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Abstract

Parallelization has moved in recent years into the mainstream compilers, and the demand
for parallelizing tools that can do a better job of automatic parallelization is higher than
ever. During the last decade considerable attention has been focused on developing pro-
gramming tools that support both explicit and implicit parallelism to keep up with the
power of the new multiple core technology. Yet the success to develop automatic paral-
lelising compilers has been limited mainly due to the complexity of the analytic process
required to exploit available parallelism and manage other parallelisation measures such

as data partitioning, alignment and synchronization.

This dissertation investigates developing a programming tool that automatically paral-
lelises large data structures on a heterogeneous architecture and whether a high-level pro-
gramming language compiler can use this tool to exploit implicit parallelism and make use
of the performance potential of the modern multicore technology. The work involved the
development of a fully automatic parallelisation tool, called VSM, that completely hides
the underlying details of general purpose heterogeneous architectures. The VSM imple-
mentation provides direct and simple access for users to parallelise array operations on the
Cell’s accelerators without the need for any annotations or process directives. This work
also involved the extension of the Glasgow Vector Pascal compiler to work with the VSM
implementation as a one compiler system. The developed compiler system, which is called

VP-Cell, takes a single source code and parallelises array expressions automatically.

Several experiments were conducted using Vector Pascal benchmarks to show the validity
of the VSM approach. The VP-Cell system achieved significant runtime performance
on one accelerator as compared to the master processor’s performance and near-linear
speedups over code runs on the Cell’s accelerators. Though VSM was mainly designed for
developing parallelising compilers it also showed a considerable performance by running

C code over the Cell’s accelerators.
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1 Introduction

The notion of concurrency and parallel computing have existed from the earliest develop-
ment of supercomputers, and since then the promises of parallelism have fascinated many
researchers [1, 2, 3, 4, 5]. Parallel computing is a fundamental research topic in computer
science and grew as a topic of interest in the mid 1980’s upon the introduction of mas-
sively parallel processors and networks of computers [1, 3, 6, 7, 8,9, 10, 11]. The interest
in this area has also been stirred up in the last two decades by the advent of the Single
Instruction Multiple Data (SIMD) technology in the 1990’s and later multi-core platforms
in the mainstream industry such as multi-core general purpose architectures (CPUs) and
Graphics Processing Units (GPUs) [12, 7, 13, 14, 15]. These modern architectures offer
high performance hardware with reasonable cost that made them widely used in many ap-
plication areas, such as image processing, graphics, multimedia, modeling and scientific
computation [16, 17, 7, 18, 9]. This widespread industry adoption of multi-core architec-
tures has a significant influence on mainstream software and applications development as
they require proper, simple to use and up to date tools for developing parallel and concur-

rent programs.

This chapter starts with a short introduction to key issues in parallel computing and the
targeted processor and language. It then presents the thesis statement, motivations, contri-

butions and concludes with a summary of what will be covered in each chapter.

The key issues in parallel programming are: identifying available parallelism, partitioning
data, managing data transfers between cores, handling required communication among
cores, synchronisation between cores and performing any required data alignments [19,
20, 6, 21, 22, 23]. This turned out to be a very complicated task [3, 24, 25, 10, 8, 9],
and software researchers, in the last two decades, have put additional effort on developing
various programming paradigms that simplify the parallelisation process. Yet success in
developing simple and fully implicit parallel models has been limited due to the complex
analysis that compilers are required to do [26, 23, 17, 27]. In recent years, various tools
such as programming languages, extended compilers, libraries and APIs have been devel-
oped to simplify parallel programming on multicore architectures [19, 18, 28, 29, 30, 31,
32, 33, 34, 35]. The simplicity of a given model is often measured by its capability to han-

dle the parallelisation process and most importantly how to identify available parallelism.
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The three common approaches to exploit parallelism in a given application are: Explicit,
Semi-implicit and Implicit techniques. Fully explicit-based models require substantial
details, such as identifying parallelism, message passing, data movement, alignment and
synchronisation, to be provided manually by programmers. In contrast, semi-implicit par-
allel programming models liberate programmers from several parallelisation tasks such as
thread creation, communication, data transfers, synchronisation and alignment, but they
still depend on programmers to identify parallel regions of code using annotations, pre-
processor directives and constructs [25, 9, 10]. Developers during recent years have had
good success in applying this technique in various programming models for parallel archi-
tectures. OpenMP is the most commonly used semi-implicit programming model nowa-
days for shared memory multi-core architectures [30, 8, 36]. Hybrid Multi-core Parallel
Programming, called OpenHMPP, is also directive-based model that has been recently
introduced for developing parallel programs on CPUs and GPUs [37]. Software develop-
ers have also introduced a number of compiler extensions such as SieveC++ and library
routines, such as OffloadC++ and Intel Threading Building Block (TBB) [38, 18, 20].

There are also programming languages that have been built to support parallelism with-
out relying upon annotations and directives mechanisms. High Performance FORTRAN
(HPF) and Matlab [19, 39], for example, offer constructs for expressing parallelism in an
implicit manner. The Z programming language (ZPL), Vector Pascal (VP) languages and
Fortran are another programming paradigm that uses arrays abstraction to implement a
data parallel programming [40, 41, 42]. Functional programming languages, such as Sin-
gle Assignment C (SaC), Glasgow Parallel Haskell (GpH) and its extension Data Parallel
Haskell (DPH), are mutation-free programming models that also provide support for con-
currency mechanisms [43, 34, 44]. Chapel, Fortress and NESL are also parallel program-
ming languages, but they have been developed for supercomputers such as the Thinking
Machines CM5 and the Cray C90 [45, 46, 33, 47]. Virtual Machines such as CellVM
and Hera-JVM, have been developed as experimental models to manage multithreaded
applications on parallel architecture in particular the Cell processor [5, 48, 49]. Most of
the programming models that have been mentioned so far are for programming general
purpose processors. CUDA and OpenCL are new parallel languages that have recently
emerged for programming general propose application on specialised processors such as
GPUs and digital signal processing (DSP) [50, 51, 52, 53].

Nevertheless, explicit and semi-implicit based models are often unfavorable for parallelis-
ing existing sequential applications due to the required alterations and adjustments and
sometimes do not guarantee to improve the performance. The third technique for exploit-
ing parallelism is known as an implicit or automatic technique. Implicit-based models
require no programmers interference as the whole parallelisation process is left to their

compilers. Yet it is an open question whether it is it possible to develop a parallelising
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compiler that discovers all the parallelism available in an application. The short answer
probably is auto-parallelising compilers often do not succeed in delivering full paralleli-
sation because finding parallelism usually requires a sophisticated compiler analysis and
code mapping [3, 23, 6, 24, 25, 11].

Heterogeneous architectures make it even harder for compilers to generate efficient paral-
lel code than with homogeneous machines. Heterogeneous multi-core architectures have
different types of processing cores, and each type is designed to support and carry out a
different set of functions such as the Cell heterogeneous architecture. The Cell proces-
sor, which is targeted in this work, is a single multi-core chip processor that consists of a
general Power Processing Element (PPE) and 8 Synergistic Processing Elements (SPEs)
[54, 55, 56]. The Cell processor potentially offers high levels of parallelism, but it is not
easy to program due to its heterogeneity of CPUs, memory structures and instruction sets.
The PPE is responsible for overall control of the processors while the SPEs are mainly de-
signed for computation. Cell is a distributed-shared memory architecture which has main
memory space on the PPE and private Local Storage (LS) on each SPE. An SPE’s LS can
be accessed directly by the SPEs and by the PPE but only through DMA controllers in a
non-coherent mode [56, 57, 54]. The other heterogeneity of the Cell appears on the in-
struction level as the PPE and SPE’s have different instruction sets. This feature presents
a major challenge for developing Cell applications because it requires writing source code
for each core type and the use of two compilers. The Cell architecture showed performance
potential specially when using good heterogenically adapted code [56].

However, this work focuses on developing a programming tool that can aid high level pro-
gramming languages compiles to automatically parallelise arrays operations, and therefore
Glasgow Vector Pascal (VP) was chosen for this project. It is an extension of the standard
Pascal programming language, and it supports SIMD instruction set extensions and data
parallel operations [58, 42, 7]. Vector Pascal is a suitable choice of language because it
supports array syntax and array operations. Operating on entire arrays rather than loops
with explicit indexing provides opportunities for compilers to generate parallel code. Yet,
the most important feature in this language is that its front-end compiler already supports
SIMD technology and flexible degrees of parallelism, and hence its code generator can be

easily switched to produce look-alike SIMD code that operates on large registers.

1.1 Thesis Statement

Heterogeneous multi-core architecture use is still limited due to the difficulties associated

with programming and managing their heterogeneity. The heterogeneous technology has
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introduced new challenges for compiler developers on how to make parallel programming
easier for ordinary programmers and to make the most of the existing parallel platforms.
I assert that a new virtual machine approach can be employed to reduce the burden of
developing applications for modern general purpose heterogeneous processors while en-
abling automatic parallelisation of computations on large data sets. The work shall be
demonstrated by designing and implementing a Virtual SIMD Machine (VSM) model that
hides the intricate details of the Cell heterogeneous architecture completely and allows
parallelising array operations on its accelerators. The work shall also investigate whether
an array programming compiler, such as Glasgow Vector Pascal (VP) compiler, can be
extended to use the model to exploit data parallelism implicitly and attain sufficient per-
formance. The VSM and the extended VP compiler are expected to work together as one
compiler system that takes a single source code and examines the code for conventional ar-
ray expressions. If an array expression includes arrays of adequate size for parallelisation,
the compiler then delegates the evaluation of the array expression to the Cell accelerators,

otherwise the evaluation is performed on the master processor.

The ambitions are to reduce the complexity associated with the fully automatic paral-
lelisation approach by focusing only on array expressions, and also to ease the task of
developing programming parallel applications by concentrating on algorithms rather than
on parallelisation issues such as communication, partitioning, alignment, and synchroni-

sation.

1.2 Motivations

It’s very obvious that manually developing parallel programs is time consuming, error
prone and costly, besides parallelising existing applications manually usually requires sig-
nificant transformation of code [25, 9, 5, 34, 38, 47, 2, 59]. In the last two decades,
more effort has been put into simplifying the difficult task of explicitly managing par-
allelism on multi-core architectures, and consequently the quality of the parallelising
tools has been improved after the advent of semi-implicit parallel programming models
[30, 60, 20, 50, 52]. The semi-implicit based models have been considered effective par-
allelisation tools to save time and effort, yet they still require programmers’ involvement
to explicitly identify or express parallel components and to verify if it is worthily par-
allelising or not. The verification process is essential in order to guarantee performance
improvement otherwise parallelisation may result in performance degradation. The iden-
tification of available parallelism is also considerably important. Therefore, an attractive

programming approach is to have a parallelising compiler that implicitly spots parallel
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computations in sequential applications, but this would be also a very complicated task for

a compiler attempting to discover all the parallelism available in an application.

In the light of these considerations, this work suggested developing a programming tool
that hides all the underlying details of the Cell processor and assists existing compilers to
focus on parallelising arrays expressions on the Cell accelerators. Arrays are a good target
data structure for several reasons. First arrays are a good candidate for data parallelism
because operations on arrays are inherently parallel operations and can easily be applied
to various sections of an array in different ways. Secondly, evaluating one array expres-
sion at a time minimises the memory requirement as compared to evaluating a compound
statement or using block offloading techniques. This proposed technique focuses on eval-
uating an individual array expression which relatively requires a small space and suits
architectures with limited amount of local storage well. Arrays also provide opportunities
for compilers to directly generate parallel code without the need for a complex analysis
process to search for available parallelism or the need for programmers’ interference to

identify parallel regions of code.

1.3 Objectives

* To provide a fully implicit programming model for parallelising array operations
and supporting scalable parallelisation on heterogeneous architectures such as the

Cell architecture.

* To completely hide the underlying details of heterogeneous architectures where the

accelerates behave as coprocessors.

¢ To introduce a framework that can be used as an abstract model to shorten the time

for developing parallelising compilers for heterogeneous architectures.

* To simplify the complexity of the analytic process that a compiler is required to do

to identify available parallelism.

* To reduce the burden involved in developing parallel programs for general purpose

heterogeneous processors such as the Cell processor.

* To enable programmers to focus on using the proper parallel algorithms rather than

on parallelising code.

* To reduce the execution time of the automatically parallelised programs as compared

to the execution time of the sequential ones.
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1.4 Contributions

The following contributions have been made by this work:

* The VSM approach for abstraction heterogeneous multi-core processors:

— Presenting a new parallelisation approach which imitates the SIMD concept to

increase the work a single instruction performs.

— Developing a fully implicit programming model for parallelising array opera-

tions and supporting scalable parallelization

— Demonstrating the possibility to hide completely all the underlying details of

a heterogeneous multi-core architecture such as the Cell processor.

— Introducing a framework that can be used by existing compilers to parallelise

arrays expression on heterogeneous multi-core architectures.

— Developing a VSM interface as an abstract model to shorten the time for de-

veloping parallelising compilers

— Presenting a messaging protocol that can be used to exchange information be-

tween different processing core types.

— Developing alignment and synchronisation algorithms to handle alignment con-
straints, maintain data consistency and to avoid race conditions while accessing

main memory by a machine’s accelerators.

— Hiding completely all low-level details of memories management such as data
alignments, transferring messages between different cores and data transfers

between the core memory and all devices.

— Presenting a fully implicit model that can be used as API by high-level pro-
gramming languages to perform array operations in parallel on heterogeneous

architecture using a single-source code compiler.
* The PowerPC Back-end Compiler

— Developing a back-end compiler to port Glasgow VP to the Cell’s master pro-

CESSOr.
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— Developing a new approach to optimise the code-generator of a compiler. The
novelty of this approach is to apply a genetic algorithm to automatically opti-
mise machine instructions ordering. This optimiser was not part of the objec-
tives, but it was developed along the way to optimise the VP back-end compiler

for the Cell’s master.

— Extending the PowerPC back-end compiler to work with the VSM model as a

single compiler system.

1.5 Outline

Chapter 2 presents background information on parallel computing. It starts with an
overview of parallel processors and parallel memory architectures. It then talks about
different levels of parallelism and the SIMD technology. After that, it looks at parallel
programming techniques and existing array parallel programming models such as the A
programming language (APL), the Z programing language (ZPL), Single Assignment C

language (SaC) and Fortran language.

Chapter 3 is devoted to delineate the targeted processor and programming language.
It begins with background information on the PowerPC architectures and the machine-
dependent features such as stack frames and functions calling conventions. It then de-
scribes the Cell heterogeneous cores, the main component of the Cell accelerators, and
the communication mechanisms that the Cell supports. This chapter shall also introduce
the main library functions that are provided in the manufacturer’s Software Development
Kit (SDK). The attempt is to discuss only the SDK library functions that shall be used in
this work such as the functions for exchanging messages and thread creation. After that, it
introduces the Glasgow Vector Pascal programming language and its features. The discus-
sion includes more details on how to build VP back end compilers and the required tools.
It discusses also some issues that are closely related to this work such as array boundary

checking and vectorising array operations.

Chapter 4 introduces a number of programming paradigms that have been recently de-
veloped for programming general purpose applications on heterogeneous shared-memory
architectures. It first sheds some light on the two parallel programming models, CUDA
and OpenCL, which have been developed lately to make use of GPUs for general pur-
pose computing. After that, it presents the parallel programming models that have been

introduced recently for programming the Cell processor. Two of these models have been
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introduced as commercial tools such as OpenMP and Offload C++. OpenMP has already
been in use on other architectures. It shall introduce also two other models, CellVM and

Hera-JVM which have been designed specifically for the Cell processor.

Chapter 5 describes a Virtual SIMD Machine (VSM) interface. It starts with a de-
scription of the VSM registers. It then describes the type and format of virtual machine
instructions. It will also present samples of different instruction implementations. It next
explains the developed messaging protocol from both the design and implementation ret-
rospectives. After that, it discusses in detail the VSM’s two co-operative interpreters.
The discussion will introduce two new algorithms that were designed and implemented to

handle the alignment and synchronisation of the VSM load and store instructions.

Chapter 6 discusses the conventional VP back end compiler and the extended version
for the Cell processors. It first describes the PowerPC machine specification of the con-
ventional compiler and gives an example to illustrate how the instructions order can effect
generated code. It then describes the machine-dependent routines and the two stack frame
operations: ENTER and LEAVE. After that, it describes and discusses the extended ver-
sion of the compiler which allows it to parallelise array expressions automatically. The
discussion includes virtual SIMD registers set, new VSM instructions set and any adjust-
ment on the machine-dependent routines which have just been mentions. The chapter
concludes with the description of how to use the extended compiler and the VSM model

as one compiler system.

Chapter 7 discusses in detail a code generators optimiser. The optimiser is based on
genetic algorithm techniques to automatically optimise machine instruction ordering. It
starts with an introduction of the problem and a description of the basic algorithm. It then
looks at key design aspects and the implementation. After that, it presents the experimental
results that show the genetic algorithm’s improvement and the quality of automatically

constructed code generators.

Chapter 8 presents the experimental results which showed that the VP-Cell system
achieved significant runtime performance on the Cell’s accelerators and also a consider-
able performance by using the VSM model for parallelising C code over the Cell’s accel-
erators. This chapter first discusses the observed performance of the VSM model on basic
array operations using BLAS micro-benchmarks written in Vector Pascal. It then pro-

vides detailed analysis on the performance of the VP-Cell compiler based on real-world
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benchmarks. It will also present experimental results obtained using VSM model as an

application programming interface for parallelising a number of C linear algebra kernels.

Chapter 9 presents the conclusion and explores the opportunities for the future that
build upon the work presented in this dissertation.



2 Background

This chapter starts with an overview of parallel processor and parallel memory architec-
tures and then discusses in brief the principles of parallel programming. It then looks at a
number of parallel programming paradigms. The discussion focuses most directly on ar-
ray programming languages since the purposed VSM model was initially designed to back
up array programming compilers in parallelising array expressions. After that, it looks in
a brief at genetic algorithms and how they were previously used in optimising generated

code.

2.1 Overview of Parallel Processors

The interest in parallel hardware dates back to the beginning of the 1960s when Slotnick
proposed the design of the first vector processing machine [61], yet his design was imple-
mented one decade later by the University of Illinois to produce the ILLIAC IV system
[61]. This machine was organized in four quadrants. Each quadrant had its own control
unit and contained 64 processors, and each processor had 6 registers, 2K words of local
memory and operated on 64-bit words [61]. The quadrants were designed as individual
units to be partially used for applications that did not need the computation power of the
entire machine, and eventually only one quadrant was built. The ILLIAC IV was one of
the first machines that supported Single Instruction Multiple Data (SIMD) technology that

basically offers the means to perform the same operation on multiple data concurrently

[3].

Processors that offer support to SIMD technology are considered as a class of parallel ar-
chitectures [7, 62]. By the time the ILLIAC IV was ready to be used publicly, it was taken
by the introduction of the first Cray computer (Cray-1) in 1976 [62]. Cray-1 was designed
with pipeline vector arithmetic units to operate on large data sets, and its CPU sustained
performance reached 138 MFLOPS [3]. A second SIMD computer was introduced in
1979; it was the ICL Distributed Array Processor (DAP) that had 64x64 processor ele-
ments each processing a single bit at the time. Unlike the ILLIAC 1V, the ICL DAP was

a commercial product, and one of the users was the University of Edinburgh which used
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it for several science applications [3]. In 1982, the Cray X-MP supercomputer was re-
leased. It was a shared memory parallel vector architecture with two central processing
units. It had a theoretical peak performance of 400 MFLOPS [63]. During that period two
Massively Parallel Processor (MPP) supercomputers were introduced [64, 3]. Goodyear,
which was produced in 1983, was one of the first MPP systems. The second system was
the Connection Machine (CM-1), and it was also introduced in the early 1980s by the
Thinking Machine Corporation [65]. CM-1 consisted of 64K bit-serial processors, and its
design also supported SIMD instruction sets. In the late 1980s, Cray Research started the
production of the Cray Y-MP supercomputer series [66]. The first machine in this series
was known as Y-MP Model D. This Model was designed to have 2,4 or 8 vector proces-
sors with multiple computation units each. The Y-MP production line continued until the
1990s. The vector processing and massively parallel processor supercomputers are used
for solving complex problems, but they are very costly and require special skills to be
programmed. These boundaries besides the demand for midrange computer machines led
to the developement of minicomputers which progressively developed to microcomputers

or single-user machines.

The 12-bit Programmed Data Processor (PDP) computer was one of the first minicomput-
ers. It was produced by Digital Equipment Corporation in 1965 with practical capabilities
and reasonable cost for small groups . Minicomputers as stand alone machines were not
designed as parallel computers, yet two or more minicomputers were commonly used to
build a system that worked as a parallel computer. As minicomputers developed in the
1970s and 80s, a new small class of computing machines emerged in the 1980s with the
advent of microcomputers or single-user machines (aka Personal Computers PC’s) [3, 4].
Single-user computers with a single core processor have become very popular since the
1990s as their performance consistently advanced and their costs were relatively afford-
able. The performance of single core processors kept advancing during the 80s and 90s
by enhancing their resources, such as clock speed, memory size and storage devices, and
adopting the SIMD technology [4, 67, 7, 68]. The power of conventional single core ma-
chines, however, had reached in the late 1990s some physical limitations like speed, heat
dissipation and power consumption. According to Moore’s Law, which describes the long-
time expectation of hardware developement, computers’ performances were anticipated to
double every 18 months as a result of the number of transistors that can be placed in a
given area. Yet in recent years the single-core architectures clock frequency and other re-
sources have reached a plateau [68, 69]. These limitations as well as the demand for high
performance mainstream machines to keep up with power needed for various applications,
which are used on a daily basis, shifted designers toward multiple core solutions: Special
purpose computing machines that integrate specialized processing elements such as Field

Programmable Gate Arrays (FPGAs), Digital Signal Processors (DSPs) and most com-

11
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monly Graphic Processor Units (GPUs) and general purpose computing machines with

multiple core versions of conventional CPUs [70, 71, 59, 72].

The fast growth of the game and graphics market along with the physical limitations of the
single core technology led to the advent of GPUs in the mainstream industry. GPUs are
highly parallel architecture that are traditionally designed for computer graphics and ded-
icated to calculating floating point operations. The first GPU with hardware-acceleration
was released in 1999 by Nvidia, and it was called GeForce 256 [70]. It was the first fully
3D accelerator. Modern GPUs have also been improved by allowing software developers
to use the GPUs for non-graphics computations, but they are relatively expensive and hard
to program. These burdens plus the necessity for high performance machines for gen-
eral purpose computing applications have led also to the introduction of general purpose

multi-core architecture.

However, the mainstream industry has been focusing recently on the development of pro-
cessors with a relatively small number of cores that theoretically are expected to offer a
satisfactory performance for general purpose computing. Most modern multicore chips
are symmetric platforms, such as AMD Phenom II with 6 cores and Intel Nehalem with
4 cores, and both were released in 2008 [9, 73]. The alternative is heterogeneous multi-
core chips, such as 9-core IBM Cell processor which was produced in 2007 [54, 56, 74].
Heterogeneous multicore architectures often have specialized cores that are designed for
specific functionality, and they are expected to provide better performance as compared
to symmetric platforms [68, 9]. The VSM model was implemented to parallelise array

operations on the Cell heterogeneous processor.

2.2 Parallel Memory Architectures

Parallel memory architectures can be distributed-memory, shared-memory or a mix of
both. A distributed-memory system, also called a private-memory system, consists of a
number of computers’ processors connected via a general interconnection network, and
each processor has it own private memory and can operate independently [5, 4, 75]. This
type of structure does not require memory coherence protocols because updating a lo-
cation on one processor’s memory will not affect the data on the memories of the other
processors. One of the advantages of a distributed-memory system is that it makes build-
ing a large-scale network of heterogeneous machines with high performance computing
possible. The other advantage is that each processor has very fast access to its local mem-
ory. This feature can also be found in Symmetric Multiprocessing (SMP) platforms. The

third advantage is that distributed-memory systems are scalable in terms of memory size
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because as the number of processors increases the total size of memory increases [76].
On the contrary, distributed-memory platforms are not appropriate for applications that
are based on global data structures and require programmers to explicitly define how and
when data is transferred between processors. Distributed memory systems also require
a message-passing protocol to communicate between processors [31, 8], and one of the
widely used parallel programming model for managing distributed-memory systems is

Message Passing Interface (MPI).

A shared-memory system refers to a global address space that can be simultaneously ac-
cessed by multiple processing elements [8]. This form of architecture is often an Uniform
Memory Access (UMA) system that makes a global physical memory equally accessible
to all processing elements [76, 75]. The communication between processors in a shared-
memory system is maintained by memory coherence protocols which notify the involved
processors of changes to shared memory resources. This technology offers a fast media
of communication between multiple processors, and it is relatively easy to program be-
cause there is only one source of data. The most popular parallel programming model
for shared-memory platforms is OpenMP. I shall elaborate more on OpenMP in the next

chapter.

Comparing the two parallel memory systems, software problems are more complex in
distributed-memory systems than in shared-memory systems, while hardware problems
are easier in distributed-memory systems [75]. The two systems can be, however, com-
bined together in what is known as Distributed Shared Memory (DSM) systems. A DSM
system generally involves a number of nodes connected by an interconnection media, and
each node, in addition to its own local memory, has access to a shared memory [75]. DSM
systems could be a set of clusters connected by interconnection network or could be built
on a smaller scale such as the Cell processor. On the Cell processor, each accelerator has

its own local memory and shares with other accelerators the system memory.

2.3 Parallel Computing

Parallel computing is a fundamental research topic in computer science and grew as a
topic of interest in the mid 1980s upon the introduction of massively parallel processors
and networks of computers [1, 3, 6, 77, 78, 8, 9, 10, 11]. The interest in this area has
also been stirred up in the last two decades by the advent of the Single Instruction Mul-
tiple Data (SIMD) technology in the 1990s and later by merging multi-core platforms,
such as multi-core general purpose architectures (CPUs) and special purpose platforms

like Graphics Processing Units (GPUs), in the mainstream industry [12, 7, 14]. These
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Single Data | Multiple Data
Single Instruction SISD SIMD
Multiple Instruction MISD MIMD

Table 2.1: Flynn’s taxonomy

modern technologies offer high performance platforms with reasonable cost that made
them widely used in many application areas, such as image processing, graphics, multi-
media, modeling and scientific computation. However, this widespread industry adoption
of multi-core architectures has a significant influence in mainstream software and applica-
tions development and has introduced new challenges for software developers to provide
proper, simply-used and up to date tools for developing parallel and concurrent programs.
The main challenges in parallel programming are: managing data transfers between cores,
handling the required communication among cores, synchronization between cores, per-
forming any required data alignments and exploring parallelism available in applications
[19,20,6,21,17,79, 38,22, 23]. The following sections shall discuss two of the key prob-
lems of parallel programming: the SIMD technology and alignment issues and then look
at the key issues to identify parallelism such as levels of parallelism, types of parallelism

and parallelisation techniques

2.3.1 SIMD technology

In 1962, Michael Flynn proposed what is known as Flynn’s taxonomy for categorizing
computer machines [80]. Flynn’s categorization, was based on data streams that can be
manipulated by instructions or control units, and it was divided into four classes as shown
in Table 2.1. The discussion in this section shall focus only on the SIMD class or technol-

ogy since the VSM parallelisation model emulates the conventional SIMD concept.

SIMD technology includes suitable techniques for applications that are inherently paral-
lelisable such as media processing, 3D graphics and games. This technology is a software
model that extends a machine instruction set to allow operations on multiple data con-
currently and consequently offers performance improvement [7, 81]. This technology has
been in use since 1970 by supercomputers such as CM-1 and ICL DAP [82, 65]. The
CM-1 and CM-2 machines were capable to carrying out 64K 1-bit arithmetic operations
simultaneously [65]. The ICL DAP was also a SIMD architecture that had the capability

to perform 4096 arithmetic operations at a time [82].

This technology has been through several developments especially after it has being used
in mainstream computers. Sun Microsystems adopted this technology in the mid 1990s

by introducing SIMD integer instructions in its UltraSPARC I machine. Around the same
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time, Intel introduced the MMX instruction set with its fifth generation of Pentium ar-
chitectures [83]. MMX was integer instructions that operate on existing floating point
registers. Yet sharing one set of registers caused a problem as processing units can not
work on both floating point data and SIMD integer data at the same time [7, 14]. In 1998
Advance Micro Devices (AMD) also released its 3DNow! instruction set to support SIMD
technology on the AMD K6-2 architectures [84]. The first implementation of the 3DNow!
supported only SIMD floating-point operations [84]. One year later, Intel introduced with
the Pentium III processor another instruction set called Streaming SIMD Extension (SSE).
The SEE extension solved the problem that MMX had by using independent registers
(called XMM). Further advancement was provided by the SSE extensions series; SSE2,
SSE3 and SSE4, to support computation in parallel on 128-bit integers and floating point
[14]. Apple, IBM and Motorola also developed their SIMD extensions (AltiVec) to the
Power architectures [85, 14, 7]. AltiVec is a 128-bit extension and has its own register file.
AltiVec architectures do not use scalar integer and floating point units, instead they use
a 128-bit vector processing unit [85]. Nowadays most machines provide 128-bit SIMD
instruction sets, yet Intel introduced in 2011 its Advanced Vector Extensions (AVX) on
the Sand Bridge processor family [86]. AVX is a 256 bit set extension to Intel’s previous
SSE [81, 86].

SIMD instructions allow processing multiple data items in a single operation [7]. The
scale of performance that SIMD machines can provide is based on the length of machine
registers and the size of the data type to be processed. For example, the level of paral-
lelism that Intel SSE series and IBM AltiVec can support ranges between two and sixteen
words at a time depending on data type. The number of words processed at a single step,
however, can be doubled by using the Intel Advanced Vector Extensions (AVX), which
was introduced in 2011. Intel AVX instruction set has been extended to operate on 256
bit instead of 128 bit [81]. The technology has been introduced as part of the Sand Bridge
processor family [81]. These wider vectors improve performance as more data elements

can be processed in a single operation.

A number of software tools, such as compilers and library functions, have been developed
to make use of the parallelism offered by SIMD technology [12, 7, 14]. In 1997, Stanford
University introduced a C parallelising compiler for the Sun UltraSPARC architecture
using SIMD extensions [7, 87]. Intel also developed a C++ compiler that provides a set
of built-in functions to support MMX and the SSE series. Codeplay’s VectorC compiler
was also designed to produce vector code for SIMD machines. The VP compiler, which
was developed at Glasgow University, is also designed to support an SIMD instruction set
such as MMX and 3DNow [58, 7, 35]. In this project, the SIMD technology was imitated

using a virtual SIMD instructions that operate one large vector (virtual) registers.
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2.3.1.1 The Data Alignment Problem

Data alignment is the way data is laid out and accessed, and the rules, which control it,
are different from one machine to another. On an original machine instruction set, most
architectures handle a load and store instruction to unaligned data internally. For example,
on most RISC machines any attempt to access memory locations that are not aligned will
generate an alignment fault [88, 89]. This fault is usually solved internally by the operating
system using byte loads or stores to overcome the problem [88]. Other machines, like x86
architectures, did not require aligned memory access while processors, such as MIPS, have

special unaligned memory access instructions [88].

However, in order to exploit the best performance of SIMD architectures, SIMD memory
access instructions must be aligned because accessing unaligned data can considerably
effect the efficiency of SIMD vectorisation [7, 90, 14]. Most modern architectures support
SIMD extensions which require data to be aligned [7, 90, 14, 89]. For example, the Cell’s
SPEs instruction set is an SIMD extension that operate only a 16-bytes boundary, and
if data is unaligned the compiler then must explicitly handle that by using, for example,
rotate or shuffle operations to align and extract data [85]. Alignment problem became
one of the challenges in using SIMD instructions sets as data in many applications is
unaligned. For instance, unaligned dynamic memory accesses in the MediaBench and
SPEC95fp benchmarks represent around 86% of the total memory access [90].

The alignment problem, in fact, is also one of the most important issues in the VSM design
which meant to imitate the SIMD technology using bigger (virtual) registers. Because
VSM is designed to parallelise arrays operations on multiple cores, this would highly
lead to having the sub-array boundaries unaligned. To illustrate this point let us consider
using the Cell’s SPEs which require data to be aligned to 16-byte or 128-byte boundaries.
Assume that the arrays A,B and C are 32-bit floating point arrays and all are aligned to
a 128-byte boundary, and the size of A is 1024, B is 2048 and C is 4096 elements. Also,
assume that data is divided equally when multiple SPEs are used. Now, let us start with
the first expression shown in Figure 2.1. The VP compiler will deal with this expression as
if it operates on arrays of 1024 elements. The decision is based on the size of the left hand
side of the expression, and thus such expressions are valid as far as the R.H.S. arrays are
equal or bigger than the one on the L.H.S of the assignment operator. Provided that, the
compiler will add the first 1024 elements in B to the corresponding elements in C and store
the results in array A. Evaluating this expression on 1, 2, 4 and 8 SPEs will comply with
the SPE’s alignment constraints and will give correct results. It is also expected to improve
the SPEs performance because the operation operates on the same corresponding elements
in the arrays, A,B and C, and the starting addresses of each sub-part of the three arrays

on each SPE adhere to both cache line and hardware alignment rules even when the arrays
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A:=B+C;
Al1..1024]:=B[15..1038]+C[2111..3134]

Figure 2.1: Arrays Alignment

are partitioned on 2,4 and 8 SPEs. However, if a parallelising tool was strictly designed to

divide data equally, the tool then can not parallelise such arrays on 3 or 6 SPEs.

The second expression, which is shown in Figure 2.1, is also a valid array expression in
VP. It uses the same arrays A, B and C, but it operates on sub-ranges of the arrays. Though
the starting address of arrays B and C are aligned, the first SPE will start from element 15
in B and element 2111 in C and these locations are not aligned. This raises two separate
but related matters: Validation and Performance. Evaluating the second expression with-
out handling the misaligned starting addresses of the sub-parts of B and C will generate an
alignment error when attempting to load these sub-parts. This would be also a problem
when attempting to store the results if array A started from a memory location that is not
aligned instead of starting from the first element as it is in Figure 2.1. One solution to
this alignment problem is to load additional bytes in temporary data buffers and then shift,
rotate or copy the data to aligned buffers. The problem of storing unaligned data is even
more complicated and challenging than loading additional bytes because it requires pro-
cess synchronisation. However, fixing alignment problems must not generate alignment
errors and most importantly must produce the expected results. This process often comes
at the expense of the slower performance, yet one can sacrifice performance to get concur-
rency but not results. The alignment and synchronisation algorithms that the VSM model

employed to solve these issues will be discussed in detail in Chapter 5.

2.3.2 Levels of Parallelism

Parallelism can be exploited at four different levels: bit-level parallelism, instruction-level

parallelism, data-level parallelism and task-level parallelism.

2.3.2.1 Bit-Level Parallelism

A bit-level parallelisation is based on increasing a machine word size. The word size on
early microprocessors was only 4-bit, and since then it has been doubling from 8-bit to
16-bit, then to 32-bit, and lately to 64-bit . The 64-bit architectures are now leading the

market.
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2.3.2.2 Instruction-Level Parallelism

The Instruction-level Parallelism (ILP) techniques are based on the number of instructions
that can be executed at a time. Pipelining instructions execution is one of these techniques.
Pipelining, in principle, implies dividing an instruction processing into several stages.
A processor with an N-stage pipeline can have up to N instructions at different stages
of completion. This technique became available in the 1960s after the introduction of
machines with multi-stage instruction execution and has became the de facto standard

technique in modern architectures.

Issuing more than one instruction at a time is another technique to exploit parallelism on
instruction level. Processors with multiple execution units can issue different instructions
to different units. For example, on the Cell processor each accelerator has two execution
units that are known as Even and Odd units. The Even unit is designated for memory
access and branch instructions, while the Odd unit handles computing instructions [56].
These two execution units allow the execution of two instructions at a time, for instance,
by routing a “Load” instruction to the Even unit and at the same time issuing an “Add”
instruction to the Odd unit [91]. There are also other techniques to exploit instruction-level

parallelism including out-of-order execution and register renaming [92].

2.3.2.3 Task Parallelism

Task parallelism (aka function parallelism) basically focuses on splitting a big problem
into sub-tasks. The sub-tasks can then be implemented as threads and executed across
parallel processors. The two important issues about task parallelism are: load balancing
and synchronization. Sub-tasks execution times often vary dynamically from one sub-task
to another, and hence poor load balancing may degrade performance. Synchronization is
also an issue of concern in task parallelism because improper synchronization may result

in race conditions or additional overhead costs. These issues also hold for data parallelism.

2.3.2.4 Data Parallelism

This form of parallelism concentrates on splitting data into small blocks that can be pro-
cessed in parallel. The history of data parallel programming began with the introduction
of vector processors in the 1970s, and it has grown widely since the 1990s after a wide
range of modern processors have instruction-set extensions for performance improvement
specially in multimedia applications [7]. Data parallelism as compared to task parallelism

appears to be promising since:
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* Many applications are data-intensive in nature.

* Easier to spot data parallel operations than to find subsystem tasks specially in im-

perative and array programming languages.

» Simpler to assign blocks of data to individual processors than to split code into

subprograms assuming homogeneity in operations.

In contrast, there are challenges associated with data parallel execution. The fundamental

challenges are:

Identifying data parallel regions

* Automating data partitioning

* Accessing shared data that may result in a race condition problem.
* Synchronizing common data access to avoid race condition

* Synchronizing operations to avoid data inconsistency

2.3.3 Identifying Parallelism

The simplicity of a given model is often measured by the capability of its compiler to
handle the parallelisation tasks and most importantly how to exploit available parallelism.
Identification of available parallelism is a significant step in the parallelisation process,
and there are three possible approaches to identify parallel regions of code: explicit, semi-

implicit or implicit techniques.

2.3.3.1 Explicit Parallelism

Explicit-based models, such as POSIX threads (Pthreads) and the Message Passing Pro-
gramming (MPI) [93, 31], require substantial details, such as identifying parallelism, mes-
sage passing, data movement, alignment and synchronization, to be provided manually by
programmers. This approach, which is usually referred to as fully explicit parallelism, is
time consuming, error prone, and costly. The explicit approach allows programmers to
have the control on tuning a given code for better performance, but sometimes it makes
the progammers’ task difficult because the programmer have to specify the parallel parts
and manage, and this could result in performance degradation if the selected parts were not

worthily parallelisable. For these reasons, software researchers, in the last two decades,
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have put additional effort on developing various techniques for managing parallelism au-
tomatically. Yet success in developing simple and implicit identification techniques has
been limited due to the complex analysis that compilers are required to do in order to

identify available parallelism in sequential applications [26, 23, 17, 27].

2.3.3.2 Semi-Implicit Parallelism

Most of the widely used parallel programming models nowadays are capable of handling
parallelisation tasks like communication, data partitioning and synchronisation automat-
ically, but they still require the interference of programmers to identify parallel regions
in source code. This is why they are called semi-implicit models. These models depend
on annotations, preprocessor directives and constructs to identify the parts of the source
code to run in parallel leaving the parallelisation process, such as data movement and
synchronization, to the compilers. Developers during recent years had good success in
applying this technique in various models for programming parallel architectures. Some
of these models, such as OpenMP and OffloadC++, depend on preprocessor directives and

annotations to exploit available data parallelism [30, 60].

OpenMP is the most commonly used semi-implicit programming model nowadays for
shared memory mutli-core architectures [30, 8, 36]. Other models focus on task paral-
lelism such as Parallel Virtual Machines (PVM), CellVM, Hera-JVM and Intel Threading
Building Blocks (TBB) [49, 48, 20, 5]. These models are also explicit-based tools that
offer similar identification techniques which are initially designed to exploit parallelism at
threads level. For example, CellVM and Hera-JVM depend on annotations to define sub-
tasks in applications, while Intel TBB depends on a C++ template library to ease using
standard threading paradigms such as POSIX threads [94]. CUDA and OpenCL are pro-
gramming models that have recently merged in the parallel environment for programming
specialised platforms. They have been developed to support general purpose computation
on processors such as GPUs and digital signal processing (DSP) [50, 51, 52, 53]. Hybrid
Multicore Parallel Programming, called OpenHMPP, is also a directive-based model that
has been recently introduced for developing parallel programs on CPUs and GPUs [37].
There are also some models that rely on Libraries to exploit data parallelism explicitly. For
example, CUDA Data Parallel Primitives (CUDPP), which runs on platforms that support
CUDA, is a library of data-parallel algorithms that can be used for parallelising primitive

operations such as Reduction and Sort operations [95].

Though semi-implicit parallel programming models liberate programmers from several
parallelisation tasks such as thread creation, communication, data transfers, synchroniza-

tion and alignment, they still depend on programmers to identify parallel regions of code
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[25, 9, 10]. Explicit and semi-implicit based models are also unfavorable for parallelis-
ing existing sequential applications due to the required alterations and adjustments and
do not guarantee to improve the performance. In view of these considerations, it will be
practically productive if there is a tool that can automatically spot and parallelise avail-
able structures in sequential applications and frees ordinary programmers from managing
parallelism explicitly [25, 9, 8, 79, 10].

2.3.3.3 Implicit Parallelism

The third approach for exploiting parallelism is known as an implicit or automatic tech-
nique. Implicit parallel programming models must have the capability to automatically
manage parallelism starting from thread creation and identifying available parallelism,
going through data partitioning, communication, alignment and ending with synchronisa-
tion. That is, this approach is expected to facilitate the development of parallel programs
and to direct programmers to focus on solving problems in parallel fashion and not needing

to think about the parallelisation process.

The implicit approach is a practical technique to extract parallelism already inherent in the
structure of a programming language such as array and functional languages. High Per-
formance Fortran (HPF) and Matlab [19, 39], for example, offer constructs for expressing
parallelism in an implicit manner. ZPL, Fortran 90 and VP languages depend also on ar-
rays abstraction to express data parallelism [41, 96, 97, 40, 42, 34]. Functional languages
such as SaC and GpH are based on a computation model that also suits concurrency mech-
anisms [98, 43, 44]. Mutation-free programming models, like functional languages, are
suitable for parallel programming at threads level because functions can be easily evalu-
ated in parallel [99, 100, 101]. Chapel, Fortress and NESL are also parallel programming
languages but developed for particular supercomputers. However, such programming lan-
guages, which have the basis to support parallelism, can depend on compiler technologies
to implicitly identify opportunities for parallel code without the need for annotations and

directive [6].

Though implicit-based parallel programming models are very convenient and practical for
parallelising existing applications, the implicit techniques tend to be often very compli-
cated and hard to implement because it requires a complex code analysis to determine the
part of code to run in parallel [102, 103, 25]. Also, many of the implicit parallel languages
are not commonly used because programmers often prefer to use languages that they are
more familiar with. Actually, these considerations were what motivated us to think about
developing a fully implicit programming model such as the VSM model which focuses
only on parallelising arrays operations to narrowing the target code and to ease the task of

existing compilers specially for well known programming languages.
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Tﬂ—Lﬂa)7p7a

Figure 2.2: Sample of APL’s Character Set

2.4 Parallel Programming Paradigms

Programming paradigms that allow expression parallelism can be dated back to the intro-
duction of the first imperative array language; A Programming Language (APL). Since
then, there have been various programming paradigms introduced, such as functional and
array programming languages, APIs models and virtual machines, for developing parallel
programs. However, these paradigms have used different approaches to exploit and handle

parallelism.

The discussion below focuses most directly on array programming languages since the
proposed VSM model was initially designed to back up array programming compilers
in parallelising array expressions. The following sections introduce the array program-
ming languages: APL, ZPL and Fortran90. It then touches briefly on Single Assignment
C (SaC) and virtual machines technology as the proposed VSM model is a virtual ma-
chine based design. The recently developed parallel programming models like OpenCL,
OffloadC++ and OpenMP shall be discussed in the next chapter.

2.4.1 A programming language

The A Programming Language (APL) is one of the pioneer imperative languages that
introduced the concept of arrays as data objects and has been the most influential of data-
parallel languages. It is based on a mathematical notation invented by K. Iverson in 1957
[104]. APL in it’s first releases used an unusual character set and symbols rather than

words [104]. Some of these symbols are shown in Figure 2.2.

APL was first used by the IBM System/360 computer in the early 1960s [105]. After
that APL\1130 was introduced for the IBM 1130, and few years later used by the IBM
5100 desktop computer which consisted of a keyboard and a small CRT [106]. Then an
advanced version of the language, called Sharp APL, was released in 1979 by a Canadian
firm named L.P. Sharp Associated. The Sharp APL version added a number of language
extensions such as shared variables, nested arrays, file system and packages for grouping
objects. In the 1980s, IBM released the APL2 programming language for its mainframes

such as CMS and TSO. APL2 included new features to improve the use of nested arrays,
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and it was considered as a standard for the next APL interpreter developments [106]. In
the 1990s, Iverson introduced an advanced version of APL called the J language. J uses
an ASCII character set instead of the special symbols used in the previous releases of APL
[107].

The APL language provided workspace, like in MATLAB, in which a user can define pro-
grams or operate on data without the need to write programs. For example, the following
line,

V1234

assigns the values 1,2,3 and 4 to vector V, and the next line

+/V

performs a reduction add operation on vector V and displays 10 as a result.

APL also offers library routines for handling linear algebra operations which made it pow-
erful in performing linear operations such as matrix multiplication. The APL language is
available on Windows and UNIX platforms and offers interpreters and compilers for both
platforms [106, 108, 26]. APLNext, Dyalog and MicroAPL are advanced interpreters that
operate on Windows, Unix, and Linux. APL is often thought of as an interpretive lan-
guage, yet there are also a number of APL working compilers. Most of the APL compilers
are source-to-source compilers that translate source code to a low level language, such as
C, and then use intermediate language compilers [26]. In the mid 1980s, Budd developed
an APL compiler that worked under UNIX on the VAX-780 vector machine [108]. Budd’s
compiler is a parallel compiler based on implicit techniques to exploit parallelism in APL

programs [108].

The language has been used in many fields and for different purposes such as mathemati-
cal, economic, accounting research, and simulation applications, and it has great influence
on several programming languages such as J, K, Mathematica, MATLAB, SaC and Glas-
gow Vector Pascal [106, 108, 58, 109, 44]. It is still in use for IBM mainframe computers
now, but the popularity of APL has shrunk since the 1980s partially because of the diffi-
cultly to migrate it to the environment of general purpose computers .

2.4.2 Z Programming Language (ZPL)

ZPL is a parallel array programming language that was originally called Orca C. It was
introduced by Washington University between 1993 and 1995 [110]. It is a data parallel

language that supports most primitive operators and data types as well as complex numbers
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and parallel arrays. The main feature of this language is its flexibility in running programs
on both sequential and parallel machines without the need for having any forms of explicit
parallelism such as preprocessor directives [111]. A ZPL program structure is like that of
Pascal programs. It is constructed of procedures that have similar forms to those in Pascal
and C. A ZPL procedure can accept values or references as arguments and return a single

value. The following prototype shows the general form of a ZPL procedure declaration:

procedure pName(argument) :returnType

ZPL has two unique data structures, regions and directions, to declare parallel arrays and
to provide indices for array references. What follows looks at these two structures and a

number of array operators.
1. Regions

A region is a composed object or entity that accommodates data structures such
as arrays. It also reduces the use of loops and indices, as we shall see shortly,
to manipulate arrays, and most importantly helps compilers to generate code that
can be executed on single-core machines or parallel machines [40]. A region is
much like a conventional array but without associated data type [110]. The next
statements illustrate how to use the keyword region to declare regions of different
dimensions and then use declared regions to define region specifiers and declare
arrays. The following example declares region X of one dimension with a set of
indices {(-2), (-1),(0),(1),(2)}

region X=[-2..2]
while the next statement defines Y as a 2D region of sizem x n.
region Y=[1..m,1..n]

A region’s name enclosed in square brackets ([. .]) is used to define a region spec-
ifier. Region specifiers are like types in Pascal, they can be used to declare arrays
with the same size and rank or to augment arrays with borders. For instance, the
following statement declares three single-precision floating point arrays variables
A, Band Coftype Y.

var A,B,C:[Y] float

2. Directions
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direction north
orientation

direction south
orientation

direction east = [ 0,1] One position ‘“to the right’’ in
relative orientation

direction west = [0,-1] One position ‘“‘to the left’” in relative
orientation

[-1,0] One position ‘‘above’ in relative

[ 1,0] One position “‘below’’ in relative

Figure 2.3: ZPL Directions Operators

Directions can be used to declare constant vectors that refer to relative positions in a
given array. This mechanism is similar to the transformation process. The constant
vectors should correspond to the four cardinal directions. The general syntax for a

Direction is as follows:

direction directioName = [d;,d,ds,....,d,];

where d is a constant integer called offset and n is the rank of the direction. The
constant value of ’d” could be positive or negative. A positive value (offset) refers
to an element with higher index in that direction, and a negative value (offset) refers
to elements with lower index values in that direction; however, if the d’s value is
zero, it means that the entire interval for that direction will be copied into the new

region or array [40]. Examples:

A direction and a base region can be combined by using an (of) operator to
define (or augment) a new region adjacent to the based region. The general form
is

[ Dof R ]

where Dis adirection and R is a base region. For example, the successive effects

of the following statements are as follows:

Linel: region X =[1..2,1..3]
Line2: [X] A:=1.0
Line3: direction E = [0, 2]
Lined: [Eof X] A:=2.0

Line 1 declares a 2D (2 x 3) region called X. The region specifier X then was used in

Line2 to declare array A and was initialized to 1.0. After that, a direction called E is
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declared in Line3. In Line4, the E direction was used to augment array A with two
columns on the right hand (east) side, and these augmented columns were initialized
with 2.0.

With regard to the boundary problem, in ZPL region specifiers and the (of) operator
can be used to augment arrays with borders. For example, Line4 references the 4
and 5™ columns of X, yet array X as declared in Line2 did not have these columns.
In this case, the ZPL compiler, according to the definition of directionE in Line3,

extends array X to have another two columns on the right hand side.

3. Array Operators

* Reference operator (@)

The @ operator is used for arrays offset-referencing. It can be with an array
name and a Direction to translate the indices of a given array based on the
given direction vector [40]. For example, given the four directions in Figure

2.3 and a region specifier R, the following statement
[R] A:=A @ north

increments all indices i in A by 1 where i represents rows indices, and it is
equivalent to
Ajj <= Ait,

While the following statement
A:=B @ west 4+ C @ east

replaces each element in A with the element just to its left in B and just to its

right in C. It is equivalent to

Aj jeBi j-1+GCi j11

* Reduction operator (op <)

It compresses an array to form a smaller one. There are two types of reduc-
tions: Partial and Complete. A partial reduction shrinks a given array to a
smaller array, and thus it requires the size of the original region (the operand)
and the new region (smaller) to be specified [40]. For example, the following

statement
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1.m, 1] Y:=+<[l.m,1..n] X

indicates that array Y will have only one column and that the n columns of
each row in X are reduced (by addition) and the scalar result is stored in the

corresponding row.

A Complete reduction produces a scalar reference [40]. For example,
sum =+ <KX

results in returning the sum of all the elements in array X.

Flood operator (>>)

It is similar to the concept of scalar promotion [40]. It allows you to copy
elements from a low rank array to a higher dimension array. Its format is
similar to the partial reduction operation. To illustrate how this operator works,
assume that X and Y are two arrays with the same size and rank, the following

statement
R] Y :=>[2,1.3] X

then results in flooding array Y with rows that are identical to the row number

2 in array X. That is, coping 2" row of X to each row in Y.

wrap operator (@) can be used to access to the opposite side if it attends to

access outside of array boundaries.

This language is targeted at supercomputers rather than workstations. It transforms ZPL

source code to ANSI C object code that can be compiled for the target machine using a C

compiler. This construction gives ZPL some flexibility in linking to other languages.

2.4.3 Single Assignment C

Single Assignment C (SaC), which first appeared in 1994, is a purely functional array

processing language that is designed to support numerical applications, in particular array

processing [34]. Functional programming defers from imperative programming in that

the computation is based on immutable objects instead of state objects, and hence purely

functional languages, such as SaC, do not have side-effects in the computation process.

SaC’s design also focuses on supporting arrays as basic data structures such as APL and

J. These two features made SaC well suited to parallel programing [101].
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print ( reshape ([],[1])))

print ( reshape ( [3], [3,5,8]) )

print ( reshape ( [2,3], [6,1,7,9,5,8]) )
print ( reshape ( [2,3,1], [6,1,7,9,5,8]) )

Figure 2.4: Defining Arrays in SaC

SaC is a subset of C and is also influenced by APL and SISAL. A SaC program structure
is very similar to C programs which makes it easy to be adopted by programmers who are
imperatively oriented. The language offers a concise way to express array operations on a
high level of abstraction [34]. While most array programming languages provide built-in
array operations, SaC looks at arrays as abstract data objects that have specific algebraic
properties. This approach offers the flexibility to have user-defined operations that can be
applied on arrays of any size and rank [112]. The following discussion give an overview
of the language arrays essentials and the central WITH-loop constructor that is used in

SaC to map operations on arrays.
* Array Definition

Arrays in SaC are defined using the reshape operator which takes two arguments: a
shape vector and a data vector. The shape vector determines its rank (dimensions)
and size, and the data vector supplies the initial values. Arrays, vectors and scalars
are treated the same. Scalars values are considered as arrays of O-dimension [112].

Figure 2.4 shows a simple SaC program to various arrays.

The first line defines a scalar and initials it with 1, and then outputs 1. The second
line defines a vector of size three, initializes it with the given values and then outputs
the result which is the vector 3 5 8 . The third line defines 2-dimensional array

of size 2 x 3, initializes it with the values in associated list, and the output looks
as follows: 9 5 9" The last line defines 3-dimensional array of size 2 x 3 x 1

and initializes it with the same previous values, and thus the output is the same as

the previous one.

* Basic Operations

— dim( X ) returns a scalar that represents the rank of the array X.
— shape(X) returns the shape vector of the array X.

— genarray(shp,expr) generates an array of size shp and whose elements have the

same value as expr which could be a vector.
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With
Generator —> (exp; < ldentifier < exp;) : value
Operation

Figure 2.5: SaC WITH loop

— modarray(arr,expr) defines an array of shape shape(arr) whose elements are

set to the value expr which could be a vector.

* Reduction operations

sum(a ) sums up all elements of the array a.

all(a) returns true if all elements of a are true otherwise returns false.

any(a) returns true if any element of a are true otherwise returns false.

maxval(a) returns maximum value of a.

minval (a) returns minimum value of a.
* WITH-loops

This SaC loop structure can be used to specify a given operation on a subset of
elements of an array. A WITH-loop construct basically comprises two parts: a
generator part and an operation part. Figure 2.5 shows the syntax of with-loop
construct [34]. The first part (generator) which come immediately after the keyword
WITH) defines a set of index vectors and an index variable which is supposed to
present the elements of this set. The index vectors are defined by two expressions to
determine the lower and upper bound of a rectangular range. Also one can initialize
the selected element, in the generator part, by appending the value after a colon
symbol as shown in the figure below. The second part (operation) determines the
computation to be performed on each elements of the index vectors set defined in

the first part.

The following example shows how a subset of array X, which is declared in the first

line, is modified using the modarray () operation.

X =19,3,5];
with

([0] <Kk < [6])
modarray (X , 8)
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The above with-loop example first checks the indices; K, into X, and if K > 0 and K < 6
is True, it then executes the modarray() function which changes or modifies the current

value in the index positions; K, into 8. Therefore, the result would be [9 8 8].

The SaC compiler accepts source code as input and generates a C file which can then be
compiled using one of the existing C compiler. The SaC compiler and its runtime system
are capable of creating multi-threaded code that run in parallel on shared-memory archi-
tectures [34] and implicitly handle resource managements such as thread management and

memory management for parallel execution.

A few years ago, Glasgow University and EPSRC had collaborated together to merge SaC
and Vector Pascal technologies. The School of Computing Science at Glasgow University
team worked on translating inner loops of SaC to Vector Pascal (VP) instead of C [113] to
allow Vector Pascal to parallelise those inner loops, and then compile the parallelised code
to libraries which can be linked back to the main SaC program. Combining the techniques

of the two languages, VP and SaC, had offered some gains in performance.

Recently, an auto-parallelising compiler framework has been introduced to generated CUDA
code from SaC [114]. This approach targets the data parallel loops, WITH-loops in SaC
for parallel execution. It maps the WITH-loops to CUDA kernels and performs some

transformations to improve performance.

2.4.4 Fortran

It was one of the first high level programming languages. Its design concentrates on gen-
eral scientific applications [115]. It was the pioneer language that allowed programmers to
use high-level language instead of using a particular assembly language. The first version
of Fortran, which was released around 1957, included 32 statements such as DIMENSION,
GOTO, DO Loops and a number of I/O statements [116]. One year later, IBM released
Fortran II that included six new statements. These new statements were introduced to sup-
port pass-by references procedural programming. IBM also developed Fortran Il in 1959,
but it was not released due to some machine-dependent features. This problem, however,
did not prevent the language from spreading and being widely used in the 1960s. The issue
of portability was augmented even more as new versions of the language, which were de-
veloped by other vendors, had the same problem [117]. The importability problem, which
was partially solved by Fortran IV, led to the advent of the first standard for a programming

language.

In 1966, The American National Standards Institute (ANSI) approved the first Fortran

standard which materialized in two versions: Basic Fortran and Fortran. The Basic Fortran
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standard was based on Fortran II but did not address the portability issue [116]. The other

version, which is known as Fortran 66, was based on Fortran IV [117].

The second generation standard, which is known as Fortran 77, was released in 1978. It
added features such as IF, END IF, ELSE, ELSE IF, direct-access file I/O and character
data type [118, 119, 116]. This standard also changed or completely removed some of
the first standard’s features not often utilized [116]. During the 1980s, new implemented
features, such as INCLUDE, Do WHILE and END DO statements, were added to the
language but were included only in Fortran 90. Recursion procedures were also supported

by some Fortran 77 compilers such as DEC but was fully supported by Fortran 90 [116].

The Fortran 90 standard, which was first proved by ISO and then by an ANSI Standard,
was a major revision of the preceded version. The 90 standard maintained most Fortran

77 features and included new features such as the following [116, 120, 96]:

1. Dynamic data structures using ALLOCATABLE keyword and ALLOCATE and DEAL-
LOCATE statements.

2. Pointers that can be used to declare and reference dynamic objects
3. SELECT ..CASE for multi-path switching. It is similar to the SWITCH statement in C.

4. Grouping procedures and data together using Modules which are conceptually, similar

to units in Pascal and classes in C++.

6. A free-form language in which characters do not need to be in a specific location as

used in punched card programming.

7. The length of an identifier name was extended to 31 characters instead of only 6 char-
acters as in Fortran 66 [96, 120, 116].

8. Built-in support for array manipulation.

Basic Concepts of Arrays in Fortran
* The default arrays layout in Fortran is a column-major layout.

* Array variables can be declared as primitive data types, such as integers and reals,

or as a user-defined data type.
* An array lower bound is assumed to begin with 1 unless stated otherwise.

» Arrays variables can be passed as arguments to basic intrinsic procedures, such as
SQRT and LEN. Passing arrays as arguments was the only feature that Fortran 77

supported in regard to arrays.
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Array Processing Functionality with arrays was a significant feature in Fortran 90
which extended the basic scalar operations to operate on arrays, such as assignment oper-
ations on entire or sections of arrays [120]. It also supported dynamic arrays, pointers and
overloading operators on user-defined data types, and it introduced several array intrinsic
functions such as vector and matrix multiplication, reduction, reshape, inquiry functions
such as SIZE, location functions such as MAXLOC. Besides, it allowed a number of scalar
operations to be applied the same way on arrays with the restriction that arrays (exclud-
ing scalars) in one expression must have the same extent. That is, array operands in one

expression must conform to one another in size and shape.

Essential Array Concept in Fortran 90

* An array’s rank is the number of dimensions. For example, a variable that has a rank

zero is a scalar, vectors are arrays with a rank of one (or one dimension).
* The term bounds refers to the upper and lower boundaries in each dimension.
* The extent determines the number of elements in a dimension.

* The term shape refers to an array that contains the number of elements in every

dimension of the referenced array.

Data Parallelism in Fortran  Manipulating arrays using array operations and array
functions is an inherently parallel process and because Fortran 90 supports these features,
it was the first Fortran standard that provided support for data parallelism [120, 96]. It
was also boosted by the additional support of the OpenMP. These features had made it a
base for the next Fortran standards generations such as Fortran 95 and High Performance

Fortran.

Fortran 95 presented with a slight improvement over 90 such as deallocating dynamic
arrays automatically. It was also augmented by other features that can be particularly
used for parallelisation such as pure procedures and the FORALL statement and construct.
The FORALL statement is another form of DO-loop, but it differs from a regular DO-loop
statement in that its contents can be evaluated in any order [119, 19]. This approach
provides some sort of implicit data parallelism. The FORALL construct, however, can be
considered as multiple FORALL statements that needed to be executed in order. Functions

that are called from inside a FORALL construct must be pure, i.e., no side effects.

Co-array Fortran (CAF) is an extension of Fortran 95/2003 for parallel computing [121].

The basic concept in CAF is that a CAF program is cloned a number of times or images.
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Each image has its own set of data objects, and all the copies are executed asynchronously
[121].

2.5 Virtual Machines

Virtual Machine (VM) technologies have been in use for decades to get around some
real machine constraints. Different virtual machines models exist to solve different prob-
lems starting from splitting up a machine into separate virtual machines, optimizing pro-
grams, creating a semi-machine independent programming language or building parallel

machines from heterogeneous platforms [122] .

One model is called a system virtual machine. It is used to divide hardware resources into
several identical copies of the original machine. The model was proposed during the 1960s
when computer machines were very costly yet large enough to be shared by multiple users.
In 1972, IBM released, for its System/360-67 and System/370 machines, a time-sharing
operation system called Control Program/Cambridge Monitor System (CP/CMS) [123].
The CP component was responsible for creating the virtual machine environment, while
CMS was a single-user operation system that can be shared interactively. The CP/CMS
OS offered a stand-alone computer system capable of running the same software that run

on the original machine [123].

Another model is called a process virtual machine. This type provides an interface between
a user application and an operating system or another application and allows applications
to run in the same manner on any machine [123]. The most commonly used example of this
model is Java Virtual Machine (JVM). JVM allows programmers to utilize VM functions
rather than using machine-dependent functions. This approach offers a portable platform
for Java programmers since any Java program should work on any machine on which the
JVM is installed. Another example of a process virtual machine is known as Low Level
Virtual Machine (LLVM). It is an intermediate compiler layer and a language-independent
framework that is designed for optimising programs at compile-time, link-time or run-
time. The LLVM accepts Intermediate Form (IF) code from a compiler and outputs an
optimized IF code that can then be transformed and linked into machine-dependent as-
sembler code. The first version of LLVM, which was released by the University of Illinois
in 2003, was implemented in C/C++. Currently, it can accept intermediate form code
that is generated by most GCC front ends to optimize C/C++, Objective-C, Fortran source
code. The low level virtual machine model has become popular after many GNU front-
end compilers have been updated to support this technology. Clang is one of these new

compilers that was built on top of the LLVM optimiser [124]. Glasgow Haskell Compiler
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(GHC) also supports LLVM and showed performance improvement when compared to an
ordinary GHC compiler. Haskell developers are also working on a new compiler that can
generate code for LLVM. The new compiler is called Utrecht Haskell compiler (UHC)
[125], and it supports most original Haskell features. The first UHC was released in 2009
but has not yet completed.

The other common VM model is called a Unix Model. This model combines the features
of the first two models; system model and process model, into one model. The Unix OS
depends basically on a series of separate processes to handle user commands, and each

process should have an independent set of machine resources available.

Virtual machine designs, however, have been shifted during the last two decades toward
a parallel computing environment. This technology is called a Parallel Virtual Machine
(PVM). It is designed for parallel networking of heterogeneous software platforms; Win-
dows and/or Unix machines [126, 127]. A PVM program, in general, is a set of cooperat-
ing tasks that can access virtual machine resources via a set of standard routines. The first
version PVM was developed in 1989 by Tennessee University, Oak Ridge National Lab-
oratory (ORNL) and Emory University. Since then several versions have been released.
The existing PVM provides a set of functions for exchanging messages, managing tasks

and resources. These functions can be used for parallelising source code manually.

Virtual machines can also employ emulation techniques to incorporate a user-level instruc-
tion set using a standard instruction set. This technique allows mapping virtual resources
to a real machine resources and hiding the underlying detail of the target hardware and
software. This technique was adopted in this project to emulate an innovative SIMD in-
struction set using virtual SIMD registers and stub routines as a virtual SIMD instruction

set.

2.6 Genetic Algorithms

Genetic algorithms (GAs) are based on techniques inspired by some aspects of natural
science such as inheritance, reproduction and mutation, and they are used as optimization
techniques for searching large solution spaces [128]. In computer science, for example,
GAs could be used in data sorting and searching, circuit design and to improve the quality
of designed tools such as code generation [129]. This section looks at basic genetic algo-
rithms principles and main genetic operators. It then introduces two preceding approaches

in which GAs were used for optimising generated code.
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2.6.1 Genetic Algorithms Techniques

Generally, a genetic algorithm starts with a set of solutions; a native population, to breed
new generations. During each successive population, a new generation is formed by se-
lecting the recent fitter solutions as parents. The parents are then used to breed a new
solution (offspring). This breeding process usually goes through mutation operations to
exhibit new offspring characteristics. A new formed population (solutions) is often ex-
pected to be better than the previous population, and the process is repeated until some

conditions, such as optimal solutions or number of populations, are fulfilled .
The primarily terminologies in a genetic algorithm are:

* Individual is any possible solution to the problem.

 Population consists of a fixed number of individuals genomes.

* Genomes are fixed-length of strings of genes, and they are commonly encoded as

binary string as shown in the following two stripes:

GenomesO |1 |01 |1]1|1/010(1]|1
Genomes1 [1|1]0[0|1]0]110|0]1

* The fitness function of a genome is some sort of quality measure which determines

how desirable it is to have that genome in the population.

* A new generation is a population that was produced by carrying out series of com-

putations on a current population.

2.6.2 Main Genetic Operations

¢ Selection

In this process, individuals are chosen from an existing population (fitter solutions)
to pass to a new generation. The selection operation often proceeded by the follow-

ing three steps:
— Get fitness values for all solutions.

— Normalise these values by dividing each individual’s fitness by the sum of all

fitness values.

— Sort the current population in descending order.

35



2 Background

Then, it comes the selection operation. There are a number of algorithms to select
the fitter solutions. Some algorithms base their selection on a given arbitrary con-
stant. In this case, only solutions that have fitness values higher than the given value
are selected. Other algorithms take only a certain percentage of the best individuals.
The optimiser, which will be discussed in Chapter 7, is based on the later approach;
it considers 2/3 of the best solutions in a population and retains them unchanged in

the next generation.
Reproduction

This step comes after the selection process. The reproduction of a new organism
from a pair of solutions “parent” gives rise to offspring. This operation basically

results in combinations of genes that differ from those of either parent.
Mutation

This operation alters a few gene values in chromosomes or genomes from its original
state [128, 129, 130]. There are several types of mutation operators such as bit string,
flip bit, boundary, uniform and non-uniform. The flip bit types inverts the values
in a chromosome. For example, the mutation operator for binary genes results in
altering 0 to 1 and 1 to 0. However, the number of values to be changed or the
mutation probability should be set low to ensure that the search will not became a
typical random search [128].
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Pascal

This chapter describes the targeted processor and programming language in this research.
It starts by giving background on the PowerPC architectures and the machine-dependent
features such as stack frames and function calling conventions. After that, it introduces the
Cell processor and its heterogeneous cores and the main components of its accelerators,

and the last section in this chapter introduces the Glasgow Vector Pascal language.

3.1 Introduction to PowerPC Architectures

PowerPC stands for Performance Optimization With Enhanced RISC Performance Com-
puting. Some of the well known RISC processors are: DEC alpha, ARC, MIPS, SPARC,
and PowerPC [131, 92]. This section gives an overview of the two instruction set archi-
tectures, CISC and RISC. It then presents the main features of the PowerPC architecture
and discusses the development of the PowerPC back end compiler and some machine-

dependent features such as stack management and function calling conventions.

3.1.1 Instruction Set Architectures

Before the RISC architecture was introduced, many computers were based on Complex
Instruction Set Computers (CISC) design. The design of CISC chips has been emphasized
basically on hardware and complex instructions [131, 3]. The aim of CISC processors is to
use as few lines of code as possible by augmenting more information in a single instruction
which results in a complex instruction set, and hence the responsibility of handling such
complexity is laid mainly on the processor hardware. This approach requires less effort
to map a high-level language statement into assembly instructions. For example, the code
given in Figure 3.1 shows first a Pascal statement and then the corresponding single CISC
assembly instruction. The Pascal statement adds two values, B and C, and stores the result
in A.
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4 := B+ (C;
ADD 4 , B, C;

Figure 3.1: Pascal Code and CISC Assembly Instruction

4 :=B +C;
LOAD B

LOAD C

ADD B,C
STORE A,B

Figure 3.2: Pascal Code and RISC Assembly Instruction

Contrarily, RISC chips, like the targeted processor, design emphasizes software and re-
duced instructions. RISC instructions are short and simple, and therefore most of them
can be executed within one clock cycle [131]. For example, Figure 3.2 shows the same

Pascal statement and the corresponding RISC instructions.

Notice that the same statement was mapped into 4 RISC assembly instructions while in
CISC only one instruction did the job. The above two simple examples show that RISC
basically required more instructions than CISC, yet each RISC instruction does one task
instead of the CISC multiple tasks.

The RISC architectures are also called Load/Store architecture since accessing memory
is only allowed through the load and store instructions while other operations are carried
out using registers. The advantage of register-to-register operations is to maintain reused
operands in registers instead of accessing memory again and again. The other characteris-

tics of RISC instructions are:
e Uniform instruction length
* Few machine instructions
* Most instructions are single-cycle execution.
* Suitable for optimization techniques

The disadvantage of RISC is its code size. As shown in the two previous examples, source

code for RISC processors are encoded into more machine instructions than the CISC.
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0 5 6 10 11 15 16 31

[ opcode I Reg#l Reg#2 { Immediate (singed-integer)
D - form

0 5 6 10 11 15 16 20 21 31

[ opcode | Reg#1 Regi2 Reg#3 X0 [/ ]
X-form

Figure 3.3: PowerPC Instruction Format

3.1.2 Main Features of PowerPC

* PowerPC instructions are fixed-length 32-bit instructions even on many 64-bit Pow-
erPCs.

* It provides several Instruction formats, the two commonly used formats are D-form

and X-form; see Figure 3.3.

An D-Form instruction can address two registers (source and destination) and con-
tains a 16-bit immediate field. The D-form format is the only format that PowerPC
architectures provide to use as an offset or an immediate value, and hence, loading a
32-bit immediate value into a register requires at least 2 instructions. For example,
the common way to load an address into a register is to use first the load immediate
shifted (1is) instruction which loads a 16-bit value in the destination register and
then shifts it into the highest 16 bits. The second instruction is an OR Immediate

(ori) instruction which bitwise ors the lowest 16 bits into that.

Figure 3.3 also shows the X-form instruction in its basic form. This form of instruc-
tions addresses two source registers and one destination register. The XO field is an

extended opcode field, and the last bit can be used to alter the condition register.

« Memory is arranged as a linear array of bytes indexed from 0 to n> — 1 where n
represents the execution mode of the CPU. Recent PowerPC processors provide two

execution modes, 32-bit and 64-bit.
* A big-endian mode is where the most significant byte of a data item is stored first.

* Figure 3.4 shows a set of PowerPC registers. The registers are divided into three

classes:

— Volatile registers can be freely used at all times.
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Register Type ‘ Register No ‘ Status Used for
GPRO Volatile
GPR1 Dedicated Stack Pointer
GPR2 Dedicated Table of Contents pointer
General Purpose (GPR) GPR3 Volatile 1t Argument/Return value
GPR4-GPR10 | Volatile 2nd _ 8t Arguments
GPR11-GPR13 | Volatile Special tasks
GPR13-GPR31 | Non-volatile
FPRO Volatile
Floating-Point (FPR) FPR1-FPR13 Volatile 15t -13™ Arguments
FPR14-FPR31 | Non-volatile
CRO:CR1 Volatile
Condition Register (CR) CRO02:CR4 Non-volatile
CR5:CR7 Volatile
Special Purpose Registers LR Volatile Link Register; return address
CTR Volatile Counter Register

Figure 3.4: PowerPC ABI registers conventions

— Non-volatile registers should not be altered across routines calls. However, if
there is a need to use them in a called routine, then they must be saved before

being used and restored prior to return.

— Dedicated registers are designated for certain tasks and must not be modified.
* Four classes of instructions

— Fixed-point instructions that can operate on doubleword, word, halfword, and

byte operands.

— Floating-point instructions can operate on single-precision and double-precision

floating-point operands.

— Load/ Store instructions support loads and stores of fixed-point between mem-
ory and general purpose registers. They also support loads and stores of floating-

point operands between memory and floating-point registers.

— Branch instructions

* Computational instructions are not permitted to access storage. For example, to
perform an operation on an operand, the contents of the operand must be first loaded

into a register, updated, and then stored back in the target location.
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3.1.3 Machine Code Description

A machine description process involves defining and managing a target machine’s re-
sources such as memory, registers and their types, address modes, instruction patterns
and operations. Machine descriptions are used for automatic derivation of code-generator

generators.

3.1.4 ILCG Notations

Glasgow VP back-end compilers use an Intermediate Language for Code Generator ILCG)
notations to map machine instructions into an assembly language. Some of the ILCG no-

tations are:

* Memory: Accesses to memory are represented using predefined array mem. For

example, mem(2000) represents the location 2000 in the memory.
* Data format: Octect, helfword, word, doubleword, quadword.

* Integer Data types: int8, uint8, intl6, uintl6, int32, uint32, int6,
uint64

* Floating-point Data types: ieee32, ieee64

* References: The keyword ref can be used to refer to an address of a given type. for

example, ref int32 refers to an address of a 32 bit integer number.

» Casting: Data types can be converted from one type to another using similar C
syntax. For example, (int64) ieee64 will convert the 64 bit floating-point to a 64

bit integer.

* Arithmetic operations: ILCG offers the basic arithmetic operations (+ , - ,* ,
div, and mod). The syntax would be as follows: the operands are enclosed within
brackets. and prefixed with an operation. For example, 2/(4 + 6) would be repre-
sented as div(2 + (4,6)).

* Assignment: The assignment operator, like in Pascal, must be preceded by a colon

(=).

The following examples show the three basic ILCG clauses, register, pattern and
instructions. which are used for describing machine resources. These examples are

drawn from the PowerPC description:
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* Register declaration

The keyword register is used in ILCG to define a new register and its presentation

in the machine assembly.

register int32 R3 assembles[’r3’];

register int32 R4 assembles[’r4’];

Registers can also be grouped under one name as following:

pattern reg means[R3|R4| ... | Rn];

e Patterns definition

In the ILCG, the keyword pattern is used to define non-terminal symbols or in-
structions. Non-terminal symbols must be first defined before it can be used in a ma-
chine description. Non-terminal usually offer a number of possibilities or patterns
that code generators can match against [42]. For example, the following code de-
fines an non-terminal symbol called real which can have two possibilities; double

or float.

pattern real means [double | float];

An ILCG instruction pattern can be used to define as an instruction that takes
a number of arguments, include its semantic and the corresponding assembly code.

For example, arithmetic Operations are defined as following

instruction pattern Op(operator op,reg rl,reg r2,reg r3, int t)
means[rl := (t)op((t)~(r2),(t)~(r3))]

assembles [op’ ’rl’,’r2’,’r3];

Machine descriptions should include all the instructions that are to be implemented for
the target machine in a ILCG file. The ILCG file is then passed though a code-generator
generator to create a Java class of the code-generator for the target machine [113]. A code-
generator is used to match against patterns in the source program. If a match succeeds, the

code generator will produce the assembly code associated with the matched pattern.
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The ILCG notations are used to describe the sequential back-end compiler for the Pow-
erPC and its extension. The PowerPC compiler extension includes a description of the a
set of virtual registers and virtual SIMD instructions (VSIs) which are basically a set of
RISC like register load, operate, store operations. The VSI set supports basic operations,
such as Load, Store, Add, Sub, Sqrt ...etc, in a mapped fashion. The compiler’s code gen-
erator should look at the VSIs as a set of SIMD like instruction set with a high degree of
parallelism. VSIs can deploy the proper information in the right registers and invoke the
proper routine. Semantics of some samples of the Virtual SIMD Instructions and how they

were mapped into machine code are given in section 6.1.

3.1.5 Stack Conventions

PowerPC compilers must apply and adhere to the following stack conventions:
* The stack must grow from higher addresses to lower addresses.
* The stack pointer (SP) must be kept in the general purpose register number 1 (GPR1).
* The SP must point, at any given time, to the lowest address of the stack.
* Create a stack frame for every function or procedure if needed.

* A stack frame must be alive from the point the procedure is called or executed until

the procedure returns to the caller or reaches its end.

3.1.6 Stack Frames Management

Exchanging information between different program routines usually requires space on the
stack to keep the information required for this inter-routines communications, and there-
fore, for every active routine at any given time, there is often associated a stack frame.
Stack frames are created during the beginning (prolog) of a procedure call to set up the
new execution environment and released at the end (epilog) of a called procedure. The

information that should be kept in a stack frame is as follows:
* An area to keep hold of passed parameters.
* A place to maintain a stack pointer.
* A location to save the return address.

* Area to store special purpose registers that could be altered.
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* A room for local objects.
* A space that is enough to store non-volatile registers.

However, several architectures, such as Intel, offer instructions that can automatically per-
form these tasks, but on architectures, such as PowerPC, these two tasks or sessions must

be hand coded. The following steps show what needs to be done in each session:
* Prolog ( ENTRY ) Session

This session establishes a new execution environment for the called routine. This

establishing process involves four basic steps:

Save the caller’s frame pointer and the address of the return point.

Compute the new stack frame size and align it.

Allocate a new stack frame and update the SP and the FP.

Maintain a link to nested routines. More explanation shall be given in the

implementation of the PowerPC back-end compiler.
* Epilog (LEAVING) Session

The Epilog session is supposed to release a called procedure’s frame once it is ex-
ecuted and to re-establish the old environment before returning back to the caller.

This process also involves four steps:
— Restore any saved registers.
— Release the current frame by updating the SP.
— Restore the return address.

— Return to the caller.

3.1.7 Functions Calling Conventions

Functions calling conventions are part of what is called an Application Binary Interface
(ABI) which defines the rules that permit separately compiled routines in the same or
different languages to interact with each other. In other words, a compiler of one lan-
guage must adhere to the calling conventions of other languages that the compiler expects

to interact with in order to set up the right environment and to ensure safe and efficient
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interaction between modules from different languages. The subsequent discussion intro-
duces the main Pascal and C calling conventions on the PowerPC and other parameters

associated with function calling mechanisms:

* Pascal Calling Conventions

— Parameters are pushed on the stack from left to right.
— Function results are returned on the stack.

— The caller locates a space on the stack for a function result before it pushes the

parameter on the stack.

— The caller removes the result from the stack.

* C Calling Conventions

C programming language was chosen here because it is widely used and many other

languages apply the same C rules. The C calling conventions are:

Parameters are passed from left to right

Arguments are passed via registers. If there is not enough registers, then the

remaining arguments are stored on the stack frame.

Scalar function results are returned in registers.

Structured data types are returned by their pointers.
* Passing Arguments Conventions

A PowerPC compiler must conform to the following conventions when passing ar-

guments from one routine to another:

— Parameters that are passed via registers must comply with the specified utiliza-

tion of the individual registers as shown Figure 3.4.

— If the parameters to be passed need more space than the available registers can

handle, the stack frame then should be used to hold the additional parameters.

— When a procedure sets up its stack frame, it has to reserve space for the largest

number of parameters that a procedure call requires.
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— Parameters are pushed on the stack from right to left, and hence the first pa-
rameter (from left) will be located on the top of the stack. This approach
guarantees that any function can determine the exact offset of each parameter

no matter how big the parameter list area is.
* Nested Procedures Conventions

Vector Pascal, unlike C, allows nested procedures in which a procedure is encapsu-
lated within another procedure. In nested procedures the crucial point is that compil-
ers must be able to access data in higher layers of nesting. Display, Lambda lifting,
and Static Linking are some of the techniques that can be employed to handle nested
procedures. Only the first technique was considered here since the PowerPC back-

end compiler employed it to keep track of frame pointers of nested procedures.

The compiler uses this technique to store frame pointers of previous nested proce-
dures which can be used with offsets to access any value in the nested procedures.
This linking process is handled during the prolog session. To illustrate that, let us

assume the following:

The general purpose register (r1) holds the stack pointer (SP) and (r31) holds

the running procedure’s frame pointer (FP).

— The F'S variable specifies the frame size for a procedure.

The NL variable determines the lexical level of a procedure.

The Display area is the space at the start of the current frame.
Now, the following steps explain how the Display technique works:

— If NL = 0 then

* Store the current (caller’s) FP on the stack. The new frame pointer (FP)
should be the same as (SP).

# Locate a space for the new frame by incrementing SP. The SP should be

incremented by a calculated frame size.
— If NL > 0 then (Nested procedures)

# Store the current FP on the stack (display area). For the called procedure

points view, this represents the proceeding nest procedure’s frame pointer.

* Maintain a copy of the current SP which later on should be the new frame

pointer.
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* Now iterate through the display area of the current frame to copy all nested
procedures’ frame pointers, which are already cited in the current frame,
into the display area of the new frame. The loop structure should iterate

NL times and in each iteration it does the following:
1. Get the NL™ nested frame pointer.
2. Store the pointer into the display area of the new stack frame.
3. Decrement NL

4. IFN >0 Go To Step 1

* The new frame pointer FP should take the SP value to point to the start of

the new frame.

% Now, locate a space for the new frame by incrementing the stack pointer.

The SP should be incremented by a calculated frame size.
* Return values conventions

A procedure result or function’s return value can be considered as an output param-
eter. According to the PowerPC’s ABI, fixed-point and floating-point return values
must be returned in the general purpose register No. 3 (GPR#3) and in the floating
point register No. 3 (FPRG#3) respectively.

PowerPC architectures also don’t support stack operations, such as Pop and Push. Besides,
they don’t have hardware support of some functions such as trigonometric functions. Dur-
ing the development of the back-end compiler of the PowerPC, I had to code manually all
these machine-dependent issues starting from coding machine description and stack oper-
ations up to handling Pascal and C calling conventions. The hand-coded implementation

of these issues will be discussed in depth in the following chapters.

3.2 The Cell Broadband Engine Processor

The Cell architecture was introduced in 2006 by Sony, Toshiba, and IBM, but its first
mass-market was with PlayStation 3 consoles which were released in 2007. The Cell is a
heterogeneous multi-core processor that consists of a general Power Processing Element
(PPE) and 8 Synergistic Processing Elements (SPEs) [54, 55, 56]. The Cell processor
potentially offers high levels of parallelism, but it is not easy to program due to its hetero-

geneity of CPUs, memory structures and instruction sets. The PPE processor is a PowerPC
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architecture that is responsible for the overall control of the processors while the SPEs are
simple RISC architectures that are mainly designed for computation. The first generation’s
SPEs performance on double-precision, however, was poor; it was around 10 times slower
than its performance on single precision. For this reason, the manufacturers pushed the
introduction of the second generation of the Cell processor in 2008. The second Cell gen-
eration, known as PowerXCell, was very similar to the Cell BE except that its SPEs were
re-engineered to improve double-precision performance [56]. The PowerXCell’s SPEs
was five times faster than the first generation in handling double-precision operations. The
Cell BE processors were the main architecture in the fastest computer in the world in 2008,
and is still in the Top 10 positions of the 37th TOP500 List of 2011 [132].

Cell is a distributed-shared memory architecture which has main memory space on the
PPE and private Local Storage (LS) on each SPE. The main memory represents the entire
effective-address space that is available for all Cell’s elements. The SPEs LS’s can be
accessed directly by the SPEs or by the PPE through DMA controllers in a non-coherent
mode [56, 57, 54]. The other heterogeneity of the Cell appears on the instruction level as
the PPE and SPE’s have different instruction sets. The machine’s heterogeneity presents a
major challenge for developing Cell applications because it requires writing source code

for each core type and requires two compilers.

A number of parallel programming models have been released to parallelise applications
on the Cell processor. Some of these models are applying task or thread parallelisation
schemes such as CellVM and Hera-JVM [48, 133]. Others focus on data parallelisation
schemes such as OpenMP, SieveC++ and OffloadC++ [79, 38, 29]. Also, the recent GNU
tool chain and IBM XL offer compilers for C/C++ and FORTRAN on both architectures,
the PPE and the SPEs [134, 135]. The Cell architecture showed performance potential
specially when using good heterogenically adapted code [56], and this is what motivated

us to select this architecture.

3.2.1 The Power Processor Element (PPE)

The PPE processor is a general purpose 64-bit PowerPC architecture. It is designed to
handle overall control of the system such as running OSs and coordinating the SPEs. The

PPE processor consists of:
* 3.2 GHz PowerPC processor.
* 512MB Main memory

¢ 32 KB L1 data cache and 32 KB L1 instruction cache
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Power Processor Element (PPE)
(64-bit PowerPC with VMX)
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Figure 3.5: The Cell BE Schematic Diagram

512 KB L2 caches

32 x 128-bit vector registers

* One fixed-point integer unit and one floating-point unit
* Load/Store unit.

* An instruction control unit and branch unit

* Multimedia Extensions Unit (VMX)

The PPE instruction set is an extended version of the PowerPC architecture instruction
set with slight changes. The PPE instruction set includes SIMD extensions and C/C++

intrinsic for SIMD extensions [56].

3.2.2 The Synergistic Processor Elements (SPEs)

The SPEs are mainly designed for manipulating data. They are independent simple SIMD
RISC architectures that are very similar in function to vector processors in which a single
instruction operates on multiple data elements [56]. An SPE, as shown in Figure 3.6,
consists of two independent main units: a synergistic processing unit and a memory flow

controller.
1. A Synergistic Processing Unit (SPU)

a) 128 x 128-bit registers.
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Figure 3.6: SPE Hardware Diagram

An SPU operates only on 128-bit vector data types and supports only 16-byte
load and store operations. Using literal scalars will not be an efficient approach

as the SPUs have to perform a 16-byte read and data shuffling to align scalars.
b) Local Storage (LS)

Each SPU has a 256KB local memory that is directly addressable by the SPU.
Due to the small size of the LSs, the SPUs will be very efficient for applications
in which most of the work is done on blocks of data such as in numerical

processing, image processing, or video streaming.
¢) Two Execution Units

Every SPU contains two parallel pipelines unit, Even and Odd, for executing
instructions. The Even unit handles fixed-point, floating-point, logical and byte
operations, while the Odd unit handles load, store and branch operations. The
two pipeline units allow users to issue two instructions per cycle; for example,

one memory instruction and one compute instruction.

2. A Memory Flow Controller (MFC)

MEC is an interface that controls most of the inter-processor communication be-

tween an SPU and the other processor’s components. Because every SPE has its
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own MFC, this permits the SPUs to work on different system memory spaces con-

currently. The interdependency between an SPU and its MFC also allows data to be

transferred in parallel while an SPU is executing other instructions [91]. An MFC is
built of:

a)

b)

Memory Access Controller

These controllers are responsible for data movement within the Cell processor
[56, 54]. A memory controller includes a Memory Management Unit (MMU)
that handles the mapping of system addresses and two queues that accommo-
date DMA transfers issued by the PPE or the SPEs. One queue is for PPE-
initiated DMAs and can hold up to 8 DMA requested. The other queue is for
SPE-initiated DMAs and can hold up to 16 DMA requests.

Memory Mapped Input Output (MMIO) Registers

The MMIO control registers, which are primarily used to map memory ad-
dresses, can be used by the PPE to load an SPE program and data. They can
be also used by one SPE to access the local storage of other SPEs [56].

Atomic Unit (ATO)

The ATO unit handles atomic DMA commands (functions) and atomic op-
erations [56]. Atomic DMA functions are more reliable in handling shared
data than regular DMA functions which can be easily interrupted [91]. With
atomic functions such as getllar () and putllac(), a user can set a lock on
an aligned unit of storage. On the Cell processor, the unit of storage is 128
bytes that is aligned to a 128-byte boundary. The VM model depends on these
two atomic commands to synchronize operations such as store and reduction. |
will elaborate on this point as we discuss the synchronization techniques in the
coming chapters. Atomic operations are relatively quick compared to locks,
and do not suffer from deadlock and convoying. The disadvantage of the Cell
atomic operations is that they only do a limited set of operations on a limited
space of bytes.

3.2.3 Cell Memory Space

The Cell processor is a distributed-shared memory architecture that has eight private local
spaces and the main memory space. An SPE local storage is a memory space that can be
accessed only by its SPU [136, 54, 91, 56]. The PPU main memory represents the entire
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effective-address space that is available for all Cell processor’s elements. The PPU can
access an SPU’s LS through DMA controllers in a non-coherent mode. The main memory
space can be also configured by the PPU to be shared by the SPUs through the MMIO
registers of the MFCs [56].

3.2.4 MFC Interfaces

An MFC communicates with its SPU through two interfaces:
1. SPE Channel Interface

Each MFC has 32 channels to communicate with its SPU. The channels offer a
local communication within an SPE and have low latency specially for non blocking
commands [56]. The channels can be configured as a one-way communication;
read-only or write-only or blocking or non-blocking channel. Each channel has an
associated channel count that indicates the outstanding operations. The three main

SPE channel instructions are:
e Read Channel (rdch)

The rdch instruction can be used only on channels configured as read channels.

For example, the following statement

rdch r5, chNo

reads data from channel “chNo” into the general purpose SPE register “r5”
* Write Channel (wrch)

The wrch instruction is similar to Read instruction. It can be used only on

channels configured as write channels.
¢ Read Channel Count (rchcnt)

The rchent instruction reads the channel account (zero or one). For example,
if a given SPE channel capacity is zero, then the SPE must be stalled until the
channel count changes to >0. The stall overhead is high, and therefore one

should try to avoid such stalls.
2. MMIO Interface

The MMIO interface can be used by both the PPU and SPUs to communicate with
any MFC.
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3.2.5 Cell Communication Mechanisms

» Direct Memory Access (DMA) Transfers

— DMA Commands (functions)

A Cell’s transfer command basically is a function with several parameters.
The most important four parameters are: local store address, main memory
address, size of data to be transferred in bytes, and a tag. Both local store and
main memory addresses must be aligned on 16-byte boundaries. For a better
performance, addresses should be aligned on 128-byte boundaries[91]. These
alignment constraints are very crucial when accessing main memory because
they most likely will introduce problems associated with data sharing. A single
DMA command can be a single data transfer that ranges from one byte up to
a stream of 16-KByte [91]. One can also issue a list of DMAs in a single
command. The list can hold up to 2048 single data transfers, and hence it can
transfer streams of up to 2048*16K~32MB. The VM model uses a single data
transfer aligned on 128-bytes boundaries to load/store data from/into the main
memory. The tag is used to identify a DMA using values ranging from O to
31 and can be used to group an individual DMA by giving them the same tag

value.

The Cell processor provides two functions (commands) for transferring data.
One function is called GET. It transfers data from the main memory to an LS.
The other is called PUT, and it transfers data from a LS to the main memory.
Affixes, such as “f”, “b” and “I”, can be added to these two functions to oblige
some conditions on the transfer process [91, 56, 54]. The affix “f” means
Fence synchronization, “b” means Barrier synchronization and “/”” implies that
a function operates on a List of DMAs. The Cell processor also provides other
functions that can be used to check a DMA completion status, synchronization

purposes,...etc.
— DMA Transfer Process

A transfer request can be initiated by either the PPU or the SPUs. Transfers
issued by the later, called SPU-initiated DMAs, are faster than DMAs that are
issued from the PPU due to the following:

1. The PPE does not have an MFC, and so it depends on the target SPE’s
MEC to act on its behalf to transfer data [54, 91].
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2. The PPE command queue can house only 8 requests while the SPE queue

can hold up to 16 requests.

3. The PPE can issue only one DMA command at a time, but the eight SPEs

can dispatch eight DMA commands simultaneously.

¢ Mailboxes

Mailboxes are FIFO queues that can be used to exchange 32-bit messages between
the processor units (PPU and SPUs) [56]. This mechanism is useful to exchange
short messages or control data. Each SPE has two types of mailboxes: Inbound and

Outbound mailboxes:
— Inbound Mailbox

An Inbound mailbox is a 4-entry FIFO queue. Inbound mailboxes are used to
send messages from the PPE to the SPEs and between the SPEs.

— Outbound Mailbox

Each SPE has two Outbound mailboxes: Outbound mailbox and Outbound
Interrupt mailbox. The outbound mailboxes are 1-entry queue. They are used
to send messages from one SPE to the PPE or to other SPEs.

The SDK library provides a number of functions to access mailboxes easily [135].
The SDK provides two classes of functions: spu_*_mbox functions and spe_*_mbox*
functions. The first class can be used by the SPEs to read, write or check the status
of a mailbox, while the second class can be used by the PPE to read, write or check
the status of a mailbox. The PPE SDK functions for accessing mailboxes are non
blocking functions by default, and the SPE SDK functions are blocking functions
by default [56]. Thus writing from the PPE side to a full SPE inbound mailbox
may result in overridden previous messages, and on the other hand, reading from an
empty mailbox or writing to a full mailbox by the SPUs result in stalling the SPU.
To avoid overridden previous messages or stalling the SPU, a user must explicitly

check the status of the target mailbox before attempting to use it.
* Signals

Signaling mechanism can be also used to signal messages between the PPE and
SPEs. Each SPE has two 32-bit signal registers: Signal Notification 1 and Signal
Notification 2.
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The main difference between DMA mechanism and the other two mechanisms is that with
DMAs, an SPU hands its requests to its MFC to transfer data between memory locations,
but with mailboxes and signals , an SPE can only write messages to a mailbox hoping that

the intended recipient will recognize it and read it.

The VSM implementation depends on DMAs to move data between the main memory
and LSs and depends mostly on mailboxes to exchange short messages such as passing
the starting addresses of data blocks to the SPEs or sending acknowledgments between
the PPE and the SPEs.

3.2.6 Exchanging Messages Using SDK functions

The PPE can send messages to an SPE inbound mailbox using the spe_in_mbox_write
function, and the SPEs can read messages dispatched in their inbound mailboxes by us-
ing spu_read_in_box function. The spe_in_mbox_write function, however, is slower than
using the MMIO registers, which shall be discussed shortly, because it involves a system
call [74, 56].

An SPE can also send a message to the PPE or other SPEs by dropping a message in one
of its outbound mailbox using spu_write_out_mbox or spu_write_our_intr_box functions.

Once the message is dropped, the receiver can then read the sender outbound mailbox.

3.2.7 Exchanging Messages Using MMIO Interface

¢ PPE to the SPEs

The MMIO interface can be also used to exchange messages between the PPE and
the SPEs or between the SPEs by writing directly to corresponding SPE’s MMIO
registers. In order for the PPE to communicate with an SPE, it must first map the
corresponding problem state area of the SPE to the PPE address space by using the
spe_ps_area_get function. The function is part of the SPE libraries “1ibspe2.h”
offered by the manufacturers [56], and its prototype is as follows:

void * spe_ps_area_get (spe_context_ptr_t spe, enum ps_area area)

The first argument (spe) is an identifier of an SPE thread, and the second argument
is a pointer of type problem state area (ps_area) which needs to be mapped on
the PPE address space. The function returns a pointer to the requested problem

state area. There are a number of problem state values for the second argument
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typedef struct spe_spu_control_area {

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

char reserved_0_3[4];
int SPU_Out_Mbox;

char reserved_8_B[4];
int SPU_In_Mbox;

char reserved_10_13[4];
int SPU_Mbox_Stat;

char reserved_18_1B[4];
int SPU_RunCntl;

char reserved_20_23[4];
int SPU_Status;

char reserved_28_33[12];
int SPU_NPC;

} spe_spu_control_area_t;

Figure 3.7: SPE_CONTROL_AREA Structure

(ps_area), but the most important one which will be used by the VSM’s messag-
ing protocol is called SPE_CONTROL_AREA. By passing SPE_CONTROL_AREA as the
argument (ps_area) to the function spe_ps_area_get(..,..), the function returns a
pointer to a control area structure of the specified SPE (spe). The contents of the

control area structure are shown in Figure 3.7.

Once the problem state area is mapped, the PPE can then directly access that SPE
control area by using the pointer of the SPE_ CONTROL_AREA structure as a base
address to poll or update the parameters that are defined as members of the structure.

See Figure 3.7.

Using the MMIO registers does not involve the kernel (a system call) and therefore
it is more faster than using SDK built-in functions. For this reason, the VSM model

depends mainly on MMIO registers to forward messages from the PPE to the SPEs.
* SPE to SPE

The first step that is required for the SPEs to communicate with each other is similar
to above. The PPE code must first map the controls area of the SPEs to the PPE
address space. The second step is different because the PPE must notify each SPE
with the pointers of the control area of the other SPEs, and once an SPE knows
the pointer of the control area of the receiver, the SPE can then use a regular DMA

transfer to access the receiver’s mailbox.
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3.2.8 Managing Threads on the Cell

e Pthreads

The main function or procedure that runs on the PPE is the main thread of type
pthread. The main function’s return implicitly triggers a call to exit () using the
return value from the main functions as the exit status. pthread can also be used
to create threads that run on an SPE. The following function synopsis shows the
elements needed to create a new thread. The first argument in the function holds
the ID of the created thread. The second argument is often set to NULL. The third
arguments determine the entry location of the function to be executed and the last
argument represents the start_function. When the executed start_function
returns, the effect would be as if the pthread_exit () function is called using the

same value that the executed function returned.

INT PTHREAD_CREATE (PTHREAD_T *ID,PTHREAD_ATTR_T *ATTR,

vOID* (*START_FUN) (VOID*), VOID *ARG);

¢ SPE Context (thread)

Cell provides several functions to manage SPE threads and load code on the SPE’s.
The list here shall focus only on the main functions and parameters which will be

uses in the VSM implementations.
— SPE_CPU_INFO_GET(UINT FLGS, 0)

This function can be used to get information on several issues depending on the
flgs’s value. For example, with the SPE_COUNT_PHYSICAL_SPES flag,
the function returns the number of SPEs available on the whole system. With
the SPE_COUNT_USABLE_SPES flag, which the current implementation of
the VSM uses, the function returns the number of SPEs that are available at

this point in time.
— SPE_CONTEXT_CREATE(UINT FLAGS,NULL);

This function creates a new SPE context. If the function succeeds it returns a
pointer to the created context. The VSM uses the SPE_MAP_PS flag in order
to get permission for memory-mapped access to the problem state areas of the
SPEs. This feature is mainly used to get access to MMIO registers to exchange
messages between the PPE and the SPEs.

— SPE_PROGRAM_LOAD (SPE_CONTEXT_PTR_T , SPE_PROGRAM_HANDLE_T *)
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This function loads an SPE main program into its local memory. The first
argument must be a valid pointer to an SPE context for which the program
is loaded. The second argument determines a valid address of the SPE pro-
gram to be loaded. This step must come before launching an SPE context with

spe_context_run.
— SPE_CONTEXT_RUN(SPE_CONTEXT_PTR_T, UINT*, NULL, vOID*, vOID*, NULL)

The first argument must be a valid pointer to an SPE context that needed to be
run. The second argument determines the entry point from which the SPE pro-
gram starts executing. The SPE_DEFAULT_ENTRY flag can be used to start
the execution from the first statement in the SPE main program. It is important
to notice that the spe_context_run function is a thread blocking call which
means any thread whether a PPE or SPE thread that calls spe_context_run to
launch another an SPE thread will be blocked until the called SPE thread termi-
nates and returns. This is a very critical issue when it comes to the PPE because
if the main PPE thread launches an SPE thread via spe_context_run the main
thread then has to wait for the new launched SPE thread to finish. I solved
this problem by using separate pthread threads to call spe_context_run to
unblock the main PPE thread from communicating and exchanging messages
with the SPEs.

3.2.9 Programming Cell Applications

Programming the Cell multicore processor presents a new challenge due to its instruction
set heterogeneity which requires dual source code: a master program and a child program.
The master program runs on the PPE, and its overall role is instantiating a main thread,
spawning SPEs threads, and handling I/O requests. The generated code corresponding
to the master code should be very similar to other PowerPC architectures [56]. On the
contrary, the child program runs on an SPE, and its overall role is to handle data transfers

between the main memory and LSs and most importantly to perform computation.

Currently, the two programming languages that are fully supported by the Cell processor’s
manufacturers are C/C++ and FORTRAN. The manufacturers provide also a Software
Development Kit (SDK) that includes tools for writing Cell applications, debugging tools,
optimized library routines and Eclipse IDE [56]. Some of the tools that are available now

are:

* The GNU toolchain for the Cell processor provides C/C++ and FORTRAN com-
pilers, assembler and linker for both PPE and SPEs. These two languages support
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OpenMP. The tool chain also includes an Ada language compiler but for the PPE
only.

* IBM XL C/C++ and FORTRAN compilers for Linux. The XL compilers generate
code for the two architectures, but they require the GCC tools for assembling and

linking programs for the PPE and the SPEs. Both compilers support OpenMP.

* A SPE runtime management library (1ibspe), SIMD math library and other math-

ematical libraries.

* A Data communication and synchronization (DaCS) library to handle communica-

tions between Cell components.

The following steps show how to build a Cell application written in C++ using the GNU

toolchain:
1. Compile the child program “speProg.cpp ”, speExec is the SPE binary
spu-g++ speProg.cpp -0 speExec

2. Embed the binary file “speExec” into a PPE compatible object format. The first
name (speProgram) is the name that the PPE is expected to use to call the SPE

binary.
ppu_embedspu speProgram speExec spe2ppeFormat.o
3. Compile the master program “ppeProg.cpp” and link it with the object file.

ppu_g++ ppeProg.cpp spe2ppeFormat.o -Ispe -0 cellExec

3.2.10 Executing Cell Applications

The execution of a C/C++ application on the Cell processor is mastered by the PPE. Fig-
ure ?? shows the main execution steps involved in launching an SPE program. Once a
Cell program is executed, the compiler automatically creates a main thread on the master

processor, and then goes through the following steps:

1. loads the main thread with the PPE program and then starts the execution of the

application from the main() function.

2. The PPE program should then create SPEs threads and issue a command to the
MFC:s of the SPEs to load the SPE program from the system memory into the SPEs’
LSs.
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Figure 3.8: SPE Hardware Diagram

3. Each MFC then starts loading the code from the main memory into its SPE LS.
4. The PPE also requests from the SPEs’ MFCs to begin executing the loaded thread.
5. The requested MFCs in turn orders their SPUs to start the execution of the threads.

Though programming the Cell is not an easy task due to its heterogeneity of memory
structures and instruction sets, it showed performance potential specially when using good
heterogenic-code. This was, in fact, one of the motivations which led to investigate the
possibility of developing a programming tool that can help Cell compiler developers and

simplify the development of Cell parallel applications.

3.3 Glasgow Vector Pascal

Vector Pascal (VP) is an extension to the standard Pascal programming language. There
are three different implementations of Vector Pascal. The first implementation was in-
troduced by Turner [137] in 1987 at Iowa State University, US. In 1992, Formella [138]
developed another version at Saarlandes University, Germany, and in the early 2000’s, Dr.
Cockshott and his supervised students developed an independent version of Vector Pascal
at Glasgow University, UK. The attempt here is to port last version to the Cell proces-
sor, and thus the term Vector Pascal shall, henceforth, refer to Glasgow’s implementation
[139].

Glasgow Vector Pascal (VP) extended standard Pascal by supporting SIMD instruction
set extensions and data parallel operations [58, 42, 7]. Glasgow VP extension is based

on Kenneth Iverson’s notations to provide an concise notation to express data parallelism.
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Iverson’s approach, which was introduced in 1962 to address data parallelism, is was a
machine independent approach that can be safely used to express scalar instructions or
array instructions [35]. The approach presented also answers to solve array issues such as

how to deal with operations on arrays of different ranks and sizes.

Glasgow’s extension also introduced new data types such as pixels and new operators such
as Input and Output of arrays, Min and MAX to find the smallest or the largest elements
in an array. In VP, operations can be applied to arrays in the same way that they could
have been applied to scalars leaving the compiler to decide whether the operation is an
array or a scalar operation based on the declaration of the operation’s operands. These
features make it a suitable language for the expression of data parallel. The language has
also introduced new notations and overloaded some standard Pascal operators in order to
exploit data parallelism, and it has recently been extended by the introduction of the PURE
keyword for parallelisation purposes [140].

A number of back-end Vector Pascal compilers for common architectures had already been
developed at Glasgow University [7, 140]. The code generator for each machine is a Java
class that is automatically generated from a formal machine description written in Inter-
mediate Language for Code Generators(ILCG). An automatic code-generator generator
translates the machine specification, written in ILCG, into an optimizing code generator

written in Java.

This language was targeted because first the aim is to used an array programming language
that supports features which implicitly express data parallelism such as arrays operations.
Secondly, array names in VP can be safely used in arithmetic operations to operate on data.
Thirdly, VP was developed at Glasgow and more support is available such as the source
code, and the main developer. Yet, the most important feature is that the VP front-end
compiler is already designed to support SIMD technology in flexible degree of parallelism
mode, and hence its code generators can be easily switched to produce look-alike SIMD
code that operate on large registers. Moreover, the manufacturer provides full C/C++
and FORTRAN support for programming the Cell processor, and there are another two
attempts, CellVM and Hera-JVM, to support Java on the Cell processor.

The following Pascal code segment illustrates how operations can be applied to arrays in

the same way that could have been applied to scalars:

In Figure 3.9, the first line declares v/,v2 and v3 as arrays of size 1024 of type integer.
The third line is an additional operation that involves all the elements of v/ and v2. This
statement results in adding each element in vector v/ to the corresponding element of
vector v2 and storing the sum in the corresponding element in vector v3. Line 3 in Figure
3.9shows a simple example of an array expression that a compiler can safely chop it into

block and then process in parallel.
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Linel: war vl,v2 , v3: arrayl0..1023] of integer;
Line2: begin

Line3: vl := v2 + V3 ;

Line4: end;

Figure 3.9: Pascal Code Segment

3.3.1 Vector Pascal Features

VP currently supports a number of operations such as reduction, conditional update oper-
ations, array reorganization, permutation, unary operators, and dimension types ... etc.

Some of these new features in brief are:
* Pixel Data Type

This new data type is commonly used in image processing. Pixels are implemented

in Vector Pascal as 8 bit signed integers that are dealt with as binary fractions.
* The Reduction Operation

The reduction operation takes arrays of rank m and returns an array of rank m — 1.

The interpretation of reduction for commutative operators is simple. Consider:

s =\ + v;

where s is a scalar and v is a vector. The left-hand side returns the sum over the

vector and the result is assigned to x.

This operator can also be used to calculate the dot product of two vectors. For

example,

x =\ + (vl * v2)

However, the dot product of two vectors can be written in standard Pascal as the

following:

0 to n do

for 7 :

s +vili] * vali] ;

S !
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where 7 is the smallest rank among the arrays vy and v,.
Assignment Operators

Vector Pascal extended the Pascal array assignment operator to handle operations on

different rank expressions. For example, the following Vector Pascal code segment,

arr : arrayl0..4, 0..4] of integer ;
vec : arrayl0..4] of integer ;

vec := 5 ;
arr = vec * 2 ;
vec := | + arr ;

results in assigning 5 to every element in vector “vec”, and then assigning 10 to all
elements of array “arr”. The reduction “\ +” operator in the last statement results in
summing all the elements of each row in array “arr” and then assigning the result
to the corresponding element in the vector “vec”. To write the same code segment
in Pascal requires more than 12 lines of code [35]. VP also allows mixed rank
expressions by depending on the VP compiler to automatically generate a loop that
can span the ranks of the distension and the source operands, and then the evaluation

is carried out based on the number of dimensions of the array on the left-hand side.
Slice Operation

It is a useful operation for many applications that need to manipulate specific sec-
tions of arrays. VP has overloaded array abstraction to define sub-ranges of arrays.
A sub-range of an array can be defined by using the array name pursued with a range

expression. For example, the following statement

V1[2..4] = Vg[.l..3] *¥ 2

results in doubling the 2" — 4™ elements of vector v, and assigning the values to the
third, fourth and fifth elements of v;.

Dyadic Operations
Arithmetic and logical operations such as -, * ,/, div, mod , <, >, <=,>=,=<,

<>, and, or, shr, shl, min, max, are overloaded by VP to operate on arrays. VP also
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[12]

supports dot product vectors and matrix multiplication by using the dot ““.” operator

as illustrated in the following code segment:

al,a2 : arrayl0..4, 0..4] of integer ;
vl,v2 : array[0..4] of integer ;

vl : = al . v2 ;

a2 = al . al ;

results in transforming vector v2 by the matrix a and performing matrix multiplica-

tion .
Loop Unrolling

Arrays are suitable data structures that can benefit from vector processing because
one can perform an operation on a group of elements or sub-range of an array at
a time instead of on individual array elements. The array slicing technique helps
to implicitly define vector operations by unrolling array operation. For example,
let v1,v2, and v3 be vectors each containing 12 real elements, then the following

statement

forj :=1to12

va[j]:i=va[j]+valijl;

adds one element from vl to an element in v2 and assigns the result to the cor-
responding element in v3. This loop which adds the vectors element by element
could be, however, unroll using sub-ranges based on the data type. The above loop

structure could be unrolled as follows:

forj :=1to12step 4
vilj..j+3] :=volj..j+3]+v3lj..j+3;

to suit, for example, an SIMD instructions set that operates on 128-bit registers given

that the real elements each require 32-bit.
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pure function foo(int: i):integer;
begin

foo:=1i%i;

end

Figure 3.10: A Simple VP Pure function

3.3.2 VP Compilers

A VP front-end compiler, which is a machine-independent compiler, had already been
developed at the University of Glasgow [113, 141, 142]. Also a number of back-end com-
pilers had already been developed at the University of Glasgow for common architectures
such as Intel’s Pentium series, AMD-Opteron and the Sony emotion engine used in the
PS/2, but not for the PowerPC architectures [113, 141]. Early versions of the compiler
supported only single core machines using the MMX and 3DNow parallel instruction sets.
VP also supports [140] the new Advanced Vector Extensions (AVX) instruction format
that supported by processors such as Intel Sandy Bridge and AMD Bulldozer [86, 143].
Subsequently parallelism has been extended to allow array expressions to be evaluated
across multiple cores. Recently, the language has been extended to allow the use of PURE
functions for parallelization purposes [140]. Pure functions can be defined by adding the
keyword PURE before the function name. A VP pure function must be side effect free
to potentially permit mapping it over array arguments to be performed in parallel. Figure

3.10 shows a simple VP pure function.
A VP back-end compiler implementation basically includes the following:
* Machine description

A machine description defines available registers, type of registers, instruction pat-
terns and basic operations. The instruction patterns determine the mapping of the

machine semantics into assembly instructions.
* Machine-Dependent Routines

Different architectures have different features that are often handled on individual
bases to ensure the reliability between different environments. For example, func-
tion calling mechanisms on PowerPC architectures must be handled explicitly by

compilers.
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3.3.2.1 Building a VP Compiler

* Translate the machine description into *.ilcg format using m4 macro processor.

* Generate a java file from the targetMachine.ilcg file using ILCG. The ILCG
language parses *.ilcg file and generates a Java method for each defined operation

in the parsed file.

* Compile the generated Java code along with the manually written routines to create

the corresponding classes.

¢ Combine all the classes include the front end classes in Java archive file format.

3.3.2.2 Compilation Process

The compilation process is divided into three main steps:

* Compile Source Code

— Pares a Vector Pascal source file using a hand written recursive descent parser

to generate an internal data structure; that is, a semantic tree of the source code.

— Trace the generated tree to match the nodes with the semantics of the target
machine. If the matching process succeeds, it produces an assembly version of

the source programs.

¢ Assemble and Link

The generated assembly code is then fed to a GNU Assembler, commonly known as
GAS, and then to the linker to create the executable file.

3.3.2.3 Why VP?

The grounds for choosing VP as a base language over the alternatives of Java, C and
FORTRAN are as follows:

* VP supports features that implicitly express data parallelism such as array features.

* The target language’s front-end compiler is already designed to support SIMD ex-

tensions and a flexible degree of parallelism.
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* Java was not targeted due to the difficulty of efficiently transmitting data parallel

operations via its intermediate code to a just in time code generator [7].

* C was not considered because it considers array names as pointers. It also allows
arithmetic operations on pointers, and consequently any operation in C involves
array names within indices will be carried out on the pointers, which usually point

to the first element in the involved arrays, not on data[35].

* The FORTRAN language has been targeted by one of our group to port it also on

the Cell processor.

3.4 Assembly Language Directives

The GNU Assembler, which is frequently abbreviated to ‘‘GAS’’ or ¢‘as”, was used in the
PowerPC machine descriptions. The GAS assembler with the AT&T syntax was used
because it is supported on Linux machines. GAS, as claimed by some users [144], was

not an easy tool to use. It also lacks documentation.

We present here are some of the GAS directives [145] that were used in implementation

of the original PowerPC machine description and the extended version.

* .data subsection: Informs the assembler to put the following statements onto

the end of the given data subsection.

* .text subsection: notifies the assembler to put the following statements onto

the end of the given test subsection.
* .extern: for compatibility with other assemblers.

* .align ezpr : Pads a memory location to a given storage boundary. For example,

align 3 skips to the first memory location that is a multiple of 2° = 8.

€,

* Labels: A symbol that is followed by a colon ““:” can be used to reference a memory
location [146]. It can be also used as an instruction operand. Users are not allowed

to use one symbol to represent two memory locations.

e Macros: .macro and . endm are the two commands that can be used to define macros

which generate assembly code.
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The advent of heterogeneous architectures in the mainstream industry has a significant in-
fluence on mainstream software as they require proper, simply-used and up to date tools
for developing parallel and concurrent programs [13, 15, 147]. In recent years, substantial
effort has been put on designing and developing parallel tools for programming general
purpose application on heterogeneous architectures such as multi-core General Purpose
Units (CPUs) and Graphics Processing Units (GPUs) [46, 5, 19, 62, 34, 44, 25, 38, 33, 79,
30, 8, 52, 148, 149, 60, 50]. CPUs and GPUs are distinguished from each other in the num-
ber of cores and their speed, but the parallel software tools that these two heterogeneous
architectures require are conceptually similar. Heterogeneous architectures basically re-
quire software components that can make use of different processing elements based on
their capabilities [15, 13]. Multi-core CPUs consist of tens of cores and can handle only
few tasks yet very quickly. In contrast, modern GPUs usually contain hundreds of cores
that can be used to process hundreds or even thousands of tasks concurrently with reason-

able speed, and their performances have been increasing rapidly in recent years [150].

This chapter presents a number of programming paradigms that have been recently devel-
oped to simplify parallel computation on heterogeneous shared-memory architectures. It
first introduces two parallel programming models; CUDA and OpenCL, that have been
developed for programming special purpose machines and modified lately to make use of
GPUs for general purpose computing [95, 151, 148]. After that, it introduces two other
parallel programming models; OpenMP and Intel TBB. These models have already being
in use on other architectures but have been recently modified for programming the Cell
processor. It also introduces other models that have been designed specifically for the Cell
processor such as Offload C++, CellVM, Hera-JVM [38, 29, 48, 49].

4.1 Compute Unified Device Architecture (CUDA)

The GPUs computation power have encouraged software developers to introduce parallel
programming tools that allow using GPUs for general purpose computing [13, 152, 51,
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15]. CUDA is one of these parallel programming models that aims to simplify program-
ming GPUs for general purpose applications in addition to performing traditional graphic
computation. It was developed by Nvidia, and it supports a number of programming lan-
guages such as C/C++, Fortran and OpenCL [71]. This programming model was specifi-
cally designed to run on Nvidia’s graphics cards. It considers an ordinary CPU as a host
and a graphics card as parallel platform that has a large number of arithmetic execution
units. Provided that, a CUDA program is normally constructed of one host process and one
or more accelerate processes. The host process should handle the parts of the program that
cannot be parallelized, while the accelerate processes perform the parallel computation
[152]. CUDA programming is basically based on three main concepts: Threads, shared

memory and kernels.
* Threads

The units of work in CUDA are organized into a hierarchical form. The bottom
level of the hierarchy is called Threads. A thread is the smallest unit of parallelism
in CUDA. The second level is called Warp. It is a group of consecutive threads that
execute in parallel. The third level is called blocks, and each block embraces multi-
ple warps. Threads of one block can synchronize and quickly communicate between
each other. The top level of the thread hierarchy is called Grid[152]. It is a group
of blocks. Once a grid is launched, all threads of that grid must complete execution
before executing any other threads. Blocks within one grid cannot synchronize with

each other.
* Memory

Memory is also organized into a hierarchical form. The main memory is considered
as a top level (global) resource [71]. CUDA threads can read and write to the global
memory. The mid level of the memory hierarchy is called shared memory. Each
accelerator is designated a small part of the shared memory. The shared memory of
a given accelerator is subsequently divided on a block by block basis to be used as
a working space for threads within a block. By designating a shared working space
for each block, the communication between threads within one block becomes easy

and quick.
» Kernels

Kernels are data-parallel functions or subroutines that are used to differentiate par-

allel code from sequential code. A kernel function generates a grid of thread blocks.
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4.1.1 Compilation Process

The source code of CUDA applications should be saved in “*.cu” files. A single CUDA
program supposes to include host code and kernel functions. The host code is ordinary
C/C++ code that runs on the host processor while the kernel functions run on the GPU.
Once a source file is supplied to the CUDA compiler system, the compilation process

includes the following steps:

1. Splitting the host code from the kernel function and keeping it in file with an exten-

sion “.cup”. This process is called a preprocessed source file.

2. Separating the preprocessed code into two files:

* The host code is kept in files with conventional C/C++ extensions such as

k7, “*ee” or “Fepp”
* The GPUs intermediate code is kept in a “*.gpu” file.
3. Compiling the host code by a host machine’s C/C++ standard compiler
4. Compiling the kernel function using an NVIDIA compiler device.

5. Linking the compiled code with CUDA run-time libraries.

4.1.2 Program Execution

A typical CUDA program execution is as follows:
* Executing the host code

e If a kernel function is encountered, the execution of that kernel function is then
dispatched to the accelerate devices by the host processor using a special procedure

calling.

* The kernel generates a large number of threads that run on GPU. The generated

threads are grouped in grids.

* Once all the generated threads complete their execution, the analogous grid termi-

nates, and the execution of the host code resumes until another kernel is encountered

CUDA is recommended for data-intensive applications in which the computation can be
split into hundreds or thousands of threads [152]. Programming specialized processors,

such as GPU, is usually more complicated than programming CPUs.
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4.2 Open Computing Language (Open CL)

OpenCL is a heterogeneous computing environment that is based on the C99 standard of
the C language [52, 151]. The first stable version, OpenCL 1.1, was released in 2010. It
was developed by the Khronos group and other industry companies and institutions[53].
It was designed for developing general purpose applications that run across heterogeneous
platforms containing CPU, DSP, GPUs, and other architectures [151, 148, 53, 32]. An
OpenCL program presumes that a heterogeneous platform is built of one host processor
and one or more accelerator devices. It also presumes that data to be processed in parallel
is indexed (represented) in an N-dimensional space where N=1,2, or 3. The index space
is essential to parallelise a problem, for example, parallelising a vector of data could be
handled by one (N=1) dimensional space while processing 2D arrays, such as an image,

would be efficiently carried out on two (N=2) dimensional space [52].

4.2.1 Program Structure

An OpenCL program is a collection of host code and OpenCL code [151]. The host code,

which runs on the host machine, is responsible for:
* Initialising accelerator devices
* Dispatching kernels to the accelerator devices via queues.
* Transferring data
* Synchronising data

The OpenCL code is a collection of kernels that are executed on the accelerator devices.
A kernel implementation, which is similar to a C function, is defined using the keyword
kernel and it is the basic unit of computation. Each kernel execution is called a work-
item, and work-items can be grouped into what is called a workgroup [151]. Work-items

in one workgroup are executed on one accelerator device and have shared memory space.

4.2.2 Memory Structure

The memory hierarchy is divided into three levels. The top level is called a private mem-
ory; it is a designated space for a work-item. The second level is called local memory,

and it is allocated for a workgroup and can be shared among the kernels in the workgroup
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[151]. The third level in the memory hierarchy is called global memory. It refers to an
accelerator device’s memory. A global memory is visible to all workgroups run on the de-
vice it belongs to. The bottom level is called the host memory, and it refers to the memory
on the CPU. The host memory is visible to all other devices [151]. To distinguish the three
levels of memory spaces, OpenCL offers three address qualifiers: __global, _ local or

__private. It offers also the “__constant” qualifier to describe read-only variables [52, 32].

4.2.3 Data Type

The OpenCL language dropped some of the C99 features such as variable length arrays,
function pointers, recursion and bit fields, but it supports other features that C99 did not
support such as vector data types and vector operations [52]. Vector types can be defined
by combining primitive data type names, such as int and float, with a value n where n
specifies the number of elements per vector. For example, if the vector size is 128-bit,
then a vector of 4 characters would be defined as char4 and a vector of 4 floating points
would be float4. The individual elements can be accessed using the vector variable name
plus a dot (. ) plus an index. There are two ways to index (address) a particular ele-
ment in a vector data type: character set or numeric index. Using characters, the form is

vectorName . xyzw. For example,

double2 v;
v.x = 2.1f;
v.y = 5.2f;
v.z = 8.6f; //Invalid: vector v has only 2 elements

Individual elements can also be accessed using numeric indices. For example, the follow-

ing code segment

floatl16 fvec;

fvec.s0 = 12.1f; // 1st element
fvec.s1l = 24.0f;
fvec.sa = 10.3f; // 10th element
fvec.sb = 11.5f;
fvec.sf = 16.2f; // 16th element
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declares variable fvec of 16 floating-point elements, and then initialises one element at a
time. In OpenCL, like in Vector Pascal, operations can be performed on vectors or a vector

and scalar. For instance,

intlé6 vl,v2;
int scalar;

v2 = v1*scalar;

is equivalent to

v2.s0 = v1.s0 * scalar;

v2.s1 = vl.sl * scalar;

v2.sf = v1.sf * scalar;

4.2.4 Built-in Functions

The OpenCL language provides a set of specialized built-in functions for query operations,
math operations, work-item operations, image access and synchronization [52]. Figure

4.1shows common functions:

4.2.5 Program Execution

To illustrate an OpenCL program execution, we first present sequential and parallel ver-
sions of a code for doubling elements of a vector and then explain the execution process.
Figure 4.2 shows the scalar implementation in C for doubling n elements of vector X and
storing the result in vector Y. Figure 4.3 shows a parallel OpenCL code for the same

purpose.

The C function in Figure 4.2 is a sequential implementation that iterates using an for loop
structure through the n elements in the received vector X, doubles one element at a time

and saves the result in the vector Y.

The code given in Figure 4.3 is a shorter OpenCL implementation of a kernel. It does not
include, for the sake of simplicity, details on how to set up a parallel environment such

as querying for platform information, creating a context, creating memory object...etc.
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// Returns an unique global ID for a work-item in the dimension space idz
size_t get_global_id(idz);

// Returns the number of work-items (kernels) in the dimension space tdz
size_t get_global_stize(idz);

// Sets barrier to block a work-item until others (same group) have ezecuted
barrier(_flag);

// Takes image and coordinate and rTeturns a vector of color values
float 4 read_imagef(image, coord);

// Write color value to coordinate (coord.z,coord.y)
void write_imagef (image, coord, float color);

// Returns width of an tmage in pizels

int get_timage_width(image);

Figure 4.1: OpenCL Functions

void vecDouble(const int n,float *X, float *Y){
for (int 1 = 0 ; 1 < n ; i++)

Y[i] = X[i] + X[il;

Figure 4.2: Scalar C Function

kernel void vecDouble(global float *X , global float *Y) {
int id = get_global_id(0);

Y[id] = X[id]+ X[id]; // run over n work-items

Figure 4.3: Parallel OpenCL Kernel
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The function header defines it as a kernel which implies that this code (function) will
be dispatched on the available accelerators but works on different data. The available
accelerators needed for processing all data should be predefined. The kernel receives two
global pointers of type float: the pointer X refers to the input data and Y refers to memory
location on the CPU into which the result is stored. When this kernel is executed on
an accelerator device, the first line in the kernel body requests a global ID to index data
that will be processed by that accelerator. The second line then uses the ID to perform
the requested operation on the id"" element in the vector X and store the result in the

id""element in the vector Y.

OpenCL supports a number of architectures such as AMD, IBM, Intel and Nvidia. It
supports data and task parallel computing. A task is executed as a single kernel [53]. It
also supports run-time compilation which allows applications to utilize different compute
devices at run time [52]. OpenCL, however, requires users to learn how to develop parallel
applications that are efficient and can perform well on different heterogeneous platforms
[53]. To overcome the programming difficulties that are still associated with OpenCL, a
new source-to-source tool called Swan has been recently introduced by Imperial College
London. Swan was designed to port CUDA to OpenCL by converting existing CUDA
code to OpenCL code [50]. This tool takes advantage of the OpenCL support for broad
architectures by helping to run existing CUDA applications on architectures other than
Nvidia.

4.3 Programming the Cell BE Architecture

This section presents a number of parallel programming paradigms that have been de-
veloped recently for programming the Cell processor. Some of these models have been
designed to exploit data-level parallelism. Data-parallel based models, such as OpenMP,
SieveC++ and Offload, basically focus on data parallel code such as loop structures. Other
models have been developed for exploiting thread-level (task-level) parallelism. Task-
based models, such as CellVM and Hera-JVM, have been designed for managing multi-
threaded applications.

In the following discussion, we start with OpenMP as a widely used API for program-
ming the Cell processor and other architectures. After that we talk about two thread-level
based models that were introduced two years ago: Hera-JVM and CellVM. We shall talk
also about SieveC++ as source-to source compilers, and finally look at Offload C++ and
Threading Building Blocks (TBB) tools that have been developed very recently to write
programs for the Cell processor.
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4.3.1 Open Multi-Processing (OpenMP)

OpenMP is an API that has been designed to support parallel programming of general
purpose applications on architectures ranging from personal computers to supercomputers
[30, 27]. It supports C/C++ and Fortran Languages, but the discussion here is based on
C++ code. Explicit-based programming models usually require users to set up resources
for parallel environment and to instruct the compiler on the parts of code to parallelize.
OpenMP offers programmers the tools to explicitly manage multi-threaded parallelism on
shared-memory architectures [30]. These tools include a set of environment variables,

compiler directives, and library routines:
* Environment variables

To control the execution of parallel code, OpenMP provides the following four en-

vironment variables:

OMP_NUM_THREADS: sets the maximum number of threads.

OMP_SCHEDULE: determines how iterations of a loop are scheduled (static, dy-

namic ...etc).

OMP_DYNAMIC: sets/resets dynamic adjustment of the number of threads avail-

able for execution parallel sections.

OMP_NESTED: nests one parallel section into another parallel one.
» Data environment management

By default all variables within OpenMP code are visible to all threads [30]. Users,

however, can manage variables in several ways using the following data constructs,

Shared: It implies that data within a parallel section is shared among threads.

Private: It means that data within a parallel section is private to each thread.

That is, each thread has a local copy and uses it as a temporary variable.

Default: It allows specifying the default data scoping within a parallel region.

flash: It can be used to restore the value of a given variable from register into

the memory for using it outside the parallel region.

* Preprocessor Directives
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OpenMP offers several types of directives. Different languages use different pre-
processor directives. For example, in C/C++ a directive must begin with the key-
word (#pragma omp ), while in Fortran directives must start with, ! $0MP C$0OMP,
or *$0MP depending on the version of Fortran [27, 30]. We use C++ code to illustrate

the use of the following directives:
— Parallel Constructs

C++ provides three different OpenMP constructs to define region. They are as

follows:

x A (for) directive: it splits up loop iterations on threads, but it does not

create threads. It is practical for implementing data-parallelism.

* A parallel directive: it splits the current thread into a new group of
threads which stay active until all the created threads are completed and

merge back into one thread.

* A (parallel for) directive: it is a two command directive: parallel
and for. The first part or command, as mentioned above, creates a new
group of threads and the second command splits that group to work on

different parts of the data.
— Sections Constructs

It is used to run consecutive code blocks on different threads. It works well for

task parallelism.
— Master Construct

It specifies a code block that will be executed by the master thread only.
— Single construct:

It can be used to determine a code segment that will be executed by one thread.
A barrier is implied at the end because other threads can skip that thread and

wait at the barrier.

* Synchronization constructs

— critical section: executes the defined section by all threads but only one

at a time. It is usually used to protect shared data from race condition.

— ordered: the enclosed code block is executed in order.

77



4 Related work

— Barrier: enforce each thread of a given section to wait until all threads of

that section reach this point.

— nowait: permits completed thread to proceed.

* Scheduling clauses

Schedule clauses are very useful for for-loop constructs because it divides work
of loop iterations among different threads. For this purpose, OpenMP offers the

following three scheduling mechanisms:

— Static: Iterations are divided among threads equally before the execution

start.

— dynamic: iterations are divided into small groups using a small number of
threads. Once a thread finishes its task, it requests another chunk from the

ones that are left.

— Guided: chunks of consecutive iterations are dynamically allocated to each
thread. With this mechanism, the chunk size is decreased exponentially each
time. This approach suits loops that do not have constant cost per iteration

such as in Mandelbrot applications.
* Library routines

They could be used to attain information on threads such as thread identifiers or the

total number of threads. . . etc.

4.3.1.1 OpenMP Program Execution

The following is a short description of how a program with OpenMP directives is executed:
1. The program starts as a single thread. It is called a master thread and its ID is “0”.
2. The master thread executes sequentially.

3. During the execution of the master thread, if it encounters a parallel region, it then

a) Creates a number of threads, and each thread has an integer “ID” but not “0”.

b) Forks the region to be parallelized among the created threads.
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} Parallel part
Master Thread
} Parallel part

Master Thread

Master Thread

Figure 4.4: OpenMP Program Execution

¢) Once the execution of the parallelized region is finished, the threads then are

synchronized, terminated, and joined back into the main thread. See Figure
4.4,

4. Resume the master thread execution

5. Go to step 3 if it encounters another parallel region.

4.3.1.2 OpenMP on Cell

OpenMP provides preprocessor directives in Fortran and C/C++ to control compilation
for the Cell processor. The OpenMP compiler for Cell is a single-source compiler and
handles data partitioning, communication and synchronization automatically [79]. The
compilation process is carried out using two parts: a source-to-source front-end compiler
or translator and existing PPE and SPE compilers. Given a C program, the OpenMP
compiler first generates dual source code: PPE source code and SPE source code. The
PPE code includes all sequential code which is handled by the master thread. The master
code is compiled by the PPE compiler. The other source regions, which are supposed to be
defined as parallel, are translated into SPE code which is compiled using an SPE compiler

[27]. To illustrate the compilation process, we present the following simple example:

#pragma omp parallel for

for (int i = 0; i < N ; i++)

Y[i] = X[i] + X[il;

The code segment shown above is C source code that defines a parallel for loop. The loop

goes over vector X of length N, doubles each element and stores the results in vector Y.
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The first line of code defines a parallel for directive which generally results in creating
a new group of threads to execute the corresponding task. When the compiler encounters
this directive, it offloads the omp section on the available SPEs by creating a new function
and cloning the code on the SPEs. At the run-time, each SPE function uses DMA transfers
to grab blocks of data for computation, and when the task of each cloned SPE function
(SPE thread) is finished, each SPE thread then acknowledges the PPE via mailbox or
signals with the completion.

Generally, OpenMP assists in relaxing some of the complexities, such as data partition-
ing and communication, that are associated with the development of parallel applications.
These features as well as being a single-source compiler have made it a widely used API
for multi-core architectures. However, using OpenMP directives may result in perfor-
mance degradation if the selected region is not worth parallelizing. The degradation in
performance is due to the gained speed up or improvement not paying off overheads of
thread creation, shared-memory activities and synchronization. Thus, the development of
OpenMP program often requires some skill and effort to get the best performance. It also

does not support parallel I/O operations such as write/read from a shared file.

4.3.2 Sieve C++

Sieve C++ is a parallel programming system that was released by Codeplay in 2006 [18].
It is another programming model that aims to simplify developing parallel applications for
multi-core architectures. The main concept of Sieve C++ is to split sieve code into three
components: reading, computing and writing [22]. This strategy allows parallelising the
computation part safely as memory access operations are separated from the computation
. The Sieve system is an extension to a C++ compiler that includes a run-time system
for processing management [18]. The system is basically a source-to-source compiler that
takes in C++ source code that is wrapped inside a sieve block, distributes work across mul-
tiple processors and most importantly instructs the compiler to delay side-effects within a

sieve block until the end.

4.3.2.1 SieveC++ Code Structure

Sieve uses a wrapping technique to enfold code inside blocks. A sieve block must be
annotated with the keyword sieve, and it could be a function or a region of code that is
enclosed within braces. To define a function as a sieve block, the keyword sieve must be

placed immediately before the semi-colon symbol ( ; ) which marks the end of a statement
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returnType functionName ( arguments list ) sieve;

Figure 4.5: Sieve Function Prototype

sieve { // The start of a sieve block

} // The end of a sieve block

Figure 4.6: Sieve Block

in C. The general forms of a sieve function and a sieve block are shown in Figures 4.5 and

4.6 respectively.

In Sieve C++ system, a sieve block could be split into multiple processes if a dependency
exists between variables inside a sieve block. If local variables in a sieve block have depen-
dencies, the sieve compiler will then implicitly split code into chunks which are processed
in sequential fashion [18]. The sieve compiler, however, could be explicitly instructed by
using a splithere statement to split up code within a sieve block into independent processes
[38].

The sieve system provides program developers a number of special library classes. We
introduce here two examples of these classes: IntSum and IntIterator. The IntSum is
an accumulator class. Accumulator classes can be used to split an operation on multiple
processors [18]. The IntSum class, for example, suggests that the sum operation is carried
out in parallel, and thus the Sieve compiler splits any variable of type IntSum into multiple
variables each evaluated on different processors. The IntIterator class can be used to
split an iterator. The IntIterator class splits the iterator control object or “index” into
multiple indices and sent them to different processors. These classes could be also applied

to other data types.

4.3.2.2 Sieve Side-effect Rule

Side-effects in a computing environment mean modifying or updating variables or states
of shared types such as global variables, static variables and pointers [18]. It is a funda-
mental concept to handle dependency that often appears with automatic parallelisation.

The SieveC++ compiler is designed to delay all side-effects within a sieve block until the
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void vecDouble(const int n,float *X, float *Y) {

sieve {
for (int i=0; i< n; i++)
Y[i] = X[i] + X[i]l;

}
// The assignment to vector Y delayed till here

Figure 4.7: SieveC++ Implementation

end of the block. To illustrate how the dependency can be solved by the side-affects de-
ferring technique, we present the same example given in Figure 4.2 to double elements of
vector X and store the result in vector Y, but this time the loop is defined as a sieve block,

as shown in Figure 4.7, to be parallelised by the SieveC++ compiler.

The for loop structure in Figure 4.7 1s declared as a sieve block, and therefore the addition
operation will be carried out in parallel on separate processors and assign the result in
vector Y. Under the sieve system, the compiler will delay the assignment to vector Y till
the end of the loop to avoid any dependencies that might appear as a result of the pointer

X and Y point to memory spaces that overlap.

This side-effect approach gives the compiler the flexibility to reorder the execution of the
statements within the block and also eases the task of the compiler to partition the sieve
code [18, 38]. As a result of that, the compiler is required to do dependence analysis only
on local memory locations. This approach also provides more memory space to be used
as data outside a sieve block is separated from the inside data and will not be processed

until the end of the sieve.

4.3.2.3 Compilation Process

The Sieve C++ system handles standard code differently from sieve code. Code that is
outside sieve blocks is compiled as a normal sequential code while the compilation process

of sieve code goes through several steps:

* The compiler starts with dependency analysis on each sieve block to determine the

split points where there is no dependency.

e If the compiler comes across any dependencies within a sieve block, it will then

report to the user where and on which variable a dependency exists [18]. Such
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int Reduction(int *X, int size) {
int Result;
sieve {

IntSum subTotal(0) splits Result;
IntIterator index;
for(index=0;index<size;index++)

SubTotal += X[index];
}

return Result;

Figure 4.8: Sieve C++ Code

information is very important for programmers in order to do the proper changes for

a better parallelization.
* Splits up the code within a sieve implicitly into independent processes.

* Once the splitting is done, the compiler then diffuses in parallel the processes on the

available processors.

4.3.2.4 Sieve Block Execution

On entering a sieve block, the sieve run-time system starts distributing processes among
multiple cores, and once a process execution reaches an exit point, it returns to the run-
time system to decide which process to run next [38]. To illustrate the use of iterator and
accumulator classes as well as the execution process, we present as shown in Figure 4.8 a

simple reduction addition function.

The first two lines in Figure 4.8 are standard C code to define a function heading and
to declare an integer variable called Result. Moving inside the sieve block, the first
statement declares the subTotal variable as an object of type IntSum and initialised with
0. This implies that each process or thread will maintain in its subTotal variable the
sum of some elements in vector X . At the end of the execution of the sieve block, the
sums in the subTotal variables are assembled in the Result variable. The elements of
vector X that each process is supposed to sum are determined by the next statement in the
block which declares the variable index as instance of class IntIterator. This results
in splitting up the index variable on the available processes. If p processors were used,

index

then the number of elements (e/em) that each processor sums together is elem = ,and
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a processor N where 0 > N < p0 start iterating fromN * elem and stop when reaching
(N+1) xelem.

4.3.2.5 Sieve C+-+ on Cell

The SieveC++ system’s main concept, which is based on separating memory access from
computation, suits the Cell BE architecture because it has multiple levels of memory struc-
ture [22]. The Sieve-Cell system; which was initiated as an experimental attempt, works

on the Cell as follows:

* A sieve block can be used to determine the part of code that can be executed on the
SPEs

* Variables outside a sieve block are located in the PPE memory
* Local sieve block variables are located in the SPEs local storage.

* Reading global memory within a sieve block triggers a DMA transfer to move data

into an SPE local storage.

* Writing global memory by a sieve block are kept on SPEs local storage to avoid any

side effects. They are delayed to be flushed into the memory at the end of the block.

With the Sieve-Cell system, programmers are required to write a single source code that
would run on both the PPE and SPE . The compiler processes a Sieve code and produces
multiple ANSI C files. These files can then be compiled for the PPE and SPE using a third
party C++ compiler and linked using the Sieve run-time libraries to produce a executable

file that run on the Cell. The following steps describe how a sieve code is executed:

* The PPE loads each SPE with a program. This program includes a loop that runs

continually and code for handling sieve code (aka work unit) execution [22].

* The SPEs uses DMA transfers to request work units from the PPE through their

outbound interrupt mailbox.

* The PPE responds through the SPEs inbound mailboxes by sending the pointers of

the work unit which are needed to be executed on the SPEs.
* Each SPE then uses the received pointer to fetch the corresponding work unit.

¢ The PPE instructs the SPEs to start the execution of the work units and waits for
them to finish.
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offload returnType functionName ( arguments list );

Figure 4.9: Offload Function Prototype

* Side-effects are handled by a specific SPE function. In case an SPE’s local storage
reaches a certain limit, that function then uses the PPE memory as a temporary space
[22].

* When the SPEs acknowledge the work completion, the PPE then resumes either to

1ssue new work units to the SPEs or to continue the execution of the standard code.

* On the completion of the SPEs work, the PPE must ensure to flush the delayed

side-effects in the same order.

4.3.3 Offload C++

Offload C++ was introduced in October 2009 as an extension to C++ for parallel pro-
gramming, and it was developed also by Codeplay [60, 149]. It is based on the offload
technology which focuses on extracting parts of a master code to run on accelerator cores
rather than focusing on parallelizing code [149, 29]. The Offload model was designed for
programming heterogeneous multiple core processors in C++, and the first version was
developed specifically for writing game applications on PlayStation3. In 2010, Codeplay
released the second version of the Offload C++ suite for programming the Cell BE pro-
cessor under Linux [149, 60]. The Offload suite includes a multi-core run-time library,

compilers and a debugger.

The Offload model, like Sieve C++, is based on wrapping techniques to determine the
code to be offloaded. An offload block must be annotated with the keyword of fload,
and it could be a function or a region of code that is enclosed within braces. To define
a function as an offload block, the keyword o f fload must be placed before the function

name; see Figure 4.9.

The Offload compiler offloads annotated parts in large C++ programs to the Cell’s SPEs
using threads [29]. Besides, any function that is called from within an offload block is
complied for the SPEs, and data defined inside an offload block are located in the SPEs
local storage. However, data movement between the PPE main memory and LSs is auto-
matically handled by the compiler. Code inside an offload block runs in sequential fashion
as a thread on an SPE, and thus multiple offload threads can be executed in parallel. In

contrast, master code that is not wrapped in an offload construct runs on the PPE. A C++
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int *X; // Outer pointer
int main() {
offload {
int *Y; // Local (inner) pointer
int Z = *X; // Requests DMA
X=1Y; // Error Y is not outer
foo (X); // Valid function call
foo(&Z) ; // Error \&Z is not outer
}
}

Figure 4.10: Offload C++ Code

program that includes offload constructs is compiled to intermediate C code for the PPE
and SPEs. The code is then compiled using GCC compilers for the PPE and SPE. In
what follows, we briefly describe the main design issues in Offload as: Offload scopes,

Dereferencing pointers and Duplication technique.

Offload scopes refer to offload blocks and offload functions [29]. Non-offload variables,
such as global variables, can be accessed by offload scopes using replicating techniques.
For example, Offload allows an offload scope to use global variables by copying the global
variables to local variables inside the offload thread using the same names. The copied
versions then can be used by an offload thread to refer to the global variables. The second
important issue is how to distinguish between host memory pointers and local memory

pointers.

Offload provides the outer qualifier to distinguish between a host memory pointer and a
local memory pointer. The outer qualifier can be used to refer to host memory pointer. A
pointer that is not inside an offload block is considered outer by default, and pointers to
local memory are considered as non-outer (inner) pointers. Thus assigning outer pointer
to inner pointer and the other way around are both invalid. In the implementation of
the Offload on the Cell processor, outer pointers cannot point to the SPEs local storage,
and inner pointers cannot refer to the PPE memory. Nevertheless, if an offload scope
dereferences an outer pointer (host memory), this then is solved by transferring data from
host to local memory. For instance, on the Cell processor, the data movement is handled
automatically by the compiler using DMA. The following example gives an idea on offload

scopes and outer and non-outer pointers:

The code given in Figure 4.10 includes one global pointer X which is by default an outer
pointer and resides in the PPE memory. The first statement in the offload block declares
one local (inner) pointer Y of type integer that points to local memory location. The next

statement also declares a local integer variable Z. In the same statement an outer pointer
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was used to assign the value in the PPE memory location X into the local variable Z. Now,
Z was declared inside an offload scope which implies that Z resides in the local memory,
and therefore data should be transferred from the PPE into the SPEs local storage using
DMA. This example also shows two instances of invalid assignments in which the code

tries to assign inner pointer to outer pointer or pass the inner pointer to another function.

The third technique in Offload is the Call-graph duplication [60]. It is used to provide
multiple compilation units which are needed sometimes when non-offload functions are
involved. If a program has only offload functions the compiler can easily compile them for
the SPEs. However, if a non-offload function is called from an offload scope, the compiler
is then required to overload the non-offload function. The new version of the overloaded

function should be identical except the new version has the o f fload qualifier.

Offload shows some performance improvement on the Cell accelerator cores, yet it does
not completely hide the underlying details of the architecture. The duplication technique
may produce a series problem as the Cell accelerators have very small storage space; for
instance, if a standard function is called several times by offload scopes, this approach

then may dramatically increase the code size [60] .

4.3.4 Hera-JVM

Hera-JVM is a run-time system that supports migration of Java application threads be-
tween heterogeneous multi-core architectures [133]. It does not focus on parallelizing
code, like the proposed VSM, instead it focuses on managing threads between different
core types by looking at the heterogeneous cores as a homogeneous multi-threaded virtual
machine [49]. Hera-JVM was implemented for the Cell processor and was presented as a

doctoral thesis work at Glasgow university in 2010.

Hera-JVM is built upon a Java Research Virtual Machine (Jikes RVM) which supports
PowerPC architectures and allows Hera-JVM to run on the PPE without any modifications
[133]. The initiative of Hera-JVM’s design is to hide some aspects of the processor’s het-
erogeneity and enable Java programmers to use heterogeneous cores without the need for
deep familiarity with the processor’s design [49]. Its run-time system depends basically on
annotations to gather information on code behavior, and then uses this information to map
Java application threads to the proper underlying cores. To trace a program’s behavior,

Hera-JVM provides a number of tagging mechanisms and behavior characteristics.

It suggested three different tagging mechanisms to describe expected behaviors of source
code and to provide the information about the code behavior. These three mechanisms

are: explicit annotations, source code analysis tools and run-time monitoring. An explicit
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code annotation is the basic tagging approach that is being supported by a number of pro-
gramming languages [49]. Source code analysis tools, on the other hand, are automatic
approaches to track an application’s behaviour and tag the proper code segments [133].
The third tagging mechanism is a dynamic approach to monitor code behaviour from dif-

ferent perspectives at run-time.

It also provides three mechanisms to perceive the source code behaviors at different stages:
processing behaviour, thread communication behaviour and execution behaviour. The first
class provides hints for the Hera-JVM run-time system to make an efficient use of similar
processing units based on the capabilities of the similar units on different core types. For
example, the performance of the floating-point unit on the Cell processor varies between
the PPE and the SPEs. Hera-JVM offers the following tags to characterise the required

processing for the main functional units [133]:
* IntegerCode: mark code segments that require intensive use of fixed-point unit.
* FloatingPointCode: mark code segments that require using floating-point unit.
* DatadccessCode: mark code segments that require intensive memory access.

However, if these hints are not significant when the performances of the processing units
on the different core types are the same, the Hera-JVM run-time system then omits these

hints.

Inter-thread communication is the other aspect that Hera-JVM focuses on. Threads of the
same process often work on shared data and require communication with each other, and
therefore the information on shared data is important for efficient communication between
threads. To achieve that Hera-JVM looks at threads that frequently communicate with

each other and then groups them together using the following tag [133]:

@ThreadTeam(name="<name of team>")

Hera_JVM also looks at data locality, distance between the cores accessing the data and
the possibility of using efficient communication mechanisms such as scratchpad memory

transfers.

The third activity that Hera-JVM traces is the behaviour of program execution. Knowing
the expected behaviour of an executing thread helps the run-time system to choose the
proper core type on which the thread should be executed. The following five tags are

offered by Hera-JVM to characterise program execution behaviour:
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* @SequentialAccessBehaviour: Tags code that requires access to consecutive

memory locations such as arrays.

* GRandomAccessBehaviour: To tag code that requires non-sequential memory ac-

CESS.

* QLargeWorkingSet: To specify code that is expected to work on a considerable
chunk of data and also specify the expected size of data. This information assists

the run-time system to determine the proper core that has enough cache [133].
* @IoAccessBehaviour: To determine I/O code segments.

* OExceptionsLikely: Tags code thatis expected to generate many exceptions. This
tag is useful in choosing the core that is less costly than the other cores in handling

exceptions.

To determine the influence of each behaviour on a program’s performance, each behaviour
characteristic should be associated with its cost on the different core types. The cost
information on the different type of cores can then help Hera-JVM run-time system to
automatically determine the total cost of a given behaviour on the available heterogeneous

resources and choose the proper core type that would be efficient to execute a given code.

The Hera-JVM run-time system relies on behaviour characteristic annotations to gather
information on a program’s execution, and it then uses this information to migrate threads
to the proper underlying cores. This means that the Hera-JVM approach does not consider
parallelizing code or data, but it provides techniques for managing multi-thread execu-
tion on heterogeneous architecture [49]. The Hera-JVM run-time system, unlike VSM,
hides only some aspects of the processor’s heterogeneity and still requires programmers

interference to add annotations.

4.3.5 CellVM

CellVM is a Java virtual machine that can also be used to offload Java threads on a hetero-
geneous multi-core architecture such as Cell. It aims to exploit the performance potential
offered by the Cell processor and to improve programmers’ productivity. CellVM basi-
cally emulates, similar to Hera-JVM, a homogeneous shared-memory multi-core machine
to hide the heterogeneity of the underlying hardware of Cell and to offer a high level of
abstraction for offloading individual Java threads on the SPEs [48]. It has been developed
to overcome the barriers of the standard Java VM’s to incorporate the SPEs for execut-

ing Java instructions. CellVM, which was first introduced in 2008, is an extension of a
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compact Java VM called JamVM. The main feature of JamVM is its size. Compared with
most other JVM’s, JamVM is very small which makes CellVM suit the challenges faced
by the limited space of the SPEs’ local storage [48]. CellVM has been implemented as
a prototype system that can be used to execute in parallel one thread per SPE [48]. This
prototype system consists of two collaborate Java VM interpreters: ShellVM and CoreVM
[48].

ShellVM runs on the PPE to maintain the overall control of the machine resources. It is
responsible for handling and executing built-in routines, such as “Math” routines. Built-in
routines should not be executed on the SPE because first they usually require a relatively
large memory space while the SPEs local storage is very limited [48]. Secondly, built-in
routines often uses Java heap which resides in the main memory, and thus executing built-
in routines mostly likely will require access to Java heap space and this process will be
very costly. ShellVM is also responsible for code-preparation to save switching between
PPE and SPEs. It prepares the bytecode of any routine before calling that routine [48].
The other task of the ShellVM is resolving references that are not known at compile time.
The preparation process, which can be handled in the preparation stage, deals only with
dynamic references that are not altered during the entire execution of application. The cur-
rent implementation of CellVM has solved this issue by adding 8 bytes to each bytecode
to store dynamic information. This approach is expected to reduce the number of DMA

transfers and the switching between threads.

The other interpreter, CoreVM, can be seen as a virtual Java code execution unit on an
SPE. The currently developed CoreVM is expected to execute most Java instructions, but
if it finds an instruction that it cannot execute on the SPEs, the CoreVM then hands the
instruction to ShellVM [48]. For performance considerations, the CoreVM implementa-
tion also excludes a subset of the JamVM functionality, such as managing Java heap and
imported functions that are written in other languages. This management process is left
to the PPE to handle for the following reasons: First Java heap space, which is often used
for allocating new objects such as arrays and sometimes by external functions, resides in
main memory, and therefore the cost of accessing the main memory from the PPE is less
than accessing it from an SPE which requires using DMA transfers [48]. Secondly, exe-
cuting imported functions on an SPE needs to offload the function’s code on the SPE local

storage, and this means reducing the available space for manipulating data on the SPE.

A program execution under the CellVM starts with the ShellVM to set the spaces re-
quired for imported functions and data such as Java heap. It then prepares the required
information, such as data structures and code, for launching the CoreVM. Once this in-
formation is cached in the local stores on the SPEs, the CoreVM then starts executing the

code which is expected to continue unless the CoreVM interpreter encounter code, such as
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imported functions, that must be executed on the PPE. If CoreVM needs such assistance
from the PPE, the procedure to switch the instruction’s execution from CellVM to Shel-
IVM is then as follows: First, updating the status of CoreVM on the PPE using a DMA
transfer. Once the DMA transfer is completed, the ShellVM then postpones the CoreVM
and starts executing the requested instructions. After ShellVM finishes executing the re-
quested instructions, it acknowledges Core VM with the completion, and CoreVM resumes

with execution.

The CellVM model can only be used for Java multithreaded applications because it does
not have the capability to divide workload of a single thread. The other constrains of the
current implementation is the number of threads that can be executed per SPE. For exam-
ple, If a multithreaded application has threads more than the available SPEs, the additional
threads then are executed on the PPE. This implies that the performance potential of the
Cell processor can been reached only if the number of an application’s threads is equal
to the number of available SPEs. Handling imported functions also degrades the perfor-
mance of CellVM because they often require switching between CoreVM and Shell VM.
The CellVM design also does not completely hide the underlying details of the Cell pro-
cessor and hence programmers must be very familiar with the Cell processor’s architecture

in order to exploit its potential performance.

4.3.6 Threading Building Blocks

We introduce here another approach for programming the Cell processor. This approach
combines heterogeneous and homogeneous parallel programming models. The first model
is the Offload C++, and it has been already introduced in this chapter. The second model
is the Intel Threading Building Blocks (TBB). This section first describes the Intel TBB
approach and then explains how these two models were integrated to port C++ on the Cell

Processor.

The Intel TBB is a C++ run-time library that is introduced to simplify development of par-
allel programs on Intel homogeneous platforms [153]. It provides high-level thread man-
agement through the run-time libraries to liberate programmers from managing threads
explicitly which often requires thread creation and explicitly mapping the individual sub-
parts of a given problem onto threads efficiently. These activities in TBB are handled by
a task-scheduler [153]. The TBB library also provides other low-level features such as
locks, atomic operations [20], and it makes use of the template feature in C++ to provide

a number of generic parallel constructors such as

parallel_for , parallel_reduce and parallel_while
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The TBB task scheduler automatically determines the number of threads and arranges their
execution. A thread in TBB must be an initialised object of type tbb :: task_scheduler_init

as shown in the following code:

using namespace tbb;

int main( ) {

task_scheduler_init initThread;

return O;

The above code declares the object initT hread without any argument. The default con-
structor of tbb :: task_scheduler_init does the initialisation. The constructor can take an
optional parameter to determine the number of threads required, but it is recommended
not to determine the number of threads. At the end of the program, the destructor should
be called automatically to terminate the object initThread [153, 20]. However, a thread
may have multiple task scheduler objects at a time, and since the overheads of starting up
a task scheduler and shutting down are high, it is advisable that the number of created task

scheduler objects is kept to the minimum [153].

The parallel_for is a template function that can be used to parallelise tasks within a for
loop structure. It basically chops an iteration space into blocks, and then schedules these

blocks to run on different threads [153]. It requires two objects:

* An object of type range that determines the iteration space. TBB offers two range
types: blocked_range for single dimensional spaces and blocked_range2D for two

dimensional space.

* A body object is a form of a function object that includes a modified original serial
loop that runs on sub-ranges determined by the range type. The function object
should have a copy constructor to copy the code for each thread, and its member

function operator() is overloaded to accommodate the modified original serial loop.

Figure 4.12 shows a simple program that adds each element in vector X and an element in
vector ¥ and stores the sum in the corresponding element in vector Z. The computation
is performed in parallel using the TBB library. The program starts by declaring three vec-
tors; X, Y and Z. The size of these vectors is defined in the first line in the program. It then
instantiates a task scheduler object initThead which manages the scheduling of tasks on

threads (available cores). The third statement in the body of the main function, calls the
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class vecAdd {

float *vl,*v2,%*v3;

public:

// constructor copies the arguments into local space
vecAdd(float *pl,float *p2,float *p3):vi(pl),v2(p2),v3(p3) {}
// Overloaded operator () to add elements of two vectors

void operator () ( const blocked_range<size_t> &r ) const {

for(size_t i= r.begin() ; i !'= r.end() ; i++)
v3[i] = v1[i] + v2[i]

Figure 4.11: C++ Class

const size_t Size = 10000;
int main() {

float X[Sizel, Y[Sizel, Z[Sizel;

task_scheduler_init initThead;
parallel_for(blocked_range<size_t>(0,Size), vecAdd(X,Y,Z) );
return O;

Figure 4.12: C++ Code Segment Using TBB libraries
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parallel _for function which takes two augments: the first is a range object which deter-
mines the iteration space. In the example given in Figure 4.12, the iteration space starts
from O until Size. The second argument is a function object. It is the constructor of the
class vecAdd which is defined in Figure 4.11. The constructor stores the received pointers
to X,Y and Z as private members. The task of the parallel_for is here to create objects
of type vecAdd and passes on the sub-ranges to each thread. The vecAdd objects are then
scheduled and execute in parallel[20]. Notice here neither the tasks nor the number of

threads were specified; these parameters are set automatically by the task scheduler.

4.3.6.1 TBB on the Cell

Intel TBB primarily does not support heterogeneous architectures such as the Cell BE, but
it has been combined with the Codeplay’s Offload C++ to allow programs that are paral-
lelised using TBB to run on the Cell’s accelerator cores [28]. This work was initiated as
an experimental attempt to use TBB on the Cell processor. TBB and Offload are two com-
plementary models. Offload C++ provides, as mentioned before, off1oad basic construct
to wrap regions of code in a given application. The code inside offload blocks is executed
on the Cell’s accelerators, and any code, which resides outside the offload blocks, is exe-
cuted on the PPE. Recall also that in Offload C++ data transfers between the host and the
accelerators and code duplication are handled automatically while thread management is
handled manually. On the other hand, the Intel TBB offers a task scheduler which auto-
matically manages threads. These complementary features were combined to allow code
to execute across the Cell’s SPEs in a work which was presented as experimental study in
2010 [28].

The combination approach of the Offload C++ and Intel TBB focuses on offloading the
parallel loop constructs of TBB in order to port TBB programs on the Cell processor.
The implementation, which consists of several template classes, aimed to distribute TBB
loop iterations across the PPE and SPEs [28]. The distribution process is carried out by
a template function that is injected inside the TBB loop constructs, such as parallel_for
and parallel_reduce. To illustrate this, we briefly describe how the work given in [28]

implemented the parallel_for construct using Offload C++.

The parallel _for construct has two arguments (objects): iteration space (range) and func-
tion or code (body) that runs on sub-ranges determined by the first object. The proposed
function to be injected inside the parallel_for also has the same arguments; range and
body. Therefore, by injecting a function inside the parallel_for construct, the injected
function should be called with the range and the body. On the other side, the responsibili-

ties of the injected function are as follows:
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¢ Get the number of available SPEs; NUM_SPES.
* Get the start and end of the iteration space.

* Determine the block size by equally dividing the iteration space on the NUM_SPES

plus one to run on the PPE.

* Iterate on the SPEs to execute NUM_SPES sub-ranges:

— Compute the beginning and the end of the sub-range, the i SPE.

— Call the body from inside an offload block.

Notice here that the second step will trigger the Offload’s call-graph duplication
because the function (or passed body) is a non-offload function, and because it is
called from an offload scope, the compiler in this case will overload the non-offload
function on the SPE. The overloaded version is identical to the original code, but it
is added the o f fload qualifier.

* Execute one sub-range on the PPE starting with the iteration from the point of the
last SPEs .

Thus combining the Intel TBB and Offload C++ as shown above allows parallelising the

parallel_for construct on the Cell processors.

95



5 Virtual SIMD Machine

The work here represents the central objective of this dissertation. The basis of this work
is a new parallelisation approach to develop a Virtual SIMD Machine (VSM) that can au-
tomatically parallelise large data structures on heterogeneous architectures. The novelty in
this approach is using a VSM model to completely hide the underlying details of hetero-
geneous architectures [154]. This approach is based on new parallelisation techniques that
imitate a SIMD instruction set using virtual (large) registers and Virtual SIMD Instruc-
tions (VSIs). The VSM model is designed to look at machine accelerators as if they are
arithmetic units, and when a single virtual instruction is initiated, the actual operation is
performed by the accelerators on adjacent parts of the data elements in the virtual registers

in parallel.

5.1 Introduction

The VSM model is a register-based model that provides easy access to the target accelera-
tors. The key aspects of VSM design are: its internal (hidden) structure and its interface to
users. Its internal structure, which is completely hidden form the users, is primarily built

of two co-operative interpreters: master (or host) and accelerator (or slave) interpreters.

The master interpreter schedules micro-tasks and sends messages to the accelerators re-
questing them to perform an array operation, such as load, store, add ...etc, in parallel. The
master interpreter is a collection of stub routines that are run on the host processor, and
these routines are responsible for creating and launching threads, data partitioning, com-
munication and coordinating with accelerators for any required synchronization. The stub
routines that are responsible for processing data can be seen as virtual SIMD instructions.
Most of the VSM instructions were designed as non-blocking operations which means that
the master processor can resume executing next instructions once the sent messages have
been delivered to the accelerator. This infers that the master processor doesn’t have to
wait for the accelerator devices to finish the requested operations in order to execute the

next instruction. The VSM instruction set also includes a few blocking instructions. The
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blocking instructions, such as Store and Reduction, are usually required to send data back

from the accelerators to the master’s memory space.

The other (or slave) interpreter, on the other hand, is a program that is designed to run
constantly on each accelerator in the background. This program is responsible for extract-
ing information from messages sent by the master, any data alignment, acknowledgments
and synchronization. An accelerator’s program frequently checks if there is any message
dispatched by the master or not, and when it receives a message, it decomposes these mes-
sages to determine the required operation and then performs the requested operation. The
VSM concept fits well with machines that have multiple levels of memory hierarchy such

as the Cell BE processor.

The second important design aspect is that VSM is a parallel programming interface that
can be used by two different classes of users: compiler developers or regular program-
mers. VSM is a C/C++ based specification that is mainly designed to assist compilers in
parallelising array expressing on target accelerators without having to deal with the under-
lying details of the target machine, yet it can be easily used as an Application Programing
Interface (API) to operate low level communications with the machine. For example, a
programmer can decompose a high-level array expression into sequences of separate op-
erations and then call the proper VSM stub routines to parallelise one array operation at a

time.

VSM was implemented in C/C++ to take advantage of the existing tools for programming
the Cell processor such as GNU compilers and libraries and any future improvement of the
existing tools. The VSM implementation employed two algorithms to handle alignment
on virtual load and store instructions. The main ambitions in developing VSM this way
are: the first objective is to provide easy access to the Cell hardware resources by hiding
all the underlying details of the machine. Secondly, to use the VSM interface as an ab-
stract model to shorten the time for developing parallelising compilers for heterogeneous
systems. The third objective is to ease parallel program development by concentrating on
algorithms rather than on parallelization issues such as identifying available parallelism,

communication, data partitioning, alignment and synchronization.

This chapter includes a description of the VSM interface design and implementation and
the challenges encountered during the development. It starts with a description of basic
elements of the VSM and the messaging protocol. After that it discusses the VSM’s two
co-operative interpreters and the challenges encountered during the development of the
VSM and concludes with the experimental results. It should be noted here that some of

the material in this chapter is already published in [154].
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Packed Virtual Register (16384 bytes )

SPEO SPE1 SPE2 SPE3

4096 bytes 4096 bytes 4096 bytes 4096 bytes

Figure 5.1: Splitting a VSM Register on 4 SPEs

5.2 Virtual SIMD Registers

5.2.1 VSM Register File

A virtual register represents a set of fields (vector data) that are logically implemented
in consecutive local memory locations. The VSM design looks at data in a single virtual
register as packed data which could be allocated on one SPE or scattered on multiple SPEs;
see Figure 5.1. To clarify this point, the term “VSM register” shall, henceforth, be used to
refer to the registers of the VSM model, and the term “SPE virtual register” shall refer to
the consecutive memory locations on an SPE. Accordingly the size of the VSM registers
should indicate the adequate arrays size that can be evaluated on one SPE or parallelised
on multiple SPEs, and hence if a VSM register size is PSize bytes, then an SPE virtual
register size (§) is

S = PSize/P Bytes (5.1)

where P is the number of used SPEs.

Generally, the bigger an SPE’s virtual register size gets, the better for performing typical
computation operations, such as add and multiply, on the SPEs as this allows exploiting the
computing power of the Cell’s processor. It also minimises boundary checking on arrays,
conditional branch instructions and the number of data transfers. Yet, due to machine
alignment constrains and VSM design and performance matters, the decision on the proper
virtual register size became a very important design issue, in particular for memory access

instructions.
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5.2.2 Size of VSM Registers

The size of an SPE virtual register is crucial in load and store operations. In the VSM
implementation, these two operations depends on the Cell’s DMA mechanism to move
data between the Cell’s main memory and SPEs’ local memories. Just to recall here that
the Cell processor places constraints on the size of an DMA transfer. A Cell’s DMA data
transfer can range from one byte up to a stream of 16-KByte [91]. Since VSM attempts
to use large registers, thus the first constraint is imposed on the maximum size of data
that can be transferred by a single load or store operation. The maximum data that can be
moved by one SPE at a time must not exceed 16384 bytes. This implies that the maximum
size of the VSM registers should be 16384 x P Bytes where P is the number of used SPEs.
However, a virtual register size should be chosen to be large enough to pay off parallel

overhead and adhere to the machine’s DMA maximum size.

However, using small SPE virtual registers do not amortize communication and data move-
ment overheads because these overheads are expected to dominate the time spent on pro-
cessing small data blocks (registers). On the other hand, large SPE virtual registers require
either multiple of small DMA transfers which eventually introduce addition DMA set-up
times or moving a big chunk of data in a single DMA transfer, and this may result in
putting an SPE’s computation units in an ideal state until the data is completely trans-
ferred. Large register sizes can also limit parallelism because only arrays that have the

same sizes as the virtual registers can be then parallelised.

During the development process we tested the VSM model on the Cell processor using
various VSM virtual register sizes, in particular 1024, 2048, 4096, 8192, and 61384 bytes
which are divided on the used SPEs. For example, if the VSM register size is 4KB, then
one SPE can process 4KB, and if 2SPEs are used, then each can process 2KB and on
4 SPEs, each of which can process 1KB. Taking these considerations into account, we
conducted several experiments to determine the appropriate VSM register size. Based on
the current VSM implementation we found that the proper VSM register size is 4096*P
bytes, where P is the number of SPEs, for single-precision, 32-bit integer and 32-bit float-
ing points, data types. More analysis on the optimal VSM register size shall be given when

we discuss results and the performance of the compiler on the N-body benchmark.

The current VSM implementation also imposes divisibility and alignment restrictions on
the size of SPEs virtual registers. The divisibility issue appears when multiple SPEs are
used as the number of data elements in a VSM register must be divisible by the number of
SPE. The other restriction has to do with data alignment to get good performance. As was
mentioned before, on the Cell processor, DMA transfers must be aligned on a multiple

of 16-bytes boundary, but for a better performance, they should be aligned on a 128-byte
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boundary [91]. For this reason, the SPE virtual registers are all aligned on 128 bytes
boundaries, yet the VSM is designed to handle moving unaligned data between the PPE
and SPEs. This topic shall be discussed in detail when talking about how the SPEs handle

load and store operations.

The degree of parallelism on standard SIMD machines, such as the SPEs, is determined by
the number of elements of a given data type that fit in a single physical machine register,
and therefore the degree of parallelism that our purposed VSM should offer is amplified
by a factor of P where P again is the number of used SPEs.

5.3 Virtual SIMD Instructions

The VSM interface was designed as two layers that separate between hardware and soft-
ware, and it provides access to the hardware resources and services available in a system
through a Virtual SIMD Instruction (VSI) set. The VSI set is designed as high-level pro-
gramming functions, and they include those aspects that are visible to users such as com-
putation and memory access routines. The VSIs also have to collaborate with other hidden
routines, such as communication and data partitioning routines, to dispatch tasks on the
SPEs.

In this section, we bound our discussion only to the design and implementation of the
routines that are visible to the outside world. The hidden aspects or routines, however,

will be discussed in detail when we talk about the PPE and SPE interpreters.

5.3.1 Virtual Instruction Format

The VSIs are a set of RISC like register load, operate and store operations, and they are
implemented as C++ functions. From now on, the word “function” will be also used to
refer to a VSI. Each VSI or function consists of an opcode, one or more operands such as

registers or memory locations and the effects or outcome of the instruction.

1. The opcodes determine the operations to be executed. Each instruction for each
primitive data type, such as integer, float, double and characters, has a unique op-

code. Table 5.1 shows some of the opcodes of primitive operations.

2. The VSIs are register-to-register instructions. An operand can be a number or a data
memory location, and both must be unsigned integer values. The number would

typically refer to a virtual register or a physical machine (general purpose) register
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operation | : QP_COdef -
int32 \ intl6 \ int8 \ icee32 \ icee64
load 0x01
store 0x02

add 0x10 | 0x20 | 0x30 | 0x40 | 0x50
subtract | Ox11 | 0x21 | O0x31 | Ox41 0x51
divide 0x12 | 0x22 | 0x32 | 0x42 | 0x52
multiply | 0x13 | 0x23 | 0x33 | 0x43 | 0x53

Table 5.1: VSM Opcodes

which are used to carry out a given operation. The memory location refers to a start-
ing address for the load and store operations. This information has to be supplied as

parameters to the corresponding function.

3. Most VSIs, which are in fact part of the PPE interpreter, have similar outcomes or

tasks. These effects are:

a) Calculate the starting address of the data to be loaded to or stored from each
SPE. The data is presumably equally distributed on the SPEs.

b) Combine passed parameters, the unique operation code, and the computed
starting address; if needed, into message(s). This combined information de-

termines the resources to be used in that operation.
¢) Send formulated messages to each used SPE’s inbound mailbox.
d) Wait for a completion acknowledgment from the SPEs (if needed).
e) Synchronize between different cores (if needed).

f) Return any expected results.

These effects, however, are completely hidden from users.

A VSI can be easily invoked by just calling the analogous function given that the required
information is provided as parameters. As a matter of fact, this is the only thing a user
needs to do in order to execute a VSI instruction which at the end takes all the required
steps to carry out the requested operation, such as load, store, add, ...etc, onthe
Cell’s SPEs.

5.3.2 Virtual Instruction Types

The VSIs set can be divided into three groups:
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1. Data Movement

Data is moved between the PPE main memory and the SPEs local memories using
DMA data transfers. The Load and Store instructions each requires two register
operands: a virtual register and a physical PPE machine register. The virtual register
is used for load or store operations while the physical machine register must contain
the address which indicates the starting location of the data to be loaded from or

stored in the PPE main memory.
2. Binary Computational Instructions

Most computational instructions require two operands to determine the virtual reg-
isters involved in the operation. There are, however, a few operations, such as re-
duction and replicate, which require a different type of registers. For example, the
replicate instruction takes a scalar and makes copies of it into a virtual register, and
therefore this operation also requires two register operands: one a virtual register,
but the second one must correspond to a physical PPE machine register to hold the

scalar value.
3. Unary Computational Instructions

These type of instructions, such as sqrt, sin, cos ...etc, carry out opera-
tions which usually require only one unsigned integer to indicate one virtual register

number. The virtual register is used as a source and a destination register.

So far, we looked to the main design issues in the virtual SIMD instructions. We defer
discussion of their implementation until we explain the hidden aspects that are connected

to VSI such as the messaging protocol.

5.4 VSM Messaging Protocol

The messaging protocol facilitates the communication between the PPE and the SPEs
interpreters using forward messages and return messages. These message are sent through

the Cell’s mailboxes.

5.4.1 Forward Messages

Forward messages are mainly used by the VSIs, which are functions run on the PPE, to

order the SPEs to execute an operation. These messages contain the information needed to
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Figure 5.2: Message Formats

perform an operation such as an opcode, virtual register numbers, and, for Load or Store, a
main memory address. The forward messages are designed in two different formats: two
32-bit word format and one 32-bit word format. The structure of the two-word format,
which is shown in Figure 5.2 (a), is used in load and store operations. One of the 32-bit
words as shown in the same figure contains an opcode and a register number. The first 8
bits; 1.e, bits 0-7, are reserved for the opcode, and the last 8 bits; i.e., bits 24-3, are reserved
for the virtual register number. The second 32-bit word holds a memory effective address

which determines the starting location of the data in the PPE memory.

The one-word format, which is shown in Figure 5.2 (b), is used for other operations ex-
cluding the load and store. This 32-bit word holds three values: opcode, a source register
and a destination register. The opcode must be placed in the first 8 bits; i.e, bits 0-7, the
source register in bits 16-23, and the destination register number in the last 8 bits; i.e., bits
24-31.

Accordingly, the forward messages design allows encoding up to 256 operations, using
256 source registers and the same number of destination registers and addressing up to

4GB of RAM. The implementation shall be discussed in the next section.

5.4.2 Return Messages

The return messages (or acknowledgments) are sent from the SPEs to the PPE. The SPEs
use their outbound mailboxes to acknowledge the PPE with operation completion. Return
messages are used in operations that are required to write data back to the PPE main

memory such as store or reduction operation.
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5.5 PPE Interpreter

The PPE interpreter is a collection of routines that run on the master processor. These
routines are implemented in C++ and can be compiled using third party C compilers for
the PPE such as GNU compilers. The resulting object files along with the SPE objected
file can be then linked to a user program or the output of a compiler. We shall discuss here
the structure of the interpreter, main design aspects and the implementation of the main
PPE routines.

5.5.1 PPE Interpreter Structure

The PPE interpreter could be divided into two subsets of library functions or routines. A
set of VSM-level library routines responsible for creating and launching SPE’s threads,
data partitioning and communication, and a set of user-level library routines (VSIs) for

scheduling data memory and computational operations to execute in parallel on the SPEs.

5.5.2 VSM-Level Runtime Library

The VSM-level library functions are completely hidden from the user, and the three main
VSM-level routines: message passing, managing SPE threads, synchronisation and data
partitioning. Most of these routines are implemented as inline functions to save the over-

heads of function calls.
* Message Passing Routine

Figure 5.3 shows the PPE function that handles two-word format messages, which
are sent by user-level routines (or VSIs) to perform load or store operations. The
function takes three arguments: a memory effective address (MEM_EA), a 32-bit word
(msg2) and the receiver number (ID). The second argument should contain the op-
code and the virtual register number. The functions also use a globally defined
p_s_areal] array that contains the pointers of the SPE_CONTROL_AREA structure of
all the SPEs after being mapped to the PPE address space. For more detail on the
control area structure’s contents see section 3.2.7.

Because each SPE’s inbound mailbox can hold only four entries at any given time,
the first thing this function does is to check the number of entries available in the
targeted inbound mailbox by checking, within a do/while loop, the mailbox’s sta-

tus register from the p_s_area[ID] control area using the SPU_MBOX_STAT flag.
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inline void broadCast2Msg(uint mem, uint msg2,uint ID) {
uint status,Count;
do {
status = *((volatile uint *)(p_s_areal[ID] + SPU_MBOX_STAT));
Count= (status & 0x0000FF00)>>8;
} while ( Count < 2 );
// Assign the two messages to the MMIO registers
*x((volatile uint *) (p_s_area[ID]+SPU_IN_MBOX))=mem;
*((volatile uint *)(p_s_area[ID]+SPU_IN_MBOX))=msg2;

Figure 5.3: Broadcasing PPE Messages to SPES

The do/while loop keeps iterate until the Count variable in the control area indi-
cates that there is at least two entries available in the inbound mailbox. I had to use
the do/while loop because the PPE instructions to access the mailboxes are non-
blocking which means that the PPE will not stall when writing into an SPE’s mailbox
even if its Inbound mailbox is full, instead it overwrites the last message. Now, once
the function sees the mailbox has two entries free, it then begins sending the mem and
msg2 messages to the ID’s inbound mailbox using again the p_s_area[ID] control
area but this time with SPU_IN_MBOX flag.

The implementation of a function that sends a one-word message format is very
similar to the code given in Figure 5.3; the only difference is the number of messages

to be forwarded.
* Managing SPE Threads Routine

This function’s role is to get the SPE ready to accept tasks from the PPE. It is called
only once and must be called before attempting to use the SPEs. Figure 5.4 shows
the main code of the Threads-Managing function. To shorten the displayed code,

we excluded all comments, warning and error messages.

The function takes one argument, which determines the number of SPEs to be used,
and has four assignments. It first reads how many SPE are available on the ma-
chine and checks if there are enough SPEs. The second task is to create one thread
(contexts) per SPE and keep the pointers of the created SPEs contexts in the array
T_argl]. The third mission is to load the SPE interpreter (program) into the SPE’s

local store. The last assignment is to order each SPE to start running its thread.

In the last step, pthread threads were used to run the SPE contexts because the call to the
function spe_context-run() is a thread blocking call. That is, if any thread launches an

SPE’s thread using spe_context-run() function, the launcher thread will then be blocked
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void *Threads-Managing(uint noSPE) {
if (spe_cpu_info_get (SPE_COUNT_USABLE_SPES, -1) < noSPE)
exit(1);

for(int i=0; i<noSPE; i++) {
T_arg[i] .speContext=spe_context_create (SPE_MAP_PS,6NULL);
if(T_arg[i] .speContext == NULL)
exit(1);

// load SPE interpreter into a local store

if (spe_program_load(T_argl[i] .speContext,&spelnterpreter)!=0)
exit(1);

T_argli] .spelD=i;

// Start running the SPE thread
for(int i=0; i<noSPE; i++)
if (pthread_create (&threads[i], NULL, &spe_thread_run, &T_arglil))
exit (1);

Figure 5.4: SPE Thread Creation

void *spe_thread_run(thread_arg *T) {
uint entry=SPE_DEFAULT_ENTRY;
if ( spe_context_run(T->speContext, &entry, 0,0,0, 0) < 0 )
exit(1);
return NULL;

Figure 5.5: Launching SPE Thread Using POSIX Threads

until the launched thread finishes or is terminated. The proposed VSM model must avoid
using the spe_context-run() function because VSM was designed to run both the PPE
interpreter and the SPE interpreter at the same time. To solve this problem, VSM therefore
used separate threads for calling spe_context-run to allow the main PPE thread and
SPE threads to run simultaneously and to communicate with each other. The last loop in
Figure 5.4 shows how separate pthread threads were used to invoke the spe_thread_run

function shown in Figure 5.5. See section 3.2.8 for more details.

* Operations Synchronisation

Most of the VSIs or operations do not require barrier synchronisation because they
were implemented as non-blocking operations in which the PPE is allowed to pro-
ceed dispatching these operations one after another. However, this is not the case

with the store operation which is implemented as a blocking operation. When the
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void OpSynch(uint noSPE) {
uint status,Count;

for(int i=0; i<noSPE; i++) {
do {
status = *((volatile uint *)(p_s_areal[i] + SPU_MBOX_STAT));
count = (status&0x000000FF); // Extract SPU_QOut_Mbox_Count
} while ( count== 0 ); // No message posted yet

uint ss = *((volatile uint *)(p_s_areal[i] + SPU_OUT_MBOX));

Figure 5.6: Barrier Synchronisation Routine

PPE orders the SPEs to store data back to the main memory, the store routine will
then halt the PPE from performing any other operation until the store operation is

completed.

To implement barrier synchronization, the PPE and SPEs have to collaborate with
each other via messages to ensure that all the used SPEs have completed storing
their data back to the main memory. Figure 5.6 shows the implementation (function)
which handles this issue from the PPE side. This function expects that each SPE will
send acknowledgment once it has finished the store operation. From the PPE’s point
of view, this function checks the outbound mailboxes of the SPEs one after another.
If it finds a message in the current SPE’s outbound mailbox, it pulls the posted
message to empty the mailbox and continues checking the outbound mailboxes of
the other SPEs. To maintain data consistency, this routine must be called by the PPE

immediately after it orders the SPEs to store data back in the PPE main memory.

We also implemented this routine in a different way, trying to minimize the time
spent waiting for each SPE to finish the store operation. The alternative implemen-
tation reserves a flag for each SPE and sets each flag to false. It then starts checking
in sequence the outbound mailboxes of the SPEs whose flags are false. If the PPE
finds a message in the current SPE’s outbound mailbox, it then sets its flag to true
to be exempted from being checked again and goes to the next. But, if no message
has been posted in the current SPE’s outbound mailbox at that point, it skips that
SPE and checks the outbound mailbox of the next SPEs. Once it goes over all the
outbound mailboxes, it then repeats the same procedure but only on the SPEs whose

flags are still false.
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5.5.3 User-Level Library Routine

The VSIs are a set of C++ functions that are available to the outside world and can be
easily used to evaluate array operations on the SPEs. Using the VSIs is a one step process.
Users, such as programmers or compilers, can use the VSI set by calling the analogous
function providing that the required information, such as the virtual register number(s) and
the starting addresses of the arrays, is supplied.

As we have mentioned in the previous section, all the VSI corresponding functions gen-
erally have similar duties such as setting messages, data partitioning, sending messages
and waiting for acknowledgment if needed. For this reason, we are not attempting here to
discuss every instruction individually, instead, we discuss the implementation of the VSI
Store and Load operations as they includes almost all these steps that other instructions

may need.

The implementation of the function that corresponds to the VSI Store operation is shown
in Figure 5.7. This function takes two arguments: a virtual register and memory location,
and its task is to order the SPEs to store back the contents of their virtual registers on the
PPE memory. Line 1 and 2 in Figure 5.7 define the speStoreVec () function as an external

C function. The effects of this function are:
1. Formulating Forward Messages:

This function uses a two-word message format to send the opcode, virtual register
and the starting memory location. Because this information being the same for all
the SPEs, this message was combined outside the for loop in Line 3. The statement
in Line 3 uses shift operators to set the operation code and the register number in
the proper bits as defined in the messaging protocol.

2. Line 4 includes a for loop that does the following for each SPE:

a) Calculates the starting address

VSM model takes a simple approach in partitioning data on the SPEs. Data is
equally chopped in P blocks where P is the number of SPEs. This approach
may have some drawbacks due to divisibility issues. The data is partitioned
into blocks of the same size in Line 5 by calculating the starting address each
SPE should start from. This information represents the second message in the

store operation.

b) Sends messages
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1: extern "C"

2: void speStoreVec(uint reg, uint mem_EA) {

3: msg=(STORE<<24)+((reg<<24)>>24); // Formulate a Message
4: for(int i=0; i<noSPE; i++) {

5: mem=mem_EA+i*SIZE; // Partition Data + Set Message 1
6: broadCast2Msg(mem, msg,i); // Passing Messages

7: }

8: void OpSynch() // Wait Untill Store Completed

9:

b

Figure 5.7: Store Virtual SIMD Instruction

Once the forward messages are formulated, the PPE from within a VSI sends
these messages to the SPEs inbound mailbox. Line 6 calls the broadCast2Msg ()
function to send the two messages to the i’ SPE.

¢) Repeat steps (a) and (b) until all the SPEs are informed.

3. Process synchronisation is required in the store operation and a few other operations
to ensure that each SPE has completed its part. For example, the store operation, as
shown in Line 8, calls the OpSynch () function, to synchronise between the SPEs and
also to block the PPE from issuing any other operation before the synchronisation is

achieved.

Consider also the Load operation. The corresponding function is shown in Figure 5.8. It
also takes two unsigned integer values: a virtual register and a memory address. Line 3
simply concatenates the value of the “LOAD” operation with the reg register, and in Line
4 there is a for loop which goes over each SPE and does the following: it calculates in
Line 5 the starting address from which each SPE should start loading data into the reg
register, and then it calls in Line 6 the broadCast2Msg function to send the two messages
to each SPE. Notice here that once the PPE delivers the messages, it can then proceed in
executing other operations, and that is why the Load and most computational operations

are called non-blocking operations.

5.6 SPE Interpreter

The SPE interpreter is a C++ program that runs in parallel on several SPE’s to execute
micro-tasks. The program runs constantly in a loop on each SPE in the background and

frequently checks if there is any message dispatched by the PPE.
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1. extern "C"
2. void LoadVec(uint reg,uint mem ) {

3. msgs [0]=(LOAD<<24) +((reg<<24)>>24) ;

4 for(int i=0; i<noSPE; i++) {

5. mem=mem_EA+i*SIZE; // Partition Data + Set Message 1
6 broadCast2Msg(mem, msg,i); // Passing Messages

7 }

8. 1}

Figure 5.8: Load Virtual SIMD Instruction

5.6.1 SPE Interpreter Structure

The Algorithm 5.9 outlines the main steps of the SPE program. It is basically constructed
of a large switch statement which contains a case for each opcode (operation). The first
two jobs in the algorithm are: get any messages in the SPE’s inbound mailbox and then
decompose the received messages to identify the requested operation (opcode) and its
operands. The main job of the SPE interpreter is then handled by the switch statement
which accordingly chooses the analogous operation. The computational operations are
straightforward routines, but the memory access operations, load and store, are compli-

cated and challenging due to data alignment and synchronisation capacities.

In the following discussion, we first look at the implementation of the first two steps. We
then talk about the main design challenges, techniques and algorithms that we have used
in load and store operations. After that, we present the implementation in the Load and

Store operations and two samples of computational operations.

5.6.2 Extracting Information

The first two steps in the SPE program are very important because they affect both the PPE
and the SPEs executions. The implementation of these two steps is shown in Figure5.10.
In the first statement, the spu_readch() function with the SPU_RdInMbox flag reads an
inbound mailbox channel. This operation is a blocking operation which means that the
SPE stalls when the queue is empty until it receives a message from the PPE. Upon re-

ceiving a message, the interpreter extracts the opcode and the register, and then check if
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while (1) {

1. Pull the messages // blocking mode
2. Extract information //opcode, registers and MEM_EA

3. switch (opcode) {

a) case LOAD:
1. Alignment
il. Load Virtual Register
b) case STORE:
1. Alignment
il. Store Virtual Register
iii. Data Synchroisation
iv. Acknowldegement
C) case ADD:

1. Execute Operation

f) case TERMINATE:

Figure 5.9: SPE Interpreter Structure
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1. msg=spu_readch(SPU_RdInMbox) ;
opcode=(msg>>24) ;
Regl=((msg<<24)>>24);

if ( opcode < 8 || opcode==69)

mem_ea=spu_readch (SPU_RdInMbox) ;

CAEE

else

=

Reg2=((msg<<16)>>24) ;

Figure 5.10: Messaging Pulling Code Segment

the extracted opcode is store or load, it should then read the second message which holds

an effective address on the main memory.

5.6.3 Load Operation

The VSM Load operation brings data from the PPE main memory into the SPE’s local
memories using DMAs. It is a non-blocking operation which assumes that the compiler
will not get the PPE to write into the area being loaded. The non-blocking mode allows
the PPE to continue its work on the current expression after it delivers the two messages of
the load operation to the SPEs. The PPE also does not need to wait until the data is loaded
into the SPE’s local memories because the SPE can check the completion status of any
DMA involved in loading a virtual register. The only problem with the Load operation is
the DMA alignment constraints on the starting memory locations. The addresses on both
PPE and SPEs’ sides must be aligned to the same boundary. Thus, having all the SPEs
local buffers (vector registers), as in our VSM, aligned to 128 bytes is not enough because
there is no guarantee that data transferred from the main memory is aligned. There is, in
fact, a high probability that the data to be transferred is unaligned, specially when dealing
with sub-ranges of an array or 2D arrays. For this reason, we developed an algorithm for

loading aligned or misaligned data to the SPE aligned registers.
To illustrate the algorithm let us define:

* MEM_E and MEM_A as Effective and Aligned addresses on the main memory respec-
tively.

* LS_E and LS_A to be Effective and Aligned addresses on an SPE’s local storage

respectively.
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Algorithm 5.1 Alignment Load
1. Get effective address(MEM_E)

2. AB=MOD(MEM_E,CLS)

3. MEM_A=MEM_E - AB

4. If AB =0

5. Transfer VR_S bytes start from MEM_A into LS_E
6. else

1. Transfer VR_S+CLS bytes start from MEM_A into TB

8. Copy VR_S bytes start from TB+AB to LS_E

* VR_S is the size of a virtual register.

* CLS is the target machine’s Cache Line Size in bytes. On the Cell, CLS=128;
* TB is a temporary buffer on the SPE, and its size is VR_S+CLS,

* T is a temporary buffer of size CLS bytes.

* Also assume that each register name represents its starting address on an SPE’s LS

and that all DMA transfers are aligned on the CLS boundary on both sides.

Given the above definitions, which will be also used in the discussion of the store instruc-
tion, we present the algorithm shown in Figure 5.1 to load aligned or unaligned data of
any data type. The algorithm works as follows. If data to be transferred is aligned, then
the algorithm will skip to Line 5 which loads VR_S bytes of data starting from MEM_E into
the SPE local memory (LS_E). However, if data (MEM_E) is not aligned, then Line 2 calcu-
lates the offset, and in Line 3 it sets MEM_A to point to the first aligned location before the
effective address. In Line 7, it grabs VR_S+CLS bytes of data starting from the calculated
aligned-location (MEM_A) and copies these bytes in the TB temporary buffer. Transferring
additional CLS bytes ensures that the first CLS bytes will include the MEM_E and that the
MEM_E+VR_S will be within the last CLS bytes in the TB buffer. Now, to get rid of these ad-
ditional bytes, Line 8 copies only VR_S bytes from the TB temporarily buffer but it would
start from the TB+AB address.

Figure 5.11 shows an example of loading 1024 unaligned bytes from the PPE main mem-
ory into an SPE virtual register (local memory). Just to recall that the Cell’s cache line
size CLS is 128 bytes.
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Figure 5.11: Loading Unaligned Data to SPE’s Local Memory

5.6.4 Store Operation

The Store operation is even more complicated than the Load operation for a couple of
reasons. First, this operation transfers data back from the SPEs to the PPE main mem-
ory using DMAs, and therefore, in keeping with the alignment constraints on the DMA
transfers; some parts of the data are expected to be shared among the SPEs or between
one of the SPEs and the PPE. The second reason is that the store operation is a blocking

operation, and thus the SPEs need to collaborate with the PPE for barrier synchronisation.

In the Cell, each SPE includes a globally coherent DMA engine [136, 91]. DMA transfers
offer coherent data operations to ensure only ideal data sharing between the Cell’s cores
[155]. When transferring data from the main memory to an SPE local memory, the MFC
will sneak the data from the PPE’s cache if it contains the most recent data. Similarly,
when transferring data from an SPE local memory to the main memory, the cache line
which is associated with the transferred data blocks are invalidated and therefore any future

access to these locations gets updated data.

However, our VSM depends upon DMA transfers that do not act a globally coherent cache
in the standard sense, and therefore it must perform coherence maintenance to ensure data
consistency when it attempts to write back unaligned data in the main memory. Writing
back unaligned data using DMA transfers from the SPEs requires reading and merging
bytes from the main memory before rewriting those bytes as part of a DMA. This problem
arises when multiple SPEs are used or even if one SPE was used. Based on the VSM
design, every virtual register is chopped into blocks to be distributed on the available
SPEs, and these blocks are not necessarily aligned. This implies that the SPEs will work

on adjacent unaligned blocks of data into main memory or locations near to each other,
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and therefore attempting to update these locations concurrently using, for example, aligned
128byte DMA transfers may result in collisions between the SPEs. This situation could
also happen between one SPE and the PPE. For example, consider an SPE that attempts
to cache a block of data using a single DMA transfer. If the data is not aligned, the SPE
in this case has to read some bytes from the main memory to adhere to DMA alignment
constraints. Yet, this requires that the additional bytes, which have been just read, remain
unchanged when written back into main memory as a part of the issued DMA transfer(s),

potentially overwriting only the changes that are data processed by the SPE.

The alignment problem in the store operations is critical as it may result in race condi-
tions and data inconsistency. To solve these issues, I developed an algorithm for storing
unaligned data from one or multiple cores. The main concept of our algorithm is to use
lock-based synchronisation. This type of synchronisation first ensures consistency of data
that might be shared due to alignment constraints. Secondly, it avoids any race conditions
that might occur, and lastly it minimises the portion of data that is unavailable to other

processes.

5.6.4.1 Store Processing Algorithm

The algorithm, as shown in Figure 5.2, is based on an operation-dividing technique in
which each SPE’s data block is divided into three parts (or data sub-blocks): Head, Middle
and Tail. According to our proposed parallelisation technique, only the two ends, Head
& Tail,would be shared between the Cell’s cores, and therefore separating the middle
part allows a DMA transfer to be used for each part, to work easily on the unshared part

and to enable concurrent data transfers.
The key design elements in the algorithm are:
* Use a separate DMA transfer for each part: Head, Middle and Tail.

* The Head and Tail length depend on the machine resources and limitations, but

they should be kept as small as possible.

e Data will be shared between a maximum of two cores: the PPE and one of the SPEs

or between two SPEs.
* Let the size of each end be equal to CLS.

* Only one SPE at a time can obtain lock on all CLS bytes of memory or even on part

of them.
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Figure 5.12: Splitting an SPE Block into 3 DMAs for Storing Process

e If multiple SPEs want to obtain lock on any part of the data, one SPE wins and the

other will wait.

* For both the Head and Tail, set a lock on CLS bytes, which should cover one end,
read, overwriting changes made by the SPE and then unlock.

* Write back the middle part into the main memory.

The algorithm shown in Figure 5.2 first computes the aligned memory location (MEM_A)
that is preceding the MEM_E affective address. It then starts working on the three different
parts: Head, Middle and Tail.

Figure 5.12 illustrates how the algorithm is applied on the Cell processor. The size of the
Head and Tail was chosen to be 128 bytes for two reasons: First, all DMA transfers are
aligned on a 128-byte boundary, and secondly the Cell offers atomic DMA operations,
such as getllar() and putllc(), to set, reserve and release locks on 128 bytes; for
more details see section 3.2.2. Now since the Head and Tail are 128-byte aligned blocks,
the Middle portion size should be 128 byte smaller than the virtual register size; that is,
VR_S -128 bytes.

5.6.4.2 Implementation

The following two figures show the main parts in the implementation of the store algo-
rithm for the Cell processor. The code was split into two parts just to be readable and
understandable. Figure 5.13 shows the initialization part and the code for storing the Head
of an SPE data block. The Tail would also be coded similarly a side from the starting
addresses. Note that in this implementation the Head and the Tail each have 128-byte
length; i.e., CLS=128.
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Algorithm 5.2 Unaligned Store Operation

1. AB = MOD(MEM_E,CLS)
2. MEM_A = MEM_E - AB

// HEAD (PARTIALLY UPDATED)

3. SET LOCK ON CLS BYTES START FROM MEM_A
4. GET CLS BYTES START FROM MEM_A INTO T
5. APPEND THE RESULTS TO THE TAIL OF T

6. PUT BacK T, AND RELEASE THE LOCK

// UPDATE THE MIDDLE PART (COMPLETELY UPDATED)

7. MEM_A = MEM_A + CLS

8. LS_E = LS_E + CLS-1 - AB

9. MS = VR_S - CLS

10. Copy MS BYTES START FROM LS_E To LS_A

11. PUT MS BYTES BACK START FROM LS_A TO MEM_A

// TAIL (PARTIALLY UPDATED)

12. MEM_A = MEM_A + MS

13. SET rLock oN CLS BYTES START FROM MEM_A
14. GET CLS BYTES START FROM MEM_A 1nTO T
15. APPEND THE RESULTS TO THE HEAD OF T.

16. PUT Back T, AND RELEASE THE LOCK
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// Initialization
wint AB,MEM_A,LS_A;
AB = MEM_E%128;
MEM_A = MEM_E-AB

// Store Head
doq
mfc_getllar((void *)T,MEM_A,0,0); // Lock & Read 128byte
(void)spu_readch(MFC_RdAtomicStat); // Reserve the Lock
memmove ((void *)((uint)T+MEM_A), (void *)LS_A, CLS-MEM_A);
mfc_putllc((void *)T,MEM_A,0,0); // Store and release lock
} while(spu_readch(MFC_RdAtomicStat)&MFC_PUTLLC_STATUS) ;

Figure 5.13: Synchronise Shared-Block

Figure 5.14 shows the code to store a Middle part of an SPE data block. This code
should be executed after storing the Head portion. The first line shifts the MEM_A pointer
to point to the first aligned location in the PPE main memory that comes after the Head;
that is, the starting address from which the Midd1le part should be stored. The second line
calculates the starting location of the data block which resides on the SPE local memory.
This location must come 128-AB bytes from the beginning (LS_A) of the block. The third
line checks if the new location of local data is aligned. If it is not, the Middle part then
must be copied in an aligned buffer, called here TMP_REG, on the SPE local memory, before
moving it to the memory. This step necessary as the source and destination addresses in
any DMA transfer must be aligned to at least a 16-byte boundary. The last step is a
standard DMA function, mfc_put (), that transfers data from SPE local memory to the
PPE main memory. After the two addresses in the function are ensured to be aligned, the
standard mfc_put () function can now be safely executed without the need for any locks

or synchronisation.

So far, we have discussed how the store operation handled data synchronisation, but it
also has to collaborate with the PPE implementation to maintain barrier synchronisation
as we have just mentioned above. In the store operation, the SPEs are required to notify
the PPE with the completion once each SPE ensures that its entire data block has been
stored into the main memory. Figure 5.15 shows the two lines of code that handle the
acknowledgment. These lines must be executed by the SPEs at the end of the operation.
The spu_readchcnt () function with SPU_WrOutMbox flag in the first line checks when

the outbound mailbox is empty. and the second line will write a message to the outbound
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// transfer Middle part of VSM register

MEM_A=MEM_A+128;

LS_A=LS_A+128-AB;

if (LS_A%16 '= 0 ) { // Unaligned local Address
memmove ((void*) ((uint)TMP_REG), (void*)LS_A,SIZE-128);
LS_A=TMP_REG;

}

mfc_put ((void *)LS_A,MEM_A,SIZE-128,destReg,0,0);

Figure 5.14: Storing Middle Block

do{}while(!spu_readchcnt (SPU_WrOutMbox) ) ;
spu_writech (SPU_WrQutMbox,99) ;

Figure 5.15: Acknowledgment of an Operation Completion

mailbox once it is empty. The message could be any 32-bit word, but we used the number
99. The PPE can validate the completion by checking if it received the number 99 via the

mailbox or not.

5.6.4.3 Design Challenges

In the alignment algorithm shown in Figure 5.12, the Head and Tail of an SPE’s block
are apparently shared between the Cell’s cores. And to ensure that these shared parts of
data are over-written in a proper order, we used locks to update the Heads and Tails. This
synchronization process keeps memory coherent and avoids any race conditions that could
arise as different SPEs attempt to update the Heads and the Tails. The race condition
problem is solved by reserving a lock on each 128byte until the granted SPE updates the
data and then releases the lock.

The algorithm for storing unaligned data was designed with the intention of optimising
the cost due to the DMA overheads and the extra memory copies we had to do using the
memove () function. The order of these DMAs, as presented by the algorithm in Figure
5.2, provides some overlapping within one SPE and among the SPEs. The overlapping
within one SPE, for example, occurs while storing the Middle part and the Tail. Once
an SPE issues a DMA request to its MFC for transferring the Middle part, the MFC takes
control of the transferring process; meanwhile the SPE continues with processing the Tail
by requesting a lock...etc. Once the Tail is stored back, the SPE should then verify if
the Middle part has been completely transferred. The DMA’s order also allows SPEs to
overlap updating the Heads and Tails. For example, when SPEOQ is locking its Head,
SPEI can be easily granted a lock on its Head too because the SPE1’s Head is part of the
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SPEQ’s Tail, and therefore by the time SPEO reaches the points to update its Tail, the
SPE1 would most likely be finished from updating its Head.

5.6.5 Computational Operation

The VSM is basically designed to use the SPEs to perform computational operations on
one dimensional arrays (vector registers) or scalars such as in the replicate and reduction
operations. Most of these operations, however, have similar implementations. This sub-
section first describes the implementation aspects that are common in these operations and

then looks at three operations that have some differences in the implementation.
The common aspects in the implementation of these operations are:

* All the operations are carried out on the SPEs using built-in SPU intrinsic functions.
These intrinsic functions, which support all primitive data type operations, operate

on a 128-bit at the time using SIMD instruction set to obtain better performance.

* An SPE’s virtual registers (data buffers) are basically defined as vectors of character

data type.

» The character vector registers are converted to the proper data type once the opera-

tion is known.

* A unary operation requires only one vector register which is used as a source and a

destination.
* A binary operation requires two vector registers: a source and a destination.

» The PPE supplies the SPEs with the vector register numbers for arithmetic opera-
tions such as Add and Subtract.

* The PPE supplies the SPEs with a vector register number and a reference to a scalar

for operations such as replicate.

* Virtual registers are cast to vectors of corresponding primitive data types, such as

(vector float *), in order to use the intrinsic functions.
* Virtual registers must be length equal to 128 byte or a multiple of 128 byte.

* The number of iteration ITER is an unsigned integer that equals

REG_SIZExSizeof (dataType)/128.
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case ADDF: {
vector dataType *aptr=(vector dataType *) VSM_REG[destReg];
vector dataType *bptr=(vector dataType #*) VSM_REG[srcReg];
for (int j=0; j < ITER ; j++)
aptr[jl=spu_add( aptr[j] , bptr[jl);
break;

Figure 5.16: Add Operation

The ITER variable determines the number of SIMD operations required.

* The VSM_REG[] is an array of pointers that point to aligned-data buffers (vector
registers) on the SPEs.

5.6.5.1 Add

The Add operation is a basic binary non-blocking operation. It takes two vector registers,
adds these vectors element by element and stores the result in the first register. Figure 5.16

shows a genetic implementation of the Add operation.

5.6.5.2 Replicate

The Replicate operation is also a binary operation, but it takes one vector register and a
scalar instead of two vector registers like in Add, subtract, multiple, ...etc. This operation
basically takes a scalar value and copies it in each element of the vector register. Fig-
ure 5.17 shows the implementation of this operation. The major difference from standard
binary operations is due to the scalar operand as it needs to be handled differently from
vector registers. When an operation requires a scalar, the PPE sends only the main mem-
ory location of that scalar to the SPEs which must subsequently consider any alignment

measures.

In Figure 5.17, the code for aligning a scalar value was placed in a separate function, called
alignScalar(), just to be more clear and understandable. The alignScalar () function
takes the following two main steps. First, it copies the aligned 128 bytes including the
location (MEM_E) of the scalar into the SPE local memory. It then adjusts the scalar pointer
to point to the exact location of the scalar value which was copied on the local memory.
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case REPF: {
vector dataType *aptr=(vector dataType *)VSM_REG[destReg];
dataType *bptr=(dataType *) alignScalar(MEM_E);
for (int j=0; j < ITER ; j++) {
aptr[jl=spu_splats(bptr) ;
break;

void *alignScalar(uint MEM_E) {
char TMP[128] __attribute__((aligned(128)));
unsigned int AB=MEM_E%128;
void *scalar __attribute__((aligned(128)));
mfc_get (TMP,MEM_E-AB, 128,1,0,0);
scalar=(void *) ((uint)TMP + AB);

return scalar;

Figure 5.17: Replicate Operation
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Figure 5.18: Pattern Of Reduction Operation

5.6.5.3 Vector Reduction Operation

The VSM also supports associative reduction operation on the SPEs. Reduction operations
defer from other computational operations in several aspects. They are blocking operations
unlike other computational operations, and they are also unlike Replicate operations from
the input/output prospective. A Reduction operation’s outcome is a scalar value while the

Replicate operation’s outcome is a vector register.

The VSM reduction operation is based on a recursive vector reduction method. Using
standard scalar instruction and registers, the method basically starts with a vector of length
equal to N=VEC_SIZE and basically adds two consecutive elements together one after an-
other and keeps the results in the same vector. The number of addition operations is N/2
and the number of elements is reduced to half of each iteration (N/2). In the second it-
eration, the intermediate (N/2) results are again reduced to half; N/4 elements. The final

scalar result will be obtained after Log,N iterations or rounds.
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However, our VSM depends on SPE intrinsic functions to carry out arithmetic operations,
and therefore the number of consecutive elements that are added to each other at a time
is REG_SIZE/Sizeof (dataType) where REG_SIZE is the size of the physical machine’s
registers in bytes. Figure 5.18 illustrates how elements of a 32-bit floating point vector
are added together using 128-bit SIMD instructions; i.e, REG_SIZE=128/8=16 bytes. Give
that

N = VEC_SIZE * Sizeof(dataType)/16

the number of operations needed to evaluate a vector of size VEC_SIZE elements of type
“dataType’’ using 128-bit SIMD instructions at the first round (iteration) is N/2, and

thus the final scalar result will be obtained after Log, N iterations or rounds.

However, if the SPE intrinsic functions are used, then there will be an intermediate result

which resides in a vector of size
REG_LEN = REG_SIZE / Sizeof (dataType)

This intermediate result must be then added together element by element as shown in
the second loop structure in Figure 5.19 and then sent to the PPE. Figure 5.19shows the
implementation, which uses the same variables given in the above discussion, of the Re-
duction operation using the spu_add () intrinsic functions. The code in this figure shows
also how the result is sent back to the PPE using the mfc_put () function and the SPE

acknowledgment to the PPE via the outbound mailbox.

5.7 Using VSM

The VSM tool imitates SIMD concepts to increase the work a single instruction performs.
The VSM implementation hides all the underlying hardware and software of the Cell pro-
cessor, automatically parallelising array operations and supporting scalable parallelisation.
It basically consists of two co-operative interpreters that are implemented in C++ and each
contains a number of functions and routines. The PPE functions have to establish the
communication with an SPE, choose the proper operation to be performed on the SPEs,
dispatch the request to the PPE via messages, and handle any synchronisation required.
On the SPE side, there is an SPE program, which runs in the background and checks if
there is any message deposited into its Inbound mailbox. Once an SPE receives a message,
it then starts dealing with the requested operation taking into consideration any alignment

and data synchronisation issues.
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case REDFP: {

// REDUCTION OPERATION (dataType)
vector dataType *aptr=(vector dataType #*)VSM_REG[destReg];
uint j=0;
while (N > 1) {

for (uint i=0; i < N ; i=i+2)

aptr[j++]=spu_add( aptr[i] , aptr[i+l1]);

N=N/2; j=0;
}
dataType *a=(dataType *) VSM_REG[destRegl; sum=0.0;
for (unit i=0; i < REG_LEN ; i++)

sum+=ali];
mfc_put ((void *)&sum, (void *) MEM_E, 128,1,0,0);
do{} while(!spu_readchcnt (SPU_WrOutMbox)) ;
spu_writech(SPU_WrOutMbox, (unsigned int)REDFP) ;
break;

Figure 5.19: Vector Add Reduction Operation

spu-g++ SPEcode.cpp -lsimdmath -o SP
ppu32-embedspu spelnterpreter SP spe.o
ppu32-g++ -c PPEcode.cpp -0 spe.o ppe.o

Figure 5.20: Building VSM Object Files

VSM can be built using only three command lines in which third party C++ compilers
for the PPE and SPE processors are used to compile and link both interpreters. Fig-
ure 5.20 shows these command lines. The first line compiles the SPE interpreter, called
SPEcode.cpp, in the SP binary. The second command embeds the SP binary file into
the PPE compatible object format spe.o, and spelnterpreter is the name used in
the PPE to call the SPE’s binary. The last command compiles the master interpreter,
PPEcode.cpp, and builds the object file ppe.o. Now, the PPE and SPE object files are

ready to be linked with any program to evaluate array operations on the SPEs.

VSM was essentially designed to be used as an interface to extend array programming
language compilers for automatic parallelisation, but it can be used as a fully implicit

programming model for parallelising array operations on the SPEs.

5.7.1 Code Generator Interface

Developing the VSM as a programming tool that can assist compilers in parallelising code

on heterogeneous architecture was the main objective of this work. Compiler developers
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can use VSM as an intermediate layer or an interface to access the Cell’s SPEs. A com-
piler that attempts to use VSM 1is expected to have the capability and flexibility to generate
code with a degree of parallelism that is already supported by the VSM implementation.
If a compiler has such capability, it then can automatically parallelise array expressions
by generating the code which can invoke the VSM instruction set. This usually requires
defining a new instruction set that the compiler code generator can use. The following
chapter shall talk about how the VSM implementation was employed to extend the Glas-
gow Vector Pascal (VP) compiler to the Cell BE processor.

5.7.2 Application Programming Interface (API)

The VSM implementation can also be used as an API. A programmer can decompose
a high-level array expression into sequences of individual operations and then call the
proper VSM stub routines to perform in parallel one array operation at a time on the SPEs.
Though, the VSM current implementation has not been tuned yet to use as an API, it can
be very easily used by programmers. Figure 5.21shows a simple C++ program foo.cpp
that uses the VSM routines to perform some operations on 2 SPEs. An identical copy of
this program was compiled, linked and ready to be executed by using only the following

command.

ppu32-g++ foo.cpp ppe.o spe.o -lspe2 -1m -0

Note that the program does not include any annotations or directives, and the programmer
does not need to handle SPEs thread creation, data partitioning, data transfers, alignment

and synchronisation.

5.8 Experimental Results

We present here the results obtained from testing the VSM implementation as an indepen-
dent programming tool. Chapter 8 includes further results which show the performance of
the VSM on BLAS benchmarks and real-world application after being integrated with a
VP compiler. All the tests, which are presented here, were carried out on a Sony PlaySta-
tion 3 console, running Fedora Core 7 Linux and using the IBM Software Development
Kit (SDK) v3.0.0. The PS3 has a single Cell chip. The chip includes a 3.2 GHz master
processor which has 256MB main memory and 6 SPEs with 256KB local memory and the
same speed. The VSM implementation is compiled, assembled and linked using ppu-g++
and spu-g++ (GNU tool chain v4.1.1).

125



5 Virtual SIMD Machine

#include <stdlib.h>
#include <stdio.h>
#include "PPE.h" // Includes Functions Prototypes
const int N=4096;
float v1[N],v2[N],S;
int main() {
spelnitialize(); // Creat,load & launch SPE Threads
for (int i=0;i <N;i++)
vi[il=1.1; // Initialize Vector vi

RepVec(0,1.25); // Replicate 1.25 in SPE register O
LoadVec (1, (uint)vl); // Load vl in SPE Register 1
MulVec(0,1); // Cross Product SPE registers 0 & 1
StoreVec (0, (uint)v2) ; // Copy the result into vector v2

S = redpf(v2,N); // Vector Reduction Add operation
printf ("\n\n The result of Reduction=%f \n\n",S);

speEnd O ;

return 0;

Figure 5.21: A C Program Uses VSM as API

The following sections discuss the VSM key operations that we attempted to assess using
two single precision floating-point vectors. The discussion starts with a simple code just
to show how to invoke the VSM four key functions (operations): Thread creation, Load,
Store and a computational operation. In this discussion, we identify the main activities
or parameters in these operations. After that, it discusses the performance of the different

operations and the activities involved. Note that all the measures were taken from the PPE.

5.8.1 Simulator

In order to use the VSM implementation before it was integrated with the VP compiler
extension, we had developed a simulator to imitate a generated-compiler code. The sim-
ulator is a simple C program that uses the VSM as an API. The code in Figure 5.22, for
example, shows the main part of a simulator that adds to two vectors v1 and v2 and stores
the result in vector v3. We also appended a few lines of code into the PPE functions to
time the different activities of each VSM instruction, such as communication, computa-
tion and alignment. The appended code is not shown here since it involves only code for

calculating execution times.

5.8.2 SPE Thread Creation

In order to use the SPEs, this operation must be called first. It involves three activities:
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//Create and Launch 2 SPE threads

spelnitialize(2);

// Load vector v1&v2 from PPE into SPE’s virtual reg. VRO&VR1

loadVec(0,v1);
loadVec(1,v2);

// Add the SPEs virtual reg. VRO&VR1 and keep the result VRO

addVec(0,1);

// Store the contents of VRO into vector V3 (main memory)

storeVec(0,v3);

// Terminate the SPE threads

speEnd O ;

Figure 5.22: C Simulator

¢ Create an SPE thread.

* Load the SPE program.

e Launch the thread.

To measure the latency time of creating one thread we run this operation to first create one
thread on one SPE, 2 threads on 2 SPEs and then 4 threads on 4 SPEs. Table 5.2 presents
The average latency of the basic thread management activities involved in creating threads

on the Cell accelerators.

Number of | Average latency of managing SPE threads (msec)
Threads | Creating | Loading SPE | Launching | Average
1 0.70 0.17 0.12 1.99
2 0.65 1.05 0.09 1.78
4 0.65 0.99 0.06 1.69

Table 5.2: The average latency of the basic thread management operations on the Cell

accelerators

Figure 5.23 (a) shows that the average latency for setting up a single thread ranging from
1.68 msec to 1.98 msec depending on the number of SPEs. The timing includes the three
steps or activities, create, load and launch, as well as the time required to ensure that each

activity has completed. Similar latency had been also obtained by Abellan et al. [74] in

which the operation was run 10°times.
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Figure 5.23: (a) shows the latency per thread Launching while (b) approximates the per-
centages of time spent in the activities involved in setting up a single SPE
thread

The graph (a) plots the average latency time for setting up one thread when 1,2 and 4 SPEs
were used. As we can see, the average time needed to set up one thread decreases as the
number of SPEs increases. Actually, the average latency for creating or launching a single
thread is almost the same even when the number of the threads increases, but the latency
for loading the code on the SPEs decreases as their number increases. The interpretation
for this is that there is some overlap between loading the SPEs’ programs which saves

some time.

Figure 5.23 (b) charts the percentage of the three activities as compared to the average
of the total latency. This diagram clearly shows that loading an SPE code dominates the
thread creation process. It takes approximately 36.5% of the total time to create an SPE
thread while around 58.5% of the time spent loading an SPE program. It also is very
interesting to notice that it takes about 4.75% of the time only to launch an SPE thread.
This was explained in steps 4 and 5 in Figure ??. Actually, the PPE is only required to
request, step 4, an SPE’s MFC to begin executing the loaded thread, and the MFC handles
the request internally as stated in step 5 in the same figure.

However, in order to reduce the thread creation latency, the compiler code generator can
append a call to the function, which creates the SPE threads, at the prolog (start up) ses-
sion. It can also order to terminate the threads when the application finishes by appending
a call to the terminating function at the Epilog session. This keeps the threads alive until

an application is completed.

5.8.3 Messaging Using Mailboxes

The VSM depends mainly on the Cell’s mailbox mechanism using MMIO registers to

exchange information between the different cores. Every VSM instruction (PPE function)
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is required to communicate with the SPEs through their mailboxes in order to hand in
its request to the SPEs. We used this mechanism because all the available documents
state clearly that the mailbox mechanism is much faster than using DMA transfers to
exchange small data sizes [136, 54, 57, 135, 91, 56]. However, at the first stages of the
VSM development, it was very hard to prove that the mailbox’s mechanism is faster than

DMA and Signal mechanisms.

At the beginning, we started investigating the latency of different operations and in partic-
ular the latency of sending a message between the PPE and an SPE. In our experiments,
we used the spe_*_mbox* function from the SDK library to access mailboxes easily [135].
This SDK function allows the PPE to read or write to a mailbox or check the status of a
mailbox. Yet we encountered a critical problem as all the experimental studies showed
that the mailbox mechanism is very slow. It is sometimes even slower than DMA transfers
if we compare, for example, the average time to send 32 bytes using mailbox or DMA
transfer, especially if the later was used to move a large data block. However, the re-
sources, which were available during the first stages of our VSM development, reported
that the PPE can use the SDK library function or write immediately into the SPE’s MMIO
registers, but they did not mention that the SDK function is slower than using the later

approach.

In April 2009, I attended a 2 day training course at Daresbury Science and Innovation
Centre in Warrington, UK, and I had the chance to raise the problem with two of the
manufacturer engineers who recommended to try using MMIO registers. I then asked
them if they think the MMIO is much faster than the SDK functions. I also mentioned to
them that all the measures that I had at that time showed that a mailbox message using
the SDK functions costs around 0.01 millisecond. They said it is expected, but they do
not know how much faster the MMIO register approach could be as compared to the SDK
function. After the training course finished, I re-run all the tests using MMIO registers
instead, and surprisingly the test shows that the MMIO mechanism is at least 12 times
faster than the SDK function. About the same speed up was also reported by a paper
published around the same period which characterises the basic communication operations
using dual Cell-based Blades [156]. The main reason behind the increased latency is that
the SDK function is a runtime management function that involves a system call which is

quite costly.

It is important to explain here, before reflecting on the timing, the PPE procedure which
was implemented to send a message to one or more SPEs. To send a message through
MMIO registers, the PPE must first check the number of entries available in the target
mailbox because it will not stall even if the mailbox is full and overwrites the last mes-

sage. If more than one SPE is used, then there are two procedures to do that. In the first
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Figure 5.24: The Latency of Sending Messages to SPEs

procedure, the PPE checks the mailboxes one after another, and it does not go from one
SPE to the next unless it sends the message to the current SPE. The second procedure is
meant to reduce the time to wait for each SPE’s mailbox to be empty. In this procedure,
the PPE uses polling techniques to check if the first SPE’s mailbox has enough space to
hold the messages. If the checked SPE has enough space, the PPE then posts to it the
message(s); otherwise the PPE goes to the next SPE’s mailbox and so on. That is, the
PPE does not have to wait to get free entries in a given mailbox instead it skips the cur-
rently checked mailbox to another SPE whose mailbox is free until all the SPEs receive the
messages. This procedure is used by all VSM operations, such as load, store and compu-
tational operations, to send the PPE request to the SPEs, and therefore the cost of sending

a message is the same in all operations.

This operation was run 10> times to send one 32-bit message and two 32-bit messages
to 1,2 and 4 SPEs. Figure 5.24 shows the average latency time of sending messages in
nanoseconds. The time to send a one or two word message from the PPE to one SPE
is almost the same; it is around 780 nsec. To send the same message to two SPEs, the
latency increases by about 90 nsec as compared to one message and by another 85 nsec
with 4 messages to four 4 SPEs. The additional process to check each SPE mailbox status

and the loop iterations needed to go over the SPEs was behind these increases.

5.8.4 VVSM Instructions Performance

The following discussion focuses on three key instructions or operations: load, store and
computation operations, and all the performance tests were carried out on single-precision

floating point arrays using a virtual SIMD register of size 4 KB per SPE.
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The main parameters in regard to these operations are:

* Load and Store operations move data between the PPE and SPEs using DMA trans-

fers.
* All DMA data transfers are issued by SPEs.
* Load and Store operations can handle unaligned data automatically.

* Load and all other computational operations excluding the reduction operation are
non-blocking operations. This implies that once the PPE delivers its message(s) to

an SPE, it can then go to the next instruction.

* Store is a blocking operation which implies that the PPE will deliver its message

and stall until the requested operation is completed.

* The main activities involved in most of the VSM instruction are: Sending Message

from the PPE and processing the request on the SPEs.

All the values and figures in this section are timing the main task of each operation inde-
pendently excluding any conventional set up such as declarations or initialisations, and all
the measurements were taken by the PPE. Table 5.3 presents the average time for loading,
storing and performing arithmetic operations of a block of 4096 a single precision floating-
point (32-bit) elements on 1,2 and 4 SPEs. Each operation was run 10°times using a virtual
register of size 4 KB per SPE. The load and store are byte-based operations and therefore

data types does not affect the latency time of these memory access operations.

Operation Time (seconds)

1 SPE | 2 SPEs | 4 SPEs
Unaligned Load 1.581 | 1.178 | 0.904
Arithmetic Operations | 1.499 | 1.101 | 0.833
Aligned Store 4.550 | 2.401 1.500
Unaligned Store 15.073 | 7.647 | 4.036

Table 5.3: The average time of processing a block of 4096 a single precision floating-point
(32-bit) elements using a virtual register of size 4 KB per SPE. Each operation
was run 10%times

Figure 5.25 shows the average latency per a 32-bit word (single precision floating-point).
This figure shows that the average latency of load or arithmetic operations per word vary
between 0.2 nsec using one SPE to 0.4 nsec when four SPEs were used. These two in-
structions are non-blocking operations, yet the latency of the load operation, as we can

see, is slightly higher than an arithmetic operation. This variation is a result of loading
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Figure 5.25: The average latency time for processing a 32-bit word (single precision
floating-point) using a virtual register of size 4 KB per SPE.

unaligned data. Loading unaligned data does not cost as much as unaligned store because
if the data is unaligned, an SPE then needs to load only additional 128 bytes and does not

need to use any locks. More discussion on this point can be found in subsection 5.6.3.

The store instruction’s design, on the other hand, differs from the load’s design. Handling
alignment by the SPE on Store is more costly than on Load because it requires three DMA
transfers and two locks to handle data synchronization. Also the store operation is a block-
ing operation which means that the SPEs has to communicate with the PPE using mailbox
messages (acknowledgment) once the data has completely left the SPE local memory,
and thus no overlapping is allowed as in Load. Moreover, the PPE is required to call
the __lwsync () function to ensure that data is completely residing in the main memory
before executing the next instructions. These factors explain why storing unaligned data
costs up to 10 times as much as unaligned load when one SPE is used and up to 5 times
(1 nsec) when using 4 SPEs as shown in Figure 5.25. The same figure also shows that
the average cost of storing aligned 32-bit word is reduced by a factor of 3.5 as compared
to storing unaligned 32-bit word. However, store is not as frequent instruction as load
and computation instructions, and thus the cost can relatively be reduced by combining as

many operations as possible per an array expression.

Figure 5.25 also points out that blocking instructions, such as Store, are almost fully scal-
able because the opportunity to overlap communication and data transfers is high, and this

P0.94

can be seen clearly as the store instruction latency was reduced by a factor of , where

P is the number of processors. On the contrary, the cost of non-blocking instructions is re-

duced roughly by a factor of P42

only where P is the number of processors. non-blocking
instructions are not fully scalable because their low-latency does not allow a time window

to overlap communication and reduce the cost.

Figure 5.26, which is a graphical presentation of the figures given in Table 5.3, shows that

the Load and arithmetic operations have almost the same latency time because they are
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virtual register of size 4 KB per SPE and run 10%times
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Figure 5.27: (a) The percentage of time spent on the main activities out of the total latency
time of each operation (b) The percentage of time spent on processing aligned
data as compared to unaligned data.

non-blocking operations which means that the reported costs of these operations represent
only the cost to exchange messages between the PPE and SPEs as was explained in Section
5.6.3. Store operation’s latency is relatively high even on aligned data because it is a
blocking instruction. However, the average cost of each operations decreases of as the
number of the SPEs increases. The diagram in Figure 5.26 shows that the time for storing
unaligned data using the same above parameters was reduced from around 15 seconds
when on SPE was used to about only 4 seconds when 4 SPEs were used. The time reduced
by a factor of 3.75 when storing unaligned data and similar speedup was achieved on
storing aligned data. The achieved improvement on the Load and arithmetic operations
when SPEs were used is relatively small comparing with the Store operation because these
is only a narrow window of time in which message exchanges between multiple SPEs can

be overlapped.

The charts (a) and (b) in Figure 5.27 represent the percentage of the activities involved in

load, store and add operation out of the total latency time of each operation. The activities
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involved in each instructions are sending a request (messages) from the PPE to the SPEs
and processing the request by the SPEs. Figure 5.27 (a) shows that load and add operations
each spent an average of 65% of the total time on communications or sending messages
while the store operation spent about 16% on sending a message from the PPE to the SPEs.
The variation here is due to the total latency time of the store operation as the percentages

were calculated relative to the total latency time of each operation.

Figure 5.27 (b) plots the percentage of the time spent on processing aligned data as com-
pared to processing the same size and type of unaligned data. Let us first comment on the
computational operations. The processing time may vary from one computational opera-
tion to another, but it should not be effect by the alignment constraints, as we can see in
this figure, because all SPE virtual registers are aligned data buffers and consequently all

computational operations are performed on aligned data.

Figure 5.27(b) shows that the latency to load unaligned data is slightly higher than loading
aligned data. The difference is considerably small because loading unaligned data on
an SPE needs to load only 128 bytes additionally and no locks are used. On the store
operation, however, we can see a large improvement on aligned data. It drops from around
83% to about 65% of the total latency time of the operation because if data is aligned, the
SPE then does not need to bring data from the main memory back and forth as explained

in the Store Processing Algorithm presented in subsection 5.6.4.1.

134



6 Host Compiler Development

The VP front end compiler is already implemented, but it needs very slight changes to
handle the machine-dependent features. Also there are several back-end compilers that are
already implemented for different architectures but not for the PowerPC architectures[113,
141, 142]. Therefore, it was necessary to develop a sequential back-end compiler to port
VP on the Cell’s master processor and then extend it in order to collaborate with the VSM
model to access the Cell’s SPEs. The Cell’s host processor belongs to the PowerPC ar-
chitecture family. PowerPC architectures have specific register conventions and do not
have reserved registers such as a stack pointer and a frame pointer. They also do not
support a number of basic machine language instructions such as stack PUSH and POP
and instructions that handle functions’ calling mechanism; like ENTER and LEAVE In-
tel instructions. These are the main issues that must be resolved explicitly by PowerPC
compilers to ensure the compatibility of different modules of a program and to be able to

combine these modules as one unit.

VP back-end compilers basically consist of two parts: a targeted machine description
and machine-dependent routines. The machine description defines the resources of the
target machine such as machine instructions, memory, registers, address modes ... etc,
while the other routines solve machine-dependent features such as register conventions
and stack operations. The machine description is coded in Intermediate Language for
Code Generator (ILCG) notations, and the machine-dependent routines are written in Java.
The implementation includes as well a number of assembly macros to handle instructions
that are not offered in the PowerPC assembly instruction set such as loading a 32-bit
immediate value in a register. The sequential version of the compiler is then extended
to collaborate with VSM for parallelising array expressions. The tools that were used in
the implementation are GNU tools such as Java compiler and the assembler. The macro
processor m4 was also used as a text replacement tool to unfold machine specification

templates.

However, during the PowerPC backO-end compiler development, I developed a new ap-
proach to optimize the compiler code-generator. This approach is based on genetic algo-

rithm techniques to automatically optimize instructions set ordering instead of the manual
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approaches which depend on feedback procedures to enhance the ordering of instructions.

The discussion of the GA optimiser, however, is deferred to the next chapter.

This chapter covers the implementation of the standard (sequential) PowerPC back-end
compiler and its extended version. The compiler was extended to work together with the

VSM model as a single compiler system.

6.1 PowerPC Machine Description

The PowerPC machine instruction set was described using the ILCG notations. The im-
plementation is supposed to include declarations and definitions of available data types,
physical machine registers, operators and the instruction patterns. The following are some

samples of the basic machine specification.

* Data types declaration
type int8=BYTE;

type int16=WORD;
type int32=DWORD;

 Chain Type definition

pattern signed means [int8|int16(int32|int64];
pattern word64 means [int64|uint64];

pattern double means [ieee64];

The means portion is used by the unification algorithm to match against an abstract syntax

tree node.

* Registers declaration

— Regular Registers
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register int64 R3 assembles[’r3’];

register int64 R4 assembles[’rd’];

register int64 R5 assembles[’r31’];

The assemble component determines what assembly code is to be

generated.

— Reserved Registers

reserved register int64 RO assembles[’r0’];

reserved register int64 R1 assembles[’rl’];

— Alias Registers

/* Stack Pointer (SP )*/
alias register word64 SP=R1(0:63) assembles[’r1’];

/* Frame Pointer (FP) */
alias register word64 FP=R2(0:63)assembles[’r2’];

Once registers are defined, they should be grouped in sets. For example,
the following code illustrates how registers, RO,R1,... Rn, are grouped

under the siregs pattern.

pattern siregs means[RO|R1|R2|R3|R4]|...| Rnl;

* Referencing Indirect Memory

pattern naddrmode (nsrc r) means[ mem(~(r))]

assembles [r];

* Operators Definition and Grouping
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add means + assembles [’add’];

operation gt means > assembles [’gt’];
operation eq means = assembles [’eq’];
pattern oper means [add|mul|dv];

pattern logicoper means [and|or|xor];
pattern cond means [1ltlgtleqlngllelgelne];

pattern immediate means [int8|int16];

* Patterns definition of memory operations

pattern EA(reg r) means [~(r)] assembles[’(’r’)’];

pattern 1bl(label 1) means [1] assembles [1];

* Stack Operations

/* Increment the SP by the offset i */

instruction pattern INCSP(imm i)

means[ R1 :=+ (“(R1),1i) ]

assembles[’1li r1l,’i];

/* Push register r on the stack and then update r1(SP) */
instruction pattern PUSHREG(reg r)

means [PUSH(mainSTACK, ~(r))]

assembles[’std > r ?, 0(r1)’

’\n 1i r1, -8’];

/* Update rl (SP)and then pop register r from the stack */
instruction pattern POPREG(reg r)

means [r:=(int64)POP (mainSTACK)]

assembles[’1i rl, 8

\n 1d ’r’, 0(r1)°’];

* Memory access operation
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/* Load Instruction */

instruction pattern LOAD(reg rl, reg r2, reg r3)

means [ri1:=(int64)mem(+(~(r2), (x3)))]

assembles [’1ldx > rl ’,2> r2 ?,° r3 1;

/* Store Instruction */

instruction pattern STORE(maddrmode rm, reg rl, word64 t)
means [ (ref t) rm:= ~(rl) 1]

assembles [’std ’rl’,’rm];

¢ Branch Instructions

instruction pattern IF(cond c, reg rl, reg r2, 1bl 1)
means [if( c((int32)~(r1l), (int32)~(r2))) goto 1]

assembles[’cmpw ’> rl ’,> r2

’\n b’c ’ ° 1];
instruction pattern IFI(1bl 1,reg rl,imm s,cond c,int b)

means [if ((b)c((t) ~(rl),const s))goto 1]
assembles[’cmpwi > rl >, ’ s

’\n b’c ° > 1],

* Arithmetic Operations

instruction pattern Op(oper op,reg rl,reg r2,reg r3, int t)
means[rl := (t)op( (£)~(xr2), (t)~(r3))]

assembles [op’ ’rl’,’r2’,°r3];
instruction pattern MOD2(reg r)

means [r:=MOD("(r),2)]

assembles [’andi ’r’,’r’,1°];

* Other Operations
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instruction pattern LIMM(imm i, reg r)

means [r:=const 1i]

assembles [’1li > r ’,’ i ];

* Defining Instruction Set

The final step in the machine description is to list all the instructions that will be
used to match against the ILCG source code. The following ILCG code shows how

the above instructions are ordered in a list named PPC — Instr:

define (PPC-INSTR,INCP|PUSHREG]| ... |STORE|IFI|IF|LIMM|OPIMOD2)

All the instructions and operation patterns must be defined at the end of the machine

description file.

6.2 Machine-dependent Routines

The automatically produced methods, PPC.java, was extended in a new class, called
PPCCQG. The extension includes the following methods.

* cgApply():

This routine’s task, in general, is to arrange arguments passing based on the Pow-
erPC ABI and generate corresponding ILCG notations. It receives a node of type
procedure, and it starts by getting a rough estimate of the number of registers needed
to pass the arguments of that procedure, and based on this information, it then takes

the following steps to generate the required ILCG code:

— Determine the number of registers needed to pass the arguments. This must
adhere to the PowerPC ABI shown 3.4.

— Put the first parameters into the argument registers and reserve the used regis-

ters.

— If the available registers are not enough to hold all the parameters, it then
calls the cgPushit () routine to push the remaining arguments on the stack and

updates the stack pointer.
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* cgPushit()

It generates the required code to allocate parameters on the stack. It receives a node
which needs to go on stack and returns an offset from the stack pointer. The main

steps in this routine are:
— Gets the length of the node in bytes
— Casts the node to a reference as it will be located on the stack.

— Reserve the proper space on the stack while considering any alignment con-

strains when updating the offset.
* cgReturn()

This method determines the proper register to be used to return values. PowerPC
designates different registers for different data types, and thus the routine has to first

determine the data type to be returned, and it then determines the register.
* cgProcedure()

This is a focal function that examines the type of a given procedure, establishes a
procedure signature and calls the proper routines to generate assembly code that
corresponds to the source code. This routine takes two arguments: an object of type
procedure and another one of type Walker. The Walker class provides generic utility
methods that can be used by code generators, and if the code generation process is

succeeded, it then returns true. The main steps in this routine are:

Determine if the procedure is an external (imported) by adding the proper as-

sembly directive.

Plant the directive to identify the start of the procedure.

Generate a label to the procedure and add it to the code.

Call the ENTER() function and pass to it the lexical level of the procedure to

establish a new execution environment for the called procedure.

— Call the code generator routine on the class Walker. The routine walks through
the syntax tree and matches it against the machine description. This method
generates a stream of machine code instructions that correspond to the source

code in the body of the procedure.
— Calculate and set the size of the stack frame needed.

— Call the LEAVE() function to produce the code for exiting a pascal procedure
safely.
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6.3 Assembly Macros

Besides the Java machine-dependent routines, assembly macros were implemented to han-
dle undefined operations and functions such as loading 32-bit and 64-bit immediate values
(constants), trigonometric functions and data alignment. The following discussion looks

at three samples from the implemented macros.
* Loading 32-bit Immediate Value

We had to implement this assembly macro to allow loading a 32-bit immediate value
in a register because PowerPC architectures offer only 16-bit immediate instruc-

tions.

.macro loadintr value,reg

.section .data
1: .long \value
.section .text

lis 27,1bGha
addi 27,1b0@1(27)
lwa \reg,0(27)

.endm

The first line defines the macro’s name and the parameters it takes. It is called
loadIntr and takes two parameters (value and reg). It can be used to load a 32-bit
integer value into a register. Then we have in the second line the directive .data
which indicated that what follows is data not code. The assembly statement in the
data section allocates a 32-bit (long) word in memory (labeled with 1:) and sets it
with the constant value. The label 1 is a local symbol that can be used to reference
that memory location. The directive .text signals to the assembler that what follows
is code not data. The first two assembly instructions load the address of the location
1. That is, the instruction 1is loads the top 16-bit of the location 1 into register
number 27 and shifts them to the left, and the instruction addi (load immediate)
loads the lower 16-bits into the same register number 27 . The symbol 1b in the
1b@ha and 1b@1 symbols means the most recent defined (b for backward) label of
the number 1 while @ha and @1 means the higher and lower 16-bit respectively. The
last instruction 1wa in the code section loads a 32-bit integer word starting from the
address into register number 27 into the given register reg . The .endm directive ends

the macro.
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* Trigonometric Functions

The following macro shows an example of how the trigonometric functions are han-

dled using assembly code.

.macro fsins f

.section .text

fmr 1,\f
bl sin
.endm

This macro takes one argument; it is a floating-point register £. The instruction fmr
1, \f then moves the contents of register f into floating-point register number FPR1
as it will be , according to the PowerPC ABI, passed to the followed instruction bl

sin which calls function sine.
* Align Load Instructions

Because the PowerPC Architectures use instructions that are 32-bit word-aligned.

.macro unalignload reg base offset
.section .text
.if ( \offset & 3) != 0

1i 30,\offset
andi. 30,30,3

neg 30,30

addi 30,30,4

addi 30,30,\offset
add 30,30, \base
lwz \reg,0(30)

.else
lwz \reg,\offset(\base)

.endif .endm
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Action | Intel | PowerPC

1- Pushing the frame pointer on the stack push(EBP) stw r31,0(r1)
addirl, rl, -4

2- Maintain a copy of the SP; Temp <ESP la r30,0(r1)

3- Check nested level (NL) IF(NL>0) L1: cmpwi NL,0

Copy previous frame pointers in display area

FOR i<to(NL-1)

ble L2:

3.1 move FP to previous frame location

EBP < EBP -4

addir31,r31,-4

3.2 Store previous nested FP in display area | push(EBP) stw r31,0(r1)
addirl, rl,-4

3.3 Update the level addi NL,-1
3.3 Go back to step 3.1 ENDFOR b Ll:

4- Store the original SP onto the stack push(Temp) L2: stw r30,0(r1)

ENDIF
5- New FP points to current SP ( r30 in step2) | EBP<Temp mr 31, r30
6- Computes new frame size FS & update SP | ESP<<EBP - FS addi r1,-FS(r31)

Table 6.1: Emulating Intel ENTER instruction on PowerPC

6.4 Stack Frame Operations

Since PowerPC architectures do not support Enter (prolog) and Leave (Epilog) instruc-

tions, it was necessary to overload these methods as members of the class PPCCG.

« ENTER()

This routine creates a stack frame, updates the SP, updates the frame pointer FP, and

links nested procedure if there is any. It must be called whenever a procedure or

function is called. Architectures, such as Intel, offer hardware support for such an

operation but not the PowerPC. Table 6.1 presents an emulation of the Intel ENTER

instruction for the PowerPC in assembly language.

The PowerPC assembly instructions in the third column of Figure 6.1 are what the

implementation of ENTER() function is expected to generate.

« LEAVE()

The following Java code shows the implementation of the function leave() which

releases an active stack frame and updates variables such as the return address.
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private void leave(Walker w) {
w.buf .writeln(““Ebilog’’) ;

/* load return address in Reg0Q */

w.buf .writeln(‘‘1d r0, 16(r1)”’);

w.buf .writeln(‘‘mtlr r0”’);

/* Update the SP to point to the previous frame */
w.buf .writeln(*‘addi rl,rl,frameSize’’);

/* branch to the location in the link register */

w.buf .writeln(*‘blr’’) ;

6.5 Compiler Building Process

This section documents the main steps involved in the development process of the Pow-

erPC back-end compiler along with the tools used in each step:

* Define the target machine registers, instruction patterns, and operations and save

them into a macro file called PPC.m4.

* Transforming the PPC.m4 into PPC.ilcg format using the m4 macro processor.
m4 PPC.m4 PPC.ilcg

* Translate the ILCG code PPC.ilcg into Java methods using the ILCG code-generator
generator, and keep the generated code in the file PPC. java.

1lcg.ILCG PPC.<lcg PPC. java

* Compile the generated Java methods to generate class for each method.
javac PPC. java

* Compile the machine-dependent routines in the class PPCCG.
javac PPCCG. java

* Aggregate all the produced classes including the front end classes into one Java

archive file. This is the last step in the compiler building process.
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6.6 PowerPC Compiler Extension

This section discusses the machine specification extension development. The work in-
volved extending the machine description of the PowerPC back end compiler to be capa-
ble of collaborating with the VSM model. This includes defining a virtual SIMD register
set and introducing a new instruction set that operates on these virtual registers. I also had
to modify some machine-dependent routines such as ENTER and LEAVE to create and

terminate threads.

6.6.1 Packed Virtual SIMD Registers

The virtual vector (large) registers are designed to be used by virtual SIMD instructions
which imitate SIMD instructions on the SPEs. The length (VECLEN) of these packed
registers can vary, and I experimented with register lengths between 1024 and 16834 bytes.
The register file in this extended compiler consists of 8 vector registers, labelled NV; to
NV;. The following ILCG code, which declares the single-precision floating-point NV

register set, illustrates both the machine semantics and the specification system:

/* Machine Description of the Virtual SIMD Machine Registers #*/
define(VECLEN,1024) /#* this %s an exzperimental parameter */
register ieee32 vector (VECLEN) NVO assembles[’ 0°];

register ieee32 vector (VECLEN) NV1 assembles[’ 1°];

register ieee32 vector (VECLEN) NV2 assembles[’ 2’];

register ieee32 vector (VECLEN) NV3 assembles[’ 3’];

register ieee32 vector (VECLEN) NV4 assembles[’ 4’];

register ieee32 vector (VECLEN) NV5 assembles[’ 5°];

register ieee32 vector(VECLEN) NV6 assembles[’ 6°];

register ieee32 vector (VECLEN) NV7 assembles[’ 7°];

/* Groups vector registers under type nreg */

pattern nreg means[NVO|NV1|NV2|NV3|NV4|NV5|NV6|NV7] ;

The above ILCG defines each virtual register NV; as a 1024-word vector register. These
registers can be used to generate a set of RISC like register load, operate and store in-
structions. A packed virtual register can be processed by one SPE or multiple SPEs. If
a single SPE is used, the entire contents of each virtual register (NV) is copied into an
aligned buffer on that SPE. If multiple SPEs are used, each virtual register (NV) is then
equally distributed on the available SPEs. For example, if two or four SPEs are used, then

each SPE holds a half or a quarter of the register respectively. The partitioning process is
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the responsibility of the PPE stub routines which must compute the starting addresses and
broadcast the VSM instruction to each active SPE. Then each SPE can process its portion
of the register in parallel with the other SPEs. To illustrate how the starting addresses
are computed, we take the following simple example. Suppose that the virtual registers
can hold 1024 floats point values and 4 SPEs are used; that is, each SPE operates on 256
elements. Now, if the starting address to be accessed in the main memory is 0XA0000,
the responsible PPE routine then should broadcast to the four SPEs the following starting

addresses:

000A0000 —SPEy ; Start address of the vector

000A0400 —SPE; ; offset of 2566 floating points from start
000A0800 —SPE;

000A0CO0 —SPE3

In regard to the number of registers, to evaluate an array expression within registers, the
maximum number of registers the evaluation may require would be equal to the number of
operands in the expression, and thus in the worst case scenario the compiler can evaluate
an array expression comprising of 8 operands. However, this is often not the case because
after each intermediate primitive binary operations, as in VP, one of the registers can be
reused. To illustrate that let us take the following simple example which shows how to
approximate the number of registers required for the evaluation of general expressions

with binary operation:

Consider the arithmetic expression
A:=Bx(C-D)+ Z / Q

where A, B,C and D are vectors. In order to evaluate this expression, the compiler should

generate code such as

RO+Z

R1+Q

RO<RO / R1
R1+-C
R2<-D
R1<R1
R2+-B
R1<-R1 x R2
RO<R1 + RO
RO—A

R2
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The above example shows that an expression with 4 operators and 5 operands requires
a maximum of 3 registers. Ershov in 1958 proposed an approach that can be used to
find an optimal number of registers that are required for the evaluation of an expression
of primitive binary operators [157]. Ershov suggested that if an expression contains n
number of binary operators and n + 1 number of operands, then the number of registers
NReg needed for the computation is NReg < logr(n+ 1) [157, 158]. Accordingly, a set of

8 virtual registers would be enough to evaluate one very long expression at a time.

A virtual register length obviously has an influence on how an array expression is handled
if the length of the arrays being operated on in the source code are bigger than the virtual
registers. In fact, this is one of the reasons which motivated us to choose Vector Pascal
because its front end compiler is already designed to handle such situations when dealing
with SIMD instruction sets. If the length of the arrays are an integer multiple of the reg-
ister size, the front end compiler can then easily unroll the entire expression into multiple
successive calculations on sub-arrays of length equal to the virtual register length. For
example, if an array expression contains arrays of size 2048 and the virtual registers are
of length 1024, the compiler would then unroll the expression into two successive calcu-
lations. However, if the array size is bigger than the virtual SIMD register, the compiler
should generate virtual SIMD instructions which handle the portion of the array, which
fits in one or multiple virtual registers, and should also generate PPE scalar instructions to

handle the remainder.

6.6.2 Virtual SIMD Instruction Set

As was mentioned in the previous chapter, the VSM offers the PPE stub routines or func-
tions with two arguments to support primitive operations. The main task of most PPE
routines is to dispatch a request to the SPE(s) to perform a given operation. Thus, the idea
here is to introduce new machine instructions; called Virtual SIMD Instructions (VSIs).
VSIs are of two address register to register formats. They are a set of RISC like regis-
ter load, operate, store operations. The VSI set supports basic operations, such as Load,
Store, Add, Sub, Sqrt ...etc, in a mapped fashion. The compiler’s code generator should
look at the VSIs as a set of SIMD like instruction set with a high degree of parallelism.
VSIs can deploy the proper information in the right registers and invoke the right PPE sub
routine. The role of the VSIs ends at this point because it is the responsibility of the PPE
interpreter to communicate with the SPE(s) and to handle other parallelisation issues such

as data partitioning and synchronisation.

Semantics of some samples of the Virtual SIMD Instructions and how they were mapped

into machine code are given in the following subsections.
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6.6.2.1 Virtual SIMD Load and Store Instructions

The virtual SIMD load and store instructions can be used to move data within the Cell
processor. From the PPE interpreter point of view, these operations are carried out using
underlying DMA operations. A DMA transfer, as was mentioned in the introduction of
the Cell, is basically a function with several parameters, yet the most important parameters
are: local store address, main memory address. From the code generator point of view,
these virtual SIMD instructions are basically required to call the right PPE stub routine
providing that it sets the required information in the proper registers. Consequently, the
implementation of these instructions must adhere to the PowerPC ABI shown in 3.4 by
using the registers r3 and r4 to pass this information. The first register should be loaded
with an integer n which determines the virtual register’s number to be used. The second
register should be loaded with the starting address of the data to be moved from/to the main
memory. This implies that the implementation of each instruction requires two assemble
instructions to set these two parameters and a third assembly instruction to call a PPE
function for the particular operation. The following ILCG code shows the Load and Store

instructions:

instruction pattern LOADFLT( naddrmode rm, nreg n)

means[ n :=(ieee32 vector (VECLEN)) " (rm)]
assembles[’1li 3, ’ n

’\n la 4,0’ rm ’)’

’\n bl LoadVec?’];

instruction pattern STOREFLT( naddrmode rm, nreg n)

means [(ref ieee32 vector(VECLEN)) rm := ~(n)]
assembles[’1li 3, ’ n

’\n la 4,0C’ rm *)’

’\n bl StoreVec’];

Notice here that n is a variable of type nreg which was defined above. The code generator
will select the register (n ) to be used from the registers (NVy - NV7) listed under the nreg.

The selection depends on the available registers. The LoadVec and StoreVec are the PPE
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functions which are supposed to handle the load and store of floating point vector of size
VECLEN.

DMA transfers also require the size of the data to be transferred. This task is left to the

PPE functions to determine based on the data type.

6.6.2.2 Virtual SIMD Computation Instructions

Computations operations could be classified based on the number of operands (arity) that
an operation takes. There are binary operations, such as add, multiply and replicate, and
unary operations such as sqrt, sin and cos operations. To set the environment for executing
any operation on the SPE, computation virtual SIMD instructions first loads the required
information, which determines the operands involved in the operation, in the proper reg-
isters based on the PowerPC ABI shown in 3.4, and then calls the right PPE stub routine.
For example, a binary operation, such as Add, requires two integer values which represent
the numbers of the two virtual vector registers that it operates on. In this case, the ma-
chine physical registers, r3 and r4 can be used to pass these parameters. The operands in
other binary instruction are sometimes of different register types. For example, the repli-
cate instruction operates on a scalar value and a vector register in which the scalar will
be replicated. Thus the scalar needs a physical machine register while the second operand
needs a virtual SIMD register. However, in unary instructions, the virtual SIMD register,

which is the only operand, is used as a source and a destination.
* Instructions of Binary Operations

We present here two examples of binary operations which were implemented dif-
ferently. In the first example, the operation involves two arrays, and thus the PPE
function requires two parameters; say integer n and m, to determine the virtual vec-
tor registers to operate on. Accordingly the ADDFLT instruction, given as an ex-
ample here, must load n and m into the PPE general purpose registers, r3and r4
respectively before it calls the PPE function AddVec. The implementation of the
ADDFLT instruction is shown in the following ILCG code:

instruction pattern ADDFLT(nreg n,nreg m )

means[n:= +(~(n),~(m))]

assembles[’1i r3, °> n
’\n 1i r4, ’° m

’\n bl AddVec’];
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The first line defines the instruction ADDFLT that takes two parameters n and m of
type nreg. The nreg is a pattern which represents, as was defined above, a group of
virtual SIMD registers. The second line specifies the semantics of the instruction.
The semantic of this operations specifies two sources register numbers are n and
m, the operation (+), and where the result should goes; into register n. Note the *
operator means ‘“‘get the contents of “. The last 3 lines show the standard assembly
code that is supposed to be generated. The first two assembly instructions load the
PPE general purpose registers; r3 and r4, with the virtual register number n and m.
The third assembly instruction is a branch instruction that leads to a call to the PPE
function AddVec.

The other example of binary operations differs from the previous example in the

type of argument to be passed. The following ILCG code:

instruction pattern REPFLT( nreg n, sfreg r)
means[ r:=rep(~(n),VECLEN)]
assembles[’li 3, ? n

‘\n fmr f1,’ r

’\n bl RepVec’];

shows how the replicate floating-point instruction RELFLT is implemented. This
instruction does not operate on two vector registers like the ADDFLT operation,
instead it replicates a floating-point scalar into a vector register. This implementa-
tion shows that the type of the first argument is the same type used in the previous
examples, but the type of the second argument is different. The type used in this
instruction refers to a singed floating-point machine register (sfreg) which is sup-
posed to hold the scalar value. Consequently there is a need here for an assembly
instruction such as fmr to move a scalar value into the first floating-point machine

register (1) in order to pass the floating-point value.
Instructions of Unary Operation

We present here the implementation. This example shows the following ILCG code

of a unary operation:
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instruction pattern SQRTFLT(nreg n)
means [n:=SQRT("(n))]

assembles[’1li 3,’ n

’\n bl SqrtVec’];

The first line defines the instruction SQRTFLT which takes one parameter, and the
second line specifies the semantics of the instruction in which the source register n
is also used as a destination to hold the result of the square root operation. The third
line includes two standard assembly instructions. The first instruction (’1i 3,’ n)
loads the PPE general purpose register 3 with the virtual register number n while the
second (bl SqrtVec) is a branch instruction which leads to a call to the PPE stub

routine called SqrtVec.

6.7 Building the VP-Cell Compiler System

This is the third stage in the development of the VP-Cell compiler system. It involved
the integration of the VSM interface with the VP compiler as a single compiler system
that has the capability to automatically parallelise and execute array operations on the
SPEs. This last phase included extending the PowerPC back-end compiler to incorporate
a user-level instruction set (Virtual SIMD Instructions) using a standard instruction set.
The extension included a definition of a set of 8 virtual SIMD registers or vector registers
and a description of the VSM instructions. The ILCG file, which contains the description
of these resources, was appended to an existing ILCG description of the PPE to give a
complete description of an integrated machine. The ILCG compiler then builds a code
generator in Java which is compiled and linked with the Pascal compiler. The extension
included also a slight change in the code generator routine which determines the degree of
parallelism the target machine can support on different data types. It is important to note
that no changes were necessary in the parser or high level optimizer of the compiler itself
in order to achieve this. By supplying the machine code generator with the size of available
virtual or vector registers, the parallelisation processor is simply piggybacked on the way
the compiler front end decomposes array operations for whatever processor it is targeting.
The code generator 'thinks’ it is generating a set of RISC like register load, operate and
store instructions. These actually expand out into calls to the PPE stub routines which pass

the instruction arguments as messages to each active SPE using its mailbox registers.

The ILCG file describing the VSM is appended to an existing ILCG description of the PPE

to give a complete description of an integrated machine. The ILCG compiler then builds a
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Figure 6.1: Building the code generator and compiling a Pascal program

code generator in Java which is compiled and linked with the Pascal compiler; the process
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PPE.m4 VSM.m4

|

PascalCompiler.class

o

PPEVSM.class

gnu assembler

]

is shown in Figure 6.1.

We illustrate how VP-Cell handles the execution of array expressions with the following
simple Vector Pascal program which reads two arrays of reals from standard input and

prints the average of the two arrays given that the VSM register size is 8192 bytes.

Daughter Processes

task dispatch j—;l_‘
L=

VSM interpreters
on the SPEs

ILCG compiler

|

Jjavace

01 program Av(input,output);

02 const arraylen=4096;

03 type vector=arrayl[l..arraylen] of real;

04 var a,b,average:vector;

05 begin
readln(a) ;readln(b);

average:= (atb)/2;

06
07
08
09 end.

When the compiler processes line 7 it sees that it has to perform calculations on vectors
4096 elements long, so it asks the code generator what is the maximum degree of par-

allelism this machine can do on reals. On a simple scalar CPU like the old Pentium the

writeln(average) ;
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answer would be 1, and the compiler would generate a loop going round 4096 times to
do the calculation. For the VSM though, the answer on the degree of parallelism comes
back as 2048, so the compiler decides that it can unroll the entire task into two successive
calculations on sub-arrays of length 2048. It thus schedules loads of the two halves of a
and b into a pair of NV registers followed by add and divide instructions working on the

entire vector registers.

The program takes the form of a mother process on the PPE and 1, 2 or 4 daughter pro-
cesses on the SPEs. At the start of a program, one or more copies of a VSM interpreter
program are initiated, one per SPE. A compile time flag can be used to select how many
SPEs are to be used.

If a single SPE is used, the entire length of each NV register, which is in this example 2048
real elements, is mapped into the local memory of that SPE. The interpreter sits in a loop
reading instructions from the mailbox and dispatching interpreter tasks corresponding to
the instructions. If two or four SPEs are used, each SPE operates on 1024 or 512 elements
respectively. In this case, the PPE stub routines broadcast the VSM instruction to each
active SPE. Because each SPE can now process its portion of the VSM register in parallel

with the others, adding more SPEs accelerates the execution process.

6.8 Coding

The following points perceive what has been implemented and how many lines of code

were produced

* The PowerPC machine description file, PPC.ilcg, consists of more than 1250 lines
of ILCG code written to define around 209 abstract instructions and to map these
instructions into PowerPC assembly instructions. This file then fed to the code-
generator generator which automatically generates Java methods for each described
operation. The generated methods are kept in a PPC.java file that contains more than

47000 lines of automatically generated code.

* The machine-dependent routines are implemented in Java as an extension to the
automatically-generated program. The program extension is called PPCCG.java,
and it handles stack operations and functions calling mechanism. This program

contains around 750 lines of code.

* The macros were written in Gas assembly language. The macros file contains about

230 lines of assembly instructions.
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There are a variety of problems which could be optimized automatically in the compiler
domains, but the intention here is to focus on using genetic algorithms for optimising code

generators.

Code generators of some programming languages such as Prolog and VP employ a unifica-
tion based technique for matching or constructing logical proofs [42, 159]. For example,
VP code generators employ a pattern unification matching technique to map semantics
into assembly code. Adjusting code generators manually usually depends on feedback
procedures to enhance the ordering of instructions, but this tuning process is very time
consuming. The manual approach also requires a considerable human effort and does not
guarantee that a given sequence of instructions is a good choice. Thus, it will be productive
to have a tool that can assist compiler designers especially for newly developed compilers
in tuning and enhancing code generators that consequently reduces execution time for a
given application. In this project, I developed a new approach to optimise a compiler code
generator, and the novelty of this approach is using Genetic Algorithm (GA) techniques to

automatically optimise machine instruction ordering.

This chapter discusses in detail the code generator optimiser. It starts with an introduction
of generated code problems which could be optimised using GAs. It then looks at two
existing approach in which GAs used to optimise code. After that, it gives a brief descrip-
tion of the basic algorithm which developed to optimise compiler code generators and
looks at the design and implementation aspects. It concludes with experimental evidence
that shows the use of such genetic algorithms can improve the quality of automatically

constructed code generators.

7.1 Introduction

Some compilers use unification to match generated-tree nodes with the semantics of the
target machine and generate the assembly instruction (s) associated with the first matched

pattern. This means that there is a possibility that a single node will match a number of
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semantics, and hence the order of instructions patterns can affect which of several possible
matches will succeed. Using unification algorithms raises the problem of choosing the

optimal instructions order from a vast range of semantically equivalent code sequences.

Thus, this work investigated whether genetic algorithm techniques can help in getting a
better instructions order that consequently reduces execution time. This piece of work
was carried out in the early stages of the PowerPC back-end compiler development in
an attempt to improve its code generator because it was newly developed and had not
gone through many hand ordering optimisations. Actually, during the verification and
testing of the compiler implementation, we notice on different occasions that the number
of generated instructions to achieve a certain semantic effect could be reduced by just

reordering the machine instructions set.

However, this approach differs from two earlier approaches, which shall be introduced
shortly, in the targeted code. The previous two approaches optimise generated code or a
single program at a time whereas our optimiser targets code generators. By optimising the
code generator itself, the optimiser is run only during the compiler development to improve
its code generator and obtain speedups in many applications subsequently translated by the
optimised compiler. However, reducing the generated code is highly expected to result in

less execution time, yet this is hardly proven due to the lack of reliable instruction times.

7.2 Previous Work

GAs could also be used to optimise generated code. The size of generated code for embed-
ded systems is a critical issue, and software developers often tolerate much longer compile
time in the hope of reducing the size of generated code. There are two approaches that

have previously been proposed to use GAs for optimizing generated code.

The first approach used GAs to optimize restructuring FORTRAN programs for SPMD
running on parallel machines, and it was called the Genetic Algorithm parallelisation Sys-
tem (GAPS) [160]. This technique was used for optimizing the global overhead of paral-
lelising loop-based FORTRAN applications. This form of parallelisation usually requires
reconstructing and transformations of original code, such as loop fission and loop fusion,
and results in an infinite number of transformations. The GAPS technique was an alterna-
tive to the conventional transformations process that is basically based on mapping each
statement in the source code into a sequence of alterations. GAPS was also proposed as an
enhancement of other existing approaches which attempt to optimize individual statement
overheads but not the global overhead of transforming an application or a given program
[160].
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The second proposal used GAs for optimizing the dual instruction set of the ARM proces-
sor. The ARM processor is heavily used in embedded machines. In addition to its standard
RISC instruction set, ARM supports a reduced instructions set, called Thumb [161]. The
Thumb instructions have smaller instruction lengths than the original instruction set. A
program compiled using only Thumb instructions uses more instructions than the same
program compiled using a standard instructions set, and it is consequently slower [161].
Because the dual instruction sets could affect the efficiency of compiled programs in terms
of performance and space, this approach helps a code generator to swap between the two

instruction sets in order to optimize a program’s execution time and its code size.

However, genetic algorithms could also be used to optimise the construction of code gen-
erators that are based on unification algorithms. Unification is the process of unifying
different representations in an attempt to resolve the satisfiability problem. Different pro-
gramming languages use unification algorithms for different purposes. For example, the
Haskell programming language uses unification for the type inference problem while Pro-

log and Vector Pascal depend on unification algorithms for pattern matching.

7.3 Permutation Technique

Permutation is rearranging a given finite set of objects or values, and it can be a useful
encoding technique for some ordering problems [130, 162]. The most common example
of a permutation problem is the travelling salesman problem. A solution of the classic
travelling salesman is basically a list of cities in which each city must occur once and
only once. A simple way to represent a solution of C cities is a list in which each city
is given a unique integer number, say 0. .C. Accordingly, any a proposal (solution) or a
map of the cities for a salesman must include all the integers from O to C in no particular
order. From the salesperson’s point of view, the best solutions (order) is the shortest paths
to visit all the cities, but the search space will be very large to span even with a small
number of cities. This representation raises the problem of finding the permutations of
these integers (cities), in which each integer is presented only once, that deliver optimal
solutions for a sales person. For this reason, there have been past studies on how to use

Genetic Algorithms to encode and solve travelling salesman problems [162].

The problem of instruction ordering in compilers is also a permutation problem like the
classic travelling salesman problem. In compiler development, the most important part
of code generators design is the instruction sets which normally go through successive
enhancement and modifications to improve the quality of constructed code generators.
This lineage production can be viewed as an inherited genome, and therefore genetic al-

gorithm techniques would be a promising code generation strategy that can help in finding
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instruction pattern IFI(1bl 1,reg rl,immuptolé s,cond c,int b)

means [if((b)c((t) ~(rl),const s))goto 1]
assembles [’cmpwi ’ rl ’, > s
’\n b’c ’ ) 1] ;

instruction pattern IF(cond c, reg rl, reg r2, reg r, 1bl 1)

means [if ((int32) c((int32)~(r1l), (int32)~(r2)) ) goto 1]
assembles [’cmpw > rl ’,’ 12
;\n b’c ’ ? 1];

instruction pattern LIMM(imm i, reg r)

means [r:=const i]
assembles [’1i > r ?,” 1 ];

Figure 7.1: Branch Instructions Patterns in ILCG Using Gas Assembly

instruction schedules that deliver near-optimal performance for a particular machine. Per-
mutation techniques can be useful in construction compilers code generators, especially
those employing unification algorithms for matching machine semantics (patterns) with
intermediate forms of source programs. Where multiple alternative patterns are possible
unification algorithms basically output the first pattern whose matching succeeds. As a
result, the efficiency of this matching process output is partially subjective to the order of

the instruction patterns.

7.4 Why Instructions Ordering is a Problem

Instructions ordering in unification based compilers is a problem that has two faces: pro-
ductivity or performance and efficiency. Compiler code generators, such as VP, employ
unification algorithms to match intermediate representation of source code with machine
semantics. They are basically supplied with a machine instruction set as a list which con-
tains all the machine patterns in any given order. This list will be used to match against

the intermediate (ILCG) code of source programs.

VP compilers use unification to match machine semantics with the abstract syntax tree of
translated code and consequently generate assembly code. However, if multiple alternative
patterns are possible, the matching process then will raise the problem of choosing the
optimal instructions order which could be viewed as one face of the instructions ordering

problem. This optimisation process is often based on manual feedback procedures to
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1i r5,0
cmpw r4,r5

Figure 7.2: Assemble Code

enhance the machine code generators, yet the manual tune up often requires a considerable

human effort and does not guarantee that a given sequence of instructions is a good choice.

The order of the instructions in the instruction set (list) is a crucial issue as there should be
several ways to match generated-tree nodes with a given intermediate code. To illustrate
that, let us take a simple example of boundary checking. First assume that the target
machine description includes the instructions patterns; IFI,IF and LIMM, as shown in

Figure 7.1, as representations of the assembly cmpwi and cmpw instructions.

The IFI instruction in Figure 7.1basically compares a register with a 16-bit immediate
value while the second instruction uses two registers to carry out the comparison. The
LIMM instruction represents a assembly instruction (1i) that loads a 16-bits value in a
register. Though, these three instructions could be listed in n! orders, we only consider
two different orders that could lead the compiler to generate different instructions. In
these two orders we shall swap only the instructions IFI and IF as this will be enough to
illustrate how the instructions order may effect the performance. Now, to check the lower
boundary of an array, say 0, giving these instructions, a compiler code generator would
have at least two alternatives to perform the checking. The first option would be if the

instructions were listed in the instruction set (PPC-InsTR) in the following order:

define (PPC-INSTR,...|...|[IF|LIMM|IFI|...|...)

The code generator then most likely will use the register to register compare instruction
because it sees the instruction IF before the instruction IFI. Thus, the compiler will at-
tempt to use the IF (cmpw) instruction if it can place the constant value (0) into a register.
This condition can be easy fulfilled by the following instruction which loads an immedi-
ate value (0) in the register. Under these circumstances the code generator will conduct
the comparison using two assemble instructions as shown in Figure 7.2. The generated
code assumes that register (r4) holds the array subscript and register (r5) holds the lower

bound.

The alternative is to order these three instructions as follows:
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cmpwi r4,0

Figure 7.3: Optimal Assembly Code

define (PPC-INSTR,...|...|IFI|ILIMMIIF]...]...)

The code generator in this case sees the IFI instruction before the LIMM and IF instruc-
tions, and therefore it will choose the IFI instruction pattern which results in conducting
the comparison using only one assembly instruction; see Figure 7.3. This generated in-

struction does exactly the same task that the two instructions given in Figure 7.2 do.

Note that as a result of the second instructions order the number of the generated assem-
bly instructions for checking the array lower bound were reduced from two to only one
instruction. This could be an optimal order in terms of the number of instructions being
reduced to half, yet it does not mean that the total latency is also reduced by the same
factor because this depends mainly on the cost of the reduced instructions (the alternative
solution) as compared to the remaining instructions. Thus, one can infer here that the order

could affect the code generation process and programs execution time.

The size of the search space to be explored and the efficiency in finding the appropriate
solution can be seen as the other face of the problem. Though choosing the proper order-
ing to improve performance can be done manually, the manual approach is less efficient
than automatic techniques because the size of the search space to be spanned would be
very large and thus there might be better solutions than the hand ordering one. Actually,
finding near-optimal or better solutions is even a challenging process at the first stages of
the compiler development due to the problem size. A machine with N instructions means
there are N! possible orders in which the instructions could be listed. For example, on a
machine with only 100 instruction patterns, a compiler developer of languages, like Prolog

057 combinations of

and VP, are confronted with a massive search space that has around 1
instruction orders, and this number grows very rapidly even for a few additional instruc-

tions.

In view of these considerations, we developed an optimiser using genetic algorithm tech-
niques to optimise machine instructions ordering automatically in the hope of helping to

construct compiler code generators .
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7.5 Genetic Algorithm Approach to the Problem

The instruction ordering problem is also a permutation problem similar to the travelling
salesman problem as the solutions in both cases can be represented as lists of objects.
Thus, we present here a genetic algorithm that is based on a new permutation technique
for solving the instructions ordering problem. Our genetic algorithm basically starts with
a genetic pool of different instruction pattern (opcodes) orders that potentially includes
one solution as a default order which could be the existing hand ordering version for
existing code generators. It then evaluates these solutions and selects the fitters to be used
for reproducing offspring. After that, we perform genetic recombination between a pair
of fittest solutions, and re-evaluate the new solutions in order to reselect and reproduce
offspring of next generations. The algorithm 7.1 demonstrates these main steps in solving

the instruction ordering problem using genetic algorithms.

Algorithm 7.1 Basic Genetic Algorithm for Instruction Ordering
/l Create Initial Population

{ Get default machine instructions order (first genome);}
{ Generate random populations (excluding first & last genomes;}
{ Reverse the default instructions order (last genome) ;}

// Evaluate the Fitness of the First Population

{Fitness function;}

// Generate and Evaluate New Generations

While ( Number of Generations not Satisfied)

{

// Select Parents for Reproduction
{Select fitter solutiomns;}

/I Generate Offspring Using Selected Pairs

{ Perform a single-point crossover;}
{ Perform a flip-bit mutation;}

// Evaluate the Fitness of Successive Populations

{Fitness function;}

161



7 Code Generator Optimiser

7.6 Key Design Aspects

7.6.1 Environmental Variables

In order to start the optimiser, users are required to provide some information or parame-
ters. Some of these parameters have default values, yet some need to supplied by the user.
These parameters should be prefixed with the symbol “-” and the letter(s) denoted for the

individual parameters as shown below.
1. Number of populations
2. Number of solutions in a population
3. Number of offspring
4. Names of training programs

5. Targeted machine’s name.

7.6.2 Representing Solutions

There are three levels of representations:
1. A solution is a list of N instruction patterns (opcodes).

2. A permutation list L that is made of integers in the range 0 .. N — 1 in which each

number must occur once.

3. Genomes are encoded as binary bitstrings each of length N — 1. A genome G is a set
of parameters that defines a proposed solution to the problem, but it does not encode
the permutation. In other words, a genome is like a program for a permutation

machine.

7.6.3 Encoding first population

The first step that the optimiser does after being supplied with the parameters is to gen-
erate an initial population (j = 1) of genomes G| _s. This step is carried out only once to

generate the first population, and it involves:
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1. Setting all the bits of the first genome G;to O (Null permutation). The permuted list
that is generated based on (Gq) is supposed to be identical to the default opcodes

order.
2. Setting the bits of § — 2 genomes randomly (Random permutations).

3. Setting all the bits of Ggto 1 (Full permutation). This last bitstring (Gs) should result

in generating a reversed order of default opcodes (G1).

In this aspect the encoding has some similarity to structured genetic algorithms for func-

tion optimisation [163].

7.6.4 Main Optimiser Operations

This is the most important phase in the application of genetic algorithms because it in-
volves three key steps: performing mutation and crossover operations, evaluating solutions

via a fitness function and producing new generations.

7.6.4.1 Crossover Operation

The crossover operation is part of the generations reproduction process. This operation is
carried out on pairs of genomes (parent) to combine parent’s genes once the parents of a
given generation were selected. A number of techniques have been in use to perform the
operation, but the common technique is called the crossing over technique. The crossover
technique can be applied using different approaches, such as single point, two point, cut
and splice. Our algorithm is based on the one-point crossover approach which basically
picks a random point on both parent genome bitstrings and then swaps the genes of the
parents to produce new children as shown in Figure 7.4. The optimiser first applies one-

point crossover technique on pairs of genomes “parent” from the selected S — C genomes,

7.6.4.2 Mutation Operation

Mutation is a genetic operator that can be used to diversify genome representations from
one generation to the next. This operation alters a few gene values (bits) in a genome from
its original state. We use a bit string mutation technique which simply flips bits at random
positions, and thus the probability of a mutation of m bits in a genome of length N is .
However, the number of bits (m) to be changed or the mutation probability should be set
low to ensure that the search will not became a typical random search [128]. Our optimiser

uses the flip bit mutation operator to invert 2 arbitrary bits from the new child genome.
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[1]of1]ofz]1]ofofof1]

Parents:

[1]1]ofJofof1]of1]a]1]

[1]of1fofof1fof1]1]1]

Children:

[1]1]ofJofzf1]ofofo]1]

Figure 7.4: One-point Crossover

7.6.4.3 Permutation Operation

Using the presentations of genomes and permutation lists as described above in a regu-
lar sense give rise to problems with mutation and crossover operators because applying
mutation and crossover on a given list is no longer necessarily a permutation. Our permu-
tation machine design was based on a swapping technique which ensures that both binary

crossover and mutation operations will lead to a valid permutation.

The permutation machine F reads in the bitstring G and an initial valid permutation L,

carries out a sequence of valid permutations on L and outputs another valid Q permutation.
That is,

Q:F(GvL)

Now if the permutation machine reads the identity permutation / =0,1,2,3,... ., N—1
then each permutation program G; labels a permutation L; produced by the application
Li=F(Gj,I).

To illustrate how the permutation machine F works, let the permutation machine code be

as follows:
G = boob10b11b20b21b22023b30b31b32b33034D35D36b37b40). ..

The permutation machine F then proceeds according to the following rules: follows
« If by swap the 1* half of L with the 2" half of L
« If by swap the 1* quarter of L with the 2"? quarter of L

« If by; swap the 3’ quarter of L with the 4/ quarter of L
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« If by swap the 1* eighth of L with the 2"? eighth of L
e ...etc

Since the permutation of a permutation is still a permutation, and since swapping is a per-
mutation operator, it is clear that the machine F' will always produce a valid permutation
of Lif Lis itself a valid permutation. Note that the first bit has more effect than the second
and third, and that these have more effect than succeeding ones. In this aspect the encoding

has some similarity to structured genetic algorithms [163].

It is also evident that the space that can be searched using this representation is of the order
22 which is less than n! for all n > 3 so that the space searched by the GA based on this
genome will only be a fraction of the possible permutation space. Since n! is bounded
above by2"/%¢" we could construct a permutation programme of length nlog, n bits that
would be capable of producing any permutation. How can we do this using our existing

permutation function F?

We need to apply logn independent permutations on the genome in sequence, and in order
to do that we need a new function g(i,s,p) which given an integer i : 0..(logon) — 1 a
bitstring s as before and a permutation L will generate the permutation rot (f (s,p),2')
that is to say it applies the permutation programme s to L as before and then cyclically
rotates the permutation list by 2/ places. Suppose we have a genome of length nlogn with
log n bitstrings each of length n. We will denote the ' of these component bit strings as
s;. The complete permutation space can than be scanned by composing g with itself logn

times as follows

fori:=0to (logon)—1doL=g(i,s;,p)

However, for realistic numbers of opcodes ( of the order of 100..200) 2" already represents
a huge optimisation search space and gives the GA plenty of scope to find improvements,

so our initial experiments used a genome of length 2llogan]

7.6.5 Generations Production

The process of generating a successive population (generation) j includes selecting fitter
solutions from population j — 1 using a fitness function and then breeding new offspring

using crossover and mutation operations on selected solutions.
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7.6.5.1 Fitness Function

Typically, a fitness function is used to evaluates the efficiency of a given design solution.
Our optimiser fitness function involves a complicated procedure and takes a considerable
time to evaluate each solution. It is a multiple-step process. It involves building a code
generator using individual generated solution one at a time and then compiling, running
and measuring the performance of each training program. The following explanation de-

scribes these steps:
1. Produce a New Solution

Given a permutation list L, produce a new solution that is supposed to have a differ-
ent instructions (opcodes) order and use the same order to define an instruction set

for the target machine.
2. Rebuilt Compiler

Use individual solutions in a given population to reconstruct new code generators.
3. Compile Test Programs

If the code generator for that particular solution was successfully built, then compile

the training programs.
4. Execute Test Programs

If a given training program was successfully compiled without any errors, then exe-

cute the training program.

The fitness function is designed to report any failure occurring during this process us-
ing different flags to distinguish each step. The flag is set to a negative values if any of
the above steps failed. On the other hand, if the rebuilding, compilation and execution

processes were completed without errors or any source of interruption, the function then

* Measures the execution time of every training program under each solution and

reports the timings in files for further use.

* Gets the average execution time of all training programs under each solution in a

population.

* Sorts the solutions in a given population in descending order based on the average

execution time of the training programs.
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7.6.5.2 New Generations

The production process of new generations starts from the point in which the fitness func-

tion stopped and goes through the following two steps:
 Selecting fitter solutions (Parents)

Given that the solutions in a population, say j, were already sorted in descending
order, the optimiser will pick the fitter solutions or the parents of generation j+ 1.
The number of offspring is set by default to % of the total number of solutions (a
population), yet the optimiser allows users to determine the number of offspring
to be breed. Using the default number of offspring, then the number of the fittest
solutions to be selected as parents in a new generation (J 4 1) is % of the population
J-
* Generating offspring (Children)

In this step, the optimiser will breed the remaining genomes. Breeding a child

genome can be divided into several steps.

— The first step is to select a parent for the new born. Our optimiser is designed
to choose the parents randomly given that each parent must have only one
child; that is, a parent is used once and once only in the children reproduction

process.

— The second step is to use a single-point crossover technique, as described
above, to vary the genome of the new child. The crossover point is also se-

lected randomly.

— The third and last step is to apply a mutation operator to preserve some genetic
diversity between different generations. The optimiser inverts only 2 arbitrary

bits from the new child genome.

7.7 Implementation

The optimiser was implemented in C++. The current version of the optimiser contains sev-
eral C++ functions and uses a script program and a make file utility for building compiler

code generators.

We start this section by introducing the key functions of the optimiser and then giving a

brief introduction on the script program which was coded in AWK script language. We do
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not intend here to present the entire code of these functions rather we give samples of the

code that are essential in the discussion.

7.7.1 C++ Program

However, most of the optimiser implementation was written in C++. The C++ program
responsibility starts from extracting the arguments (environment variables) that are passed
from the command line, carrying out all genetic operations and ends up with documenting

all the information used and obtained during the optimisation process.

7.7.1.1 Launching the Optimiser

To start the optimiser, users must provide the required information, especially the param-
eters that do not have default values such as the names of the training programs. The

following command line shows how to call the program and what information is expected:

GA.exe -Tx -Gx -Sx -progTestl.pas -proglest2.pas -cpuPPC

where x must be an unsigned integer value. The symbols would be interpreted as the

following:

» T: Prefixes a test trail’s number which is used to create a directory as a work space
for that test.

* G: Prefixes the number of populations and accordingly one subdirectory for each
population will be created in the directory, which has just been created in the previ-

ous step.

* S: Specifies the number of solutions in a population and thus S files will be created

to maintain all information on the different solutions in that population.

* prog: This symbol should prefix each training program name. No limit on the

number of training programs that can be used in the fitness function.

* cpu: The last argument determines the target processor.
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7.7.1.2 Key C++ functions

* Set Up:

It is the first function to be called. Its task is to extract data items passed via the
command line, and based on these extracted parameters, it sets up a working place

as shown in Figure

char newDir[50] ;
sprintf (newDir, "Test%d",T);
// Create a trail directory

if (opendir(newDir) == 0) A

sprintf (newDir, "mkdir Test%d",T);

system(newDir) ;

+

// Create a subdirectoy for each Generation

for (int i=0; i < NoPop ;i++){
sprintf (newDir, "Test’d/GENYd",T,1i);

if (opendir(newDir) == 0) {

sprintf (newDir, "mkdir Test%d/GEN%d",T,1i);

system(newDir); }

} else exit(1);

* Machine Instructions Opcodes

Its role is to get the identity permutation list of the target machine opcodes and count

the number of opcodes.
* Create first population

The function is called only once to generate the initial population.
* Fitness function

The fitness function uses negative values as flags (flg) to signal failures of different

processes. In the current implementation, for example,

-1 Indicates that the machine description file was not successfully modified.
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-2 Hints at the failure of building the compiler code generator.
-3 Implies that the compilation of a give program failed
-4 Points out that the executions of a training program failed.

The following formulas determine the efficiency or fitness value of each design so-

lution and the number of each activity or task that the fitness function does:
— The fitness of a solution is computed as
Fitnessvalue = %

where T is the average execution time of all training programs and C repre-

senting the completion success; i.e,C = 1 if flg > 0 otherwise C =0 .
— The number of reconstructed code generators
NCC=G+(G—-1)x(S—0)

where O represents the number of child in the generations 1..G while S, as
defined above, represents the number of solutions and G the number of popu-

lations.

— The number of compilations that the optimiser is expected to do during the

whole process is
NOC = NCC *«noPrograms
where noPrograms is the number of training programs.
— New Generation production

This function triggers two other functions. First, it calls a function that chooses
the best solutions as parents of a new generation providing that the solutions
are already in descending order. It then calls a second function to generate
offspring. The first function, however, chooses a parent randomly and then
performs crossover and mutation operations to breed a new child and perform

a slight change to the child genes.
— Rebuild a new code generator

This function goes over every design solution in each population, and for each

solution it issues the following command line to invoke the AWK program for
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gawk -v T=TestNo -v G=Gen -v S=SolNo -f GA.awk

This command launches a program called GA . awk and passes the values TestNo,
Gen and SolNo to the AWK variables T, G and S respectively.

¢ Documentation

The optimiser was also designed to report the status of almost every process and

most of the obtained results in text files. The documented information includes:
— Generated genomes in every generation

— The exit status of modifying the machine specification files, building the code

generators, compiling each training program.
— The execution time of each program under each individual solution.

— Average fitness value of each solution in a population.

7.7.2 AWK Program

The AWK language is a data extraction tool for processing files of text. The language
looks to a file as a series of records that are split by newline characters and each record as
a series of fields [164]. The GA.awk program is mainly designed to reconstruct the code
generator of an individual solution, This information is used to determine the working

space. The AWK program performs the following tasks:
* Read machine opcodes from a file and then group them in a list
* Modify the machine description file and report the process status.
* Invoke a makefile for building the compiler code generator

* Report if the compiler building process succeeded or failed.

7.8 Experimental Results

For comparing the efficiency of the optimiser on different machines, we run it on the
PowerPC code generator, which is a sub-set generator for the Cell Broadband Engine, and
on the TA32 architecture with SSE2 instructions. The VP front end compiler, however,
was the same in both architectures and the performance of each design solution was tested

using the same benchmarks on both machines.
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7.8.1 Benchmarks

We tested the optimiser using two sets of benchmarks: one set contains three benchmarks
used in the fitness function to evaluate the algorithms, and the second set consists of two
benchmarks used to test whether the optimised design solution, which the optimiser pro-
duced, yields the same performance improvement on these two programs. The bench-
marks of the fitness function are: n-body, prime sieve and a validation program that was

developed for testing a range of VP array operations.
* N-Body Problem

The n-body problem is a simulation of particles moving under the influence of grav-
ity. The program starts with an initial position, mass and velocity of a group of
particles at a given time. It then uses that data to work out the motions of all par-
ticles and to calculate their positions at later times. The calculation is based on
the laws of motion and gravitation. The program was taken from the Programming

Languages Shootout web-site (http://shootout.alioth.debian.org/).
* Sieve Program

The sieve program finds all prime numbers that are less than or equal to a given in-
teger value “n” using Eratosthenes’ method. The algorithm works by first creating a
list of the integer numbers> 1 and <= n, and then continuously removing compos-
ite numbers until eliminating all composite values and ending up with only prime

numbers.
* Vector Operations

The last application is a special purpose program that was developed to test the
Vector Pascal compilers on various array operations, such as transpose, reduction,
dot product operations, of different data types such as single precision floating-point,

single precision fixed-point and characters.

We selected the benchmarks that use different data types. In the n-body program, most
operations are performed on single precision float-point values while the prime sieve pro-
gram mainly uses single precision fixed-point values. The validation program, however,
was designed to test VP array operations on various data types. This mixture of data types,
which the benchmarks use, provides some sort of uniformity in using the average fitness

value as a means of evaluating the performance of a design solution.

The other applications, which were used to test the optimised design solution, are Man-

delbrot and Spectral-norm. They were also picked up from the Shootout benchmarks. The
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first application is a mathematical set of points which usually requires a large number
of computations, and it is commonly used to evaluate runtime performance. The second

application is a program that calculates an eigenvalue using the power method.

7.8.2 Environment Variables

Here are the main parameters used in these experiments:
* The optimiser was set to run for 6 generations; i.e.,—G®6.
* The size of the working population was set to 90; i.e.,—S90.

* The Vector Pascal training programs were Sieve, n-body and vecTest, and they were

set as follows: -progSieve.pas -prognBody.pas -progVectest.pas

* The number of offspring was not specified, and therefore the optimiser will use % of

the solutions S as new children.

* The optimiser was designed to carry out 2 bits mutation. Since the number of in-
structions in both machines range between 180-250, the mutation probability then

would be around 0.01.

In these experiments, we run the optimiser for only 6 generations for two reasons. First,
the fitness function sometimes took a long time as it had to go through several steps to do
each test. Also, the time to complete the whole process varies from one design solution to
another because the algorithm sometimes either converges on an inappropriate solution or
has difficulty converging at all. The second reason is that it did not seem that we get any
considerable improvement after the 4’ generations as we shall see shortly in the diagrams

shown in the following section.

7.8.3 Results

The following results show the average and the best fitness values of each population
on both machines. The fitness value is proportional to the performance of the training
programs, and itis computed as + where ¢ = 1 if the programs all compiled and 0 otherwise
and 7 is the average run time of the programs. The higher the fitness scores the shorter the
average execution time of the tested applications. The results also include a table to show

the genetic algorithm improvements of several applications on the PowerPC machine.
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Figure 7.5: The performance of a genetic algorithm on optimizing a PowerPC instruction
set ordering.

¢ PowerPC Code Generator

We performed the experiments on the master (PowerPC) processor of the Cell Broad-
band Engine (Cell BE) found in the Playstation 3. The PowerPC machine descrip-
tion includes 184 instructions. The code generators are generated using different
solutions (IS ordering) offered by different generations. Figure 7.5 shows the aver-
age fitness and the best fitness of the solution in several populations. The average
fitness values reflect the performances of the code generators on three different ap-
plications. The higher the fitness scores the shorter the average execution time of
the selected applications. This figure generally reveals that the performances of the
PowerPC code generators improved significantly throughout the first three succes-
sive generations. The results also demonstrate that the solutions offered by the last
generation lead to performance improvement by a factor of 3.4 as compared to the
solutions provided by the first generation. The average fitness value of the solutions
of the first generation was about 22.2 while it reached around 72.6 at the fourth
generation with an improvement factor of about 3.2. However, in the last two gener-
ations, the algorithm became steadier and an insignificant improvement was gained

during these two generations.

Figure 7.5 also plotted the best solution in each generation. The chart depicted that
the best solutions were produced in the first two generations, and that the second

generation provided the best design solution among all generations.

The results presented so far showed that the optimised ordering provided a con-
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Figure 7.6: Register-to-Register Operation

siderable improvement on the training programs, but the question is can that be

generalised to applications that were not in the training programs set?

Tables 7.1 shows the results of our investigation of whether the improvements gained
as a result of using the optimizer best-produced solution on the PowerPC machine
can be generalised to applications other than the training programs. The table shows
the genetic algorithm improvements on applications other than the training set. It
compares the performances of five applications using a default instruction ordering
and the best order (solution) that was generated by the optimiser. The first three
applications in the Table are the training programs, and the last two applications;
Mandelbrot and Spetual-Norm, are arbitrary applications that were used to see if the
best solution can lead to the same improvements gained on the training programs.
The results shown in Table 7.1 reveal that improvement on non_training programs
is considerably close to those on the training programs. Yet, the enhancement on the
Mandelbrot application is not as tight to those achieved on the training programs as

the Spectual-Norm is.

The possible reasons for performance degradation on the Mandelbrot could be asso-
ciated with loop and arrays addressing optimisations. The first reason in this regard
is that loop executions often involve boundary checking and addressing, and these
two operations usually require using offsets. The second point is that PowerPC
machines offer only 16-bit immediate arithmetic and logical instructions which are
normally used in offset-based operations. The alternative on the PowerPC architec-
tures, however, for 16-bit offset operations is to use register-to-register instructions
instead of using register-immediate instructions. Figures7.6and 7.7 show a simple
example for loading a 32-bit word, say a loop or an array lower bound, into the reg-
ister (r5) from an address relative (-24) to register (r4). The assembly code in both
figures does the same task. Yet the code in Figure 7.6 includes double the instruc-
tions shown in Figure 7.7. This simple example shows that the register-to-register
approach require more instructions than the other approach, and consequently it will
most likely be more costly. Thus using inefficient instruction ordering may result
in generating code that gives correct results but inadequate in terms of performance

improvement.
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Figure 7.7: Register-to-Immediate Operation

Performance in (Sec.)
Set Program Default | Optimised Improvement
Order Order

Sieve 26.5 20.6 22%

Training Programs | N-Body 39.2 30.5 22%
Vector Operations | 30.6 23.2 24%

Test Programs Spectral-Norm 83.2 63.2 24%
Mandelbrot 24.7 21.1 15%

Table 7.1: Genetic Algorithm Improvements on the PowerPC. The first set of applications
were training programs and the last two programs were not in the training set.

The third reason in regard to the degradation performance on the Mandelbrot is that in
these experiments the Mandelbrot program was executed only a few times while the other
applications each was executed 1000’s of times. And therefore, the Mandelbrot program
does not involve as many loop iterations as the other applications, and therefore, it did not
benefit from the optimisation of loop executions and array addressing as much as the other

applications.

¢ Pentium Code Generator

The Pentium machine description includes more instructions than the PowerPC. It
consists of 252 instructions. The Pentium’s code generator, unlike the PowerPC’s
code generators, had been under development for some years and had received a
considerable manual enhancement. Thus, the augmentation in the performance due
to the optimiser is not expected to be as good as on the PowerPC. Figure 7.8 shows
that the average fitness of the first three generations was increased slightly. It then
declined on the forth generation, but it was still better than the first generation. After
that, the average fitness started improving but with very small margin. The diagram
also shows that the best solution was not improved during the six generations. This

could be due to the Pentium instruction set being well tuned.

Figure 7.9 depicted a normalised performance gained by optimizing instruction orderings
of both machines. The chart shows that the reordering of the PowerPC’s instruction set
improved the performance of the PowerPC around 3 times while on Pentium the optimizer

reports a slight improvement.
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Figure 7.8: The results gained by optimizing previously manually optimised code genera-
tor for the Pentium using a genetic algorithm. The average fitness values reflect
the performances of the code generators on the three selected applications.
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Figure 7.9: Normalized performance gained by optimizing instruction set ordering of
PowerPC and Pentium 4 architecture using a genetic algorithm.
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7.8.4 Conclusion

* During the experiments, it was noticed that the algorithm sometimes either con-
verges on an inappropriate solution or has difficulty converging at all. This situation
normally occurs during the first few generations, but the number of cases, which do
not converge, decreases as the algorithm during building new generations excludes
the weakest solutions. This can be clearly seen in Figure 7.5 which showed the

optimizer functioned well on the PowerPC machines because it was not well tuned.

* One conclusion is that the proposed approach showed that GA can assist compiler
designers in tuning and enhancing code generators, and the results also show that

scheduling instruction sets can improve the performance of compilers.

* The current implementation of the optimiser may not terminate if the execution of
a training program does not terminate, and therefore, it will be a good idea to add
a time boundary to terminate processes that take more time than expected, such as

compiling or running a training program.

* The current version of the optimiser design allows users to run the optimiser several
times (trials) on the same machine. The optimiser also documents most of the steps
that it performs, such as generated genomes, corresponding solutions and the results

of the fitness function, in separate files for each trial.

* Finding an optimised solution in large search space is usually expected to take con-
siderable time to finish, especially if it runs for many generations, or if it uses many
training programs to evaluate the fitness of each solution. This problem can be han-
dled by this optimiser, for example, if the optimisation process is interrupted for any
reason, users can easily resume the process from any point (population) given that
the preceding population is already assessed. This feature basically copies all re-
quired information from the last population to the following population. After that,
the optimiser can resume the selection, reproduction and the evaluation processes

on the last generation and continue with the consecutive generations.
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In this chapter, we start with outlining the configurations of the machine used in these
experiments, describing in brief the tests that were conducted to validate the developed
VSM and the extended compiler and then depicting the main measures that were taken to

improve the performance of these two parallelising tools.

After that, we present the experimental results obtained using our developed parallelising
tools, the VSM model and the VP-Cell compiler, and discuss the achieved performance
and scalability. We run two sets of experiments, micro-benchmarks and real world applica-
tions, to examine if our VP-Cell compiler improves the execution time of the automatically
parallelised programs as compared to the execution time of the sequential ones. We also
run a number of C micro-benchmarks to examine if the VSM model can be used as an

independent tool to parallelise C code and if it provides any performance improvement.

8.1 Machine Configuration

We used a Sony PlayStation 3 (PS3) console for the experiments. The details of its con-

figuration are summarised in Table 8.1.

’ Console Mode \ Play Station 3 ‘
’ Number of Core \ 9 cores ‘
Number | 1
Master Core (PPE) Memory | 256 MB

Speed 3.2 GHz

Cache 256 KB L2, 64 KB L1
Number | 6 available
Accelerators (SPEs) | Memory | 256 KB

Speed 3.2GHz

Operating System Linux Fedora 7

IBM Cell SDK 3.1.0

| GNU Chain Tool 4.1.1

Table 8.1: Machine Configuration
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The VSM interpreters are compiled using GNU ppu-g++ and spu-g++. The SPE code
is based on the second version of the main SPE management library; 1ibspe2, which

basically provides a flexible threading model and collaborates with the pthread library.

8.2 Testing Developed Tools

During the course of this project, there were numerous tests run on the original PowerPC

compiler, the VSM mode and the extended compiler. These tests include:

» Testing the PowerPC Compiler (Sequential Version)

— Writing sometimes simple C code to check the structure of the generated as-
sembly code. This was needed with the lack of documentations on the GAS

assembler.

— Writing small C programs to see how parameters are passed. This is critical
issue in functions calling conventions to permit separately compiled routines

in the same or different languages to interact with each other.

— Writing Vector Pascal programs to look at and trace ILCG intermediate code
and assembly outputs. This is sometimes needed to see how intermediate gen-
erated code looks specially when a compiler does not converge or there is a

segmentation fault.

— Using the gdb debugger to analyse or trace generated code when problems

were encountered.
— Testing the PowerPC back-end compiler using three different test suits:

* Standard routines that include more than 1300 lines of code written in

Pascal. The compiler should pass this test before it goes to the next tests.

* Pascal Validation Suite version 5.7 which includes more than 190 pro-

grams which was introduced by the British Standards Institution in 1982.

* Vector Pascal Acceptance test that contains more than 50 additional test-

ing programs.

— Changing the machine description if a given program failed to compile for the
PowerPC but compiled successfully by previously developed VP compilers for

other architectures.
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— Testing the Instruction Ordering Optimiser of the PowerPC and Pentium archi-

tectures. A paper on the optimiser is due to be submitted in Feb. 2012.

Based on the last version of the compiler, out of 190 tests in the Pascal Validation
Suite, 83% passed the validation tests, 11% passed but outputted a FAIL, 2% passed
but go in infinite loop when executed and 4% failed to compile. The compiler was

also tested using 50 VP Acceptance tests, and only 8% of these tests were failed.

* Testing the VSM Model

— In order to identify the VSM performance problems and obstacles, we run
many tests which time the activities of each instruction individually to be able

to break down time spent in each activity.
— Writing a simple C simulator to test the latency of different functions.
— Conducting many experiments to determine the appropriate VSM register size,

— Testing the two techniques for sending messages through mailboxes. We gain
a considerable improvement by using MMIO register instead of IBM SDK
library functions.

* Testing the Extended Compiler

— Testing the order of the extended machine instruction set.

— Using the DDT graphical debugging tool to debug application on the Cell Pro-
cessor. DDT was developed by Allinea for multithreaded and parallel appli-
cations. It was a trial version, which was extended for free, yet it was very
helpful.

8.3 Performance Tuning
It was necessary to consider optimising the two main components of our compiler system
to improve the performance of the individual modules. This work involved:

* Tuning the PowerPC Compiler

The large bottleneck in the development of VP back end compilers is the instruc-
tion ordering. The order of machine instructions can affect the performance of the

generated code, and as expected compilers have to go through this process many
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times specially during the early stages of their development. Thus, scheduling ma-
chine instructions manually is uninteresting work and represents the bottleneck to
improve the performance of our developed compiler because the search space was
enormous. At the beginning of compiler development, the reordering of the Pow-
erPC instructions was done manually, but in the later stages we depended on the
Instruction Ordering optimiser which we developed as part of the project. The op-
timiser offers around 20% improvement, as we shall see in Chapter 7, on the tested

applications as compared to our hand-tuned machine instructions.
* Tuning the VSM Model

— Optimising SPE Code: Was able to reduce the SPE program size by using the

same code to load and store data of any data type.

— Virtual Register Size: Tested various register sizes, 1024, 2048, 4096, 8192
and 61384, to find the optimal virtual register size.

— Messaging Procedure: Managed to reduce the latency time to send two 32-bit

messages by a factor of around 13x.

— Optimising Store operation: The order of DMA transfers involved in Store

operation was set in a way that allows overlap between data transfers.

— VSM Vectorization: Using SPE intrinsic function provides substantial im-

provement on computational operations.

8.4 Experimental Results

The results, which are presented in this section includes, were obtained using

1. A set of micro-benchmarks includes Basic Linear Algebra Subprograms (BLAS).
The micro-benchmarks were implemented in Vector Pascal to evaluate the VP-Cell

compiler system’s performance and scalability.

2. The same set of micro-benchmarks but were coded in C. This experiments demon-

strate and examine the possibility of using VSM as an API by other languages.

3. Two real world applications.

a) The first application looks at the computational efficiency of the Cell processor
on the N-body problem. This problem is a scientific simulation that involves
computing the motion of a number of planets (bodies) under physical forces

such as gravity.
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Line 1: PROGRAM GeneticTest;

Line 2: type vec=arrayl[1l..4096] of real;
Line 3: var i:integer; s:real; x,y,z:vecC;
Line 4: begin

Line 5: x:=1.23; y:=2.34; 2:=0.0;

Line 6: Z:=Xty;

Line 7: end.

Figure 8.1: Simple Program in VP to Test a BLAS Kernel

b) In the next example, we shall look at an image filtering application. Convo-
lution filters are important tools to process images for certain features such as

smooth or sharpen an image.

In these experiments, we assume that the arrays in the source programs are not subject
to any memory alignment restrictions and their lengths are integer multiple of the VSM
register size. All the benchmarks run on single-precision floating point arrays using VSM

registers of size 4096 x P bytes where P is the number of SPEs unless otherwise stated.

8.4.1 VP Micro-Benchmarks

The following experiments were the first Vector Pascal benchmarks to be compiled by the
VP-Cell compiler system. The selected micro-benchmarks include classical vector opera-
tions such as reduction operation and dot products of two vectors and typical examples of

BLAS-2 such as a matrix-vector product and rank-1 update operations.

Figure 8.1 shows the VP program that was used to evaluate the BLAS1 and BLLAS2 ker-
nels. It is a very simple program that includes variables declarations and initializations
and an array expression which adds vectors x and y and saves result in vector z. It is very
important to note here that the same code was used for generating sequential code and

parallel code without any changes, annotations or directives.

8.4.1.1 Selected Kernels

Table 8.2 lists the examined BLAS kernels and operations involved in each kernel. All
the variables in this table are single-precision float point variables in which s scalar,
x,y and 7z are vectors of size n and A is a square matrix of size nxn. The last column

in the table indicates whether the kernel involves a blocking operation or not. This table

183



8 Evaluating VP-Cell Compiler

Description Expression Operations Involved Kernel
load | store | Mul. | Add | Sqrt | Mode
Replicate a scalar X :=s VoV X X X NB
Square root of a vector | x :=sqrt(y) vV vV X X vV NB
Vector reduction (+) s :=redp(x) N X Vv X B
Elem-to-Elem product | x :=y*z v V v X X NB
Dot product of 2 vectors | s :=y.z N v vV X B
Matrix-Vector Product | y :=Ax*x vV Vv vV Vv X B
rank-1 update A=A+xxy" | V| vV | Vv |V | x B

Q.

*Scalar Operation , B: Blocking Mode, NB: Non blocking Mode

Table 8.2: Basic Linear Algebra Kernels

shall help to explain and discuss the performance results attained by the VP-Cell compiler,
but before discussing these results we would like to explain how the compiler offloads or

evaluates an array expression or a kernel on the SPEs.

8.4.1.2 Parallelising Array Expressions

During the compilation process, our compiler splits every expression in the source code
that comprises arrays of sizes equal or bigger than the VSM registers into a sequence of
VSM instructions (or operations). Every VSM instruction is then transformed into three
assembly instructions. The first two generated assembly instructions pass the required
information to the PPE while the third instruction calls the proper PPE routine. Upon
executing the code, if one SPE is used, the called PPE function then sends all the data
to that SPE; otherwise it chops the data into blocks by calculating the starting address
of each block, and then sends a message to each SPE. The message(s) must determine
the required operation, the virtual register(s) to be used and the starting address in case of
memory access. For example, to evaluate the expression; x :=y + z, on the SPEs, the PPE
splits the expression into four operations: load vector y, load vector z, add vectors y and z,
and finally store the sum in x. The code segment given in Figure 8.2 shows an example of

VP-Cell compiler-generated machine code that corresponds to array expression x : =y + z.

8.4.1.3 Results

In the micro-benchmarks, we used floating point arrays of size 4096 and virtual SIMD

registers of size 4KB and run each micro-benchmark 10°times just to get fair measures.

Figure 8.3 shows the performance of the PPE versus one SPE on the BLAS-1 and BLAS-2

micro benchmarks, which are shown in Table 8.2. The achieved speedups on the different
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// Machine registers r22,r23 and r24 hold the starting
// addresses of vectors x, y and z respectively.
// load vector y into virtual register 0

12 3, 0
la 4,0(r23)
bl LoadVec

// load vector z into virtual register 1

lr 3, 1
la 4,0(r24)
bl LoadVec

// Add virtual registers 0&1 and keep result in O

13, 0
13 4, 1
bl AddVec

// Store the returned value into x (address r22)

le 3, 0
la 4,0(r22)
bl Storelec

Figure 8.2: Generated Code for Expression x :=y + z

kernels using one SPE compared to the PPE range from 4 times to 9.3 times. It is worth,
however, mentioning here that the current version of the VP compiler for the PPE does not

generate vector instructions.

Figure 8.3 reveals that significant speedups was achieved using a single SPE; the SPE
was more than 9 times faster than the PPE on the Replicate kernel and 8 times faster on
Element-to-element multiplication kernel. The SPE attained its highest speedups on these
two kernels because they do not involve, as shown in the last column in Table 8.2, a call
to a blocking operation. However, the highest speed on the Replicate kernel is mainly due
to the size of data to be transferred in each kernel. On the Replicate kernel, the SPE was
required to copy only a scalar from the main memory while on the Element-to-element

multiplication kernel, the SPE was required to copy two vectors.

This figure also shows that the SPE performed adequately well on the Square Root, Re-
duction and Rank-1 Update kernels with an average speedup of around 6x, yet it was not
as good as its performance on the first two kernels. The cause of this performance degra-
dation differed from one kernel to another. If we start with the Square Root operation,
the SPE speed was slow because this operation is considered as a complex SPE operation

[165] which takes more time in the computation than arithmetic operations. The SPE was
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Figure 8.3: (a) Performance PPE vs. SPE

also slow on the Reduction and Rank-1 Update kernels but the reason is not associated
with operational complexity as in the Square Root operation. The Reduction and Rank-1
Update kernels involve a blocking operation; namely the reduction operation. The reduc-
tion operation is relatively costly compared to the other operations because the PPE has to
wait until all the SPE complete the operation and then collect and sum the results which
were returned by the SPEs. It is also very important to report that despite the Rank-1
Update kernel involves more operations than the reduction kernel, the SPE speedup on
both kernel was very close. This is due to the fact that the PPE performed poorly on the
Rank-1 Update kernel, and this shows that the SPE performance was relatively fast. The
SPE performance was, however, the poorest on the Dot product and Matrix-vector kernels
because both involve a reduction operation and require more data movements than needed

in the other kernels.

To explore how the VP-Cell compiler parallelises array expressions automatically on mul-
tiple SPEs, we run the same kernels in parallel on 2 and 4 SPEs. We only used 2 and 4 due
to a divisibility constraint on the length of the virtual register. In these experiments the
virtual register size was 4KB, and therefore this size is not integerly divisible by either 3

or 6. Also we could not use 8 SPEs because there are only 6 SPEs accessible on the PS3.

Figure 8.4 (a) shows a significant improvement in the performance can be achieved by
using multiple SPEs. This figure plots the speedups obtained from using 1, 2 and 4 SPEs
compared with the PPE performance on each kernel. The figure shows that the perfor-
mance when 2 SPE were used was about 16 times faster than the PPE on the Replicate
kernel and about 29 times with 4 SPEs, and almost the same speedup was achieved also
on the element-to-element multiplication. Though the speedup on the other kernels ranges
between 12x to 21x, the average speedups achieved on 2 SPEs was about 11.5x and around
20x one 4SPEs.

8.4 (b) presents the same results shown in Figure (a) but from different perspective. This
figure shows the scalability attained by using multiple SPEs. As we can see, the SPEs
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Figure 8.4: Performance and Scalability of SPEs
achieved near-linear scalability on all the kernels with an overall speedup of factor P%-84
where P is the number of processors. The maximum speed up gained on the Replicate
kernel was by a factor of P%-%* and the minimum was about P*7> on the dot product of two

vectors.

8.4.1.4 Conclusion

The results on the VP micro benchmarks shown in Figure 8.3 and in Figure 8.4 are note-
worthy; considering that the SPE has a small memory and requires data to be transferred
using DMAs. Moreover, the array expression in these micro-benchmarks involve a lim-
ited number of arithmetic floating point operations, and each expression has to store the
result back to the PPE. Thus the store operation represents between 20% to 33% of the
operations involved in each kernel such as the “sqrt” operation. This operation requires
Load, a computational operation; namely square root, and store. Thus, the store operation
accounts for % of the involved operations and therefore dominates the whole process as it
is relatively more costly than load and computation. However, we expect the compiler to
attain better performance on array expressions in which the percentage of involved block-
ing operations as compared to the total operation is small. That is, we expect an expression

has several operands and one store.

8.4.2 C Micro-benchmarks

The following C micro-benchmarks and the VP version given in the previous subsection
are exactly the same. The C version includes classical vector operations such as reduc-
tion operation and dot products of two vectors and typical examples of BLAS-2 such as a

matrix-vector product operation. I run these selected C kernels on the PPE as well as the
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// Seqgential Matrix-Vector Product function
void segMatrixVecProduct() {
for (int r=0;r<size;r++)
for (int c=0;c<size;c++)
v3[r]+=M[r] [c]*vi[c];
}
// Parallelisse Matrix-Vector Product on SPE using the VSM
// routine ‘‘dotpf’” to parallelise the operation.
void parMatrixVecProduct() {
for (int r=0;r<size;r++)

v3[r]=dotpf (M[r],vl,size);

Figure 8.5: C code to compute the dot product of two vectors in Segential on the PPE and
in parallel using the Cell’s SPEs.

SPEs using VSM as an API to investigate if the C parallelised code results in any perfor-
mance improvement and then evaluate the performance scalability of the SPEs. All the
kernels run using single-precision float point variables in which § scalar, v1,v2 and v3
are vectors of size 4096, M is a square matrix of size 1024 x 4096, the SPE virtual registers

size was 4KB, and most of micro-benchmarks run 10°times just to get fair measures.

8.4.2.1 Parallelising Array Operations

Figure 8.5 illustrates how a C BLAS kernel can be parallelised using the current VSM
implementation. This figure shows the implementations of the C functions which were
used to evaluate in sequential and parallel a BLAS?2 kernel, in particular the product of
a matrix and a vector. The first function in Figure 8.5 is a simple sequential C function
which uses two nested for loops to iterate over the rows and columns in order to compute
the dot product of each row in matrix M and vector v1 and store the results in vector v3.
The second function, called parMatrixVecProduct (), uses the VSM model as an API to
parallelise and evaluate operations on the SPEs. It iterates over the rows of matrix M,
and in each iteration it invokes a PPE routine, called “dotpf”. The PPE routine in turn
dispatches the received request to the SPEs to computed the dot product of two vectors and
returns a scalar. It is very important to note that the code does not include any annotations
or directives, and in order to use the VSM model programmers are only required to call

the appropriate PPE function.
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We compiled these two functions using the same GNU compilers which were used to
compile and build the VSM object files. The sequential C code was fully optimised using
the -O3 mode and run on the Cell’s master (PPE) processor. To parallelise the second
function, the VSM object file should be linked to the C code using a single command line

as sh

ppu32-g++ foo.cpp ppe.o spe.o -lspe2 -1lm -ofoo.exe

8.4.2.2 Results

Figure 8.6 plots the performance achieved from running the C kernels on the PPE and
the SPEs. Th C kernels corresponds to the VP micro benchmarks shown in Table 8.2.
The performance of one SPE on most of the kernels, as shown in Figure 8.6, was poorer
than the PPE but not on the Replicate and Mat-Vec product kernels. The one SPE was
faster on these two kernels than the PPE by a factor of 1.5x. The improvement on the
Replicate kernel was due to two reasons: first this kernel does not require a great deal of
data movement because it only involves sending a scalar instead of moving an entire vector
to an SPE local memory. Secondly, the SPE carries out the Replication operation using
SIMD instructions via the SPE intrinsic functions which offer a considerable speedup.
The improvement on the Mat-Vec product kernel, however, is due to first the slightly slow
performance of the PPE on this kernel relative to other kernels. Secondly, the SPE is only
required to return a scalar which needs only one 128byte DMA transfer instead of as least
three DMA transfers which are needed to store back an entire vector as was explained in
Section 5.6.4.1.

Consider now using 2SPEs, when the C code was parallelised via the VSM model on 2
SPEs, the performance of the SPEs on all the kernels was in general better than the PPE
performance. The speedup obtained using 2SPEs on the dot product kernel was around
only 0.05% higher than the PPE, but it was much better on the other kernels. For example,
on the Replicate operation the 2SPEs’ speedup was about 2.4x while on the Mat-Vec
Product kernel reached 2.7x. The average speedup on the other kernels was approximately
1.3x.

Moving to 4SPEs, as one can see the SPEs performance achieved using C code is much
better than the PPE. The 4SPEs achieved a speedup of more than 3.3x and 3.9x on the
Replicate and Mat-Vec product kernels respectively. On other kernels, the average speedup

was increased from 1.3x when 2SPEs were used to 1.8x with 4SPEs.
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Figure 8.6: Performance of C code on the PPE and the SPEs by Using VSM as an API

Figure 8.7 plots the scalability achieved by running the selected C BLAS kernels as the
number of SPEs increases. The SPEs, as shown in this figure, achieved near-linear per-
formance on all the kernels. Notice that the two kernels on which the one SPE performed
poorly were linearly scaled when 2SPEs were used. The interpretation of the linear im-
provement on the Reduction kernel is that this kernel returns only a scalar value instead of
an entire vector, and thus the computation dominates the whole process rather than mem-
ory access and communication overheads. And once the computation was carried out on
2SPEs in parallel, the computation time was reduced; that is, an optimal tradeoff between

communication and computation was achieved.

Figure 8.7 also shows that a full linear speedup gained on the Reduction kernel using
2SPEs. The speedup factor was almost 2 times faster than the one SPE, and it was the
maximum speedup achieved among the other kernels. Yet, the performance on the same
kernel was not linearly scaled as we moved from 2SPE to 4SPEs, and this was due to the
increase of the communication overheads associated with sending messages and gathering
results from 4 sources instead of 2SPEs. The speedup factor attained running the Re-
duction kernel on 4SPE instead of 2SPEs was about only 1.4 times. The same reasoning
accounts for the improvement gained using the dot product kernel basically because it also

does not need to restore a whole vector.

However, an overall speedup factor of more than 1.7x obtained when moving from one

SPE to 2SPEs and by a factor of approximately 1.4x as we moved from 2SPEs to 4SPEs.

8.4.2.3 Conclusion

The current implementation of the two vectors dot product kernel can be improved further.
The implementation as shown in Figure 8.5 is a naive implementation because in every
iteration it will load vector v1i. This implementation could be optimized by introducing

a new separate PPE routine which takes a matrix and a vector. The new routine can then
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Figure 8.7: SPE Scalability On BLAS Kernels Using C Code.

handle this deficiency internally by loading the vector only once on the SPEs by placing

the load vector operation outside the loop.

In this experimental code, the C kernels was parallelised by simply calling PPE routines,
as shown in Figure 8.5 and in Figure 8.2 to examine the performance of the parallelised
code. Figure 8.7 shows marked improvements can be achieved by parallelising C code on
multiple SPEs using the VSM model considering that VSM was not implemented to be
used as an API. Note also that the C code was parallelised without adding any annotations

or directives or handling thread creation, data partitioning and synchronization.

The experimental results in this section and the previous subsection also demonstrated
that a full implicit parallelising tool, such as the VSM model, can be used as intermediate
layer for developing parallelising compilers or can be used as API for parallelising array
operations that are written in any programming language that can be compiled separately
and linked to C code.

8.4.3 N-body Benchmark

The N-body problem is a scientific simulation that involves computing the motion of a
number of planets (bodies) under physical forces such as gravity. The gravitational force
between each pair of bodies is defined by their position, velocity and mass. N-body simu-
lations usually require massive computing power, and hence a number of experiments have
used this problem for evaluating machine performance. The N-body problem has been also
used recently for comparing the performance of modern parallel technology such as the
new SIMD extension supported by the Sandy Bridge processor [143] and other parallel
architectures such as GPUs [166]. This problem was also selected by the Scottish Infor-
matics and Computer Science Alliance (SICSA) research body as a challenging problem
in Phase II of the SICSA Multicore Challenge [167]. Figure 8.8 presents the main steps of
this problem.
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For N bodies
Each time step
For each body B in N

Compute force on it from each other body
From these derive partial acceleration
Sum the partial accelerations

Compute new velocity of B

For each body B in N

Compute new position
Figure 8.8: N-body Problem Pseudocode

8.4.3.1 N-Body Algorithms

The N-body simulation is required to compute the force between each pair of bodies.
In reality, the number N of bodies or particles is often very large, and thus a number
of algorithms and methods have been developed to optimise the simulation. The two
common algorithms for computing the total force on each body are the All-Pairs method
and Barnes-Hut Treecode [166]. The total number of interactions needed to be computed
using an ordinary approach, such as All-Pairs algorithm, is N> while Barnes-Hutt method
is an O(NlogN) algorithm [166].

This benchmark drawn from the Great Computer Language Shootout which was originally
contributed by Christoph Bauer [168]. In the Vector Pascal version I made explicit use of
operations on whole arrays, but to express the problem in parallel style using arrays, the
full N*forces have to be computed. The VP parallel algorithm is similar to the All-Pair
method approach because it also goes over each body in N, say B, and computes the
forces of all other bodies N — 1 on the body B. This additional computation associated
with the parallel solution ensures that the calculations are independent and can be safely
carried out on multiple processors in parallel. The main part core of the algorithm is a
procedure, called advance, whose main loop uses a position matrix to compute a matrix
of acceleration components for each body in N. These components are summed along the
rows to yield a final velocity increment. The algorithm 8.1 was used to test the VP-Cell

compiler on the Cell processor.

8.4.3.2 PPE vs. SPE Performance

In order to use the VSM model, which uses large vector registers, we had to scale the
original code from 5 bodies to 1024, 4096, 8192 and 16384 bodies and create C and

Vector Pascal versions to compare between the two implementations. In the Vector Pascal
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Algorithm 8.1 N-Body Parallel Solution Procedure

The types used are:

vect =array [1..n ] of realt ;

pvect =" vect ;
matr =array [1..3,1..N ] of realt ;
pmatr =" matr ;

The variables used are:

Let x € pmatr;x,y,z coordinates of system

Let v € pmatr;x,y,z components of velocity

Let a e pmatr;x,y, z compontents of acceleration

Let di S pmatr;x,y,z components of distance from body i
Let Sqdl € pvect;vector of sum of square distances from i

Let d c pveCt;vector of distances from i

The Key procedure:

procedure advance ( dt : real );

Let /, j € integer;
Let t € real;
row: array [1..3] of real ;

begin

for i<~ 1 to N do row< x1[, i];

/I Compute the displacement vector between each planet and planet i.
dit— xt-row T ;

/I Next compute the euclidean distances

sqdit+ dit[1] x dif[1] + dit[2] x dit[2] + dit[3] x diT[3];

// Prevent divide by zero for the square distance from self

sqdif[i]« 1;

dt< +/sqdi? ;

//Now compute the acceleration vectors
at+ mt x dit [ (sqdit x d1) ;
for j« 1to 3 do

vl = vIli il + dt x ¥ atl]] ;
// Finally update positions.
x4 xT + v x dt ;

end ;
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version, we made explicit use of operations on whole arrays as shown in the previous
algorithm, and we run the same VP code on the Cell processor in sequential and parallel.
In the following discussion, we shall use the Kilo unit, such as 1K, 2K , 8K and 16K, to
refer to the N-body problem size. Note that if the data size to be processed on an SPE
is bigger than the SPE virtual register, then the compiler will automatically unroll the

operation and use multiple DMA transfers.

Figure 8.9 shows the speedups obtained using the PPE and a single SPE on different sizes
of the problem. Comparing the performance of the two core types, we can see that the
speedup factor gained from using one SPE compared to the PPE was around 3.6x when
the problem sizes were 1K, 4K and 8K bodies and 4.5x with 16K bodies. To analyses these
results let us start with the 1K problem. This problem simply needs 4KB and since we are
using only one SPE, the SPE managed to use the optimal register size, which is 4KB, and
this is why we see the 1SPE performed better on 1K than on 4K and 8K. However, on the
4K and 8K problems, the SPE needed multiple DMA transfers to process the whole data
which consequently introduces additional overheads. This explain the slight drop in the
speedups we see in Figure 8.9 on the 4K and 8K problems. Moving to the 16K problem,
though the 16K bodies requires double the DMA transfers used to process the preceding
size, there was an increase in the speedup factor relative to the three smaller sizes. This
was, in fact, due to the poor performance of the PPE as shown in Table 8.3, and caching

could be the main factor which accounts for the PPE shortfall.

= PPE m1SPE

4.5

INEONT

35

w

25

I

4 I
ok in

Sppedup One SPE vs PPE
~

1024 4096 8192 16384
N-body Problem Size

Figure 8.9: Performance of One SPE vs. the PPE (N-body Problem)

8.4.3.3 SPE Scalability

Before we discuss the results from using multiple SPEs, it is worth to mention here that the
maximum VSM register size that can be used for the N-body problem of size 1024 bodies
is 4KB, and therefore when multiple cores are used the data is partitioned equally on the
SPEs registers. On the other sizes of the problem, however, the SPE virtual registers size
is 4KB. Recall that if the data is bigger than an SPE virtual register, then multiple DMA
transfers will be used. We shall see how the number of DMA transfers and the register

sizes may affect the performance of the SPEs.
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Table 8.10 presents the speedups of the SPEs compared to the PPE on the four selected
sizes of the N-body problem. The table shows that the SPEs performance on the 8K
problem was irregular yet on the other sizes of the problem the performance proceeds
improving in two dimensions: vertically as the number of SPEs increases and horizontally

as the size of problem gets bigger.

N-body SpeedUps
Problem
Size | 1 SPE/PPE 2SPEs/PPE 4SPEs/PPE
1024 3.6 5.9 7.9
4096 3.5 6.2 10.3
8192 3.6 6.1 9.9
16384 4.5 7.6 12.4

Figure 8.10: Speedups of Vector Pascal on the Cell’s processors (N-body Problem)

To depict and have a good picture on how the SPEs performance is scaling we present the
same measurements given in Table 8.10 graphically in Figure 8.11 (a) and (b). Figure 8.11
(a) presents the performance of the SPEs compared to the PPE on each size of the N-body
problem. We start with the 1K problem which requires arrays of 4KB. Due to the size of
the data in this problem, the maximum VSM register size that one can use is 4KB, and
therefore the data size to be processed on multiple SPEs gets smaller as more and more
SPEs are used. For example, with 4SPEs and 1K bodies, each SPE ends up processing
only 256 bodies or 1KB of data, and thus we should not expect the same performance
improvement as the SPEs are increased. Actually, this can be simply perceived in Table
8.10by comparing the improvement gained on the 1K problem as we move from 1SPE to
2SPEs and then to 4SPE. The performance on the 1K problem was improved by a factor
of 1.6x as we moved from 1SPE to 2 SPEs but by only 1.3x as we moved from 2SPEs
to 4 SPEs. This means that the computation of small data blocks does not pay off the
communication and DMA overheads, and that is why multiple SPEs, as we explained in
the previous subsection, did not perform on 1K bodies as good as on the other three sizes

of the problem due to the data size.

Now consider the 4K and 8K problems which were solved using arrays of size 16KB and
32KB respectively. Figures 8.11 (a) show that the performance on both 4K and 8K sets
is generally very close. The SPEs performance on the 4K is yet very slightly better than
that of 8K because only half the DMA transfers used compared with 8K and consequently
half the DMA overheads. This can be seen very clearly by comparing the performances
of the 2SPEs and 4SPEs under the 4K and 8K problems; see the results in the second and
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the third rows in Table 8.10. These results indicate that the performance degradation rate,
which was affected by doubling the number of DMA transfers each time, was less than
2% when 2SPEs were used and about only 4% with 4SPEs.
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Figure 8.11: The SPEs Performance

However, The 4K problem compared with 8K and 16K should introduce the best environ-
ment for scaling the performance on multiple SPEs for two reasons. First the size of the
problem is large enough to allow up to 4 SPEs to use the optimal register size, which is
4KB, and the second reason is that the 4K problem requires less DMA transfers than of the
8K and 16K. Yet, Figure 8.11 (a) shows that the SPEs fastest performance was achieved
on the 16K problem rather than the 4K problem even though the SPEs used 4 times as
many DMA transfers as with the 4K problem. The performance improvement reported on
the 16K problem was mainly due to the poor performance of the PPE on 16K compared

to its performance on the smaller ones.

Figure 8.11 (b) shows how the SPEs behave as the size of the problem increases. It shows
the speedups gained from using 1SPE as compare to the PPE performance and also the
performance of 2SPEs and 4 SPEs relative to 1SPE. Figure 8.11 (b) shows that on the first
three sizes of the problem the performance obtained from using 1SPE compared to the
PPE decreases as the size of the problem gets bigger, and this is normal due to the increase
in the number of DMA transfers, but on the 16K problem the SPE behaved differently.
The speedup obtained from using 1SPE compared to the PPE on the 16K problem rapidly
jumped from 3.6x to 4.5x where it should have been declined because it requires double
the DMA transfers that of 8K. This shows clearly the effect of the PPE’s poor performance
as explained in the previous subsection. The chart in figure (b) also shows that the 2SPEs
and 4SPEs performed as they ware expected. Their performance started dropping as the
size of the problem gets bigger. The drop of speedup reflects the cost of the additional

DMA transfers as we move from one size to the next. However, 8.11 (b) reveals that the
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Figure 8.12: SPE Scalability

2SPEs and 4SPEs achieved the best performance on the 4K problem as they were using

the optimal register size.

Figures 8.12 shows that the scalability attained from using multiple SPEs is grown in a
near-linear fashion. This figure reveals that the climax speedup obtained using 4 SPEs on
the 4K N-body problem was by a factor of around 2.95x, and an overall speedup of factor
P90 obtained on the 4K problem where P is the number of processors. On the contrary,
the minimum speedup was achieved on the 1K problem, and this was due to the small size

of the data blocks. The average speedup factor on the 1K problem was about P%63,

8.4.3.4 Conclusion

Thus these results indeed demonstrates why 4K register on each SPE would be the best
size to achieve better performance. This assumption, however, is based on the current
VSM implementation, but the optimal size could be reduced if the VSM model can be
optimised further. We can also conclude here that the sizes of VSM register and the SPE
virtual register have more impact on the performance improvement compared with the

increase in the number of DMA transfers.

8.4.3.5 VP vs. C Performance

The following comparison is presented just to show the competence of two different high-
level programming languages in exploring parallelism automatically in sequential source
code and exploiting the performance potential of the Cell processor. We compare the
performance of the Cell on the N-body problem using Vector Pascal and C code. The code

in both languages was written in a sequential style. The C code was compiled using the
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same GNU compilers which were used to compile and build the VSM model. Since we
only use sequential code, the C code runs only on the PPE under the optimisation modes;
-O0 and -O3. While the same VP code runs on the Cell master processor and the SPEs.
To parallelise the VP code, users are only required to set the target processor, such as PPC

or SPE, as a command line variable.

Just to note here that the VP code, which is based on the All-Pairs algorithm to solve the
N-body problem[166], requires is N2 operations while the C code is based on the Barnes-
Hutt method which uses only O(NlogN) algorithm [166]. The two programs were run
for 20 iterations. The results shown in Table 8.3 represent the performance per iteration
in seconds using the two languages and on four different sizes of the problem. We used
exactly the same VP results that we have just discussed in the previous subsection. Recall
also that on the 1K problem (4KB of data) the SPE virtual registers size is only 1KB, but
on the sizes other than the 1K, each SPE uses the optimal register size, which is 4KB.

Table 8.3 shows that VP performed almost the same as the unoptimised C code (-O0) on
1SPE. Comparing VP with unoptimised C, the VP performance was actually running 20%
slower on 1K bodies, but as the size of the problem gets bigger the VP performance started
improving and getting very close to C. On the 16K problem, however, VP performed better
by using 1SPE than the unoptimised C. Yet, if we compare the performance of VP on 1SPE
and C with full optimisation (-O3), VP could not compete with optimised C code. Though
VP slowness continues through all the sizes, the SPE deficiency factor factor dropped more
than 40% by going down from 2.3x to only 1.3% as we move from 1K to 16K. However,
VP, on 2SPEs, performed slightly better than the unoptimised C code on most sizes of the

problem and performed almost the same compared to the C optimised version.

Now let us consider the performance of VP and C on 4SPEs. Table 8.3 shows that the VP-
Cell compiler performed much better than the C compiler when 4 SPEs were used to solve
N-body problem of size 4K or bigger. Figure 8.13 provides graphical representation on the
performance of VP versus C using 4 SPEs. VP was slightly slower than fully optimized C,
and this is, as we mentioned previously, due to that each SPE works on a small data block.
On the other sizes of the problem, VP performance much better than C, and the speedup
factor obtained by running VP on 4SPEs ranges between 1.6 and 2 times faster than the C
code.

8.4.4 Images Filtering

The convolution is an image filtering operation that can be applied to smooth or sharpen

an image based on the neighboring pixels. The neighbor pixels are given some values as
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N-body Performance (sec per Iteration)
Problem
Size Vector Pascal C
PPE 1SPE | 2SPEs | 4 SPEs 03 00

1024 0.381| 0.105| 0.065| 0.048| 0.045| 0.085
4096 4.852 1387 | 0.782| 0.471| 0.771| 1.328
8192 | 20.355| 5.715| 3.334| 2.056| 3.232| 5591

16384 | 100.250 | 22.278 | 13.248 | 8.086 | 16.524 25.86

Table 8.3: Performance of Vector Pascal vs. C.
Performance of Vector Pascal vs. C (N-body problem). The code in both languages is

written in a sequential style. The VP code uses N2 operation to solve the problem while C
used only O(NlogN) operation.

2.5
m\VP mC
2
(8)
Py
S 15
o
=]
° 1
(]
Q
(%]
0 |
1024 4096 8192 16384
Problem Size

Figure 8.13: Vector Pascal and C Performance
Vector Pascal and C Performance on the Cell processor using 1KB SPE virtual registers
to solve the 1K problem and 4KB SPE virtual registers for 4K,8K and 16K.
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weight to each pixel, and these values are usually presented as a matrix called convolution
kernel. This experiment demonstrates the implementation of a parallel convolution algo-
rithm on a matrix of real numbers. The format of the program that follows is generated by
the built in literate programming tool of the compiler which outputs listings in formatted
IATRX.

The following procedure, fblurtime, is the main body of the program. It simply speci-
fies the size and type of data that will be operated on and then times the Vector Pascal

convolution procedure; blurp. The arrow (1) here refers to pointers.

program fblurtime ;

const

size =1024;

runs =30;
type

pmat = " matrix ;
var

Let im € pmat;
Let t1, t2 € double;

procedure pconvp ( var p :matrix ;c0 ,c1 ,c2 : real ); (see Section 8.4.4.1 )
procedure blurp ( var im :matrix ); (see Section 8.4.4.2 )

procedure cconv ( var p :real ; rows ,cols :integer ; c1 ,c2 ,c3 :real );

external ;

begin

new ( im ,size ,size );
tl1<+ secs;
for i< 1 to runs do

blurp (im?);

t2<— secs;
writeln( ‘PASCAL ", t2 - t1);

end .
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8.4.4.1 pconvp

Convolution of an image by a matrix of real numbers can be used to smooth or sharpen
an image, depending on the matrix used. If A is an output image, K a convolution matrix,

then if B is the convolved image
Byx=) ) AyiixtjKij
i

A separable convolution kernel is a vector of real numbers that can be applied indepen-
dently to the rows and columns of an image to provide filtering. It is a specialisation of the
more general convolution matrix, but is algorithmically more efficient to implement. If k

is a convolution vector, then the corresponding matrix K is such that K; ; = kKiK.

Given a starting image A as a two dimensional array of real values, and a three element
kernel cy,c7,c3, the algorithm first forms a temporary array 7 whose elements are the
weighted sum of adjacent rows Ty y = c1Ay_ x + 24y +¢3Ay11 . Thenin a second phase
it sets the original image to be the weighted sum of the columns of the temporary array:
Ayy=c1Ty, 1+l +c3Ty,x+1.

Clearly the outer edges of the image are a special case, since the convolution is defined
over the neighbours of the pixel, and the pixels along the boundaries are missing one
neighbour. A number of solutions are available for this, but for simplicity we will perform
only vertical convolutions on the left and right edges and horizontal convolutions on the

top and bottom lines of the image.
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procedure pconvp ( var p :matrix ;c0 ,c1 ,c2 : real );

var

Let T, / € pmat;
Let / € integer;
Let r, ¢ € integer;

begin
/I ' This sequence performs a vertical convolu-
tion of the rows of the plane p and places the result in the tempo-

rary plane T .

r<— p.rows;
¢+ p.cols;

/I Allocate a temporary array initialised in the middle to the origi-

nal one.

new (T ,r+2,c +2);
TH2.r +1,2.c+ 1< pr.ric;

/I Replicated out the rows to fill the top & bottom margins of array T.
T« 71215
THr + 2]« T[] + 1;

Now perform a vertical convolution of the plane 7" and place the result in p. Note that this
is done by multiplying the whole temporary array by the kernel constants and then adding

shifted versions of it.

Pl.rl.c TT[Q._r +1,2..c+ 1] x cl +

THl.r, 2.c + 1] x 0 +
TH3..r +2,1..c + 1] x c2;

T[]« T7[2];
THr + 2]« T1r] + 1;

again place it into the temporary array and this time replicate horizontally
TH2.r+1,2.c+ 1< piri.c;

T 711215
Tt [[c + 2]« Tt {|[c + 11;
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Next perform a horizontal convolution and free the temporary buffer.

Piri.c— TT2.r+1,2.c+1] xcl +

TH2.r+1, 1] x €0 +
TH2.r +1,2.c+ 2] x c2;

dispose ( T );
end ;

8.4.4.2 blurp
This procedure just specifies that the parallel blurring uses the kernel [0.25,0.5,0.25].

procedure blurp ( var im :matrix );
begin

pconvp (im ,0.25,0.5,0.25);

end :

8.4.4.3 Results

To investigate the effectiveness of the VSM register sizes, the following discussion first
analyses the performance of the compiler on the different sizes of the images using a 4KB
VSM register on one or multiple SPEs, and then explores the compiler’s performance us-
ing optimal register sizes. The VSM register size was chosen to be 4KB to show the effects
of operating on small SPE virtual registers also goes with all the sizes of the images. Note
here that by setting the VSM register to 4KB, the size of SPE virtual registers will depend
on the number of used SPEs. Thus, the SPE virtual register size will be 4KB when one
SPE is used, 2KB if 2SPEs are used and 1KB with 4SPEs. We run this experiment us-
ing three different sizes of images that consists of 1024x1024, 2048x2048 and 4096x4096
square pixels (floating point) format, and the results, which are presented in the following
table and figures show that significant performance improvements are obtained by using

the Cell’s accelerators on the different sizes of VSM registers.

The performance of the Cell’s cores on the blurring of different image sizes using only
a 4KB VSM register is shown in Table 8.4. All the measurements were taken using the

Linux command “time” and the unit of measurements is seconds.
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, Performance (sec) - 4K VSM Register

Image Size
PPE 1SPE 2SPEs 4SPEs
1024 | 1024 | 0.20 0.11 0.08 0.09
2048 | 2048 | 1.95 0.41 0.27 0.32
4096 | 4096 | 8.86 1.56 1.04 1.24

Table 8.4: Performance of the PPE and SPEs Using Different VSM Register Sizes

m 1SPE W 2SPEs 4SPEs

Speedup SPEs vs. PPE

O P N W bHh U1 O N OO

i ~

1024 2048 4096
Image Size n x n

Figure 8.14: Performance of SPEs versus PPE on Blurring Program

Figure 8.14 compares the speedup obtained using the Cell’s SPEs against the PPE perfor-
mance as the number of the SPEs increase. Consider first the performance of a single SPE
compared to the PPE. As we can see in this figure and also in Table 8.4, the PPE started
performing poorly as the size of the image gets bigger, and we have seen similar behaviour
in the previous example when the size of the N-body problem was 16K. The performance
of one SPE using 4KB register, which is the optimal size, was about 2 times faster than the
PPE. However, as the size of the image gets bigger and bigger, the SPE’s speedup relative
to the PPE performance looks as if it started increasing more rapidly. The SPE speedup
jumped from about 2x on 1024 image to around 5x and 8.5x on 2048 and 4096 image
size respectively. This high jump in the speedup, however, was due the slow performance
of the PPE on big size images. Actually, this can be simply deduced from Table 8.4 as
the PPE was 10 times slower on 2048 image than on 1024 while the SPE on the same
sizes was around only 4 times slower. The figure also shows that a single SPE and 2SPEs
interestingly performed better than the 4SPEs, and we have also seen a similar situation
with the N-body benchmark when the performance on the 1K problem was degraded as
we moved from 2SPEs to 4 SPEs.

Scalability is investigated under different configurations. Figure 8.15 shows the perfor-
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Figure 8.15: SPEs Scalability on Blurring 4096x4096 Image Using Different VSM Regis-
ter Sizes

mance of blurring an image of size 4096x4096 pixels as it is scaled across the Cell’s SPEs
using 4KB, 8KB and 16KB VSM registers. This figure, which shows the result of splitting
the image on 1,2 and 4 SPEs, reveals that when the SPEs uses an optimal register size, this
leads to better scaling of the application. For example, with 4SPEs and using 4KB VSM
register (or 1KB register per SPE), the performance of the 4SPEs compared to 1SPE was
dropped from 1.5x to 1.3x. Yet, the performance of 2SPEs was the best when 8KB VSM
register (or 4KB register per SPE) was used, while the best performance of the 4SPEs was
reached when 16KB VSM register (or 4KB register per SPE).

8.4.5 Conclusion

We have presented here the results obtained from running two sets of benchmarks which
include 12 BLAST and BLAS?2 kernels and two real world examples on the Cell proces-
sor to compare the execution time of sequential and parallel code written in Vector Pascal
and C programming languages. The VP-Cell parallelising compiler targets only array ex-
pressions, and thus the Vector Pascal code must be array based implementation. Actually,
this is why we choose only two real applications because only few real world benchmarks
coded in Vector Pascal, and many of the Pascal benchmarks are coded in a standard se-

quential fashion but not array-based code.

These experimental results show that significant performance improvements can be ob-
tained by using the Cell’s accelerators especially if the SPEs use the optimal register size.
The results also show that the VSM model in its current implementation is a very beneficial

tool for parallelising intensive-data applications.
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A number of modern computer systems have been offering high performance platforms
as with reasonable cost that made them widely used in many application areas, such as
image processing, graphics, multimedia, modeling and scientific computation. However,
this widespread industry adoption of multi-core, homogeneous and heterogeneous, archi-
tectures has a significant influence on mainstream software and applications development
and has introduced new challenges for software developers to provide proper, simply-used
and up to date tools for developing parallel and concurrent programs. The emergence of
the new heterogeneous platforms nowadays makes it even harder for compilers to generate
efficient parallel code than with homogeneous machines. Heterogeneous multi-core archi-
tectures, such as the Cell heterogeneous architecture, have different types of processing

cores, and each type is designed to support and carry out a different set of functions.

Our research project aimed at developing a new approach for automatic parallelisation of
computations on large data sets that is specifically targeted towards modern heterogeneous
hardware. The developed tool focused only on array-based code and should be capable
to parallelise vector/array operations to run on general purpose heterogeneous multicore
platforms. The ambitions were to reduce the complexity associated with the fully auto-
matic parallelisation approach by focusing only on array expressions, and also to ease
the task of developing programming parallel applications by concentrating on algorithms
rather than on parallelisation issues such as communication, partitioning, alignment, and

synchronisation.

The work was demonstrated by designing and implementing a Virtual SIMD Machine
(VSM) model that hides the intricate details of the Cell heterogeneous architecture com-
pletely. This model was based on new parallelisation techniques that imitate a SIMD
instruction set using virtual (large) registers and Virtual SIMD Instructions (VSIs). VSM
supports parallelising array operations across the heterogeneous cores of the Cell proces-
sor. It consists of two co-operating virtual interpreters, one for each of the two core types,
PPE and SPEs, on the Cell processor. The PPE interpreter runs on the Cell’s master core
type and manages the system overall and offers a set of functions for parallelising array
operation on the SPEs as well as other operations such as thread creation and message

handling.
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Throughout this thesis we also investigated whether an array programming compiler, such
as the Glasgow Vector Pascal (VP) compiler, can be extended to use this model to exploit
data parallelism implicitly and attain sufficient performance. The work involved extending
the machine description of the PowerPC back end compiler to be capable of collaborating
with our VSM model. The compiler extension included defining a virtual SIMD register
set and introducing a new instruction set that operates on these virtual registers. We also
had to modify some machine-dependent routines such as ENTER and LEAVE to create
and terminate threads. This arrangement simplifies the task of compiler code generators

to transform sequential code into parallel code.

This dissertation has shown that imitated SIMD techniques can be used to develop a fully
implicit parallel programming model which reduces the burden of developing parallelis-
ing compilers that exploit a heterogeneous multi-core architecture. The work in research
project presented a tool that does not require learning a new language, using produced
hints to make an efficient use of processing units such as in CellVM or even annotation or
directives such as in OpenMP, OffloadC++ and OpenCL. The overall results in this thesis
demonstrate this approach significantly reduced the execution time of the automatically
parallelised programs compared to the execution time of the sequential ones without the
need for any annotations or process directives. Our approach also showed considerable
performance improvements related to scalability. However, the VSM performance is be-
low the theoretical peak performance, which is mostly due to communication overhead
and alignment constraints as the SPEs are designed to operate on 128-byte aligned data.
The VSM design also imposes divisibility restrictions on the size of SPEs virtual registers
and the number of SPEs that can be used, and this results in not being able to use all the

resources (SPEs) of the Cell processor.

9.1 Contribution

* Demonstrating the possibility to abstract and completely hide the intricate details of

heterogeneous architectures.

* Representing techniques that provide a fully implicit programming model for paral-

lelising array operations and support scalable parallelization.

* Introducing a framework that can be as an abstract model to shorten the time for

developing parallelising compilers.

* Developing parallelizing tools that aid compilers to automatically generate parallel

code with the aim of reducing the execution time of the parallelized code.
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* Developing a new approach to optimize the code-generator of a compiler. This ap-
proach is based on genetic algorithm techniques to automatically optimise machine

instructions ordering.

9.2 Future Work

There are a number of interesting future directions that may enhance the VSM model.

Some of these opportunities for future work are listed.

* While the current implementation of the VSM targeted at the Cell BE processor, the
concept is more general and can be applied to heterogeneous multicore systems with
a host with accelerators (APUs) such as AMD Fusion, Intel Ivy Bridge, and GPUs.

* The communication overhead is still high. Thus using optimised the communication
overhead would be one way to improve the VSM performance and reduce the virtual

register sizes; i.e, the size of arrays which could be adequate for parallelisation.

* The VSM instruction does not back dual-mode operations such as multiply-accumulate
operations, and thus supporting this feature shall evidently improve many computa-
tions which involve accumulation operations such as vector dot product and matrix

multiplications operations.

* The VSM current implementation includes an instruction for every computational
operation for every data type. Each computational instruction uses two physical
machine registers and two assembly instructions in order to pass the virtual register
numbers to the analogous PPE function, and the PPE then gives a code to operation
(opcode). However, it would be more efficient if a VSM instruction uses only one
register to pass the virtual register numbers as well as the opcode. This results in
first reducing the number of assembly instructions by % and most importantly to

implement only one PPE (template) function for all data types.

* The code size of the current SPE interpreter (or program) is about 25KB which is
considerably good since it requires only 10% of the SPE local memory. However,
template techniques would be useful also to optimise the SPE interpreter code size,

especially if more operations are added.
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