!" #'" %!" &'" (!" +!" #$!" #*!" $&!" %!!"

%
 I
n
it

ia
l 
fl

u
o
r
e
s
c
e
n
c
e
 

Time (mins) 

  

Figure 5.7  Human and hybrid FAM21 proteins 

GFP-HsFAM21, GFP-HsFAM2ΔCT and GFP-HyFAM21 were expressed in FAM21 

nulls. (a) Cells were incubated in LoFlo with unlabelled dextran before 

imaging on a confocal microscope. (b) FAM21 nulls expressing GFP-HsFAM21 

or GFP-HyFAM21 were used to perform the exocytosis assay as previously 

described (n=3; error=SD). 

 

 

a. 

b. 
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5.10 Capping protein binding of FAM21 
Our results to this point suggest that the tail of FAM21 has a vital role in function 

of the protein, as the head region alone is insufficient to rescue FAM21 nulls.  

Apart from the repeats, there are little or no other recognisable domains within 

the tail except for the capping protein interaction (CPI) site, originally detected 

by Hernandez-Valladares et al. (2010).  An interaction between capping protein 

and the WASH complex in mammalian cells has already been confirmed by 

several groups (Derivery et al., 2009; Gomez and Billadeau, 2009; Jia et al., 

2010) and we have identified both CAP34 and CAP32 subunits in 

coimmunoprecipitations of WASH complex subunits.  We therefore wanted to 

confirm that this interaction is mediated through this specific site in FAM21, as 

no study as yet has shown this.  To do this, we created a CPI mutant of FAM21 to 

test whether the removal of the CPI abrogates binding of capping protein. 

 

We engineered a FAM21 mutant, FAM21ΔCPI, by removing the 17 amino acid 

sequence which comprises the CPI from the tail.  We then expressed GFP-

FAM21ΔCPI or wild type GFP-FAM21 in FAM21 nulls.  These were purified from 

cell lysates using GFP-Trap beads and the purified protein was run by SDS-PAGE 

followed by a western blot.  We detected the CAP32 subunit of capping protein 

using an anti-CAPZβ antibody (CAPZβ is the human homologue of Dictyostelium 

CAP32) which was present for wild type FAM21, but not present for the mutant 

(fig. 5.8).  

 

This confirms the ability of FAM21 to bind capping protein specifically through 

this site in the tail of the protein.  It also confirms that the mutant we have 

created is no longer able to bind capping protein. 

 

5.11 CPI is essential for FAM21 function 
To investigate the importance of the interaction between FAM21 and capping 

protein for both function of FAM21 and of the complex as a whole, we tested 

whether the FAM21ΔCPI mutant was able to rescue the FAM21 null phenotype 

and rescue the block in exocytosis. 
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Figure 5.8  Coimmunoprecipitation of capping protein 

GFP-FAM21 and GFP-FAM21ΔCPI were expressed and purified from FAM21 

null cells using GFP-Trap.  GFP alone was used as a control.  A western blot 

was performed and probed using an anti-CAPZβ antibody to detect the 

CAP32 subunit.  Unpurified cell lysate was also run to confirm the presence 

of capping protein before coimmunoprecipitation. 
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We first expressed GFP-FAM21ΔCPI in FAM21 null cells and found that it was able 

to localise to vesicles (fig. 5.9a).  We then used these cells to perform the 

exocytosis assay and found that GFP-FAM21ΔCPI is unable to rescue the block in 

exocytosis of FAM21 nulls (fig. 5.9b).  These cells were also fed medium 

containing 5% unlabelled dextran and TRITC-dextran in order to look at the size 

of the endosomal compartments, and we found that cells containing GFP-

FAM21ΔCPI still contained very enlarged post-lysosomal compartments, whereas 

those expressing wild type GFP-FAM21 had near normal sized post-lysosomes in 

nearly every cell (fig. 5.9c).  Lastly, we coexpressed GFP-FAM21ΔCPI and RFP-

actin in FAM21 nulls, which revealed that the excessive actin comets were still 

present on the post-lysosomes, although these appeared slightly less 

exaggerated and deregulated than those in cells completely lacking FAM21 (fig. 

5.9d). 

 

It is clear that capping protein is very important for the function of FAM21, as 

the removal of the CPI prevents the FAM21 protein rescuing the FAM21 null 

phenotype almost completely.  This also shows that capping protein is needed 

for progression through the endocytic cycle, and is therefore essential for WASH 

complex function whether it is constitutively bound with the other subunits or 

not. 

 

5.12 FAM21ΔCPI is dominant negative  
We had previously seen that expressing the head region of FAM21 in Ax2 cells 

had a dominant negative effect.  This did not happen with the tail because the 

tail region does not bind the WASH complex therefore does not appear to disrupt 

complex function.  The FAM21ΔCPI mutant should still bind the WASH complex as 

the head region is intact, however removal of the CPI prevents it from rescuing 

the FAM21 null phenotype.  In order to see whether removal of this site really 

did prevent FAM21 from functioning correctly, we wanted to see if this mutant 

also disrupted WASH complex function in Ax2 cells. 

 

We performed the exocytosis assay, as previously described, using Ax2 cells 

expressing GFP-FAM21ΔCPI.  We found that the cells were still able to perform 

exocytosis however the rate of exocytosis was much slower (fig. 5.10a).  The  
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Figure 5.9  GFP-FAM21ΔCPI expression in FAM21 nulls 

GFP-FAM21ΔCPI was expressed in FAM21 nulls. (a) Cells were fed LoFlo 

medium plus unlabelled dextran and imaged on a confocal microscope. (b)  

Cells were used to perform the exocytosis assay as previously described 

(n=3; error=SD).  (c) GFP-FAM21ΔCPI or GFP-FAM21 were expressed in 

FAM21 nulls and fed TRITC-dextran and unlabelled dextran.  Cells were 

imaged on a confocal microscope and vesicle size was quantified from the 

images obtained as previously described. (d) FAM21 nulls coexpressing GFP-

FAM21ΔCPI and RFP-actin were fed unlabelled dextran and imaged on a 

confocal microscope. 

a. b. 

c. 

d. 



126 
 

 126 

cells were also fed unlabelled dextran with TRITC-dextran and imaged to find 

that they contained enlarged vesicles like those seen in FAM21 nulls (fig. 5.10b). 

 

These results are very similar to those obtained when we expressed GFP-

FAM21ΔCT in Ax2 cells, whereby the construct has a dominant negative effect on 

the cells which develop a partial FAM21 null phenotype with the enlarged post-

lysosomes and delay in exocytosis.  As before, the reason for this is the 

incorporation of a non-functional form of FAM21 into WASH complexes, 

rendering this subset of complexes unable to dissociate from post-lysosomal 

membranes.  This further proves that the CPI is essential for FAM21 function 

within the WASH complex. 

 

5.13 FAM21 links WASH complex to CP 
We hypothesized that the possible function of the CPI and the interaction with 

capping protein is to recruit this actin regulating protein to the vesicular actin 

coats created by WASH to contribute to its regulation.  To investigate this, we 

expressed capping protein in both Ax2 and FAM21 null cells to compare the 

localisation in respect to the intermediate endosomal actin coats in each case. 

 

GFP-WASH and RFP-CAP32 were coexpressed in Ax2 cells.  We found that 

capping protein was colocalised with all GFP-WASH on endosomal vesicles in the 

cells at the membrane (fig. 5.11a).  We also expressed these constructs in FAM21 

nulls and found that the localisation in these cells was slightly different.  GFP-

WASH is always restricted to the membrane of the vesicle, and capping protein 

was colocalised with WASH here, however capping protein was also localised 

throughout the actin comet which protrudes from the vesicle membrane (fig. 

5.11b).  

 

The complete overlap of capping protein with WASH that we see in Ax2 cells 

shows that normally, capping protein and the WASH complex are tightly coupled 

on post-lysosomal membranes.  In FAM21 nulls we see that this coupling is lost.  

Capping protein is still localised to post-lysosomal actin, therefore the purpose 

of FAM21 is not to recruit capping protein to these actin structures, however it 

no longer completely colocalises with WASH complex.  This indicates that the  
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Figure 5.10  GFP-FAM21ΔCPI expression in Ax2 cells 

GFP-FAM21ΔCPI was expressed in Ax2 cells. (a) Cells were fed TRITC-

dextran and unlabelled dextran.  Cells were imaged on a confocal 

microscope and vesicle size was quantified from the images obtained as 

previously described. (b) Cells were used to perform the exocytosis assay 

as previously described (n=3; error=SD).   
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purpose of FAM21 is to couple the two together, rather than use one to recruit 

the other in regards to the WASH complex and capping protein. 
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Figure 5.11  Capping protein localisation 

GFP-WASH and RFP-CAP32 were coexpressed in (a) Ax2 cells and (b) FAM21 

nulls.  The cells were fed unlabelled dextran in LoFlo before being imaged 

on a confocal microscope.   
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CHAPTER SUMMARY 
 

In this chapter, we have dissected the function of the FAM21 protein.  The highly 

conserved head region of FAM21 is responsible for binding the WASH complex, 

and mutant forms containing the head region compete with endogenous FAM21 

for complex binding sites, causing a partial FAM21 null phenotype in wild type 

cells. 

 

The tail region of FAM21 contains a number of repeats, the ligand of which 

remains unknown, but we do know that the tail is able to localise independently 

to endosomal membranes.  The tail also contains the CPI site, which appears to 

be the only functional part of the tail other than the repeats. 

 

The CPI is essential for FAM21 function; FAM21 lacking the CPI cannot rescue the 

null phenotype.  We have shown that capping protein does not require FAM21 to 

be recruited to endosomal actin, therefore we can conclude that the purpose of 

FAM21 must be to couple the complex to capping protein directly.  The possible 

implications of this coupling and how it contributes to regulation and removal of 

the WASH complex will be discussed in the final chapter. 
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CHAPTER 6 

DISCUSSION 
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6 Discussion 

6.1 Dictyostelium and the WASH complex 
Previous use of Dictyostelium discoideum to investigate the function of WASH 

has shown it is a suitable model in which to study the WASH complex.  By using 

immunoprecipitation and mass spectrometry, we confirmed that the five known 

members identified in mammalian cells, WASH, SWIP, Strumpellin, FAM21 and 

ccdc53 (Derivery et al., 2009; Gomez and Billadeau, 2009), were expressed and 

formed a constitutive complex in D. discoideum cells.  These proteins all have a 

high homology to their mammalian counterparts, and the functions of other 

WASP family proteins, such as Scar/WAVE, are already known to be conserved 

between Dictyostelium and mammalian cells.  We therefore sought to determine 

the possible functions of the four regulatory subunits of the complex in a global 

context. 

 

WASH is an NPF (Linardopoulou et al., 2007) whose regulation is through 

incorporation into a complex (Derivery et al., 2009; Gomez and Billadeau, 2009).  

There are parallels between the WASH complex and the Scar/WAVE complex (Jia 

et al., 2010), showing that this form of regulation is not a unique mechanism.  

Both are heteropentameric complexes which are evolutionarily highly conserved, 

and organisms generally tend to contain either none or all of the constituents of 

each complex within their genome (Veltman and Insall, 2010).  One key 

similarity between these two complexes is the inability of the complex to survive 

incomplete; for both WASH and Scar/WAVE complexes to remain intact in the 

cell, all the subunits must be present, with the exception of FAM21 in the WASH 

complex.  

 

6.2 Strumpellin and Spastic Paraplegia 
We found that the loss of either of the Strumpellin and ccdc53 subunits causes a 

growth defect in cells.  Although we decided to focus the study of the project on 

the FAM21 subunit, it would be interesting for the future to find out the 

relevance of these two particular subunits in cell growth/division. 

 

As mutations in Strumpellin are a known cause in spastic paraplegia, we looked 

into the effect of these mutations on WASH complex function.  It seems that 
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these mutations have no noticeable effect on the function of the WASH complex 

in Dictyostelium.  In humans, pure forms of spastic paraplegia such as SPG8 only 

affect a specific cell type; the upper motor neurons which project to the lower 

limbs (Fink, 1997) that are some of the longest cells in the body.  The disease is 

also adult onset, and characterized by gradual degradation from the ends of the 

neurons (Valdmanis et al., 2007).  A subtle defect caused by these mutations 

may not affect a single-celled, and relatively short-lived organism such as 

Dictyostelium.  Spastin is another protein known to be mutated in spastic 

paraplegia.  It has been shown to play a role in severing of microtubules (Errico 

et al., 2002; Evans et al., 2005).  Links have previously been shown between 

microtubules and the WASH complex; Derivery et al. (2009) show an interaction 

between the WASH complex and tubulin, and that treatment of siWASH cells 

with nocodazole prevented the tubulation phenotype induced by loss of WASH.  

This raises the possibility that Strumpellin may also be involved in regulation of 

microtubules.  This would be an interesting start point for investigating the 

exact role of the Strumpellin subunit in more detail, and could explain why it 

causes a growth defect in Dictyostelium cells. 

 

6.3 WASH builds endosomal actin coats 
Endosomal actin coats at intermediate stages of the endocytic cycle had 

previously been suggested to prevent fusion between different compartments 

within the endocytic cycle (Drengk et al., 2003).  Our data disagree with this, as 

we observed fusion between the neutral vesicles in FAM21 null cells which have 

excessive actin polymerized on their membrane (fig. 4.7).  We also see there 

must be a degree of regulation between fusion of vesicles in WASH null cells, 

which are devoid of actin, as the vesicles do not all fuse into one compartment 

in these cells like in FAM21 nulls.  

 

WASH has been shown to be the NPF responsible for the construction of these 

intermediate actin coats on endosomal vesicles in both mammalian and 

Dictyostelium cells (Derivery et al., 2009; Gomez and Billadeau, 2009; Carnell et 

al., 2011).  Loss of WASH in all cells results in the absence of these actin coats.  

Both the processes of endocytosis and exocytosis also require actin, however it 

has already been shown that WASH is not required for endocytosis (Carnell et 
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al., 2011), and we have also shown that WASH dissociates from post-lysosomes 

well before exocytosis. 

 

Carnell et al. (2011) hypothesize that the function of these intermediate actin 

coats is to cluster V-ATPase complexes into subdomains on lysosomal 

membranes.  It has already been shown that the V-ATPase is removed in small 

recycling vesicles from lysosomes (Clarke et al., 2010).  There are also F-actin 

binding sites on several of the V-ATPase subunits which have not previously been 

assigned a function (Holliday et al., 2000; Vitavska et al., 2003).  Other work has 

also shown that clustering into membrane microdomains is reliant on the cell 

cytoskeleton.  Chichili and Rogers (2007) showed that markers associated with 

lipid raft domains were unable to cluster on disruption of actin using latrunculin 

B.  In contrast, clustering was enhanced and much tighter on addition of the 

actin stabilizing drug jasplakinolide.   

 

6.4 Regulatory subunits 
In Dictyostelium, the presence of WASH and actin on endosomes is necessary for 

the maturation and neutralisation of lysosomes, without which there is no 

progression to exocytosis.  We began by looking at how the regulatory subunits 

are important for this function, and found that loss of any one of the four 

regulatory subunits caused the total block in exocytosis seen in WASH nulls.  Loss 

of three of the four, Strumpellin, SWIP and ccdc53, abolished the intermediate 

endosomal actin coats, and prevented neutralization.  This WASH null-like 

phenotype in these cell lines was due to the fact that the stability of the 

complex was compromised if any of these three subunits were not present, 

therefore there was little or no stable WASH protein present in the cells (fig. 

3.8).   

 

There is one exception to this; FAM21.  The loss of FAM21 does cause a reduction 

in endogenous levels of WASH, but to far less of a degree than any other 

subunits.  Gomez and Billadeau (2009) claim that in mammalian cells, loss of 

FAM21 results in loss of WASH.  They used siRNA to knockdown FAM21 and show a 

reduction in WASH protein which they state is detrimental to WASH complex 

function, however we suggest the level of WASH reduction is relative.  In 

Dictyostelium, we found the relatively small reduction in levels of WASH due to 
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loss of FAM21 does not appear to affect WASH complex function, and 

demonstrated that sufficient WASH protein remains in FAM21 nulls to effectively 

remove V-ATPase from lysosomes (fig. ).  We also showed that the same concept 

is true in mammalian cells.  Because loss of WASH results in a defect in recycling 

of α5β1 integrin (Gomez et al., 2012; Zech et al., 2011) we used this to 

investigate the importance of FAM21 in mammalian WASH complex function.  We 

found that knockdown of FAM21 did lead to a decrease in WASH protein level, 

however this was not substantial enough to affect the integrin recycling.  This 

demonstrates that sufficient WASH protein is present in the cells to fulfil this 

function.  This may be different in mammalian cells if FAM21 is completely 

absent, as our work was performed using cells treated with siRNA, which 

therefore contained low levels of FAM21 protein.  Knockdown efficiency was 

high, however we do not know size of the effect that the small amount of 

residual FAM21 protein left in the cell has, and a total FAM21 knockout would 

give a far more definitive result.  

 

6.5 Loss of FAM21 
We found that FAM21 null cells had several distinctly unique phenotypes among 

the WASH complex subunit knockouts.  Because WASH was present in FAM21 

nulls, these cells did contain endocytic actin coats, and V-ATPase was indeed 

removed from lysosomal membranes.  This in turn allowed maturation of 

lysosomes to neutral post-lysosomes, however exocytosis remained blocked.  

This suggests that FAM21 functions at a separate point in the endocytic cycle to 

WASH, probably downstream as the vesicles were able to progress further along 

the endocytic pathway, and the creation of a double WASH/FAM21 null mutant 

confirmed this.  

 

The neutral vesicles in FAM21 nulls were greatly enlarged in comparison to those 

in wild type cells.  Limited and controlled vesicle fusion is known to occur at 

early endosomal stages in wild type cells (Clarke et al., 2002) which is why some 

fusion does occur between the vesicles in Ax2 and WASH null cells, and causes 

slight swelling on addition of dextran, especially in WASH nulls which 

accumulate far more intracellular dextran than an Ax2 cell.  Fusion of later, 

post-lysosomal compartments may happen naturally in Ax2 cells, however once 

vesicles have matured to post-lysosomes, they are rapidly progressed to 
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exocytosis (Aubrey et al., 1993).  This means there would be little opportunity 

for the vesicles to fuse and therefore little need for a regulatory mechanism to 

prevent this fusion occurring.  We showed that in FAM21 nulls, the dextran 

trafficked into these enlarged, neutral compartments failed to progress any 

further than this, and was trapped indefinitely at this stage.  This persistence of 

the vesicles within the cell increased the likelihood of fusion.  The pH of vesicles 

also contributes to the fusion competency, with acidic vesicles less competent to 

fuse with one another than neutral vesicles (Lenhard et al., 1992).  The result is 

that in a FAM21 null, any neutral vesicles that form will inevitably fuse to form a 

single, enlarged vesicle over time, and indeed this fusion event was observed 

(fig. 4.8).  

 

6.6 Structural analysis of FAM21 
To investigate the function of FAM21, we looked in more detail at the structure 

of the protein.  The head region of the protein, constituting the first ~300 amino 

acids, had already been identified in mammalian cells as the region responsible 

for the interaction with the WASH complex (Gomez and Billadeau, 2009; Harbour 

et al., 2010; Jia et al., 2010).  We showed that the same is true in 

Dictyostelium, as the head region of FAM21 was necessary and sufficient to 

coimmunoprecipitate the other core complex members (table 5.2).  The tail 

region of FAM21 is made up of a repeated sequence, interrupted by the only 

identified functional domain, the capping protein interaction (CPI) site.   

 

Neither region, the head nor tail, of FAM21 is sufficient to rescue any of the 

phenotypes of FAM21 nulls (fig. 5.3).  FAM21 null cells expressing these regions 

separately were still blocked in exocytosis, contained enlarged vesicles and 

seemed to accumulate WASH on post-lysosomal membranes.  Even so, both 

regions were still able to localise independently, showing that FAM21 has two 

separate localisation signals within the sequence.  The head region uses the 

interaction with the WASH complex to localise correctly, whereas the tail must 

have a different signal of its own which we suggest is through the repeats.   

 

We also showed that the head domain had a slight dominant negative effect on 

Ax2 cells, which we also saw later when expressing the capping protein binding 

FAM21 mutant.  This shows it is likely that when WASH complexes are formed, 
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the subunits cannot dissociate or be replaced.  The result is that in Ax2 cells 

containing mutant versions of FAM21, a proportion of complexes are formed 

containing these mutants or fragments instead of the endogenous copy of the 

protein, and these complexes are then rendered incapable of full function, 

leading to a partial FAM21 null-like phenotype. 

 

6.7 The FAM21 tail  
Derivery et al. (2009) demonstrated that there are lipid-binding domains within 

the complex.  As we have shown the tail region of FAM21 was able to bind 

endosomal membranes without interacting with any of the other subunits of the 

WASH complex, we hypothesize that the repeated sequence present in the 

FAM21 tail may be able to directly bind lipids.  We attempted to test for this 

interaction using a PIP-array, however we did not identify any positive 

interactions.  It is possible that the in vitro conditions were not sufficient for the 

interaction between the repeats and their target, or that the lipid for which the 

repeats are specific were not present on the array.  Jia et al. (2010) also 

performed a similar lipid blot with the tail of human FAM21.  They identified a 

number of interactions with various phospholipids, however their results were 

very unspecific.  They saw a large number of positive interactions, including 

PI4P, a phospholipid associated with the Golgi, although neither FAM21 nor WASH 

are seen to localise there.  Another group suggested that it is the retromer 

complex, a complex involved in retrograde transport of receptors from 

endosomes to the Golgi, which interacts with the FAM21 tail repeats (Harbour et 

al., 2010).  They identified the retromer subunit VPS35 using mass spectrometry 

by coimmunoprecipitation with the FAM21 tail, although this was only possible 

using low detergent lysis buffer.  When using normal detergent-containing 

buffer, retromer components were not coimmunoprecipitated with the FAM21 

tail, however other proteins such as the capping protein subunits were.  This 

suggests that the interaction between FAM21 and VPS35 may not be direct.  In 

Dictyostelium, we immunoprecipitated three separate members of the complex, 

ccdc53, WASH and FAM21, yet no retromer subunits were identified by mass 

spectrometry in any instance, despite the high conservation of the retromer 

component sequences and functions (Dacks and Field, 2007).  Overall, the ligand 

of the tail repeats is currently unknown, and it will require further investigation 

in order to determine this elusive binding partner. 
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To further assess the specificity of the repeats of the FAM21 tail, we expressed 

the human FAM21 protein in Dictyostelium.  Human FAM21 could not interact 

with the Dictyostelium WASH complex, as the head region alone was unable to 

localise in cells.  In contrast, the tail region of the human protein did localise 

correctly, although neither region could rescue the FAM21 null phenotype.  

These results were surprising, as the head region of FAM21 is the most highly 

conserved.  This, in combination with the high conservation of the other WASH 

subunits, suggested that if any region of the protein would work in a different 

species, it would be the head region.  In fact it is the variable tail region which 

was able to maintain its localisation which is relatively divergent between 

species, especially human and Dictyostelium.  This shows that the tail-binding 

ligand must be conserved across species, further supporting the idea that it is 

something of low complexity such as a lipid.  An interesting point about the tail 

of FAM21 is that it appears to bind exclusively to endosomal membranes, and not 

to other internal membranes or the plasma membrane.  This suggests that the 

FAM21 tail is able to differentiate between the different membranes, perhaps 

through detection of different lipid composition.  

 

6.8 WASH complex recycling 
Although FAM21 nulls are able to neutralize lysosomes, the process takes 

considerably longer than in Ax2 cells (fig. 4.6).  We found that whether the cells 

contained giant post-lysosomes or not (by pre-feeding the cells unlabelled 

dextran or not) made no difference to the time it took for neutral vesicles to 

appear in the cells.  This meant we could rule out the presence of the enlarged 

vesicle itself being the cause of the delay, for example by causing a physical 

obstruction within the cytoplasm. 

 

When looking into the cause of this delay, we found that the distribution of 

WASH appeared to be very biased towards the membrane of the enlarged post-

lysosomes in FAM21 nulls.  This suggested to us that the WASH complex was 

being trapped on post-lysosome membranes, however as the presence of the 

enlarged vesicles in the cells was not normal, comparisons between WASH 

distribution in FAM21 nulls and Ax2 cells was difficult.  To investigate further, 

we used FRAP to show that WASH complex was indeed being sequestered on 
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post-lysosomes in the absence of FAM21 (figs. 4.10 and 4.11).  This would mean 

FAM21 nulls would need to continuously synthesize new WASH complexes in 

order to neutralize any nascent acidic lysosomes, rather than recruiting existing 

complexes recycled from mature post-lysosomes.  Therefore the delay in 

neutralization was likely due to a lack of available WASH complex as a result of 

this.  We also saw the same failure in complex dynamics in mammalian cells.  

This tells us that the role for FAM21 in instigating removal of the WASH complex 

from membranes is likely to be conserved. 

 

6.9 FAM21 and capping protein 
We have shown that both the head and tail region of FAM21 are essential to its 

function.  The head domain is required for its incorporation into the WASH 

complex, but there must also be a role for the tail, as the head alone does not 

compensate for the full length protein.  The repetitive and proline-rich sequence 

of the tail mean it has little secondary structure, and the only defined domain 

present in the sequence is that of the capping protein interaction site (Derivery 

et al., 2009; Jia et al., 2010).  The CPI is a small sequence, the consensus being 

only 17 amino acids (Bruck et al., 2006), hidden within a tail consisting of over 

1000 amino acids.  Despite this, our results show that this site appears to be 

essential for the function of FAM21, its removal rendering the protein unable to 

rescue the FAM21 null phenotype (fig. 5.9).   

 

Jia et al. (2010) suggest that the interaction between FAM21 and capping protein 

is transient, and it is not a constitutive part of the complex unlike the other five 

members.  They do not consistently see it with coimmunoprecipitation of WASH 

which correlates with our results in Dictyostelium.  Despite this, in 

Dictyostelium Ax2 cells we see colocalisation of capping protein and the WASH 

complex on endosomal structures, although capping protein does also localise 

elsewhere in the cell (Derivery et al., 2009), having an important role in the 

regulation of many different actin structures in cells (Cooper and Sept, 2008).  

Phylogenetic analysis also shows that the five constitutive members of the 

complex are nearly always found together in a species, however capping protein 

is often found in organisms not containing a WASH complex (Veltman and Insall, 

2010).  In contrast, the fact that the organisms which contain a WASH complex 
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nearly always also contain capping protein points to capping protein being vital 

for function of the WASH complex (Veltman and Insall, 2010). 

 

FAM21 is a vital subunit for regulation of WASH and endosomal actin structures, 

and we have shown that the interaction between FAM21 and capping protein is 

an essential part of this regulation.  In the absence of FAM21, capping protein is 

still recruited to endosomal actin structures in cells (fig. 5.11) therefore the role 

of this interaction must be to bring capping protein into close proximity to the 

WASH complex itself.  This interaction could work in two ways; FAM21 could 

sequester capping protein away from the actin in the immediate vicinity of the 

complex, or it could work to bring capping protein into contact with the actin at 

this site. 

 

An example of a protein which uses a CPI domain to sequester capping protein 

away from actin is CK2-interacting protein (CKIP).  CKIP is a kinase which 

contains a CPI site of the same consensus as that seen in FAM21.  It is known to 

bind, sequester and phosphorylate capping protein in order to prevent its 

capping activity at plus ends (Canton et al., 2006; Fujiwara et al., 2010).  If 

FAM21 were to work in this manner, it could increase the turnover of actin at 

the interface of the actin structure and the membrane, where the WASH 

complex is located, and thus produce a more dynamic structure.  In FAM21 nulls, 

we see that the comet tails which stream off the endosomal membranes are very 

dynamic, making this theory seem unlikely as absence of FAM21 in this case 

should decrease actin polymerization at the membrane, however we do not 

know the rate of turnover of actin in normal circumstances on endosomes and 

therefore have no comparison. 

 

The second possibility is that FAM21 brings capping protein into close proximity 

with the complex.  FAM21 appears to negatively regulate the activity of WASH, 

indicated by the fact that the actin polymerization in the presence of FAM21 

seems much more moderate and controlled, producing a thin vesicular coat 

rather than a large comet.  Also, FAM21 appears to work as an ‘off switch’ for 

the complex, as we have shown it is required for removal of the complex from 

post-lysosomal membranes once maturation is complete, acting to stop the actin 

polymerization directed by WASH to allow vesicle progression.  By encouraging 
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the capping of plus ends near the membrane interface, FAM21 may help prevent 

such a high turnover of filaments as is seen with the comets in FAM21 nulls, and 

instead may help form a more stable ring structure.  An actin ring formed from 

highly regulated filaments could potentially allow a contractile force around the 

membrane which may induce the clustering motion hypothesized for the V-

ATPase complex.  More study needs to be done of the rate of turnover of actin 

on membranes in both wild type and FAM21 null cells to determine whether this 

is the case.  Also, a more detailed examination of the distribution of V-ATPase 

molecules through endosomal membranes at different stages of progression 

needs to be made to substantiate the clustering hypothesis.  

 

One potential model that we propose is that if the removal of V-ATPase from 

lysosomal membranes is through clustering, potentially the removal of the WASH 

complex itself could also be through clustering.  The interaction between FAM21 

and capping protein may be to directly couple the WASH complex to the actin 

filaments themselves.  If an actin filament is then simultaneously coupled to 

WASH and capped to prevent further extension, it could act as a binding 

mechanism and off switch for that complex.  The bound complex is then 

clustered through the binding to the actin filament, possibly through a 

contraction of an actin ring structure, ready for a bud to form and remove it.   

 

6.10 Progression to exocytosis 

No matter what the mechanism involving capping protein and FAM21 may be, 

there must be a trigger which defines the point at which neutralization is 

complete and the fully mature post-lysosome is ready to be exocytosed.  This 

may be a threshold of the pH, the removal of some or all of the V-ATPase, or 

may be determined by Rabs which are well known to define different 

compartments and stages of the endocytic cycle (Gruenberg and Maxfield, 1995; 

Pfeffer, 2001).  This signal could then instigate the removal of the WASH 

complex from the membrane, which takes place before exocytosis (fig. 1.5).  As 

FAM21 is essential for complex dissociation and may well be directly involved in 

the mechanism that instigates its removal, it may be that FAM21 is directly 

regulated by some means such as phosphorylation.  Our mass spectrometry data 

for FAM21 from the coimmunoprecipitations identified several  
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Figure 6.1  Possible model of WASH complex removal 

One hypothesis for the mechanism of how the WASH complex is removed 

from post-lysosomal membranes is illustrated above.  Stage A represents 

the current hypothesis of Carnell et al. (2011); WASH complex is recruited 

to the acidic lysosomal membrane.  WASH builds and actin coat which binds 

to and clusters the V-ATPase molecules.  A bud then forms to remove these 

from the membrane, allowing neutralization and maturation to post-

lysosome.  We hypothesize that a similar process occurs at stage B; once 

neutralization is complete and the post-lysosome is ready to progress to 

exocytosis, a signal/trigger induces binding of capping protein to FAM21.  

This couples the WASH complex to the actin coat, causing its own 

clustering to allow removal through budding. 

A B 
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possible phosphorylation sites, some of which were in close proximity to the CPI 

domain.  It would be interesting to investigate the importance of these sites in 

FAM21 and WASH complex function, and whether they are conserved in FAM21 

proteins of other species, especially in mammals. 

 

6.11 Localisation of the WASH complex 
So far, data in mammalian cells suggests that FAM21 is the vital subunit required 

to localise the WASH complex to endosomal vesicles.  Harbour et al. (2010) show 

that in HeLa cells, the retromer complex is required for localisation of the WASH 

complex, through a direct interaction with FAM21.  Gomez and Billadeau (2009) 

agree that FAM21 is a key subunit for localisation, but they claim it is totally 

independent of retromer.  Our data do not agree with these findings, as we show 

that the complex is not only localised but also functional without the FAM21 

subunit in both mammalian (fig. 4.5) and Dictyostelium cells (fig. 4.3).  One 

point on which all studies agree is that the FAM21 subunit is able to localise 

independently, regardless of the presence of WASH (Gomez and Billadeau, 

2009).  

 

It is likely that the complex uses more than one localisation signal.  The one 

member that we found to be essential for correct vesicular localisation of WASH 

and Strumpellin is SWIP.  Without SWIP, both of these subunits were 

cytoplasmic.  SWIP, cdc53 and FAM21 were all able to localise independently of 

any other subunits, therefore these proteins clearly have their own localisation 

signals.  SWIP is clearly essential and sufficient for complex recruitment, 

however ccdc53 may also contribute to complex localisation.  It may help 

strengthen the interaction of the complex with endosomes or help in defining 

the correct vesicle population.  

 

It would be interesting to investigate further into which of the complex members 

truly are required for localisation in mammalian cells.  So far, no data has been 

published about what effect the loss of SWIP has on the WASH complex in 

mammalian cells.  WASH complex localisation is more complicated in mammalian 

cells, because it is distributed on more than one population of vesicles.  It has 

been shown to decorate early endosomes, recycling endosomes and parts of the 

degradative pathway (Derivery et al., 2009; Gomez and Billadeau, 2009; Zech et 
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al., 2011).  Therefore this system may require a different set of signals to the 

relatively simple Dictyostelium system to direct WASH complex localisation. 

  

6.12 Final summary 
The functions of all members of the WASH complex have not yet been 

completely elucidated, however our focus on FAM21 has substantially increased 

our knowledge of a potential function and mechanism for this subunit.  This will 

help to further our understanding of NPFs and the signals that feed in to the 

system of their regulation. 

 

We have shown that the WASH complex requires all four regulatory subunits in 

order to function completely.  Three of these, Strumpellin, ccdc53 and SWIP are 

essential for WASH function as an NPF.  FAM21 is dispensable for the actin 

polymerizing ability of WASH through Arp2/3, however is still required for 

completion of the endocytic cycle.  We have determined that WASH and FAM21, 

although constitutively part of the same complex, act at different stages in the 

same pathway.  WASH is responsible for the initial actin polymerization, 

however FAM21 works downstream, in allowing the WASH complex to be 

recycled once neutralization is complete.  We have shown that the capping 

protein binding site within the FAM21 tail is essential for its function, and that 

the direct coupling between the WASH complex and capping protein cannot 

occur without this subunit.  There are several potential mechanisms through 

which capping protein and FAM21 may work in order to regulate the actin coat 

built by WASH, and instigate the complex removal from mature post-lysosomes, 

however further study is required to determine the exact processes which occur 

at these later stages and the signals which initiate them. 
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