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ABSTRACT 

Near-Earth Asteroids (NEAs) can provide useful resources in terms of feedstock for 

spacecraft propellant, crew logistic support and a range of useful metals. The possibility of 

capturing small NEAs using low energy transfers would therefore be of significant 

scientific and commercial interest. Although NEAs may make close approaches to the 

Earth, and so represent a potential impact threat, the exploitation of their resources has 

long been proposed as a necessary element for future space exploration. 

The objective of the research presented in this thesis is to develop methodologies for 

the trajectory design of capturing NEAs in the neighbourhood of the Earth. Firstly aimed at 

capturing NEAs around the Earth-Moon L2 point, a new type of lunar asteroid capture is 

defined, termed direct capture. In this capture strategy, the transfer trajectory for capturing 

a NEA into the Earth-Moon system is modelled in the Sun-Earth-Moon restricted four-

body. A Lambert arc in the Sun-asteroid two-body problem is used as an initial guess and a 

differential corrector used to generate the transfer trajectory from the asteroid’s initial orbit 

to the stable manifold associated with Earth-Moon L2 point. The direct asteroid capture 

strategy requires a shorter flight time compared to an indirect asteroid capture strategy, 

which couples capture in the Sun-Earth circular restricted three-body problem and 

subsequent transfer to the Earth-Moon circular restricted three-body problem. Finally, the 

direct and indirect asteroid capture strategies are also applied to consider capture of 

asteroids at the triangular libration points in the Earth-Moon system. 

As ideal locations for space science missions and candidate gateways for future crewed 

interplanetary missions, the Sun-Earth libration points L1 and L2 are also preferred 

locations for the captured asteroids. Therefore, the concept of coupling together a flyby of 

the Earth and then capturing small NEAs onto Sun–Earth L1 or L2 periodic orbits is 

proposed. A periapsis map is then employed to determine the required perigee of the Earth 

flyby. Moreover, depending on the perigee distance of the flyby, Earth flybys with and 

without aerobraking are investigated to design a transfer trajectory capturing a small NEA 

from its initial orbit to the stable manifolds associated with Sun-Earth L1 and L2 periodic 

orbits. NEA capture strategies using an Earth flyby with and without aerobraking both 

have the potential to be of lower cost in terms of energy requirements than a direct NEA 
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capture strategy without the Earth flyby. Moreover, NEA capture with an Earth flyby also 

has the potential for a shorter flight time compared to the NEA capture strategy without the 

Earth flyby. Following by this work, a more general analysis of aerobraking is undertaken 

and the low energy capture of near-Earth asteroids into bound orbits around the Earth using 

aerobraking is then investigated. Two asteroid capture strategies utilising aerobraking are 

defined, termed single-impulse capture and bi-impulse capture, corresponding to two 

approaches to raising the perigee height of the captured asteroid’s orbit after the 

aerobraking manoeuvre. A Lambert arc in the Sun-asteroid two-body problem is again 

used as an initial estimate for the transfer trajectory to the Earth and then a global 

optimisation is undertaken, using the total transfer energy cost and the retrieved asteroid 

mass ratio (due to ablation) as objective functions. It is shown that aerobraking can in 

principle enable candidate asteroids to be captured around the Earth with, in some cases, 

extremely low energy requirements.  

The momentum exchange theory is also applied to the capture of small near-Earth 

asteroids into bound periodic orbits at the Sun-Earth L1 and L2 points. A small asteroid is 

first manoeuvred to engineer a flyby with a larger asteroid. Two strategies are then 

considered: when the small asteroid approaches the vicinity of the large asteroid, it will 

either impact the large asteroid or connect to it with a tether. In both strategies, momentum 

exchange can be used to effect the capture of one of the asteroids. Then, a two-impulse 

Lambert arc is utilised to design a post-encounter transfer trajectory to the stable manifolds 

of the Sun-Earth L1 or L2 points. By investigating the outcome of the impact on the small 

asteroid, or the tension of the tether, the maximum velocity increment available using these 

momentum exchange strategies is investigated. Again the capture strategies using 

momentum exchange in principle have the potential to deliver low-energy capture of 

asteroids. 

The methods presented in this thesis are intended to be used as a preliminary analysis 

for these asteroid capture strategies. Although some significant practical challenges 

remain, the transfer in the CRTBP models can serve as a good approximation for the 

trajectory in a more accurate dynamical model.  
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CHAPTER 1  

INTRODUCTION 

In the last few decades, space agencies such as the National Aeronautics and Space 

Administration (NASA) and the European Space Agency (ESA) have put a significant 

effort into the exploration of small solar system bodies, such as asteroids. Generally 

speaking, asteroids are remnant objects from the formation of the inner solar system and so 

the exploration of these bodies represents a frontier to extend our knowledge on the 

formation and evolution of the solar system. Therefore, a series of asteroid exploration 

missions have been undertaken or are currently planned [1-4]. Among the entire family of 

asteroids, near-Earth asteroids (NEAs) have gained significant attention due to their 

accessibility. In general, NEAs typically have orbits that lie between 0.983 and 1.3 

Astronomical Units (AU) from the Sun [5], where the JPL Small-Body Database provides 

the current catalogue of NEAs 1. Their orbital distribution is shown in Fig. 1.1. Therefore, 

these asteroids represent the closest potential threats for Earth impact and the easiest 

targets both to reach from the Earth and to capture in the vicinity of the Earth. Moreover, 

NEAs are also considered to provide useful resources which can be used to support future 

space activities, for example in-situ spacecraft propellant manufacturing and logistic 

support materials [6, 7]. The exploitation of these in-situ resources has long been proposed 

as a necessary part of long-term space development [7-10]. Furthermore, there is a growing 

commercial interest in NEA resources [11, 12]. The possibility of mining minerals and 

metals such as gold, silver and platinum has attracted the attention of some countries and 

even some companies. For instance, in 2015, U.S. President Barack Obama signed the 

asteroid mining bill into law which can encourage the commercial exploration and 

utilisation of the asteroid resources [13]. Then the government of Luxembourg adopted 

similar legislation in 2017 [14]. In particular, some private enterprises, like Deep Space 

Industries and Planetary Resources are developing the asteroid-mining technologies and 

have announced ambitious plans of capturing, returning and then mining asteroids by 

2020-2025 [15]. Therefore, the exploitation and utilisation of these resources has generated 

                                         
1 Data available online at https://ssd.jpl.nasa.gov/?sb_elem [retrieved 24 February 2018]. 

https://en.wikipedia.org/wiki/Gold
https://en.wikipedia.org/wiki/Silver
https://en.wikipedia.org/wiki/Platinum
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a growing interest in low-energy strategies to capture near-Earth asteroids in the vicinity of 

the Earth, for scientific and potentially commercial purposes [9, 10, 16-19]. 

 

(a) 

 

(b) 

Fig. 1.1 Orbital distribution of NEAs: (a) semi-major and eccentricity and (b) semi-major and 

inclination. 

1.1 Asteroid exploration and capture missions 

The exploration of asteroids can be tracked back for centuries. On 1 January 1801, 

Giuseppe Piazzi (1746–1826) used a telescope to discover the first asteroid, Ceres, in the 

Palermo Observatory [20]. Then, visible light observations and near-infrared observations 

of asteroids have been widely applied to determine detailed information on their structure, 



Chapter 1 Introduction 

 

3 
 

composition, size and shape, etc. [21, 22]. Meanwhile, range-Doppler imaging of asteroids 

through radio telescopes has been developed to improve the accuracy of shape models of 

asteroids [23, 24]. 

More recently, with the development of space technologies, some asteroid exploration 

missions have already been undertaken, or are planned. In 1989, NASA launched the 

Galileo spacecraft which passed and imaged the main-belt asteroid Gaspra in 1991, and 

then another main-belt asteroid Ida in 1993 in route to Jupiter [1, 25]. Then NASA's 

Clementine spacecraft, which was launched in 1994, extended its mission to transfer to the 

vicinity of the near-Earth asteroid Geographos and made observations of the asteroid after 

Clementine completed its primary mission of mapping the surface of the Moon [26]. 

NASA’s third spacecraft for asteroid exploration was the NEAR-Shoemaker mission 

which was launched in 1996 [27]. After approximately 4 years flight, the spacecraft 

approached the vicinity of Eros and then made comprehensive observations of the asteroid 

to measure its physical properties, e.g. mass, composition, structure and shape. Finally, the 

spacecraft soft-landed on the asteroid's surface in February 2001, and thus became the first 

spacecraft to land on an asteroid [27]. Then NASA’s fourth spacecraft to explore asteroids, 

Deep Space 1 launched in 1998 and flew by the asteroid Braille in 1999 and Comet 

Borrelly in 2001 [28]. Moreover, during the Cassini-Huygens mission to Saturn, which 

was supported by NASA, ESA and Italian Space Agency (ASI), the spacecraft flew past 

the asteroid Masursky and thereby estimated its size in 2000 [29]. In 1999, NASA 

launched the Stardust mission spacecraft with a re-entry capsule. This spacecraft firstly 

flew by the asteroid Annefrank in 2002 and returned information through imaging. After 

the flyby, the spacecraft approached its target, Comet Wild2, and successfully collected 

samples. Consequently, these samples were returned to the Earth in 2004 [30].  

In May 2003, the Japan Aerospace Exploration Agency (JAXA) launched the 

Hayabusa spacecraft to target the asteroid Itokawa. The spacecraft rendezvoused with the 

asteroid in September 2005, and immediately after approached the asteroid in November 

2005 for sampling. Finally, Hayabusa returned to Earth with surface samples in June 2010 

[31]. On March 2004, ESA’s Rosetta mission was launched to its target, Comet 

67P/Churyumov-Gerasimenko [4]. Before arriving at the target, the spacecraft flew by the 

asteroid Steins in September 2008 and the asteroid Lutetia in July 2010. During the flybys, 

some physical properties of the two asteroids were determined and the origin of asteroid 

Steins was revealed [32]. On 12 January 2005, NASA launched the Deep Impact 

spacecraft to explore and analyse the composition of the Comet Tempel 1 [3]. When the 

spacecraft approached the target, it released an impactor to collide with the comet, thereby 

successfully completing the first mission to eject material from a comet. After this mission 

http://solarsystem.nasa.gov/galileo/index.cfm
http://nssdc.gsfc.nasa.gov/planetary/clementine.html
http://www.nasa.gov/mission_pages/cassini/main/
http://www.isas.ac.jp/e/enterp/missions/hayabusa/index.shtml
http://www.isas.ac.jp/e/enterp/missions/hayabusa/index.shtml
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had been completed, it was proposed to carry out additional comet or asteroid exploration 

flybys. However, these new missions were cancelled due to the loss of communication 

between the spacecraft and Earth in September 2013. On 27 September 2007, NASA 

launched the Dawn mission to explore two of the three known protoplanets in the main 

asteroid belt, Vesta and Ceres [33]. This was the first spacecraft to orbit two solar system 

bodies. Similar to the NASA Clementine spacecraft, the China National Space 

Administration’s (CNSA) Chang’e 2 probe performed an extended mission to flyby the 

asteroid Toutatis in December 2012 after it had finished its initial mission of exploring the 

surface of the Moon [34]. On its way to the target asteroid, Chang’e 2 was firstly guided to 

the Sun-Earth Libration point L2. As an extension of JAXA’s previous Hayabusa mission, 

Hayabusa 2 was launched in December 2014 and is expected to arrive at the target asteroid 

1999 JU3 in July 2018, to study the asteroid, collect samples from it and return to Earth in 

December 2020 [35]. Furthermore, the latest asteroid exploration and sample return 

mission is the NASA OSIRIS-Rex mission, which was launched in September 2016. Its 

mission is to study asteroid 101955 Bennu and then return a sample to Earth in September 

2023 [36]. 

Inspired by the success of asteroid exploration and sample return missions, and with 

the development of a range of space technologies in recent years, some space agencies 

(e.g. NASA) have studied the feasibility and possibility of capturing an entire asteroid, 

instead of sampling material from an asteroid surface. Therefore, in 2011, the Jet 

Propulsion Laboratory (JPL) and NASA investigated the feasibility of finding, capturing 

and then returning a NEA to the International Space Station (ISS) [37]. The target asteroid 

would be used for analysis of its structure, composition and then to evaluate its resource 

potential. Meanwhile, Fast [38] proposed a mission to capture and return a small NEA with 

a diameter of approximately 2 m to the ISS and proved the feasibility of capturing such a 

NEA with current technologies and a typical deep space mission budget. Moreover, in 

2012, the Keck Institute for Space Studies (KISS) proposed to capture and return a NEA 

into a stable lunar orbit, instead of low Earth orbit (LEO) [39]. In this scheme for asteroid 

capture, a lunar gravity assist (LGA) was used to capture the candidate asteroid and 

thereby reduce the propellant mass required. Accordingly, these NEAs with a relatively 

large size became candidate targets. Finally, KISS offered a detailed scheme for capturing 

and returning the asteroid 2008 HU4 with a diameter of approximately 7 m and a mass of 

approximately 500 tons to a high lunar orbit. Based on this research, NASA proposed the 

Near-Earth Asteroid Redirect Mission (ARM) to capture a NEA to a stable lunar orbit in 

2013 using solar electric propulsion [40]. This mission was mainly aimed at developing 

and improving deep space mission capability for the future Mars exploration. Moreover, 

https://en.wikipedia.org/wiki/Protoplanet
https://en.wikipedia.org/wiki/Asteroid_belt
https://en.wikipedia.org/wiki/4_Vesta
https://en.wikipedia.org/wiki/Ceres_(dwarf_planet)
http://nssdc.gsfc.nasa.gov/planetary/clementine.html
https://en.wikipedia.org/wiki/China_National_Space_Administration
https://en.wikipedia.org/wiki/China_National_Space_Administration
http://b612.jspec.jaxa.jp/hayabusa2/e/hayabusa2_sequence_e.html
https://en.wikipedia.org/wiki/101955_Bennu
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the mission would also test the performance of some space technologies and planetary 

defence techniques. Unfortunately, the mission was cancelled in 2017 [41]. 

The idea of capturing small NEAs with relatively low energy has been widely 

investigated in detail by many researchers [9, 16, 18, 42-49]. Most recent research work 

has investigated the possibility of capturing NEAs in the vicinity of the Earth, including 

the Sun-Earth libration points L1 and L2 [18, 50-52], the neighbourhood of the Moon [39, 

45, 53] and bound orbits about the Earth itself [16, 48, 54]. Table 1.1 provides a brief 

summary of results and solutions of capturing asteroids in these previous works. After 

studying the accessibility of asteroid resources, Sanchez, et al. [9], [19] estimated the 

quantity of asteroid resources that can be accessed at relatively low cost and concluded that 

on the order of 1011 tons of material could potentially be harvested with a lower energy 

cost than that required to access resources from the surface of the Moon. Such materials 

will no doubt boost the rapid development of space exploration in the future. 

 

Fig. 1.2 Decision tree for potential options and methods of capturing asteroids. 

Therefore, the main objective of this thesis is to investigate asteroid capture strategies 

in order to achieve low energy capture of NEAs in the vicinity of the Earth, including the 

neighbourhood of the Moon, the Sun-Earth libration points L1 and L2, and bound orbits 
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about the Earth itself. Moreover, a decision tree that indicates the potential options and 

methods of capturing asteroids is shown Fig. 1.2. 

Table 1.1 A brief summary of results and solutions of asteroids capture. 

Asteroid Reference 
v, 

m/s 

Transfer 

time, day 
Destination 

2000 SG344 

Yárnoz, et al. [50] 443 1223 Sun-Earth L1 

Gong and Li [48] 348 - Earth Hill region 

Sánchez and Yárnoz [18] 470 2602 Sun-Earth L1 

Tan, et al. [45] 481 1859 Earth-Moon L2 

2006 RH120 

Yárnoz, et al. [50] 58 2471 Sun-Earth L2 

Sánchez and Yárnoz [18] 58 2738 Sun-Earth L2 

Tan, et al. [45] 334 2515 Earth-Moon L2 

2007 UN12 

Sanchez, et al. [9] 195 945 Sun-Earth L2 

Yárnoz, et al. [50] 199 2675 Sun-Earth L2 

Sánchez and Yárnoz [18] 195 2887 Sun-Earth L2 

Tan, et al. [45] 347 1292 Earth-Moon L2 

Tan, et al. [44] 153 745 Sun-Earth L1 

2008 EA9 

Sanchez, et al. [9] 325 923 Sun-Earth L2 

Yárnoz, et al. [50] 328 - Sun-Earth L2 

Sánchez and Yárnoz [18] 341 3048 Sun-Earth L2 

Tan, et al. [45] 445 1273 Earth-Moon L2 

2008 UA202 

Sanchez, et al. [9] 416 1245 Sun-Earth L2 

Yárnoz, et al. [50] 393 - Sun-Earth L2 

Gong and Li [48] 49 - Earth Hill region 

Sánchez and Yárnoz [18] 438 3230 Sun-Earth L2 

Tan, et al. [44] 242 1317 Sun-Earth L2 

2009 BD Yárnoz, et al. [50] 392 - Sun-Earth L2 

2010 UE51 

Yárnoz, et al. [50] 249 - Sun-Earth L2 

Sánchez and Yárnoz [18] 405 3084 Sun-Earth L2 

Tan, et al. [45] 403 2019 Earth-Moon L2 

2014 WX202 

Sánchez and Yárnoz [18] 297 2818 Sun-Earth L2 

Tan, et al. [45] 437 1575 Earth-Moon L2 

Tan, et al. [44] 279 1379 Sun-Earth L1 

2015 PS228 
Sánchez and Yárnoz [18] 395 3048 Sun-Earth L2 

Tan, et al. [44] 614 736 Sun-Earth L1 
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1.1.1 Asteroid capture around the Sun-Earth libration points L1/L2 

The Sun-Earth L1 and L2 points are noteworthy due to their unique locations and 

dynamical characteristics. The Sun–Earth L1 point is an ideal location for scientific 

observations of the Sun–Earth system, such as monitoring the solar wind. Similarly, 

Farquhar, et al. [55] regarded the Sun–Earth L2 point as a staging node for interplanetary 

missions to NEAs and Mars, since it is also a useful location for space-based observatories. 

Overall, as an ideal location for space science, and a staging node for interplanetary 

missions in the future, the Sun-Earth L1 and L2 points represent potentially beneficial 

gateways for future space exploration missions [56]. Therefore, capturing asteroids onto 

periodic orbits around the Sun-Earth L1 and L2 points is of particular interest. 

Following interest in capturing NEAs onto orbits at the Sun-Earth libration points, 

Sanchez, et al. [9] regarded the Sun-Earth L2 region as the final destination for NEA 

capture missions and investigated the possibility of capturing small NEAs into Lyapunov 

orbits around the Sun-Earth L2 point through their invariant manifolds. Moreover, Yárnoz, 

et al. [50] recently identified a new family of asteroids, termed easily retrievable objects 

(EROs). EROs are asteroids which can be gravitationally captured into bound periodic 

orbits around the Sun-Earth L1 and L2 points with a total cost of less than 500 m/s. Yárnoz, 

et al. [50] used a two impulsive Lambert arc to design the transfer trajectory from the 

candidate asteroid’s initial orbit to the stable manifold associated with the target periodic 

orbit around the Sun-Earth L1 or L2 points. Accordingly, Sánchez and Yárnoz [18] updated 

the list of easily retrievable objects and estimated the largest retrievable mass possible, to 

investigate the feasibility of asteroid resource utilisation. As the catalogue of asteroids is 

updated with further observations, it is likely that more easily retrievable objects will be 

found in the future. Moreover, Tang and Jiang [51], Mingotti, et al. [52] considered the low 

thrust to design retrieval trajectories in order to increase the retrieval mass and thus 

improve the feasibly of capturing an entire NEA. Moreover, Ceriotti and Sanchez [57] 

proposed a strategy to control such ERO retrieval trajectories to solve the issues caused by 

uncertainties in the asteroid mass and injection manoeuvres. Lladó, et al. [17] have also 

considered continuous low thrust propulsion to capture NEAs at periodic orbits around the 

Sun–Earth L2 point. Tan, et al. [46] have proposed to use momentum exchange theory, 

including both kinetic impacts and the use of tethered assist for the capture of small 

asteroids into Lyapunov orbits around the Sun-Earth L1 and L2 points. Furthermore, Tan, et 

al. [44] investigated the combination of a flyby of the Earth and the use of stable manifolds 

to capture NEAs onto Lyapunov orbits around the Sun-Earth L1 and L2 points. Depending 

on the perigee distance of the flyby, Earth flybys with and without aerobraking can be 
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considered to design a transfer trajectory capturing a small NEA from its initial orbit to the 

stable manifolds associated with Sun-Earth L1 and L2 periodic orbits [44]. 

Meanwhile, work on low-energy transfers between periodic orbits around the Sun-

Earth libration points and NEAs has also been undertaken. As noted earlier Farquhar, et al. 

[55] regard the Sun–Earth L2 point as an important gateway for NEA and Mars exploration 

missions. For low-energy crewed exploration of NEAs, Zimmer [56] proposed to employ a 

reusable spacecraft that is stationed on a halo orbit at the Sun-Earth L1 or L2 point for such 

missions. Wang, et al. [58] proposed a perturbation method to search for possible flyby 

opportunities between Sun-Earth Lissajous orbits and the asteroids Toutatis and 2010 JK1. 

The method then calculates low-energy transfers between the Lissajous orbit and the 

asteroids. Then, Gao [59] investigated optimal bi-impulse flyby trajectories from the Sun-

Earth L2 point to the asteroids Toutatis, 2005 NZ6 and 2010 CL19.  

1.1.2 Asteroid capture into the vicinity of the Moon 

The Earth–Moon libration points are also key to the future of deep space exploration. In 

2010, the two ARTEMIS spacecraft became the first vehicles to operate in the vicinity of 

an Earth-Moon libration point, operating successfully in this dynamical regime from 

August 2010 to July 2011 [60]. In 2011, NASA released a report on Earth-Moon libration 

point missions as part of a ‘Global Exploration Roadmap’ [61]. NASA has identified the 

Earth-Moon L1 and L2 points as potential locations of interest for future human space 

exploration [62].  

Meanwhile, as noted earlier, NASA has also considered a potential future mission 

(ARM) to rendezvous with and then capture a small near-Earth asteroid (later a boulder 

from a near-Earth asteroid) [63]. Given that final placement of the captured asteroid in the 

vicinity of the Earth may incur an impact risk, it is prudent to place the retrieved asteroid in 

an orbit from which it could only impact the Moon. Lunar orbits, or possibly regions near 

the Earth-Moon Lagrange points, would therefore be one of the preferred locations, 

although there is additional work required on this matter. Besides, the Earth-Moon L2 point 

is also regarded as a candidate gateway for future space missions, since spacecraft on 

periodic orbits around the Earth-Moon L2 point can easily achieve low-energy transfers to 

the vicinity of the Moon and the vicinity of the Sun–Earth L1 and L2 points [64-66]. 

Therefore, capturing asteroids and inserting them directly at the Earth-Moon L1 and L2 

points may be of significant benefit for future space exploration by providing in-situ 

resources. In addition, due to the fact that the triangular points in the Earth-Moon system 
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are stable, the propellant required to maintain a captured NEA at such a location is modest 

[67]. For this reason, it may also be of interest to capture a NEA and place it on a periodic 

orbit around the triangular L4 and L5 points in the Earth-Moon system. Furthermore, due to 

fact that the Earth-Moon L4 and L5 points can be used as a parking orbits for travel to and 

from cis-lunar space, O'Neill [68] proposed to build space colonies at these points where 

captured NEAs could provide material for such large structures. Accordingly, DeFilippi Jr 

[69] studied station-keeping strategies at Earth-Moon L4 point. 

Mingotti, et al. [53] proposed the patched circular restricted three-body problem as a 

model, which consists of the Sun–Earth and the Earth–Moon circular restricted three-body 

problem (CRTBP) systems, to capture NEAs onto target periodic orbits around the Earth–

Moon L2 point. This would require a significant duration for the asteroid to be 

asymptotically captured onto periodic orbits around the Sun-Earth L1 or L2 points, 

compared to the traditional hyperbolic approach [43]. Tan, et al. [45] defined a direct 

capture strategy which is different from this indirect asteroid capture strategy. In this 

capture strategy, an initial impulse will modify the asteroid’s orbit and a second impulse 

will insert it onto the stable manifold associated with an Earth-Moon L2 periodic orbit 

directly. Moreover, both direct and indirect strategies were investigated to design the direct 

and indirect capture of asteroids to the triangular points in the Earth-Moon system [45].  

1.1.3 Asteroid capture into bound orbits around the Earth 

The material which can be extracted from NEAs has been regarded to be useful for future 

space missions by providing propellant, life support, water and metals [6, 7]. Among them, 

volatiles such as hydrogen and methane can be used to produce propellant for spacecraft 

parked in LEO, and therefore to transfer the spacecraft to some further destination, such as 

the moon or Mars [7]. Moreover, some in-situ materials have the potential for manufacture 

of solar energy systems, such as photovoltaic arrays [70]. These devices can be used to 

assemble solar power satellites in orbit around the Earth in order to provide electrical 

power for through microwave power-beaming to terrestrial receivers.  

There exists two types of asteroid capture strategies around the Earth, corresponding to 

two different dynamical models. The first is to directly capture an asteroid into an elliptical 

orbit around the Earth which is modelled in the Earth-centred two-body problem. For 

example, in 2011, JPL and NASA investigated the feasibility of finding, capturing and then 

returning a NEA to the ISS [37, 38]. Moreover, Andrews, et al. [12] studied a commercial 

asteroid mining program and thus designed NEA capture and mining equipment such as a 
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LEO space operations centre for the asteroid material. Besides, Hasnain, et al. [16] 

investigated an asteroid capture strategy with a transfer trajectory designed by patching 

together the Sun-Earth CRTBP and Earth-centred two-body problem. In addition, Hills 

[71] proposed to capture a small asteroid into a bound orbit around the Earth in order to 

defend the Earth from future impact of a large asteroid.  

In the other strategy, the motion of the captured asteroid is always modelled as a multi-

body problem and there are then two types of capture, termed temporary and permanent 

capture. Tanikawa [72] proved that a retrograde satellite cannot be captured under 

gravitational interactions in the restricted three-body problem. However, permanent 

capture may occur when some non-gravitational forces such as gas drag are taken into 

account [73]. With regard to the capture conditions in the CRTBP, Cline [74] applied the 

patched conic method in a two-body problem to analyse the capture conditions in a 

planetary capture model. Villac and Scheeres [75], Paskowitz and Scheeres [76] used 

periapsis mapping to investigate the capture conditions in a Hill three-body problem. 

Besides, Verrier and McInnes [54] used the Kolmogorov–Arnold–Moser (KAM) method 

to capture an asteroid temporarily in the Earth’s Hill regions (although the capture duration 

is extremely long for practical purposes). Belbruno and Miller [77] firstly introduced the 

weak stability boundary (WSB) to design the low-energy transfer to the Moon and it can 

be also utilised to analyse temporary capture in CRTBP systems, such as the Sun-Jupiter 

system [78]. Furthermore, Belbruno [79] provided the satellite capture conditions for 

temporary and permanent capture in the Hill problem through defining the two-body 

Kepler energy of the satellite with respect to the central body. Moreover, to reduce the total 

capture cost, a lunar flyby can also be used to capture NEAs in the neighbourhood of the 

Earth in this multi-body environment [48]. Additionally, Tan, et al. [80] proposed to use 

aerobraking to achieve low energy capture of NEAs in bound orbits around the Earth.  

Among the NEAs, the temporarily captured asteroids (TCAs) are a special class of the 

population of asteroids which can be naturally captured in the neighbourhood of the Earth 

for a limited duration [81]. Therefore, due to their relatively easy accessibility, they have 

been regarded as attractive candidates for the asteroid exploration and return missions [82-

84]. Moreover, through analysis of the capture mechanism, Urrutxua, et al. studied 

extending the duration of their capture in order to provide extended opportunities for such 

missions [82, 85, 86]. In addition, observations using the Space Surveillance Telescope 

[87] and the Large Synoptic Survey Telescope [88] have been proposed to discover yet 

more TCAs. Moreover, NEAs which can be captured temporarily in the Earth-Moon 

system have been investigated to expand the population of TCAs [89, 90].  
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1.2 Low-energy strategies of capturing asteroids 

In recent studies of asteroid capture, a range of new methods and techniques have been 

employed to lower the total cost of capturing NEAs, in terms of velocity increment or 

propellant consumption. These methods are summarized as follows. 

1.2.1 Multi-body and invariant manifold theory 

Low energy trajectory design in multi-body environments is a rich and active area of 

research which focuses on various classes of orbit design problems. Moreover, the 

utilisation of periodic orbits and their associated invariant manifolds, to design low-energy 

trajectories in multi-body systems, has been a topic of particular interest in recent years 

[91, 92]. Periodic orbits around collinear libration points have an unstable behaviour and 

will consequently diverge under small perturbations. The family of trajectories generated 

from a periodic orbit under such perturbations is the invariant manifold associated with 

that periodic orbit. Hence, such periodic orbits and their associated invariant manifolds can 

be employed to investigate low-cost transfer trajectories between different orbits [93-95]. 

After a spacecraft moves onto the stable manifold of a libration point orbit (LPO), it will 

transfer to the target periodic orbit without any further manoeuvres. Meanwhile, such 

dynamical characteristics have been widely used in various trajectory design problems, 

including transfers between LPOs within the CRTBP of the Sun-Earth system [66, 94, 95]. 

Furthermore, invariant manifolds have been utilised as the basic mathematical tool to 

design low-energy transfer trajectories between different multi-body systems, e.g., the 

Earth–Moon and Sun–Earth systems [96-98]. During such transfers, the spacecraft should 

first be inserted onto the stable manifold associated with the target periodic orbit around 

the libration point of interest. Once inserted onto the stable manifold, it will be 

asymptotically captured without further manoeuvres. A successful application of this 

method is the design of Hiten-like mission trajectories [99]. A further example of trajectory 

design includes transfer between LPOs within a restricted three-body system and transfer 

trajectories in multi-body dynamical systems [100]. Missions including Genesis, WMAP, 

Triana, ISEE-3 and WIND have utilised the circular restricted three-body problem to 

design transfers to and from LPOs in the Sun-Earth system. Moreover, the patched circular 

restricted three-body problem was introduced by Koon, et al. [96] and has been used to 

design low-energy transfer trajectories from the Earth to the Moon [96, 99, 101]. Usually a 

manoeuvre at or near the patching point is required to move the spacecraft from one 
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manifold tube to the other. Based on the patched restricted three-body approximation, the 

bi-circular restricted four-body model was proposed to design low-cost Earth-Moon 

transfer trajectories [97, 102]. 

To design transfer trajectories in multi-body environments, efficient mathematical 

tools are necessary, including the shooting method and Poincaré maps. Since the multiple 

shooting method can significantly reduce the dynamical sensitivities of trajectories 

associated with LPOs, it has been studied extensively to obtain solutions of boundary value 

problems (BVP) in the CRTBP [103, 104]. Moreover, the Poincaré map that employs a 

hyper-plane in a rotating reference frame can be used to transform a continuous time 

dynamical system to a discrete time system. A variety of map formulations are possible in 

the CRTBP and Hill's problem, including the periapsis map [75, 105].  

Periodic orbits around the libration points, and the invariant manifolds associated with 

them, have generated significant interest for NEA exploration missions, including NEA 

flyby [59], NEA capture [50] and spacecraft reusability for NEA exploration [56]. 

Moreover, such periodic orbits with unstable characteristics can again be utilised to design 

low-energy ballistic transfers [93, 95]. These orbits can also serve as parking orbits for 

captured NEAs [43, 52]. Based on ballistic capture mechanics in the restricted three-body 

problem, transfers between NEAs and LPOs have also been recently investigated [50, 52, 

55, 56, 58, 59]. For example, Mingotti, et al. [52] proposed the use of low thrust propulsion 

to capture NEAs to a target periodic orbit around the Sun-Earth L1 and L2 points by using 

the stable manifolds associated with the target periodic orbit. Farquhar, et al. [55] regarded 

the Sun–Earth L2 libration point as a potential parking orbit and gateway station for 

missions to NEAs and Mars. Delivering NEA resources to a LPO at the L2 point could 

therefore provide efficient logistic support. In order to lower the cost of future space 

exploration missions, Zimmer [56] studied reusability by stationing spacecraft on periodic 

orbits at the Sun–Earth L1 and L2 points between NEA missions. In related work, Wang, et 

al. [58] proposed to use a differential corrector method to design flyby trajectories from the 

Lissajous orbit of the CHANG’E 2 spacecraft to the asteroids Toutatis and 2010 JK1.  

The stable manifolds associated with the Sun-Earth L1 and L2 points were employed to 

design transfer trajectories to enable the low energy capture of NEAs [17, 42, 50]. The 

utilisation of stable manifolds is also key to achieving low-cost capture, since flight along 

the stable manifold is ballistic and again no manoeuvre is required during this period. 

Based on these characteristics, Yárnoz, et al. [50] obtained the list of EROs with a total 

capture cost of less than 500 m/s by patching the Lambert problem in the Sun-centred two-

body problem and the stable manifolds of the L1 and L2 points in the Sun-Earth CRTBP. 

Moreover, to increase the number of potentially easily retrievable objects, Sánchez and 
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Yárnoz [18], Tang and Jiang [51] emaployed low thrust propulsion has to design the 

transfer between the asteroid’s initial orbit and the appropriate stable manifold. 

Meanwhile, Mingotti, et al. [52] investigated other families of final periodic orbits (distant 

retrograde orbits) around the Sun-Earth L1 and L2 points for asteroid capture.  

1.2.2 Gravity assist manoeuvres 

Gravity assists have played a significant role in interplanetary mission design and deep 

space exploration. Such methods have been studied extensively and are regarded as a basic 

tool for the design of low-energy interplanetary transfer trajectories [106]. Between 

entering and leaving the gravitational field of a planet or moon, a spacecraft’s heliocentric 

velocity can change significantly. The concept of the gravity assist was proposed by 

Minovitch, after he developed the patched conic method, and accordingly it was used to 

design a range of low-cost interplanetary trajectories [107]. Since then, gravity assists have 

been used for a series of interplanetary transfer missions. Some successful examples are 

listed as follows. 

The Mariner 10 spacecraft was the first spacecraft to employ a gravity assist to transfer 

to Mercury by swinging by Venus in 1974 [108]. Launched in 1973, Pioneer 11 was 

configured to study the Jupiter, Saturn and the main asteroid belt using a gravity assist at 

Jupiter and Saturn [109]. In 1977, NASA began the Voyager missions which consisted of 

two spacecraft: Voyager 1 and Voyager 2. Voyager 2 flew by Jupiter, Saturn, Uranus and 

Neptune, sequentially while Voyage 1 flew by Jupiter, Saturn and Titan sequentially [110]. 

NASA’s Galileo spacecraft was launched to transfer to Jupiter through flybys of Venus 

once and Earth twice [1]. In 1990, ESA’s Ulysses spacecraft was launched by NASA to 

investigate the Sun’s polar region after flying by Jupiter [111]. In 2004, the joint mission 

of NASA, ESA and the Italian Space Agency ASI, Cassini-Huygens reached Saturn after 

employing two gravity assists from Venus, one from the Earth, and one from Jupiter [112]. 

NASA’s second Mercury spacecraft MESSENGER swang by the Earth once, Venus twice 

and Mercury three times to insert into orbit around Mercury [113]. Meanwhile, ESA 

launched the Rosetta spacecraft to explore comet 67P/Churyumov–Gerasimenko after it 

used a gravity assist of Mars and encountered three asteroids. [4]. Due to the significance 

of the gravity assist manoeuvre in interplanetary transfer missions design, a series of 

missions which will employ gravity assists are planned in coming years, such as NASA’s 

Parker Solar Probe [114] and the joint mission of NASA, ESA and JAXA: Europa Jupiter 

System Mission [115].  

https://en.wikipedia.org/wiki/Galileo_(spacecraft)
https://en.wikipedia.org/wiki/Comet
https://en.wikipedia.org/wiki/67P/Churyumov%E2%80%93Gerasimenko
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Gravity assists can also provide extended opportunities for interplanetary exploration, 

including NEA exploration missions. Qiao, et al. [116] investigated Earth Gravity Assists 

(EGAs) to reduce the launch energy and the total cost of two-impulse transfer trajectories 

to NEAs. Eismont, et al. [117] also used EGA to reduce the total cost of transporting a 

small asteroid to impact a larger hazardous asteroid. Moreover, Casalino and Colasurdo 

[118] applied Mars gravity assists and solar electric propulsion to design low-cost transfer 

trajectories to the main belt asteroids and Chen, et al. [119] have proved that Mars is the 

most useful gravity-assist body for main-belt asteroid exploration through the utilisation of 

Tisserand graphs. Vasile and Pascale [120] applied multiple gravity assists (MGAs) based 

on a hybrid approach to design interplanetary transfers both to asteroids and comets. 

MGAs can be also used to design transfer trajectories between a NEA and a main-belt 

asteroid [47]. As for asteroid capture missions, a lunar flyby was considered to capture a 

NEA temporarily into the Earth’s Hill region [48]. Bao, et al. [121] also investigate gravity 

assists to capture NEAs into bound orbits around the Earth. In addition, the strategy of 

coupling together a flyby of the Earth and stable manifolds to capture NEAs onto Sun–

Earth L1 and L2 periodic orbits was proposed, and an additional manoeuvre imposed on the 

candidate NEA at the perigee of the flyby [44]. 

However, due to their weak gravitational field, small asteroids are not suitable for such 

manoeuvres. Nevertheless, Penzo and Mayer [122] proposed the use of a tether to 

temporarily connect a spacecraft with an asteroid for a tethered flyby manoeuvre. During 

the tethered flyby, the spacecraft is assumed to be attached to the asteroid with a tether, 

such that the spacecraft can swing around the asteroid through a large angle to yield a 

similar velocity change as a gravity assist from a planet or moon. Such tether dynamics 

were also utilised to study the possibility of tethering two asteroids, in order to capture one 

of them for resource extraction [123]. A similar idea of connecting a spacecraft to a moon 

in the CRTBP has been proposed to achieve subsequent capture of the spacecraft by the 

planet [124].  

1.2.3 Aerobraking and aerocapture 

On a grazing approach to a planetary body, the planet’s atmosphere may provide an 

aerobraking manoeuvre, and thereby directly reduce the speed of the object through energy 

dissipation. Recently, technologies for such aerobraking manoeuvres have been studied 

extensively [125-128], with the Magellan [129] and MGS [130] spacecraft demonstrating 

the feasibility of multi-pass aerobraking for robotic missions. Besides, the benefit of 
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aerobraking and aerocapture in reducing total mission cost, it leads to many new scenarios 

for future interplanetary mission design. For example, aerocapture was investigated to 

significantly increase the spacecraft mass delivered to other planets or moons with 

atmospheres in the solar system, including Venus, Mars, Titan and Uranus [131]. In 

particular, detailed analyses of the aerocapture performance required in proposed missions 

to Titan [132], Neptune [133], Venus [134] and Mars [135] has been undertaken. 

Moreover, Braun, et al. [136], Kumar and Tewari [137] proposed to use Earth 

aerobraking to design Earth-return trajectories from Mars or to transfer to a low Earth orbit 

from a generic hyperbolic trajectory. Moreover, Sonter [6] proposed the use of an “Earth-

fabricated, LEO-fabricated, or asteroid-fabricated aerobrake” to return captured asteroid 

material to low Earth orbit. Manufacturing an engineered aerobrake directly from asteroid 

material offers interesting possibilities for the future. Baoyin, et al. [138] supposed that 

aerobraking would greatly reduce the velocity increment required to capture an asteroid 

into a bound orbit at the Earth. Based on a first order approximation of the aerobraking 

manoeuvre [139], Sanchez and McInnes [49] investigated the relationship between the 

mass loss of the captured asteroid due to ablation and the required compressive strength of 

the asteroid material during aerobraking. They then estimated the number of 10 m diameter 

asteroids which could in principle be captured by using an aerobraking strategy. In 

addition, Fast [38] proposed to use Earth aerobraking to deliver a captured asteroid with a 

diameter of less than 2 m to the ISS as a proof-of-concept mission. The combination of an 

Earth gravity assist and a small aerobraking manoeuvre with invariant manifolds was 

proposed to capture an asteroid onto a periodic orbit around the Sun-Earth libration points 

L1 and L2 [44]. Accordingly, Tan, et al. [80] provided a more general analysis of 

aerobraking strategies and used aerobraking to capture asteroids directly into bound orbits 

at the Earth. 

The main problem of capturing asteroids using Earth aerobraking is clearly the 

potential for impact of the captured asteroid during the grazing flyby of the Earth in the 

event of manoeuvre errors. To address this problem, only small NEAs which in principle 

would ablate completely before reaching the Earth’s surface, and so would not represent a 

risk, should be considered as candidate asteroids for capture missions. The use of an 

engineered aerobrake manufactured from asteroid material also offers advantages for more 

precise aerocapture, and greater mass returned, rather than directly ablating the surface of 

the asteroid itself during the manoeuvre [140]. Clearly, an accurate and robust navigation 

and control strategy would also be required during the aerobraking and aerocapture. For 

example, the drag-modulation flight control method [126] and the blended control, 
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predictor-corrector guidance algorithm [128] may provide feasible solutions for an asteroid 

capture mission using aerobraking. 

1.2.4 Momentum exchange theory 

Momentum exchange theory can be used as a strategy to achieve manoeuvres or redirect 

target bodies by transporting the momentum from one object to the target [141, 142]. 

Generally speaking, this technique can be classified into instantaneous momentum 

exchange and slow momentum exchange techniques. Slow momentum exchange 

techniques can provide continuous manoeuvres and has been studied extensively for 

asteroid deflection using the gravity tractor or ion-beam shepherding [143-145]. On the 

other hand, instantaneous momentum exchange is usually considered to generate a single 

impulse and has also been widely applied to research on asteroids, including asteroid 

deflection by impactors and tether-assists [122, 123, 146-148].  

 Among the many deflection techniques, the kinetic impactor appears to be feasible with 

current technology. In this deflection strategy, a spacecraft with a kinetic impactor is first 

guided to directly impact a target asteroid at a sufficiently high velocity such that the 

momentum of the impactor is transferred to the target asteroid, causing a modification of 

the target asteroid’s orbit with respect to its unperturbed orbit. In fact, only a modest 

perturbation to the target asteroid’s original orbit is sufficient to achieve desired useful 

deflections, provided that the warning time is sufficiently long [147]. However, if the 

warning time is short, a large momentum transfer is required.  

 A means of improving momentum transfer through engineering a ‘billiard shot’ asteroid 

collision has been proposed by Canavan and Rather [149]. The key idea of this method is 

to use a small asteroid to impact a large asteroid for deflection. In this deflection strategy, a 

spacecraft is first guided to impact on a small asteroid, which is then delivered to approach 

a large target asteroid. The trajectory of the large target asteroid is then deflected through 

collision with the small asteroid. Furthermore, Nazirov and Eismont [150] proposed a way 

of improving the efficiency of this deflection strategy, through placing the small asteroid 

onto an Earth swing-by trajectory to modify the trajectory of the small asteroid, and hence 

enhance the resulting momentum transfer. Because the mass of the small asteroid is much 

larger than that of the spacecraft, this deflection method can in principle leverage more 

efficient asteroid deflection strategies. It should be noted that this method requires an 

accurate dynamical model of the orbits and properties of the relevant bodies, and there 

must be a small asteroid available with the appropriate orbital elements and size. 
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Moreover, momentum exchange theory has been used to attempt to lower the total cost of 

capturing asteroids at the Sun-Earth L1 and L2 points, including engineered impacts 

between asteroids and tethered assists [46].  

1.2.5 Advanced propulsion technologies 

For NEA capture and retrieval missions, the utilisation of a highly efficient spacecraft 

propulsion plays a key role in maximising the retrieved mass delivered to the final target 

orbit. At present, two types of spacecraft propulsion can be used to capture asteroids: high-

thrust chemical propulsion and low-thrust propulsion (e.g. electric propulsion and solar 

sails). 

In multi-body dynamical systems, the method of employing invariant manifolds to 

design transfer trajectories are often based on the application of propulsive manoeuvres, 

including trajectory design from, to and between libration points [151-154], low-energy 

transfers between different multi-body dynamical systems [155-157] and low-energy 

capture of asteroids into periodic orbits around the libration points [17, 43-46, 50]. These 

instantaneous velocity increments can be achieved using chemical propulsion, with high 

thrust but low specific impulse. It is clear that chemical propulsion can enable fast 

transfers. However, due to its low specific impulse, its efficiency in terms of propellant 

mass requirements is relatively low, compared with low-thrust propulsion. To solve this 

problem, advanced chemical propulsion technologies have been developed to increase 

performance, including the utilisation of cryocoolers and small turbopump engines for 

cryogenic propellants and space storable propellants (e.g. LOX-hydrazine) and advanced 

monopropellants [158, 159]. In this thesis, impulsive manoeuvres implemented by 

chemical propulsion are considered to capture NEAs.  

If the flight time is long enough, low-thrust propulsion with a high specific impulse, 

such as the electric propulsion, can be used to increase the range of candidate NEAs for 

capture and the retrieved mass, since high specific impulse can enable better efficiency of 

propellant consumption, and thus the payload of the mission can be increased dramatically. 

With the development of such technology, low thrust propulsion has gradually become a 

primary propulsion technology for some missions, including Deep Space 1 [28] and the 

Small Missions for Advanced Research in Technology (SMART-1) [160]. In particular, 

Deep Space 1 is the first spacecraft to use low-thrust propulsion (i.e. electric propulsion) 

and flew by asteroid 9969 Braille and comet 19P/Borrelly. Nevertheless, low-thrust 

electric propulsion can only produce a low thrust and therefore the propulsion system has 

https://en.wikipedia.org/wiki/19P/Borrelly
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to operate for a long duration in order to achieve the required velocity increment during 

transfer manoeuvres.  

With such a long duration, the thrust magnitude and direction time history are 

unknown parameters, and thus it is difficult to design optimal low-thrust trajectories. 

Consequently, this optimisation problem has been studied extensively and the proposed 

methods for solving such problems can typically be classified as direct and indirect 

methods [161]. Indirect methods transcribe the optimisation problem into a two-point 

boundary value problem (TPBVP), in which some unknown costates and additional 

constraint equations are introduced. The TPBVP can usually be solved using the shooting 

method indirectly, where the shooting function is sensitive to the initial approximation of 

the costate variables which induces a very narrow convergence radius. Nevertheless, 

indirect methods often have rapid convergence compared to direct methods. The idea of 

the direct method is to convert the optimal control problem into a nonlinear programming 

(NLP) problem by parameterizing the control via explicit integration, and then to solve this 

problem by minimising the performance index. Sometimes additional design variables are 

added to increase the convergence domain, and thus the convergence domain of the direct 

method is usually larger than that of the indirect method. However, the results obtained 

from the direct methods are usually less optimal due to the parameterization in the 

conversion to NLP.  

With respect to the application of low thrust propulsion to capturing NEAs, advanced 

solar electric propulsion (SEP) with a specific impulse of 3000 s was proposed to be used 

in the ARM mission [39]. Moreover, following the definition of EROs, low thrust was then 

considered to capture these asteroids onto periodic orbits around the Sun-Earth libration 

points using their stable manifolds [18, 51, 52]. Besides, Mingotti, et al. [53] proposed to 

combine low thrust propulsion and a patched three-body model to capture EROs into the 

Earth-Moon system. Again, to solve the problems caused by uncertainties in the target 

asteroid mass and injection manoeuvres, Ceriotti and Sanchez [57] proposed a control 

strategy using low thrust.  

 

1.3 Objectives 

The main objective of this thesis is to investigate asteroid capture strategies in order to 

achieve low energy capture of NEAs in the vicinity of the Earth, including the 

neighbourhood of the Moon, the Sun-Earth libration points L1 and L2, and bound orbits 

https://en.wikipedia.org/wiki/Solar_electric_propulsion
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about the Earth itself. In order to achieve the main goal of this thesis, a series of secondary 

objectives are set as follows, 

 

 When the NEA is captured in the vicinity of the Earth, it poses a potential impact 

risk. Therefore, asteroid hazard analysis should be undertaken to select appropriate 

candidate NEAs which would be disintegrated by the Earth’s atmosphere for NEA 

capture and return missions; 

 Considering the lower cost but longer transfer strategy of capturing NEAs in the 

Earth-Moon system by patching together the Sun-Earth CRTBP and Earth-Moon 

CRTBP, a relatively faster transfer of capturing NEAs in the vicinity of the Moon 

will be developed to balance the total cost in terms of velocity increment and flight 

time; 

 The utilisation of the invariant manifolds can enable low energy transfers of 

capturing NEAs into periodic orbits around the Sun-Earth CRTBP. Accordingly, 

the combination of the invariant manifolds and other methodologies such as Earth 

flyby and momentum exchange will be investigated to further reduce the total cost 

of capturing NEAs into Sun-Earth periodic orbits; 

 Aerobraking can enable NEAs to be captured around the Earth with extremely low 

energy. However, the mass loss of NEAs due to ablation when aerobraking and the 

mass of the transfer vehicle required should be taken into account. Therefore, 

optimisations using the ratio of the mass of the captured NEA to the mass of the 

spacecraft as the objective function will be carried out to maximize the yield of the 

asteroid capture mission. 

1.4 Thesis outline 

The main objective of this thesis is to investigate asteroid capture strategies in order to 

achieve low energy capture of NEAs in the vicinity of the Earth. The thesis is divided into 

7 chapters which introduce different aspects of the research on these strategies. Each 

chapter discusses the method adopted and the detailed design procedure for capturing 

NEAs, and subsequently results are presented with the application of the theory. The thesis 

is organised as follows:  
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Chapter 2 summarises the dynamical models required for mission design for capturing 

NEAs. In this Chapter, the two-body problem, the model of the circular restricted three-

body problem and the model of the Sun-Earth-Moon four-body problem are presented and 

their applications in the following sections are also described.  

Chapter 3 introduces two types of lunar asteroid capture strategies, the direct and 

indirect capture. In the direct capture strategy, the target points on the stable manifolds 

associated with periodic orbits around the Earth-Moon L2 point are filtered and the three-

dimensional orbital element space is investigated to select candidate NEAs which have the 

potential to be captured with a total cost below 500 m/s. The single shooting differential 

correction method in the Sun-Earth-Moon restricted four-body problem is developed to 

generate the transfer trajectory from the asteroid’s initial orbit to the stable manifold 

associated with Earth-Moon L2 point, using a Lambert arc in the Sun-asteroid two-body 

problem as an initial guess. Accordingly, a global optimisation is carried out. On the other 

hand, the indirect capture strategy is accomplished by patching together invariant 

manifolds in the Sun-Earth CRTBP and Earth-Moon CRTBP systems. Finally, both 

capture strategies are also applied to consider the capture of asteroids at the triangular 

libration points in the Earth-Moon system. Results show that the direct asteroid capture 

strategy needs a shorter flight time compared to an indirect asteroid capture, while the 

indirect capture strategy can more easily achieve low energy capture of NEAs with a 

longer flight time.  

Chapter 4 presents the concept of coupling together a flyby of the Earth and then 

capturing small NEAs onto Sun–Earth L1 or L2 periodic orbits. In this Chapter, the model 

of an aerobraking manoeuvre is firstly introduced and then the height threshold for 

aerobraking above the Earth’s surface is determined. Then, according to the height of the 

flyby orbit at perigee, two types of the Earth flyby are determined, an Earth flyby with and 

without high altitude aerobraking. In particular, the aerobraking phase is investigated to 

calculate aerobraking opportunities and windows for capture to periodic orbits. After 

selecting appropriate candidate NEAs and calculating the NEA capture window, transfers 

for NEA capture with and without an Earth flyby are optimised. Results indicate that the 

NEA capture strategy using an Earth flyby with and without aerobraking both have the 

potential to be of lower cost than capture directly onto the stable manifold of the target 

orbit. Moreover, the NEA capture strategies using an Earth flyby also have the potential to 

save flight time.  

Chapter 5 investigates the concept of capturing small NEAs onto bound orbits around 

the Earth (rather than Lagrange points) by using aerobraking. In this Chapter, the capture 

conditions in the CRTBP system are firstly analysed. Then, a Lambert arc in the Sun-
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centred two-body problem is utilised to estimate the asteroid capture windows and two 

modes of aerobraking are determined, corresponding to retrograde orbits and prograde 

orbits. Then, two strategies to raise the perigee height of the asteroid orbit soon after 

aerobraking are considered. In the first case, an additional propulsive manoeuvre is 

required to raise the height of next perigee, and thus two manoeuvres are required to 

capture NEAs at the Earth. In the second case, the solar gravitational perturbation is used 

to raise the height of the asteroid perigee and an estimation of the change in perigee height 

under solar gravitational perturbations is used as a fundamental filter for the solution space 

in the following optimisation. Finally, a global optimisation is undertaken, and thus the list 

of the best candidate NEAs is obtained. It is found that aerobraking can enable candidate 

asteroids to be captured around the Earth with extremely low energy. 

Chapter 6 describes a strategy for capturing small NEAs onto bound periodic orbits at 

the Sun-Earth L1 and L2 points using momentum exchange, such as kinetic impacts and the 

use of tethered assists. First, the minimum mass ratio of the large NEA and small NEA is 

defined to guarantee that the large NEA orbit is almost unchanged before and after 

momentum exchange. In the capture strategy using kinetic impacts, the optimal impact 

direction between the two asteroids is determined by analysing the collision geometry. 

Since the outcome of the impact depends on the material composition of the NEAs two 

types of NEAs are considered: basalt and metallic asteroids. In the capture strategy using 

the tethered assist, the maximum velocity increment provided by the tethered assist is 

firstly investigated by analysing the tether tension. Then, two different tether materials are 

considered to compare their performance. Finally, transfers for asteroid capture with and 

without using momentum exchange are optimised and results show that the capture 

strategy with momentum exchange can achieve more efficient capture for some NEAs. On 

the other hand, the flight time for NEA capture using momentum exchange is longer than 

that without momentum exchange. 

Chapter 7 concludes the thesis and provides a summary of the thesis findings. 

Furthermore, current limitations of the work presented in the thesis are discussed, and 

proposed directions for future research are presented. 

1.5 Publications 

The contents of this thesis have been published, or submitted for publication in four 

journal papers, corresponding to the four technical Chapters of the thesis, respectively.  
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The study on direct and indirect strategies for capturing NEAs in the Earth-Moon 

system was published in Celestial Mechanics and Dynamical Astronomy [45]. It was 

demonstrated that a relatively fast transfer for capturing NEAs can be obtained in the direct 

capture strategy, while the indirect capture strategy can easily achieve low energy 

transfers. This work will be presented in Chapter 3. 

Earth flyby and aerobraking strategies were investigated to reduce the total cost of 

capturing NEAs into periodic orbits around the Sun-Earth libration points and published in 

Advances in Space Research [44]. In this study, the height threshold for aerobraking was 

defined and therefore Earth flybys with and without aerobraking were developed to capture 

NEAs with low energy. This work will be presented in Chapter 4. 

A general analysis of aerobraking was undertaken to design low energy capture of 

NEAs into bound orbit around the Earth and has been submitted to Acta Astronautica [80]. 

It was found that aerobraking can enable NEAs to be captured around the Earth with 

extremely low energy. Moreover, considering the considerable mass loss of the asteroid 

during aerobraking, the ratio of the mass of the captured NEA after aerobraking to the 

mass of the transfer vehicle is defined to measure the yield of the asteroid capture mission. 

This work will be presented in Chapter 5. 

Finally, momentum exchange theory was investigated to capture NEAs around the 

Sun-Earth libration points. Due to the uncertain properties of NEAs, two different asteroid 

materials were investigated to study the outcome of collisions. Meanwhile, two different 

tether materials were also considered for momentum exchange. According to the geometry 

of collisions and the tether tension, optimisations were carried out. This work was 

published in the Journal of Guidance, Control, and Dynamics [46] and it will be presented 

in Chapter 6. 

 

The list of the publications stated above is as follows: 

 

 Tan, M., McInnes, C.R., and Ceriotti, M. "Direct and indirect capture of near-

Earth asteroids in the Earth–Moon system," Celestial Mechanics and Dynamical 

Astronomy, Vol. 129, pp. 1-32, 2017. 

 Tan, M., McInnes, C.R., and Ceriotti, M. "Low-Energy Near-Earth Asteroid 

Capture Using Momentum Exchange Strategies," Journal of Guidance, Control, 

and Dynamics, Vol. 41, pp. 632-643, 2017. 

http://eprints.gla.ac.uk/view/journal_volume/Celestial_Mechanics_and_Dynamical_Astronomy.html
http://eprints.gla.ac.uk/view/journal_volume/Advances_in_Space_Research.html
http://eprints.gla.ac.uk/view/journal_volume/Journal_of_Guidance,_Control,_and_Dynamics.html
http://eprints.gla.ac.uk/view/author/15307.html
http://eprints.gla.ac.uk/view/author/15307.html
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 Tan, M., McInnes, C.R., and Ceriotti, M. "Low-energy near Earth asteroid capture 

using Earth flybys and aerobraking," Advances in Space Research, Vol. 61, pp. 

2099-2115, 2018. 

 Tan, M., McInnes, C.R., and Ceriotti, M. “Capture of small near-Earth asteroids to 

Earth orbit using aerobraking”, Acta Astronautica (In press), 2018 

 

 

 

http://eprints.gla.ac.uk/view/author/15307.html
http://eprints.gla.ac.uk/view/author/15307.html
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CHAPTER 2  

DYNAMICAL MODELS 

This chapter introduces a number of dynamical models which are utilised to design the 

families of transfer trajectories for capturing NEAs in this thesis. The applications of these 

models in the thesis are summarized as follows: 

(1) Two-body problem model: In this thesis it is assumed that the motion of a candidate 

asteroid is modelled in the Sun-centred two-body problem before it is captured. 

The Lambert problem [162] in the two-body problem will therefore be applied to 

design the transfer trajectory between the asteroid orbit and the stable manifold in 

the Sun-Earth system in Chapter 3 and Chapter 6. Moreover, the Lambert arc can 

be used as an initial guess to design the direct transfer for a captured asteroid from 

its initial orbit to the stable manifold in the Earth-Moon system in Chapter 3. In 

addition, based on this model, the two-body orbital elements will be introduced to 

predict the motion of the captured asteroid after it has been captured around Earth 

using aerobraking in Chapter 5. 

(2) Model of the circular restricted three-body problem: This model will be introduced 

to calculate periodic orbits around the libration points and their associated stable 

manifolds. These periodic orbits are used as the final target orbit on which captured 

asteroids are placed, and their associated stable manifolds serve as a pathway 

which the captured asteroid will wind on to in Chapter 3, Chapter 4 and Chapter 6. 

Once inserted onto the stable manifold, the candidate asteroid will be 

asymptotically captured into the target periodic orbit without any further 

manoeuvres. Besides, this model will also be used to design transfer trajectories for 

capturing asteroids around the Earth using aerobraking in Chapter 5. 

(3) Model of the Sun-Earth-Moon four-body problem: This model will be used to 

design the direct transfer of capturing an asteroid from its initial orbit to the stable 

manifold in the Earth-Moon system in Chapter 3. 
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2.1 Two-body problem 

In this thesis it is assumed that the motion of a candidate asteroid is modelled in the Sun-

centred two-body problem before the first manoeuvre for capture is applied. Again, some 

transfer trajectories for capturing asteroids will be also designed in the two-body problem, 

e.g. transfer from a candidate asteroid’s initial orbit to the stable manifold in the Sun-Earth 

system in Chapter 3, Chapter 4 and Chapter 6. In this model, it is assumed that a small 

body (e.g. an asteroid or spacecraft) moves around a large central body. In an inertial frame 

which is centred at the large central body, the motion of the small body can be written as 

[163] 

 1 2

3

( )G m m
=

r


r r  (2.1) 

where r is the relative position vector of the small body with respect to the large central 

body; G is the gravitational constant; m1 and m2 are the mass of the central body and the 

small body respectively. The gravitational parameter 1 is then defined as  

 1 1 2( )G m m    (2.2) 

It should be noted that if the mass of the small body is always negligible, compared to 

that of the central body, the gravitational parameter can be simplified as 

 1 1Gm   (2.3) 

Hence, Eq. (2.1) can be written as 

 1

3
=

r


r r  (2.4) 

In this thesis, the gravitational parameters assumed for the Sun-centred two-body 

problem and the Earth-centred two-body problem are Sun= 1.32712441011 km3/s2 and 

Earth= 3.9860044105 km3/s2, respectively 2.  

Moreover, the magnitude of the relative position vector r can be written as 

 

2

1

1

1 cos

h
r

e 



 (2.5) 

                                         
2 https://ssd.jpl.nasa.gov/?constants 
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where e is the orbit eccentricity and  is the true anomaly of the small body around the 

central body, measured from the periapsis, as shown in Fig. 2.1. Moreover, h is the relative 

angular momentum of the small body per unit mass and can be written as 

  h r v , v = r  (2.6) 

where v is the velocity vector of the small body. 

According to different values of the orbit eccentricity e, orbits in the two-body 

problem can be divided into four types: circular orbit, elliptical orbit, parabolic orbit and 

hyperbolic orbit, corresponding to e = 0, e < 1, e = 1, e > 1. The distance from the periapsis 

on these orbits to the central celestial body can be obtained when 0  , as follows 

 

2

1

1
(1 )

1
p

h
r a e

e
  


 (2.7) 

where a is the semi-major axis of the orbit and thus can be computed by 

 

2

1

1

1

h
a

e



 (2.8) 

 

Fig. 2.1 Geometry of the two-body problem. 

2.1.1 Orbital elements 

The angular momentum h can define the orbit plane. As shown in Eq. (2.8), the semi-

major axis a of the orbit can be calculated from these two parameters. Besides, the true 

anomaly  is required to locate a point on this orbit, as shown in Fig. 2.1. However, these 

parameter cannot describe the orientation of the orbit in three dimensions. Therefore, 

additional parameters must be used, as shown in Fig. 2.2. It should be noted that in Fig. 

m1

m2

Periapsis

r

v





Chapter 2 Dynamical models 

 

27 
 

2.2, the X-axis points to the vernal equinox direction, the Y-axis is perpendicular to the X-

axis in the equatorial plane of the central body and the Z-axis is perpendicular to the X-Y 

plane, measured according to the right-hand rule. 

 

Fig. 2.2 Geometry of the orbital elements. 

As shown in Fig. 2.2, the nodal line is the intersection of the orbital plane and the 

equatorial plane, and thus the ascending node is defined as the intersection point of the 

nodal line with the orbit. Therefore, the first angle, the right ascension of the ascending 

node , is defined as the angle between the positive X-axis and the nodal line, with a range 

from 0 to 2.  

The second angle is the orbit inclination i, the angle between the orbit plane and the 

equatorial plane, measured according to the right-hand rule. The range of the inclination i 

is from 0 to . 

The eccentricity vector e is a line from the central body to the periapsis on the orbit 

and the third angle, the argument of perigee , is the angle between the nodal line and the 

eccentricity vector e, measured in the plane of the orbit. The range of the argument of 

perigee  is from 0 to 2. 

In summary, the six orbital elements which are used in this thesis are listed as follows: 

 a: semi-major axis. 

 i: inclination. 

 e: eccentricity. 

Ascending

Node
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 : right ascension of the ascending node. 

 : argument of perigee. 

 : true anomaly. 

The transformation between the positon and velocity vector and the orbital elements 

can be obtained from [163].  

2.1.2 Lambert arc 

Lambert’s problem is a key problem to determine the transfer trajectory which connects 

two position vectors r1 and r2 with respect to the central celestial body in space, with a 

given flight time t and number of orbit revolutions, as shown in Fig. 2.3. A Lambert arc is 

a coast arc which is obtained by solving Lambert’s problem [162]. Once the two position 

vectors, the flight time and number of revolutions are given, the velocity vectors at the 

boundaries of the Lambert arc can be calculated, by using a multi-revolution Lambert 

solver which is based on the Battin’s method [162]. In this method, the geometric orbital 

transformation for the Lambert’s problem is first proposed to avoid the singularity when 

the transfer angle is . Then the transfer time equation for the Lambert's problem is 

formulated in the transformed orbit and the solution of the Lambert's problem can be 

obtained by solving the transfer time equation. Consequently, the velocity increments 

required for the Lambert arc can be obtained. Denoting the velocity increments at the 

beginning and endpoint of the Lambert arc as  1v  and  2v , respectively, the total velocity 

increment required for the Lambert arc can be written as  

 1 2v v v     (2.9) 

The Lambert arc can be used to design transfer trajectories between different orbits for 

interplanetary transfer missions. In this thesis, the Lambert problem in the context of the 

two-body problem will be used to design the transfer trajectory between an asteroid orbit 

and stable manifolds in the Sun-Earth system in Chapter 3. Moreover, the Lambert arc can 

be used as an initial guess to design a direct transfer to capture asteroids from an initial 

orbit to stable manifolds in the Earth-Moon system in Chapter 3. In addition, the Lambert 

arc will act as an effective tool to design the transfer trajectory between the two asteroid 

orbits, along with the transfer trajectory which connects the asteroid orbit and stable 

manifolds in the Sun-Earth system in the asteroid capture strategy using momentum 

exchange in Chapter 6. 
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Fig. 2.3 Schematic diagram of the Lambert problem. 

2.2 Circular restricted three-body problem 

For some trajectories the motion of a small body under the gravitational attraction of more 

than one body, such as the Sun, planets or moons must be considered. In such cases, the 

problem can be simplified as a restricted problem, when the mass of the small body is 

negligible compared with that of the other bodies. Amongst these restricted problems, the 

circular restricted three-body problem (CRTBP) considers the motion of a small body (the 

third body), which moves under the gravitational attraction of two primary bodies, e.g. Sun 

and Earth or Earth and Moon, etc. Here we denote the masses of the larger primary body, 

the smaller primary body and the third body as m1, m2 and m3 respectively. In this model, it 

is assumed that the two primary bodies moves in circular orbits around their common 

centre-of-mass. Since these two primaries are only influenced by their mutual attraction, 

the motion of the two primaries can be modelled as a two-body problem which is centred 

at their common centre-of-mass. Therefore, the motion of the small body at position R in 

an inertial frame (X, Y, Z) which is centred at this common centre-of-mass can be written 

as  

 
1 2

1 23 3

1 2

=
R R

 
 R R R  (2.10) 

where 1 and 2 are the gravitational parameters of the two primary bodies; R1 and R2 are 

the position vector of the third body with respect to the two primary bodies which can be 

written as  

Lambert 

arc

r2

 1v

 2v

r1

m1
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 1 1p R R R , 2 2p R R R  (2.11) 

where Rp1 and Rp2 are the position vectors of the two primary bodies in a inertial frame, 

centred at their barycentre, which can be considered as a two-body problem. 

It should be noted that in the CRTBP the two primaries move with a constant angular 

velocity around their barycentre and thus R is a function of the angular velocity. To 

eliminate this angular velocity dependence, a coordinate frame (x, y, z) centred at the 

barycentre of the two primary bodies and rotating synchronously with them is introduced, 

termed the rotating frame. In this frame, the distance between the two primaries, the total 

mass and the angular velocity of two bodies are normalized to unity. Moreover, the x-axis 

of the rotating frame extends from the barycentre to the smaller primary body, the y-axis is 

perpendicular to the x-axis in the plane of the two primaries and the z-axis is perpendicular 

to the x-y plane, defined according to the right-hand rule. For a given CRTBP, there exists 

a mass parameter  which can be defined as [164] 

 
2

1 2

m

m m
 


 (2.12) 

After normalization, the orbital period of the two primaries is then equal to 2. 

Besides, the masses of the larger and smaller primaries are equal to 1 − μ and μ, 

respectively. The coordinates of the two primaries body in the rotating frame are then [−μ, 

0, 0] and [1 − μ, 0, 0], respectively, as shown in Fig. 2.4, Therefore, the equations of the 

CRTBP can be written as [164] 

 2x y
x


 


, 2y x

y


 


, z

z





 (2.13) 

where the effective potential  is given by 

2 2

1 2

1 1
( , , , ) [( ) (1 )]

2
x y z x y

r r

 
  


        

2 2 2 1/2

1 [( ) ]r x y z    , 2 2 2 1/2

2 [( 1 ) ]r x y z      

and where r1 and r2 are the distances of the third body to the two primary bodies, scaled by 

the distance between the two primary bodies. It should be noted that different CRTBP 

systems have different values of . In this thesis, the focus is on the Sun-Earth CRTBP and 

Earth-Moon CRTBP systems. The mass parameters assumed for these two system are μ = 
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mMoon / (mEarth + mMoon) = 1.21510-2 and μ = mEarth / (mSun + mEarth) = 3.003510-6, 

respectively. 

The position of the smaller primary body in an inertial frame, which is centred at the 

barycentre of the two primaries, can be described by the angle , shown in Fig. 2.4. Here 

we denote the state of the CRTBP system in the rotating frame and in the inertial frame by 

roX  and inX  respectively. Thus we have the transformation 

 ( )in roX R X , [0,2 ]   (2.14) 

 1( )ro in
X = R X , [0,2 ]   (2.15) 

where ( )R  the rotation matrix and it can be written as 
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 
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Fig. 2.4 Geometry of the CRTBP system in the frame xyz and in an inertial frame XYZ. 

2.2.1 Libration points and Jacobi constant 

For the CRTBP, there are five Lagrange equilibrium points, also known as the libration 

points, Li, (i = 1, 2 . . .5). The coordinates of the libration points can be computed such that  
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0, 0, 0

0, 0, 0

x y z

x y z

  


  
 (2.16) 

When substituting Eq. (2.16) into Eq. (2.13), the coordinates of the libration points can 

be obtained, with the coordinates of the libration points of the Sun-Earth CRTBP and 

Earth-Moon CRTBP system listed in Table 2.1. Figure 2.4 shows the geometry of the 

libration points in the Earth-Moon CRTBP. As shown in Fig. 2.5, L1-L3 lie on the x-axis 

and thus they are termed the collinear libration points. Moreover, L4 and L5 are termed the 

triangular libration points, since the two primary bodies and these two libration points are 

located at the vertices of equilateral triangles. The third body will be stationary at these 

libration points if it has no initial velocity. However, the collinear libration points L1-L3 are 

unstable. This dynamical characteristic is useful and accordingly invariant manifolds can 

be defined to achieve low-energy transfers [97, 157]. Furthermore, the triangular libration 

points are stable in the Earth-Moon CRTBP. For this reason, it may be of interest to 

capture an asteroid and place it on a periodic orbit around the triangular L4 and L5 points in 

the Earth-Moon system.  

From Eq. (2.13), it can be shown that 

 xx yy zz x y z
x y z

  
    

  
 (2.17) 

Thus, Eq. (2.17) becomes  

 
2 2 21

( )
2

d d
x y z

dt dt


    (2.18) 

From Eq. (2.18), it can be seen that the dynamics of the CRTBP permit an integral of 

motion to exist in the rotating frame. In the CRTBP this is termed the Jacobi constant C, 

and can be obtained as follows [97] 

 2 2 22 ( , , , ) ( )x y z x y z C      (2.19) 

From Eq. (2.19), it can be seen that the C will decrease when the third body (m3) 

increases its velocity. Since the velocity of the third body (m3) is always positive, C cannot 

exceed 2 ( , , , )x y z   at a given location and so it will define an allowed region of motion 

and a forbidden region, as discussed in the next section. Furthermore, the Jacobi constant 

of the third body is constant, unless a manoeuvre is required.  



Chapter 2 Dynamical models 

 

33 
 

Table 2.1 Coordinates of the libration points in the Earth-Moon and Sun-Earth systems. 

Libration 

point 

Earth-Moon system Sun-Earth system 

x y x y 

L1 0.836918 0 0.989991 0 

L2 1.155680 0 1.010070 0 

L3 1.005062 0 1.000001 0 

L4 0.5  μ 3 / 2  0.5  μ 3 / 2  

L5 0.5  μ 3 / 2  0.5  μ 3 / 2  

 

 

 

Fig. 2.5 Geometry of the libration points in the Earth-Moon CRTBP system. 

2.2.2 Zero-velocity surfaces  

As noted in Section 2.2.1, the Jacobi constant C cannot exceed 2 ( , , , )x y z   at a given 

location and the threshold of this case defines the zero-velocity surface. The zero-velocity 

surface represents a boundary the third body with a given Jacobi constant cannot cross and 

can be computed when 

 2 2 2 0x y z    (1.20) 

An example of zero-velocity surfaces in the Earth-Moon CRTBP system is shown in 

Fig. 2.6. The zero-velocity surface can be utilised to analyse the possible region of the third 

body’s motion near the primary bodies, especially the smaller primary. 

MoonEarth

L2L1

L3

L4

L5

x

y
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(a) 

 

(b) 

 

(c) 

Fig. 2.6 Zero-velocity surface in the Earth-Moon CRTBP system with Jacobi constant C = 3.16: (a) 3D 

view; (b) x-y projection; (c) x-z projection. 

The zero-velocity curve is the planar case of the zero-velocity surface, when z = 0. 

Since the zero-velocity curve is more intuitive than the zero-velocity surface, the zero-

velocity curve is an alternative way to determine the possible region of the third body’s 

motion in the CRTBP. Figure 2.6 shows the zero-velocity curve in the Earth-Moon system 

with different Jacobi constants C. For the CRTBP, there are five specific Jacobi constants, 

corresponding to the five libration points. Here we define the Jacobi constant at the 

libration point Li (i = 1 - 5) as Ci (i =1 - 5). Table 2.2 shows the Jacobi constants at five 

libration points in the Earth-Moon CRTBP and Sun-Earth CRTBP system and we can note 

that C1 > C2 > C3 > C4 = C5. Figure 2.7 shows an example of the zero-velocity curves in 

the Earth-Moon CRTBP system with different Jacobi constants C. 
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Table 2.2 Jacobi constant at the libration points of the Earth-Moon and Sun-Earth systems. 

Libration 

point 

Jacobi 

constant Ci 

Jacobi constant in the 

Earth-Moon CRTBP 

Jacobi constant in the 

Sun-Earth CRTBP 

L1 C1 3.188336 3.000897 

L2 C2 3.172156 3.000893 

L3 C3 3.012147 3.000003 

L4 C4 2.987998 3.000106 

L5 C5 2.987998 3.000106 

 

         

(a) (b) (c) 

 

         

(d) (e) (f) 

Fig. 2.7 Zero-velocity curve, possible region of motion (white) and forbidden region (grey) in the 

Earth-Moon CRTBP system with (a) C = C1; (b) C2 < C < C1; (c) C = C2; (d) C = C3; (e) C4 = C5< C <C3; 

(f) C = C4 = C5. 

As shown in Fig. 2.7, for C > C1, the possible region of motion is composed of two 

separate oval regions centred at the two primary bodies (e.g. Earth and Moon) and an outer 

region beyond the outer zero-velocity curve. When C = C1, the two inner oval regions 

merge at L1, as shown in Fig. 2.7(a). With a decrease of the Jacobi constant, the two inner 

regions connect and they become a single inner region (See Fig. 2.7(b)). When C = C2, the 
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inner region and outer region merge at L2 and then they connect with each other with the 

further decrease of C, as shown in Fig. 2.7(c). When C = C3, the forbidden region separates 

into two parts at L3, as shown Fig. 2.7(d). When C4 = C5 < C <C3 and C decreases, the two 

forbidden regions gradually reduce in size (See Fig. 2.7(e)) until these two separate regions 

disappear at L4 and L5, respectively when C = C4 = C5, as shown in Fig. 2.7(f). In 

particular, for the Sun-Earth CRTBP system, C1 and C2 are critical since they can be used 

as capture conditions to determine whether a candidate asteroid can be captured nor not, 

when it approaches the vicinity of the Earth. This will be discussed further in Chapter 5. 

2.2.3 State Transition and Monodromy Matrices 

The state transition matrix reflects the linear influence of a small deviation to a reference 

trajectory in the CRTBP. It is particularly useful when calculating periodic orbits around 

the libration points and their associated invariant manifolds. Denoting the state of the 

CRTBP system as ( , , , , , )x y z x y zX , its derivative can be written as 

 ( , , , , , )x y z x y zX  (2.21) 

Thus, the equations of the CRTBP in Eq. (2.13) can be simplified as  

 ( , )f tX = X  (2.22) 

Let δx be a small deviation from the reference trajectory so that 

 ( , )f t X + x = X + x  (2.23) 

Then using a Taylor series expansion to expand ( , )f tX + x  and neglecting terms higher 

than the first order, the linear expansion can be obtained as follows 

 
( , )f t

 




X
x = x

X
 (2.24) 

The general solution to the equation above is 

 0 0( ) = ( , ) ( )t t t t X X  (2.25) 

where 0( , )t t  is the state transition matrix which can be calculated as [97] 

 0 0( , ) = ( ) ( , )t t t t t A , 0 0 6 6( , ) =t t  I  (2.26) 
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and where 
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 
   

 

For a periodic orbit around the libration points, if the state transition matrix is 

propagated for one full revolution, a specific state transition matrix, termed the 

monodromy matrix, T can be written as 

 0 0( , )T pt T t    (2.27) 

where Tp is the period of the periodic orbit. 

In this thesis, a standard Runga-Kutta fourth-order integration method with a tolerance 

10-12 is used for the numerical simulations, including the calculation of the transformation 

matrix, periodic orbits, invariant manifolds and differential corrections. The state transition 

and monodromy matrices have widespread use in the calculation and correction of periodic 

orbits around the libration points and their associated invariant manifolds in the Earth-

Moon CRTBP system and Sun-Earth CRTBP system.  

2.2.4 Periodic orbits around L1/L2 

Families of periodic orbits around the collinear libration points L1 and L2 in the CRTBP 

have been studied extensively [165-170]. There are two key classes of periodic orbits: halo 

orbits and Lyapunov orbits. For a periodic orbit around the L1 or L2 point, the third order 

Richardson expansion can be derived from the Lindstedt–Poincaré method as follows 

[165] 
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where Ax and Az are the amplitudes of the periodic orbit along the x-axis and z-axis, 

respectively; n = 1 and the values of the remaining coefficients in Eq. (2.28) can be 

found in Ref. [165]. It should be noted that, the origin of the coordinate frame (, , ) is 

located at one of the collinear libration points and the - plane of this coordinate frame 

coincides with x-y plane in the Earth-Moon rotating frame. Moreover, the -axis points 

from the larger primary body to the libration point, the -axis is perpendicular to the -axis 

in the plane of the two primaries and the -axis is perpendicular to the - plane, defined 

according to the right-hand rule. The third order Richardson expansion in Eq. (2.28) can 

provide a good approximation of the initial state of a periodic orbit around the L1 or L2 

points after which the accurate initial states of such periodic orbits can be computed by 

utilising the differential correction method [171]. Following this process, examples of a 

Lyapunov orbit and halo orbit around the Earth-Moon L2 point are shown in Fig. 2.8 and 

Fig. 2.9, where the unit of length is the Earth-Moon distance (EM unit). 

 

Fig. 2.8 A Lyapunov orbit with an initial guess when Ax = 0.15, Az = 0 in Eq. (2.28). 

It should be noted that the third order Richardson expansion can be used to compute 

families of Halo orbits. However, the family of planar Lyapunov orbits can be viewed as a 

special kind of halo orbit when the amplitude along the z-axis is zero. Therefore the 

analytical approximation in Eq. (2.28) is still valid to calculate Lyapunov orbits for small 

sizes. In practical computations, the analytical approximation is only used as an initial 

guess for a periodic orbit (both Lyapunov orbit and halo orbit) with small sizes. Then, the 

accurate initial state of the periodic orbit is again calculated using the differential 

correction method. Moreover, the families of periodic orbits can be calculated using the 

continuous method. In detail, this accurate initial state of the periodic orbit is the used as 

the initial guess to obtain the accurate initial state of a new periodic orbit with a slightly 
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larger displacement in amplitude along the x-axis (Lyapunov orbit) or z-axis (halo orbit). 

Repeating this process provides a series of periodic orbits with increasing energy, or 

decreasing Jacobi constant. This will be discussed further in Chapters 3, 4 and 6. 

     

(a) (b) 

              

(c) (d) 

Fig. 2.9 Halo orbits with an initial guess when Ax = 0.15, Az = 0.38 in Eq. (2.28): (a) 3D view; (b) x-y 

projection; (c) x-z projection; (d) y-z projection. 

2.2.5 Periodic orbits around L4/L5 

In the Earth-Moon CRTBP model, the triangular points L4 and L5 are stable. Even when 

the eccentricity of the lunar orbit and the influence of the solar radiation pressure are taken 

into account, the resulting instability of the triangular points is still much weaker than that 

of the collinear points [172]. This means that station-keeping does not require significant 

energy. Therefore, the vicinity of the triangular points in Earth-Moon system could be a 

preferred location for parking orbits for captured asteroids. However, the stability 

properties of the triangular points are also a disadvantage because there are no dynamical 
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structures such as the stable or unstable invariant manifolds which can be utilised to design 

low-cost transfer trajectories, as will be discussed further in Chapter 3. 

In a rotating frame centred at one of the triangular points, the linearized solution for 

motion in the x–y plane around triangular points can be expressed as [164, 172]: 
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where 

0

i i xyw    , 2i i in    , 
2 0

1
i

i yy
 


 

i i it     (i=1, 2), ( )xy
y x

 
 

 
 

2

2yy
y

 
 


, 1

27

4
  , 2

27
1

8
    

and 
0

xy , 
0

yy  are the values of xy , yy  at the triangular points, respectively and the 

other parameters are defined in [3,10]. 

There are then two families of periodic orbits around the triangular points, long-period 

orbits and short-period orbits which are defined by the components 1 and 2, respectively 

in Eq. (2.29) [164]. The coefficients 1  and 2  correspond to the amplitudes of the short 

periodic orbit and long periodic orbit, respectively. In addition i (i = 1, 2) represents the 

initial phase angle. Generally speaking, the short-period orbits are much more stable than 

the long-period orbits, under given perturbations. Therefore, in this thesis, short-period 

orbits are chosen as the target orbit and an example of a short-period orbit around the L4 

and L5 points in the Earth-Moon system is shown in Fig. 2.10. From Fig. 2.10, it can be 

seen that the short-period orbits around the L4 and L5 points are symmetric with respect to 

the x-axis. 

2.2.6 Invariant manifolds 

As stated in Section 2.2.1, the collinear libration points L1 and L2 are unstable and thus a 

particle which is placed at these points with zero relative velocity would derivate from 

them under a small perturbation. Moreover, such dynamical characteristics are also present 

for the unstable periodic orbits (Lyapunov orbits and halo orbits) around L1 and L2. To 
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describe this dynamical characteristic, the invariant manifolds associated with periodic 

orbits around the collinear L1 and L2 libration points are defined as trajectories which 

asymptotically approach or depart from these target periodic orbits [97]. The stable 

manifold WS associated with a periodic orbit consists of all trajectories that reach this target 

periodic orbit along the periodic orbit’s stable eigenvector. The unstable manifold WU 

associated with a periodic orbit includes all possible trajectories that depart from this target 

orbit along the target orbit’s unstable eigenvector. Therefore, the stable manifold in the 

CRTBP can be calculated by propagating backwards from an initial condition as follows 

 0S S X X V  (1.30) 

and the unstable manifold can be computed by propagating forward from the following 

initial condition 

 0U U X X V  (1.31) 

where SV  and UV are the stable and unstable eigenvectors of the monodromy matrix T  

evaluated at a point 0 0 0 0 0 0 0[ , , , , , ]Tx y z x y zX  on the periodic orbit. The parameter   

represents the magnitude of the perturbation, in the direction of the stable and unstable 

eigenvectors, between the periodic orbit and the initial condition of the stable and unstable 

manifolds. Gómez, et al. [173] suggested values of ɛ corresponding to non-dimensional 

position displacements of order 10-6 and a value on the order of 10-4 used for the Earth-

Moon system [174]. In this thesis, values of ɛ are selected to be 2  10-4 and 2  10-6 for 

the Earth-Moon CRTBP and Sun-Earth CRTBP, respectively. An example of stable 

manifolds and unstable manifolds associated with a Lyapunov orbit around Earth-Moon L2 

point is shown in Fig. 2.11.  
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Fig. 2.10 Short-period orbits around the triangular points L4 and L5 points in the Earth-Moon system (

1 = 0κ , 2 = 0.1κ ). 

 

Fig. 2.11 Stable and unstable manifolds associated with a Lyapunov orbit around the Earth-Moon L2 

point in Fig. 2.8. 

2.3 Sun-Earth-Moon four-body problem  

In the asteroid capture strategy which will be proposed in Chapter 3, a candidate asteroid is 

assumed to be captured from its initial orbit directly into the Earth-Moon system. The 
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transfer trajectories from the asteroid’s orbit to the Earth-Moon system are modelled by the 

Sun-Earth-Moon four-body problem. Therefore, the models of the Sun-Earth-Moon four-

body problem are introduced here and will be applied to design the transfer trajectory of 

capturing asteroids in the Earth-Moon system in Chapter 3. 

2.3.1 Patched three-body model 

The patched three-body problem can provide an approximation of the Sun-Earth-Moon 

four-body problem and is decomposed into the Earth-Moon CRTBP and Sun-Earth 

CRTBP [97]. This model is used to design transfers from the Sun-Earth CRTBP system to 

the Earth-Moon system after the candidate asteroid is captured around the libration points 

L1 or L2 in the Sun-Earth system [53]. It is assumed that the Earth–Moon CRTBP system is 

coplanar with the Sun–Earth CRTBP system. Thus, asteroid capture trajectories can be 

accomplished by patching together the unstable manifolds in the Sun-Earth CRTBP system 

and the stable manifolds in the Earth-Moon CRTBP system. This model will be further 

discussed in Chapter 3. 

2.3.2 Four-body problem in Sun-centred inertial frame 

When designing direct transfer trajectories from the initial asteroid orbit to the Earth-Moon 

CRTBP system in Chapter 3, the Lambert arc in the Sun-centred two-body problem will be 

used as an initial estimate of the transfer in the Sun-Earth-Moon four-body problem.  

Accordingly, the Sun-centred inertial frame is used as the reference frame in which the 

transfer trajectory for capturing an asteroid from its initial orbit into the Earth-Moon 

system is designed. In this frame, it is assumed that that the motion of the asteroid is 

governed by the gravity of the Sun, Earth and Moon. Besides, the Earth and the Moon are 

assumed to be revolving in circular orbits around their barycentre, as shown in Fig. 2.12. In 

addition, the motion of the Earth-Moon barycentre with respect to the Sun is described by a 

Sun-centred two-body problem. Here the Sun-centred inertial frame is used to describe the 

Sun-Earth-Moon restricted four-body system such that 

 

3 3 3

3

( ) ( )Sun Earth Moon

ea ma

Sun

es

r r r

r

  




    



 


e m

em em

r = r r r r r

r = r

 (2.32) 

where 
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ear   er r , mar   mr r  

and where r is the position vector of the asteroid with respect to the Sun; rem is the position 

vector of the Earth-Moon barycentre respect to the Sun in the two-body problem; re and rm 

are the position vectors of the Earth and Moon, respectively, with respect to the Sun and 

can be calculated by using Eq. (2.14) as follows, 

 ( ) roe em er r + R X  (2.33) 

 ( ) rom em mr r + R X  (2.34) 

where [ ,0,0,0,0,0]ro T eX and [1 ,0,0,0,0,0]ro T mX are the non-dimensional states 

of the Earth and Moon in the Sun-Earth rotating frame, respectively. The motion of all four 

bodies are assumed to be in the same plane. In addition, Sun, Earth and Moon are the 

gravitational parameters of the Sun, Earth and Moon, respectively. The gravitational 

parameters assumed for this model are Sun = 1.32712441011 km3/s2, Earth= 

3.9860044105 km3/s2 and Moon = 4.9028002103 km3/s2. 

 

Fig. 2.12 Geometry of the Sun-Earth-Moon restricted four-body problem. 
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CHAPTER 3  

CAPTURE OF SMALL NEAS IN THE VICINITY OF 

THE MOON 

This Chapter introduces two different strategies for capturing asteroids in the Earth-Moon 

system, termed the direct and indirect asteroid capture strategies. Such capture strategies 

are of interest due to the possible future use of the Earth-Moon Lagrange points as staging 

points for future space exploration ventures. The capture of NEAs could then provide in-

situ resources to support such exploration. The main contributions of this Chapter (which 

were presented in Ref [45]) are summarized as follows: 

 

(1) In the direct capture strategy, the candidate NEA leaves its heliocentric orbit after 

an initial impulse, with its dynamics modelled using the Sun-Earth-Moon restricted 

four-body problem until its insertion, with a second impulse, onto the L2 stable 

manifold in the Earth-Moon CRTBP. A Lambert arc in the Sun-asteroid two-body 

problem is used as an initial guess and a differential corrector is then used to 

generate the transfer trajectory from the asteroid’s initial orbit to the stable 

manifold associated with the Earth-Moon L2 point; 

(2) In the indirect capture strategy, the candidate asteroid is firstly captured onto a 

periodic orbit around the Sun-Earth L1 or L2 libration point. Then the transfer 

trajectory form the Sun-Earth system to the Earth-Moon system can be 

accomplished by patching together the unstable manifolds in the Sun-Earth 

CRTBP system and the stable manifolds in the Earth-Moon CRTBP system; 

(3) The direct/indirect strategies are also applied to design the direct/indirect capture 

of asteroids to the triangular points in the Earth-Moon system. Transfer trajectories 

for direct asteroid capture can be designed from the candidate asteroid’s orbit to 

the short-period orbits around the Earth-Moon L4 or L5 points directly, and the 

indirect capture is designed by patching the unstable manifolds of the Sun-Earth 

system with the short-period orbit around the Earth-Moon L4 or L5 points. 
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3.1 Direct capture of NEAs in the Earth-Moon system 

3.1.1 Target periodic orbits in the Earth-Moon system 

Following the process of numerical continuation to generate periodic orbits in Section 

2.2.4, a series of periodic orbits (Lyapunov orbit and halo orbits) around the Earth-Moon 

L2 point with increasing or decreasing Jacobi constant C can be calculated, as shown in 

Fig. 3.1, where the unit of length is the Earth-Moon distance (EM unit). In this chapter, 

those periodic orbits will serve as the final target orbits where the candidate asteroids are 

captured and placed.  

 
(a) 

 

 

(b) 

Fig. 3.1 Planar Lyapunov orbits with Jacobi constant [3.01017213, 3.17205221] and (b) halo orbits with 

Jacobi constant [3.06733209, 3.15211497] around L2 point in the Earth-Moon system. 
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Then, the invariant manifolds associated with the periodic orbit around the Earth-

Moon L2 point can be calculated using Eq. (2.30) with the backward propagation time and 

the forward propagation times, defined as the stable manifold transfer time tsm and the 

unstable manifold transfer time tum, respectively. A Poincaré section can then be used to 

replace a continuous dynamical system with a discrete dynamical system [175], as used for 

the analysis of the Earth-Moon L2 stable manifolds in the Section 3.1.5. Here, the Poincaré 

section is defined by the angle  ( > 0), shown in Fig. 3.2. Then, the target points along 

stable manifolds on the Poincaré section in the Earth-Moon rotating system can be defined 

as 

 2 2 2( , ) ( , , , , , ) ( ) tan ,2 ( , , , ) ( )S

EMX C x y z x y z W y x x y z x y z C            (3.1) 

where the subscript “EM” in Eq. (3.1) denote the Earth-Moon system. 

 

Fig. 3.2 Stable manifolds associated with a Lyapunov orbit (C = 3.15415202) around the Earth-Moon 

L2 point. 

3.1.2 Strategy for direct capture 

The basic strategy for direct capture of asteroids is through the following steps: 

 

(1) With an initial manoeuvre v1, the candidate asteroid leaves its orbit and is 

modelled in the Sun-Earth-Moon restricted four-body system (Eq. (2.32)), shown in Fig. 

3.3(a); 

(2) After a second manoeuvre v2, the candidate asteroid inserts onto the stable 

manifold associated with the periodic orbit around the Earth-Moon L2 point and will be 

asymptotically captured onto it, shown in Fig. 3.3(b). 
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The total cost of capturing the asteroid onto the stable manifold associated with the 

periodic orbit around Earth-Moon L2 point is therefore calculated as 

 1 2v v v     (3.2) 

 

(a) (b) 

Fig. 3.3 Direct capture of a NEA: (a) initial impulse v1 for the asteroid to leave its orbit; (b) second 

impulse v2 to insert the asteroid onto the stable manifold associated with the periodic orbit around 

the Earth-Moon L2 point. 

Thus, for each candidate asteroid, there are 5 variables to describe the sequence of 

manoeuvres as follows:  

 

 T0: departure date when the first impulse v1 is applied to the candidate asteroid 

and the asteroid leaves its initial orbit; 

 Tf: approach date corresponding to the date when the candidate asteroid inserts onto 

the Earth-Moon L2 stable manifold with the second impulse v2; 

 C: Jacobi constant of the final periodic orbit around the Earth-Moon L2 point; 

 tp: time determining the state on the target periodic orbit around the Earth-Moon L2 

point where the Earth-Moon L2 stable manifold is propagated backward from; 

[0, ]p pt T where Tp is the period of the final periodic orbit; 

 tsm: stable manifold transfer time determining the target point where the second 

impulse is applied. 

For Lyapunov orbits, one value of the Jacobi constant C corresponds to only one 

Lyapunov orbit, as shown in Fig. 3.4(a). However, for halo orbits, one value of the Jacobi 

constant C corresponds to a northern halo orbit and a southern halo orbit, as shown Fig. 

3.4(b). Hence, when optimising the transfers for capturing asteroids onto halo orbits in the 
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following section, capturing asteroids onto southern halo orbits and northern halo orbits 

should be considered separately. Otherwise, an alternative variable can be defined to unify 

them, termed the amplitude variable Ap which can be defined as 
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, for Halo orbit
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n z
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 (3.3) 

where Ax is the amplitude of the Lyapunov orbit along the x-axis and Az is the amplitude of 

the Halo orbit along the z-axis with respect to the Earth-Moon L2 point in the Earth-Moon 

rotating frame (See Section 2.2.4).  

 

(a) 

 

(b) 

Fig. 3.4 (a) Jacobi constant of Lyapunov orbits with different x-amplitudes around the Earth-Moon L2 

point; (b) Jacobi constant of halo orbits with different z-amplitudes around the Earth-Moon L2 point. 

Therefore, as shown in Fig.3.4, it is found that Ap should be selected in the range [0, 

0.1282] for Lyapunov orbits, or [0.0753, 0.0753] for halo orbits. Therefore, for each 

candidate asteroid, the 5 variables (T0, Tf, Ap, tp, tsm) can define the problem of capturing 

the asteroid in the Earth-Moon system. Figure 3.5 shows the period Tp of periodic orbits 
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with a different amplitude variable Ap. In general, for Lyapunov orbits and the southern 

halo orbits, Tp increases when the amplitude variable Ap increases. However, for the 

northern halo orbits, Tp decreases when the amplitude variable Ap increases. Since the 

amplitude variable Ap is unknown, a limited range of the time tp should be chosen to fit all 

periodic orbits. Therefore, as shown in Fig. 3.5, it is found that tp should be selected in the 

range [0, 4.35] for Lyapunov orbits, or [0, 3.42] for halo orbits.  

  

(a) 

  

(b) 

Fig. 3.5 (a) Period Tp of Lyapunov orbits with different x-amplitudes around the Earth-Moon L2 point; 

(b) Period Tp of halo orbits with different z-amplitudes around the Earth-Moon L2 point. 

3.1.3 Target point filter 

After the first impulse, the asteroid leaves its orbit and is modelled using the Sun-Earth-

Moon restricted four-body problem until the asteroid is captured onto the Earth-Moon L2 

stable manifold. When the asteroid inserts onto the invariant manifold, the asteroid’s 

motion is modelled by the Earth-Moon CRTBP problem. Here, the patching of these two 

systems is defined within the Moon-Sun three-body sphere of influence (3BSOI) [174, 
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176]. Using an analytical approximation, the 3BSOI is a sphere centred at the Moon with a 

radius given by 

 
2/5( / ) 159200SOI e Moon SunR r km    (3.4) 

where re is the distance between the Sun and the Earth, equal to 1 AU. That is, once the 

asteroid is inserted onto the target point on the stable manifold inside the 3BSOI of radius 

RSOI, the asteroid is regarded to be asymptotically captured into a bound orbit around the 

Earth-Moon L2 point. Therefore, as shown in Fig. 3.6, the target points on the stable 

manifolds should be chosen such that  

 2 2 2( 1 ) SOIx y z R      (3.5) 

 

Fig. 3.6 Earth-Moon L2 stable manifolds inside the 3BSOI. 

It is assumed that re and rm are the position vector of the Earth from the Sun and the 

position vector of the Moon from the Earth, respectively. Moreover, the radius vector 

defining the spacecraft or the captured asteroid position from the Moon is denoted as rs. 

Therefore, in the Moon-centred inertial frame, the position vectors of the Sun and the 

Moon can be written as  

 sm e m  r r r , em m r r  (3.6) 

When the spacecraft or the captured asteroid is close to the Moon, the main 

acceleration is due to the Moon and thus in the Moon-centred inertial frame it can be 

written as 
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3

Moon
m m

mr


 a r  (3.7) 

And the Sun and Earth accelerations on the spacecraft can be written as 

 
3 3

( )s e m e m
s Sun

s e m e m


 

  
 

r r r r + r
a

r r r r + r
 (3.8) 

 
3 3

( )s m m
e Earth

s m m




  


r r r
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r r r
 (3.9) 

Then the ratio of the Sun acceleration and Moon acceleration is defined as 

 /sm s mf  a a  (3.10) 

Similarly, the ratio of the Earth acceleration and Moon acceleration is written as 

 /em e mf  a a  (3.11) 

Figure 3.7 shows the maximum and minimum values of fsm and fem with different 

values of the radius rs. As shown in Fig. 3.7, it can be seen that even inside the Moon-Sun 

3BSOI (rs = 159200 km), the Earth’s gravity can still play a substantial role in the motion 

(acceleration) of the spacecraft or the captured asteroid. It keeps consistent with the model 

of Earth-Moon CRTBP. However, as for the Sun’s gravitational influence, the acceleration 

due to the Sun on the Moon-Sun 3BSOI is only about 2.8% - 5.7 % of the acceleration due 

to the Moon. Thus, it is reasonable to assume that the Sun’s gravitational influence can be 

ignored when the spacecraft or the captured asteroid is inside the Moon-Sun 3BSOI. In 

addition, the Moon-Sun 3BSOI is adopted to limit the target points on the stable manifolds 

of the Earth-Moon L2 periodic orbits, the patching will occur at the target point which is 

very close to the Moon. Therefore, the gravity of the Moon can play a substantial role in 

the transfer trajectory especially when the candidate asteroid is close to the Moon. Hence, 

the model of the Sun-Earth-Moon restricted four-body problem would be required to 

describe the motion of the captured asteroid, especially when it is close to the Moon. 
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(a) 

 

(b) 

Fig. 3.7 Maximum and minimum values of (a) fsm and (b) fem with different values of rs. 

According to the definition of the Moon-Sun 3BSOI, the search domain of the stable 

manifold transfer time tsm can be determined. Given one stable manifold which is 

determined by Ap and tp, ( , )3BSOI p pt A t  is defined as the stable manifold transfer time tsm 

when the stable manifold intersects the 3BSOI for the first time. Therefore, for the stable 

manifolds associated with a periodic orbit of amplitude variable Ap, the required set of 

t3BSOI can be written as 

  
[0, ]

( ) ( , )
p p

p 3BSOI p p
t T

A t A t


   (3.12) 

and the maximum value of the set ( )pA is defined as 

 [0, ]
( ) max { ( )}

p p

threshold p p
t T

t A A


   (3.13) 

Therefore, ( )threshold pt A  is the maximum stable manifold transfer time of the stable 

manifolds associated with the periodic orbit with amplitude variable Ap. Therefore, it can 
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be utilised to determine the search domain of the stable manifold transfer time tsm. Figure 

3.8 shows tthreshold with different amplitude variables Ap.  

  

(a) 

  

(b) 

Fig. 3.8 tthreshold with different amplitude variables Ap (a) stable manifold associated with Earth-Moon 

L2 Lyapunov orbits; (a) stable manifold associated with Earth-Moon L2 halo orbits. 

As shown in Fig. 3.8, for Lyapunov orbits and southern halo orbits, tthreshold decreases 

when the amplitude variable Ap increases and small values of Ap lead to large tthreshold. 

However, for the northern halo orbits, tthreshold increases when the amplitude variable Ap 

increases. Since the amplitude variable Ap is unknown, a limited range of the stable 

manifold flight time tsm should be selected to fit the stable manifolds of all periodic orbits. 

Therefore, it is found that tsm should be selected in the range [0, 5.8] for Lyapunov orbits, 

or [0, 4.86] for Halo orbits. 
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3.1.4 Differential correction for the Sun-Earth-Moon four-body problem 

A heliocentric two-body Lambert arc with two impulsive manoeuvres can be used to 

provide an initial guess, with the first impulse of the Lambert arc then applied to estimate 

the first manoeuvre of the asteroid transfer to the Earth-Moon system. It will be assumed 

that the initial state of the asteroid is [ , , , , , ]T

i i i i i ix y z x y ziX  after the first impulse, the 

state of the target point is [ , , , , , ]T

f f f f f fx y z x y zfX  and the final state of the Lambert 

arc is [ , , , , , ]T

f f f f f fx y z x y z      fX , before the second impulse, as shown Fig. 3.9. Then the 

final conditions for [ , , ] [ , , ]T T

f f f f f f f f fx y z x x y y z z            0fr  can be sought 

by correcting the initial velocity vector [ , , ]T

i i ix y z   iv . 

 

Fig. 3.9 Differential correction with an initial guess using a Lambert transfer. 

It is assumed that the Sun-Earth-Moon restricted four-body system in Eq. (2.32) can be 

represented by a set of nonlinear equations of motion in the general form 

 ( , )tX = F X  (3.14) 

where [ , , , , , ]Tx y z x y zX  is the state along the transfer trajectory for capturing the 

asteroid in the Sun-Earth-Moon restricted four-body problem. 

Similar to Section 2.2.3, a solution X0(t) is also referred to as the reference trajectory 

of Eq. (3.14). Defining the relationship between the reference trajectory X0(t) and a nearby 

trajectory X(t), as 

 0( ) ( ) ( )t t tX = X X  (3.15) 
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and expanding about the reference solution in a Taylor series generates a set of linear 

equations such that 

 4( )t X = A X  (3.16) 

where 4

0

( ) =t




F
A

XX
. The general solution to the above equation is 

 4 0 0( ) = ( , ) ( )t t t t X X  (3.17) 

where the state transition matrix is again found from 

 4 0 4 4 0 4 0 0 6 6( , ) = ( ) ( , ), ( , ) =t t t t t t t   A I  (3.18) 

and 
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A

X
 (3.19) 

The differential correction for the Sun-Earth-Moon restricted four-body problem can 

therefore be written as 

 
1

0( , )fT T i fX X  (3.20) 

where [0,0,0, , , ] , [ , , ,0,0,0]T T

i i i f f fx y z x y z        i fX X .  

The differential correction in Eq. (3.20) starts with the initial state X0 which is based 

on the Lambert arc and then the process is repeated until [ , , ]T

f f fx y z   fr is equal to 

0 within some small tolerance. 
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3.1.5 Candidate asteroid selection 

When the candidate asteroid is captured in the Earth-Moon system it poses a potential (if 

small) impact risk. Therefore, only those candidate asteroids which cannot in principle 

represent a threat should be considered. Since the Earth’s atmosphere can disintegrate 

small bodies, and so acts as a shield, the candidate asteroids in this thesis should be those 

asteroids which would also be disintegrated by the Earth’s atmosphere. Most asteroids with 

a diameter of less than 50 m are thought to break up in the atmosphere and cannot reach 

the surface [177, 178]. Besides, Vasile and Colombo [147] regarded 40 m as the critical 

threshold above which the Earth’s atmosphere will no longer disintegrate an asteroid. 

Moreover, other authors have noted that the atmosphere can protect against asteroids with 

a diameter of less than 30 m [179, 180]. Therefore, to reduce the threat of impact with the 

Earth, only those small asteroids with D < 30 m are considered as candidates for the 

capture mission, although clearly a detailed risk assessment is required. The diameter D of 

the candidate asteroid can be estimated as [181] 

 
/5 1/21329km 10 H

vD p    (3.21) 

where H is the absolute magnitude of the asteroid and pv is its albedo. Here it is assumed 

that the asteroids have a typical albedo of pv = 0.154 [181]. If D  30 m then H  25.26.  

Moreover, it is necessary to immediately exclude asteroids with a semi-major axis or 

inclination much larger than the Earth’s since the energy costs for capture would be 

prohibitive. With the target point filter, the target point on the stable manifold which is 

determined by the parameters Ap, tp and tsm can be written as 

   2 2 2( , , ) , , , , , | ( 1 )s

t p p sm SOIP A t t x y z x y z W x y z R        (3.22) 

Then, the set of the target points on the stable manifolds can be obtained with varying 

Ap, tp and tsm. Let K be the set of the target points which can be written as 

  min max( , , ) | 0 0t p p sm p p p sm thresholdP A t t A A A t T t t       ， ，  (3.23) 

where min 0A  , max 0.1282A  and 5.8thresholdt   for the planar Lyapunov orbits while 

min 0.0753A   , max 0.0753A  and 4.86thresholdt   for the halo orbits. 

Now that the set of target points is known, it is possible to calculate the three-

dimensional orbital element space (the semi-major axis, eccentricity and inclination (a, e, 



Chapter 3 Capture of small NEAs in the vicinity of the Moon 

 

58 
 

i)) of the candidate asteroids which can be captured onto Earth-Moon L2 periodic orbits 

under a certain v threshold. The design procedure is presented as follows: 

 

(1) Given one approach date Tf, transform the set of target points K to the Sun-centred 

inertial frame by using Eq. (2.33) and Eq. (2.34) and then obtain the three-

dimensional orbital element space of the target points in the Sun-centred inertial 

frame, shown in Fig. 3.10; 

 

(a) 

 

(b) (c) 

Fig. 3.10 Given Tf =63000 [MJD], the three-dimensional orbital element space of target points on the 

stable manifolds associated with Earth-Moon L2 Lyapunov orbits (red) and halo orbits (black): (a) 3D 

view; (b) a-e projection; (c) e-i projection. 

(2) Add an impulse 2 2 2 2 2 2[cos cos ,cos sin ,sin ]v p q p q p  2v  ( 2v v   , 2 [0, ]p 

, 2 [0,2 ]q  ) at these target points on the Earth-Moon L2 stable manifolds and 

propagate these states backwards (with propagation time T (days)) in the Sun-

Earth-Moon restricted four-problem model and then obtain the final states; 
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(3) Add another impulse 1 1 1 1 1 1[cos cos ,cos sin ,sin ]v p q p q p  1v  ( 1 2v v v    ,

1 [0, ]p  , 1 [0,2 ]q  ) at these final states and then calculate the three-

dimensional orbital element space (a, e, i) of these states after v1 is added; 

(4) Vary the approach date Tf, propagation time T ( [0,1000days]T  ), two impulses 

v1 and v2 and obtain the three-dimensional orbital element space (a, e, i) of the 

candidate asteroids that can potentially be captured under the v threshold. 

According to the design procedure above, the three-dimensional orbital element space 

of candidate asteroids is plotted in Fig. 3.11 and Fig. 3.12 for transfers to the Earth-Moon 

L2 stable manifolds with a v threshold of 500 m/s, as used by Yárnoz, et al. [50]. With a 

free phase, any asteroid with orbital elements inside these regions can be captured with a 

total v cost below 500 m/s. With this filter, the candidate asteroids are listed in Table 3.1. 

 

(a) 

 

(b) (c) 

Fig. 3.11 Three-dimensional orbital element space of the stable manifold associated with Earth-Moon 

L2 Lyapunov orbits with a v threshold of 500 m/s: (a) 3D view; (b) a-e projection; (c) e-i projection. 
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(a) 

 

(b) (c) 

Fig. 3.12 Three-dimensional orbital element space of the stable manifold associated with Earth-Moon 

L2 halo orbits with a v threshold of 500 m/s: (a) 3D view; (b) a-e projection; (c) e-i projection.. 

3.1.6 Approach date and departure date guess 

For a candidate asteroid, there exists a date when the asteroid has its closest approach to 

the Earth. This date will be defined as the moment of minimum distance (MOMD) 

between the asteroid and the Moon. The distance between the candidate asteroid and the 

Moon can be calculated by propagating the candidate asteroid’s initial state forward in the 

Sun-Earth-Moon restricted four-body problem and then the MOMD can be obtained, an 

example of which is shown in Fig. 3.13. Since low-cost transfers with a total v cost below 

500 m/s is the objective of capturing asteroids in this chapter, the first impulse should be 

smaller than this value and then the asteroid’s new orbit after the first impulse can be 

considered to be proximal to its former orbit. Therefore, the date of the asteroid’s closest 
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approach to the Earth is considered to be nearby the MOMD. The approximate range of 

approach date can then be written as 

 [MOMD ,MOMD ]period periodT T   (3.24) 

where Tperiod is the asteroid’s orbit period about the Sun. 

Table 3.1 Orbital elements of the candidate NEAs 

NEA a, AU e i, deg D, m 

2006 RH120 1.03327 0.02449 0.59531 4.3 

2007 UN12 1.05385 0.06046 0.23565 6.2 

2008 EA9 1.05921 0.07982 0.42478 9.8 

2008 UA202 1.03318 0.06855 0.26339 4.5 

2009 BD 1.00976 0.04163 0.38448 8.1 

2010 UE51 1.07102 0.07239 0.5886 7.4 

2013 BS45 0.99184 0.08374 0.77251 22.4 

2014 QN266 1.05269 0.0923 0.48822 18.6 

2014 WX202 1.03567 0.05881 0.41258 4.1 

2015 PS228 1.05679 0.08392 0.43892 5.9 

2018 AV2 1.02961 0.03001 0.119 6.2 

 

Fig. 3.13 Approach date guess by using MOMD (2018 AV2). 
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The Lambert arc in the two-body problem with two impulses can now be used as an 

initial guess of the departure date when the first impulse is applied and the asteroid 

transfers towards the target point in the Earth-Moon system. There are 2 variables in this 

problem: the departure date T0 and the transfer time Tfly (or the approach date Tf). Then, the 

total cost of the Lambert transfer can be calculated using Eq. (2.9).  

Since the influence of the Sun’s gravity is only considered here, the total v  cost must 

be different from the result in the Sun-Earth-Moon restricted four-body problem model. 

However, the first Lambert impulse  1v  can still be used to guess the first impulse  1v  in 

Sun-Earth-Moon restricted four-body model. Since an asteroid which can be captured 

directly with 500v   m/s is expected to found, here 500 m/s is set as a threshold for  1v  

and then the departure date T0 is guessed. As shown in Fig. 3.6, the target points are 

defined in a limited region around the Moon (3BSOI). Thus, there should be only a 

marginal difference between the first impulse of the Lambert arc to the Moon and the first 

impulse of the Lambert arc to the target points. Therefore, for simplification, the target 

position for the Lambert arc is assumed to be the centre of the Moon, in order to provide a 

guess in the search domain of the departure date T0, shown in Fig. 3.14. 

 

Fig. 3.14 The first impulse v1 (m/s) as a function of T0 and Tf (2018 AV2). 

3.1.7 Design procedure 

The process of calculating the transfer trajectories from the candidate asteroid’s orbit to the 

Earth-Moon L2 stable manifold is as follows: 
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(1) Select one target asteroid among the list of candidate asteroids (e.g., 2018 AV2) in 

Table 3.1;  

(2) Guess the range of the approach date using Eq. (3.24); 

(3) Assume that the Moon is the target position for the Lambert arc from the candidate 

asteroid’s orbit and then guess the search domain of departure date T0 and 

approach date Tf, corresponding to the first impulse 1 500v  m/s, as shown in 

Fig. 3.14; 

(4) Given Ap, tp and tsm, the target point on the Earth-Moon L2 stable manifolds is 

determined and then transformed to the Sun-centred inertial frame by using 

Eq.(2.33) and Eq. (2.34);  

(5) The Lambert arc in the Sun-centred two-body problem is utilised to design the 

transfer to the target points from the candidate asteroid’s orbit and so the first 

impulse can be estimated; 

(6) Based on the initial guess of the first impulse, the differential correction in Eq. 

(3.20) is utilised to design the transfer trajectory to the target point from the 

candidate asteroid’s orbit. 

Then the capture trajectory can be obtained for a candidate asteroid to the Earth-Moon 

L2 periodic orbit, as shown in Fig. 3.15.  

3.1.8 Optimisation and discussion  

For each candidate asteroid, feasible approach dates are assumed in the interval 2016–2050 

(or 58484 MJD - 70171 MJD). The orbital elements of the candidate asteroids are assumed 

to be valid until their next close approach to the Earth. Thus, for each candidate asteroid, 

there are 5 variables: (T0, Tf, Ap, tp, tsm). These transfer trajectories between the candidate 

asteroid initial orbit and the stable manifold can be searched using NSGA-II, a global 

optimisation method which is based on a multi-objective evolutionary algorithm [182], 

using the total v cost as the objective function. Then, transfers obtained with NSGA-II 

can be locally optimised with sequential quadratic programming (SQP), implemented in 

the function fmincon in MATLAB. Therefore, 6 asteroids that can be captured with a total 

v cost of less than 500 m/s are found, shown in Table 3.2. It can be seen that the optimal 

departure date for a given asteroid is almost the same for different target periodic orbits 

around the Earth-Moon L2 point (i.e., halo orbits and Lyapunov orbits), as well as the 

approach date.  
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(a) (b) 

 

(c) (d) 

Fig. 3.15 Given T0 = 65833.1 [MJD], Tf = 66495.5 [MJD], Ap = -0.04994, tp = 0.255, tsm = 4.10, direct 

capture trajectory (phase I) for 2018 AV2 to an Earth-Moon L2 halo orbit and stable manifold (phase 

II) associated with the target halo orbit in the J2000 Sun-centred inertial frame: (a) 3D view; (b) x-y 

projection; (c) x-z projection; (d) y-z projection. 

Comparing the direct capture strategy to Earth-Moon LPOs and the capture strategy 

into Sun-Earth LPOs in prior studies [18, 50], it is noted that one of the key differences 

between these two capture strategies is the flight time along the stable manifolds. That is, 

the direct capture of asteroids into the Earth-Moon LPOs needs a much shorter flight time 

along the stable manifolds associated with Earth-Moon LPOs, while the capture onto Sun-

Earth LPOs requires a longer time for the asteroid to be asymptotically captured through 

utilising the stable manifolds associated with the Sun-Earth LPOs.  

Without utilising the Earth-Moon L2 stable manifolds, the transfer trajectory of the 

direct capture of the asteroid to the Earth-Moon L2 target periodic orbit is also modelled in 

the Sun-Earth-Moon restricted four-body problem. The Lambert arc in the Sun-asteroid 
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two-body problem is used as an initial guess and then a differential corrector is used to 

calculate the transfer trajectory from the asteroid’s initial orbit to the Earth-Moon L2 target 

periodic orbit. The optimal results of the direct capture of the asteroids to the Earth-Moon 

L2 target periodic orbit without utilising the Earth-Moon L2 stable manifolds are shown in 

Table 3.3. Comparing the results in Table 3.2 and Table 3.3, it can be seen that direct 

capture using the stable manifolds is of lower cost than direct capture without utilising the 

stable manifolds. It can be concluded that the Earth-Moon L2 stable manifolds can provide 

greater opportunities to achieve low cost asteroid capture.  

Table 3.2 Results of optimal direct capture of asteroid to Earth-Moon L2 periodic orbits using the 

stable manifolds 

NEA 
v1, 

m/s 

v2, 

m/s 

v, 

m/s 

T0, 

MJD 

T
fly, 

day 

Ap, 

EM unit 

Target 

(Earth-Moon) 

2006 RH120 

326.11 58.74 384.84 61471 652.7 0.08575 L2 Lyapunov 

225.01 144.68 369.69 61262.1 840 0.06895 L2 halo 

2007 UN12 
225.76 195.46 421.22 58822.1 320.1 0.12201 L2 Lyapunov 

200.55 206.71 407.26 58834.3 295.3 -0.06719 L2 halo 

2008 EA9 

324.27 167.68 491.95 58686.9 188.8 0.13763 L2 Lyapunov 

312.38 376.31 607.17 58699.9 149.4 0.03695 L2 halo 

2010 UE51 

314.36 162.53 476.89 63256.1 722 0.13261 L2 Lyapunov 

295.7 285.11 580.81 63250.2 719.7 0.07214 L2 halo 

2014 WX202 
376.45 103.76 480.22 63328.6 646.6 0.10408 L2 Lyapunov 

497.98 2.57 500.55 63335.5 655.7 0.04317 L2 halo 

2018 AV2 

102.23 134.74 236.96 65842.9 680 0.06876 L2 Lyapunov 

107.02 177.17 284.19 65833.1 688.5 -0.04994 L2 halo 
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Table 3.3 Results of optimal direct capture of asteroid to Earth-Moon L2 periodic orbits without using 

the stable manifolds  

NEA 
v1, 

m/s 

v2, 

m/s 

v, 

m/s 

T0, 

MJD 

T
fly, 

day 

Ap, 

EM unit 

Target 

(Earth-Moon) 

2006 RH120 

319.97 151.84 471.81 61470.8 625.6 0.07357 L2 Lyapunov 

403.15 153.05 556.2 61287.1 811.1 -0.02385 L2 halo 

2007 UN12 
136.84 414.32 551.16 58816.4 310.2 0.09054 L2 Lyapunov 

185.26 273.71 458.97 58838.5 264.8 -0.07429 L2 halo 

2008 EA9 

323.64 230.59 554.23 58686.6 148.9 0.11513 L2 Lyapunov 

311.15 338.68 649.84 58708.4 126.6 0.06511 L2 halo 

2010 UE51 

323.46 309.44 632.9 63264.6 676.1 0.07878 L2 Lyapunov 

301.47 330.71 632.18 63253 687.2 0.06163 L2 halo 

2014 WX202 
393.67 194.44 588.11 63333 610.7 0.07250 L2 Lyapunov 

368.92 235.32 604.24 63328.1 615.4 -0.06800 L2 halo 

2018 AV2 

99 209.61 308.62 65835.7 662 0.08637 L2 Lyapunov 

109.48 228.58 338.06 65844.3 653.6 -0.05687 L2 halo 

 

3.2 Indirect capture of NEAs to Earth-Moon L2 periodic orbits 

A further type of capture of asteroids in the Earth-Moon system will be termed indirect 

capture. In this capture strategy the asteroid capture trajectories are designed in a patched 

three-body model which consists of the Sun-Earth (SE) and Earth-Moon (EM) systems 

[53], based on the work of Sanchez and McInnes [42], Sanchez, et al. [43] and Yárnoz, et 

al. [50]. As an approximation of the Sun-Earth-Moon four-body problem, the patched 

three-body model can be decomposed into the Sun-Earth CRTBP system and the Earth-

Moon CRTBP system. In this capture strategy, the candidate asteroids are firstly assumed 

to be captured onto periodic orbits around the Sun-Earth L1 or L2 libration points. Here a 

series of periodic orbits (Lyapunov orbit and halo orbits) around the Sun-Earth L1 or L2 

points with different amplitude variables Ap can be calculated using the numerical 

procedure in Section 2.24, as shown in Fig. 3.16, where the unit of length is the Sun-Earth 

distance (AU).  
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(a) 

 

 

(b) 

Fig. 3.16 (a) Planar Lyapunov orbits with x-amplitude [0, 0.0080998] (corresponding to Jacobi 

constant [2.99991065, 3.00089301]) and (b) halo orbits with z-amplitude [-0.0050595, 0.0050595] 

(corresponding to Jacobi constant [3.00022207, 3.00083043]) around L1 and L2 points in the Sun-Earth 

system. 

As shown in Fig. 3.17, once the candidate asteroid is captured onto a periodic orbit 

around the Sun-Earth L1 or L2 points then the following capture trajectories can be 

accomplished by patching together the unstable manifolds in the Sun-Earth CRTBP system 

and the stable manifolds in the Earth-Moon CRTBP system. It should be noted that the 

patching points of the two invariant manifolds are defined by the chosen Poincaré section 

(angle ), shown in Fig. 3.18. The design procedure for the indirect capture of asteroids by 

using these patched three-body problems can be divided into three parts as follows: 
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(1) With the initial impulse v1, the asteroid leaves its orbit and is injected onto the 

stable manifolds associated with the Sun-Earth L1 or L2 points with the second 

impulse v2 (See Fig. 3.17). These two impulsive burns can be estimated by using 

the Lambert arc in the Sun-asteroid two-body problem [50]; 

 

Fig. 3.17 Part of indirect asteroid capture by patching together the Lambert arc in the Sun-asteroid 

two-body problem and Sun-Earth stable manifolds. 

 

Fig. 3.18 Part of Indirect asteroid capture by patching together Sun-Earth unstable manifold and 

Earth-Moon stable manifold with the Poincaré section. 

(2) After the candidate asteroid inserts onto the stable manifold, it will be 

asymptotically captured onto a periodic orbit around the Sun-Earth L1 or L2 point; 
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the asteroid will be on the periodic orbit until it reaches the point where the Sun-

Earth unstable manifold is propagated forward from; then the asteroid leaves the 

periodic orbit by utilising the unstable manifold and then approaches the injection 

plane between the Sun-Earth unstable manifold and the Earth-Moon L2 stable 

manifolds; 

(3) With the third impulse v3, the asteroid inserts onto the Earth-Moon L2 stable 

manifold and will be asymptotically captured onto a periodic orbit around the 

Earth-Moon L2 point. 

Therefore, in this problem, there are 9 variables as follows: 

 

 T0: departure date when the first impulse v1 is applied to the candidate asteroid 

and the asteroid leaves its orbit; 

 Tf: approach date corresponding to the date when the candidate asteroid inserts into 

the Sun-Earth L1 or L2 stable manifolds with the second impulse v2; 

 tsm: Sun-Earth L1 or L2 stable manifold transfer time; 

 ASE: amplitude variable of target periodic orbit around Sun-Earth L1 or L2: x-

amplitude Ax for Lyapunov orbits and z-amplitude Az for halo orbits;  

 tp1: time determining the point on the target periodic orbit around Sun-Earth L1 or 

L2 where the Sun-Earth L1 or L2 stable manifold is propagated backward from; 

 tp2: time determining the point on the target periodic orbit around Sun-Earth L1 or 

L2 where the Sun-Earth L1 or L2 unstable manifolds is propagated forward from; 

 : angle determining the injection plane where the Sun-Earth L1 or L2 unstable 

manifold and Earth-Moon L2 stable manifolds are patched together with the third 

impulse v3; 

 AEM: amplitude variable of target periodic orbit around Earth-Moon L2 point: x-

amplitude Ax for Lyapunov orbits and z-amplitude Az for halo orbits;  

 tp3: time determining the point on the target periodic orbit around the Earth-Moon 

L2 point where the Earth-Moon L2 stable manifold is propagated backwards from. 

These 9 variables can be divided into two parts: (T0, Tf, tsm, ASE, tp1) and (ASE, tp2, , 

AEM, tp3), corresponding to those associated with capturing the asteroid onto the Sun-Earth 

stable manifold (Part I) and those associated with patching together the Sun-Earth unstable 

manifold and Earth-Moon L2 stable manifold (Part II), respectively. However, there exists 

a time constraint between the two parts. That is, once the variables (T0, Tf, tsm, ASE, tp1, tp2, 

) are given, the Sun-Earth unstable manifold is propagated forward until it reaches the 
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Poincaré section (angle ) and then the Sun-Earth unstable transfer time tum is determined; 

accordingly, the position of the Moon is then determined.  

 

  

(a) 

 

(b) 

Fig. 3.19 (a) Unstable manifolds of Sun-Earth L2 Lyapunov orbit (ASE = 0.0048497 AU) and (b) their 

integration time to the same Poincaré section (x = 1  ) with varying ɛ  [0.4  10-6, 2  10-6]. 

Figure 3.19(a) shows the unstable manifolds of a Lyapunov orbit around the Sun-Earth 

L2 with different values of ɛ and it should be noted that small values of ɛ in Eq. (2.30) can 

result in large integration times when calculating the unstable manifolds. Figure 3.19(b) 

shows that the integration time of the Sun-Earth unstable manifolds to the same Poincaré 

section clearly changes when varying the value of ɛ. This means even given the values of 

(t0, tf, tsm, ASE, tp1, tp2, ), the position of the Moon can be anywhere along its orbit, as long 

as an appropriate value of ɛ is selected. Therefore, an additional variable  (0    2) is 

defined to determine the position of the Moon, shown in Fig. 3.19(a) and the variables of 
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Part II are extended to (ASE, tp2, , AEM, tp3, ). The common parameter between the two 

parts is the amplitude variable ASE of the target periodic orbit in the Sun-Earth system. Part 

II can then be optimised by using NSGA-II [182]. During each step in optimising Part II, 

there is a specific value of ASE and given this value, Part I can be optimised by using the 

function fmincon in MATLAB. Therefore, this problem can be optimised with the total v 

cost as the objective function. The results of the indirect capture of the NEAs are listed in 

Table 3.4 and the optimal capture trajectory for 2018 AV2 to an Earth-Moon L2 Lyapunov 

orbit is shown in Fig. 3.20. It should be noted that in Table 3.4 and Table 3.5, 2L, 2H, 1L, 

1H denote the planar Lyapunov orbit around L2, the halo orbit around L2, the planar 

Lyapunov orbit around L1 and the halo orbit around L1, respectively. 

 

 

(a) 

 

(b) 

Fig. 3.20 Indirect capture trajectory for 2018 AV2 to Earth-Moon L2 Lyapunov orbit in the Sun-Earth 

rotating frame: (a) the transfer trajectory of Part I (b) the transfer trajectory of Part II. 
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Table 3.4 Results of optimal indirect capture of asteroids to Earth-Moon L2 periodic orbits 

NEA 
v1+v2, 

m/s 

v3, 

m/s 

v, 

m/s 

T0, 

MJD 

Tfly, 

day 

AEM, 

EM unit 

ASE, 

10-3AU 

Target 

(SE+EM) 

2006 

RH120 

333.18 4.26 337.44 58821 3352.2 0.00752 3.2761 1L+2L 

328.5 6.28 334.79 58785.9 3036.2 0.00011 2.5632 1L+2H 

352.36 3.99 356.35 60481.5 1534.1 0.02913 -0.0024 1H+2L 

360.5 3.94 364.44 60504.2 1504.4 0.00004 -0.0074 1H+2H 

2007 

UN12 

260.01 58.8 318.81 58562.5 1067.2 0.07606 7.0843 2L+2L 

342.73 29.28 372.01 58727.2 837.5 0.00042 5.4797 2L+2H 

444.44 1.3 445.74 58524.7 1016.2 0.04448 0.0054 2H+2L 

458.21 11.02 469.23 58535.9 999.7 -0.00067 -0.0034 2H+2H 

2008 

EA9 

420.13 14.39 434.51 61153.1 2585.3 0.06134 6.7931 2L+2L 

432.91 32.05 464.96 61294.6 2425.9 -0.0007 6.3944 2L+2H 

662.78 0.64 663.42 62249.8 1368.8 0.01922 0.0016 2H +2L 

661.8 5.31 667.11 62245.3 1435.8 -0.00065 0.0058 2H+2H 

2010 

UE51 

467.04 38.55 505.58 63244.6 1221.7 0.06286 7.029 2L+2L 

513.58 15.83 529.42 58599.8 2159 0.00613 6.0759 2L+2H 

736.11 0.65 736.76 61746.2 2653.7 0.03853 0.0079 2H+2L 

731.68 2.27 733.95 61746 2651.4 0.00081 0.0217 2H+2H 

2014 

WX202 

383.7 34.1 417.8 61495.1 2631.6 0.09149 7.127 2L+2L 

361.91 5.38 367.29 61504.4 2593 0.00098 6.4996 2L+2H 

417.51 3.17 420.68 60286.8 3048.1 0.03801 -0.0081 2H+2L 

419.6 18.78 438.38 60271.8 3060.8 -0.0003 0.0009 2H+2H 

2018 

AV2 

200.68 3.02 203.7 63329.7 2876.5 0.00944 2.654 2L+2L 

145.66 28.46 174.12 63643.4 2985.9 0.00021 6.2348 2L+2H 

204.22 2.18 206.4 63301.4 2800.5 0.0193 -0.0065 2H+2L 

296.14 7.32 303.45 63201.3 2677.4 0.00042 0.0004 2H+2H 

 

Comparing the results in the Table 3.2 and Table 3.4, it is found that the direct capture 

to the Earth-Moon L2 point needs a shorter flight time and so chemical propulsion may be 

preferred for this capture strategy. On the other hand, the indirect asteroid capture always 

needs a much longer flight time. Moreover, this capture strategy can easily achieve a low 

energy transfer for capturing a NEA. Therefore, low-thrust propulsion can be more easily 

applied to the indirect capture strategy. For comparison, the optimal results of the indirect 

capture of asteroids to the Earth-Moon L2 target periodic orbit without utilising the Earth-

Moon L2 stable manifolds are shown in Table 3.5. It is assumed that the transfer 
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trajectories for indirect asteroid capture can be designed by patching the Sun-Earth 

unstable manifolds and the Earth-Moon L2 periodic orbits directly. Comparing the results 

in Table 3.4 and Table 3.5, it is shown that the indirect capture strategy using the Earth-

Moon stable manifolds can easily achieve lower cost captures. 

Table 3.5 Results of optimal indirect capture of asteroids to Earth-Moon L2 periodic orbits without 

using the Earth-Moon stable manifolds 

NEA 
v1+v2, 

m/s 

v3, 

m/s 

v, 

m/s 

T0, 

MJD 

Tfly, 

day 

AEM, 

EM unit 

ASE, 

10-3AU 

Target 

(SE+EM) 

2006 

RH120 

365.01 18.03 383.04 58780.7 3021.9 0.05473 2.6947 1L+2L 

394.75 6.48 401.23 58798.2 2996.6 0.00195 2.4466 1L+2H 

497.09 19.7 516.79 60391.9 1785.2 0.03964 -0.0131 1H+2L 

455.27 81.22 536.49 60527.3 1581.5 0.01784 -0.0143 1H+2H 

2007 

UN12 

370.72 26.04 396.76 58526.4 1067.4 0.0501 7.1973 2L+2L 

339.38 137.66 477.05 58529.1 1068.5 -0.000120 7.1195 2L+2H 

475.42 18.3 493.72 58523.7 1211.2 0.06394 -0.0119 2H+2L 

483.36 114.84 598.19 58511.8 1059.8 0.00398 0.00680 2H+2H 

2008 

EA9 

423.14 89.03 512.17 61047.7 2351.7 0.13501 7.5718 2L+2L 

479.53 91.79 571.32 61046.3 2330 0.00110 7.1531 2L+2H 

682.65 80.48 763.13 62227 1433.5 0.09171 -0.00120 2H +2L 

910.61 80.57 991.18 62194.4 1526.7 0.00488 -0.00850 2H+2H 

2010 

UE51 

459.91 55.04 514.95 62253.5 2215.4 0.11002 7.4242 2L+2L 

477.15 102.24 579.39 62232.5 2227.7 0.00229 7.1293 2L+2H 

767.58 45.26 812.83 61772.3 2718.4 0.1119 0.0135 2H+2L 

766.46 57.85 824.31 61757.9 2610.7 -0.00200 -0.00730 2H+2H 

2014 

WX202 

423.16 26.54 449.7 61541.4 2485.2 0.07041 1.3148 2L+2L 

443.59 48.47 492.06 61540.5 2522 0.00328 2.5509 2L+2H 

488.13 7.78 495.91 60265.8 3082 0.05891 0.00430 2H+2L 

476.24 93.19 569.43 60266.1 3082 0.00320 -0.00780 2H+2H 

2018 

AV2 

358.48 95.35 453.83 63805.4 2715.9 0.09785 2.2355 2L+2L 

255.45 153.2 408.65 63521.1 3111.7 -0.000210 7.1101 2L+2H 

305.72 21.26 326.98 63226 3000.5 0.08854 -0.0568 2H+2L 

285.95 67.45 353.4 63268 2953.4 0.000730 0.0279 2H+2H 

 

From comparison of the results from Table 3.4 and Table 3.5, it can be seen that lower 

cost captures are available by patching together the Sun-Earth Lyapunov orbit unstable 



Chapter 3 Capture of small NEAs in the vicinity of the Moon 

 

74 
 

manifold and Earth-Moon Lyapunov orbit stable manifold than to patch other 

combinations of the Sun-Earth unstable manifolds and Earth-Moon stable manifolds, e.g. 

the Sun-Earth halo orbit unstable manifold and Earth-Moon halo orbit stable manifold. 

This is because in the patched three-body problem it is assumed that the motion of all four 

bodies are in the same plane. Patching the Sun-Earth Lyapunov orbit unstable manifold 

and Earth-Moon Lyapunov orbit stable manifold together is a planar problem and the z-

component of the manifolds is not considered. Therefore, there are more opportunities to 

patch the Sun-Earth Lyapunov orbit unstable manifold and Earth-Moon Lyapunov orbit 

stable manifold together, while there are only two intersection points between one Sun-

Earth halo orbit unstable manifold and one Earth-Moon halo orbit stable manifold, as well 

as one Sun-Earth halo orbit unstable manifold and one Earth-Moon Lyapunov orbit stable 

manifold, one Sun-Earth Lyapunov orbit unstable manifold and one Earth-Moon halo orbit 

stable manifold, shown in Fig. 3.21. 

 

Fig. 3.21 Intersection of Sun-Earth L2 manifolds and Earth-Moon L2 manifolds ( = 0.5) with 

Poincaré section (x = 1  ) in the Sun-Earth rotating frame. 

3.3 Direct and indirect capture of NEAs to Earth-Moon system 

triangular points 

Due to their stability, the vicinity of the triangular points in Earth-Moon system could be a 

preferred location for captured asteroids. As discussed in Section 2.25, there are two 

families of periodic orbits around the triangular points, long-period orbits and short-period 

orbits. Generally speaking, the short-period orbits are much more stable than the long-
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period orbits, under given perturbations. Therefore, short-period orbits with C1 = 0 and C2 

 0.2 are selected as the target orbit for the captured asteroids [172], as defined in Section 

2.2.5. In this section, the amplitude variable Ap instead of the Jacobi constant is used to 

define a short-period orbit and so Ap can be written as 

 2pA   (3.25) 

Then, a series of short-period orbits around the Earth-Moon triangular points with 

continuous amplitude variable Ap can be calculated, using the numerical procedure in 

Section 2.25, as shown in Fig. 3.22. 

 

Fig. 3.22 Short-period orbits around the triangular points L4 in the Earth-Moon system ( 1 = 0κ , Ap  

0.2). 

Similar to the direct/indirect asteroid capture to periodic orbits around the Earth-Moon 

L2 point, there also exist two types of asteroid capture strategies and so the design 

procedures of Section 3.1-3.2 can still be applied to design the direct/indirect capture of 

asteroids to the triangular points. However, different to the transfers to the Earth-Moon L2 

periodic orbits, there are no dynamical structures such as invariant manifolds associated 

with periodic orbits around the triangular points in the Earth-Moon system. Therefore, 

transfer trajectories for direct asteroid capture can be designed from the candidate 

asteroid’s orbit to the short-period orbits around the Earth-Moon L4/L5 points directly, 

shown in Fig. 3.23(a). For the indirect capture strategy, the unstable manifolds of the Sun-

Earth system and the short-period orbit around the Earth-Moon L4/L5 points can be patched 

together, shown in Fig. 3.23(b).  
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(a) 

  

(b) 

Fig. 3.23 Two types of asteroid capture strategies to the Earth-Moon triangular points: (a) direct 

capture strategy; (b) indirect capture strategy. 

Similar to the optimisation of the direct/indirect capture trajectories to the Earth-Moon 

L2 point, the direct/indirect capture trajectories to the Earth-Moon triangular points can 

again be optimised by using NSGA-II [182] followed by the function fmincon in 

MATLAB. The results of direct and indirect capture of asteroids to the triangular points in 

the Earth-Moon system is shown in Table 3.6 and Table 3.7. It can be seen that the direct 

asteroid capture strategy needs a shorter flight time, while the indirect asteroid capture 

strategy can achieve lower-cost capture. Compared to the results of Table 3.2 and Table 

3.5, it can be seen that without invariant manifolds associated with the triangular points, 

much more energy (i.e., v2) is required to insert the candidate asteroids into the short-

period orbits around the Earth-Moon triangular points. The optimal direct and indirect 

capture trajectories for 2018 AV2 to the Earth-Moon L4 point is shown in Fig. 3.24 and 
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Fig. 3.25 respectively. It should be noted that in Table 3.7, 2L denotes the planar Lyapunov 

orbit around L2. 

Table 3.6 Results of optimal direct capture of asteroids to the Earth-Moon triangular point 

NEA 
v1, 

m/s 

v2, 

m/s 

v, 

m/s 

T0, 

MJD 

Tfly, 

day 

Ap, 

EM unit 

Target 

(EM) 

2006 RH120 335.66 428.9 764.56 61095.1 996.8 0.19948 L4 

2007 UN12 174.65 584.73 759.38 58836 262.4 0.19992 L4 

2008 EA9 294.98 544.11 839.09 58678.4 178.7 0.19782 L4 

2010 UE51 293.09 643.74 936.82 63246.9 688.7 0.19921 L4 

2014 WX202 428.8 422.5 851.3 63342.8 621.2 0.19902 L4 

2018 AV2 171.98 374.64 546.62 65961.1 586.1 0.19957 L4 

 

Table 3.7 Results of optimal indirect capture of asteroids to the Earth-Moon triangular point 

NEA 
v1+v2, 

m/s 

v3, 

m/s 

v, 

m/s 

T0, 

MJD 

Tfly, 

day 

AEM, 

EM unit 

ASE, 

10-3AU 

Target 

(SE+EM) 

2006 RH120 

326.84 234.45 561.29 58785.5 3013 0.58389 2.2935 1L+ L4 

431.91 215.02 646.93 60427.2 1745.6 0.66505 -0.0076 1H+ L4 

2007 UN12 

241.2 448.89 690.09 58571.5 1058.6 0.54696 7.441 2L+ L4 

458.61 226.02 684.63 58529.2 1254.1 0.49543 -0.0185 1H+ L4 

2008 EA9 

412.19 429.86 842.05 61059.7 2349.4 0.5169 7.7138 2L+ L4 

723.66 206.78 930.44 62214.1 1449.4 0.6874 -0.0016 1H+ L4 

2010 UE51 

409.06 423.39 832.45 62238.1 2266.6 0.46957 7.8272 2L+ L4 

772.42 226.92 999.34 61771.6 2596.5 0.67423 -0.0188 1H+ L4 

2014 

WX202 

425.74 193.2 618.94 61542.9 2581 0.47584 1.0408 2L+ L4 

481.29 223.13 704.42 60263.6 3088.2 0.61532 0.035 1H+ L4 

2018 AV2 

267.19 245.12 512.31 64230.9 2676.4 0.53164 2.7445 2L+ L4 

266.91 214.57 481.47 63273 2944.3 0.54619 -0.0216 1H+ L4 
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(a) (b) 

 

(c) (d) 

Fig. 3.24 Optimal direct capture trajectory for 2018 AV2 to the Earth-Moon L4 periodic orbit in the 

J2000 Sun-centred inertial frame: (a) 3D view; (b) x-y projection; (c) x-z projection; (d) y-z projection. 

 

Fig. 3.25 Optimal indirect capture trajectory for 2018 AV2 to Earth-Moon L4 periodic orbit in Sun-

Earth rotating system. 
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3.4 Discussions 

In this chapter, two different strategies for capturing asteroids in the Earth-Moon system 

have been presented, termed as the direct and indirect asteroid capture strategies.  

As a candidate gateway station, and an ideal location for interplanetary transfers, the 

Earth–Moon L2 libration point is of great importance for future deep space exploration. 

Capturing asteroids and inserting them onto periodic orbits around the Earth-Moon L2 

point offers in-situ resources to support such ventures. Therefore, the patched restricted 

three-body problem has been used to investigate the capture of asteroids into periodic 

orbits around the Earth-Moon L2 point. However, using an indirect capture strategy via the 

Sun-Earth L2 point the transfer duration is long due to the time required for the asteroid to 

move along the stable manifold in the Sun-Earth system.  

Therefore, a direct asteroid capture strategy is proposed to capture asteroids into 

periodic orbits around the Earth-Moon L2 point from the asteroid’s heliocentric orbit 

directly. The CRTBP is firstly used to compute periodic orbits around the Earth-Moon L2 

point and their associated stable manifolds. The 3BSOI is then utilised as the boundary 

between the Sun-Earth-Moon restricted four-body problem and the Earth-Moon CRTBP. 

After the target points on the stable manifolds are transformed to the Sun-centred inertial 

frame, the three-dimensional orbital-element space of candidate NEAs is then obtained to 

select candidate NEAs which can be captured with a total cost under 500 m/s. After 

calculating the approximate approach date and departure date, a Lambert arc in the Sun-

centred two-body problem is utilised to estimate the first impulse to the target points from 

the candidate asteroid’s orbit. Based on the initial guess of the first impulse, a differential 

correction method is then used to design the transfer trajectory to the target points from the 

candidate asteroid’s orbit in the Sun-Earth-Moon restricted four-body problem.  

On the other hand, due to the stability of the triangular points in the CRTBP model, the 

vicinity of the triangular points in Earth-Moon system could be another preferred location 

for captured asteroids. The direct/indirect strategies are also applied to design the 

direct/indirect capture of asteroids to the triangular points. Since there are no invariant 

manifolds associated with periodic orbits around the triangular points, transfer trajectories 

for direct asteroid capture can be designed from the candidate asteroid’s orbit to short-

period orbits around the Earth-Moon L4/L5 points directly, and the indirect capture is 

designed by patching the unstable manifolds of the Sun-Earth system with short-period 

orbits around the Earth-Moon L4/L5 points.  
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Comparing the results of the two methods, it is noted that the direct asteroid capture 

strategy requires a shorter flight time while the indirect asteroid capture strategy can 

always achieve a lower cost capture in terms of energy requirements. Therefore, chemical 

propulsion may be preferred for the direct capture strategy. Moreover, low-thrust 

propulsion can be more easily applied to the indirect capture strategy. 
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CHAPTER 4  

CAPTURE OF NEAS AROUND SUN-EARTH 

LIBRATION POINTS USING EARTH FLYBY AND 

AEROBRAKING 

This Chapter introduces the concept of coupling together a flyby of the Earth and then 

capturing small NEAs onto Sun–Earth L1/L2 periodic orbits. Since the Sun-Earth L1 and L2 

points represent potentially beneficial gateways for future interplanetary missions, 

capturing asteroids onto periodic orbits around the Sun-Earth L1/L2 points is of particular 

interest. The main contributions of this Chapter (which were presented in Ref [44]) are 

summarized as follows: 

 

(1) According to the height of the flyby orbit at perigee, two types of the Earth flyby 

are determined; an Earth flyby with and without high altitude aerobraking. In this 

capture strategy, the candidate asteroid leaves its orbit with an impulse manoeuvre 

and then flies by the Earth. At the perigee of the flyby, an aerobraking maneuverer 

or an additional propulsive manoeuvre is imposed on the asteroid. Accordingly, the 

asteroid is inserted onto the stable manifold of a target periodic orbit around the 

Sun-Earth L1 or L2 points; 

(2) In the NEA capture strategy using aerobraking, the aerobraking model is 

transformed from the Earth-centred inertial frame to the Sun-Earth rotating frame. 

The aerobraking phase is then investigated to calculate aerobraking opportunities 

and windows for capture to periodic orbits around the Sun-Earth libration point L1 

or L2.  
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4.1 Target periodic orbits and stable manifolds 

As discussed in Section 3.3, the Lyapunov orbits and halo orbits around the Sun-Earth L1 

and L2 points have been calculated using a numerical procedure in Section 2.2.4. In this 

Chapter, those periodic orbits will serve as the final target orbits where the candidate 

asteroids are captured and placed. The orbits are unstable periodic orbits which have 

associated stable manifolds. Once the candidate asteroid is captured onto the stable 

manifolds associated with the periodic orbits around the Sun-Earth L1 and L2 points, it will 

asymptotically approach and then be inserted onto the target orbit. The stable manifolds 

associated with a Sun-Earth L2 Lyapunov orbit are shown in Fig. 3.15. 

As discussed in Section 3.1.1, a Poincaré section can transform a continuous time 

dynamical system to a discrete time dynamical system. To obtain the state of the perigee of 

the Earth flyby orbit, the periapsis map can be used as a Poincaré map [75, 105, 183, 184]. 

The periapsis map is defined by the following condition 

 2 0r  , 2 0r   (4.1) 

where r2 is the distance between a third body (i.e. the asteroid) and the centre of the Earth 

(See Section 2.2). 

The periapsis map of the stable manifolds associated with the Sun-Earth L1 and L2 

periodic orbits can be obtained by propagating the stable manifolds backward until they 

cross the section defined by Eq. (4.1). An example of the periapsis map of the stable 

manifolds associated with a Sun-Earth L2 Lyapunov orbit is shown in Fig. 4.1. In this 

Chapter, the aerobraking manoeuvre, or an additional propulsive manoeuvre, is assumed to 

occur at the perigee of the Earth flyby orbit where the state of the perigee of the flyby orbit 

can be determined by the periapsis condition defined by Eq. (4.1).  

The states of the Sun-Earth L1 and L2 stable manifolds at the periapsis map in the Sun-

centred inertial frame and in the Sun-Earth rotating frame are denoted by in

SX  and ro

SEX  

respectively. Thus,  

 ( )( ), [0,2 ]in ro

S SE Sun    X R X X  (4.2) 

 
1( ) , [0,2 ]ro in

SE S Sun    X = R X X  (4.3) 

where [ ,0,0,0,0,0]T

Sun  X is the state of the Sun in the Sun-Earth rotating frame and 

1( )
R  is a rotation matrix (See Section 2.2). 
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In the following sections, Eq. (4.2) will be used to transform the state of the candidate 

asteroid in the Sun-centred inertial frame to the Sun-Earth rotating frame. Moreover, Eq. 

(4.3) will be used to transform the state of the asteroid at the aerobraking manoeuvre in the 

Earth-centred inertial frame to the Sun-Earth rotating frame. Consequently, the dynamical 

model of the aerobraking manoeuvre in the Sun-Earth rotating frame can be obtained.  

  

Fig. 4.1 Stable manifolds associated with a Sun-Earth L2 periodic orbit (Ap = 0.0020187) and the 

periapsis map 

4.2 Strategies for Earth flyby 

During the flyby of the Earth, the Earth’s atmosphere may provide opportunities for a 

grazing aerobraking manoeuvre to move the asteroid onto the stable manifold of the Sun-

Earth L1 or L2 periodic orbits. Therefore, there will exist two types of Earth flyby, i.e. with 

and without the aerobraking manoeuvre, corresponding to a low or high altitude flyby orbit 

at perigee. In practice only small bodies would be considered to mitigate impact risks. 

Therefore, those asteroids which would completely ablate in the Earth’s atmosphere at low 

altitude in the event of a failure prior to or during the aerobraking pass [147] are 

considered as candidate asteroids, as discussed in Section 3.1.5. Moreover, issues 

associated with the precision of the aerobraking manoeuvre required for subsequent 

injection onto the stable manifold are not considered here. However, for a small asteroid, 

the body may in principle be actively guided by a carrier spacecraft [39], with the carrier 

spacecraft remaining attached to, and shielded, by the asteroid during the aerobraking 

manoeuvre. 
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4.2.1 Aerobraking model 

With a high relative velocity with respect to the Earth, a captured asteroid will pass 

through the Earth’s atmosphere quickly and so would remain in the atmosphere for only a 

short duration, as shown in Fig. 4.2. The trajectory of the asteroid in the Earth’s 

atmosphere can then be modelled by means of a Keplerian orbit.  

 

Fig. 4.2 Schematic diagram of an aerobraking 

Thus, assuming that the asteroid remains in the Earth’s atmosphere for a small arc of 

true anomaly close to pericentre, an approximate model can therefore be used where the 

aerobraking manoeuvre is modelled as a grazing hyperbolic flyby. During the flyby, a first 

order approximation of the velocity change (va) generated by the aerobraking manoeuvre 

can be written as [139] 

 
2 ( 1)/

(1 )p sB r H e e

a pe
  

  v v  (4.4) 

where pv  is the relative velocity of the asteroid at perigee with respect to the Earth and 

 
2

d

A
B C

M
  (4.5) 

is the asteroid ballistic coefficient, where Cd is the drag coefficient of a sphere, assumed to 

be 0.47 [49]; A/M is the area-to-mass ratio of the asteroid; rp is the perigee radius of the 

flyby orbit from the centre of the Earth and e is the eccentricity of the flyby orbit; Hs is the 

atmosphere scale height. Assuming that the asteroid is a spherical with standard density a 

= 2600 kg/m3 [181], the asteroid ballistic coefficient can be written as  

Atmosphere

rp

av

Aerobraking
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1

0.75 d

a

B C
D

  (4.6) 

where D is the diameter of the asteroid (See Section 3.1.5). 

Many density models of the Earth’s atmosphere have been developed, including the 

Standard Atmosphere, USSA76 [185] and COSPAR International Reference Atmosphere 

[186]. However, one of the simplest models is the exponential atmospheric model [187]. In 

this model, it is assumed that the density of the atmosphere deceases exponentially from 

the Earth’s surface and so can be written as  

 
0

s

h

H
e 


  (4.7) 

where 0 1.225   kg/m3 is the density of the Earth’s atmosphere at the surface and Hs = 

7.249 km is the scale height [187].  

Moreover, during the aerobraking manoeuvre, the energy loss due to the grazing pass 

through the upper atmosphere will be converted to heat, and thus the aerobraking 

manoeuvre will lead to mass loss from the asteroid due to thermal ablation [188]. 

Therefore, it can be assumed that the mass loss of the asteroid should be a function of the 

change in the kinetic energy of the asteroid. Based on the approximate model for 

aerobraking in Eq. (4.4), the final mass m  of the candidate asteroid after aerobraking can 

be estimated as [49] 

 
2 2( )/2p pv v

m m e
  

   (4.8) 

where p p a  v v v  is the relative velocity of the asteroid at perigee with respect to the 

Earth after aerobraking, m is the initial mass of the asteroid and  is an ablation 

parameter, assumed to be 82.1 10  s2/m2 [49]. In fact, the ablation parameter  is not 

constant and can vary with the altitude of the aerobraking manoeuvre, the asteroid relative 

velocity and the size of the asteroid. Moreover, some large asteroids would suffer a lower 

level of ablation since the outer surface of the asteroid can act as an effective shield caused 

by a screening effect [189]. However, a constant value of the ablation parameter can 

provide an effective conservative estimate of the asteroid’s final mass [49]. Meanwhile, the 

mass loss ratio is defined by 

 
2 2( )/2

1 p pv vm m
f e

m

   




    (4.9) 
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The ablation model will be used later in Section 4.3.1 for hazard analysis to select 

candidate asteroids. 

It should be noted that the aerobraking model in Eq. (4.4) is only valid when the mass 

loss of the captured asteroid is small, since the change in the momentum due to the mass 

loss is not taken into accounted in Eq. (4.4). To address this problem, a more accurate 

aerobraking model would be required. According to Newton's second law, one can get 

 21 ( )

2
d a d

d mv
F C Av

dt
    (4.10) 

where Fd is the drag force; m and v are the mass and the velocity of the asteroid, 

respectively. 

From Eq. (4.10), it can be shown that 

 
21

a

dm dv
v B v

m dt dt
    (4.11) 

Assuming that s is the distance along the aerobraking trajectory in the atmosphere 

[139], one can get 

 
dv dv ds dv

v
dt ds dt ds

  ,
dm dm

v
dt ds

  (4.12) 

Therefore, Eq. (4.11) can be written as 

 2 21
a

dm dv
v v B v

m ds ds
    (4.13) 

 
1 1

a

dm dv
B

m ds v ds
    (4.14) 

From Eq. (4.6), it can be found that B is a function of the asteroid’s diameter D and a 

small decrease in D can lead to a significant mass loss of the captured asteroid. For 

instance, for a captured asteroid with mass loss ratio fm of about 50%, there is only a 20% 

decrease in its diameter D. Thus, for simplification, B is assumed to a constant during 

aerobraking. The general solution of Eq. (4.14) is 

 
1 1

admds dvds B ds
m v

      (4.15) 

After some simple algebra, Eq. (4.15) reduces to 
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 ln ln 2 ( 1) /
p

p s

p

vm
B r H e e

m v
 



 

     (4.16) 

Substituting Eq. (4.8) in Eq. (4.16) yields 

 
2 21

( ) / 2 ln 2 ( 1) /
2

p

p p p s

p

v
v v B r H e e

v
  



 



      (4.17) 

The accurate value of the velocity vp+ after aerobraking can then be obtained through 

Newton's method based on the initial guess in Eq. (4.4). With these assumptions and using 

Eq. (4.17), contour maps of the magnitude of the aerobraking manoeuvre imparted to the 

asteroid with respect to the asteroid’s diameter D and the perigee height h above the 

Earth’s surface are shown in Fig. 4.3 and Fig. 4.4. 

From Fig. 4.3 and Fig. 4.4, it can be seen that once the height h at perigee above the 

Earth’s surface is larger than approximately 100 km, the Earth’s atmosphere can be 

assumed not to provide an aerobraking manoeuvre. Therefore, hthreshold = 100 km is defined 

as the height threshold for aerobraking, or rthreshold = 6478 km (rEarth + 100 km) as the 

distance threshold for aerobraking, where rEarth = 6378 km is the radius of the Earth. 

 

Fig. 4.3 Aerobraking v provided by the atmosphere as a function of height h and different relative 

velocities vp of the asteroid, given an asteroid diameter of D = 10 m. 
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Fig. 4.4 Aerobraking v provided by the atmosphere as a function of height h and asteroid diameter D, 

given a perigee speed vp = 15 km/s. 

4.2.2 Earth flyby without aerobraking 

When the candidate asteroid flies by the Earth at a high altitude above the Earth’s surface 

(h > 100 km), the Earth’s atmosphere cannot provide an aerobraking manoeuvre, as shown 

in Fig. 4.5. To be consistent with the asteroid capture strategy using aerobraking, an 

additional propulsive manoeuvre is assumed to be imposed on the candidate asteroid at the 

perigee of the flyby. This is because a manoeuvre at perigee can represent the most 

effective way to achieve the outgoing flyby orbit [190]. 

 

Fig. 4.5 Schematic diagram of an Earth flyby without aerobraking 

Atmosphere

Propulsive

manoeuvre

h
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4.3 Asteroid capture opportunities 

4.3.1 Asteroid hazard analysis 

When the candidate asteroid approaches the vicinity of the Earth, it again poses a potential 

(if small) impact risk. Undoubtedly, the grazing atmospheric pass for aerobraking will 

increase the possibility of impact. As discussed in Section 3.1.5, the Earth’s atmosphere 

can protect against asteroids with a diameter of less than 30 m [179, 180]. Therefore, to 

reduce the threat of impact with the Earth, only those small asteroids with D < 30 m are 

considered as candidates for aerobraking, although again detailed risk assessment is 

required. In addition, if a mission to capture an asteroid with a diameter of 30 m fails and 

the asteroid’s height at perigee with respect to the Earth is small enough to pose a threat of 

impact, the final mass of the asteroid after atmosphere entry and ablation can be estimated 

from Eq. (4.9). Figure 4.6 shows the mass loss ratio of a 30 m asteroid after aerobraking 

with a range of incident velocities relative to the Earth and a number of (low) perigee 

heights h with respect to the Earth’s surface. As shown in Fig. 4.6, the aerobraking 

manoeuvre at low perigee heights (especially h < 50 km) can lead to significant mass loss, 

thereby potentially mitigating further risks of impact of the asteroid. However, the use of 

the analysis of Section 4.2 is clearly only approximate and it should be noted that complete 

ablation in the atmosphere may still lead to surface damage due to shock wave propagation 

[191]. 

 

Fig. 4.6 Mass loss ratio of a 30 m asteroid after aerobraking with incident velocity with respect to the 

Earth 
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Furthermore, the natural average impact interval for asteroids can be estimated using 

an empirical scaling law [192] 

 
2 2.3773.71 10impactT D   (4.18) 

where the time interval is measured in years and the asteroid diameter is provided in 

meters. Figure 4.7 shows the corresponding natural average impact interval for asteroids 

with respect to the asteroid’s diameter. As shown in the Fig. 4.7, the average impact 

interval for a 30 m asteroid is approximately 1 century. Therefore, the risk of capturing a 

similar body will add to the natural background risk, although again the risk is in principle 

small. It can also be considered that dis-assembling an asteroid prior to encounter, with a 

number of smaller fragments aerobraking individually, can reduce risks further. 

Considering D < 30 m, the candidate asteroids selected should again therefore be those 

asteroids with an absolute magnitude H > 25.26, as discussed in Section 3.1.5. 

 

Fig. 4.7 Estimated average natural impact interval of asteroids versus asteroid diameter. 

4.3.2 Candidate asteroids selection 

As discussed in Section 3.1.5, it is necessary to remove those asteroids with a high 

inclination and a semi-major axis far from that of the Earth’s to capture NEAs with low 

energy. Therefore, those asteroids with a semi-major axis in the range 0.85-1.15 AU are 

considered to be candidates which can be captured into the vicinity of the Earth with a 

relatively low energy [43]. Furthermore, the Jacobi constant J of the asteroid can be 

approximated by the Tisserand parameter as follows [162] 

 21/ 2 (1 )cosJ a a e i    (4.19) 
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where a, e and i are the semi-major axis (in AU), eccentricity and inclination of the 

asteroid orbit. If an asteroid’s Jacobi constant is significantly different from that of the 

final periodic orbit, it may have too high a total cost for capture [18]. It should therefore be 

possible to achieve low energy capture with a Jacobi constant close to the Jacobi constant 

of the target periodic orbit. As discussed in Section 3.2, it can be seen that the Jacobi 

constant of the target periodic orbits is in the range [2.999, 3.0009]. Therefore, here J = 

2.99 is arbitrarily set as the critical value. Those asteroids with J  2.99 are then considered 

to be candidate asteroids. Considering the filters stated above, the candidate asteroids 

should be those asteroids with H  25.26, J  2.99 and a  [0.85, 1.15], as shown in Fig. 

4.8. 

 

(a) 

 

(b) 

Fig. 4.8 Distribution of candidate asteroids: (a) semi-major and eccentricity and (b) semi-major and 

inclination. 
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4.3.3  Asteroid capture window 

For each of these candidate NEAs, feasible capture dates are again assumed to be in the 

interval 2019–2050 (or 58484 MJD - 70171 MJD). As discussed in Section 3.1.5, the 

asteroid capture window is a time period during which the asteroid orbital elements are 

valid until it approaches the Earth. In this Chapter, it is assumed that the upper limit of the 

asteroid capture window is the date when the distance of the candidate asteroid from the 

Earth is 0.21 AU, where the gravitational attraction of the Earth is then considered small 

enough with respect to the gravity of the Sun (the ratio of Earth’s and Sun’s gravity is then 

less than 10-4). Denoting the date when the asteroid has a distance from the Earth of 0.21 

AU as Tthreshold (Tthreshold  2050), the capture window of a candidate asteroid is then 

[2019, ]thresholdT , shown in Fig. 4.9. 

 

 

Fig. 4.9 Tthreshold of candidate asteroids 

4.4 Asteroid capture using Earth flyby without aerobraking 

4.4.1  Problem statement 

In this capture strategy, a flyby of the Earth without aerobraking is used. The candidate 

asteroid leaves its orbit with an impulse manoeuvre and approaches the vicinity of the 

Earth for the flyby. At the perigee of the flyby, an additional manoeuvre is imposed on the 

candidate asteroid. This is because a manoeuvre at perigee can represent the most effective 

way to achieve the outgoing flyby orbit [190]. Finally, the asteroid moves onto the stable 
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manifold of a target periodic orbit around the Sun-Earth L1 or L2 points and will be 

asymptotically captured onto it. In this scenario, a manoeuvring spacecraft is first assumed 

to be attached to the target asteroid before the first manoeuvre and will then stay attached 

to the asteroid for the entire mission. All propulsive manoeuvres will be provided by the 

manoeuvring spacecraft. It should be noted that the entire transfer trajectory is modelled in 

the Sun-Earth CRTBP. 

Figure 4.10 shows a schematic of the asteroid capture strategy using an Earth flyby 

without aerobraking. The basic concept of the asteroid capture strategy is through the 

following steps: 

(1) With an initial manoeuvre v1, the candidate asteroid leaves its initial orbit and its 

motion can then be described by the Sun-Earth CRTBP, shown in Fig. 4.10(a); 

(2) With a second manoeuvre v2, the asteroid approaches the vicinity of the Earth and 

then reaches perigee, shown in Fig. 4.10(b); 

(3) At the perigee, a third manoeuvre v3, which is parallel to the asteroid’s current 

velocity vector, is applied to the asteroid and the asteroid then moves onto the 

stable manifold of a Sun-Earth L1 or L2 periodic orbit and so will asymptotically 

transfer onto it, shown in Fig. 10(b). 

The total cost of capturing an asteroid onto the target periodic orbit around the Sun-

Earth L1 or L2 points can then be written as  

 1 2 3v v v v      (4.20) 

Therefore, for each candidate asteroid, six parameters can determine the asteroid 

capture manoeuvre using an Earth flyby without aerobraking, as defined in Fig. 4.10 and 

described as follows:  

 

 T0: epoch when the first manoeuvre is applied to the candidate asteroid;  

 Tfly1: flight time between the first manoeuvre and the second manoeuvre; 

 Tfly2: flight time between the second manoeuvre and the third manoeuvre;  

 Ap: amplitude variable of the target Sun-Earth L1 or L2 periodic orbit; 

 tp: time tp determining the point along the Lyapunov orbit where the stable 

manifold of the target Lyapunov orbit is propagated backward from and where 

tp  [0 Tp] where Tp is the period of the final target orbit;  

 v3: third manoeuvre that is parallel to the velocity vector of the asteroid at the 

perigee. 
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(a) 

 

(b) 

Fig. 4.10 Schematic strategy for asteroid capture using Earth flyby without aerobraking: (a) the 

candidate asteroid leaves its orbit with the fist manoeuvre; (b) the candidate asteroid is inserted onto 

the stable manifold after the Earth flyby. 

4.4.2 Initial guess and differential correction 

A differential correction method will be utilised to design the transfer trajectory between 

the candidate asteroid’s initial orbit and the target point where the second manoeuvre v2 is 

applied to the asteroid in the following section. It is assumed that the asteroid initial state is 

[ , , , , , ]T

i i i i i ix y z x y ziX  and then the final state after flight time T is 

[ , , , , , ]T

f f f f f f fx y z x y z      X . Assuming that the state of the target point is

[ , , , , , ]T

f f f f f fx y z x y zfX , the condition such that [ , , ,0,0,0]T

f f fx y z     0fX

(i.e. [ , , ,0,0,0]T

f f f f f fx x y y z z      0 ) can be sought by correcting the initial velocity 

vector [0,0,0, , , ]T

i i ix y z   iX  as follows 

 
1 i fX X  (4.21) 
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where   is the 6 6  state transition matrix of the CRTBP (See Section 2.2.3). 

A heliocentric Sun-centred two-body Lambert arc with two impulsive manoeuvres can 

be used to provide an initial guess, where the first impulse is applied and the asteroid 

transfers to the Sun-Earth stable manifold. The differential correction defined by Eq. (4.21) 

uses this initial guess and then the correction is repeated until [ , , ]T

f f fx y z   fr

approaches 0, within some small tolerance. 

4.4.3  Design Procedure 

The process of designing the transfer trajectory to capture the candidate asteroid using an 

Earth flyby without aerobraking is as follows: 

 

(1) Select one target asteroid in the candidate catalogue (e.g. 2010 UJ) in Fig. 4.8;  

(2) Given the amplitude variable Ap of a periodic orbit and the parameter tp, the stable 

manifold associated with the final periodic orbit is propagated backward within a 

given propagation time (e.g. 400 days); the perigee where the third manoeuvre v3 

is applied to the asteroid can then be determined, corresponding to the perigee 

along the stable manifold with the closest distance to the Earth and a height above 

the Earth’s surface larger than 100 km. Then, the state 

[ , , , , , ]T

p p p p p px y z x y zp+X at perigee is obtained, shown in Fig. 4.11; 

(3) Given the value of the third manoeuvre v3 at perigee, the state before the third 

manoeuvre is [ , , , , , ]T

p p p p p px y z x y z  p-X  where 

2 2 2 1/2

31 / ( )p p pv x y z     ; 

(4) Given the flight time Tfly2, the state 
p-X  is propagated backward and then the target 

point fX  is obtained, shown in Fig. 4.12; 

(5) Given a departure date T0, the transformation of the initial state of the candidate 

asteroid in the Sun-centred inertial frame to the Sun-Earth rotating frame iX  is 

then obtained; 

(6) Given the flight time Tfly1, the Lambert arc in the Sun-centred two-body problem is 

utilised to design the transfer to the stable manifold from the candidate asteroid’s 

orbit and so the first impulse can be estimated; based on the initial guess of the 

first impulse, the differential correction method in Eq. (4.21) is then applied to 
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design the transfer between the candidates asteroid’s initial orbit iX  and the target 

point 
fX . Thus, the manoeuvres v1 and v2 can be calculated.  

The total cost of capturing the asteroid onto a Sun-Earth L1 or L2 periodic orbit using 

the Earth flyby can then be obtained, where the entire transfer trajectory is shown in Fig. 

4.13 and Fig. 4.14.  

 
(a) (b) 

Fig. 4.11 Given Ap = 0.0018878, tp = 1.637679, perigee of the stable manifold associated with the Sun-

Earth L2 Lyapunov orbit: (a) global view; (b) local view.  

 

(a) (b) 

Fig. 4.12 Given v3 = 185.96 m/s and Tfly2 = 270.58 days, the trajectory prior to v3 is obtained by 

propagating backward from the state at perigee: (a) global view; (b) local view.  
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Fig. 4.13 Given T0 = 58977.85 [MJD], Tfly1 = 285.87 days, the transfer trajectory (x-y projection) to 

capture 2010 UJ onto a Sun-Earth L2 Lyapunov orbit in the Sun-Earth rotating frame. 

 

Fig. 4.14 Transfer trajectory (x-y projection) for capturing 2010 UJ onto the Sun-Earth L2 Lyapunov 

orbit in the Sun-centred inertial frame. 

4.4.4  Optimisation 

For each of these candidate asteroids, there are 6 parameters, so the problem can be 

defined with the following variables: departure date T0, flight time Tfly1, flight time Tfly2, the 

amplitude variable Ap of the target periodic orbit, a variable tp associated with the state on 

the target orbit where the stable manifold is integrated from and the value of the third 

manoeuvre v3 that is parallel to the velocity vector of the asteroid at perigee of the flyby 

orbit. As the objective function for this optimisation problem, the total cost v can be 

minimised by optimising over these 6 parameters (T0, Tfly1, Tfly2, Ap, tp, v3) using NSGA-II 
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[182]. Then transfers obtained with NSGA-II can be locally optimised with the function 

fmincon in MATLAB. The optimal results of asteroid capture using the Earth flyby without 

aerobraking are shown in Table 4.1 and Table 4.2. From Table 4.1 and Table 4.2, it can be 

seen that some asteroids can be captured into Lyapunov orbits around the Sun-Earth 

libration points with lower cost than others, e.g. 2008 EL68 and 2010 UJ. However, the 

Earth flyby can achieve a lower-energy capture of asteroids into halo orbits, especially 

capturing 2008 JL24 and 2015 PS228. 

Table 4.1 Results of capturing asteroid s onto Sun-Earth L1 or L2 Lyapunov orbits using an Earth 

flyby without aerobraking 

Asteroid 
Total 

cost, m/s 

Epoch, 

MJD 

Total flight 

time, days 

Amplitude 

variable Ap, 

10-3AU 

Diameter 

D, m 

Target 

point 

2003 WT153 695.95 58585.2 425.5 1.8448 8.5 L2 

2006 UQ216 1391.82 58722.7 1328.6 6.4591 11.7 L1 

2007 UN12 218.86 58717.9 736.2 7.2695 6.2 L1 

2008 EL68 269.64 66206.9 776.3 7.4623 9.8 L1 

2008 JL24 786.29 59380.1 1372.2 7.6082 4.1 L1 

2009 YR 1155.95 58555.1 778 3.6533 8.5 L1 

2009 YR 1128.36 58569.3 474.4 3.8028 8.5 L2 

2010 UJ 505.97 59060.7 824.3 6.8335 19.5 L1 

2010 UJ 511.75 58977.8 769.3 1.8878 19.5 L2 

2010 UY7 713.92 61552.9 631.2 6.3898 6.8 L2 

2011 BQ50 611.51 58850.4 1580.3 7.9646 8.5 L1 

2011 CL50 558.04 58726.1 892.4 7.0928 10.2 L2 

2012 HG2 524.32 60396 693.9 6.6383 13.5 L1 

2012 WR10 466.24 61065.3 1677.6 6.6175 6.2 L1 

2014 JR24 1105.95 59577.5 1601.2 6.6969 4.7 L1 

2014 QN266 556.92 59719.6 1841.2 7.4758 18.6 L1 

2014 QN266 763.76 61272.8 390.9 9.0648 18.6 L2 

2015 PS228 713.31 61972.7 1653.6 6.2328 5.5 L1 
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Table 4.2 Results of capturing asteroids onto Sun-Earth L1 or L2 Halo orbits using an Earth flyby 

without aerobraking 

Asteroid 
Total 

cost, m/s 

Epoch, 

MJD 

Total flight 

time, days 

Amplitude 

variable Ap, 

10-3AU 

Diameter 

D, m 

Target 

point 

2003 WT153 762.26 58614.6 392.2 0.6752 8.5 L2 

2006 UQ216 1451.83 61491.9 886.3 1.5772 11.7 L1 

2007 UN12 215.23 58486.8 845.2 -0.5260 6.2 L1 

2008 EL68 421.35 65853.8 921.3 -0.2882 9.8 L1 

2008 JL24 671.16 58617.2 1991.1 1.5423 4.1 L1 

2009 YR 1205.26 58780.1 670.7 -1.5612 8.5 L1 

2009 YR 1284.12 63604.5 1220.9 -1.2928 8.5 L2 

2010 UJ 907.65 59289.6 759.6 0.5108 19.5 L1 

2010 UJ 685.37 58630.5 1119.1 0.4842 19.5 L2 

2010 UY7 774.02 61216.5 760.1 0.4272 6.8 L2 

2011 BQ50 804.98 59444.4 822.1 0.4194 8.5 L1 

2011 CL50 798.42 58731.3 723.2 -0.1338 10.2 L2 

2012 HG2 524.42 60002.8 967.8 -0.06090 13.5 L1 

2012 WR10 450.01 61328.1 1330.1 -1.2109 6.2 L1 

2014 JR24 1036.19 60219.7 904.8 1.4263 4.7 L1 

2014 QN266 590.94 61278.9 506 -0.3253 18.6 L1 

2014 QN266 735.53 60634.9 1448.5 0.6632 18.6 L2 

2015 PS228 421.37 62328.1 1287.1 1.5666 5.5 L1 

 

4.4.5  Comparison of the results of asteroid capture with and without 

Earth flyby 

According to the work of Yárnoz, et al. [50] and Sánchez and Yárnoz [18], a candidate 

asteroid can be captured directly from its orbit to the stable manifold of the target Sun-

Earth L1 or L2 periodic orbit, where this asteroid capture strategy has been discussed in 

Section 3.2. In this Chapter, to avoid too long a flight time for capturing asteroids, Lambert 

arcs with up to 3 complete revolutions from the asteroid initial orbit to the stable manifold 

are considered. In this capture strategy, there are 5 parameters: (T0, Tf, tsm, ASE, tp1). Then 
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the total v can be minimised by optimising over these 5 parameters using NSGA-II. 

Transfers obtained with NSGA-II can again be locally optimised with the function fmincon 

in MATLAB. The optimal results of asteroid capture using the Earth flyby without 

aerobraking are shown in Table 1. The optimal results for asteroid capture without an Earth 

flyby are also listed in Table 4.3 and Table 4.4. 

Table 4.3 Results of capturing asteroids onto Sun-Earth L1 or L2 Lyapunov orbits without using an 

Earth flyby 

Asteroid 
Total 

cost, m/s 

Epoch, 

MJD 

Total flight 

time, days 

Amplitude 

variable Ap, 

10-3AU 

Diameter 

D, m 

Target 

point 

2003 WT153 1973.55 58485.6 1049.7 7.6117 8.5 L1 

2006 UQ216 1714.17 61535.1 945.6 6.6708 11.7 L2 

2007 UN12 314.74 58543.7 827.7 5.883 6.2 L2 

2008 EL68 774.66 62767.9 1988.9 7.2019 9.8 L2 

2008 JL24 951.05 59445.3 1698 7.7028 4.1 L2 

2008 UA202 454.04 60329.7 1704.9 7.225 4.5 L2 

2009 YR 1378.33 58498.1 1392.1 6.7619 8.5 L1 

2010 JR34 1591.37 59349.7 1847.6 7.853 9.8 L1 

2010 UJ 824.19 58542.2 1790.2 7.6013 19.5 L1 

2010 UY7 1691.04 61130.6 2157.3 7.9587 6.8 L1 

2010 VQ 2386.46 59010.1 2954.5 4.1326 9.8 L1 

2011 BQ50 697.01 59439.5 852.5 6.8243 8.5 L1 

2011 CL50 1584.04 58931.9 1035.8 6.9948 10.2 L2 

2012 HG2 1921.56 60589.7 2629.7 5.7497 13.5 L2 

2012 WR10 921.84 60935.4 1754.2 5.8587 6.2 L2 

2014 AA 3420.17 58498.9 1416.6 2.9571 2.2 L2 

2014 JR24 1315.09 58817.3 2711.4 5.6231 4.7 L2 

2014 QN266 783.27 58571.3 2517.4 5.5207 18.6 L2 

2014 UV210 1753.41 58553.7 3005.3 2.9632 14.1 L1 

2014 WE6 1376.41 62097.6 1584.7 7.6019 2.8 L2 

2014 WX202 409.31 62264.2 1920.7 8.7576 4.1 L2 
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Table 4.4 Results of capturing asteroids onto Sun-Earth L1 or L2 halo orbits without using an Earth 

flyby 

Asteroid 
Total 

cost, m/s 

Epoch, 

MJD 

Total flight 

time, days 

Amplitude 

variable Ap, 

10-3AU 

Diameter 

D, m 

Target 

point 

2003 WT153 2282.39 58484.4 1587.7 -3.2683 8.5 L1 

2006 UQ216 1796.57 60195.9 1826.7 -4.5544 11.7 L2 

2007 UN12 310.64 58673.9 655.7 3.3418 6.2 L2 

2008 EL68 906.11 65704.8 1820.9 3.7911 9.8 L2 

2008 JL24 1020.53 59586.7 2130.4 -4.836 4.1 L2 

2008 UA202 415.96 59524.1 1959.2 -2.8832 4.5 L2 

2009 YR 1311.25 58504.4 841.5 -0.7273 8.5 L1 

2010 JR34 1620.25 59697.9 2050 4.9686 9.8 L1 

2010 UJ 883.84 58484 1965 -3.4413 19.5 L1 

2010 UY7 1776.82 58960.8 2293.4 4.747 6.8 L1 

2010 VQ 2554.3 58565 1547 2.4473 9.8 L1 

2011 BQ50 1009.23 59272.3 1267.7 -4.1162 8.5 L1 

2011 CL50 1672.19 58635.7 1903 1.489 10.2 L2 

2012 HG2 2050.83 58842.7 1376.1 1.058 13.5 L2 

2012 WR10 1054.66 61347.3 1279.8 3.0741 6.2 L2 

2014 AA 3364.1 58498.5 1450.5 4.7422 2.2 L2 

2014 JR24 1308.21 59235.6 2621.2 -4.544 4.7 L2 

2014 QN266 920.22 60697.7 1423.2 2.095 18.6 L2 

2014 UV210 1947 58559.7 2986.8 -3.1312 14.1 L1 

2014 WE6 1532.96 60388.4 1995.8 4.2308 2.8 L2 

2014 WX202 323.58 61429.6 2032.4 -4.1198 4.1 L2 

 

Comparing the results of Tables 4.1-4.4, it can be noted that the asteroid capture 

strategy using an Earth flyby has the potential to be cheaper in terms of v than the capture 

strategy without the Earth flyby, especially for 2011 CL50, 2012 HG2 and 2012 WR10. 

Moreover, since asteroid capture using an Earth flyby does not require significantly more 

time for the captured asteroid to travel along the stable manifold of the Sun-Earth L1 or L2 

periodic orbit, this capture strategy also has the potential to achieve quicker transfers, e.g. 
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2003 WT153, 2010 UJ and 2011 CL50. Moreover, some candidate asteroids can be 

simultaneously captured with low energy onto periodic orbits both around the Sun-Earth L1 

and L2 points, e.g. 2009 YR, 2010 UJ and 2014 QN266. Therefore, the Earth flyby can be 

regarded as a way of increasing asteroid capture opportunities. However, one drawback of 

the asteroid capture strategy using an Earth flyby is that the asteroid flies by the Earth at a 

relatively high velocity and thus we have limited time to apply the third manoeuvre to the 

asteroid at the perigee of the flyby orbit. Therefore, in principle a high thrust engine would 

be required to achieve the third manoeuvre in a realistic mission scenario. 

 

4.5  Asteroid capture using aerobraking 

In this capture strategy using aerobraking, the candidate asteroid is firstly assumed to leave 

its orbit with an impulse manoeuvre and approach the vicinity of the Earth for a single 

aerobraking pass. During the flyby of the Earth, the Earth’s atmosphere provides drag to 

modify the asteroid orbit without the use of propellant. Again, after the flyby of the Earth, 

the candidate asteroid moves onto the stable manifold of a periodic orbit around the Sun-

Earth L1 or L2 points. 

4.5.1  Problem statement 

Figure 4.15 shows the concept of asteroid capture using aerobraking as follows: 

 

(1) With a first manoeuvre v1, the candidate asteroid departs from its initial orbit and 

its motion can be described by the Sun-Earth CRTBP, shown in Fig. 4.15(a); 

(2) With a second manoeuvre v2, the asteroid approaches the vicinity of the Earth and 

accordingly it reaches perigee; 

(3) An aerobraking manoeuvre is applied to the candidate asteroid and then the 

asteroid moves onto the stable manifold of a periodic orbit around the Sun-Earth 

L1 or L2 points and will finally be captured, shown in Fig. 4.15(b). 

The total cost of capturing the candidate asteroid onto the target periodic orbit around 

the Sun-Earth L1 or L2 points can then be written as  

 v v v   1 2  (4.22) 
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(a) 

 

(b) 

Fig. 4.15 Schematic strategy for asteroid capture using aerobraking: (a) the candidate asteroid leaves 

its orbit with the fist manoeuvre; (b) the candidate asteroid is inserted onto the stable manifold after 

aerobraking. 

Hence, for each candidate asteroid, there now are 5 parameters to describe the 

sequence of manoeuvres as follows:  

 

 T0: epoch when the asteroid departs from its initial orbit;  

 Tfly1: flight time between the first manoeuvre and the second manoeuvre;  

 Tfly2: flight time between the second manoeuvre and the aerobraking phase;  

 Ap: amplitude variable of the final periodic orbit around the Sun-Earth L1 or L2 

points; 

 tp: time associated with the point on the periodic orbit where the stable 

manifold is integrated from where tp  [0 Tp], where Tp is the period of the 

final periodic orbit. 
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4.5.2  Aerobraking phase 

The aim of this Section is to transform the aerobraking model (Eq. (4.17)) from the Earth-

centred inertial frame to the Sun-Earth rotating frame. Assuming that the states of the 

candidate asteroid before and after aerobraking in the Earth-centred inertial frame are 

given by [ , , , , , ]E E E E E E E T

p p p p- p- p-x y z x y zp-X  and [ , , , , , ]E E E E E E E T

p p p p+ p+ p+x y z x y zp+X , respectively, 

then  

 
p

p

v

v






p+

p-

V

V
, p+ p-r = r  (4.23) 

where [ , , ]E E E T

p- p- p-x y zp-V , [ , , ]E E E T

p+ p+ p+x y zp+V , [ , , ]E E E T

p p px y zp-r , [ , , ]E E E T

p p px y zp+r  

and e- is the eccentricity of the flyby orbit before aerobraking.  

Here it is assumed that aerobraking only provides a limited manoeuvre and thus e-  e+ 

where e+ is the eccentricity of the flyby orbit after aerobraking. Therefore, the velocity 

before aerobraking can be guessed as 

 
2 ( 1)/p sB r H e e

e
   

p- p+V V  (4.24) 

The accurate value of the velocity Vp- before aerobraking can then be obtained in Eq. 

(4.17) through Newton's method based on the initial guess in Eq. (4.24). 

It is assumed that the states of the candidate asteroid before and after aerobraking in 

the Sun-Earth rotating frame are then [ , , , , , ]T

p p p p p px y z x y z  p-X  and

[ , , , , , ]T

p p p p p px y z x y z  p+X , respectively. Thus, it can be seen that  

 ( )( )Earth Κp+ p+V R X X  (4.25) 

 ( )( )Earth Κp- p-V R X X  (4.26) 

where ( )R is a coordinate transformation matrix from Eq. (2.14) in Section 2.2 and 

 

0 0 0 1 0 0

[1 ,0,0,0,0,0] , 0 0 0 0 1 0

0 0 0 0 0 1

T

Earth se

 
 

  
 
  

S   (4.27) 

Defining /p pv v   , Eq. (4.23) can be written as 
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 ( )( ) ( )( )Earth Earth    p- p+R X X R X X   (4.28) 

Then, after adding 1( ) TR   to both sides of the Eq. (4.28), it can be seen that 

 
1 1( ) ( )( ) ( ) ( )( )T T

Earth Earth       p- p+R R X X R R X X     (4.29) 

Letting 1( ) ( )T  R R   , Eq. (4.29) can be simplified as 

 ( ) ( )Earth Earth  Μ Μp- p+X X X X  (4.30) 

where 

 

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

0 0 0 0 0 1

 
 
 
 

  
 

 
 
 

   

Eqation (4.30) only contains information on the velocity vector when aerobraking. 

Hence, Eq. (4.30) and the position vector in Eq. (4.23) can be combined together as 

follows,  

 1 2( ) ( )Earth Earth  Μ Μp- p+X X X X  (4.31) 

Thus,  

 
1

1 2( )Earth Earth

  =Μ Μp- p+X X X X  (4.32) 

where 

 1 2

1 0 0 0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0 1 0 0 0
,

0 1 0 1 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

 

 



   
   
   
   

    
    

   
   
   

Μ Μ   
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Therefore, the state of the captured asteroid at perigee before the aerobraking phase in 

the Sun-Earth rotating frame can be estimated by the state of the asteroid after aerobraking 

in the Sun-Earth rotating frame using the Eq. (4.32). 

4.5.3  Aerobraking opportunities for periodic orbits 

For some periodic orbits around the Sun-Earth L1 or L2 points, their associated stable 

manifolds may not pass through the Earth’s atmosphere within a given stable manifold 

transfer time (tsm) (see Section 3.3.1). An example is shown in Fig. 4.16. Therefore, it is 

necessary to exclude these periodic orbits which are not suitable for aerobraking from the 

solution space. Here it is assumed that the stable manifold transfer time (tsm) is chosen 

from 0 to 400 days. The minimum distance between the stable manifolds associated with a 

periodic orbit (determined by the amplitude variable Ap) is denoted as rmin. As discussed in 

Section 4.2.1, once rmin < rthreshold = 6478 km, the periodic orbit can provide opportunities 

for aerobraking.  

 

Fig. 4.16 Stable manifolds with Lyapunov orbits around the Sun-Earth L1 and L2 points. 

Figures 4.17-4.20 show the relationship between rmin and the amplitude variable Ap of 

the periodic orbits. It should be noted that the grey parts correspond to rmin < rthreshold. 

Therefore, it is found that Ap should be selected in the range [0.0013452 AU, 0.0078331 

AU] for Lyapunov orbits around the Sun-Earth L1 point, [0.0013252 AU, 0.0079602 AU] 

for Lyapunov orbits around the Sun-Earth L2 point, [0.00176583AU, 0.00430523 AU]  [-

0.0007607 AU, -0.0007607 AU]  [-0.0043052 AU, -0.00176582 AU] for Halo orbits 

around the Sun-Earth L1 point or [0.004286 AU, 0.0017862 AU]  [0.0007863 AU, -
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0.0007863 AU]  [-0.0017862 AU, -0.004286 AU] for Halo orbits around the Sun-Earth 

L2 point. 

 

Fig. 4.17 Relationship between rmin and the amplitude variable Ap of Lyapunov orbits around the Sun-

Earth L1 point within a given stable manifold flight time (400 days). 

 

Fig. 4.18 Relationship between rmin and the amplitude variable Ap of Sun-Earth L1 halo orbits. 

 

Fig. 4.19 Relationship between rmin and the amplitude variable Ap of Sun-Earth L2 Lyapunov orbits. 
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Fig. 4.20 Relationship between rmin and the amplitude variable Ap of Sun-Earth L2 halo orbits. 

4.5.4 Aerobraking window 

As noted earlier, the Earth’s atmosphere can provide an aerobraking manoeuvre only when 

the height of the perigee of the flyby orbit is low enough (hthreshold = 100 km or rthreshold = 

6478 km). However, for a periodic orbit which can provide opportunities for aerobraking 

in Section 4.5.3, only a few stable manifold trajectories can meet such a requirement, 

shown in Fig. 4.21.  

 

 

Fig. 4.21 Periapis map of the stable manifolds of a Sun-Earth L2 Lyapunov orbit with Ap = 0.0020187. 

To determine the set of stable manifold trajectories whose perigee is lower than the 

distance threshold for aerobraking (rthreshold = 6478 km), the relationship between the 

distance of the perigee of the stable manifold and the parameter tp is obtained, shown in 

Fig. 4.22. Therefore, the set of tp which determines the perigee distance of the stable 

manifold to the centre of the Earth in the interval [rEarth, rthreshold] is defined as the 
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aerobraking window. As shown in Fig. 4.21, for a Lyapunov orbit with Ap = 0.0020187, 

the aerobraking window is defined by { (1.6163,1.6188] (2.0227,2.0253]}p p pt t t   . 

 

Fig. 4.22 Relationship between the distance of the perigee of the stable manifolds and the parameter tp. 

4.5.5 Design Procedure and Optimisation 

The process of designing the transfer trajectory for asteroid capture using aerobraking is 

similar to Section 4.3 and is as follows: 

 

(1) Select one target asteroid in the candidate catalogue (e.g. 2009 UJ) in Fig. 4.8;  

(2) Given the amplitude variable Ap of a periodic orbit and tp at the aerobraking 

window, which is obtained from Section 4.5.3 and 4.5.4, the stable manifold 

associated with the periodic orbit is propagated backwards until it reaches perigee 

and then the state [ , , , , , ]T

p p p p p px y z x y z  p+X  at perigee in the Sun-Earth 

rotating frame is obtained, shown in Fig. 4.23; 

(3) The velocity p-V  before aerobraking in the Earth-centred inertial frame can then be 

calculated and the state of the asteroid [ , , , , , ]T

p p p p p px y z x y z  p-X  before 

aerobraking in the Sun-Earth rotating frame can be obtained using Eq. (4.32); 

(4) Given the flight time Tfly2, the state 
p-X  is propagated backwards and then the 

target point fX  is obtained, shown in Fig. 4.24; 

(5) Given a departure date T0, transform the initial state of the candidate asteroid in the 

Sun-centred inertial frame to the Sun-Earth rotating frame so that iX  is then 

obtained; 
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(6) Given the flight time Tfly1, Eq. (4.21) is then applied to design the transfer between 

the candidate asteroid’s initial orbit iX  and the target points 
fX . Thus, the 

manoeuvres v1 and v2 can be calculated. 

 

(a) (b) 

Fig. 4.23 Given Ap = 0.0028288 AU, tp = 1.478633, the stable manifold associated with the Sun-Earth L2 

Lyapunov orbit and its perigee: (a) global view; (b) local view. 

 

(a) (b) 

Fig. 4.24 Given Tfly2 = 5.64 days, the trajectory before aerobraking is obtained by propagating 

backward from the state at perigee. 

Then, the total cost of capturing the asteroid onto the target Sun-Earth L1 or L2 

periodic orbit with aerobraking can be obtained by using Eq. (4.14). The transfer trajectory 

is shown in Fig. 4.25 and Fig. 4.26. The 5 parameters (T0, Tfly1, Tfly2, Ap, tp) associated with 

the transfers from the candidate asteroid initial orbit to the stable manifold can again be 
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optimised using NSGA-II, using the total cost v as the objective function. The optimal 

results of capturing asteroids onto the Sun-Earth L1 and L2 periodic orbits are shown in 

Table 4.5 and Table 4.6.  

 

Fig. 4.25 Given T0 = 59298.19 [MJD], Tfly1 = 216.31 days, the transfer trajectory (x-y projection) for 

capturing 2010 UJ onto the Sun-Earth L2 Lyapunov orbit in the Sun-Earth rotating frame. 

 

Fig. 4.26 Transfer trajectory (x-y projection) for capturing 2010 UJ onto the Sun-Earth L2 Lyapunov 

orbit in the Sun-centred inertial frame. 

It can be seen that the lowest cost capture transfers using aerobraking are below 200 

m/s, corresponding to a capture of 2007 UN12 into a Lyapunov orbit and a halo orbit, and 

2012 WR10 into a halo orbit. Moreover, aerobraking can achieve a lower-cost capture for 

capture into Lyapunov orbits, e.g. 2003 WT153, 2008 EL68 and 2009 YR. Besides, 

capturing some candidate asteroids onto halo orbits using aerobraking can be cheaper in 



Chapter 4 Capture of NEAs around Sun-Earth libration points using Earth flyby and aerobraking 

 

112 
 

terms of v than a capture onto Lyapunov orbits, especially for capturing 2008 JL24, 2012 

WR10 and 2015 PS228. Comparing the results of Tables 4.3-4.4 and Tables 4.5-4.6, it can 

be seen that aerobraking can save energy and so the capture strategy has the potential to be 

of lower cost than the asteroid capture strategy without a flyby. Moreover, the asteroid 

capture strategy using aerobraking also has the potential to require a shorter flight time, as 

does the capture strategy using the Earth flyby without aerobraking. 

It should be noted that the method presented in this Chapter is used as a preliminary 

analysis of the asteroid capture strategy using aerobraking. The aerobraking model only 

provides an approximation of the aerobraking manoeuvre for the asteroid capture, without 

considering other perturbations such as the rotation of the Earth atmosphere. Here asteroid 

2003 WT153 in Table 4.5 (vp- = 11.919 km/s and vp+ = 11.176 km/s) will be taken as an 

example for a preliminary analysis of the effect of the rotation of the Earth atmosphere. 

The maximum rotational speed of the Earth atmosphere can be estimated by 

2 / 24 / 3600 0.464a Earthv r  km/s. Thus, the relative velocity of the asteroid to the 

atmosphere before aerobraking is vp- + va = 12.383 km/s. Therefore, the relative velocity of 

the asteroid to the atmosphere after aerobraking can be calculated using the Eq. (4.17) vp+’ 

= 11.545 km/s. Then subtracting the rotational speed of the Earth atmosphere can yield the 

post-aerobraking velocity of the asteroid with respect the centre of the Earth vp+’  va = 

11.081 km/s. Comparing vp+ and vp+’  va, it can be seen that the rotation of the Earth 

atmosphere can lead to an error of about 95 m/s in the velocity of the asteroid after 

aerobraking. Accordingly, the candidate asteroid cannot insert onto the required stable 

manifold of the final target orbit and therefore the asteroid capture mission will fail. 

Moreover, according to mass loss model in Eq. (4.9), mass loss of this asteroid when 

considering the effect of the rotation of the atmosphere is about 2.5% more than that 

without considering the rotation of the atmosphere. Considering the sensitivity of the 

transfer trajectory in the Sun-Earth CRTBP, especially the aerobraking phase, a more 

accurate aerobraking model would be required to ensure that the captured asteroid is at the 

required altitude in order to insert into the final target orbit correctly. However, the 

transfers designed in this Chapter can provide good approximations to the asteroid capture 

missions using a more accurate aerobraking model. 
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Table 4.5 Results of capturing asteroids onto Sun-Earth Lyapunov orbits using aerobraking 

Asteroid 
Total 

cost, m/s 

Epoch, 

MJD 

Total flight 

time, days 

Amplitude 

variable Ap, 

10-3AU 

Mass 

loss, % 

Diameter 

D, m 

Target 

point 

2003 WT153 271.81 58499.7 451.2 2.8334 16.5 8.5 L1 

2006 UQ216 367.63 60551.7 1917.9 7.331 20.5 11.7 L1 

2007 UN12 163.58 58550.4 833.3 5.5057 1.1 6.2 L1 

2008 EL68 227.03 66008.1 875.8 7.051 4.7 9.8 L1 

2008 JL24 548.07 59973.8 1024.7 3.5287 10.2 4.1 L1 

2008 UA202 440.37 60673.3 1316.8 2.1888 0.7 4.5 L2 

2009 YR 420.38 58527.5 889.4 2.1518 12.2 8.5 L2 

2010 JR34 492.37 59890 1154.9 3.7658 21.3 9.8 L2 

2010 UJ 459.68 59293.8 450.8 2.8288 3.8 19.5 L2 

2010 UY7 435.68 61131.3 790.9 2.8413 14.3 6.8 L1 

2011 BQ50 520.43 59796.5 702.8 3.959 7.9 8.5 L1 

2011 BQ50 351.47 59332.8 1266.8 3.3558 8.9 8.5 L2 

2011 CL50 947.31 58651.3 1128.9 2.844 9.7 10.2 L1 

2012 HG2 984.21 60000.9 912.5 3.4038 47 13.5 L2 

2012 WR10 571.8 61660.1 1393 3.2179 6.5 6.2 L1 

2014 AA 2194.47 58511.8 822.5 1.7128 14.5 2.2 L2 

2014 JR24 701.1 59773.4 1096 7.2507 5.6 4.7 L1 

2014 UV210 573.1 58515.5 602 4.4857 9 14.1 L1 

2014 UV210 1454.11 58638.4 517.4 2.9258 0.1 14.1 L2 

2014 WE6 558.52 63926.3 1086.2 2.3748 13.4 2.8 L2 

2014 WX202 254.86 63526.6 1066.3 1.9062 2.8 4.1 L1 

2015 PS228 554.97 63012.1 1701.1 2.5912 5.2 5.5 L1 
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Table 4.6 Results of capturing asteroids onto Sun-Earth Halo orbits using aerobraking 

Asteroid 
Total 

cost, m/s 

Epoch, 

MJD 

Total flight 

time, days 

Amplitude 

variable Ap, 

10-3AU 

Mass 

loss, % 

Diameter 

D, m 

Target 

point 

2003 WT153 606.41 58569.7 390.5 3.8368 33 8.5 L1 

2006 UQ216 367.42 61507.2 919.3 2.7417 23.2 11.7 L1 

2007 UN12 158.22 59068.6 571.6 2.2144 1.5 6.2 L1 

2008 EL68 614.66 61246.8 822.3 1.9497 8.4 9.8 L1 

2008 JL24 498.84 60131.2 839.8 1.9482 4.1 8.1 L1 

2008 UA202 334.17 60410.7 1960.6 -0.4878 3.6 4.5 L2 

2009 YR 583.63 58802.2 595.2 1.8132 8.5 8.1 L2 

2010 JR34 745.79 745.79 745.79 745.79 9.8 12.8 L2 

2010 UJ 341.96 58837.5 935.8 2.4632 12.3 19.5 L2 

2010 UY7 863.8 59375.5 701.7 3.659 32.1 6.8 L1 

2011 BQ50 977.81 59085.1 1584.9 1.6446 3.5 8.5 L2 

2011 BQ50 338.87 59190.7 1392.6 -2.6228 11.7 8.5 L1 

2011 CL50 1521.05 58780.5 794.5 3.7341 0.10 10.2 L2 

2012 HG2 1415.72 58715.6 961.9 0.3992 32.4 13.5 L1 

2012 WR10 168.06 61640.4 1031.8 2.2035 7.8 6.2 L2 

2014 AA 2221.19 58517.8 818.4 -0.5398 9.4 2.2 L1 

2014 JR24 989.57 60473.4 633.2 1.9516 4.9 4.7 L2 

2014 UV210 651.43 58479.6 594.1 1.9649 8.9 14.1 L1 

2014 UV210 1293.31 58556.6 601.8 -2.3488 0.10 14.1 L1 

2014 WE6 843.27 63194.9 1026.8 2.0632 7.5 2.8 L2 

2014 WX202 384.97 62852.3 1721.1 1.9879 2.9 4.1 L2 

2015 PS228 299.31 62346.7 1267 1.9624 3.3 5.5 L1 

 

Furthermore, comparing the results in Table 4.1-4.2 and Table 4.5-4.6, it can be seen 

that aerobraking can provide a manoeuvre which can help to achieve lower cost asteroid 

capture than the strategy using the Earth flyby without aerobraking, e.g. 2006 UQ216, 

2011 BQ50 and 2010 UJ. However, for the practical implementation of the asteroid 

capture strategy using aerobraking, it is necessary to take into account the real ephemeris 

model and a more accurate atmosphere model. The preliminary results in this Chapter can 



Chapter 4 Capture of NEAs around Sun-Earth libration points using Earth flyby and aerobraking 

 

115 
 

serve as an approximation for such real missions. Considering the sensitivity of the transfer 

trajectory in the Sun-Earth CRTBP, especially the aerobraking phase, an accurate 

navigation and control strategy would be required to guarantee that the flyby of the 

candidate asteroid is at the required altitude in order to obtain the necessary aerobraking 

manoeuvre. For example, the drag-modulation flight control method [126] and the blended 

control, predictor-corrector guidance algorithm [128] may provide feasible solutions for an 

asteroid capture mission using aerobraking. Again, the carrier spacecraft is envisaged as 

remaining attached to, and shielded by, the asteroid during the aerobraking manoeuvre to 

deliver active control. 

4.6 Discussion 

As an ideal location for space science, and a staging node for interplanetary missions in the 

future, the Sun-Earth L1 and L2 libration points are likely to play an important role for 

future space exploration. Therefore, capturing asteroids onto periodic orbits around the 

Sun-Earth L1 and L2 points would in principle be of significant scientific and commercial 

interest. A strategy to couple a flyby of the Earth to stable manifolds to capture asteroids 

onto Sun–Earth L1/L2 periodic orbits has been proposed. The dynamical model of the 

CRTBP is firstly introduced to calculate Lyapunov orbits around the Sun-Earth L1 and L2 

points and their associated stable manifolds. Then, according to the height of the flyby 

orbit at perigee, two types of Earth flyby are determined, an Earth flyby with and without 

high altitude aerobraking. A grazing flyby is used, but it is assumed that only small bodies 

which would safely ablate in the Earth’s atmosphere at lower altitudes are considered for 

aerobraking. After selecting appropriate candidate NEAs and calculating the NEA capture 

window, a detailed design procedure is presented and finally global optimisation is carried 

out. In this capture strategy the candidate asteroid is first assumed to leave its orbit with an 

impulse manoeuvre and will then approach the vicinity of the Earth for the flyby. During 

the flyby, the Earth’s atmosphere may also provide an aerobraking manoeuvre. If not, a 

propulsive manoeuvre is required at the perigee of the flyby. After the flyby of the Earth, 

the candidate asteroid inserts onto the stable manifold associated with a periodic orbit 

around the Sun-Earth L1 or L2 points and will be asymptotically captured onto it.  

Comparing the results of two methods, it is found that asteroid capture strategies using 

an Earth flyby with and without the aerobraking both have the potential to be lower cost (in 

terms of v) than direct stable manifold capture. Besides, due to the fact that direct capture 

without a flyby requires significant additional time to move along the stable manifolds of 
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the Sun–Earth L1 or L2 periodic orbits, asteroid capture strategies using Earth flyby also 

have the potential to save flight time.  
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CHAPTER 5  

CAPTURE OF SMALL NEAS AT THE EARTH 

USING DIRECT AEROBRAKING 

This Chapter introduces the concept of capturing NEAs onto bound orbits around the Earth 

by using direct aerobraking. In Chapter 4, a combination of an Earth gravity assist or a 

small aerobraking manoeuvre with invariant manifolds has been proposed to capture an 

asteroid into a periodic orbit around the Sun-Earth L1 and L2 libration points. This Chapter 

will provide a much more general analysis of aerobraking strategies and will use 

aerobraking to capture asteroids directly into bound orbits at the Earth. 

 

(1) Two strategies to capture asteroids into bound orbits at the Earth after aerobraking 

will be considered. In the first case, the motion of the captured asteroid after 

aerobraking is modelled in the Earth-centred two-body problem, and so a second 

impulse is required to raise the height of the perigee to avoid a second aerobraking 

pass. In the second case, the motion of the captured asteroid is still modelled in the 

Sun-Earth CRTBP and the solar gravitational perturbation used to passively raise 

the height of the asteroid perigee, again avoiding subsequent aerobraking passes. 

The boundary of these two cases is defined by the Earth’s sphere of influence. 

Finally, the transfers are then optimised using a global optimisation algorithm and 

lists of candidate objects provided.  

(2) These two asteroid capture strategies are then investigated to maximize the yield of 

the retrieved mass of the asteroid with respect to the required spacecraft mass, 

taking account the mass loss due to ablation of the asteroid during the aerobraking 

manoeuvre. 
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5.1 Capture conditions 

As discussed in Section 2.2.2, for the Sun-Earth CRTBP system, the Jacobi constant C1 

and C2 at the Sun-Earth L1 and L2 points respectively are critical. They can be used as 

capture conditions to determine whether a candidate asteroid can be captured or not when 

it approaches the vicinity of the Earth. Figure 5.1 shows the x-y projection of the zero-

velocity surface when C = C1 and C = C2 in the Sun-Earth CRTBP system. Generally 

speaking, for a captured asteroid in the vicinity of Earth with Jacobi constant C  C1, its 

trajectory will be restricted in a space which is defined by the zero-velocity surface, as 

shown in Fig. 5.2 (a)-(b). However, if the Jacobi constant C of the asteroid is less than C1, 

it may orbit the Earth for some duration and then escape from the vicinity of the Earth, as 

shown in Fig. 5.2 (c)-(d). 

The Jacobi constants of the captured asteroid before and after aerobraking are denoted 

as C  and C , respectively. Moreover, the two-body Kepler energy of the asteroid after 

aerobraking can be defined as [79] 

 
2

2

1

2

Earth
p

p

H v
r


   (5.2) 

where pv   is the relative velocity of the asteroid at perigee with respect to the Earth after 

aerobraking and rp is the perigee radius of the flyby orbit from the centre of the Earth (See 

4.2.1). According to the capture condition [79], the candidate asteroid is assumed to be 

ballistically captured at the Earth if 

 2 0H   (5.1) 

More specifically, the candidate asteroid is considered to be captured temporarily 

around the Earth if 2 /p Earth pv r  and 1C C  . Similarly, the asteroid can be captured 

permanently in the Earth’s Hill region if 2 /p Earth pv r  and 1C C   [48]. For the 

temporary capture case, the captured asteroid may orbit the Earth for a significant duration 

before it escapes from the vicinity of the Earth. Therefore, this capture strategy can still be 

practical. Thus, the asteroid capture strategy presented in this Chapter contains both 

temporary capture and permanent capture. That is, once 2 /p Earth pv r  , the candidate 

asteroid is considered to be captured at the Earth.  
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(b) 

Fig. 5.1 x-y projection of the zero-velocity surface when C = C1 and C = C2. 

      

(a) (b) 

      

(c) (d) 

Fig. 5.2 Examples of trajectories of an asteroid with (a) C > C1; (b) C = C1; (c) (c) C = C2 < C1; (d) C < 

C2. 
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5.2 Asteroid capture around the Earth using aerobraking 

The strategy for capturing an asteroid into a bound orbit at the Earth using a direct 

aerobraking manoeuvre is illustrated in Fig. 5.3. With an initial manoeuvre

 1 1 1 2 1 2 1sin cos ,sin sin ,cos
T

v       v  with 1 [0, ]   and 2 [0,2 ]  , referring to a 

local spherical reference frame along the asteroid’s orbit where the x-axis is along the 

asteroid’s velocity vector, the y-axis is perpendicular to the x-axis and in the plane of the 

asteroid orbit and the z-axis is normal to the plane of the asteroid’s orbit, the candidate 

asteroid leaves its initial orbit and its motion can then be described by the Sun-Earth 

CRTBP, as detailed in Section 2.1. Subsequently, the candidate asteroid performs an 

aerobraking manoeuvre and is thus captured into a bound orbit about the Earth.  

Thus, for each candidate asteroid, there are 4 variables to describe the sequence of 

manoeuvres as follows:  

 

 T0: capture date when the first impulse v1 is applied to the candidate asteroid and 

the asteroid leaves its initial orbit; 

 1v : magnitude of the initial manoeuvre v1; 

 1 , 2 : angles which determine the direction of the initial manoeuvre v1. 

 

Fig. 5.3 Overview of capturing NEAs at the Earth using aerobraking 

5.2.1 Asteroid capture opportunities and initial guess 

As discussed in Section 3.1.5, those asteroids with a diameter D less than 30 m are 

considered as candidate asteroids for capture in order to reduce the threat of impact with 
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the Earth when aerobraking, Similarly, for each candidate asteroid, feasible capture dates 

are assumed to be in the interval 2019 - 2050 (or 58484 MJD - 70171 MJD). 

The Lambert arc between the candidate asteroid’s initial orbit and the Earth in the Sun-

centred two-body problem can be used as an initial guess of the capture date T0 and the 

first impulse  1v . In addition, the first manoeuvre of this Lambert arc in the Sun-centred 

two-body problem is defined as  1v  (see Section 2.1.2). Here a flight time Tfly < 2000 days 

is considered and then the first impulse  1v  on the Lambert arc is utilised to guess the first 

impulse  1v  in the Sun-Earth CRTBP. Moreover, the relative velocity at the end of the 

Lambert arc at the Earth can be used as a preliminary analysis for candidate asteroid 

selection. When an asteroid is captured at the Earth using aerobraking at the threshold of 

the capture condition, i.e. 2 /p Earth pv r  , the mass loss ratio of the asteroid can be 

estimated form Eq. (4.10) in Section 4.2.1. Although the velocity of the captured asteroid 

relative to the Earth in the Sun-Earth CRTBP will be different from the relative velocity at 

the end of the Lambert arc at the Earth, it can still be utilised to guess the mass loss ratio 

due to aerobraking and thus can remove those asteroids with a large mass loss ratio. Figure 

5.4 shows the mass loss ratio with different relative velocities and different perigee heights 

(0 < h < 100 km) of flyby orbit above the Earth’s surface. It can be seen that once vp > 13.8 

km/s, the mass loss ratio is over 50 %. Therefore, vp < 13.8 km/s can be set as a constraint 

at the end of the Lambert arc in the Sun-centred two-body problem, in order to exclude 

those asteroids which have potential for significant mass loss due to aerobraking. 

The number of asteroids (D < 30 m, as discussed in Section 3.1.5) with a first 

manoeuvre 1v  on the Lambert arc less than v  ( [0,500]v  m/s) is shown in Fig. 5.5. 

This can be used as an estimate of the number of candidate asteroids which can be captured 

using aerobraking with total cost less than a given v . As shown in Fig. 5.5, it can be 

noted that the number of asteroids which can be captured at the Earth using aerobraking 

with a total v less than 10 m/s and 50 m/s are of the order of 10 and 100, respectively.  
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Fig. 5.4 Mass loss ratio of an asteroid caused by aerobraking, with different relative velocity and 

heights above the Earth’s surface 

Since we expect to find the candidate asteroids which can be captured with low cost, 

here we set 50 m/s as a threshold for v 1 . Therefore, those asteroids with 50v 1 m/s and 

D < 30 m (H > 25.26) are then considered to be candidate asteroids, as shown in Fig. 5.6. 

For a suitable candidate asteroid, the departure date on the Lambert arc with 50v 1 m/s 

can then be used as an approximation of the capture date T0 when the first impulse v1 is 

applied to the candidate asteroid, as shown for 2012 BK14 for illustration in Fig. 5.7. 

 

Fig. 5.5 Estimate of the number of asteroids as a function of v threshold. 
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(a) 

 

(b) 

Fig. 5.6 Distribution of candidate asteroids (circled) in the family of NEAs: (a) semi-major and 

eccentricity and (b) semi-major and inclination. 

 

Fig. 5.7 Optimal capture date T0 guess for capturing 2012 BK14 with potential capture dates 

highlighted. 
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5.2.2 Modes of aerobraking 

Give one value of the first manoeuvre 1v , a set of perigees of the asteroid orbit can be 

obtained by varying the angles 1  and 2 . Therefore, a whole set of perigees of the 

asteroid orbit can be obtained by varying 1v , 1  and 2 . Based on the initial guess 1v  of 

the first manoeuvre 1v  using the Lambert arc, a small modification from 1v  can cause 

the perigee height of the asteroid orbit above the Earth surface to be low enough (h < 100 

km) for aerobraking, as shown in Fig. 5.8. Figure 5.8 shows the perigee map of the asteroid 

orbit with different first manoeuvres 1v , which varies slightly from the initial guess 1v . 

Accordingly, some asteroid orbits in the vicinity of the Earth generated from the Fig. 5.8 

are shown in Fig. 5.9. 

When an asteroid flies by the Earth, it may move in a retrograde orbit or prograde orbit 

with respect to the Earth, as shown in Fig. 5.9. Therefore, there are two types of 

aerobraking, corresponding to retrograde and prograde orbits. It should be noted that the 

black lines in Fig. 5.8 are the boundary of these two cases. In this Chapter, only 

aerobraking in a prograde orbit is considered and it can therefore be defined as, 

  0E E E E

p p- p- px y x y   (5.3) 

where [ , , ]E E E T

p p px y zp-r  and [ , , ]E E E T

p- p- p-x y zp-V  are the position vector and velocity 

vector of the asteroid before aerobraking in the Earth-centred inertial frame.  

 

(a) (b) 

Fig. 5.8 Perigee map of the asteroid 2012 BK1 orbit with different initial manoeuvres: (a) x-y 

projection; (b) x-z projection. 
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(a) (b) 

        

(c) (d) 

Fig. 5.9 Retrograde orbits and prograde orbits generated from Fig. 5.8: (a) 3D view; (b) x-y projection; 

(c) x-z projection; (d) y-z projection. 

5.2.3 Two approaches to raise the perigee height after aerobraking 

In order to simplify the capture strategy, only a single aerobraking manoeuvre is utilised to 

capture asteroids at the Earth in this Chapter. Therefore, strategies to raise the perigee 

height of the asteroid orbit soon after aerobraking are required, with the new perigee height 

(h) above the Earth’s surface being more than 100 km. Here, two methods of raising the 

perigee height after aerobraking are proposed, corresponding to the two different 

dynamical models after the aerobraking manoeuvre, as show in Fig. 5.10. 
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(a) 

 

(b) 

Fig. 5.10 Strategies to raise the perigee height after aerobraking: (a) additional manoeuvre at apogee; 

(b) three-body interaction. 

After aerobraking, if the captured asteroid moves around the Earth inside the Earth’s 

sphere of influence, it is assumed that the candidate asteroid is captured in a bound orbit at 

the Earth, and so an Earth-centred two-body analysis can be used. Hence, the state of the 

captured asteroid after aerobraking vp+ should be propagated forward in the Earth-centred 

two-body problem until it reaches the apogee. At apogee, a second impulse 2v  is applied 

to the asteroid in order to raise the next perigee (h > 100 km), as shown in Fig. 5.10(a). In 

this strategy, two manoeuvres are therefore required to capture the candidate asteroid into a 

suitable bound orbit at the Earth. 

Instead, for orbits with a large post-aerobraking apogee the state of the captured 

asteroid after aerobraking should be propagated forward in the Sun-Earth CRTBP model 

and an alternative strategy can be devised. With the gravitational perturbation of the Sun, 

the orbit of the captured asteroid will deviate from a Keplerian ellipse [193], which in 

principle can be utilised to passively raise the perigee height after aerobraking. Therefore, 
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only one manoeuvre is in principle required to capture the candidate asteroid at the Earth, 

as shown in Fig. 5.10(b). In this strategy to raise the perigee height of the asteroid orbit, the 

Sun’s gravity can be regarded as a disturbing perturbation to an Earth-centred two-body 

orbit and thus the short-term change of the perigee height of the asteroid orbit can be 

estimated by investigating the change in the asteroid’s Earth-centred orbital elements using 

the Lagrange planetary equations [194]. Following Section 2.1.1, the eccentricity, 

inclination, right ascension of the ascending node, argument of perigee and true anomaly 

of the asteroid after aerobraking are denoted as e+, i,  ,   and  respectively, shown in 

Fig. 5.11. When the asteroid is at the perigee of its orbit around the Earth,  = 0, the 

change in the height of next perigee (after 1 revolution) can be estimated using [194]: 
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where 

cos( )SEA   , cos sin( )SEB i     

and rsa is the distance between the candidate asteroid at perigee when aerobraking and the 

Sun; n is the mean angular motion of the captured asteroid around the Earth; SE  is the 

angle of the Sun with respect to the Earth, measured from the positive x axis in an Earth-

centred inertial frame XYZ, shown in Fig. 5.11. 

It should be noted that Eq. (5.4) provides an approximation to the change in the height 

of the next perigee after aerobraking and thus it will be different from the true change of 

the next perigee height in the Sun-Earth CRTBP model. However, we can still use the sign 

of the term Kp in Eq. (5.5) as a fundamental filter for the solution space in the following 

optimisations. That is, results with Kp < 0 will be discarded from the solution space before 

checking whether the height of new perigee above the Earth’s surface is larger than 100 

km or not in the following optimisation. This filter will discard capture orbits where the 

solar gravitational perturbation lowers the perigee further, rather than passively raising the 

perigee above 100 km.  
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Fig. 5.11 Geometry of the captured asteroid and the Sun in the Earth-centred inertial frame XYZ. 

5.2.4 Bi-impulse capture of asteroids at the Earth 

As shown in Fig. 5.10(a), for the bi-impulse capture strategy, it is assumed that the 

captured asteroid moves in a bound orbit at the Earth inside the Earth’s sphere of influence 

and so the state of the captured asteroid after aerobraking can be propagated forward in the 

Earth-centred two-body problem. Hence, capture of the asteroid at the Earth is defined here 

by 

 
2 /p Earth p

a SOI

v r

r r


 




 (5.6) 

where ra is the distance from the centre of the Earth to the apogee of the captured 

asteroid’s orbit after aerobraking and rSOI = 925000 km is the radius of the Earth’s sphere 

of influence [195]. Then, a second impulse is required to raise the subsequent perigee of 

the trajectory after aerobraking out of the Earth’s atmosphere so that the distance from the 

centre of the Earth to the new perigee of the asteroid’s orbit should be  

 6378 100 6478 kmnpr     (5.7) 

Therefore, the second impulse which is required to raise the orbit perigee can be 

written as 
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where ah  is the magnitude of asteroid’s angular momentum before aerobraking; e  is the 

eccentricity of post-aerobraking orbit; ne is the eccentricity of the orbit with the perigee 

raised where  
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The minimum value of 2v  can be obtained when 6478npr   km. Therefore, the total 

cost of capturing an asteroid around the Earth using this capture strategy is given simply by 

 1 2v v v     (5.9) 

In this capture strategy, for one candidate asteroid, as shown in Fig. 5.6, there are 4 

parameters: (T0, 1v , 1, 2). However, a uniform random sampling of 1  and 2  does not 

result in a uniform distribution of points in the solution space [190]. Therefore, a 

transformation of 1  and 2  is required such that [196] 
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 


  
 (5.10) 

This problem can then be transformed to a problem with 4 parameters: (T0, 1v , 1, 

2). These transfer trajectories can again be searched using the global optimisation method 

NSGA-II [182], using the total v cost as the objective function and Eq. (5.6) as the 

constraints. Then, transfers obtained with NSGA-II can be locally optimised with the 

function fmincon in MATLAB. Therefore, a list of asteroids which can be captured with a 

total v cost of less than 50 m/s is shown in Table 5.1. An example of a transfer trajectory 

to capture 2012 BK14 is shown in Fig. 5.12. 

As shown in Table 5.1, the asteroid capture strategy using aerobraking can achieve 

low-energy capture of asteroids, especially for 2005 VL1, 2012 GD and 2012 BK14. 

Amongst them, the lowest cost transfer is below 10 m/s, corresponding to the capture of 

2012 BK14 into a bound orbit at the Earth. Comparing the results of the two manoeuvres 
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in Table 5.1, it is found that most of the second (perigee raising) manoeuvres are much 

smaller than the first manoeuvre. That is, for asteroid capture missions using aerobraking, 

most propellant will be consumed to manoeuvre the candidate asteroid from its initial orbit. 

Although aerobraking can enable low-energy capture of small asteroids, the accompanying 

mass loss of the captured asteroid due to atmospheric ablation may be high, as determined 

from Eq. (4.10). For example, over half of 2012 GD’s mass would be lost during the 

aerobraking when the total v cost alone is used as the objective function for the 

optimisation problem. Therefore, an asteroid capture mission with minimum total v cost 

may not be economically optimal, as will be discussed later in Section 5.3. 

 

(a) 

 

(b) 

Fig. 5.12 Transfer trajectory capturing 2012 BK14 including: a) transfer trajectory before 

aerobraking in the Sun-centred inertial frame; b) orbit around the Earth after aerobraking in the 

Earth-centred inertial frame. 
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Table 5.1 Optimal results of capturing asteroids around the Earth in the Earth two-body problem 

Asteroid 
Diameter 

D, m 

Capture date 

T0, MJD 

Flight 

time, day 

Total 

cost, m/s 

v1, 

m/s 

v2, 

m/s 

Mass 

loss f, % 
ra/rSOI 

2000 AG6 29.5 64741 1417.2 27.08 25.89 1.19 31.5 0.419 

2005 VL1 17 58514.2 1003.3 11.9 10.99 0.91 31.3 0.524 

2007 UD6 7.4 62998.6 888.1 37.36 36.45 0.91 28.7 0.481 

2008 HJ 23.4 62099.6 1623.6 35.24 34.37 0.88 40.8 0.578 

2009 SN103 4.3 58938.6 1289.1 27.96 27.25 0.72 44.4 0.615 

2009 VT1 4.3 58936 1291.7 28.13 27.35 0.78 44.5 0.564 

2009 XR1 4.9 63457.8 1578.3 16.6 15.84 0.76 41.2 0.582 

2010 UY7 6.8 60206.8 1498.3 28.98 28.32 0.66 12.2 0.594 

2010 VL65 7.1 59369.2 153.1 24.76 24.05 0.72 22 0.591 

2012 BK14 11.2 65196.1 1708.3 7.36 6.50 0.86 28.3 0.531 

2012 GD 14.1 67440.4 1797.4 7.02 6.18 0.85 52.2 0.593 

2012 TC4 15.5 58734.7 1126.9 17.06 15.73 1.33 41.8 0.367 

2012 VJ38 6.8 61517.7 1660 29.04 28.31 0.72 25.6 0.593 

2012 XB112 3.5 63373.9 1663.5 31.7 30.95 0.75 19.1 0.517 

2012 XN134 9.8 58557.5 1736.5 15.85 15.26 0.59 44.7 0.815 

2013 FU13 11.2 64006 1496.6 14.83 13.9 0.92 33.1 0.503 

2014 JR24 4.7 59306.2 1500.7 20.14 19.51 0.63 11.6 0.594 

2014 QN266 18.6 59964.6 1513.2 34.68 33.8 0.88 8.10 0.473 

2014 WE6 2.8 63074 1572 28.07 27.44 0.63 16.5 0.588 

2015 EZ6 6.50 66236.2 1450.7 28.01 27.33 0.68 12.2 0.574 

2016 FY2 26.9 62275.2 1371.6 25.24 24.47 0.78 14.6 0.591 

2016 FZ13 7.4 59943.7 1547.3 15.42 14.69 0.72 21.7 0.588 

2016 YR 12.3 65792.3 1808.2 27.4 26.73 0.68 8.20 0.590 

2017 FU102 6.2 63067.6 1720.5 16.46 15.68 0.78 39.3 0.573 

2017 RV2 19.5 65609 1522.7 17.57 16.66 0.91 31.1 0.533 

2017 SA20 7.8 58855.4 1569 16.07 15.33 0.74 27.1 0.593 

2017 UQ6 12.3 60390.5 1613.9 28.53 27.84 0.69 9.50 0.594 

2018 EM4 29.5 61249.5 1706.8 31.61 29.89 1.72 35 0.292 
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It should be noted that in this capture strategy, for some asteroids such as 2009 SN103 

and 2012 XN134, their apogees have a considerable distance to the centre of the Earth. 

This means, the Sun’s gravity still has a considerable influence on the captured asteroid at 

apogee. Therefore, with the gravitational perturbation due to the Sun, the orbit of the 

captured asteroid may deviate from a Keplerian ellipse. This is one drawback of the bi-

impulse capture strategy using aerobraking and thus the station-keeping strategies would 

then be required. To address this problem, a smaller apogee distance of the captured 

asteroid orbit to the centre of Earth would be required. In addition, as shown in Table 5.1, 

it can been seen that the apogee distance of the captured asteroid orbit to the centre of the 

Earth is often much smaller than the Earth’s SOI, for example 2000 AG6, 2012 TC4 and 

2018 EM4. Therefore, for these asteroids, the assumption of their motions in the Earth-

centred two-body problem is still valid.  

5.2.5 Single impulsive capture of asteroids around the Earth  

As shown in Fig. 5.10(b), in this capture strategy, the state of the captured asteroid after 

aerobraking should be propagated forward in the Sun-Earth CRTBP. Here we assume that 

the captured asteroid moves away from the vicinity of the Earth such that the perigee of the 

captured asteroid is outside the Earth’s sphere of influence. Therefore, capture of the 

asteroid can be defined here by 
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 (5.11) 

where min( )pr   is the minimum perigee distance to the centre of the Earth after 

aerobraking and max( )pr  is the maximum perigee distance after aerobraking within a 

given post-aerobraking duration (1000 days). It should be noted that even although the new 

perigee height above the Earth’s surface can be raised to be more than 100 km, the Earth’s 

atmosphere can still provide a small drag force at subsequent perigee passages and thus 

would act as a perturbation to the asteroid orbit. Considering the sensitivity of orbit in the 

Sun-Earth CRTBP, we should take this perturbation into account within a given post-

aerobraking duration (1000 days) which can be estimated using Eq. (4.4). Here, the total 

cost of capturing the asteroid about the Earth is given simply as 
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 1v v    (5.12) 

In this capture strategy, for one candidate asteroid in Fig. 5.6, there are also 4 

parameters: (T0, 1v , 1, 2). These transfer trajectories can again be searched using 

NSGA-II, using the total v cost as the objective function and Eq. (5.12) as the constraints. 

Then, transfers obtained with NSGA-II can be locally optimised with the function fmincon 

in MATLAB. Therefore, the list of asteroids that can be captured with a total v cost 

below 50 m/s is shown in Table 5.2. An example of a transfer trajectory is shown in Fig. 

5.13-5.14 and the time history of the perigee height of the captured asteroid’s orbit above 

the Earth’s surface with respect to flight time is shown in Fig. 5.15. 

 

Fig. 5.13 Transfer trajectory of capturing 2012 BK14 before aerobraking in the Sun-centred inertial 

frame. 

Similar to the bi-impulse capture strategy, aerobraking can again save significant 

energy and thus can enable the low-cost capture of a number of asteroids in the Sun-Earth 

CRTBP. Since no further manoeuvre is required to raise the perigee height after 

aerobraking, the total cost of this capture strategy is slightly smaller than the bi-impulse 

capture strategy in the Earth-centred two-body problem. For example, the cheapest transfer 

in this capture strategy also corresponds to the capture of 2012 BK14, and its total cost is 

only 1.64 m/s smaller than that of the bi-impulse capture strategy. Due to the gravitational 

perturbation of the Sun, the captured asteroid is strongly perturbed with the perigee height 

passively raised, as shown in Fig. 5.15. However, as shown in Fig. 5.14, with the long-term 

influence of the Sun's gravity, the perigee height of the captured asteroid orbit around the 

Earth may be lowered gradually after a significant duration (about 2900 days). 

Consequently, a second aerobraking phase may occur 5800 days after aerobraking for 
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asteroid capture. Nevertheless, before the second aerobraking phase, there is in principle 

sufficient time to explore and exploit the captured asteroid and its resources.  

 

(a) 

 

(b) (c) 

Fig. 5.14 Capture orbit of 2012 BK14 around the Earth after aerobraking for 1000 days in the Sun-

Earth rotating frame: (a) 3D view; (b) x-y projection; (c) x-z projection. 

To further illustrate this dynamical behaviour, the change in the height between one 

perigee and the previous perigee along the asteroid orbit around the Earth is defined as the 

following: 

 1j j jh h h    , 1,2,3...j   (5.13) 

where hj is the height of jth perigee with respect to the centre of the Earth after aerobraking 

and h0 is the perigee height when aerobraking. Moreover, using the approximation in Eq. 

(5.4), the estimated change in the height between one perigee and the previous perigee can 

be written as 
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 1 1( )j j jh h h h     , 1,2,3...j   (5.14) 

where h is the estimated change in height between the jth perigee and the (j1)th perigee 

using Eq. (5.4), based on the true orbital elements at the (j1)th perigee. A comparison of 

the true change and estimated change in the perigee height is shown in Fig. 5.15. The slight 

differences between the true change and estimated change demonstrates the validity of the 

approximation in Eq. (5.4). Furthermore, the change in the perigee height has clear 

periodicity and it exhibits a long-period variation, as discussed earlier.  

 

Fig. 5.15 Perigee height of the captured asteroid’s orbit around the Earth after aerobraking  

 

Fig. 5.16 Comparison of the true change and estimated change in the perigee height.  
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Table 5.2 Results of capturing asteroids around the Earth in the Sun-Earth CRTBP 

Asteroid 
Diameter 

D, m 

Capture date 

T0, MJD 

Flight time, 

day 

Total cost, 

m/s 

Mass 

loss f, % 
ra/rSOI 

2000 AG6 29.5 64749.2 1409 23.8 31.2 0.521 

2005 VL1 17 58499.6 1017.8 10.61 30.8 0.976 

2007 UD6 7.40 62967.2 919.8 33.31 28.8 0.510 

2008 HJ 23.4 62099.9 1623.4 31.91 41 0.470 

2009 SN103 10.2 67634 981.3 34.4 30.4 0.446 

2009 VT1 4.30 58973.3 1254.5 29.13 44.4 0.562 

2009 XR1 4.90 63428 1608.1 15.92 41.4 0.490 

2010 UY7 6.80 60226.7 1478.2 27.09 12.5 0.490 

2010 VL65 7.10 59364.4 157.8 23.91 21.8 0.701 

2012 BK14 11.2 65262 1642.4 8.81 27.6 1.374 

2012 GD 14.1 67446.8 1791.1 6.19 52.2 0.638 

2012 TC4 15.5 58748.6 1113.1 15.16 41.4 0.478 

2012 VJ38 6.80 61501.7 1676.2 30.62 25.9 0.474 

2012 XB112 3.50 63380.1 1657.3 30.32 18.9 0.603 

2012 XN134 9.8 58544.9 1749.2 15.59 44.7 0.840 

2013 FU13 11.2 63989.4 1513.7 12.5 33.3 0.481 

2014 JR24 4.70 59269.6 1538 20.13 11 1.05 

2014 QN266 18.6 59940.6 1536.7 33.23 8.50 0.404 

2014 WE6 2.80 63112.3 1533.8 26.37 17 0.487 

2015 EZ6 6.50 66229.6 1457.1 26.68 11.2 1.856 

2016 FY2 26.9 62295.6 1351.4 24.12 14.7 0.509 

2016 FZ13 7.40 59927.5 1563.4 14.71 21.3 0.993 

2016 YR 12.3 65810.2 1790 25.32 7.90 0.797 

2017 FU102 6.20 63092.4 1695.7 21.01 39.7 0.408 

2017 RV2 19.5 65605.1 1526.5 16.68 30.6 0.937 

2017 SA20 7.80 58829.7 1594.4 13.73 27.3 0.513 

2017 UQ6 12.3 60390.7 1613.8 27.82 8.80 1.263 

2018 EM4 29.5 61226.6 1729.8 30.61 34.2 0.497 
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Another challenge is the uncertainty of the properties of the candidate asteroid. 

Aerobraking can cause mass loss of the asteroid due to ablation which depends on the 

asteroid’s geometry, material properties and composition. A suitable heat shield, 

potentially an inflatable structure, or manufactured from the asteroid material itself [140], 

could provide protection of the candidate asteroid and thereby reduce ablative mass loss 

during aerobraking, while improving the predictability of the aerobraking manoeuvre.  

5.3 Maximum mass ratio of the captured asteroid and 

spacecraft 

From an economic point of view, the mass of the spacecraft required to capture the 

candidate asteroid should be taken into account. Moreover, to measure the yield of the 

asteroid capture mission, the ratio of the mass of the captured asteroid after aerobraking to 

the mass of the transfer vehicle is defined as 

 0/mf m m  (5.14) 

where m0 is the (wet) mass of the transfer vehicle at rendezvous with the candidate 

asteroid, and again m+ is the final mass of the asteroid after aerobraking. It is assumed that 

a minimum of 20% of the mass of the transfer vehicle is allocated to structure and 

subsystems and that its specific impulse is Isp = 300 s (bi-propellant engine). 

For the bi-impulse capture strategy, after the first impulse 1v , the spacecraft mass is 

then  

 1 /( )

1 0( ) spv gI
m m m e m



     (5.15) 

and then after second impulse 2v ,the spacecraft’s mass becomes 

 1 2/( ) /( )

2 0(( ) )sp spv gI v gI
m m m e m m e m

 
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again where m- is the initial mass of the asteroid prior to aerocapture. Thus, we have  

 
1 2
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gI gI
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 

         (5.17) 

Hence, the minimum (wet) mass of the spacecraft required to capture the target 

asteroid can be written as 
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Therefore, after substituting Eq. (4.9) into Eq. (5.18), the mass ratio of the captured 

asteroid after aerobraking and the required spacecraft mass can be written as 
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 (5.19) 

where the ablative mass loss of the asteroid has been accounted for. On the other hand, for 

the single impulsive asteroid capture strategy, the mass ratio of the captured asteroid after 

aerobraking and the required spacecraft mass is given by 
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 (5.20) 

In these two capture strategies, for each candidate asteroid, there are again 4 variables: 

(T0, 1v , 1, 2). The same list of asteroids in Table 5.1 and Table 5.2 is investigated and 

the optimal transfers for capturing those asteroids around the Earth using aerobraking can 

again be obtained with NSGA-II using Eq. (5.19) or Eq. (5.20) as the objective function. 

Therefore, the new optimal results are shown in Table 5.3 and Table 5.4.  

From Table 5.3 and Table 5.4, it can be seen that the retrieved masses of the captured 

asteroids using aerobraking are tens of times more than that of the spacecraft that is 

required to execute the mission, particularly for 2005 VL1, 2012 GD and 2012 BK14. 

Comparing the results of Table 5.1-5.4, the asteroids with smaller total v cost in Table 5.1 

and Tables 5.2 can potentially be captured with a larger ratio of the retrieved mass to the 

required spacecraft mass. However, the minimum total v cost does not always imply the 

maximum yield of a retrieval mission. For example, the mass ratio fm for capturing 2008 

HJ is larger than that of capturing 2009 SN103, as shown in Table 5.4, while the total v 

cost of capturing 2009 SN103 is smaller than that of capturing 2008 HJ, as shown in Table 

5.2. Furthermore, capturing 2012 BK14 is the most attractive target, with the retrieved 

mass of the asteroid 236 and 285 times more than that of the spacecraft itself at the start of 

the capture manoeuvre, corresponding to the bi-impulse capture and single impulse 

asteroid capture strategies, respectively. Therefore, asteroid 2012 BK14 can be considered 

to be the best candidate asteroid, when minimising the total v cost or maximizing the 

fraction of retrieved mass to the required spacecraft mass.  
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Table 5.3 Results of bi-impulsive capture of asteroids at the Earth when optimising fm 

Asteroid 
Diameter, 

D 

Capture date 

T0, MJD 

Flight 

time, day 

Mass 

ratio fm 

Total 

cost, m/s 

Mass 

loss f, % 

2000 AG6 29.5 64742.6 1415.5 61 26.67 31.2 

2005 VL1 17 58512.5 1005 139.6 11.82 31.3 

2007 UD6 7.4 62991 895.8 45.5 36.71 28.9 

2008 HJ 23.4 62098.2 1625.1 40.7 34.08 42 

2009 SN103 10.2 67611.2 1004.3 45.1 36.39 30 

2009 VT1 4.3 58948.1 1279.5 46.7 28.11 44.6 

2009 XR1 4.9 63452.7 1583.4 87.1 16.13 41.2 

2010 UY7 6.8 60220.1 1485 72 28.55 12.2 

2010 VL65 7.1 59366.9 155.2 73.4 24.92 22.3 

2012 BK14 11.2 65196.7 1707.6 236.8 7.36 28.4 

2012 GD 14.1 67473 1764.9 161.9 7.56 52.6 

2012 TC4 15.5 58739 1122.7 87.4 16.12 41.5 

2012 VJ38 6.8 61532.7 1645 60.1 29.01 25.8 

2012 XB112 3.5 63381.5 1655.8 61.4 30.95 18.9 

2012 XN134 9.8 58537.4 1756.7 79.2 16.71 45.4 

2013 FU13 11.2 64029 1473.3 104.6 15.31 32.8 

2014 JR24 4.7 59317.5 1489.4 106.1 19.57 11.6 

2014 QN266 18.6 59959.7 1518.1 62.3 34.53 7.8 

2014 WE6 2.8 63087.3 1558.7 70.5 27.73 16.6 

2015 EZ6 6.5 66227.6 1459.2 76 27.06 12.2 

2016 FY2 26.9 62281.9 1364.9 80.1 25.04 14.5 

2016 FZ13 7.4 59965.7 1525.3 124.2 14.94 21.7 

2016 YR 12.3 65798.7 1801.7 82.4 26.06 8.3 

2017 FU102 6.2 63035 1753.1 85.9 16.87 39.2 

2017 RV2 19.5 65598 1533.7 93.7 17.5 31 

2017 SA20 7.8 58849.6 1574.7 104.3 16.57 27.7 

2017 UQ6 12.3 60407.3 1597 72.4 29.24 9.6 

2018 EM4 29.5 61250.7 1705.6 50.2 30.91 34.3 
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Table 5.4 Results of single impulse capture of asteroids at the Earth when optimising fm 

Asteroid 
Diameter, 

D 

Capture date 

T0, MJD 

Flight time, 

day 

Mass ratio 

fm 

Total cost, 

m/s 

Mass 

loss f, % 

2000 AG6 29.5 64743.3 1414.9 72.6 22.32 30.7 

2005 VL1 17 58503.6 1013.9 151.1 10.72 30.9 

2007 UD6 7.4 62993.5 893.2 47.4 35.39 28 

2008 HJ 23.4 62077.6 1645.4 42.3 32.77 40.6 

2009 SN103 10.2 67637.3 978 46.4 34.72 30.8 

2009 VT1 4.3 59026.1 1201.4 47.4 27.26 44.7 

2009 XR1 4.9 63454.3 1581.9 86.5 16.02 40.9 

2010 UY7 6.8 60229.9 1475 75.1 27.43 11.8 

2010 VL65 7.1 59374.8 147.4 76.3 24.03 21.6 

2012 BK14 11.2 65213.2 1691.1 285.3 5.77 27.1 

2012 GD 14.1 67459.6 1778.3 186.5 6.05 51.9 

2012 TC4 15.5 58767.2 1094.4 83.4 16.57 41 

2012 VJ38 6.8 61508.5 1669.4 61.3 28.53 25.1 

2012 XB112 3.5 63395.8 1641.5 63.1 30.18 18.4 

2012 XN134 9.8 58556.6 1737.4 83.6 15.39 45.1 

2013 FU13 11.2 64010.4 1492.5 120.5 13.12 32.6 

2014 JR24 4.7 59272.2 1535.3 105.4 19.76 11 

2014 QN266 18.6 59958.3 1519.3 63.7 33.77 7.7 

2014 WE6 2.8 63107.2 1538.8 72.8 26.91 16.2 

2015 EZ6 6.5 66237.5 1449.6 74.5 27.74 11.5 

2016 FY2 26.9 62289.1 1357.9 85.3 23.52 14.2 

2016 FZ13 7.4 59933.9 1557 125.2 14.66 21.6 

2016 YR 12.3 65800.7 1799.5 86 25.06 7.8 

2017 FU102 6.2 63096.2 1691.8 85.7 16.69 38.9 

2017 RV2 19.5 65584 1547.6 93.3 17.37 30.8 

2017 SA20 7.8 58829.2 1595 123.6 13.89 26.7 

2017 UQ6 12.3 60386.5 1618 76.5 27.82 8.9 

2018 EM4 29.5 61229.1 1727.3 49.7 30.88 34.2 
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In addition, the semi-major axis of the target asteroid 2012 BK14 is not close to that of 

the Earth. This indicates that although only a small manoeuvre is required to move the 

asteroid from its initial orbit to intersect the Earth’s orbit, the relative velocity of the 

asteroid with respect to the Earth should be considerable and thus it would need a large 

impulse to insert onto a stable manifold associated with a periodic orbit around the Sun-

Earth libration points at L1 or L2. Therefore, this asteroid is not in the list of EROs [9]. 

5.4 Discussion 

This chapter provides a general analysis of aerobraking strategies and uses aerobraking to 

capture asteroids directly onto bound orbits about the Earth. In detail, two strategies have 

been proposed for capturing NEAs at the Earth by using a single-pass aerobraking 

manoeuvre. Although aerobraking can increase risk during capture manoeuvres due to the 

requirement for a grazing flyby, a selection criterion for candidate asteroids was 

investigated to minimise such risks. Then, single impulse and bi-impulse capture of 

asteroids was discussed, using the total impulse and the yield of the retrieved mass of the 

asteroid with respect to the required spacecraft mass as objective functions. Comparing the 

results of these two capture strategies, aerobraking can greatly reduce the energy required 

to capture small NEAs. Optimisation then finds the best candidate asteroids which can be 

captured using aerobraking. This indicates that 2012 BK14 is one of the best targets which 

can be captured with a total cost below 10 m/s. Moreover, considering mass loss during 

aerobraking, capturing 2014 BK14 is also the most economical and the retrieved mass can 

be over 200 times more than that of the spacecraft which is required to execute the 

mission. 

The strategies proposed are intended to be used for the preliminary analysis of 

aerobraking for asteroid capture. For the practical implementation of this concept, a real 

ephemeris model must be taken into account, along with robust navigation and control. 

Moreover, the structural integrity of the asteroids also needs to be ensured and thus active 

protection for the captured asteroids may be required. However, since the model of the 

Sun-Earth CRTBP can provide a good approximation of the real Sun-Earth system, the list 

of the NEAs that can be captured with low energy are not expected to change significantly.  
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CHAPTER 6  

CAPTURE OF NEAS USING MOMENTUM 

EXCHANGE STRATEGIES 

This Chapter investigates the concept of capturing small NEAs into bound periodic orbits 

at the Sun-Earth L1 and L2 points using momentum exchange theory, including both kinetic 

impacts and the use of tethered assist. The key contribution of the Chapter is in coupling 

momentum exchange strategies to invariant manifolds in the Sun-Earth CRTBP system 

through the use of dynamical models of the kinetic impact and tether-assisted flyby. The 

analysis undertaken in this Chapter (which was presented in Ref [46]) is summarized as 

follows: 

 

(1) A selection strategy for candidate asteroids is proposed by considering both the 

deflection windows for capturing asteroids and the size of the candidate asteroids.  

(2) In the capture strategy using kinetic impacts, the small asteroid leaves its initial 

orbit through an impulse delivered from a spacecraft and then approaches a large 

target asteroid. Accordingly, the small asteroid then collides with the large asteroid 

with an impact geometry such that the small asteroid will be captured onto the 

stable manifold associated with the Sun-Earth L1 or L2 points, thus leveraging the 

orbit energy of the large asteroid by investigating the outcome of the impact on the 

small asteroid; 

(3) In the capture strategy using the tethered assist, after a targeting impulse, the small 

asteroid approaches the large asteroid and then connects with the large asteroid 

through a tether; the tether is then released after the flyby manoeuvre. As a result, 

the small asteroid will again be transferred onto the stable manifold associated with 

the Sun-Earth L1 or L2 points, based on the maximum velocity increment available 

which can be obtained by analysing the tension of the tether. 
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6.1 Target periodic orbits and invariant manifolds 

In both asteroid capture strategies using momentum exchange, the small asteroid leaves its 

orbit and will be inserted onto the stable manifold associated with the periodic orbits of the 

Sun-Earth L1 or L2 points after the momentum exchange encounter. During the transfer 

from the asteroid orbit to the stable manifold, the motion of the asteroid is considered in 

the Sun-asteroid two-body problem. When the small asteroid is captured onto the stable 

manifold, it will then be modelled by the Sun-Earth CRTBP.  

As discussed in Section 3.3, the Lyapunov orbits and halo orbits around the Sun-Earth 

L1 and L2 points have been calculated using a numerical procedure in Section 2.2.4. In this 

Chapter, these periodic orbits will again serve as the final target orbits where the candidate 

asteroids are captured and parked. Invariant manifolds associated with periodic orbits 

around the libration points are again key to the design of low-energy transfer trajectories.  

As discussed in Section 3.1.1, the Poincaré surface of section is now defined by a 

plane in position space ( ) tany x     where   is the angle of the section with respect 

to the Sun in the rotating frame, as shown in Fig. 6.1. Transfer trajectories from the initial 

asteroid orbit to the stable manifolds associated with the Sun-Earth L1 and L2 periodic 

orbits can then be designed by solving for a Lambert arc in the two-body Sun-asteroid 

model. Here  = π/8 is set as the threshold of the boundary of the Sun-asteroid two-body 

problem and the Sun-Earth CRTBP (π/8 for the L2 stable manifold and π/8 for the L1 

stable manifold) [18, 50].  

 

 

Fig. 6.1 Stable manifolds associated with the Lyapunov orbit (Ap = 0.0020101 AU) around Sun-Earth 

L2. 
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6.2 Candidate asteroid selection 

6.2.1 Capture windows 

As discussed in Section 4.3.3, the date when the distance between the Earth and the 

asteroid is 0.21 AU is defined as a threshold date of the capture window. Given one small 

asteroid and one large asteroid, the threshold dates of the small asteroid and the large 

asteroid are denoted as Ts and Tl, respectively. Therefore, the domain of the impulse date 

(T0) to deflect the small asteroid from its natural orbit and the flight time (Tfly1) from the 

impulse to the interception of the large asteroid should be 

 
0

0 1

[2019, ], 2050

[2019, ], 2050

s s

fly l l

T T T

T T T T

 


  
 (6.1) 

6.2.2 Candidate asteroid filter 

Potentially Hazardous Asteroids (PHAs) are those asteroids with an Earth Minimum Orbit 

Intersection Distance (MOID) of 0.05 AU or less and an absolute magnitude (H) of 22.0 or 

less [197]. PHAs can be considered to pose a potential threat to the Earth when they have a 

close approach. A momentum exchange encounter with an asteroid with H smaller than 

22.0 but MOID larger than 0.05 AU may decrease the MOID and thus the asteroid may 

become a PHA. Therefore, asteroids with H smaller than 22.0 are unsuitable targets for 

momentum exchange. This is used as a filter criteria for the large asteroid so that candidate 

large asteroids should have H > 22.0. 

Furthermore, D  30 m (H  25.26) is again set as a threshold on asteroid size since 

captured asteroids may also be a potential impact threat to Earth, as discussed in Section 

3.1.5. Objects of 30 m in diameter can be considered as the critical threshold above which 

the Earth’s atmosphere will no longer disintegrate the object [147]. Considering this filter 

criteria, the candidate small asteroids should therefore have H  25.26. 

In order to minimise the influence of the impact on the large asteroid, and so guarantee 

that the large asteroid orbit is almost unchanged before and after the encounter, it is 

expected that the mass of the large asteroid (ml) should be at least two orders of magnitude 

greater than that of the small asteroid (ms) such that 

 100l

s

m

m
  (6.2) 
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Considering a large asteroid with H > 22 and a mass ratio of the two asteroids as 

defined in Eq. (6.2), the small asteroid should be selected such that H > 25.33. All 

candidate large asteroids and small asteroids are shown in Fig. 6.2. 

 

(a) 

 

(b) 

Fig. 6.2 Distribution of candidate large and small asteroids: (a) semi-major and eccentricity and (b) 

semi-major and inclination. 

6.3 Small asteroid capture through impact of a large asteroid 

In this Section, kinetic impact theory is applied to the capture of asteroids. In this capture 

strategy, the small asteroid leaves its initial orbit through an impulse from a spacecraft and 

then approaches a large target asteroid. At interception, the small asteroid collides with the 

large asteroid with a suitable impact geometry such that the small asteroid is deflected, and 

subsequently captured onto the stable manifold associated with the Sun-Earth L1 or L2 
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points, thus transferring some of the orbit energy from the large asteroid to the small 

asteroid. 

6.3.1 Problem statement 

Figure 6.3 shows an overview of the strategy for capturing a small asteroid by the impact 

of a large asteroid. The mission scenario consists of the following steps: with the first 

impulse v1, the small asteroid leaves its orbit and will approach the vicinity of the target 

large asteroid; then the small asteroid collides with the large asteroid delivering a second 

impulse v2 for a Lambert arc to intersect the stable manifold associated with the Sun-

Earth L1 or L2 point; with the third impulse v3, the small asteroid is captured onto the 

stable manifold associated with the Sun-Earth L1 or L2 point. 

 

Fig. 6.3 Overview of small asteroid capture through impact of a large asteroid. 

Given one small asteroid and one large asteroid, there are six variables in the solution 

space: 

 

 T0: the date of the first impulse v1; 

 Tfly1: the flight time of the small asteroid between the first impulse and the 

impact; 

 Tfly2: the flight time of the small asteroid between the collision and the impulse 

v3 for insertion onto the stable manifold;  



Chapter 6 Capture of NEAs using momentum exchange strategies 

 

147 
 

 Ap: amplitude variable of the target periodic orbit around the Sun-Earth L1 or 

L2 point (see Section 3.1.2); 

 tp: the parameter determining the point on the periodic orbit where the stable 

manifold is calculated from; 

 tm: the stable manifold transfer time determining the point on the stable 

manifold where the small asteroid inserts onto it. 

6.3.2 Collision geometry  

In practice, the small asteroid needs to accurately target an impact point on the large 

asteroid. Moreover, the masses of the two asteroids and the momentum exchange 

parameter between the asteroids are both major uncertainties. Therefore, high-precision 

navigation and pre-launch characterization and identification of the asteroid properties are 

necessary. It can be noted that such uncertainties are clearly important, but they are not 

considered in this Chapter whose aim is to define the overall capture strategy. 

The collision geometry of a small asteroid with a large asteroid is shown schematically 

in Fig. 6.4. The centre-of-mass of the large asteroid and small asteroid are denoted as O1 

and O2 respectively. Let vs- and vs+ be the velocity vector of the small asteroid before and 

after the collision with the large asteroid, and let vl- and vl+ be the velocity vector of the 

large asteroid before and after the collision. The unit normal vector n is along the centre-

of-mass of the two asteroids and the unit tangent vector  is perpendicular to n. It will be 

assumed that the collision point is on the line n along the mass centres of the two asteroids 

and the dynamics of the two asteroids is considered in the direction of n only. According to 

the conservation of linear momentum, the velocity of the small asteroid after collision is 

given by [198] 

 
(1 ) ( )

s s

l
sn sn sn ln-

l s

m
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m m

  
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



    
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where ( )T

s s  v v   , ( )T

s s  v v   , ( )T

sn s v v n n  and ( )T

sn s v v n n . 
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Fig. 6.4 Collision geometry of the two asteroids. 

Therefore, Eq. (6.3) can be written as  

 (1 ) (( ) )Tl
s s s l

l s

m
k

m m
      


v v v v n n  (6.4) 

where the coefficient of restitution k is assumed to be 1 for a perfectly elastic collision. The 

relative velocity between the two asteroids in direction n can then be written as 

 ( )T

n s lv      nv v v n  (6.5) 

This relative velocity is key to estimating whether the small asteroid will remain intact 

or not after the collision. Here thresholdv  is denoted as the threshold such that once

n thresholdv v   , disruption of the asteroid will occur, as will be discussed later. Assuming 

vLam is the required post-collision velocity vector of the small asteroid obtained by solving 

the Lambert arc from the large asteroid orbit to the stable manifold associated with Sun-

Earth L1 and L2 periodic orbits, the second impulse 2v can therefore be written as 

 2 ( )T

Lam s ls       v v v v v n n  (6.6) 

where  

 , (1 ) ,l
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Once the six variables (T0, Tfly1, Tfly2, Ap, tp, tm) have been selected, the first impulse 

v1 and the third impulse v3 can then be determined by solving two Lambert arc 

problems, where the second impulse v2 is a function of the unit vector n. The 

optimisation problem can therefore be written as, 

 2min v  subject to T

ls thresholdv  v n  (6.7) 

It should be noted that the set ( )T

lsv n n  is a sphere with diameter lsv  which is 

centred at 
1

2
lsv . According to the geometric relationship between the vectors in Eq. 

(6.6), shown in Fig. 6.5, there exists a critical value of n, 
2 (1 )
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v

v v
. When T

ls c thresholdv  v n , shown in Fig. 6.5(a), the second impulse is 

minimised by choosing cn = n  and this minimum value is found to be 

 2min 2

1
min( ) = 2

2
ls lsv         v v v v  (6.8) 

On the other hand, if T

ls c thresholdv  v n , shown in Fig. 6.5(b), the second impulse is 

minimised when T

ls thresholdv  v n  and the minimum value is then found to be 

 2 2 2 2

2min 2 2 1 2 3min( ) = ( )v p p p p     v  (6.9) 

where 
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Therefore, the total cost of the capture strategy can be written as 

 1 2min 3v v v v      (6.10) 
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(a) 

 

(b) 

Fig. 6.5 Geometric relationship of the vectors in Eq. (6.6) (a) when 
T

ls c thresholdv  v n  (b) when 

T
ls c thresholdv  v n . 

6.3.3 Analysis of impact mechanics 

The relative kinetic energy E of the large asteroid and the small asteroid at collision can be 

written as [199] 

 
2=

2( )

l s
n

l s

m m
E v

m m



 (6.11) 

Assuming that the large and small asteroid have the same composition, the relative 

kinetic energy is partitioned in equal parts between the two asteroids [200]. If the small 
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asteroid is shattered, the size of the largest fragment as a fraction of the original mass is 

given by [201, 202]  

 
1.241

( )
2 / 2

s s
l

a

S m
f

E
  (6.12) 

where Ss is the effective impact strength of the small asteroid and a  is the density of the 

small asteroid. 

The effective impact strength of the small asteroid sS can be written as [199, 203, 204] 
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15
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s s

k G D
S S

 
   (6.13) 

where Ss0 is the material impact strength; G is the gravitational constant; kp is a 

proportionality constant and D is the diameter of the small asteroid. 

The model of the impact strength in Eq. (6.13) consists of two components: the first 

part is related to the material properties of the small asteroid and the second part is due to 

its self-compressional strength. For asteroids with diameters less than approximately 10 

km, the compressive strength can be ignored compared to the material strength so that 

0s sS S  [204]. 

If the small asteroid remains intact after collision, 1lf   and thus the threshold of nv

can be can be estimated as  

 
( )

2 2s l s s
threshold

a l a

S m m S
v

m 


    (6.14) 

where 1/1.242  . However, there are a range of experimental studies using small 

projectiles impacting on large targets with results for the ratio of the mass of the largest 

fragment to the initial target mass, as a function of impact strength or the impact energy 

[71, 205-208]. Figure 6.6 shows the contour map of thresholdv  as a function of 0sS  and a . 
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Fig. 6.6 Contour map of Δ thresholdv  as a function of 0sS  and aρ . 

Since the material properties of the target asteroids are largely unknown, two special 

cases are considered: metallic asteroids and the basalt asteroids. From [203], it can be 

shown that 8

0 1 10sS   J/m3 and 6000a  kg/m3 for metallic asteroids and 6

0 3 10sS    

J/m3 and 3000a   kg/m3 for basalt asteroids. Therefore, 196thresholdv   m/s can be 

obtained for metallic asteroids and 48thresholdv   m/s for basalt asteroids. In fact, capturing 

a fragment of an asteroid is also of interest and so the value of thresholdv would in principle 

be much larger than that stated above if 1lf  . In practice however, due to the assumptions 

and uncertainties stated, active protection (e.g. an ablative layer or air-bags) for the target 

small asteroid could in principle be required, as noted below. Although clearly speculative, 

the use of active protection would have the potential to increase thresholdv . For example, the 

spacecraft could be assumed to carry an ablative coating or air-bags. After it deflects the 

target small asteroid from its initial orbit to transfer to the large asteroid, the ablative 

materials or air-bags could be installed by the spacecraft on the surface of the small 

asteroid where the collision of the two asteroids will occur. Once such active protection is 

installed, the ablative material or airbags could sacrificially protect the small asteroid form 

disruption. Clearly this would incur significant technical challenges which are not 

addressed here.  
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6.3.4 Selection of candidate large asteroids 

In previous work [40, 50], it is shown that a small asteroid can be captured onto periodic 

orbits at the Sun-Earth L1 or L2 points in a direct capture strategy by solving the Lambert 

arc problem between the small asteroid’s initial orbit and the stable manifold associated 

with the periodic orbits at the Sun-Earth L1 or L2 points. In the direct capture strategy, the 

candidate asteroid is first assumed to leave its orbit with an initial manoeuvre and will then 

transfer to the stable manifold of the Sun-Earth L1 or L2 periodic orbits with a second 

manoeuvre. These two manoeuvres can be calculated by solving a Lambert arc between the 

asteroid orbit and the stable manifold in the Sun-centred two-body problem. Finally, once 

the asteroid moves onto the stable manifold, it will then transfer to the target periodic orbit 

without any further manoeuvres.  

In this prior direct capture problem, there are five variables and so optimal strategies 

for direct capture can be obtained by varying these variables. The optimal total cost of the 

direct capture strategy is denoted as V. Here it is expected that capture of the small 

asteroid by impacting the large asteroid will be possible with the total cost being lower 

than V. In order to find low energy capture trajectories for the small asteroid, V/2 is set 

as the threshold of the first impulse v1 and thus this critical value can be utilised as a 

selection criterion for the large asteroid. For the small asteroid, the Lambert transfer 

between the small asteroid and the large asteroid can then be optimised using MATLAB’s 

function fmincon. Single objective optimisations with the first impulse v1 as a cost 

function can then be undertaken. For one given target small asteroid, there are two 

variables in the solution vector of this optimisation problem: T0 and Tfly1. Their bounds can 

be obtained through the procedure in Section 6.2.1. An example of large asteroids as 

selected when considering the capture of the small asteroid 2008 JL24 is shown in Fig. 6.7 

for illustration. 
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(a) 

 

(b) 

Fig. 6.7 Candidate large asteroids when capturing 2008 JL24 into a Lyapunov orbit with V/2 = 441.19 

m/s. 

6.3.5 Design procedure and optimisation 

The design procedure is now as follows: one candidate small asteroid with H > 25.33 (e.g. 

2008 JL24) is first selected and then the corresponding candidate large asteroids can be 

found using the selection criteria in Section 6.2.2, as shown in Fig. 6.7. Thus, one target 

large asteroid in Fig. 6.7 (e.g. 2001 QJ142) is selected. Then given the deflection date T0 

and the first flight time Tfly1 ( 0 [2019, ]sT T , 0 1 [2019, ]fly lT T T  ), the trajectory from the 

candidate small asteroid orbit to the large asteroid can be calculated as the heliocentric 

Lambert arc of a two-body problem. Thus, the first impulse v1 can then be obtained. 

Given the amplitude variable Ap, tp and tm, the stable manifold associated with the target 

periodic orbit can then be calculated. Given the second flight time Tfly2, the transfer 
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trajectory from the vicinity of the large asteroid to the stable manifold is designed by 

solving the Lambert arc and so the third impulse v3 can be obtained. The second impulse 

v2 can then be optimised by using Eq. (6.8) and Eq. (6.9) and the entire transfer trajectory 

from the small asteroid orbit to the stable manifold can be designed, as shown in Fig. 6.8. 

 

 

(a) 

 

(b) 

Fig. 6.8 Transfer trajectory for capturing 2008 JL24 into a Lyapunov orbit by impacting 2001 QJ142 

(a) in the Sun-centred inertial frame; (b) in the Sun-Earth rotating frame, assuming that they are 

metallic asteroids. 
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Table 6.1 Results for the capture of metallic asteroids into Lyapunov orbits with and without 

impacting large metallic asteroids 

Small NEA Large NEA 

Capture 

date, 

MJD 

v using 

impact, 

m/s 

Ttot using 

impact, 

day 

v without 

impact, 

m/s 

Ttot without 

impact, 

day 

Final 

target 

orbit 

2006 JY26 2002 VX91 62238.2 1038.91 2948.4 1203.48 2715.1 L1 

2008 KT 2002 VX91 62223.9 1286.65 2792.6 1435.89 2612.3 L1 

2009 BD 2000 SG344 59446.1 241.12 2694.2 488.67 2717.2 L1 

2009 BD 2007 CS5 62350.3 395.37 2491.9 488.67 2717.2 L1 

2011 UD21 2002 VX91 63420.5 365.01 2688.3 618.16 1758 L1 

2013 RZ53 2016 FZ12 58944.7 993.17 2318.1 1129.76 2498.3 L1 

2014 HN2 2010 VC72 59117.7 1019.67 1193.1 1231.64 2215.7 L1 

2008 HU4 2012 DK4 59543.4 716.93 1835.3 753.37 2680.2 L2 

2008 HU4 2003 LN6 58484.3 404.12 2934.9 753.37 2680.2 L2 

2008 HU4 2010 JK1 58865.7 566.33 2579.8 753.37 2680.2 L2 

2008 JL24 2001 QJ142 58743.4 703.92 2308.9 882.38 2025.2 L2 

2008 JL24 2011 MW1 58662.3 729.35 1649.5 882.38 2025.2 L2 

2008 JL24 2016 CF137 59023.5 665.42 1630.2 882.38 2025.2 L2 

2010 VQ98 2016 TP11 61985.7 675.41 2506.4 759.4 1995.3 L2 

2011 MD 2015 XP128 58710.8 1049.86 1655.1 1248.74 1210.7 L2 

2012 EP10 1999 SF10 58723.2 1071.39 2601.4 1282.51 1967.4 L2 

2012 EP10 2004 XK3 59050.6 1182.7 2273.4 1282.51 1967.4 L2 

2012 TF79 2012 DK4 59621.4 371.89 1985.1 540.07 2555.3 L2 

2012 WR10 2014 KF39 60479.1 739.68 2188.6 834.53 2418.6 L2 

2012 WR10 2015 VO105 60498.4 852.46 2129.7 834.53 2418.6 L2 

2013 RZ53 2013 BS45 66088.1 956.01 2786.5 1129.76 2498.3 L2 

2014 WX202 2012 FC71 61499 301.22 2190 380.76 1837.6 L2 

2014 WX202 2011 BP40 61218.2 268.83 2363.3 380.76 1837.6 L2 

2015 JD3 2015 XA352 60325.6 1207.66 1650.6 1406.6 1829.9 L2 

2015 KK57 2012 MD7 58587.6 530.39 2147 614.28 2223.9 L2 

2015 VC2 2009 TP 59778.6 408.35 2618.5 621.34 2621 L2 
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Table 6.2 Results for the capture of basalt asteroids into Lyapunov orbits with and without impacting 

large basalt asteroids 

Small NEA Large NEA 

Capture 

date, 

MJD 

v using 

impact, 

m/s 

Ttot using 

impact, 

day 

v without 

impact, 

m/s 

Ttot without 

impact, 

day 

Final 

target 

orbit 

2006 JY26 2002 VX91 62277.6 1333.07 2831 1203.48 2715.1 L1 

2008 KT 2002 VX91 62946 1555.34 2621.1 1435.89 2612.3 L1 

2009 BD 2000S G344 59440.8 559.39 2688.8 488.67 2717.2 L1 

2009 BD 2007 CS5 62736 650.53 2815.3 488.67 2717.2 L1 

2011 UD21 2002 VX91 63787.9 641.83 2334 618.16 1758 L1 

2013 RZ53 2016 FZ12 58953.9 1256.12 2260 1129.76 2498.3 L1 

2014 HN2 2010 VC72 59079.9 1312.83 1446 1231.64 2215.7 L1 

2008 HU4 2012 DK4 59552.3 855.11 1873.2 753.37 2680.2 L2 

2008 HU4 2003 LN6 58892.9 658.9 2689.8 753.37 2680.2 L2 

2008 HU4 2010 JK1 58500.5 853.51 2940.6 753.37 2680.2 L2 

2008 JL24 2001 QJ142 58745.9 1028.29 2213.5 882.38 2025.2 L2 

2008 JL24 2011 MW1 58641 1034.47 1662.6 882.38 2025.2 L2 

2008 JL24 2016 CF137 59014.3 870.83 1835.9 882.38 2025.2 L2 

2010 VQ98 2016TP11 61940.7 822.4 2509.8 759.4 1995.3 L2 

2011 MD 2015 XP128 58707 1297.21 1652.6 1248.74 1210.7 L2 

2012 EP10 1999 SF10 58738.7 1278.31 2560.8 1282.51 1967.4 L2 

2012 EP10 2004 XK3 59042.4 1500.05 2240 1282.51 1967.4 L2 

2012 TF79 2012 DK4 59558.2 520.52 2066.7 540.07 2555.3 L2 

2012 WR10 2014 KF39 61328.2 908.31 1538.3 834.53 2418.6 L2 

2012 WR10 2015 VO105 61013.8 962.76 1942.5 834.53 2418.6 L2 

2013 RZ53 2013 BS45 65699.8 1103.38 2860.6 1129.76 2498.3 L2 

2014 WX202 2012 FC71 61473.4 493.6 2365 380.76 1837.6 L2 

2014 WX202 2011 BP40 61236.7 394.4 2216.4 380.76 1837.6 L2 

2015 JD3 2015 XA352 60321 1415.94 1623.8 1406.6 1829.9 L2 

2015 KK57 2012 MD7 58957.9 700.33 1769.5 614.28 2223.9 L2 

2015 VC2 2009 TP 59717.1 650.46 2705.3 621.34 2621 L2 
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Table 6.3 Results for the capture of metallic asteroids into halo orbits with and without impacting 

large metallic asteroids 

Small NEA Large NEA 

Capture 

date, 

MJD 

v using 

impact, 

m/s 

Ttot using 

impact, 

day 

v without 

impact, 

m/s 

Ttot without 

impact, 

day 

Final 

target 

orbit 

2006 JY26 2002 VX91 62246.7 897.72 2689.3 1105.24 2854.8 L1 

2008 KT 2002 VX91 62246.3 1101.16 2402.8 1309.22 1175.2 L1 

2009 BD 2000 SG344 59437.3 345.8 2397.6 413.38 2669.2 L1 

2009 BD 2007 CS5 62358.3 391.03 2472.1 413.38 2669.2 L1 

2011 UD21 2002 VX91 62705.7 335.81 2155.5 373.71 2119 L1 

2013 RZ53 2016 FZ12 58931.7 725.16 2312.7 1003.01 1783.3 L1 

2014 HN2 2010 VC72 58769 1158.33 1923.3 1284.08 2049.4 L1 

2008 HU4 2012 DK4 59549.1 669.56 2268.2 664.51 1413.6 L2 

2008 HU4 2003 LN6 58676.1 747.45 2683.4 664.51 1413.6 L2 

2008 HU4 2010 JK1 58897.2 765.11 2502.4 664.51 1413.6 L2 

2008 JL24 2001 QJ142 59342.5 805.51 1249.8 974.51 1881.5 L2 

2008 JL24 2011 MW1 58616.5 840.74 1618.4 974.51 1881.5 L2 

2008 JL24 2016 CF137 59014.1 754.38 1563.5 974.51 1881.5 L2 

2010 VQ98 2016 TP11 61629.8 512.42 2503.8 571.24 2762.4 L2 

2011 MD 2015 XP128 58700.5 945.83 2004.9 1101.39 857.7 L2 

2012 EP10 1999 SF10 58722.2 1084.38 2528.7 1301.62 1331.2 L2 

2012 EP10 2004 XK3 59036.9 1101.74 2255.7 1301.62 1331.2 L2 

2012 TF79 2012 DK4 59976.1 310.4 2060.6 427.55 1768.9 L2 

2012 WR10 2014 KF39 61336.7 955.88 1687.3 1057.32 2540.9 L2 

2012 WR10 2015 VO105 61320.8 934.04 1329.2 1057.32 2540.9 L2 

2013 RZ53 2013 BS45 65717.3 896.25 2829.6 1003.01 1783.3 L2 

2014 WX202 2012 FC71 61867.3 398.48 1596.7 345.1 1876 L2 

2014 WX202 2011 BP40 61210.9 144.24 2230 345.1 1876 L2 

2015 JD3 2015 XA352 60323.8 1006.79 1686.3 1165.48 2414 L2 

2015 KK57 2012 MD7 58955.3 402.92 1791.1 555.56 1955.4 L2 

2015 VC2 2009 TP 60173.8 486.58 2534.9 642.32 1363 L2 
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Table 6.4 Results for the capture of basalt asteroids into halo orbits with and without impacting large 

basalt asteroids 

Small NEA Large NEA 

Capture 

date, 

MJD 

v using 

impact, 

m/s 

Ttot using 

impact, 

day 

v without 

impact, 

m/s 

Ttot without 

impact, 

day 

Final 

target 

orbit 

2006 JY26 2002 VX91 62815.8 1143.21 2220 1105.24 2854.8 L1 

2008 KT 2002 VX91 62246.2 1392.41 2388 1309.22 1175.2 L1 

2009 BD 2000 SG344 59442.4 639.36 2840.3 413.38 2669.2 L1 

2009 BD 2007 CS5 62703.8 663.47 2464.7 413.38 2669.2 L1 

2011 UD21 2002 VX91 63421.7 517.11 2200.7 373.71 2119 L1 

2013 RZ53 2016 FZ12 58929.9 1023.2 2178.3 1003.01 1783.3 L1 

2014 HN2 2010 VC72 58792.6 1323.04 1905.5 1284.08 2049.4 L1 

2008 HU4 2012 DK4 59545.6 915.4 2244.4 664.51 1413.6 L2 

2008 HU4 2003 LN6 58686.7 884.67 2680.7 664.51 1413.6 L2 

2008 HU4 2010 JK1 58895.3 1014.86 2474.9 664.51 1413.6 L2 

2008 JL24 2001 QJ142 58769.8 1038.21 2162.2 974.51 1881.5 L2 

2008 JL24 2011 MW1 58964.3 1141.85 1675.5 974.51 1881.5 L2 

2008 JL24 2016 CF137 59031.1 1017.43 1537.2 974.51 1881.5 L2 

2010 VQ98 2016 TP11 61608.5 711.55 2929.7 571.24 2762.4 L2 

2011 MD 2015 XP128 58715.8 1157.77 2030.3 1101.39 857.7 L2 

2012 EP10 1999 SF10 58735.4 1298.49 2548.1 1301.62 1331.2 L2 

2012 EP10 2004 XK3 59058.8 1398.94 2214.3 1301.62 1331.2 L2 

2012 TF79 2012 DK4 59609.9 500.55 2001.3 427.55 1768.9 L2 

2012 WR10 2014 KF39 61327.2 1089.64 1321.6 1057.32 2540.9 L2 

2012 WR10 2015 VO105 60938.6 1189.08 1690.8 1057.32 2540.9 L2 

2013 RZ53 2013 BS45 65328.5 967.68 2562.7 1003.01 1783.3 L2 

2014 WX202 2012 FC71 61470.8 626.52 2010.8 345.1 1876 L2 

2014 WX202 2011 BP40 60992.5 245.99 2458.7 345.1 1876 L2 

2015 JD3 2015 XA352 60315.4 1224.66 1693.7 1165.48 2414 L2 

2015 KK57 2012 MD7 58585.6 553.51 2180 555.56 1955.4 L2 

2015 VC2 2009 TP 60202.6 603.37 2169.1 642.32 1363 L2 
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According to the design procedure stated above, the transfer trajectory from the small 

asteroid’s initial orbit to the stable manifold can be designed, and then the six variables can 

be optimised using NSGA-II [182]. In order to limit the total duration of the transfers (Ttot), 

the Lambert arcs required for designing the transfer from the small asteroid’s orbit to the 

large asteroid, and the transfer from the large asteroid’s orbit to the stable manifolds are 

assumed to be up to two complete revolutions. The optimal results of small asteroid 

capture by impacting large asteroids are shown in Tables 6.1-6.4, corresponding to metallic 

asteroids and basalt asteroids, respectively. For comparison, the direct capture of small 

asteroids onto bound periodic orbits around the Sun-Earth L1 and L2 points without impact 

can be designed directly from the asteroid orbit to the stable manifolds. The optimal results 

are also shown in Tables 6.1-6.4. 

By comparison of the results with and without impacting the large asteroid in Table 

6.1, it can be seen that the capture of small asteroids by impacting large asteroids has the 

potential to reduce capture energy, especially for cases such as 2009 BD, 2011 UD21 and 

2015 VC2. Moreover, a range of large asteroids may be available when capturing the same 

small asteroid, e.g. when capturing 2008 JL24. Furthermore, one small asteroid can be 

captured onto periodic orbits around either the Sun-Earth L1 or L2 points by impacting 

different large asteroids, e.g. 2013 RZ53. This implies that the impact can increase the 

range of capture opportunities. However, due to the additional transfer time from the small 

asteroid orbit to the large asteroid orbit, the capture of the small asteroid using a large 

impacting asteroid always needs a greater flight time than a direct capture.  

In this capture strategy, the collision of the small asteroid and large asteroid provides 

an impulsive manoeuvre for the small asteroid, and it is the mechanics of this interaction 

that reduces the energy required for the capture strategy. Therefore, the total cost of the 

capture strategy greatly depends on the threshold of the manoeuvre which is provided by 

the collision, while avoiding fragmentation of the asteroid. Furthermore, comparing the 

results in Tables 6.1-6.4, it can be seen that a smaller value of thresholdv  can lead to an 

increase of the total capture cost. Moreover, with a smaller value of thresholdv , the total cost 

of capturing some asteroids by impacting large asteroids can be even greater than the direct 

capture strategy, e.g. 2008 KT, 2012 EP10 and 2015 KK57. This is one drawback of the 

capture strategy of using a small asteroid to impact a large asteroid, since many small 

asteroids are thought to be rubble piles, and thus the collision between these asteroids can 

only provide a limited manoeuvre. However, through the analysis in Section 6.3.3, if 

capturing one segment of an asteroid, not the entire asteroid, the collision can in principle 
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deliver a much larger impulse. Moreover, the use of active protection (e.g. air bags) could 

in principle increase the value of thresholdv . 

One of the challenges of this capture strategy is also the uncertainty of the properties 

of the candidate asteroids, including their shape, mass and material properties. Therefore, 

pre-launch observations using radar and optical/infrared telescopes would again be 

required to provide good estimates of these parameters [21, 23]. Moreover, in-situ asteroid 

exploration missions, including the flyby and rendezvous, can also be viewed as an 

effective way to address these uncertainties [59]. An accurate navigation and control 

strategy would clearly be required to guarantee that the candidate small asteroid impacts 

the large asteroid with the correct collision geometry to achieve the required manoeuvre 

for asteroid capture.  

6.4 Small asteroid capture by tether-assisted flyby of large 

asteroids 

Another momentum exchange strategy to transfer small asteroids onto the stable manifold 

associated with the Sun-Earth L1 or L2 points is to use a tethered assist. In this capture 

strategy, the small asteroid approaches the large asteroid and then connects to the large 

asteroid through a tether, such that the tether is released after the flyby. Again, the small 

asteroid will be transferred onto the stable manifold associated with the Sun-Earth L1 or L2 

points. 

 

Fig. 6.9 Overview of small asteroid capture using tether-assisted flyby. 
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6.4.1 Statement of the problem  

A schematic of the tether-assist strategy is shown in Fig. 6.9. The mission scenario consists 

of the following steps: with the first impulse v1, the small asteroid leaves its initial orbit 

and will then approach the target large asteroid; the small asteroid connects to the large 

asteroid by a tether until it is released so that a second impulse v2 is added; with the third 

impulse v3, the small asteroid is captured onto the stable manifold associated with the 

Sun-Earth L1 or L2 points. 

For this strategy, given one small asteroid and one large asteroid, there are now seven 

variables in the problem: 

 

 T0: the date of the first impulse v1;  

 Tfly1: the flight time of the small asteroid to reach the vicinity of the large 

asteroid,  

 Ttether: the tether connection time; 

 Tfly2: the flight time of the small asteroid between the moment when the small 

asteroid is released and the moment when the small asteroid injects onto the 

stable manifold;  

 Ap: the amplitude variable of the target periodic orbit around the Sun-Earth L1 

or L2 point; 

  tp: the parameter determining the point on the periodic orbit where the stable 

manifold is calculated from; 

 tm: the stable manifold transfer time which determines the point on the stable 

manifold where the small asteroid inserts onto it.  

It should be noted that if the connection of the two asteroids is instantaneous and thus 

Ttether  0, then there are only six variables required to define the problem. 

6.4.2 Dynamical model during tether-assisted flyby 

In this problem, it is assumed that a spacecraft is first launched and then achieves a 

rendezvous with each asteroid to prepare an anchor point using a penetrator or a net or bag 

[122]. Alternatively, an anchor point could be delivered by a penetrator from the small 

asteroid to the large asteroid during the close approach. As the small asteroid approaches 

the vicinity of the large asteroid, the two anchor points are assumed to be connected by a 

tether. The spacecraft-to-asteroid tether attachment is assumed to occur when the velocity 
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vector is exactly perpendicular to the radius vector between the two asteroids. Therefore, 

high-precision navigation is clearly required, but again will not be considered here. 

Since the mass ratio of the two asteroids is large (Eq. (6.2)), it is assumed that the large 

asteroid’s orbit during the small asteroid flyby is unchanged. Here the velocity vector of 

the small asteroid before and after the flyby are denoted as vs+ and vs- respectively, where 

vl- is the velocity vector of the large asteroid before the flyby and vl+ is the velocity vector 

of the large asteroid after the flyby. Before the flyby, the relative velocity of the small 

asteroid with respect to the large asteroid can therefore be written as  

 sl s l   v v v  (6.15) 

Considering the relative velocity releasev  of the small asteroid with respect to the large 

asteroid when released, one can obtain  

 sl release  v v  (6.16) 

and so the velocity vector of the small asteroid after the flyby can be written as 

 s l release  v v v  (6.17) 

Moreover, vLam is again the velocity vector of the small asteroid required for the 

Lambert arc to the stable manifold after the flyby, so that the second impulse can therefore 

be written as 

 2 Lam s release      v v v v v  (6.18) 

where  

 Lam l   v v v  (6.19) 

The minimum value of the second impulse is then found to be 

 2min 2min( ) = min( )release lsv          v v v v v  (6.20) 

when releasev  has the same direction as v . Therefore, the total cost of the capture 

strategy can be written as 

 1 2min 3v v v v      (6.21) 
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6.4.3 Analysis of the tether forces 

When the small asteroid connects to the large asteroid via the tether, the small asteroid has 

a relative velocity of sl s l  v v v  with respect to the large asteroid. Then, after the tether 

is connected, the small asteroid moves in a circle around the large asteroid with radius L, 

and so the tether tension at the small asteroid is 2

L sT m L , where /sl L  v . Thus, 

the tension T can be written as [122] 

 
2

tether

dT
A r

dr
    (6.22) 

where r is the distance along the tether with respect to the large asteroid and [0, ]r L ; 

tether is tether density and A is the constant cross-sectional area. Considering the boundary 

condition 2

L sT m L  (r = L), the solution of Eq. (6.22) is given by 

 
2 2 2 21

( )
2

s tetherT m L L r      (6.23) 

Considering that the tether mass is tether tetherm AL , the stress on the tether is given 

by 

 

2 2
2

2
( ) ( )

2

s
tether sl

tether

mT L r
S

A m L



   v  (6.24) 

Therefore, the maximum tether stress is 
2

max ( / 1/ 2) ( )s tether tether slS m m   v when 0r  . 

If the maximum safe working stress of the tether is defined as S0, the small asteroid-to-

tether mass ratio can then be written as [122] 

 
2 1

( )
2

s c

tether sl

m v

m
 

v
 (6.25) 

where 0 /c tetherv S   is the characteristic velocity of the tether material. According to 

Eq. (6.25), the contour map of slv  as a function of the small asteroid-to-tether mass ratio 

and the characteristic velocity of the tether is shown in Fig. 6.10. 

 



Chapter 6 Capture of NEAs using momentum exchange strategies 

 

165 
 

 

Fig. 6.10 Contour map of the Δ slv  as a function of the small asteroid-to-tether mass ratio and the 

characteristic velocity of the tether. 

It is assumed now that small asteroid-to-tether mass ratio is 20-to-1, i.e., the mass of 

the smaller asteroid is at least twenty times larger than that of the tether [123]. From Eq. 

(6.25), it can be noted that the characteristic velocity of the tether has a substantial effect 

on the threshold of slv  and thus two different tether materials will be considered to 

compare their performance. One is a hypothetical carbon nanotube tether (CNT) with a 

density of 1300 kg/m2, a maximum safe working stress of 130 GPa and a characteristic 

velocity of 10 km/s. This material is chosen from the example of Van Zandt [123]. From 

Eq. (6.25), the threshold of the relative velocity of the small asteroid with respect to the 

large asteroid is then approximately 2200 m/s. The other material considered is a more 

conventional Zylon tether with a characteristic velocity of 2.7 km/s [209] and so the 

threshold of the relative velocity of the small asteroid with respect to the large asteroid is 

then approximately 600 m/s. 

In this asteroid capture strategy, it is assumed that the tether with a constant cross-

section is utilised to connect the large asteroid with the small asteroid. Considering that 

small asteroid-to-tether mass ratio is assumed to be 20-to-1, the tether mass will be 

significant when capturing an asteroid with a large mass. To reduce the tether mass for 

asteroid capture, one of the most efficient ways is to use the variable cross-section tethers. 

From Eq. (6.23), it can be seen that the tension distribution is uneven along the tether. 

Therefore, the utilisation of a variable cross-section tether on which every cross-section 

can experience the same maximum safe working stress would lead to a significant saving 
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in the tether mass. Accordingly, using variable cross-section tethers will produce more 

attractive results for this asteroid capture strategy. 

6.4.4 Selection strategy for candidate asteroids 

Here it is again supposed that V/2 is the threshold of the magnitude of the first impulse 

v1. Therefore, the threshold of the first impulse v1 and the threshold of the relative 

velocity slv between the two asteroids when they approach can be utilised as the 

selection criteria for the large asteroid. For the small asteroid, the Lambert transfer to the 

large asteroid can again be optimised using MATLAB’s function fmincon. Single objective 

optimisations with the first impulse v1 as a cost function can then be undertaken. There 

are again two variables in the optimisation problem: T0 and Tfly1. Their search domains are 

assumed to be 0 [2019, ]sT T  and 0 1 [2019, ]fly lT T T  . 

6.4.5 Design procedure and optimisation 

The design procedure is as follows: one candidate small asteroid with H > 25.33 (e.g. 2008 

JL24) is first selected. Then, the set of the candidate large asteroids can be obtained using 

the selection criteria in Section 6.2.2, and thus one target large asteroid is selected. Given 

the deflection date T0 and the first flight time Tfly1 ( 0 [2019, ]sT T , 0 1 [2019, ]fly lT T T  ), 

the trajectory from the candidate small asteroid orbit to the large asteroid can again be 

calculated as the heliocentric Lambert arc of a two-body problem (Lambert arc I), and thus 

the first impulse can then be obtained. Then, the small asteroid connects to the large 

asteroid via the tether until it is released. Given the amplitude variable Ap, tp and tm, the 

stable manifold associated with the target periodic orbit can be calculated. Given the flight 

time Tfly2, the transfer trajectory from the vicinity of large asteroid to the stable manifold is 

designed by solving a Lambert arc (Lambert arc II) and so the third impulse can be 

obtained. The second impulse can then be optimised by using the Eq. (6.21) and so the 

entire transfer trajectory can be designed, as shown in Fig. 6.11. 

According to the design procedure detailed above, the transfer trajectory from the 

small asteroid’s initial orbit to the stable manifold is again optimised using NSGA-II. 

Similarly, it is also assumed that the Lambert arcs required for designing the transfer from 

the small asteroid’s orbit to the large asteroid, and the transfer from the large asteroid’s 

orbit to the stable manifolds are assumed to be up to two complete revolutions. The 

comparison of the results of asteroid capture with and without the tether-assist is shown in 

Tables 6.5-6.8, corresponding to the carbon nanotube tether and the Zylon tether. As can 
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be seen from Table 6.5 and Table 6.7, the use of the carbon nanotube tether assist can lead 

to a substantial saving in total cost, compared with capture without the tether-assist. Four 

small asteroids appear to be particularly suited to the benefits from this strategy; 2008 

WO2, 2010 TE55, 2012 HN1 and 2015 ON22. The results for capturing these four 

asteroids with the carbon nanotube tether assist show cost savings of order 60%-80%, 

compared with capture without it. On the other hand, asteroid capture with the Zylon tether 

assist also has the potential to reduce the total capture cost, as shown in Table 6.6 and 

Table 6.8. However, this saving in total cost incurs a longer flight time. This is mainly due 

to the extra flight time required for the transfer from the small asteroid orbit to the large 

asteroid orbit. 

 

(a) 

 

(b) 

Fig. 6.11 Transfer trajectory for capturing 2008 JL24 into a Lyapunov orbit using the carbon 

nanotube tethered flyby of 2015 KE (a) in the Sun-centred inertial frame; (b) in the Sun-Earth rotating 

frame. 



Chapter 6 Capture of NEAs using momentum exchange strategies 

 

168 
 

Table 6.5 Results for asteroid capture into Lyapunov orbits with and without the carbon nanotube 

tether assist 

Small NEA Large NEA 

Capture 

date, 

MJD 

v with 

tether 

assist, m/s 

Ttot with 

tether 

assist, day 

v without 

tether 

assist, m/s 

Ttot without 

tether 

assist, day 

Final 

target 

orbit 

2008 JL24 2000 SG344 60889.3 531.37 2645.1 882.38 2025.2 L1 

2008 WO2 2010 JK1 58604.6 998.44 2357.6 2786.45 1223.6 L1 

2009 BD 2000 SG344 59082.3 198.98 1914.8 488.67 2717.2 L1 

2009 SH1 2016 FP12 58580.6 1840.96 2623.6 3965.38 3058.4 L1 

2010 TE55 2000 SG344 58513 908.09 2152 1541.23 2124 L1 

2012 EP10 2000 SG344 60695.1 781.71 2199.3 1282.51 1967.4 L1 

2014 HJ197 2000 SG344 59318 694.83 2178.6 2011.61 2212.2 L1 

2014 HJ197 2015 KE 61289.8 652.25 2559.5 2011.61 2212.2 L1 

2014 HY198 2006 HE2 59341.2 2249.03 3103.6 3016.25 1254.8 L1 

2014 WU200 2000 SG344 59065.6 706.08 2267.7 876.76 2150 L1 

2015 VU64 2007 VU6 58609.6 798.62 2945.4 1787.12 2164.6 L1 

2015 VU64 2015 BM510 58560.5 1065.65 2516.6 1787.12 2164.6 L1 

2015 TC25 2000 SG344 59308.6 449.92 2655.8 2478.95 2709.7 L1 

2016 ES85 2007 VU6 63101.3 1081.93 2146.3 1501.15 1871.8 L1 

2008 JL24 2015 KE 58951.2 306.73 2352.8 882.38 2025.2 L2 

2012 EP10 2016 CF137 58583.4 569.36 2301.1 1282.51 1967.4 L2 

2012 HN1 2003 SM84 59909.8 969.86 3091.9 2362.22 2872.4 L2 

2012 XB112 2014 YD 63071.5 964.14 1588.6 1806.93 1636.2 L2 

2013 RZ53 2016 RD34 66343.1 399.23 2541.2 1129.76 2498.3 L2 

2013 PG10 2009 CV 59917.6 1431.25 3215 2585.67 2739.7 L2 

2014 HJ197 2015 KE 67134.2 844.22 1975.1 2011.61 2212.2 L2 

2014 HJ197 2016 UE 59688 1052.7 2586.8 2011.61 2212.2 L2 

2014 HY198 2003 SM84 59599.1 1872.42 3253.3 3016.25 1254.8 L2 

2015 HM182 2016 TB18 58609.7 1388.83 3198.3 3241.03 2285.9 L2 

2015 ON22 2012 EC 64275.8 1067.81 2268.6 2142.49 1838.5 L2 

2015 VU64 2007 VU6 58485.4 1145.19 2979.1 1787.12 2164.6 L2 

2016 ES85 2014 QN266 59265.5 238.27 2488.8 1501.15 1871.8 L2 

2016 GC134 2003 SM84 64986 840.87 2119.8 3212.69 1883.7 L2 
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Table 6.6 Results for asteroid capture into Lyapunov orbits with and without the Zylon tether assist 

Small NEA Large NEA 

Capture 

date, 

MJD 

v with 

tether 

assist, m/s 

Ttot with 

tether 

assist, day 

v without 

tether 

assist, m/s 

Ttot without 

tether 

assist, day 

Final 

target 

orbit 

2008 WO2 2010 JK1 62965 2660.65 2188.3 2786.45 1052.7 L1 

2009 SH1 2016 FP12 59426.8 3710.85 3163.6 3986.13 1120.1 L1 

2010 TE55 2000 SG344 58807.8 1231.37 2127 1541.23 2124 L1 

2012 EP10 2000 SG344 60923.9 2759.4 2083.3 1282.51 1967.4 L1 

2014 HJ197 2000 SG344 59665.1 1891.29 2005.1 2011.61 2212.2 L1 

2014 HJ197 2015 KE 61596.2 1187.22 2637.4 2011.61 2212.2 L1 

2014 WU200 2000 SG344 59073.2 737.2 2093.2 876.76 2150 L1 

2015 VU64 2015 BM510 59755.7 1652.46 2053.1 1777.05 2225.1 L1 

2015 VU64 2007 VU6 58731.6 1864.3 2904 1777.05 2225.1 L1 

2015 TC25 2000 SG344 59376.2 2472.47 1892.7 2499.64 1239.7 L1 

2016 ES85 2007 VU6 62460.3 1583.64 1595.2 1501.15 1871.8 L1 

2008 WO2 2010 JK1 60718.4 2023.52 2218.2 2786.45 1052.7 L2 

2012 XB112 2014 YD 63760 2974.87 2544.6 1806.93 1465.3 L2 

2013 RZ53 2016 RD34 66289.2 723.22 2505.4 1141.75 1842.6 L2 

2013 PG10 2009 CV 60737.2 2206.72 2103.7 2611.13 2555.8 L2 

2014 HJ197 2015 KE 66877.6 1533.35 2325.5 2011.61 2212.2 L2 

2014 HJ197 2016 UE 66257.2 2218.76 1675.2 2011.61 2212.2 L2 

2015 HM182 2016 TB18 59419.9 2412.78 2237.3 3241.03 2285.9 L2 

2015 ON22 2012 EC 59648.1 1774.82 2937.4 2142.49 1838.5 L2 

2015 VU64 2007 VU6 58797.6 1390.97 3037.4 1777.05 2225.1 L2 

2016 GC134 2003 SM84 58863.5 3833.99 3299.2 3239.73 1925.9 L2 
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Table 6.7 Results for asteroid capture into halo orbits with and without the carbon nanotube tether 

assist 

Small NEA Large NEA 

Capture 

date, 

MJD 

v with 

tether 

assist, m/s 

Ttot with 

tether 

assist, day 

v without 

tether 

assist, m/s 

Ttot without 

tether 

assist, day 

Final 

target 

orbit 

2008 JL24 2000 SG344 60430.6 651.97 1810.2 974.51 1881.5 L1 

2008 WO2 2010 JK1 58985.8 1183.58 2644.9 2748.8 1365.4 L1 

2009 BD 2000 SG344 59450.5 199.68 1959.1 413.38 2669.2 L1 

2009 SH1 2016 FP12 58597 1832.67 2501.5 3934.56 1828 L1 

2010 TE55 2000 SG344 58510 963.66 2153.5 1535.23 1989.3 L1 

2012 EP10 2000 SG344 60706.9 851.43 1420.5 1301.62 1331.2 L1 

2014 HJ197 2000 SG344 59309.8 744.39 2551.6 2071.24 1722.8 L1 

2014 HJ197 2015 KE 61273.6 757.11 2775.3 2071.24 1722.8 L1 

2014 HY198 2006 HE2 59343.1 2316.35 3091 3087.8 1498.8 L1 

2014 WU200 2000 SG344 59064.4 602.03 1682.4 738.27 1913.7 L1 

2015 VU64 2007 VU6 58913.1 527.26 2990.9 1794.96 2067.7 L1 

2015 VU64 2015 BM510 60053.2 1329.16 1659.6 1794.96 2067.7 L1 

2015 TC25 2000 SG344 59300.3 489.32 2298.8 2513.25 2331.9 L1 

2016 ES85 2007 VU6 62056.7 936.24 2198.6 1462.61 1662.8 L1 

2008 JL24 2015 KE 58980 282.94 2230.8 974.51 1881.5 L2 

2012 EP10 2016 CF137 58613.8 432.14 2304.9 1301.62 1331.2 L2 

2012 HN1 2003 SM84 62942.5 828.18 1790.4 2434.92 2062.3 L2 

2012 XB112 2014 YD 63083.5 847.24 1580.9 1873.46 2666.4 L2 

2013 RZ53 2016 RD34 66365.3 274.47 2827 1003.01 1783.3 L2 

2013 PG10 2009 CV 59972 1648.05 3134.1 2731.68 1439.9 L2 

2014 HJ197 2015 KE 67130.9 836.16 1789.5 2071.24 1722.8 L2 

2014 HJ197 2016 UE 58878.7 1482.16 3122.6 2071.24 1722.8 L2 

2014 HY198 2003 SM84 59593.6 1975.86 3259.2 3087.8 1498.8 L2 

2015 HM182 2016 TB18 58984.2 1239.41 3048 3245.73 1686 L2 

2015 ON22 2012 EC 64278.7 885.93 2326.8 2128.6 1789.9 L2 

2015 VU64 2007 VU6 58486 1102.34 2981.9 1794.96 2067.7 L2 

2016 ES85 2014 QN266 59284.3 193.69 2453.6 1462.61 1662.8 L2 

2016 GC134 2003 SM84 64994.2 678.28 2016.7 3271.69 1807.3 L2 



Chapter 6 Capture of NEAs using momentum exchange strategies 

 

171 
 

Table 6.8 Results for asteroid capture into halo orbits with and without the Zylon tether assist 

Small NEA Large NEA 

Capture 

date, 

MJD 

v with 

tether 

assist, m/s 

Ttot with 

tether 

assist, day 

v without 

tether 

assist, m/s 

Ttot without 

tether 

assist, day 

Final 

target 

orbit 

2008 WO2 2010 JK1 62959.4 2726.8 2108.4 2748.8 1365.4 L1 

2009 SH1 2016 FP12 59427.7 3874.41 2213 3934.56 1443.9 L1 

2010 TE55 2000 SG344 58808.7 1382.1 2613.9 1535.23 1989.3 L1 

2012 EP10 2000 SG344 60923.9 2899.3 2002.9 1313.92 1256.5 L1 

2014 HJ197 2000 SG344 59670.1 1875.71 1790 2071.24 1722.8 L1 

2014 HJ197 2015 KE 61602.3 1232.82 2453.8 2071.24 1722.8 L1 

2014 WU200 2000 SG344 59072.4 742.05 2080.1 738.27 1913.7 L1 

2015 VU64 2015 BM510 60095.9 1762.86 1537.2 1794.96 2067.7 L1 

2015 VU64 2007 VU6 58676.8 2499.58 2892.1 1794.96 2067.7 L1 

2015 TC25 2000 SG344 59372.7 2162.81 1723.3 2514.07 1862.7 L1 

2016 ES85 2007 VU6 62458.4 1926.57 1344.3 1462.61 1662.8 L1 

2008 WO2 2010 JK1 61461.5 2223.39 1864 2748.8 1365.4 L2 

2012 XB112 2014 YD 63379.8 2842.46 1598.9 1941.23 2535.6 L2 

2013 RZ53 2016 RD34 66321.2 379.84 2961.6 1003.01 1783.3 L2 

2013 PG10 2009 CV 60741.9 2377.89 2105 2731.68 1055.8 L2 

2014 HJ197 2015 KE 66882.7 1507.21 2065.4 2071.24 1722.8 L2 

2014 HJ197 2016 UE 66253.6 2034.1 1655.1 2071.24 1722.8 L2 

2015 HM182 2016 TB18 59418.7 2531.24 2224.8 3245.73 1686 L2 

2015 ON22 2012 EC 64155.3 1820.27 2387.6 2128.6 1789.9 L2 

2015 VU64 2007 VU6 58797.3 1365.64 3047.5 1794.96 2067.7 L2 

2016 GC134 2003 SM84 58868.5 4474.25 3214.3 3288.63 2520.1 L2 

 

Comparing the results of Tables 6.5-6.8, it can be concluded that the tether material 

plays a crucial role in this asteroid capture strategy. A higher characteristic velocity means 

a larger threshold of the relative velocity between the two asteroids and thus larger savings 

in the total cost of capturing candidate small asteroids. 

Moreover, since the threshold of the velocity between the two asteroids is utilised as a 

filter, a higher tether characteristic velocity allows more candidate large asteroids to be 

considered when capturing the same small asteroid. Consequently, with a tether assist of 
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higher tether characteristic velocity, more small asteroids can be captured with a total cost 

which is less than that for direct capture, as shown in Tables 6.5-6.8. This is the main 

limitation of the small asteroid capture strategy using the tether-assist: the carbon nanotube 

tether cannot yet be applied to practical engineering problems, however improvements in 

the characteristic velocity of current tether materials can be foreseen [210, 211]. Therefore, 

with the improvement of advanced tether materials, the capture of asteroids using tether 

assist can in principle save energy compared to more direct strategies. 

Tables 6.1-6.8 show the results of the two asteroid capture strategies investigated in 

this Chapter. Comparing the results of the two strategies, it can be seen that the capture 

strategy using a tethered-assist flyby has the potential to achieve much lower energy 

captures than the capture strategy using kinetic impacts, e.g. 2008 JL24, 2009 BD, 2012 

EP10 and 2013 RZ53. Nevertheless, due to the additional filter criteria in the asteroid 

capture strategy using the tether assist, the capture strategy using kinetic impact in 

principle enables a wider range of candidate large asteroids to capture the same small 

asteroid, e.g. 2008 JL24, 2009 BD and 2012 EP10. 

In this capture strategy, the main challenge is the limitation of the tether material since 

the efficiency and feasibility of the capture strategy is strongly dependent on the tether 

material properties. The ratio of tether material strength to weight is of key importance to 

the performance of the tether. A number of materials have been developed to increase the 

ratio of material strength to weight and some tether materials, including Spectra and Zylon, 

with a high strength-to-weight ratio have been proposed for other tether missions, e.g. 

Mars missions with tether assists [209, 212]. Current research on carbon nanotubes 

suggests remarkable potential for tether materials in the future [123, 213]. The shape of the 

tether also has an influence its performance and it has been demonstrated that a tapered 

tether can improve performance for tether missions [214]. Moreover, an accurate 

navigation and control strategy is again required to ensure that the candidate small asteroid 

connects reliably to the large asteroid via the tether. 

6.5 Conclusions 

Momentum exchange has been proposed to efficiently capture small asteroids into periodic 

orbits around the Sun-Earth L1 and L2 points. A small asteroid is first manoeuvred to 

engineer a flyby with a larger asteroid. Two strategies are then considered: when the small 

asteroid approaches the vicinity of the large asteroid, it will either impact the large asteroid 

or connect to it with a tether. In both strategies, momentum exchange can be used to effect 
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the capture of one of the small asteroids. Then, a two-impulse Lambert arc is utilised to 

design a post-encounter transfer trajectory to the stable manifolds of the Sun-Earth L1 or L2 

points. A selection strategy for candidate asteroids has been proposed by considering both 

the deflection windows for capturing asteroids and the size of the asteroids. By 

investigating the outcome of the impact on the small asteroid, or the tension of the tether, 

the maximum velocity increment available using these momentum exchange strategies has 

been investigated. Finally, a detailed design procedure is presented which is then optimised 

using a global optimisation strategy. Results show that momentum exchange can achieve 

more efficient capture of some asteroids relative to direct manifold capture strategies. On 

the other hand, the flight time for asteroid capture using momentum exchange is longer 

than that for direct capture. By comparing the asteroid capture strategy using kinetic 

impacts and asteroid capture strategy using a tether assist, the kinetic impact strategy offers 

more candidate large asteroids when capturing the same small asteroid. However, the use 

of a high-stress tether assists can lead to a substantial saving in total cost, compared with 

small asteroid capture using kinetic impacts. Future improvements in tether materials will 

produce more attractive results for this strategy.  

The methods proposed are intended to be used as a preliminary analysis of these 

asteroid capture strategies. The shape, mass and material properties of the candidate 

asteroids are the major source of uncertainty. Therefore, pre-launch characterization and 

observation would again be required to identify the geometry and composition of the target 

asteroids, while high precision navigation and orbit control would be required to ensure the 

correct geometry for momentum exchange, either through an impact or coupling via a 

tether. 
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CHAPTER 7  

CONCLUSIONS 

This thesis has presented methods to design low energy transfer trajectories for capturing 

NEAs in the neighbourhood of the Earth. In this Chapter, an overview and summary of the 

thesis are provided. According to the current limitations of the work, an outline of future 

work is presented. 

7.1 Summary of thesis 

In this thesis, tools and methods for achieving low energy capture of NEAs have been 

investigated and discussed. Since NEAs can provide valuable opportunities to exploit in-

situ resources for future space exploration, capturing and returning NEAs to the 

neighbourhood of the Earth has generated significant interest. However, one of the key 

barriers for asteroid capture missions is the limitation on the returned NEA mass using 

current propulsion technologies. Hence, the utilisation of new methods and techniques 

which can reduce the total energy cost of capturing NEAs is the main objectives of this 

thesis. 

According to a preliminary asteroid risk analysis, small asteroids with a diameter of 

less than 30 m have been considered as candidate asteroids in this thesis. In principle these 

are unlikely to represent an impact hazard to the Earth. This is constraint has been used to 

filter candidate asteroids before the tools and methods for low energy asteroid capture have 

been developed. 

First, as a candidate gateway for future space missions, the Earth-Moon L2 point is 

regarded as one of preferred locations where captured NEAs can be delivered. Developing 

capture strategies to this point has been a key contribution. Following prior work on 

asteroid capture onto periodic orbits around the Sun-Earth L1 and L2 points, an indirect 

asteroid capture strategy was introduced by patching together unstable manifolds in the 

Sun-Earth CRTBP and stable manifolds in Earth-Moon CRTBP system. The total flight 
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time of this capture strategy is always of the order of several years. In addition, a faster 

asteroid capture strategy was developed, termed the direct asteroid capture strategy. In this 

capture strategy, the Moon-Sun 3-body sphere of influence was utilised as the boundary 

between the Sun-Earth-Moon restricted four-body problem and the Earth-Moon CRTBP. 

Then, target points on the stable manifolds were transformed to a Sun-centred inertial 

frame. The three-dimensional orbital-element space of candidate NEAs was then obtained 

to select candidate NEAs which can be captured with a total cost less than 500 m/s. After 

calculating the approximate approach date and departure date, a Lambert arc in the Sun-

centred two-body problem was utilised to estimate the first impulse to the target point on 

the stable manifold from the candidate asteroid’s initial orbit. Based on the initial guess of 

the first impulse, a differential correction method was then used to design the transfer 

trajectory to the target point from the candidate asteroid’s orbit in the Sun-Earth-Moon 

restricted four-body problem.  

Since the direct capture strategy needs a shorter flight time, chemical propulsion may 

be more suitable, provided that the retrieved mass of the candidate NEA is within the 

capability of the propulsion system. On the other hand, low-thrust propulsion may be more 

easily applied to the indirect capture strategy. Moreover, by investigating the direct and 

indirect asteroid capture strategies without using stable manifolds in the Earth-Moon 

system, it was shown that the use of stable manifolds can enable low energy capture of 

NEAs, as expected.  

Other targets for asteroid capture missions are orbits at the Sun–Earth L1 and L2 points. 

The strategy of coupling together a flyby of the Earth and capturing NEAs onto Sun–Earth 

L1 or L2 periodic orbits was then proposed. An aerobraking manoeuvre was firstly 

introduced and then the height threshold for aerobraking above the Earth’s surface was 

determined. In this capture strategy the candidate NEA is first assumed to leave its orbit 

with an impulse manoeuvre and will then approach the vicinity of the Earth for the flyby. 

During the flyby, the Earth’s upper atmosphere may also provide an aerobraking 

manoeuvre. If not, a propulsive manoeuvre is required at the perigee of the flyby. After the 

flyby of the Earth, the candidate NEA inserts onto the stable manifold associated with a 

periodic orbit around the Sun-Earth L1 or L2 point, and will be asymptotically captured 

onto it. Based on the detailed design procedure presented, a final global optimisation was 

carried out. Comparing the results of NEA capture strategies with and without the Earth 

flyby, the NEA capture strategy using an Earth flyby, with and without aerobraking, both 

have the potential to be of lower cost. Moreover, these NEA capture strategies using an 

Earth flyby also have the potential to deliver shorter flight times.  
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Momentum exchange theory was also applied to the capture of small NEAs into 

periodic orbits around the Sun-Earth L1 and L2 points. In the capture strategy using kinetic 

impacts, the small NEA leaves its initial orbit through an impulse from a spacecraft and 

then approaches a large target NEA. Accordingly, the small NEA then collides with the 

large NEA, with an impact geometry such that the small NEA will be captured onto the 

stable manifold associated with the Sun-Earth L1 and L2 points, thus leveraging the orbit 

energy of the large NEA. In the capture strategy using the tethered assist, after a targeting 

impulse, the small NEA approaches the large NEA and then connects with the large 

asteroid through a tether; the tether is then released after the assisted flyby manoeuvre. As 

a result, the small NEA will be transferred onto the stable manifold associated with the 

Sun-Earth L1 and L2 points. The key contributions are in coupling momentum exchange 

strategies to invariant manifolds, dynamical models of the kinetic impact itself and the 

tether-assisted flyby, and then optimising the strategies to achieve the low-energy capture 

of the small NEA onto periodic orbits around the Sun-Earth L1 and L2 points. It can be 

noted that the capture strategy with momentum exchange can achieve more efficient 

capture of some NEAs than the capture strategy without momentum exchange. Moreover, 

the efficiency of this method was strongly dependent on the materials of the two NEAs and 

tether material properties. 

Another key contribution has been demonstrating that aerobraking can enable lower 

cost capture of asteroids onto periodic orbits around the Sun-Earth L1 and L2 points. 

Furthermore, a more general analysis of aerobraking was carried out, when aerobraking 

was used to capture asteroids directly onto bound orbits at the Earth. A Lambert arc in the 

Sun-centred two-body problem was utilised to estimate the asteroid capture window and 

the first impulse used to manoeuvre the candidate asteroid from its initial orbit. Based on 

the initial guess from the first impulse, the transfer trajectory for the captured asteroid was 

propagated in the Sun-Earth CRTBP system. Then, two strategies to capture asteroids into 

bound orbits at the Earth after aerobraking were considered. In the first case, the motion of 

the captured asteroid after aerobraking was modelled in the Earth-centred two-body 

problem, and so a second impulse was required to raise the height of the perigee to avoid a 

second aerobraking pass. In the second case, the motion of the captured asteroid is still 

modelled in the Sun-Earth CRTBP and solar gravitational perturbations used to passively 

raise the height of the asteroid perigee, again avoiding subsequent aerobraking passes. It 

was shown that aerobraking can in principle enable candidate asteroids to be captured 

around the Earth with extremely low energy requirements. It can be found that 2012 BK14 

is one of the best targets which can be captured with a total capture cost below 10 m/s. 

Moreover, considering mass loss during aerobraking, capturing 2014 BK14 is also the 
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most economical such that the retrieved mass can be over 200 times that of the spacecraft 

which is required to execute the mission during the capture phase. 

7.2 Current limitations 

One of the limitations of the work in this thesis is the simplified dynamical models which 

are initialized from the real ephemeris on 1 January 2019. For example, in the CRTBP 

model, it is assumed that small primary body and the large primary body move on circular 

orbits around the barycentre, without considering orbit eccentricity and inclination or other 

perturbations. Therefore, the final target orbits for the captured asteroids are no longer 

simply periodic when perturbations are taken into account. An active control strategy is 

therefore required to maintain a captured asteroid in orbit around a libration point. In 

particular, for the Earth-Moon CRTBP system, the influence of the CRTBP assumption 

will be important in practice, due to the considerable eccentricity and inclination of the 

lunar orbit. However, although the results of asteroid capture in the full ephemeris will be 

different from those in the CRTBP model, the family of candidate asteroids which can be 

captured at low cost in the CRTBP model are not expected to change significantly, and 

thus they can serve as candidate asteroids. The transfers obtained in the CRTBP can serve 

as an initial guess for the real ephemeris. 

Another limitation is the uncertainty on the properties of the candidate asteroids, 

including their shape, mass and material properties. In this thesis, the NEAs are assumed to 

be a spherical. To address the uncertainty on material properties, asteroids with standard 

density are assumed, so that basalt and metallic asteroids are considered. For future 

asteroid capture missions, pre-launch observations using radar and optical/infrared 

telescopes would again be required to provide good estimates of these parameters. 

Moreover, in-situ asteroid exploration missions, including flyby and rendezvous can also 

be viewed as an effective way to address these uncertainties. 

7.3 Remarks on future work 

Considering the limitations of the current work discussed in Section 7.2, future work 

should focus on addressing such issues, along with other extensions of the thesis. 
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7.3.1 Trajectory refinement 

In a real mission for capturing NEAs, refinements to the model, including the eccentricity, 

inclination and the gravitational perturbations from other bodies should be considered. A 

Sun-centred J2000 inertial frame can be utilised to describe the motion of captured 

asteroids in the full ephemeris dynamical model. Then, the state in the CRTBP models can 

be mapped to the Sun-centred J2000 inertial system through the transformation in [215]. 

Transfers in the CRTBP models developed in this thesis then serve as initial guesses, and 

so trajectories in the full ephemeris model can be corrected and refined.  

In general, Lyapunov orbits and halo orbits around the libration points are unstable and 

the final target orbits for the captured asteroids are no longer simply periodic in the full 

ephemeris model. Accordingly, station-keeping manoeuvres are required to maintain the 

orbit of the captured asteroids. Both chemical propulsion and low thrust propulsion can be 

employed for station-keeping, and some control strategies such as the Baseline Orbit 

Control-Point Targeting Strategy [60] can be investigated.  

7.3.2  Optimisation for maximum economic return 

In the strategy of capturing NEAs at the Earth using aerobraking, the mass loss of the 

asteroid due to ablation during aerobraking is considerable and thus an index, the ratio of 

the mass of the captured asteroid after aerobraking to the mass of the transfer vehicle is 

defined to measure the yield of the asteroid capture mission. Furthermore, this index can be 

extended to other NEA capture strategies in order to investigate the maximum economic 

return for NEA resource missions [6].  

In this thesis, chemical propulsion is assumed to provide impulsive manoeuvres to 

capture NEAs in the neighbourhood of the Earth. The low efficiency, in terms of propellant 

mass consumption, of chemical propulsion, thus limits the retrieved mass of the NEA. 

Therefore, low-thrust propulsion with a high specific impulse, such as electric propulsion, 

can be used to increase the candidate NEA’s retrieved mass, and thereby improve the 

feasibility of capturing and returning entire NEAs. Optimal control strategies including 

direct transcription and multiple shooting [52] and particle swarm optimisation [51], are 

then required to design low thrust optimal trajectories for capturing asteroids in multi-body 

problems, including CRTBP models and with a full ephemeris. 

Moreover, reducing the mass loss of the candidate NEA during capture can further 

maximize the economic return from NEA resource missions. For example, in the NEA 

capture strategy using aerobraking, a suitable heat shield, potentially an inflatable 
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structure, or manufactured from the asteroid material itself [140], could provide protection 

of the candidate asteroid and thereby reduce ablative mass losses during aerobraking, while 

improving the predictability of the aerobraking manoeuvre. Moreover, active protection 

(e.g. ablative layer [216] or air-bags [217]) for the target small NEA could be required in 

the NEA capture strategy using momentum exchange. Therefore, the NEA transfer vehicle 

could deliver these devices: an ablative coating, shield or air-bags and thus they should be 

taken into account when sizing and designing the NEA transfer vehicle. After the transfer 

vehicle moves the target NEA from its initial orbit, the ablative materials or air-bags could 

then be installed on the surface of the candidate NEA where momentum exchange or 

ablation due to aerobraking will occur. Once such protection systems are installed, the 

ablative material or airbags could sacrificially protect the candidate NEA from disruption 

and thereby reduce mass loss. 

7.3.3 NEA transfer vehicle design and mission operations 

As noted above, the NEA transfer vehicle should be designed to carry ablative materials or 

air-bags to reduce the mass loss of the NEAs for the aerocapture, and potentially 

momentum exchange strategies.  

One of the main challenges of these capture strategies is the sensitivity of the transfer 

trajectory of the candidate NEA in multi-body environments, since small perturbations or 

impulse manoeuvre errors would result in the failure of the NEA capture and return 

mission. Therefore, an accurate and robust navigation and control strategy (e.g. Precise 

One-Way Radio Metric Tracking, Autonomous Navigation [218], drag-modulation flight 

control methods [126] or blended control, predictor-corrector guidance algorithms [128]) 

would be required to guarantee that the candidate NEA approaches the large NEA for 

momentum exchange, or encounters the Earth with the correct perigee height to achieve 

the required aerobraking manoeuvre for capture. It is envisaged that the transfer vehicle 

would remain attached to candidate NEA through an asteroid surface attachment device 

[219] or a flexible bagging device [39], thereby allowing mid-course corrections. In 

particular, depending on the size of the asteroid and transfer vehicle, the vehicle could 

remain attached during aerobraking, with the asteroid body protecting the vehicle.  

In addition, unknown properties of the candidate NEAs, including their shape, mass 

and material properties should be addressed in advance of the NEA return mission. 

Therefore, pre-launch observations would again be required, e.g. by using radar and 

optical/infrared telescopes [21, 23]. Besides, flyby and rendezvous during the asteroid 

exploration missions would provide more accurate observations, measure and 
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determination of the candidate NEA properties [59]. For the capture strategy using 

momentum exchange, an additional spacecraft may also be required to achieve a 

rendezvous with each asteroid to prepare an anchor point using a penetrator or a 

surrounding net or bag [122]. As the small NEA approaches the vicinity of the large NEA, 

the two anchor points are assumed to be connected by a tether. The design and sizing of 

such vehicles, and their inclusion in a globally optimised mission design, represent future 

work to build on the findings of this thesis.  
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