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Light passing near a massive object (star) will take longer to arrive at the Earth

than it would if the object was not present. This additional time is called the

Shapiro delay. In globular clusters, where there are millions of stars, the cumu-

lative effect of the Shapiro delay from these stars will affect pulsar timings by

introducing an additional noise term. This effect has been previously assumed to

be small, yet no definite investigation has been done to determine its magnitude.

In this thesis a model of the globular cluster 47 Tucanae was created in order

to determine the effect of the change in Shapiro delay (called the Shapiro noise)

for an observed duration of 3600 days – the current longest observation period

for pulsar timing. This noise was then added to the pulsar time of arrival (TOA)

as the only noise source in pulsar timing. A polynomial fit was then used to

subtract the first two orders from the pulse arrival time (the f and ḟ terms) to

determine the timing residuals. This model was then realised 100 times to obtain

the average root mean square (RMS) timing residual for every pulsar. The model

showed that the Shapiro noise has a significant, and observable effect on pulsar

timing, especially for pulsars situated close to the core of the globular cluster.

From the model the average RMS timing residuals were of the order of 10−5 to

10−7 seconds and the variance of the RMS timing residuals were significantly

larger in magnitude, ranging from 10−4 to 10−7 seconds for every pulsar. The

importance of this result motivated further investigation of the stellar distribution

of the globular cluster.

In addition an investigation on how the effect of gravitational acceleration
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(produced by stars situated close to the pulsar) affects pulsar timing residual was

also done. While the acceleration has an effect, the effect is smaller than that of

the Shapiro noise.

From the timing residuals produced by the Shapiro noise, it was then discussed

whether any star close to the LOS would have an affect on the pulsar timing

residuals. From additional simulations it was determined that stars anywhere

along the LOS will have an affect on pulsar timing, however the stellar density of

such a region would have to be greater than ρmin > 105M⊙pc−3. The implications

of this result for other pulsars in (other) globular clusters is discussed.
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Anyone who doesn’t take truth seriously in small matters cannot be trusted in

large ones either.

Albert Einstein
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Abbreviations

Throughout this thesis the following conventions and abbreviations have been

used:

AU: Astronomical Unit

CDF: Cumulative Distribution Function

DEC: Declination

DM: Dispersion measure

EPL: Extra path length

FWHM: Full width at half maximum

GL: Gravitational Lensing

GR: General Relativity

GW: Gravitational wave

ISM: Interstellar matter

KS91: Krauss and Small (1991)

LIGO: Laser Interferometer Gravitational-wave Observatory

LISA: Laser Interferometer Space Antenna

LK: Lorimer and Kramer (2004)

LOS: Line of sight

MC: Monte-Carlo (simulation)

MSP: Milli-second pulsar

PDF: Probability distribution function

PPTA: Parkes Pulsar Timing Array

PTA: Pulsar Timing Array

RA: Right Ascension

RMS: Root mean square

SEF: Schneider et al. (1992)
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SE07: Siegel et al. (2007)

SE08: Siegel (2008)

SSB: Solar System Barycenter

SKA: Square Kilometer Array

SNR: Signal-to-noise ratio

TOA: Time of arrival
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Common symbol index

Throughout this thesis the following symbols have been used:

c: Speed of light

f : Spin frequency

ḟ : Rate of change of spin frequency

f0: Best-fit spin frequency

ḟ0: Best-fit rate of change of spin frequency

G: Newton’s constant of gravity

M⊙: Solar mass

N : Number of stars in a globular cluster

N0: Total number of stars in a globular cluster

r: Distance between star and pulsar

ρ: (i) Distance along the LOS (Chapter 2, 3) (ii) Stellar density (Chapter 5 – 9)

ξ: Impact parameter in the plane perpendicular to the line of sight
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Part I

Introduction
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1

Introduction

Baade and Zwicky (1934) predicted the existence of rapidly rotating neutron

stars as a result of core collapse of massive (few orders of solar masses) stars in

supernovae. The neutron stars were predicted to be very compact (∼ 10 km radii),

with masses of the order of the Chandrasekhar mass (∼ 1.4 M⊙), and rapidly

spinning due to conservation of angular momentum of the parent stellar core.

Neutron stars also possess high magnetic fields due to conservation of magnetic

flux. Since charged particles moving along the magnetic field can cause beams of

radiation to be emitted, when the neutron star rotates this beam sweeps across

space. When such a beam is directed towards Earth a pulse may be observed

using radio telescopes. As the pulsar radiates energy and angular momentum

(predominantly through magnetic dipole radiation at the spin frequency) its rate

of spin slows down and we detect a decrease in the observed pulse frequency. The

time period between pulses is the time it takes for the neutron star to complete

one revolution on its axis.

The rotation periods of pulsars can be timed by monitoring their rotation

and tracking the time of arrival (TOA) of radio pulses over long periods of time

– spanning years if not decades – and because pulsar rotation is highly stable it

is possible to use it as a test bed for physics (Lyne et al. 2004), including theories

of gravity.
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To perform accurate pulsar timing measurements, the time series from the

pulsar is “folded” – individual pulses are combined together to form a single inte-

grated pulse profile. Although individual pulses may vary in shape, the combined

pulse profile is very stable. This integrated pulse profile has a high signal-to-noise

ratio that can be used (in models) to determine parameters such as phase offset.

When multiplying the phase offset with the pulse period P , it is possible to de-

termine a time offset that can be added to a reference point, e.g. at the beginning

of the pulse/leading edge of the pulse profile, to create a TOA measured on the

Earth.

In the inertial frame of the Solar System Barycentre (SSB), the period of

pulsar rotation is nearly constant, and the phase φ(tSSB) can be usefully approx-

imated by a Taylor expansion,

φ(tSSB) = φ(t0) + f · (tSSB − t0) +
1

2
ḟ · (tSSB − t0)

2 + . . . , (1.1)

where t0 is an arbitrary reference time and tSSB is the time measured in the frame

of the Solar System Barycentre. The remaining terms on the right hand side are

the pulse frequency f and the change in pulse frequency, ḟ . These two terms

affect the phase of the pulse period by taking the pulsar rotational evolution into

account. The ḟ term is included as pulsars spin down (see above), resulting in a

quadratic variation in phase over time.

Pulse time of arrival (TOA)

In order to infer φ(tSSB), some correction terms are applied to the observed TOAs.

The pulses are observed on Earth at a topocentric (i.e. measured from a fixed

point on Earth’s surface) time, ttopo, and it is possible to project this to the time

in the SSB frame, tSSB, and also correct for interstellar dispersion. tSSB can then

be described by

tSSB = ttopo + tcorr −∆D/f 2 +∆R⊙ +∆E⊙ +∆S⊙ , (1.2)
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where tcorr is a clock correction made to the observatory time to bring it into line

with the Terrestrial Time (see Backer and Hellings 1986 for details).

Correction factors

The ∆D/f 2 term is the (systematic frequency-dependent) delay of an electro-

magnetic signal by electrons whose density varies along the line of sight (LOS)

to the pulsar from the Earth (the ∆D term is defined in Lorimer and Kramer

2004). This delay is relative to the propagation time of the signal in a vacuum.

Electromagnetic waves vary as E = E0 exp (−iωt), where ω is the angular fre-

quency. Electrons oscillate around protons at distance x as x = x0 exp (−iωt).
This charge separation appears as a bulk polarization P 1 that defines the relative

permittivity of the plasma ǫr,

P = nep = (ǫr − 1) ǫ0E , (1.3)

where p = xe is the dipole moment for one electron/proton pair. The equation

of motion for the electron oscillation is given by,

eE = meẍ = −meω
2x , (1.4)

and by combining the above equations, ǫr can then be re-written as,

ǫr = 1− nee
2

ǫ0meω2
. (1.5)

The refractive index η of the plasma is,

η = ǫ1/2r =

(

1−
f 2
p

f 2

)1/2

(1.6)

where fp is the plasma frequency (the natural oscillation frequency of the plasma)

given by,

fp =
1

2π

(

nee
2

ǫ0me

)1/2

. (1.7)

1This P stands for polarization, not pulse period.
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From above it can be seen that the refractive index η is frequency dependent, so

the signal travel time is also dependent on frequency,

t =

∫ d

0

dl

η(l) c
, (1.8)

where d is the distance from the source to the telescope, along l. If this frequency

is well above the plasma frequency of the cold unmagnetized plasma that the

signal is propagating through, i.e. f ≫ fp, the ‘extra’ time the signal has to

travel – the time delay due to the plasma – is given by,

∆t =
e2

2πmec

1

f 2

∫ d

0

ne(l)dl (1.9)

∝
∫ d

0
nedl

f 2

∝ DM

f 2
, (1.10)

where ne is the electron density in the interstellar matter (ISM) and
∫ d

0
nedl is

the volume density of electrons integrated along the LOS l from Earth at 0 to the

pulsar at distance d. This integral is defined as the Dispersion Measure (DM)

to the source (see Section 5). Since telescopes accept radio waves within a certain

bandwidth at a particular frequency, for example 100 MHz bandwidth around a

central frequency of 1.4GHz, the arrival times of different frequency components

are spread out in time, or dispersed. This also means that observations at multiple

frequencies allow the dispersion to be characterized and overcome by de-dispersion

(see Lorimer and Kramer 2004, pg. 106-120 for details).

TheRömer delay, ∆R⊙, is the classical light travel time across Earth’s orbit.

This delay is expressed as

∆R⊙ = −1

c
~r · ŝ , (1.11)

where ŝ is the unit vector pointing from the SSB to the pulsar and ~r is the vector

from the SSB to the observatory. The maximum Römer delay obtainable is when

Earth is positioned at the extrema as shown in Fig 1.1. The extra path length l
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that the light from the pulsar has to travel is given by,

l = rSSB cos β , (1.12)

which results in a delay of,

∆R⊙ =
rSSB
c

cos β (1.13)

∼ 500 cosβ s , (1.14)

as the Earth-Sun distance is 1 AU ∼ 150 × 109 m and therefore 1AU
c

∼ 500 s. β is

the ecliptic latitude of the pulsar. The ecliptic is the path that the Sun appears

to follow across the sky over the course of a year, and also the projection of the

Earth’s orbital plane onto the celestial sphere. The ecliptic co-ordinate system

uses the ecliptic for its fundamental plane. The ecliptic latitude (β) is measured

positive towards Earth, and the ecliptic longitude angle λ is measured eastwards

from 0 to 360 degrees, where 0 points towards the Sun from Earth at Northern

hemisphere vernal equinox.

The change in the Römer delay is produced by the change in the position

(longitude and latitude) of the Earth (see Section A.1 for full details).

The Einstein delay, ∆E⊙, accounts for the change in arrival time due to

the effects of gravitational redshift, itself changing due to the motion of the Sun

and planets other than the Earth at the observer end, as well as the motion of

any binary companion at the pulsar end. This effect accounts for the deviation in

atomic clocks on Earth due to the change in gravitational potential as the Earth

orbits around the Sun. The delay is expressed in Backer and Hellings (1986) as

d∆E⊙
dt

=
GM

c2rE
+
v2E
2c2

− constant , (1.15)

where the gravitational potential is the sum of all the bodies in the Solar System

(excluding Earth), rE is the distance between the body and the Earth, and vE is

the velocity of the Earth relative to the Sun. The second term is the velocity of

the geocentre relative to the SSB (Edwards et al. 2006). The constant is chosen

such that the terms on the right hand side becomes zero over long time intervals.
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From pulsar

Maximum advance

β

Sun

Maximum delay

Earth

Figure 1.1: Variation in pulse arrival time due to the Earth’s orbit around the

Sun. Image from Lorimer and Kramer (2004).

Let us estimate the Einstein delay by only including the Sun, the most massive

body in our Solar System (> 99% of total mass of Solar System). The mass M

is then one solar mass, rE is one astronomical unit (AU) as it is the Earth-Sun

distance, and vE ∼ 30 km s−1. The (rate of change of) Einstein delay is then

given by,

d∆E⊙
dt

=
GM⊙
c2rE

+
v2E
2c2

− constant

∼ 9.871× 10−9 + 5.007× 10−9

∼ 1.488× 10−8 s s−1 (1.16)

∼ 0.470 s yr−1 . (1.17)

The Shapiro delay, ∆S⊙, is the correction term for delays due to the space-

time curvature caused by the presence of massive bodies in the Solar System
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(Shapiro 1964). This delay term is the sum over all bodies in the Solar System

(see Backer and Hellings 1986),

∆S⊙ = −2
∑

i

GMi

c3
ln [ŝ · ~ri + |ri|] + ∆S⊙2 , (1.18)

where G is Newton’s gravitational constant, Mi is the mass of body i, ŝ is the

unit vector pointing to the pulsar, ~ri is the vector from body i to the telescope,

and ∆S⊙2 is a second-order correction term. As with the Einstein delay, it is

common to consider only the effects of the Sun. However there are cases where

Jupiter is also included (Backer and Hellings 1986). When only considering the

Sun, the above equation approximates to,

∆S⊙ = −2GM⊙
c3

ln
[

r⊙ cos θ + r⊙
]

= −2GM⊙
c3

ln
[

r⊙ (1 + cos θ)
]

=
2GM⊙
c3

ln
[

|r⊙| (1 + cos θ)
]

, (1.19)

where θ is the pulsar-Sun-Earth angle at the time of observation, and r⊙ is the

telescope position relative to the Sun. The largest possible time delay is when

cos θ → 1, which results in a Shapiro delay of

∆S⊙ = 6.829 µs . (1.20)

However, there is also a Shapiro delay produced by massive bodies around the

LOS to pulsars. This delay may have a large effect for pulsars situated within high

stellar population regions, such as inside globular clusters. As will be discussed

later, the observations are not sensitive to the magnitude of this Shapiro delay,

but they are sensitive to the change in the magnitude of the Shapiro delay.

Globular clusters and milli-second pulsars

Figure 1.2 shows, in simple terms, the currently accepted model (see Bisnovatyi-

Kogan and Komberg 1974 and references therein) that explains how various sys-

tems of neutron stars form. Starting with a binary system (Figure 1.2, top left)
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Figure 1.2: Figure showing the various types of evolutions that produce neutron

stars (pulsars). Image taken from Lorimer (2005).

a neutron star is formed after the larger of the two stars undergoes a supernova.

During the explosion, depending on the quantity of total mass prior to the super-

nova, the binary system either survives or gets disrupted. The latter will occur

if either (i) more than a half of the total pre-supernova mass is ejected (from
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the virial theorem), or (ii) the random kick velocity of the neutron star, which

originates from the assymetric explosion, is sufficiently large to disrupt the binary

system (Hills 1983). This kick velocity results in a high velocity neutron star and

an OB “run-away” star (Blaauw 1961). After the supernova the angular momen-

tum of the neutron star may decrease through emission of relativistic particles

and magnetic dipole radiation (a radio pulsar), and may either increase or de-

crease (i.e. spin up or spin down) through accreting matter from the companion

star (x-ray pulsar in a binary system). If the companion star is sufficiently mas-

sive to evolve into a giant star and overflow its Roche lobe, it is possible for the

neutron star to be a spun-up into a pulsar once more by accreting matter at the

expense of the orbital angular momentum of the binary system. In a high-mass

binary system the companion star will also explode as a supernova, resulting in

a second neutron star. Depending on this second supernova the neutron stars

may stay as a binary system or become a disrupted system. In a low-mass binary

system the mass from the companion star is transferred to the pulsar (which will

be spun up), and the remaining companion star becomes a white dwarf star – a

pulsar-white dwarf binary system.

After the discovery of the first millisecond pulsar (Backer et al. 1982), there

was an interest in observing globular clusters for millisecond pulsars. This was

because the pulsars inside the clusters were believed to be old neutron stars

that had been ‘spun up’ to short rotation periods by the accretion of matter

from a companion star. This process results in a change of the cluster’s angular

momentum (Alpar et al. 1982). The large populations of stars in the cores of

globular clusters were then postulated to increase the possibility of a neutron star

capturing an ordinary star to form an X-ray binary (Fabian et al. 1975). Lyne

et al. (1987) discovered the first pulsar observed in such clusters, a 3 ms period

pulsar in M27, and many more pulsars have since been discovered in globular

clusters (see Lyne 1992, Manchester 1993 for details).

Globular clusters are collections of stars that orbit around a galactic core and
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are usually found in the galactic halo. The number of stars contained within a

globular cluster is higher, and the stars are much older, than for open (and other

types of) clusters found in the galactic disk. About a third of the known globular

cluster pulsars are within the globular cluster 47 Tucanae (de Lacaille 1757). As

47 Tucanae is nearby, massive and dense, this cluster has been a good candidate

for the detection of spun-up pulsars (Manchester et al. 1990, Manchester et al.

1991). The pulsars in 47 Tucanae are labeled B0021-72C to B0021-72M.

Even though the stars in globular clusters are low-mass stars (of the order of 1

M⊙), the large number of stars (around 108) in 47 Tucanae means that many will

be close to our LOS to each pulsar, and hence will contribute to the Shapiro delay

in pulsar timing. This dense stellar population, therefore, has a dual effect; (i)

it increases the likelihood for the generation and observation of spun-up pulsars

and, (ii) it infers a gravitational (Shapiro) delay to the pulsar timing.

While the first effect has been investigated thoroughly (as described above)

the second effect has been largely ignored. The lack of knowledge of how stars

affect pulsar timing will, to a degree, limit the precision at which millisecond

pulsars in globular clusters can be timed. Analysis of high precision pulsar tim-

ing observations may result in the detection of gravitational waves (GW), and

therefore how much effect this Shapiro delay has on pulsar timing needs to be

investigated.

Gravitational waves

General Relativity (GR) predicts that when there is an acceleration in a non-

axially symmetric pulsar (i.e. a pulsar with a small ‘bump’ on its surface at the

Equator), it will lose energy in the form of quadrupolar gravitational radiation

(and higher multipoles). The radiation propagates outwards from the pulsar in

the form of gravitational waves (GWs), which are distortions (ripples) of space-

time and separable from (familiar) non-propagating gravitational fields in regions

where the static field is weak (Roos 2003, Thorne 1987). This radiation has not
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yet been directly observed, and will require sensitive measuring instruments, such

as GEO600, LIGO (Laser Interferometer Gravitational-wave Observatory), LISA

(Laser Interferometer Space Antenna) and Virgo (the French-Italian interfero-

metric detector), as theory predicts that it is extremely weak.

The metric strain from gravitational waves affects pulsar timing, and as a

result pulsars can be used to detect an isotropic, stochastic gravitational wave

(GW) background (Detweiler 1979). In such cases, many thousands (or millions)

of GW sources are added together producing a spectrum that is dominated by low

frequency GWs. However, in the pulsar timing procedure the lowest frequency

GWs are subtracted because it is necessary to fit for the period (P ) and period

derivative (Ṗ ) of the pulsar. The result is called the pulsar timing residual.

The strongest signals that are left have periods that are close to our data-span.

The stochastic GW background therefore is an effect that may compete with the

Shapiro delay in pulsar timing.

Jenet et al. (2005) showed that in order to detect low frequency (fg ∼ 10−9

Hz) GW signals, pulsars need to be timed to a precision of 10 µs (10−5 s) over

a time span of ∼ 5 years. To date, Pulsar Timing Arrays (PTA), such as the

Parkes Pulsar Timing Array (PPTA), have data spanning approximately four

years with root-mean-square timing residuals of around 0.1 to 1 µs (Zarb Adami

et al. 2010). It is expected that timing residuals studies will continually improve

with new observing systems and improvements made in signal processing (Hobbs

et al. 2009).

The question one can ask is then “To what extent do the stars close to the

LOS from the pulsar contribute to the Shapiro delay?” This will be answered in

this thesis. In order to determine the effect of Shapiro delay, let us first investigate

the Shapiro delay itself.
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1.1 Shapiro delay and Gravitational lensing

The magnitude of the Shapiro delay produced by the stars surrounding pulsars

should be considered in the context of gravitational lensing. Here follows a brief

introduction to gravitational lensing.

Gravitational lensing (Einstein 1936) occurs when a massive body passes be-

tween a source and an observer. The gravity of the intervening mass distorts the

space-time around it resulting in a deflection of light from the source. Zwicky

(1937) proposed that massive objects, such as a cluster of galaxies, could act as

gravitational lenses. This was confirmed by Walsh et al. (1979) by the discovery

of the twin quasar Q0957+561. The two quasars have identical spectra, implying

that these are actually two images of the same source.

Gravitational lensing can be separated into three categories: strong-, weak-

and micro-lensing. Strong lensing is where the gravity of a very large mass object

(∼ 1010 M⊙ and larger), such as a galaxy, produce an effect large enough to form

multiple images (arcs and Einstein rings) that are clearly visible. Weak lensing

occurs when the gravitational effect is a lot smaller and it is necessary to analyze a

large number of sources to find any signs of distortion. From these distortions it is

possible to reconstruct the mass distribution, especially that of dark matter in the

universe, and so this type of lensing is used to test cosmological parameters (e.g.

Λ-CDM models). Micro-lensing is lensing where there is no resolved distortion

but a change in the amount of light received from a source. When an object

passes across the LOS of a bright object, such as a quasar, the bending of light

due to the gravitational field results in several distorted and unresolved images

combining to give the observed magnification. This allows for the detection of

fainter objects, and so micro-lensing is used to study the galactic population of

objects such as brown dwarfs, neutron stars, and also detecting extrasolar planets.

Gravitational lensing as a whole is not frequency dependent.

This thesis will use ideas of gravitational lensing to obtain the gravitational
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time delay, known as the Shapiro delay. Each star (∼ 1 M⊙) has its own gravita-

tional potential and will impart a time delay in the pulse TOA. The potentials of

every star combine together to form a ‘total’ potential both along and across the

LOS. From this total potential the Shapiro delay can be obtained. It is important

to note that, for lensing by a large number of very small masses (∼ 1 M⊙), the

light signals may encounter scattering and scintillation effects (For a good review

of electromagnetic scintillation see Rickett 1977 or Deguchi and Watson 1986 and

references therein), in addition to being simply bent by gravitational lensing.

Gravitational lensing by low mass (∼ 1 M⊙) objects is not a new concept (see

Wex et al. 1996, Walker 1996 and references therein), neither is the application

of gravitational time delays to pulsars and pulsar timing (Krauss and Small 1991

(hereafter KS91), Larchenkova and Doroshenko 1995, Larchenkova and Kopeikin

2006, Larchenkova and Lutovinov 2007, and Hosokawa et al. 1999). While previ-

ous works have concentrated on determining the value of the Shapiro delay, this

thesis will focus more on determining the rate of change of Shapiro delay. This is

because the Shapiro delay itself cannot be observed directly, whereas it is possible

to observe some changes in the Shapiro delay. The change in the Shapiro delay

arises from stellar motion within the globular cluster. Previous works indicated

that the Shapiro delay does not change much over time, however they do not give

the magnitude of this change. This value will be determined in this thesis. Deter-

mining how much effect this change in Shapiro delay will have on pulsar timing

allows for the introduction of another correction term in Equation 1.2, allowing

for the possibility of reducing timing noise, as well as improving the chances for

detecting gravitational waves.

KS91 and Larchenkova and Doroshenko (1995) both investigated the relative2

time delay between two images, as this is easier to model (the constraints are

observable) compared with the absolute2 time delay. KS91 assumes that even if

lensed images cannot be resolved spatially, the light pulses of the lensed images

2See Section 2.10 for detailed description of these terms.
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may be resolved in time. The primary application of micro-lensing in KS91 is

the determination of mass distribution in galaxies. Larchenkova and Doroshenko

(1995) claimed that there was a lensing event in the timing residuals of one pulsar,

PSR B0525+21, caused by a 330 M⊙ black hole. The observed timing residuals

were obtained by fitting the Shapiro delay parameters onto a model (least-square

fit of the pulsar spin and astrometric parameters, as well as the parameters that

describe the time delay in a gravitational mass field). The observed residuals and

the predicted delay curve do not fit very well (Larchenkova and Doroshenko 1995,

Figure 1), suggesting that this interpretation of results may be unrealistic.

Walker (1996) was the first to comment that, if pulsars were gravitationally

lensed, the lens had to be very close to the LOS between the Earth and the

pulsar. Additionally, Walker (1996) also concluded that even though the gravi-

tational (Shapiro) time delay might be large, it would not change much in time

(termed “stochastic Shapiro delay”) (see Hosokawa et al. 1999). These results

had been confirmed by Siegel et al. (2007) and Siegel (2008) (hereafter SE07 and

SE08, respectively), and Wex et al. (1996) as follows: Wex et al. (1996) uses

lensing events in pulsar timing to detect supermassive black holes (SMBH) in

the centres of galaxies. Such a lensing event will not be detected unless the lens

mass crosses the LOS (Pulsar-Earth axis). In addition, Wex et al. (1996) also

suggest that lensing events (in pulsar timing) could be used to determine the

mass distributions of galaxies. The interstellar medium however has an effect on

the observed pulsar properties (such as dispersion, scattering) resulting in large

timing uncertainties. Both SE07 and SE08 tried to determine the dark matter

substructure in globular clusters, as lensing events in pulsar timing should be able

to probe masses less than 106 M⊙. The two papers state that the probability of

observing such a “transit” is very small, however, as (i) there is a large sample

size of milli second pulsars both in the near (within 1 kpc) field, (ii) instrument

sensitivity is constantly improving, and (iii) the gravitational effects are able to

be be separated from other effects, it might be possible to observe a transit event.
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Since the lens has to be close to the LOS, the lensing optical depth (i.e. the

probability of detecting such a lensing event) is very low, between 0.1 and 1

event per year (Jetzer et al. 1998), which is not surprising. This has resulted

in searches elsewhere, mostly in globular clusters (Wex et al. 1996, Larchenkova

and Lutovinov 2007), as globular clusters have a very high stellar density in their

cores, meaning that there is more stellar mass that could act as lenses.

1.2 Thesis outline

In this thesis, the equations for the Shapiro delay and the change in Shapiro

delay for the stars in the globular cluster will be derived in Chapter 2, as they

are new concepts and are not present in past literature. In Chapter 3 a globular

cluster, with properties similar to that of 47 Tucanae, is simulated using a Monte-

Carlo (MC) method to determine the change in Shapiro delay. This change in

the Shapiro delay will be called the Shapiro noise throughout this thesis. The

Shapiro noise will have the following definition: Shapiro noise is the Shapiro delay

variation from one or an ensemble of stars over the whole observed period as a

continuous function of time. In Chapter 4 this term will be added to the pulsar

time of arrival as the only noise term, and then subtracted from the TOA (not

using least-squares fitting) to determine the magnitude of the timing residuals.

In Chapter 5 the MC simulation will then be modified to include actual pulsar

positions and velocities in 47 Tucanae. In Chapter 6 a more realistic model of

the observed stellar distribution is presented. In Chapter 7 the total star count

of the cluster will be increased to 108 stars, to reflect a more realistic model for

the globular cluster 47 Tucanae. Finally, Chapter 8, the effect of gravitational

acceleration will be introduced to the simulation in order to determine how both

this, and the Shapiro delay, affect timing residuals.
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Part II

Background and Theory
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2

Gravitational Lensing

In this section the basics of gravitational lensing are discussed. For a more in-

depth review of gravitational lensing, see Schneider et al. (1992) (hereafter SEF)

and Schneider (2006).

Using gravitational lensing, the time delay inferred by an intervening mass is

derived from first principles. The components of the time delay – geometric and

gravitational – are then investigated separately and a comparison made between

them. This is done to determine if one component is more dominant than the

other, indicating that the time delay equation can be simplified to using just one

of the components. As it will be shown in Section 2.5 the time delay can indeed

be simplified to only investigating the gravitational (Shapiro) time delay, as the

geometric term is sufficiently small that it can be neglected. Finally a short

analysis on how both the geometric and gravitational time delay components

affect light curves from a pulsar is given.

2.1 History and General Relativity

Michell (1784), and later Soldner (1801), used Newtonian gravitational theory to

calculate that light propagating around a spherically symmetric mass M would

be deflected by an angle α̂N = 2GM/(c2ξ), where G is Newton’s constant of

Satoru Sakai 51



2: GRAVITATIONAL LENSING

gravity, and ξ is the impact parameter (perpendicular distance between the light

path and the centre of the spherically symmetric mass) of the incoming light ray.

General Relativity predicts a similar result, but a factor of 2 larger (Einstein

1915),

α̂ =
4GM

c2ξ
=

2RS

ξ
, (2.1)

where RS = 2GM
c2

is the Schwarzschild radius of the mass.

The term ‘lens’ was first used by Lodge (Lodge 1919). Lodge also commented

that the gravitational field does not “act as a lens, for it has no focal length”.

Lodge then discussed the similar relationship between refractive index and radial

distance (from the centre of a lens) for the deflection of light by gravity. Eddington

(1920) was the first person to suggest that multiple images would occur if there

was good alignment between two stars.

Einstein (1936) calculated how a foreground star affected the deflection of light

from the background star, and also determined that the flux density of the images

would change with different configurations of the source, lens and observer. An

image could be highly magnified if the three were well aligned, although Einstein

stated that “there is no great chance of observing this phenomenon”, based on the

fact that the image separation would be too small to be resolved by the optical

telescopes at that time.

Zwicky however published two papers (Zwicky 1937a and Zwicky 1937b) where

he considered “extragalactic nebulae” (galaxies) as lenses and images would be

resolvable with telescopes. In Zwicky (1937a) it was shown that “extragalactic

nebulae offer a much better chance than stars for the observation of gravitational

lens effects”. Zwicky estimated the deflection angle of a nebula and investigated

the formation of ring-shaped images, and also calculated the total flux (and mag-

nification) and then went further and claimed that,

“the discovery of images of nebulae which are formed through the

gravitational fields of nearby nebulae would be of considerable interest
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for a number of reasons.

1. It would furnish an additional test for the general theory of rel-

ativity.

2. It would enable us to see nebulae at distances greater than those

ordinarily reached by even the greatest telescopes. Any such

extension of the known parts of the universe promises to throw

very welcome new light on a number of cosmological problems.

3. The problem of determining nebulae masses at present has ar-

rived at a stalemate ... Observations on the deflection of light

around nebulae may provide the most direct determination of

nebular masses.”

In Zwicky (1937b) it was estimated that “provided that our present estimates

of the masses of cluster nebulae are correct, the probability that nebulae which

act as gravitational lenses will be found becomes practically a certainty.” Zwicky

investigated photographic plates and estimated that around 1/400 of the total

area on the plates were covered by nebula, and when he included the effect of

gravitational focusing he concluded that in “around one in about one hundred

nebulae the ring-like image of a distant nebula should be expected, provided that

the chosen nebula has an apparent angular radius smaller than the angles through

which light is deflected on grazing the surface of this nebula.”

In these two papers Zwicky proved the importance of gravitational lensing,

however it took nearly four decades for the discovery of a multiply imaged quasar

(QSO 0957+561) by a massive foreground lensing galaxy (Walsh et al. 1979).

Radio astronomy allowed for more theoretical work on gravitational lensing,

notably by Refsdal (1964). Refsdal gives a full description of a how a point mass

produces a gravitational lens, and the concept of time delay between two images,

due to the different light travel times for each image. In particular, Refsdal showed
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that it was possible to use geometrical optics (see “thin lens approximation” later

on) when considering gravitational lensing (Schneider et al. 1992, Nakamura and

Deguchi 1999).

2.2 Basic lens equation

In this section the fundamental relationships of gravitational lensing – the (linear

and radial) distance relationships between the observer, lens and source – will be

determined. Figure 2.1 shows how the configurations of the observer, lens and

source can produce images (one above of the source and another below – not

shown).

Source plane

Lens plane

Lens Observer

Image

Source

β

α
θ

α̂

ξ

η

DLS DL

DS

Figure 2.1: Simple gravitational lensing diagram. The thick solid line indicates

the lensed trajectory of the light ray.

If there was no lens at distance DL, the path the light ray would follow is the

dashed line. In Figure 2.1 this dashed line subtends the optical axis (the dotted

line) at an angle β.

Introducing a mass at a distance DL results in the deviation of the light path
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of the source at a distance DS cos β. Assuming that there are no other masses

close to the LOS and if the size of the lens is far smaller than the distances

DL and DS, the light rays coming from the source can then be approximated as

two straight light rays with a ‘kink’ near the lens, even though the actual light

rays are smoothly curved around it. This is the “thin-lens” approximation. The

magnitude and direction of this ‘kink’ is determined by the deflection angle α̂ as

described in Equation 2.1,

α̂ =
4GM

c2
1

ξ
, (2.2)

where ξ is the impact parameter, which is the minimum distance between the

lensed trajectory of light and the distance to the lens in the lens plane. This

value is assumed to be much greater than the Schwarzschild radius, i.e. ξ ≫
RS ≡ 2GMc−2 (Weinberg 1972).

The lens equation relates the actual position of the source to its observed

position on the sky. As shown in Figure 2.1, the source- and lens planes are

defined as planes perpendicular to the LOS at a distance of the source and the

lens, respectively. Let η be the distance between the source and the optical axis

on the source plane. The source plane is perpendicular to the optical axis. Using

the small angle approximation (such that sin α̂ ≈ α̂ ≈ tan α̂) η1 is given by,

η = ξ′ −DLSα̂, (2.3)

where ξ′ is the projection of the impact parameter ξ on the source plane, so

ξ′ = DS

DL
ξ. Furthermore, from the small angle approximation ξ and η can be

approximated to

η = DSβ and ξ = DLθ , (2.4)

where θ is the angle between the light from the image to the optical axis, and β is

the angle between the light ray from the source and the optical axis. Substituting

1This is a different η from that used in Chapter 1 to describe refractive index.
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into the above equation:

DSβ =
DS

DL
DLθ −DLSα̂ , (2.5)

⇒ β = θ − DLS

DS
α̂ . (2.6)

The relationship between the angles can also be determined from Figure 2.1,

β = θ − α(θ) (2.7)

⇒ α(θ) =
DLS

DS
α̂ . (2.8)

Using this relation, along with Equation 2.1 and ξ = θDL, means that β can be

re-written as

β = θ − DLS

DSDL

4GM

c2θ
.

For the special case of β = 0, θ is then given by,

θ =

√

4GM

c2
DLS

DSDL
. (2.9)

This equation is a special case when the source, lens and observer are exactly

aligned (β = 0). This is defined as the Einstein radius θE . Rearranging and

substituting for θE in Equation 2.7,

β = θ − θ 2
E

θ
, (2.10)

which has two solutions (θ1 and θ2) relating to the image positions on the source

plane

θ1,2 =
1

2

(

β ±
√

β2 + 4θ 2
E

)

. (2.11)

The equation above shows that there are two solutions of θ and they have the

opposite sign. Physically, this means that the images are on opposite sides of the

unlensed image (the image of the source that would be observed, had it not been

lensed).
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2.3 Multiple images and Fermat’s principle

Let us now characterize the light ray passing from the pulsar to the observer

using Fermat’s principle (Schneider 1985, Kovner 1990, Perlick 1990). Fermat’s

principle states that a light ray travelling between two points takes the path that

can be crossed in the shortest amount of time. From Figure 2.2, let S be an event

and l a (time like) world line. The light ray will travel from S and arrives at l at

time τ . The light ray will travel along γ such that

δτ = 0. (2.12)

S

γ

l

δτ

τ

Figure 2.2: Geometry of Fermat’s principle. Image taken from SEF.

The arrival time τ of a light ray γ is not only a stationary value but also

a minimum (Perlick 1990). In other words Fermat’s principle states that light

rays travel the shortest path possible (through the gravitational potential). See

Kovner (1990) and Perlick (1990) for details.

Let us now define the Fermat potential τ(θ, β) (see SEF) as

τ(θ, β) =
1

2
(θ − β)2 − ψ(θ) , (2.13)
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where ψ is the (effective) gravitational potential of the intervening mass/lens.

This is a function of the lens plane position θ, the source position β, and

▽τ(θ, β) = 0 (2.14)

is equivalent to Equation 2.7. As it has been shown in SEF, τ(θ, β) is the travel

time of a light ray starting at source position β on the source plane, passing

through the lens plane at angular position θ and arriving at the observer. As a

result the Fermat potential describes the additional time taken for a light ray to

travel ‘around’ a matter distribution, compared to the light travel time directly

from a source. This is synonymous with the time delay resulting from the presence

of an intervening mass. Let us therefore use the Fermat potential to determine

the time delay.

Burke (1981) proved a theorem on the number of images produced by a grav-

itational lens: for a gravitational lens with a smooth surface mass density that

decreases faster than 1
|θ|

for |θ| → ∞, the number of images corresponding to an

extrema will be the number of saddle points plus 1, provided the source is not at

a caustic. This means that there will always be an odd number of images, and at

least one of the images will correspond to a minimum value of τ . The odd image

will likely be very faint. For the simple system of one source (pulsar) and one

point mass lens (star) that will be used in this thesis, this means there will be

three images predicted by Burke’s theorem - two observable images and one very

faint image. The positions and the magnifications of the two observable images

will be used in this thesis; the third faint image will be ignored.

2.4 Time delay equation

Substituting Equation 2.13 into Equation 2.14, Fermat’s principle can be re-

written as (Schneider 1985)

▽
(

1

2
(θ − β)2 − ψ(θ)

)

= 0 . (2.15)
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The time delay between the perturbed and unperturbed light path is then given

by (see Schneider 1985)

∆t = τgeom + τgrav =
1

c

DLDS

DLS

(

1

2
(θ − β)2 − ψ(θ)

)

, (2.16)

where the first part inside the brackets is the geometric component (time delay

induced by the extra path length (EPL) of the light ray due to the presence of

a lens), and the second part is the gravitational component (time delay induced

by the lens mass). For a point mass lens (an assumption valid for a small lens

mass) the gravitational potential term ψ is given below, as well as the deflection

angle (see Narayan and Bartelmann 1996 for derivations of both terms)

ψ(θ) =
DLS

DLDS

4GM

c2
ln |θ| (2.17)

α = ▽ψ (2.18)

α =
DLS

DLDS

4GM

c2
1

|θ| . (2.19)

Substituting θ − β with the deflection angle α and separating the geometric and

gravitational components, the time delay equation can be modified to

∆t =
1

c

DLDS

2DLS
(α(θ))2 − 1

c

4GM

c2
ln |θ| (2.20)

for each image. For the relative time delay, this is the time difference between

two images (labeled + and −). Using the identity 2 ln |x| ≡ ln |x2|, the relative

time delay equation becomes

∆t =
1

c

(

DLDS

2DLS

α 2
− − 2GM

c2
ln |θ 2

− |
)

− 1

c

(

DLDS

2DLS
α 2
+ − 2GM

c2
ln |θ 2

+ |
)

(2.21)

⇒ ∆t =
1

c

(

DLDS

2DLS

[

α 2
− − α 2

+

]

+
2GM

c2
ln

∣

∣

∣

∣

θ 2
+

θ 2
−

∣

∣

∣

∣

)

. (2.22)

This equation is consistent with KS91 Equation 4, if one assumes the redshift

zL → 0 and sets c = 1.
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2.5 Comparison of geometric and gravitational

time delay

Let us now investigate how the geometric and gravitational time delay vary with

ξ, the impact parameter. This is necessary in order to determine the magnitudes

of each term, which may lead to simplifying the time delay to one term - as it

may be that the other term is negligibly small.

Substituting for α in Equation 2.2 and using the small angle approximation

θ = ξ
DL

(see Figure 2.2) it is possible to re-write Equation 2.20 as

∆t =
1

c

DLDS

2DLS

[

DLS

DLDS

(

4GM

c2

)2
DL

ξ

]2

− 1

c

(

4GM

c2

)

ln

∣

∣

∣

∣

ξ

DL

∣

∣

∣

∣

=

(

4GM

c2

)2
DLSDL

2cDS

1

ξ2
+

4GM

c3
ln

∣

∣

∣

∣

DL

ξ

∣

∣

∣

∣

(2.23)

Let us now simulate a star (1 M⊙) situated on the plane halfway between the

source (DS = 5130 pc), and the observer (so DL = DLS = 1
2
DL). Figure 2.3

shows how the time delay varies as a function of the impact parameter of such a

star.

The geometric term dominates very close to the LOS and decreases rapidly

with increasing ξ. The gravitational term varies less sharply. At ∼ 8 × 10−6 pc

the two terms become identical. It is also the turning point where the gravita-

tional term starts to dominate over the geometric term. In most cases the star

has a larger impact parameter (> 10−6 pc, see Section 2.8) such that the approx-

imation that the gravitational term is always larger than the geometric term can

be made. Also, since the geometric term is so small this means that the light

ray does not deviate significantly from the optical axis, and so the light path can

be approximated as being straight (i.e. a straight line approximation) along the

optical axis. From here onwards, the geometric term is ignored when calculating

the time delay – only the gravitational (Shapiro) delay is included.

It needs to be stressed that the above is true only for low-mass (1 M⊙) stars in
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DELAY

globular clusters. For larger masses, the geometric term will be more likely to be

dominant in the Shapiro delay, as the geometric term is a function ofM2 and the

gravitational term is a function of M . de Marchi and Paresce (1995) had shown

from observations that the mass function (derived from the luminosity function)

of the stars in 47 Tucanae has a power-law slope of gradient α ≃ 1.5 in the range

0.3 M⊙ to 0.55 M⊙. McClure et al. (1986) determined the slope of the mass

function in the range 0.5 M⊙ to 0.8 M⊙. Because of this, and for mathematical

convenience, it seems reasonable to set the mass of all the stars in the simulated

47 Tucanae to M⊙.
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Figure 2.3: Comparison between the geometric and gravitational components of

the time delay as a function of impact parameter, when a lens is situated halfway

between observer and source (pulsar) positioned 5130 pc away. Note this plot is

a log-log plot.
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2.6 Shapiro time delay

Section 2.5 showed that the geometric term can be ignored for a low-mass star

when determining the time delay. Let us now derive the full expression for the

Shapiro delay equation (the second term in Equation 2.20).

Figure 2.1 depicts the configuration when the source is moving along the

source plane. In this thesis, the source (pulsar) is initially assumed to be sta-

tionary – pulsar velocities will be added later on – with the lens transiting across

the LOS. This means that the configuration has to be modified, as shown in

Figure 2.4.

ds

s

a r

Lens

Source

Observer

DS

DLDLS

θ
φ

Figure 2.4: Shapiro time delay. This figure is a re-arranged version of Figure 2.1

where the lens moves instead of the source.

Assuming that the light travels straight along the LOS in Figure 2.4 (See

Section 2.5), this means that we can define two trigonometric identities,

tanφ =
s

a
, cosφ =

a

r
. (2.24)

The gravitational time delay for gravitational lensing (the Shapiro time delay) is

defined as (Reasenberg et al. 1979)

tSh = − 2

c3

∫ DS

0

ϕ ds, (2.25)
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where ϕ = −GM
|r|

is the Newtonian gravitational potential. Substituting for ϕ the

Shapiro delay becomes

tSh =
2GM

c3

(
∫ s=DL

s=0

1

|r| ds+
∫ DS

DL

1

|r| ds
)

, (2.26)

where the two integrals correspond to the path before and after the lens along

the LOS. From Figure 2.4 the first term can be written

∫ DL

0

ds

r
=

∫ 0

θ

dφ

cosφ

which integrates to

∫ 0

θ

dφ

cosφ
=

[

ln | secφ+ tanφ|
]0

θ

= ln

∣

∣

∣

∣

∣

√

D2
L + a2

a
+
DL

a

∣

∣

∣

∣

∣

. (2.27)

The second integral integrates to

∫ DS

DL

ds

r
= ln

∣

∣

∣

∣

∣

√

a2 +D2
LS

a
+
DLS

a

∣

∣

∣

∣

∣

. (2.28)

The total Shapiro delay is the sum of these two logarithms. Using the small angle

approximation, the terms in the logarithms become the same, and so the Shapiro

time delay can be re-written as

tSh =
2GM

c3
ln

∣

∣

∣

∣

4DL(DS −DL)

ξ2

∣

∣

∣

∣

, (2.29)

where the substitutions a = ξ andDLS = DS−DL have been made. This equation

is consistent with the equations in SE07 and SE08 and is similar to Equation 2.23

since DS−DL = DLS = DL (lens halfway between source and observer) and when

using the identity 2 ln |x| ≡ ln |x2|. The factor of 4 in Equation 2.29 arises due

to a slight change in the definition of ξ from Equation 2.23 – in Equation 2.29 ξ

represents the distance between the lens and the LOS, in Equation 2.23 ξ is the

image location in the lens plane (see Figure 2.1).
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2.7 Complete equation for Shapiro delay

Section 2.6 considered the case where the lens is in front of the source. Let us now

determine the case where the lens is behind the source, as shown in Figure 2.5.

ra

ds

Observer
φ

θ

Source

Lens

DL

DLS DS

s

Figure 2.5: Shapiro time delay. This figure is a re-arrangement of Figure 2.4

where the lens is behind the source.

Using Figure 2.5 the two integrals in Equation 2.26 are integrated in a similar

manner as shown in Section 2.6. The first term integrates out as,
∫ DL

0

ds

r
=

∫ 0

θ

dφ

cosφ

=

[

ln | secφ+ tanφ|
]0

θ

= ln

∣

∣

∣

∣

∣

√

D2
L + a2

a
+
DL

a

∣

∣

∣

∣

∣

, (2.30)

which is the same result as Section 2.6. However the second term integrates to

∫ DS

DL

ds

r
= ln

∣

∣

∣

∣

∣

√

a2 +D2
LS

a
− DLS

a

∣

∣

∣

∣

∣

. (2.31)

The minus sign is due to the change in direction of DLS. As a result, the complete

Shapiro delay equation can be written as:

tSh =
2GM

c3

(

ln

∣

∣

∣

∣

∣

√

D2
L + a2

a
+
DL

a

∣

∣

∣

∣

∣

+ κ ln

∣

∣

∣

∣

∣

√

a2 +D2
LS

a
+ κ

DLS

a

∣

∣

∣

∣

∣

)

(2.32)
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where κ = DLS

|DLS |
. This full expression for the Shapiro delay will be used in the

Monte-Carlo (MC) simulation in Chapter 3. From here onwards, DLS will be

replaced with ρ, i.e. ρ = DLS, and a will be replaced with the impact parameter

ξ, such that ξ = a.

2.7.1 Sensitivity of the Shapiro delay to ξ and ρ

Figure 2.6 shows the Shapiro delay as a function of impact parameter, ξ. The

Shapiro delay is very sensitive to ξ, the distance in the plane perpendicular to

the LOS. The function tends to infinity at ξ = 0, as at this configuration the star

is directly between the pulsar and an observer. Theoretically this also produces

an Einstein ring around the star. For very small values of ξ, the geometric term

is larger than the gravitational term (see Figure 2.3) so in this region the straight

line approximation breaks down. The function decays rapidly as ξ increases from

ξ = 0 pc to ξ ∼ 10 pc, but the function resembles a linear decay function at

greater impact parameters.

Figure 2.7 shows the Shapiro delay as a function of ρ, the distance between the

star and the pulsar along the LOS. A negative value for ρ means that the star is

behind the pulsar due to the orientation used when deriving the equation. In the

“classical” case this region is unexplored, and so not included in the Shapiro delay.

The inclusion of this region results in the changes in sign, and the introduction

of a factor κ when deriving the full Shapiro delay equation. As it is shown

in Figure 2.7 the negative ρ region has a very small effect. This is due to a

smaller portion of the gravitational potential of stars being integrated along the

LOS, compared to stars in front of the pulsar. At ρ = 0, a theoretical situation

when the pulsar and the star are at the same distance from the observer, the

magnitude of the Shapiro delay is determined by ξ, the second logarithmic term

in Equation 2.32 is zero. The star has a larger effect once it is positioned between

the observer and the pulsar (i.e. ρ > 0) and has a maximum at halfway between
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the observer and the pulsar, namely at DL = 1
2
DS.
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Figure 2.6: The Shapiro delay as a function of ξ, the impact parameter. The

function has been truncated at ξ = 0 since the function becomes infinite at this

point.

2.8 Probability of observing a ‘Shapiro event’

So far, the full expressions for the Shapiro delay equation have been derived.

It was also shown that generally the geometric term is negligible and that the

straight-line approximation can be made for the light path from the pulsar.

Let us now investigate the probability of detecting a ‘Shapiro event’ – an event

where the star is situated close enough to the LOS that it produces a measurable

change in time delay over some interval. The closer the star is to the LOS, the

larger the Shapiro delay (Figure 2.6). The probability of detecting a lensing

event should then be determined by how close a star will be to the LOS. Since

the Shapiro delay is symmetric around the LOS (as ξ is measured from the LOS

regardless of its orientation) this means that the probability is equivalent to that
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Figure 2.7: The Shapiro delay as a function of ρ, the distance along the LOS. At

all values of ρ, ξ = 1 pc. ρ < 0 indicates that the star is behind the pulsar; ρ =

0 is when the pulsar and the star have the same distance along the LOS; ρ > 0

indicates that the star is between the pulsar and the observer.

of finding a star in a cylinder around the LOS with a radius rdet, where rdet is

the detection radius (see Figure 2.8).

2.8.1 Detection radius

For simplicity, let us assume the globular cluster is a sphere of uniform (stellar)

density with a pulsar situated at the center as shown in Figure 2.8. This globular

cluster contains N0 stars and has a radius rS. Within this cluster there is a

cylinder with cross sectional radius rdet containing N stars. When assuming that

the cluster and the cylinder have the same stellar density, the fraction of the total
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rdet

N0 total stars

Globular Cluster

Observer

rS

N stars

Pulsar

Cylinder approximation

Figure 2.8: Configuration to determine the detection radius, rdet for a globular

cluster.

number stars contained in this cylinder is then given by

N0

4
3
πr3S

=
N

πr2detrS

⇒ N

N0

=
πr2detrS
4
3
πr3S

=
3

4

(

rdet
rS

)2

(2.33)

where N is the number of stars detected. For N0 ∼ 108 (the number of stars in

the globular cluster 47 Tucanae) and rS = 19 pc, the radius necessary to find just

one star (N = 1) is then

rdet =

(

4

3

(19 pc)2

108

)1/2

= 2.1939× 10−3pc . (2.34)

This is the distance of the closest star to the LOS. At this distance from the LOS

the magnitude of Shapiro delay is very large, as this is very close to the “spike”

at ξ = 0 pc in Figure 2.6. Also, at this distance the gravitational delay dominates

(Figure 2.3). If one took a globular cluster that is more concentrated at the core,

for example rS = 1 pc, the detection radius is then

rdet =

(

4

3

(1 pc)2

108

)1/2

= 1.1547× 10−4 pc. (2.35)
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As a comparison, the distance traveled by a star in one year at a speed of 100

km s−1 is 1.023 × 10−4 pc. Even with such a dense core, the gravitational term

is larger than the geometric term at rdet.

The values of rdet indicate that a Shapiro event is highly likely (if not certain)

to occur. This then means that there will be a Shapiro delay, and it will affect

pulsar timing. From Figure 2.6 the magnitude of the Shapiro delay from this

single star is of the order of 10−4 seconds. This would have an effect on pulsar

timing precision, as described in Chapter 1. When a Shapiro event occurs, the

time of arrival of every pulse will be offset by this amount, and therefore the pulse

profile would also be shifted/offset by this amount. Within the model, however,

this offset will be subtracted from the pulse TOA as it is a constant effect on all

pulsar TOAs and as a result, the pulsar timing residuals will not be influenced by

a Shapiro event (or delay), nor is it possible to measure the value of the Shapiro

delay.

The above statements is true only for ‘static’ cases, where the star’s position

does not change over (observation) time. In some configurations even a small

change in stellar position will have a large effect on the magnitude of the Shapiro

delay, as shown in Figure 2.6 and Figure 2.7. Such a change in Shapiro delay is

a measurable quantity.

2.9 Change in Shapiro delay

Section 2.8 showed that the stellar density inside the globular cluster makes it

highly likely that a Shapiro event will occur, as there will be stars close (∼ 10−4

pc) to the LOS producing a large (∼ 104 s) Shapiro delay. Such a large Shapiro

delay will affect pulsar timing. However, this (static) Shapiro delay is not an

observable (and measurable) quantity, as it will affect all the pulses in the same

way. On the other hand, stars and pulsars move within globular clusters. Stellar

and pulsar velocities change the positions of the stars and pulsars, respectively,
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resulting in a change in the Shapiro delay. This change in Shapiro delay is

observable in pulsar timing, as this variable changes over time, and offsets the

pulsar time of arrival in different ways for every pulse.

Let us revisit Figure 2.6 to investigate how the Shapiro delay changes with the

impact parameter ξ. The change in Shapiro delay is analogous to the difference

in time delay between two points on the function in Figure 2.9. Since stellar

motion is small (of the order of tens of kilometers per second) the total distance

the star moves across the sky is small compared to the distance from the LOS,

the fractional change in distance between these two points is very little, and as

a result the change in Shapiro delay is also small. This linear change can then

be approximated to the tangent of the curve shown in red in Figure 2.9 (linear

approximation). This also means that over time the motion of the star can be

approximated to linear “cuts” (or slits) across the sky.

t S
h

ξ

Total distance covered by star

Figure 2.9: Change in Shapiro delay.

Even though the change in Shapiro delay is small for one star, the cumulative
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effect of an ensemble of stars may produce a change in Shapiro delay large enough

to be observed. This is what will be investigated in the following chapter by

simulating a globular cluster.

2.10 Pulsar light curves

Before proceeding to the simulations, let us investigate how the time delay affects

pulsar light curves. Since strong lensing produces multiple images there will be

many image pulses observed in the pulsar TOA, however they will have different

amplitudes, and arrive at different times. This only happens in the region where

the geometric term dominates, and the straight line approximation of the light

path is no longer valid – the star has to be extremely close to the LOS (order

10−9 pc), so the chance of observing this situation is very low.

Even though the probability of observe the geometric time delay of a pulse

is very small, what will the pulse profile of a lensed pulsar look like? To answer

this question, let us assume the pulse intensity P(t) is of the form of a Gaussian

distribution,

P(t) = P0 exp

(

−1

2

[

t− t0
σ

]2
)

, (2.36)

where P0 is the maximum flux of the light pulse (initially set to 1 for the unlensed

case), and σ2 is the variance (the measure of the width of the distribution) of the

pulse. The pulses from the lensed images arrived at a delayed time t0, where t0

= 0 is taken from the unlensed image.

The P0 values for the two images were found by computing the magnification

factor of each lensed image. In general, specific intensity is conserved, therefore

the (angular) magnification determines the flux. The solid angle magnification is

determined by (see SEF)

µ =
θ

β

dθ

dβ
. (2.37)
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In order to solve for dθ
dβ
, it is necessary to use Equation 2.7, and to produce a

Jacobian matrix A that describes the lens mapping at a certain point in the sky

as

A =
∂β

∂θ
=

(

δij −
∂αi(θ)

∂θj

)

. (2.38)

Let us define the potential as (see SEF)

ψij =
∂2ψ

∂θi∂θj
. (2.39)

The dimensionless surface mass density (or the convergence) κ and the external

shear γ(≡ γ1 + iγ2) can be defined as

ψ11 + ψ22 = 2κ (2.40)

γ1(θ) =
1

2
(ψ11 − ψ22) (2.41)

γ2(θ) = ψ12 = ψ21. (2.42)

Therefore the Jacobian matrix can be re-written as

A =

(

δij −
∂2ψ(θ)

∂θi∂θj

)

=





1− κ− γ1 −γ2
−γ2 1− κ + γ1



 . (2.43)

The determinant of this Jacobian matrix is the inverse of the magnification,

µ =
1

detA =
1

(1− κ)2 − γ2
, (2.44)

where the equation has also been written in terms of κ and γ.

Re-writing Equation 2.7

x± =
1

2

(

u±
√
u2 + 4

)

(2.45)

where x = θ
θE

and u = β
θE
.

The magnification µ can now be written as (see Schneider 2006 for details)

µ1,2 =

(

1− 1

x4

)−1

=
u2 + 2

2u
√
u2 + 4

± 1

2
. (2.46)
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The magnification of each image and the total magnification is given by

µ1 =
u2 + 2

2u
√
u2 + 4

+
1

2
(2.47)

µ2 =
u2 + 2

2u
√
u2 + 4

− 1

2
(2.48)

µTOT = µ1 + |µ2| ≥ 1. (2.49)

Using the magnifications, the amplitudes of the two pulses are

P1 = |µ1| × f0 (2.50)

P2 = |µ2| × f0. (2.51)

From the above equations, the amplitude of the two pulses will not be the same

as that of the unperturbed light pulse.

Let us now simulate light pulses (pulse σ = 5 × 10−6 s) from a pulsar 5130 pc

away (distance to globular cluster 47 Tucanae), and a lens halfway between the

pulsar and the observer. Figure 2.10 shows how the two light pulses (from the

lensed images) compare to that from an unperturbed light pulse (directly from

the source) with the presence of a lens at ξ = 5 × 10−6 pc . The unperturbed light

pulse is the dashed line at time of arrival equal to zero – this is the light pulse

expected from an unlensed source. Adding a lens produces two images (blue and

red dotted lines), and the combined light pulse is shown as the solid black line.

From Section 2.2 and Section 2.4 it is possible to determine the magnitude of

the time delays. For this particular configuration, β = 9.999 × 10−9 radians and

the Einstein radius

θE =

√

4GM

c2
DLS

DSDL

=

√

4GM⊙
c2

2565 pc

5130 pc× 2565 pc

∼ 6.109× 10−9 rad. (2.52)
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From Equation 2.11 the two image positions are

θ1 =
1

2

(

β +
√

β2 + 4θ2E

)

=
1

2

(

9.999× 10−9 +
√

(9.999× 10−9)2 + (4× (6.109× 10−9)2)
)

= 2.894× 10−8 rad,

θ2 =
1

2

(

β −
√

β2 + 4θ2E

)

=
1

2

(

9.999× 10−9 −
√

(9.999× 10−9)2 + (4× (6.109× 10−9)2)
)

= −1.289× 10−8 rad.

θ2 is negative because this image is below the optical axis. The absolute time

delay of each image is then the sum of the geometric and gravitational time delay

tgeom,1 =
1

2c

DLS

DLDS

(

4GM

c3

)2
1

θ21
= 4.389× 10−5 s,

tgrav,1 =
4GM

c3
ln |θ1|

= 3.874× 10−4 s,

∆t1 = 4.389× 10−5 + 3.874× 10−4 = 3.935× 10−4 s,

tgeom,2 =
1

2c

DLS

DLDS

(

4GM

c3

)2
1

θ22
= 1.598× 10−5 s,

tgrav,2 =
4GM

c3
ln |θ2|

= 3.579× 10−4 s,

∆t2 = 1.598× 10−5 + 3.579× 10−4 = 3.739× 10−4 s.

The calculations predict that the second image arrives before the first image, and

this is shown in Figure 2.10. The peaks of the images are offset due to the time

delay, and the intensity amplitudes are determined by the magnifications (see

above). The difference between the image peaks gives the (standard) ‘relative’

time delay investigated in the literature; the difference between the peak of the

combined pulse and of the unlensed pulse is the ‘absolute’ time delay. It can be
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shown that at this configuration the lensed pulse profile is completely different

from the unlensed pulse. If the lens is sufficiently far away from the LOS, the

solid and dashed lines will overlap, as this is equivalent to the star not having

any effect on the pulse profile.
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Figure 2.10: How time delay affects pulse profiles. In the above, ξ = 5 × 10−6 pc.
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Figure 2.11 shows the pulse profile at different configurations. The top right

figure is when the lens is furthest of the four configurations from the LOS. The

two lensed images produce two peaks with the image closest to the source (image

1, blue line) producing the higher peak and a shorter time delay. As the lens

moves closer to the LOS the relative time delay between the two imaged pulses

decreases whilst the absolute time delay increases (Figure 2.11 top right). This

continues until the lens is on the LOS, at which point there is infinite magnifica-

tion (an Einstein ring), and there is no relative time delay but there is, however,

an absolute time delay. Once it crosses the LOS the magnification falls (Fig-

ure 2.11 bottom left) but now the images are reversed – image 2 (red line) is now

the closest. Finally if the lens is further away from the LOS the two image peaks

are separated (Figure 2.11 bottom right).
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Figure 2.11: How time delay affects pulse profiles. In the above, ξ = - 2 × 10−5 pc (top left), ξ = - 7.5 × 10−6 pc (top

right), ξ = 7.5 × 10−6 pc (bottom left), ξ = 1.5 × 10−5 pc (bottom right).
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The peaks of both images will not be separable for a broad pulse profile, i.e.

larger pulse σ. For example, Figure 2.12 and Figure 2.13 show the pulse profile

for the same lensing configuration as Figure 2.10 but with a σ value that is ten

times larger, namely σ = 5 × 10−5 s. In such a case, both peaks are ‘buried’

in the pulse profile, and the combined pulse profile looks similar to the unlensed

image, albeit slightly larger in amplitude. As a result, Figure 2.13 shows that

the geometric lensing event is undetectable for such a broad pulse profile unless

careful measurements to detect the change in amplitude of the pulse are made.

The simulations shows how the light pulses change in the presence of a gravi-

tational lens. However, in order to get such an effect the lens has to be positioned

very close to the LOS and the probability of this happening is very small.

Let us determine the number of stars necessary in order to observe a geometric

time delay. From Figure 2.3 the geometric time delay dominates the gravitational

time delay at detection radius rdet < 10−6 pc. From Equation 2.33 and using

rS = 1 pc, the total number of stars necessary in the globular cluster in order to

detect one star that will produce a geometric time delay is > 1.3×1012 stars. This

equates to a stellar density of approximately 3.1×1011 M⊙ pc−3. Both total stellar

count and stellar density are far greater than those observed in globular clusters

such as 47 Tucanae, and therefore the probability of observing the geometric time

delay is very small for a globular cluster such as 47 Tucanae.
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Figure 2.12: How time delay affects pulse profiles. In the above, ξ = 5 × 10−6 pc and σ = 5 × 10−5 s.
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Figure 2.13: How time delay affects pulse profiles. In the above, ξ = - 2 × 10−5 pc (top left), ξ = - 7.5 × 10−6 pc (top

right), ξ = 7.5 × 10−6 pc (bottom left), ξ = 1.5 × 10−5 pc (bottom right). For all light curves, σ = 5 × 10−5 s.
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Part III

Globular Cluster Simulation
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3

Globular Cluster Simulation

In the previous chapter it was shown that it was highly likely that a Shapiro

event would have a measurable effect on pulsar timing for pulsars situated inside

globular clusters, such as 47 Tucanae. In addition, the Shapiro delay itself is not

an observable quantity, while the change in the Shapiro delay is. This section

attempts to determine the magnitude of the change in the Shapiro delay over time

for a typical globular cluster, as this quantity has not been previously determined.

In order to determine the change in Shapiro delay a simple globular cluster

with a pulsar at the centre is constructed. The stellar distribution within the

globular cluster used initially is that of a Gaussian sphere – a Gaussian distribu-

tion in all three Cartesian co-ordinates. This simple approach was adopted so that

it was possible to produce an analytical and numerical prediction for the change

in the Shapiro delay, followed by a comparison between the two approaches.

The analytical approach uses probability distribution functions (PDFs) to

determine the likelihood of observing a change in the Shapiro delay, ∆tsh, from

the distribution functions used to determine stellar positions and velocities. From

the PDFs it is then possible to analytically deduce the variance of the change in

Shapiro delay, 〈(∆tsh)2〉 (if the expectation value is zero). For simple models

such as a Gaussian sphere, the equations for the distributions are well-known,

therefore it is possible to determine the PDFs and 〈(∆tsh)2〉 analytically.
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In the numerical approach a model was created to determine the Shapiro

delay. This approach uses a Monte-Carlo (MC) simulation to randomly generate

the stars along with their initial positions and velocities. From this, it was possible

to move each star and to determine the Shapiro delay for every star. The mean

squared change in the Shapiro delay per star, 〈(∆tsh)2〉, was then determined by

averaging the square of the Shapiro delay of every star.

The two approaches are independent of one another in determining the value

of 〈(∆tsh)2〉, the analytical method approaching from the PDF, whilst the numer-

ical method makes the determination without using PDFs, therefore, as long as

the initial conditions for both approaches are the same, it is possible to compare

the results. This serves as a useful tool when checking whether the numerical

simulation is producing results as expected by the analytical prediction, or oth-

erwise.

The following sections describe the two different approaches in detail, and

a comparison is made between the two approaches on some models. All the

analytical expressions (for the 1D, 2D and 3D cases) is original work.

3.1 Analytical approach

The analytical approach determines the variance of the change in Shapiro delay,

〈(∆t)2〉, using probability distribution functions (PDFs).

For a star generated inside the globular cluster described by a Gaussian sphere,

the PDF describing the phase space co-ordinates of this star can be written as

the product of its position and velocity distribution functions,

p(x, y, z, vx, vy, vz) = p(x, y, z) p(vx, vy, vz) (3.1)

= p(x) p(y) p(z) p(vx) p(vy) p(vz). (3.2)

Each component is generated separately, this means that velocity and position

distributions are independent. This assumption was made to simplify the ana-
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lytical (and numerical) approach.

The Shapiro delay equation in Section 2.7 and Section 2.8, uses cylindrical

polar co-ordinates (ρ, ξ, θ). Therefore, we need to transform the co-ordinate

system of the star from Cartesian to cylindrical polar in order to determine its

Shapiro delay. The change in co-ordinate system is achieved by computing the

appropriate Jacobian (see Figure 3.1). The cylindrical polar PDF describing the

star’s position and velocity is now

p(ρ, ξ, θ, vρ, vξ, vθ) = p(x, y, z)

∣

∣

∣

∣

∂(x, y, z)

∂(ρ, ξ, θ)

∣

∣

∣

∣

p(vρ, vξ, vθ)

∣

∣

∣

∣

∂(vx, vy, vz)

∂(vρ, vξ, vθ)

∣

∣

∣

∣

, (3.3)

where the terms in the modulus signs represent Jacobians, one to transform

position co-ordinates, and the other to transform velocity co-ordinates. Since the

ρ

θ

x

y z

ξ

Figure 3.1: The relationship between the Cartesian co-ordinate system (x, y, z)

and cylindrical polar co-ordinate system (ρ, ξ, θ). The centre of the globular

cluster (and pulsar position) is at the origin. The LOS is along the x-axis.

Shapiro delay is a function of (ρ, ξ, θ), its change is dependent on the change in

any of the three variables. The change in Shapiro delay is due to stellar motion

affecting the position of the stars. The change, however, is not a large amount,
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namely ρ, ξ ≫ vT , where v is the stellar velocity in a particular direction, and T

is the total time of the observation/simulation. From Section 2.9 the change in

Shapiro delay can be approximated as a linear change in the variables,

∆tsh(ξ, ρ, θ) ≃
∂tsh
∂ξ

∣

∣

∣

∣

ξf

∆ξ +
∂tsh
∂ρ

∣

∣

∣

∣

ρf

∆ρ+ ρ
∂tsh
∂θ

∣

∣

∣

∣

θf

∆θ, (3.4)

where the partial derivatives can be obtained from differentiating Equation 2.32.

The third term, the dependence on θ can be ignored as the Shapiro delay equation

is symmetrical around the LOS, and so only the dependence on ξ and ρ will be

investigated. Also, from the linear approximation,

∆ξ = vξT and ∆ρ = vρT, (3.5)

as these variables describe the distance travelled by the star in a particular di-

rection.

Equation 3.4 describes the relationship between the change in Shapiro delay,

∆tsh, with its co-ordinate system (ρ, ξ, θ). It is possible to change one of the

variables in Equation 3.1 to include the ∆tsh term, using another Jacobian. For

example, if one uses the Jacobian,

J∆tsh =

∣

∣

∣

∣

∂vρ
∂(∆tsh)

∣

∣

∣

∣

, (3.6)

the PDF can now be written as

p(ρ, ξ, θ,∆tsh, vξ, vθ) = p(ρ, ξ, θ, vρ, vξ, vθ)

∣

∣

∣

∣

∂vρ
∂(∆tsh)

∣

∣

∣

∣

= p(ρ, ξ, θ, vρ, vξ, vθ) J∆tsh . (3.7)

To compute the probability density function for the change in Shapiro delay,

∆tsh, we require to marginalise over all other variables. After carrying out this

marginalisation, p(∆tsh) is then

p(∆tsh) =

∫∫∫∫∫

p(ρ, ξ, θ,∆tsh, vξ, vθ) J∆tsh dρ dξ dθ dvξ dvθ. (3.8)

After integrating to obtain p(∆tsh), 〈(∆tsh)2〉 is determined by

〈(∆tsh)2〉 =
∫

p(∆tsh) (∆tsh)
2d(∆tsh). (3.9)
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Using the analytical approach, it is therefore possible to determine 〈(∆tsh)2〉 from
the position and velocity distributions used to generate a random star. Note

that the analytical approach gives a 〈(∆tsh)2〉 value for one star and one pulsar,

situated at the centre of the globular cluster.

The assumption that the pulsar is positioned at the centre of the globular clus-

ter and is stationary (i.e. no velocity components) may be a crude assumption,

but by using this the problem is simplified by excluding additional constraints

(and terms) from the analytical approach (Equation 3.8) and the numerical ap-

proach (additional initial conditions). To a first approximation, the assumption

of a stationary pulsar at the centre of the globular cluster is valid to use for

comparing the two different approaches.

3.2 Numerical approach

The analytical approach determines the variance of the change in Shapiro de-

lay, 〈(∆tsh)2〉, by using the position and velocity distributions. The numerical

approach, on the other hand, will determine the variance by generating stars

(position and velocity values) using these distributions, and then calculating the

change in Shapiro delay of these stars.

For our simple model (distribution of stars in a globular cluster being approx-

imated by a Gaussian sphere), the numerical approach will randomly generate

a position value for a star using the Gaussian distribution. The stellar velocity

is generated using a different Gaussian distribution. The Shapiro delay of this

configuration is measured, then the star is ‘moved’ to its new position according

to its velocity. Since the position of this star is different, a new value for the

Shapiro delay is calculated at this configuration. The difference between the two

Shapiro delay quantities is the change in Shapiro delay for that particular star.

This simulation is repeated a large number of times, each time producing new

position and velocity for the star, so that a large number (and range) of ∆tsh val-
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ues is obtained. Using these values it was then possible to plot the distribution

of ∆tsh for this one star-one pulsar configuration, which can be compared to the

analytical approach for the same configuration.

The numerical approach simulated a globular cluster with the same dimen-

sions as 47 Tucanae (5130 pc away, 38 pc across), with a stellar distribution

described by a Gaussian sphere. The simulation was written using the program-

ming software MATLAB. The distributions of the stellar position and motion were

specified as Gaussian (randn function in MATLAB) for our simple model. The stan-

dard deviation, σ = 5 pc, for the stellar positions was determined such that the

stars populate the entire 38 pc diameter of the globular cluster. This Gaussian

sphere is not an accurate representation of the density profile of 47 Tucanae (see

Chapter 6 for more details), however the analytical solution for the Gaussian

sphere is less complex, and therefore more suitable for comparing the analytical

and numerical approaches.

The σ for the velocity distribution was assumed to be 100 km s−1 as this was

thought to be a sensible value. The observation time was chosen to be ten years

noting the current longest pulsar timing observations, which is approximately

12 years. An observational cadence of 30 days was chosen to reduce computing

time as simulating the TOA of every pulse for 3600 days would have taken too

long. Six pulsars were also generated in a similar manner to the stars, but were

originally at rest, so that in the simple model, the pulsar position does not change

over time. Since pulsars are concentrated in the core of the globular cluster, the

Gaussian distribution used to generate their position had a smaller σ than that

of the stars. Table 3.1 shows the initial conditions used in the simulation.

For each star, a Gaussian distribution (using the conditions described above)

was used to generate the positions (x, y, z) and the velocities (vx, vy, vz). The

pulsar positions were also generated using a different Gaussian distribution, how-

ever no velocity components were generated as the pulsars were assumed to be

stationary throughout the simulation.

90 The Effect of Shapiro Delay on Pulsar Timing



3.2: NUMERICAL APPROACH

Variable Quantity

Star mass 1 M⊙
σstar (x,y,z) 5 pc

σpulsar (x,y,z) 1 pc

σ (vx,vy,vz) 100 000 ms−1

Spacing Interval 30 days

GC variable Quantity

Distance to GC 5130 pc

Diameter 38 pc

Number of Stars 100 000

Number of Pulsars 6

Total observation time 3600 days

Table 3.1: Initial conditions for MC simulation

Once a star was created, its initial Shapiro delay was derived from Equa-

tion 2.32. Each star was then moved in increments of 30 days at its given speed,

and a Shapiro delay of its new position was calculated. This was repeated for

a total observation time of 3600 days, and then for 105 stars and six pulsars at

the core of the globular cluster. The results of these calculations are shown in

Figure 3.2.

Let us now repeat the definition of Shapiro noise (from Chapter 1): Shapiro

noise is the Shapiro delay variation (from one or an ensemble of stars) over the

whole observed period as a continuous function of time. This is the noise term that

the Shapiro delay will add to the pulsar time of arrival equation, Equation 1.2.

See Chapter 4 for further details.

Figure 3.2 shows that the Shapiro noise is different for every pulsar, as shown

by different coloured lines. Due to the LOS being different for every pulsar,

the stars contribute differently to the Shapiro delay for each one. In our simple

model the magnitudes of the Shapiro noise appear to be similar for all six pulsars,

suggesting that the number (and the separation) of stars along close to the LOS

are similar. Figure 3.2 also shows that the Shapiro noise resembles that of a linear

function. This result is not unexpected – positions of the stars do not change

much, therefore the change in Shapiro delay (and hence the Shapiro noise) will

be small (see Section 2.9). Figure 3.2 verifies that a linear approximation for the

Shapiro noise use in the analytical approach is valid.
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Figure 3.2: Shapiro noise for a mini globular cluster containing 6 pulsars in

the core and 105 stars, over an observing period of 3600 days. The pulsars

are randomly distributed near the center of the globular cluster, and the stars

are distributed within the dimensions of the globular cluster. Note that in the

simulation 1 month = 30 days.

The sign of the Shapiro noise is dependent on the motion of the star that has

the largest contribution - if the star is moving away from the LOS the Shapiro

delay decreases (hence negative Shapiro noise) and vice versa.

The magnitude of the Shapiro noise, ∆tsh, for 105 stars over a ten year ob-

serving period is ∼ 1 × 10−6 s, dominated by a slope of ∼ 10−7 s yr−1. Since

the Shapiro noise increases with the number of stars, it is a sum of the change

in Shapiro delay of every star, one can expect that the Shapiro noise scales as

N〈(∆tsh)2〉, where N is the number of stars. For N = 108 the Shapiro noise is

∼ 1× 10−3 s, or ∼ 10−4 s yr−1 (see Section 3.4.2). As stated in Chapter 1, pulsar

timing arrays can accurately time pulsars to the order of 10 µs (for the PPTA).

This value may be as low as 10 ns for larger arrays, such as the Square Kilometer
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Array (SKA). Shapiro noise is therefore large in terms of current pulsar timing

precision, making investigation of this effect very important. As it will be seen

in Chapter 4, the magnitude of the observed Shapiro noise has a potentially far

smaller effect, as the linear and quadratic components are subtracted out in the

fitting procedure.

3.3 Comparison of simulation results with ana-

lytical expression

Before investigating further the effect of Shapiro noise on pulsar timing, it is

first necessary to verify that the numerical simulation is correct. This is done

by comparing the results of the numerical approach with that of the analytical

approach described previously.

The Shapiro delay due to a single star (Equation 2.32) is

tSh =
2GM

c3

(

ln

∣

∣

∣

∣

∣

√

D2
L + ξ2

ξ
+
DL

ξ

∣

∣

∣

∣

∣

+ κ ln

∣

∣

∣

∣

∣

√

ρ2 + ξ2

ξ
+ κ

ρ

ξ

∣

∣

∣

∣

∣

)

, (3.10)

where κ = ρ/|ρ|. Assuming the small angle approximation, DL ≫ ξ this can be

re-written as

tSh =
2GM

c3

(

ln

∣

∣

∣

∣

2DL

ξ

∣

∣

∣

∣

+ κ ln

∣

∣

∣

∣

∣

√

ρ2 + ξ2

ξ
+ κ

ρ

ξ

∣

∣

∣

∣

∣

)

. (3.11)

This equation is used to determine the delay inferred by the stars, and also used

to determine the Shapiro noise of the globular cluster. As was shown previously,

this equation is a function of ρ, the distance along the LOS, and ξ, the distance

on a plane perpendicular to LOS, of a star.

Let us now compare the numerical and analytical approaches for 1D, 2D and

3D. This comparison is made to show that both approaches predict the same

results in all three dimensions. In both approaches, the 1D case corresponds to

the distribution (and the movement) of the star on a line perpendicular to the
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LOS, i.e. ρ = 0, with ξ the distance along this line (i.e. 1D). In the 2D case, ξ is

a distance on a plane perpendicular to the LOS (i.e. ρ = 0). The 3D case uses a

non zero value of ρ with a 2D ξ. (See Figure 3.1). The case for each dimension

is investigated below.

3.3.1 1D model

In the 1D case, the stars populate a line perpendicular to the LOS at ρ = 0. The

Shapiro delay simplifies to

tSh =
2GM

c3

(

ln

∣

∣

∣

∣

2DL

ξ

∣

∣

∣

∣

)

, (3.12)

as the second logarithm term at ρ = 0 is zero. The first order derivative of this

equation is,
∂tSh
∂ξ

= −2GM

c3
1

ξ
. (3.13)

From Equation 3.4 the change in Shapiro delay, ∆tsh, for the 1D case (ρ = 0) can

be simplified to,

∆tSh =
∂tSh
∂ξ

∆ξ. (3.14)

If one assumes the stellar velocity is constant along the line it is possible to

re-write ∆ξ as vξ∆T , where ∆T is the total observed time, and so

∆tSh =
∂tSh
∂ξ

vξ∆T. (3.15)

Rearranging this equation for the 1D velocity component,

vξ =

(

2GM

c3
∆T

)−1

ξ∆tsh. (3.16)

This equation will be used later on in the Jacobian to introduce the ∆tsh term

into the probability distribution function.

The probability of observing a change in time delay of ∆tsh can be written

p(∆tsh) =

∫

p(ξ,∆tsh)dξ (3.17)

94 The Effect of Shapiro Delay on Pulsar Timing



3.3: COMPARISON OF SIMULATION RESULTS WITH ANALYTICAL

EXPRESSION

where ξ is a 1D distance. Let us now replace ∆tsh in p(ξ,∆tsh) with vξ using a

Jacobian J∆tsh so the probability now becomes

p(∆tsh) =

∫

p(ξ, vξ) J∆tsh dξ

=

∫

p(ξ) p(vξ) J∆tsh dξ, (3.18)

since the probabilities of ξ and vξ are independent of one another they can be

separated. The Jacobian is

J∆tsh =

∣

∣

∣

∣

∂(vξ)

∂(∆tsh)

∣

∣

∣

∣

. (3.19)

From Equation 3.16 this Jacobian is

∣

∣

∣

∣

∂(vξ)

∂(∆tsh)

∣

∣

∣

∣

=

(

2GM

c3
∆T

)−1

ξ. (3.20)

In the numerical approach, a Gaussian distribution was used to generate the

position and velocity values for every star. For the 1D model, this corresponds

to two Gaussian distributions, G(ξ) for the position distribution given by

G(ξ) =

√

2

πσ2
ξ

exp

(

− ξ2

2σ2
ξ

)

ξ ≥ 0, (3.21)

and G(vξ) for the velocity dispersion given by

G(vξ) =
1

√

2πσ2
vξ

exp

(

−
v2ξ
2σ2

vξ

)

, (3.22)

with a different σ value for each distribution. For the 1D model, the probability

distribution of the position and velocity is simply the Gaussian distributions used

to generate the position and velocity. Equation 3.18 can then be re-written

p(∆tsh) =

∫

p(ξ) p(vξ) J∆tsh dξ

=

∫

G(ξ) G(vξ)

∣

∣

∣

∣

∂(vξ)

∂(∆tsh)

∣

∣

∣

∣

dξ, (3.23)
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where the Jacobian is given in Equation 3.20. Writing the full expressions for the

distributions and replacing vξ the probability becomes

p(∆tsh) =

∫ ∞

0

√

2

πσ2
1

exp

(

− ξ2

2σ2
1

)

√

2
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2
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−
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2
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ξdξ
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2ξ2

2σ2
2
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dξ
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πσ1σ2
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c3
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(

1

2σ2
1
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(

2GM
c3

∆T
)−2

(∆tsh)
2

2σ2
2

)

ξ2

]

dξ,

where σ1 is the position variance and σ2 is the velocity variance. Using the

identity
∫ ∞

0

x exp(−ax2) dx =
1

2a
, (3.24)

the probability can be integrated out and becomes

p(∆tsh) =
1

πσ1σ2

(

2GM

c3
∆T

)−1
1

a
, (3.25)

where,

a =
1

2σ2
1

+

(

2GM
c3

∆T
)−2

(∆tsh)
2

2σ2
2

. (3.26)

The probability distribution is a Cauchy distribution, of the form p(∆tsh) ∝
1

1+(∆tsh)2
. The distribution indicates that there is a chance for a large ∆tsh value,

but for most cases ∆tsh is a small number (± 2 × 10−8 s). This reflects reality,

as the probability of obtaining a large time delay – caused by a star moving very

close to the LOS – is very small, and for most stars the Shapiro noise is very

small.

Figure 3.3 shows the plot of the (normalized) probability distribution function

plotted over the simulation results for 1D stellar position and velocity. The

analytical distribution of ∆tsh compares very well with the simulation output.

The distribution is centered on ∆tsh = 0 and shows that, in most cases, the

stellar dynamics do not contribute much to the change in Shapiro delay. This is

certainly true for stars that are very far away. The cases where ∆tsh is large is

when the stars are either positioned close to the LOS or have very large velocities.
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The correlation between the analytical result and simulation gets worse at

larger ∆tsh due to the linear approximation that was made when deriving the

analytical expression (Equation 3.15) breaking down. This means that the an-

alytical solution cannot accurately predict the simulation results at high ∆tsh.

However the cases for high ∆tsh are very rare, in most situations it can be said

that the analytical and numerical simulations agree well with one another.
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Figure 3.3: Comparison of the analytical and numerical results for the normalized

1D probability distribution function (PDF).
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Figure 3.4: The PDF shown in Figure 3.3 in log10 scale. The figure shows that

that the correlation between the analytical results (red line) and the numerical

results (blue line) is very good.
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3.3.2 2D model

Adding a second dimension changes the line perpendicular to the LOS into a

plane perpendicular to the LOS. The position of the star on this plane can be

described using polar co-ordinates (ξ, θ), where θ describes the orientation of ξ

in the plane perpendicular to the LOS (see Figure 3.5).

y

ξ

θ

z

Figure 3.5: The relationship between the two-dimensional Cartesian co-ordinate

system (y,z) and polar co-ordinate system (ξ,θ). The centre of the globular cluster

is at the origin, and the LOS to the observer (the x direction) is out of the page.

The probability p(∆tsh) in this case is given by

p(∆tsh) =

∫∫∫

p(ξ, θ, vθ,∆tsh) dξ dθ dvθ. (3.27)

The position and velocity distribution in the polar co-ordinate system (ξ, θ, vθ,

∆tsh) is not known, but the distributions are known in the Cartesian co-ordinate

system of (y, z, vy, vz). A Jacobian can be used to change the co-ordinate

system from Cartesian to polar co-ordinates. The position parameters in the two

co-ordinate systems are related by:

y = ξ cos θ

z = ξ sin θ.
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From these relations, the velocities can be written as

vy =
dy

dt
=

dξ

dt
cos θ − ξ sin

dθ

dt

vz =
dz

dt
=

dξ

dt
sin θ + ξ cos

dθ

dt
.

It is possible to re-write dξ
dt

= vξ the velocity of the impact parameter. The

function dθ
dt
, the change of angle, can be ignored in the case of the Shapiro delay

as this is symmetrical around the LOS. In other words, the change in Shapiro

delay is due to a change in ξ by the speed vξ, and does not depend on θ or its

change, dθ
dt
. As a result, the change in variable for the velocity can be expressed

as

v2ξ = v2x + v2y . (3.28)

A Jacobian for the position is

Jy,z =

∣

∣

∣

∣

∂(y, z)

∂(ξ, θ)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∂y
∂ξ

∂y
∂θ

∂z
∂ξ

∂z
∂θ

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

cos θ −ξ sin θ
sin θ ξ cos θ

∣

∣

∣

∣

∣

∣

= ξ. (3.29)

Changing the co-ordinate system from polar (ξ, θ) to Cartesian (y, z) using the

Jacobian Jy,z, the PDF is

p(∆tsh) =

∫∫∫

p(ξ, θ, vθ,∆tsh) dξ dθ dvθ

=

∫∫∫

p(y) p(z)Jy,z p(∆tsh) p(vz) dy dz dvz

=

∫∫∫

p(y) p(z) Jy,z p(vy) p(vz) Jvy ,vz J∆tsh dy dz dvz. (3.30)

The Jacobian J∆tsh is shown in Equation 3.19. Since the distributions used in the

simulation is Gaussian for each Cartesian co-ordinate and velocity, the PDF can
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now be expressed as

p(∆tsh) =

∫∫∫

p(y) p(z) Jy,z p(vy) p(vz) J∆tsh dy dz dvz

=

∫∫∫

1

2πσ2
1

exp

(

−y
2 + z2

2σ2
1

)

Jy,z
1

2πσ2
2

exp

(

−
v2y + v2z
2σ2

2

)

J∆tshdy dz dvz

=

∫∫∫

1

2πσ2
1

exp

(

− ξ2

2σ2
1

)

Jy,z
1

2πσ2
2

exp

(

−
v2ξ
2σ2

2

)

J∆tshdξ dθ dvθ. (3.31)

Due to symmetry around the LOS, θ and vθ can be integrated out separately,

therefore:

p(∆tsh) =

∫∫∫

1

2πσ2
1

exp

(

− ξ2

2σ2
1

)

Jy,z
1

2πσ2
2

exp

(

−
v2ξ
2σ2

2

)

J∆tshdξ dθ dvθ

=
1

(2π)2σ2
1σ

2
2

(
∫ ∞

−∞

dθ

)(
∫ ∞

0

dvθ

)[
∫ ∞

0

exp

(

− ξ2

2σ2
1

)

Jy,z exp

(

−
v2ξ
2σ2

2

)]

J∆tshdξ

=
1

σ2
1σ

2
2

(

2GM

c3
∆T

)−1 ∫ ∞

0

ξ2 exp

[

−
(

1

2σ2
1

+

(

2GM
c3

∆T
)−2

(∆tsh)
2

2σ2
2

)

ξ2

]

dξ.(3.32)

Using the identity
∫ ∞

0

x2 exp(−ax2) dx =
1

(2a)3/2
, (3.33)

the probability can be integrated and becomes

p(∆tsh) =
1

σ2
1σ

2
2

(

2GM

c3
∆T

)−1
2

(2a)3/2
. (3.34)

where,

a =
1

2σ2
1

+

(

2GM
c3

∆T
)−2

(∆tsh)
2

2σ2
2

. (3.35)

Compared to the 1D case, the resulting function is a steeper Cauchy distribution,

suggesting that more stars are distributed around ∆tsh = 0.

Figure 3.6 shows the distribution of the analytical solution mapped onto the

numerical result for two dimensions. Similar to the 1D case, the results agree

well with one another.
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Figure 3.6: Comparison of the analytical and numerical results for the normalized

two dimensional probability distribution function (PDF).
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Figure 3.7: The PDF shown in Figure 3.6 in log10 scale, showing good correlation

between the analytical and numerical results.
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3.3.3 3D model

For the 1D and 2D cases, the Shapiro delay is a function of the impact parameter

ξ. For 3D, the Shapiro delay function is sensitive to ξ and also ρ, the stellar

position along the LOS. From Figure 2.7 it was shown that the Shapiro delay is

not symmetrical in ρ. This might indicate that the analytical solution is more

complex than in the case of two dimensions.

Let us revisit Equation 2.32. In terms of ξ and ρ this equation is expressed as

∆tsh(ξ, ρ) =
∂tsh
∂ξ

∣

∣

∣

∣

ξf

∆ξ +
∂tsh
∂ρ

∣

∣

∣

∣

ρf

∆ρ. (3.36)

Due to symmetry along the LOS the θ term can be ignored. It is now necessary

to include the second term in ∆tSh. The two partial derivatives are obtained by

differentiating Equation 2.32. The first term is then,

∂tSh
∂ξ

=
2GM

c3









κ

(

− 1
ξ2

√

ρ2 + ξ2 + 1√
ρ2+ξ2

− κ ρ
ξ2

)

1
ξ

√

ρ2 + ξ2 + κρ
ξ

− 1

ξ









(3.37)

=
2GM

c3









κ

ξ

(

−
√

ρ2 + ξ2 + ξ√
ρ2+ξ2

− κρ

)

√

ρ2 + ξ2 + κρ
− 1

ξ









(3.38)

= −2GM

c3







κ

ξ

(

√

ρ2 + ξ2 + κρ
)

− ξ2√
ρ2+ξ2

(

√

ρ2 + ξ2 + κρ
) +

1

ξ






. (3.39)

The first term in the square brackets in Equation 3.39 is zero when ρ = 0,

consistent with the one- and two-dimensional cases. For small ρ (i.e. ξ ≫ ρ)

the same term can be approximated as 1
ξ

ρ
ξ+κρ

→ 0. For the case when ρ ∼ ξ

the first term in the bracket is always smaller than the second term, and for

the case ρ ≫ ξ the first term approximates to κ
ξ
. In all three cases, the second

term dominates in important areas of the parameter space (regions of space that

contribute significantly to the Shapiro delay), meaning that the partial derivative
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can be approximated as
∂tSh
∂ξ

∼ −2GM

c3
1

ξ
. (3.40)

The second partial derivative is

∂tSh
∂ρ

=
2GM

c3
κ





ρ

ξ
√

ρ2+ξ2
+ κ

ξ

1
ξ

√

ρ2 + ξ2 + κρ
ξ



 (3.41)

=
2GM

c3
κ





ρ√
ρ2+ξ2

+ κ
√

ρ2 + ξ2 + κρ



 . (3.42)

When ξ = 0, ≫ ρ1, or ρ ∼ ξ the partial derivative reduces to

∂tSh
∂ρ

∼ 2GM

c3
1

ρ
. (3.43)

Returning to Equation 3.36, since the partial derivative with respect to ξ is the

same as the case for two dimensions, the results from the two dimensional case will

be used for this component of ∆tSh. The component with the partial derivative

with respect to ρ is determined as follows.

Implementing Equation 3.43 into Equation 3.36, the second term becomes

∆tSh,ρ =
∂tSh
∂ρ

∆ρ (3.44)

=
2GM

c3
1

ρ
vρ∆T. (3.45)

The linear approximation (stars travelling in a straight line at constant velocity)

has been made for ∆ρ = vρ∆T , and ∆T is the total observation time. Re-

arranging for the velocity gives

vρ =

(

2GM

c3
∆T

)−1

ρ∆tSh, (3.46)

and the Jacobian that will be used to change the variable in the PDF to introduce

the ∆tSh is given by,

J∆tsh =

∣

∣

∣

∣

∂(vρ)

∂(∆tsh)

∣

∣

∣

∣

=

(

2GM

c3
∆T

)−1

ρ. (3.47)

1In this case the second term in the brackets tends to zero.
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Let us now determine the probability distribution function for the 3D case. For

a globular cluster where the stellar position is generated using a Gaussian distri-

bution (for each dimension), the PDF for the change in Shapiro delay is given

by

p(∆tsh) =

∫∫∫∫

p(x, y, z,∆tsh,ξ, vy,∆tsh,ρ) dx dy dz dvy

=

∫∫∫∫

p(x, y, z, vx, vy, vz) J∆tsh,ξ J∆tsh,ρ dx dy dz dvy

where the Jacobian can be determined from Equation 3.19 and Equation 3.47.

There are two Jacobians due to the Shapiro delay being a function of both ξ and

ρ. The change in position from Cartesian to Cylindrical polar co-ordinates is

acheived by using a Jacobian

Jx,y,z =

∣

∣

∣

∣

∂(x, y, z)

∂(ρ, ξ, θ)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂x
∂ρ

∂x
∂ξ

∂x
∂θ

∂y
∂ρ

∂y
∂ξ

∂y
∂θ

∂z
∂ρ

∂z
∂ξ

∂z
∂θ

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0

0 cos θ −ξ sin θ
0 sin θ ξ cos θ

∣

∣

∣

∣

∣

∣

∣

∣

∣

= ξ. (3.48)

The comparison of co-ordinate systems is shown in Figure 3.1.

As the 3D case has been shown to be just teh 2D case with the extra dimension

added, the PDF can be simplified to

p(∆tsh) = p(∆tsh)ξ

∫

p(ρ,∆tsh,ρ) dρ, (3.49)

where p(∆tsh)ξ is the PDF in ξ. As the PDF for ξ and ρ are independent of

one another and therefore separable, let us define the integration in the above

equation as p(∆tsh)ρ, the PDF for ρ. Similar to the 1D case p(∆tsh)ρ can be
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written as

p(∆tsh)ρ =

∫

p(ρ, vρ) J∆tsh,ρ dρ

=

∫

p(ρ)p(vρ) J∆tsh,ρ dρ, (3.50)

where the Jacobian has been determined previously. Gaussian distributions were

used to generate the values of x and vx. x is in the same direction as ρ, however

the origin of the two variables are different; ρ = 0 is at the centre of the globular

cluster, whereas x = 0 is at the observer. The relation between the two is then

x = ρ− µ, where µ is the distance to the centre of the globular cluster from the

observer. So the probability is

p(∆tsh) =

∫

p(ρ− µ) p(vρ) J∆tsh dρ

=

∫

G(ρ− µ) G(vρ)

∣

∣

∣

∣

∂(vρ)

∂(∆tsh)

∣

∣

∣

∣

dρ, (3.51)

where the Jacobian is given in Equation 3.47. Writing the full expressions for the

distributions and replacing vξ the probability becomes

p(∆tsh)ρ =

∫ ∞

0

√

2

πσ2
1

exp

(

−(ρ− µ)2

2σ2
1

)√

2

πσ2
2

exp

(

−v
2
rho

2σ2
2

)(

2GM

c3
∆T

)−1

ρdρ

=

∫ ∞

0

2ρ

πσ1σ2
exp

(

−(ρ− µ)2

2σ2
1

−
(

2GM
c3

∆T
)−2

(∆tsh)
2ρ2

2σ2

)

(

2GM

c3
∆T

)−1

dρ.

The term in the first bracket can be re-written by completing the square,

−(ρ− µ)2

2σ2
1

−
(

2GM
c3

∆T
)−2

(∆tsh)
2ρ2

2σ2
= − 1

2σ2
1

[

ρ2 − 2µρ+ µ2 +

(

2GM

c3
∆T

)−2

(∆tsh)
2σ

2
1

σ2
2

ρ2

]

= − 1

2σ2
1

[

E2ρ2 − 2µρ+ µ2
]

, (3.52)

where,

E = 1 +

(

2GM

c3
∆T

)−2

(∆tsh)
2σ

2
1

σ2
2

. (3.53)
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The terms in the square brackets can then be written as,

− 1

2σ2
1

[

E2ρ2 − 2µρ+ µ2
]

= − E2

2σ2
1

[

ρ2 − 2µ

E2
ρ+

µ2

E2

]

= − E2

2σ2
1

[

(

ρ− µ

E2

)2

+
µ2

E2
− µ2

E4

]

= − E2

2σ2
1

(

ρ− µ

E2

)2

− µ2

2σ2
1

(

1− 1

E2

)

.

As a result

p(∆tsh)ρ =
2

πσ1σ2

(

2GM

c3
∆T

)−1

exp

[

− µ

2σ2
1

(

1− 1

E2

)]
∫ ∞

0

ρ exp

[

− E2

2σ2
1

(

ρ− µ

E2

)2
]

dρ.

(3.54)

Using the identity,

∫ ∞

−∞

x exp
[

−a(x− b)2
]

dx = b

√

π

a
, (3.55)

the PDF becomes

p(∆tsh)ρ =
2

πσ1σ2

(

2GM

c3
∆T

)−1

exp

[

− µ

2σ2
1

(

1− 1

E2

)]

µ
√

2πσ2
1

1

E3
. (3.56)

The PDF of the whole system is the product of the two probabilities shown in

Equation 3.34 and Equation 3.56, so it is written as

p(∆tsh) =
2µ

√
2

σ2
1σ

3
2

√
π

(

2GM

c3
∆T

)−2

exp

[

− µ

2σ2
1

(

1− 1

E2

)]

1

E3

1

(2a)3/2
, (3.57)

where,

a =
1

2σ2
1

+

(

2GM
c3

∆T
)−2

(∆tSh)
2

2σ2
(3.58)

E = 1 +

(

2GM

c3
∆T

)−2

(∆tSh)
2σ

2
1

σ2
2

. (3.59)

The PDF is a steeper Cauchy distribution compared to the two dimension case,

as 1
E2 ∼ 1

1+(∆tSh)6
.

Figure 3.8 and 3.9 shows the distribution of the analytical solution mapped

onto the numerical result for a 3D model. The agreement between the two ap-

proaches is good at the centre (∆tsh = 0). However at the edges of the distribution
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Figure 3.8: Comparison of the analytical and numerical results for the normalized

3D probability distribution function (PDF).
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Figure 3.9: The PDF shown in Figure 3.8 in log10 scale. The analytical and

numerical results also correlate very well in the 3D case.
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the analytical approach slightly underestimates the probabilities when compared

to the numerical approach. The cause for this discrepancy arises from the lin-

ear approximation that was made when determining the change in Shapiro delay.

The linear approximation will underestimate the change in Shapiro delay for stars

approaching the LOS – the actual change in Shapiro delay is much greater than

that predicted in the linear approximation, and will, similarly, overestimate the

change in Shapiro delay for stars moving away from the LOS. This means that

the normalised PDFs look very similar, but the analytical approach will over-

and under-estimate the change in Shapiro delay dependent on whether the stars

are approaching or moving away from the LOS. The MC simulation (numeri-

cal approach) does not use the linear approximation so its PDF is the actual

distribution of the change in Shapiro delay.

The analytical approach indicates that the results of the numerical simulation

agree well with predictions. Therefore, it can be said that the simulation is

producing reliable results, and so it is possible to use this simulation to determine

the Shapiro noise produced by the stellar motion around pulsars.
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3.3.4 PDF overview

Before determining the Shapiro noise of a globular cluster to obtain the timing

residual for the pulsar (Chapter 5), let us look at how the PDF varies with added

dimensions.
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Figure 3.10: Comparisons of the normalized PDF for each dimension.

Figure 3.10 shows the difference in the PDF of analytical solutions for 1D,

2D and 3D. The addition of a dimension increases the peak around ∆tsh = 0.

This indicates that the extra dimension affects the distribution of position and

velocities of the stars. The added dimension reduces the effect a star has on the

Shapiro delay, as the PDF peak becomes narrower and larger in amplitude.

This effect can be clearly seen for the positions. In 1D, for a variance of σ = 5

pc, a Gaussian distribution means that the majority of stars are situated within

the region −5pc ≤ ξ ≤ 5pc. In two dimensions, the range of values possible for ξ

is
√
52 + 52 ∼ 7 pc, meaning that the distribution of stars is wider than the 1D

case. Therefore, increasing the number of dimensions of the Gaussian distribution

increases the fraction of the distribution concentrated within a given fixed radius
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from the centre. This wider distribution and increased fraction means that the

effect of each star on the Shapiro noise is reduced, as it is less likely to be close to

the LOS. On the other hand, the increased fraction means that the probability

of a smaller change in Shapiro delay is increased. The same can be said when

moving from 2D to 3D, and the resulting PDF has a much larger peak around

∆tSh = 0.

3.4 Determining 〈(∆tSh)2〉

The primary reason for determining the analytical and numerical solutions for

the change in Shapiro delay, ∆tSh, is to have a ‘check’ for the MC simulations

described in Section 3.2 and also predict the expected value of ∆tSh for 108 stars,

the total number of stars inside the globular cluster.

Analytically, 〈(∆tSh)〉 is determined by

〈(∆tSh)〉 =
∫

p(∆tSh) (∆tSh)
2 d(∆tSh) (3.60)

The root-mean-square (RMS) of ∆tSh can be determined numerically from the

MC simulations.

3.4.1 Number of dimensions

Let us now investigate the RMS of ∆tSh. For this, the MC simulation of one

star and one pulsar (positioned at the centre of the globular cluster and non-

moving) was made. Initially the position and velocity were generated using a

Gaussian distribution in 1D. The change in Shapiro delay of this star over an

observed period of 3600 days was determined. Then a new star was generated

(from the same distribution) for the same pulsar and its change in Shapiro delay

was determined in the same manner as for the first star. This was repeated 107

times. The high number of realizations was done in order to obtain a smooth

PDF from which the RMS could be determined.
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This simulation was repeated for 2D and later on 3D. Table 3.2 shows how

(∆tsh)rms varies with dimensions. Since the distribution becomes more concen-

trated around ξ = 0 as described in Section 2.7.1, the values of ∆tsh decreases

with increasing number of dimensions. The values for the analytical and numer-

ical simulations correlate well with one another. The discrepancy (as described

earlier) stems from the linear approximation in the analytical approach.

Number of dimensions Analytical Numerical Ratio

(× 10−9s) (× 10−9s)

1 7.804768 8.539496 0.913961

2 2.320076 2.084895 1.112801

3 1.726819 1.411108 1.223732

Table 3.2: Comparison of the root-mean-square (RMS) value for the change in

Shapiro delay, ∆tSh for one star and one pulsar, observed for a period of 3600

days.

3.4.2 Number of stars

Since globular clusters contain more than one star, let us now populate a globular

cluster with more than one star. For this, the MC simulation was altered so that

it would generate more than one star and one pulsar stationary at the centre.

The stars were allowed to move by generated velocities for a period of 3600 days.

The change in Shapiro delay due to each star was determined, and then added

together. The Shapiro noise for the system was then determined. This simulation

was repeated 100 times (to get an average ∆tSh value), and then repeated for

different numbers of stars. Table 3.3 shows how the average ∆tSh varies with

the number of stars. With increasing number of stars, the more likely it is for a

star to be positioned close to the LOS, and results in a larger Shapiro noise. In

addition, even if the stars are situated far from the LOS, the Shapiro delay is an

additive term, so it accumulates to produce a large effect.
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Number of Stars 〈∆tSh〉

(seconds)

100 1.970047 × 10−9

101 7.738209 × 10−9

102 2.453314 × 10−8

103 7.656143 × 10−8

104 2.297258 × 10−7

105 7.341568 × 10−7

106 2.222465 × 10−6

Table 3.3: The change in Shapiro delay, 〈(∆tSh)〉 for different number of stars in

a globular cluster, observed over a period of 3600 days.

3.4.3 Prediction for ∆t for 108 stars

From Table 3.3 the (∆tsh) varies with the number of stars by a factor ∼
√
N ,

where N is the number of stars. For example, the ∆tSh value for 106 stars, ∼ 2

× 10−6 s, is similar to that of one star, ∼ 2 × 10−9s, multiplied by a factor of
√
106 = 103.

The reasoning behind this relationship is rather simple: since every star is

allocated a random direction and speed for subbessive short time intervals, the

resulting trajectory is that of a random walk. For a random walk that varies

with a Gaussian distribution with zero mean and a finite variance – such as the

position and velocity components in the simulation – the expectation (or mean)

value E for the Shapiro noise is the summation of the square of the Shapiro noise

of every star, namely

E = (∆tSh)
2

1 + (∆tSh)
2

2 + (∆tSh)
2

3 + . . .+ (∆tSh)
2

N

=
N
∑

i=1

(∆tSh)
2
i ,

∼ N(∆tSh)
2. (3.61)

The root mean square for the Shapiro noise is then the square root of E,

√
E =

√
N (∆tSh) . (3.62)
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Therefore for 108 stars, the expected value for the change in Shapiro delay is

∼
√
108 × 10−9 s ∼ 10−5 s, or 10 microseconds. This value – that was previously

ignored – will be an observable noise term for the PPTA (see Chapter 1). For

larger, more sensitive, arrays, such as the SKA, the Shapiro noise will become an

important factor for pulsar timing.

3.5 Summary

In this section a simple globular cluster was created in order to determine the

magnitude of the Shapiro noise. An analytical approach was taken to meticulously

check the validity of the globular cluster. Once satisfied with the validity of this

simulation the magnitude of the Shapiro noise was determined for a globular

cluster containing 106 stars. The results from this simulation were then scaled up

to determine the predicted magnitude of the Shapiro noise for a 108 star globular

cluster, which was of the order of 10 microsecconds.

It was also mentioned that the Shapiro delay is a term that cannot be directly

observed, but is inferred from movement of stars within the globular cluster. Since

the stars move around the globular cluster, this results in the change in Shapiro

delay over time – the Shapiro noise – which is an observable quantity. Chapter 4

will investigate how pulsar timing residuals are affected by Shapiro noise alone.
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Part IV

Timing Residuals
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4

Pulsar timing residuals

In the previous chapter it was shown that the Shapiro noise is a potentially

observable effect in pulsar timing, but no consideration was given to how the noise

would appear in real pulsar timing residuals. From this Chapter to Chapter 7,

this Shapiro noise is the only noise term added to pulsar timing.

The differentiations shown in Section 4.3.3, and the implementation of the

polynomial fitting method to pulsar timing in Section 4.4 are all original work.

4.1 Timing residual

Before investigating the effects, let us determine (and define) the timing residual.

For more information on timing residuals for pulsars in 47 Tucanae see Freire

et al. (2001a).

The phase φ of a signal arriving at time tSSB with apparent pulsar spin fre-

quency f is given by (see Lorimer and Kramer 2004 for full details),

φ(tSSB) =

∫

2πfdtSSB (4.1)

= 2π

(

f0tSSB +
1

2
ḟ0t

2
SSB

)

+ 2πn(tSSB), (4.2)

where n(t) is the additional (intrinsic) noise term, which accounts for higher

orders, O(t3), in the time dependence of the phase, f0 is the pulsar spin frequency
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at tSSB = 0 and ḟ0 is the rate of change of spin frequency at tSSB = 0 (this term

is usually negative). The term in brackets is simply the second order Taylor

expansion of f . Converting the phase into a (arrival) pulse number N = φ
2π
, the

above equation can be written as,

N = f0tSSB +
1

2
ḟ0t

2
SSB + n(tSSB), (4.3)

which has solutions for the time of arrival (or TOA) of the N th pulse given by,

tTOA(N) = −f0
ḟ0

±
√

(

f0

ḟ0

)2

+
2N

ḟ0
for n(t) = 0. (4.4)

Figure 4.1 shows the relationship between pulse number N and the time of

arrival t of that particular pulse, assuming no change in spin frequency of the

pulsar (ḟ0 = 0). When there is no change in spin frequency of the pulsar, i.e.

ḟ0 = 0, Equation 4.4 breaks down as Equation 4.3 becomes a linear function with

one solution for the pulse number N ,

N = f0tSSB for ḟ0 = 0 and n(t) = 0. (4.5)

Figure 4.1 also shows the difference between the linear solution and one (the

plus-sign) of the solutions for Equation 4.4. The change in time of arrival of a

particular pulse increases over observation time when an ḟ0 term is introduced.

Figure 4.2 compares the two solutions given in Equation 4.4 with the linear

relation. The introduction of ḟ0, which is nearly always a negative value (pulsar

spin down), means that it takes longer for a particular pulse to arrive, as the

frequency decreases (and spin period increases). This changes the function from

linear into a quadratic, as shown in Equation 4.4. Although Equation 4.4 has two

solutions, only the first (positive sign) solution is valid, as it is not possible for

the TOA of a pulse to be shorter with decreasing spin frequency, meaning that

the second (minus sign) solution can be ignored in this analysis.

Equation 4.4 can therefore be seen as expressing the predicted TOA of the N th

pulse. This predicted TOA can then be compared to the actual TOA obtained
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Figure 4.1: The arrival pulse number as a function of arrival time for the case of

no change in spin frequency (blue line), and for the case where the change in spin

frequency, ḟ0, is set to 1 × 10−7 Hz s−1 (red line). The red line is the plus-sign

solution in Equation 4.4.

from observations. The timing residual is the difference between these two TOA

values, namely

Residual = tTOA,Obs − tTOA,Pred. (4.6)

Since the predicted TOA is a quadratic function of the arrival time tSSB, and

this is subtracted from the observed TOA, the timing residual consists of cubic

and higher order terms, i.e. O(t3) and higher. The timing residual therefore

contains elements such as f̈ t3.

The standard method of pulsar timing is to determine the frequency f and

the change in frequency ḟ that minimize the timing residual. In other words, it

tries to get a TOA model as close as possible to the observed TOA. The standard

method is described in more detail below. Being able to determine the noise

terms that are present in the higher order terms will allow for a better prediction
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Figure 4.2: The change in time of arrival when a change in spin frequency is

introduced. The red and cyan curves are solutions to Equation 4.4.

in TOA, and therefore will reduce timing noise.

4.2 Determining f0 and ḟ0

Least-Squares fit

To minimize timing residual, it is necessary for the predicted TOA to correlate

very well with observed data. This is done by fitting the spin frequency f and

the rate of change in frequency ḟ to the observed TOA, using a least squares fit.

This fitting process determines the values for frequency and the rate of change in

frequency, called f0 and ḟ0, respectively, that best-fit the predicted TOA to the

observed TOA.

The least-squares fit determines the values of f0 and ḟ0 that minimize the sum

of squared errors. For the case of the spin frequency, the least-squares criterion
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can be written as,

S =

n
∑

i=1

(f0,i − f0,min)
2 (4.7)

=
n
∑

i=1

(f 2
0,i + f 2

0,min − 2f0,if0,min) (4.8)

=

n
∑

i=1

f 2
0,i + nf 2

0,min − 2f0,min

n
∑

i=1

f0,i, (4.9)

where i is the ith TOA out of a total of n TOAs, and f0,i is the f0 value of the

ith TOA. It is necessary to determine S that minimizes f0,min, namely,

∂S

∂f0,min
= 0 (4.10)

= 2nf0,min − 2

n
∑

i=1

f0,i (4.11)

⇒ f0,min =
1

n

n
∑

i=1

f0,i (4.12)

Also, to check for the minimum the 2nd order must be greater than zero,

∂2S

∂f 2
0,min

> 0 (4.13)

= 2n > 0, i.e.minimum (4.14)

so the (unbiased) least-squared estimator (LSE) is then given by,

f0,min =
1

n

n
∑

i=1

f0,i (4.15)

Once the LSE has been determined it can be used to estimate the parameters of

the distribution function.

Maximum-likelihood

The likelihood L is the probability of observing the data, given the value of a

parameter f0,max (which is exactly the same as f0,min, above). A more detailed

definition is given as follows: When the joint probability density function (PDeF)
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Yn(f0|f0,max) of the observations in a random sample is regarded as a function of

a parameter f0,max for given values f0 = (f0,1, ..., f0,n), it is called the likelihood

function (DeGroot 1986). That is,

L(f0,max; f0) = Yn(f0|f0,max). (4.16)

Since the spin frequency is independent at each TOA, it is possible to exploit the

property that the PDF of the data is simply the product of the PDeFs specific

to each observation, namely,

L(f0,max; f0) = L(f0,min; f0,1, ..., f0,n) = Y (f0,1|f0,max)...Y (f0,n|f0,max) =

n
∏

i=1

Y (f0,i|f0,max).

(4.17)

The maximum likelihood estimate of the parameter maximizes the probability of

the observed data such that

∂L
∂f0,max

= 0, and (4.18)

∂2L
∂f 2

0,max

< 0. (4.19)

4.3 Maximum-likelihood method for the TOA

In order to maximize the probability of obtaining the observed TOAs, it is neces-

sary to minimize the residual in Equation 4.6 using the least-squares fit, then use

this value to maximise the likelihood of determining the most probable f0 and ḟ0

values for use within the predicted model, tTOA,Pred.

The likelihood L, the probability of obtaining the observed TOA (which is a

function of f0 and ḟ0), is expressed as,

L =

n
∏

i=1

1√
2πσ

exp

[

−1

2

(tTOA,Obs,i − tTOA,Pred,i)
2

σ2
i

]

. (4.20)

Let us now define the log-likelihood l, which is l = lnL, and is,

l = −n
2
ln(2π)− ln

n
∑

i=1

σi −
1

2

n
∑

i=1

(

tTOA,Obs,i − tTOA,Pred,i

σi

)2

. (4.21)
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When differentiating with respect to f0 and ḟ0 the σi term can be ignored (as

it has no effect in determining the values of f0 and ḟ0) and so the log likelihood

function can be simplified to

l = constant − 1

2

n
∑

i=1

(tTOA,Obs,i − tTOA,Pred,i)
2 . (4.22)

For a particular pulse number i = N , and writing tTOA,Pred in full for that pulsar

number,

lN = −1

2



tTOA,Obs +
f0

ḟ0
−
√

(

f0

ḟ0

)2

− 2N

ḟ0





2

. (4.23)

The standard method for reducing timing residuals tries to maximize this likeli-

hood function.

4.3.1 Log-likelihood function

The log likelihood function l has a maximum at (f0,max, ḟ0,max) that meets the

criteria

∂l

∂f0

∣

∣

∣

∣

∣

f0,max

= 0 (4.24)

∂l

∂ḟ0

∣

∣

∣

∣

∣

ḟ0max

= 0. (4.25)

Taylor expanding l around f0 = f0,max, ḟ0 = ḟ0,max the expression becomes

l(f0, ḟ0) = l(f0,max, ḟ0,max) +
∂l

∂f0

∣

∣

∣

∣

f0,max

· (f0 − f0,max) +
∂l

∂ḟ0

∣

∣

∣

∣

ḟ0max

· (ḟ0 − ḟ0,max) +

+
1

2

[

∂2l

∂f 2
0

∣

∣

∣

∣

f0,max

· (f0 − f0,max)
2 +

∂2l

∂ḟ0
2

∣

∣

∣

∣

ḟ0max

· (ḟ0 − ḟ0,max)
2 +

+
∂2l

∂f0∂ḟ0

∣

∣

∣

∣

f0,max;ḟ0max

· (f0 − f0,max)(ḟ0 − ḟ0,max)

]

. (4.26)

Substituting from Equation 4.24 and Equation 4.25 it is possible to eliminate the

second and third terms of Equation 4.26. This is due to either f0 or ḟ0 being at
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a maximum (so the first derivative is zero), thus the two terms in the top row

are zero. The fourth and fifth terms are zero for the same reason. Therefore, the

likelihood function simplifies to

l(f0, ḟ0) = l(f0,max, ḟ0,max) +
1

2

[

∂2l

∂f 2
0

∣

∣

∣

∣

f0,max

· (f0 − f0,max)
2 +

∂2l

∂ḟ0
2

∣

∣

∣

∣

ḟ0max

· (ḟ0 − ḟ0,max)
2

]

.

(4.27)

Since the above equation is for a log-likelihood, the likelihood for f0 and ḟ0, p(f0,

ḟ0), is the exponential of l. As a result, the probability can be approximated as

a Gaussian,

p(f0, ḟ0) ∝ exp
[

l(f0, ḟ0)
]

(4.28)

∝ exp

(

−1

2
Q

)

, (4.29)

where Q is the quadratic form of l

Q = (f0 − f0,max, ḟ0 − ḟ0,max)





A C

C B









f0 − f0,max

ḟ0 − ḟ0,max



 , (4.30)

where the elements

A =
∂2l

∂f 2
0

∣

∣

∣

∣

f0,max

(4.31)

B =
∂2l

∂ḟ0
2

∣

∣

∣

∣

ḟ0max

(4.32)

C =
∂2l

∂f0∂ḟ0

∣

∣

∣

∣

f0,max;ḟ0max

, (4.33)

such that maximizing the likelihood Q will minimise the least-squares fit, or χ2.

4.3.2 Eigenvalues and eigenvectors

Let us now determine the eigenvalues and eigenvectors of the likelihood function

l (and Q). There are analytical solutions for the eigenvalues and eigenvectors for

the log-likelihood function, and so in a similar manner to Chapter 3, the eigen-

value and eigenvectors can be used as a check for the numerical (MC) simulation.
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For a (co-ordinate) transformation represented by a matrix M , the eigenvalue

equation can be expressed as

(M − λI)x = 0, (4.34)

where I is the identity matrix, and x is the eigenvector. The eigenvalues are

obtained using the “characteristic equation”,

det(M − λI) = 0. (4.35)

For the 2× 2 matrix in Q in Equation 4.30 the characteristic equation is

det

∣

∣

∣

∣

∣

A− λ C

C B − λ

∣

∣

∣

∣

∣

= 0 (4.36)

which has the solution

(A− λ)(B − λ)− C2 = 0 (4.37)

⇒ λ2 − (A+B)λ+ AB − C2 = 0. (4.38)

Solving for λ, the eigenvalues are then

λ+ =
(A+B) +

√

(A+B)2 − 4(AB − C2)

2
(4.39)

λ− =
(A+B)−

√

(A+B)2 − 4(AB − C2)

2
. (4.40)

The magnitudes of the eigenvalues are related to the Fischer information matrix

Ff0,ḟ0
=

∂2l

∂f0∂ḟ0
=
[

−σ2
f0,ḟ0

]−1

(4.41)

and the direction axes are the eigenvectors of F .

4.3.3 Determining eigenvalues and eigenvectors

In order to determine the elements A, B, C in the 2 × 2 matrix in Q let us

differentiate the log-likelihood with respect to f0 and ḟ0. The partial derivatives
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are then,

∂l

∂f0
= 2









1

f0
− f0

ḟ0

√

(

f0
ḟ0

)2

− 2N
ḟ0











tObs +
f0

ḟ0
−
√

(

f0

ḟ0

)2

− 2N

ḟ0



 (4.42)

∂2l

∂f 2
0

= 2











f 2
0

ḟ 4
0

[

(

f0
ḟ0

)2

− 2N
ḟ0

]3/2
− 1

ḟ 2
0

√

(

f0
ḟ0

)2

− 2N
ḟ0













tObs +
f0

ḟ0
−
√

(

f0

ḟ0

)2

− 2N

ḟ0





+2









1

f0
− f0

ḟ0

√

(

f0
ḟ0

)2

− 2N
ḟ0









2

(4.43)

∂l

∂ḟ0
= 2









−f0
ḟ0

−
2N
ḟ2
0

− 2f2
0

ḟ3
0

ḟ 2
0

√

(

f0
ḟ0

)2

− 2N
ḟ0











tObs +
f0

ḟ0
−
√

(

f0

ḟ0

)2

− 2N

ḟ0



 (4.44)

∂2l

∂ḟ 2
0

= 2











2f0

ḟ 3
0

−
6f2

0

ḟ4
0

− 4N
ḟ3
0

2

√

(

f0
ḟ0

)2

− 2N
ḟ0

+

(

2N
ḟ2
0

− 2f2
0

ḟ3
0

)2

4

[

(

f0
ḟ0

)2

− 2N
ḟ0

]3/2













tObs +
f0

ḟ0
−
√

(

f0

ḟ0

)2

− 2N

ḟ0





+2









−f0
ḟ0

−
2N
ḟ2
0

− 2f2
0

ḟ3
0

ḟ 2
0

√

(

f0
ḟ0

)2

− 2N
ḟ0









2

(4.45)

∂2l

∂f0∂ḟ0
= 2











2f0

ḟ 3
0

√

(

f0
ḟ0

)2

− 2N
ḟ0

+
f0

(

2N
ḟ2
0

− 2f2
0

ḟ3
0

)

2ḟ 2
0

[

(

f0
ḟ0

)2

− 2N
ḟ0

]3/2
− 1

ḟ 2
0













tObs +
f0

ḟ0
−
√

(

f0

ḟ0

)2

− 2N

ḟ0





+2









1

f0
− f0

ḟ0

√

(

f0
ḟ0

)2

− 2N
ḟ0

















−f0
ḟ0

−
2N
ḟ2
0

− 2f2
0

ḟ3
0

ḟ 2
0

√

(

f0
ḟ0

)2

− 2N
ḟ0









. (4.46)

The second order derivatives of f0 and ḟ0 are the elements A and B, respectively,

and the final equation is is for the element C in Equation 4.30, which is also a

second order derivative. These are then substituted into Equation 4.39 and 4.40
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to obtain the eigenvalues. The C coefficient can also be used to determine the

Fisher matrix eigenvectors.

The analytical approach will now be compared to the MC simulation and the

effect the Shapiro noise will have on the timing residual is investigated.

4.3.4 Application to MC simulation

A new MC simulation was run to predict the timing residuals using the techniques

described above. For this MC simulation, a pulsar of spin frequency f = 100 Hz

and a spin decay ḟ = −2×10−15 Hz s−1 was generated to determine the pulse time

of arrival (tTOA,Obs) for all the pulses over a 3600-day period. This new simulation

used the same method described in Section 3.2 to determine the Shapiro noise for a

105 star globular cluster with one pulsar at the centre. The Shapiro noise term was

then added to tTOA,Obs as the only noise term. The standard method determines

a χ2-fit for every pulse N to determine the most likely f0 and ḟ0 values for the

model, using estimated (‘best guess’) values of f0,max and ḟ0,max (see below). In

our MC simulation the f0 and ḟ0 were determined for observations of one pulse

every 30 days. Figure 4.3 shows a χ2 plot over the f0-ḟ0 plane for a random

pulse number. Due to the characteristics of f0 and ḟ0 the contour lines are not

circles, but sheared ellipticals. A negative ḟ0 is equivalent to pulsar slowing down

in its rotation, and as a result the pulse period increases and the frequency f0

decreases. The opposite is also true for a positive ḟ0. This relationship between

f0 and ḟ0 results in the shearing of the χ2 slightly to the left in Figure 4.3.

The eigenvectors have been plotted over the χ2 contour lines in Figure 4.4

to compare the analytical prediction with the results of the simulation. While it

may not be apparent in Figure 4.4, the two eigenvectors are perpendicular to one

another – the scaling of the axes does not properly display this property. The

eigenvectors correlate well with the direction of the shearing of the ellipses.
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Figure 4.3: χ2-fit to determine the best fit values for f0 and ḟ0.
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Figure 4.4: Comparison between the analytical estimation (eigenvectors, blue)

and the contour lines from the χ2-fit obtained from the numerical simulation.

The eigenvectors are perpendicular to one another, the cross hairs at the same

location as the minimum of the χ2 contour levels.
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4.3.5 Note on χ2-fitting

The accuracy of the best-fit values obtained using the χ2-fit depends on the

resolution – i.e. number of points on the grid – of the f -ḟ plane. The greater the

number of points, the finer the resolution of the grid, and a more accurate best

fit value for f0 and ḟ0 can be obtained.

In addition to a fine grid to determine the likelihood, two additional con-

straints are necessary – an initial estimate of the values for f0 and ḟ0, hereafter

defined as f0,g and ḟ0,g, respectively. These constraints will limit the range of

values for which the χ2 fitting is valid, as it is less likely for the best fit values

to be outside this region. The estimated vales f0,g and ḟ0,g are determined from

previous pulsar timing observations. As the estimated values of f0,g and ḟ0,g

determine the range in f and ḟ it is necessary to accurately define these values.

Once the best-fit values of f0 and ḟ0 are determined by χ2-fitting using a

set of estimated values f0,g and ḟ0,g, respectively, these are used to determine

the model pulsar TOA, tTOA,Pred. This is then subtracted from our simulated

pulsar TOA, tTOA,Obs, to produce the timing residuals. As the TOA is a function

of pulse number N , this process (determining f0 and ḟ0 and updating f0,g and

ḟ0,g values after every N) has to be repeated for every pulse – a very intensive

task computationally for millisecond pulsar observations over ten years. This, in

addition to requiring a high resolution grid in order to accurately determine the

best-fit values for f0 and ḟ0 using χ
2, results in a very time consuming simulation.

The Shapiro noise is a function of the position and velocities of the stars

around the pulsar over observation time, and independent of f0 and ḟ0. As a

result, it may not be necessary to obtain a model for the TOA by calculating for

the maximum f0 and ḟ0 values using the maximum likelihood method. In the

next section an alternative method will be introduced to produce a model for the

TOA which can be used to to determine the timing residuals from the Shapiro

noise.
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4.4 Polynomial fitting

As stated previously, the Shapiro noise is a function of the stellar positions and

velocities and the evolution of these parameters over the observation time. The

Shapiro noise is therefore independent on the evolution of the spin frequency f0

and also the evolution of the change in spin frequency ḟ0 of the pulsar. As a

consequence, it may not be necessary to produce a TOA model for the pulsar by

using the maximum likelihood method to obtain the most likely f0 and ḟ0 values

for the pulsar.

The standard method to determine the timing residual produces a TOA model

by subtracting the first two orders (f0 and ḟ0) from the observed TOA. In this

section an alternative method to subtract the first two orders from the observed

TOA will be introduced. The derivation and implementation of this alternative

method is all original work.

Let us suppose that the observed TOA can be Taylor expanded to form the

polynomial

tObs = a+ bt +
1

2!
ct2 +

1

3!
dt3 +

1

4!
et4 + . . . , (4.47)

where (a, b, c, d, e) contain timing noise elements, such as the Shapiro noise. The

“standard” f0 and ḟ0 fitting procedure described above will produce a model

tTOA = f0t +
1

2
ḟ0t

2, (4.48)

which then means that the timing residual is

tresidual = tObs − tTOA (4.49)

= a+ (b− f0) · t+
1

2!
(c− ḟ0) · t2 +

1

3!
dt3 +

1

4!
et4 + . . . . (4.50)

This is analogous to fitting a second order polynomial to the observed TOA to

determine the most precise values of f0 and ḟ0. Such a fit will remove the first

three terms in the above equation completely, as a is an offset and (b−f0), (c−ḟ0)
become zero – they are fitted out. The resulting timing residual is then a function
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of the third and higher orders

tresidual =
1

3!
dt3 +

1

4!
et4 + . . . . (4.51)

If the noise term in the observed TOA consists solely of the Shapiro noise, the

timing residual can be obtained by subtracting the second order polynomial fit

of the Shapiro noise from the observed TOA. Using this method it is possible

to obtain the timing residual without the need to determine f0 and ḟ0 explicitly,

and requires much less computational power compared to gridding for χ2-fit.

The risk of using a second-order polynomial fit to obtain a timing residual is

that any real (observed) information contained in the first two orders are lost and

cannot be recovered. However, this risk is similar to that of using the least-squares

fit method to determine the timing residual.

4.4.1 Polynomial fitting for ∆tSh

Let us now investigate whether it is possible to implement this polynomial fitting

for the Shapiro noise to obtain the timing residual. The MC simulation (in

Section 3.2) that produced ∆tSh for one pulsar (at the centre of the globular

cluster) and one star was used to test this method. The command polyval

(polynomial evaluation) in MATLAB was used to determine an n-degree polynomial

(in this case, n = 1, 2) of the form:

p(t) = p1t
n + p2t

n−1 + p3 (4.52)

where the coefficients p1, p2 and p3 are such that the polynomial p(t) matches

closely to the Shapiro noise. Then the command polyfit (polynomial curve

fitting) utilises these coefficients to create the timing model, tTOA, which was

then subtracted from the Shapiro noise to produce the timing residual.

Three different variations of the MC simulation were created, each with dif-

ferent stellar position (ξ = 5× 10−4 pc, 1 pc, and 50 pc) to generate the Shapiro

noise (Figure 4.5). This was done to investigate how the timing residual changes
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over a range of ξ. Each star was positioned at ρ = 0 pc. The pulsar is positioned

at the centre of the globular cluster for this simulation. The timing residuals

produced after fitting for the first and second order are shown below.
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Figure 4.5: Logarithm of Shapiro noise as a function of observation time.

A single star at ξ = 5× 10−4 pc

This star is the closest (of the three) to the LOS. Due to this position its absolute

time delay is the largest of the three, and the change in Shapiro delay is the also

the largest as shown in Figure 4.5. When the star moves during the 3600-day

observation period it passes across the LOS, creating a ‘spike’ in the Shapiro

noise. The Shapiro noise function has two distinct components – the spike from

the star crossing the LOS, and the slope. When subtracting out the first order

(linear term), the most dominant component of the timing residual is the spike.

The first order fit removes the slope. The magnitude of the other components are

much smaller. One can then assume that subtracting the second order does not

significantly change the shape or the magnitude of the timing residual. From Fig-
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ure 4.6 the timing residual after the combined first and second order subtraction

also has a similar shape, with the same magnitude.
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Figure 4.6: Top: Timing residual after first order subtracted. Bottom: Timing

residual after first and second order subtracted.
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A single star at ξ = 1 pc

This star is positioned further away from the pulsar LOS than the previous case.

As a result, the magnitude of the Shapiro noise is far smaller. In addition, from

its position it is not possible for this star to get near (or across) the LOS, so

there is no ‘spike’ in the Shapiro noise. When subtracting out the first order,

the timing residual does not look similar to the Shapiro noise function. From

Figure 4.7 subtracting a linear term from the Shapiro noise results in a quadratic

timing residual. This suggests that the largest remaining coefficient is that of the

second order, and that the higher orders in the Shapiro noise are far too small

to have an effect over the (simulated) ten-year observation. When fitting out the

second order, the timing residual has a cubic shape, with a smaller magnitude by

a factor of ∼ 104.
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Figure 4.7: Top: Timing residual after first order subtracted. Bottom: Timing

residual after first and second order subtracted.
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A single star at ξ = 50 pc

This star is positioned furthest away from the central core of the globular cluster

(the furthest of the three cases). The magnitude of the absolute time delay

and the change in the time delay are so small that the effect of this star on

the timing residual is negligible. This is apparent when fitting out the first two

orders (Figure 4.8) the resulting timing residual is similar to white noise with a

very small (∼ 10−20 s) amplitude.

The timing residual is sensitive to the pulsar position. This is due to the

nature of the stellar position in the time delay function.

The results from polynomial fitting – that the timing residual must be dom-

inated by a cubic (and higher order) function – is consistent with Hobbs (2003)

and Freire et al. (2001a).

This study suggests that subtracting using a polynomial fit as a model can

produce the timing residuals for pulsars without the need for determining f0 and

ḟ0 explicitly.
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Figure 4.8: Top: Timing residual after first order subtracted. Bottom: Timing

residual after first and second order subtracted. Note the scale, the fluctuations

in the bottom figure are very small compared to the other figures – this would be

a straight line when plotted over Figures 4.6 and 4.7.
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4.5 Summary

In this chapter the method to measure the effect of Shapiro delay on pulsar timing

is described. The standard method determines the timing residuals by comparing

the observed time of arrival (TOA) with a modeled TOA, created from the likely

values of the frequency f0 and the change in frequency ḟ0.

Since the Shapiro noise is independent of f0 and ḟ0, a new method which uses

a polynomial to subtract the first and second order of the observed TOA, is used

to determine the timing residuals. This new method is computationally more

efficient - as described in the chapter - than the standard method to determine

timing residuals over long observation periods.

The simulations described in this chapter suggest that polynomial fitting pro-

duces timing residuals that have similar properties to those obtained using the

standard method. From here onwards, polynomial fitting will be used to deter-

mine the timing residuals from the Shapiro noise.
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5

Determining timing residuals

from MC simulation

Chapter 4 has described a method to obtain timing residuals from the Shapiro

noise, let us now determine the timing residuals of the pulsars for a simple globular

cluster.

In order to get a more accurate representation of the timing residuals let us

use the MC simulation, with initial conditions shown in Table 3.1, for 106 stars

(1% of total number of stars in the globular cluster), but using the actual pulsar

positions. The pulsar positions are given in Freire et al. (2001a) (for RA and

DEC – z and y in Cartesian), and Freire et al. (2001b) (for x in Cartesian). The

Cartesian (x, y, z) is defined in Section 3.1. The units for RA and DEC – in

units of (h:m:s) and (◦ ’ ”), respectively – have been converted from angular into

a linear distance (pc). The LOS distance R for each pulsar has been estimated

by comparing the period derivatives Ṗ with the dispersion measure (DM) (see

Freire et al. 2001b for full derivation). The model dispersion measure (DM) for

a pulsar is given by

DMi = DMc + neRi

[

(Ṗ /P )obs,i − 〈(Ṗ /P )int〉
]

, (5.1)

where DMc is the dispersion measure at the core of the globular cluster, ne is
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the number density of the plasma, (Ṗ /P )obs,i is the acceleration along the LOS

(Freire et al. 2001a), and 〈(Ṗ /P )int,i〉 is the average intrinsic acceleration for all

pulsars. To determine the distance Freire et al. (2001b) uses a model to predict the

dispersion measure DM closest to the observed value of the dispersion velocity,

DM , that minimises the function

µ ≡
15
∑

i=1

(DMi −DMi)
2. (5.2)

In order to obtain uncertainty estimates in the parameters derived from the

model, Freire et al. (2001b) made an MC simulation using observed pulsar DM ’s

and relevant pulsar parameters consistent with uncertainties from observations of

the globular cluster. The resulting distance along the LOS and the uncertainties

obtained in Freire et al. (2001b) are shown in Table 5.1.

The proper motions of the pulsars are also given in Freire et al. (2003) so these

values were used to compute velocities in the simulation (instead of randomly

generating these values). Table 5.1 shows the Cartesian co-ordinates and velocity

components for each pulsar in 47 Tucanae, and Figure 5.1, Figure 5.2 plot the

positions.

Each pulsar will have a unique stellar distribution around its LOS, so the tim-

ing residuals due to the Shapiro noise for each pulsar should be different, although

pulsars which are close together will have similar timing residuals. Additionally,

one can expect the pulsars at the centre of the globular cluster – where there is a

larger number of stars and therefore a smaller impact parameter between the star

and the LOS – to have larger timing residuals than the pulsars that are further

away.

Other than the pulsar positions, the initial condition for every realisation of

the MC simulation was the same as in Table 5.1. The resulting timing residuals

for three such realisations are shown in Figure 5.3 to Figure 5.5.
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Pulsar RA (pc) DEC (pc) LOS (pc) PM RA (105 m s−1) PM DEC (105 m s−1)

J0023-7204C 1.758 0.525 2.60 ± 0.6 1.382 -0.770

J0024-7204D -0.942 0.218 5.20+2.2
−1.2 1.047 -0.699

J0024-7205E -0.623 -0.685 -1.50 ± 0.4 1.580 -0.616

J0024-7204F 0.209 0.244 -0.15+0.04
−0.08 1.374 -0.865

J0024-7204G -0.263 0.321 0.12+0.08
−0.03 1.133 -0.301

J0024-7204H -0.118 1.139 0.04 ± 0.02 1.138 -0.798

J0024-7204I -0.260 0.322 0.15+0.15
−0.05 1.100 -0.938

J0023-7203J 0.719 1.339 3.40+0.9
−0.7 1.285 -0.858

J0023-7205M 1.284 -0.948 0.12+0.06
−0.04 1.333 -0.790

J0024-7204N -0.403 0.590 2.90+0.7
−0.6 1.347 -0.790

J0024-7204O 0.117 -0.029 -0.04 ± 0.02 1.253 -0.513

J0024-7204Q -1.241 0.683 -0.02+0.01
−0.03 1.347 -0.790

J0024-7204S 0.194 0.255 -0.02* 0.824 -1.561

J0024-7204T -0.330 0.340 -0.40 ± 0.2 1.347 -0.790

J0024-7203U -0.478 1.316 -1.20+0.3
−0.2 1.324 -1.006

Table 5.1: The position and velocity of each pulsar, given in

http://www.naic.edu/∼pfreire/47Tuc/. The distance along the LOS and

the uncertainty are taken from Freire et al. (2003). *The LOS position of the

S-pulsar is an estimation, as the actual distance is not included in Freire et al.

(2003).
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Figure 5.1: RA and DEC of each pulsar. The RA and DEC values are given in

http://www.naic.edu/∼pfreire//47Tuc/ and the units have been converted

into parsecs.
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(2003) and Table 5.1 for errors in pulsar position along the LOS (not drawn in
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Tucanae (5130 pc).
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5.1 Sample realisations

The initial conditions for each realisation are given in Table 3.1. The globular

cluster is 5130 pc away from Earth, containing 106 stars (instead of 105 stated in

Table 3.1). The position of each star was generated using a Gaussian distribution

with a σstar = 5 pc, and the velocity for each star was generated using a Gaussian

distribution with σ = 13200 m s−1 (Webbink 1985). The total observation time is

3600 days, at intervals of 30 days. The 15 observed pulsar positions and velocities

are given in Table 5.1 instead of generating these two parameters using a Gaussian

distribution.

For each realisation (including simulations A1 to A3) a different value for the

position and velocity of the stars is generated. This change in the configuration of

the stars leads a different value of the Shapiro noise along the LOS of the pulsar,

leading to a different value for the timing residuals.

5.1.1 Simulation A1

Figure 5.3 shows that the structure – cubic, or dominated by the third order

– of the timing residual is very similar for every pulsar. This is similar to the

case described in Section 4.4.1, indicating that the closest star is approximately

a parsec away in the plane perpendicular to the LOS. The differences in timing

residuals for each pulsar are the magnitudes, ranging from 10−8 to 10−11 seconds.

This is affected by the position of the star with respect to the pulsar, as well as

the velocities of both star and pulsar.

The timing residuals for the D-pulsar look similar to the case described in

Section 4.4.1. For this case, the separation between the star and the pulsar is

much greater than the other pulsars. This results in a smaller Shapiro noise, and

hence smaller timing residuals. The minimum separation between a star and the

C, F, N and Q-pulsars are inbetween the cases described in Section 4.4.1, and as

a result the cubic structure is not as smooth as the other cases.
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Figure 5.3: Simulation A1: Timing residuals from a sample run of a globular cluster containing 106 stars.
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5.1: SAMPLE REALISATIONS

5.1.2 Simulation A2

For most pulsars the second realisation (Figure 5.4) produces timing residuals

that were similar to the first realisation, as the timing residuals are dominated by

the cubic (third order) term. This, again, means that the perpendicular distance

between the closest star and the LOS to the pulsar is approximately a parsec

away.

This realisation however produces an interesting timing residual for the N-

pulsar. The timing residuals is not a cubic for this pulsar but of higher order.

The ‘spike’ at 30 months may be a result of a transitting star, as described in

Section 4.4.1 Curiously, the Q-pulsar has a similar timing residual – the peak

is offset slightly. From Figure 5.1 and Figure 5.2 the N and Q pulsars are far

apart from one another, and therefore it is highly unlikely that the same star

transitted across the LOS for each pulsar and affected the timing residual. The

most likely explanation for the similarity is that two different stars transitted

across two different LOS at approximately the same time. Since there are 106

stars in the simulation, the probability for this happening is small, but non-zero

(see Section 2.8).
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Figure 5.4: Simulation A2: Timing residuals from a sample run of a globular cluster containing 106 stars.
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5.1: SAMPLE REALISATIONS

5.1.3 Simulation A3

The third realisation shows that for a large portion of the pulsars the minimum

separation is large (> 1 pc). The timing residuals for the majority of the pulsars

look similar to the case shown in Section 4.4.1. The timing residuals for the C,

G, M and T pulsars are similar to that of random noise. Only two pulsars (D

and S) have timing residuals of the order of nanoseconds, the other pulsars all

have timing residuals that are much smaller.
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Figure 5.5: Simulation A3: Timing residuals from a sample run of a globular cluster containing 106 stars.
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5.1: SAMPLE REALISATIONS

5.1.4 Summary of realisations

The realisations show that the timing residual for each pulsar is dependent on

the generated positions and velocities of the stars. As a result the magnitude

and RMS of the timing residuals (as well as the function of timing residuals

over observation time) can vary significantly with each realisation. Therefore a

lot (∼ 100) of realisations were done in order to determine the average RMS

timing residuals and also the spread, or σ of the RMS timing residuals for each

pulsar. If the average RMS timing residuals for each pulsar is the same after 100

realisations, this may indicate that either (i) the Shapiro noise affects the timing

residuals for each pulsar in the same way, or (ii) the globular cluster used in the

MC simulation was made so big causing the core of the cluster to envelop all the

pulsars.

Pulsar 〈tRMS〉 (10−9s) σ (10−9s)

J0023-7204C 147.009240 982.738571

J0024-7204D 3.537374 12.531174

J0024-7205E 53.258640 293.158848

J0024-7204F 4.891511 13.950917

J0024-7204G 1.595120 3.501558

J0024-7204H 5.031296 19.895663

J0024-7204I 39.940922 263.464447

J0023-7203J 5.520901 12.464959

J0023-7205M 12.965606 73.150190

J0024-7204N 384.411153 1785.343614

J0024-7204O 4.230011 16.808911

J0024-7204Q 188.637896 1150.045422

J0024-7204S 72.202016 465.668874

J0024-7204T 4.079968 13.392077

J0024-7203U 1.034556 3.318412

Table 5.2: The average and variance RMS value for the timing residual for each

pulsar in a 106 star 47 Tucanae.

Table 5.2 shows the RMS timing residual for each pulsar in the MC simulation.

The magnitudes of the timing residuals, considering the Shapiro noise was the
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5: DETERMINING TIMING RESIDUALS FROM MC SIMULATION

only noise term in pulsar timing, are of the order of nanoseconds. The Shapiro

noise will be a significant effect in actual observations.

The variance σ of the timing residuals is much larger than the average values.

This indicates that, for some realisations of the MC simulation, there is a star

positioned close to the LOS that produces a high timing residual for that pulsar.

The average values however suggest that such an event is rare, and that for

most realisations the nearest stars are positioned further away, of the order of a

parsec. However, there are a few realisations where the configuration of the stars

produces a large timing residual. Figure 5.6 shows the distribution of the RMS

timing residual values for the I-pulsar, for 100 realisations. For 90 realisations,

the RMS timing residual is of the order of 10−8 to 10−9 s, however there are

ten realisations producing larger (order of 10−6 to 10−7 s) RMS timing residuals.

These latter realisations are the reason why σ is much larger than the average

RMS timing residual for the I-pulsar. If more (∼ 1000) realisations were done,

it will most likely result in a small number of realisations filling the gap between

10−6 to 10−7 s in Figure 5.6, but most of the realisations will be in the 10−8 to

10−9 s region.

The large σ values show that, while lensing events are rare, they do happen

in the simulations. Therefore, σ gives an indication on how likely it is for a

star to be close to the LOS of a particular pulsar. The larger σ is compared

to the average RMS timing residual, the more likely it is for a star to be close

to the LOS, and it is more likely for a real lensing event to be present in the

observed data. The variance does however come with one drawback: if there

is one realisation where the timing residual is sufficiently large (say, 100 times

larger than the average RMS timing residual), this will result in a σ-value that

is not a true reflection of observed data. The difference between one realisation

and another is the random generation of the position and velocity of the stars,

and in the confines (i.e. dimensions) of the globular cluster, the probability of a

star randomly generated close to the LOS is non-zero. Therefore, it should be
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5.1: SAMPLE REALISATIONS

stressed that such an event is very rare (non zero probability), and as a result

determining the average and the variance of the RMS timing residual is a good

indicator of the magnitude and fluctuation of the timing residual for each pulsar.
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Figure 5.6: Histogram of the RMS timing residuals for 100 realisations for the

I-pulsar.

The largest RMS timing residual value is for the N-pulsar, followed by the C-

and Q-pulsars. From above, this may be the result of a star being very close to

the LOS for one of the realisations.

Apart from these three pulsars, the timing residuals of the other pulsars are of

the order of 10−9 s, for a globular cluster containing 106 stars. This is a curious

result, as observations have shown that the timing residuals of the pulsars (in

47 Tucanae) are very different from one another (see Section 7.2). This unifor-

mity in the timing residuals suggest that the stellar distribution is uniform for all

pulsar LOS, with the occasional close star causing large deviations in the timing

residuals. This uniform characteristic of the timing residuals may originate from

the fact that the distributions used to generate the stars used a large variance σ.
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This value was chosen when the analytical prediction and the numerical simula-

tion were being compared, and was not estimated from observations. Therefore

this mass distribution may not reflect the actual mass distribution of 47 Tucanae.

5.2 Optimizing the MC Simulation

Let us for a moment assume that the Gaussian sphere used in the simulations is

an adequate reflection of the actual stellar distribution. In Section 4.4.1 it was

shown that stars close to the LOS produce the largest change in the Shapiro delay,

and therefore the largest effect in timing residual. Since stars far away from the

pulsar contribute the least to the timing residual one can ask the question “how

close to the pulsar does a star have to be in order to significantly contribute to

its timing residual?”. If the contribution is small, for example < 0.001%, then,

as long as every (108) star does not contribute in this manner it is possible to

neglect the star.

From the time delay function, it is clear that the contributions get smaller

with increasing distance from the LOS. So a “cut-off’ radius – a radius where

the stellar contribution becomes negligible – can be implemented into the MC

simulation to filter out stars that are not within this region. This optimises

the MC simulation as it does not require all the stars (108) but only a fraction

of them to obtain, to an adequate approximation (for example over 95%), the

timing residual of the entire globular cluster.

To determine this cut-off radius, let us revert to the MC simulation of one pul-

sar at the centre of the globular cluster. Using the MATLAB command sortarray

it is possible to sort the stars in order of distance from the pulsar. Using the

sorted stars, the cut-off radius was determined in the following manner.
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5.2: OPTIMIZING THE MC SIMULATION

5.2.1 Cumulative Distribution Function

At first, the Shapiro noise for the closest star was determined by the MC simu-

lation. From this, its timing residual and tRMS (the RMS of the timing residual)

were determined. Then, the second closest star was introduced, and the Shapiro

noise, timing residual, and tRMS were determined for this two-star system. This

process of adding one star at a time was repeated until all the stars were in-

cluded. The tRMS values from each iterative simulation were then divided by

the total tRMS, obtained from the final (all stars) simulation. This procedure

indicates how much each iteration contributes to the final timing residual. The

cumulative distribution function (CDF) of the timing residual can then be used

to determine how many stars – and what radii – should be included in order to

obtain a significant fraction of the total timing residual. This MC simulation was

repeated 100 times to estimate the average cut-off radius.

Figure 5.7 shows the CDF for different total numbers of stars in a globular

cluster. The CDF varies with the total stellar number from the globular cluster.

For the case of 105 stars, the CDF is around 0.98, or 98% of the total timing

residual, when determining the Shapiro noise using the nearest 1000 stars to the

pulsar. This means that only the nearest 1000 stars are necessary to accurately

(98%) predict the total timing residual for the entire globular cluster containing

105 stars. More nearby stars are needed to achieve such CDF values for higher

total stellar numbers. Curiously, the CDF for 5 × 105 and 2 × 106 stars seem very

similar to one another. It was predicted that the CDF for 2 × 106 stars would

have been flatter than that of 1 × 106 stars, as more stars should be required in

order to accurately determine the timing residual.

Let us now plot the CDF as a function of the fraction of the number of stars.

The fraction is defined as the nearest number of stars to the pulsar divided by

the total number of stars inside the globular cluster. The results are shown in

Figure 5.8. This shows that the CDF for 2 × 106 stars is the steepest, and the
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CDF for 105 stars to be the flattest. All four CDF’s converge at a stellar fraction

of ∼ 0.1.
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Figure 5.7: Comparison of the cumulative distribution function (CDF) for differ-

ent number of stars in a globular cluster.
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Figure 5.8: Comparison of the cumulative distribution function (CDF) for differ-

ent number of stars in a globular cluster.
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What is interesting to note is that the CDFs do not lie on top of each other.

This most likely stems from nature of the Shapiro noise. While some stars may

be closer to the pulsar, the configuration with respect to the LOS may result in

these stars not producing the largest Shapiro noise. For example, a closest star

at distance r away from the pulsar but between the pulsar and an observer will

produce a larger Shapiro noise than a star at the same distance r but behind the

pulsar with respect to the observer. In addition, since the velocities of the stars

were generated at random, some stars further away from the pulsar (i.e. not the

closest) that have a faster velocity (along the plane perpendicular to the LOS)

may produce a larger timing residual compared to the closest pulsar. This is

because the faster velocity of the star the greater the change in the configuration

of the star with respect to the LOS, which produces a large Shapiro noise. These

may be the reasons why the CDF’s do not align with one another when plotted

as a function of the fraction of stars.

This result suggests that, while it is necessary to include more stars (for the

larger globular clusters), the total fraction needed in order to achieve an accurate

value of the timing residual for the globular cluster is very similar. From the

different stellar counts modeled, the fraction necessary to achieve 0.95 of the

total timing residual for the globular cluster is ∼ 0.05 of the total stars.

5.2.2 Cylinder approximation

From above it was noted that it was necessary to only model a fraction of the

total number of stars (closest to the LOS) to produce an accurate value of the

timing residual for the entire globular cluster. Let us now determine a cut-off

radius – this is the distance (from the LOS) necessary for a star to have an effect

on the timing residuals. Using this distance it is possible to approximate the stars

occupying a volume around the LOS which has a cylindrical shape (circular area

in the plane perpendicular to the LOS, stretched along the LOS). This cut-off is
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not to be confused with the detection radius (Section 2.8.1). The detection radius

is the minimum distance between a star and the LOS for a given distribution (to

determine whether a lensing event happens), whereas this cut-off radius is the

distance between a star and the LOS necessary for a star to have an effect on the

timing residuals. Therefore, ξcut−off ≫ rdet.

Figure 5.9 shows the two-dimensional (plane perpendicular to LOS) distribu-

tion of the stars from the centre of the globular cluster in our simulations. Let

us assume that the pulsar is at the centre of this globular cluster, at r = 0. The

stars that will greatly affect the timing residual would be in the region shown in

the black box in Figure 5.9. These are analogus to the 5% of total stars discussed

previously. In this box the Gaussian distribution can be assumed to be flat.

This assumption is necessary when determining the cut-off radius, and hence the

cylinder.
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Figure 5.9: The cylinder approximation for a Gaussian distribution.

Let us now calculate how many stars (out of the original number) are present
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inside this cylinder. This value is determined by:

Number of stars in cylinder =

∫

cylinder

ρ d(V ol) (5.3)

where ρ is the density within the cylinder. The density is determined by the

distribution used in the MC simulation, hence:

N =
N0

(2πσ2)
3

2

∫

exp

[

−x
2 + y2 + z2

2σ2

]

dx dy dz (5.4)

where N0 is the total number of stars. Since the distribution around the LOS can

be approximated as being uniform, it is possible to simplify the distributions in

y and z so that:

N ≈ N0

(2πσ2)
3

2

A

∫ ∞

−∞

exp

[

− x2

2σ2

]

dx (5.5)

where A = πξ20 , the area around the LOS, with ξ0 being the radius of this circle.

The integration has the solution
√
2πσ2, and hence:

N =
N0

2πσ2
πξ20

=
N0

2

(

ξ0
σ

)2

(5.6)

From the CDF the number of stars required was determined to be 5% (see Sec-

tion 5.2.1), so the cut-off radius can be derived by rearranging this equation:

N(ξcut−off) =
N0

2

(

ξcut−off

σ

)2

(5.7)

⇒ ξcut−off =

(

2N(ξcut−off)

N0

σ2

)
1

2

(5.8)

which results in ξcut−off = 1.58 pc.

5.2.3 Comparison of the cut-off distance derived from the

cylindrical approximation with the simulation pre-

diction

Let us now compare the cut-off distance derived from the analytical solution with

the MC simulation used to determine the CDF.
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Figure 5.10 shows how ξ0 varies as a function of the number of stars (starting

from the nearest one to the pulsar). The lower the number, the nearer the star

is to the pulsar. Figure 5.11 shows how ξ0 varies as a function of the fraction of

total stars. The fraction is defined as the number of stars nearest to the pulsar

divided by the total stellar count in the globular cluster. The two figures indicate

that the radii enclosed by 5% of the total star count is approximately 1.52 pc,

which is consistent with the analytical prediction.
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Figure 5.10: Comparison of ξ0 as a function of the number of stars for varying

total number of stars in a globular cluster.
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Figure 5.11: Comparison of ξ0 as a function of the number of stars for varying

total number of stars in a globular cluster.

5.2.4 Comparison of the timing residual of the optimised

simulation with the MC simulation

It is now important to confirm that the optimised simulation does give the desired

result, i.e. it is necessary to compare the root mean square of the timing residual,

〈tRMS〉, between the optimised and the full MC simulation for a varying number

of total stars. The MC simulation was done for multiple realisations, and an

average 〈tRMS〉 was determined, shown in Table 5.3. Table 5.3 shows there is

minimal difference in the timing residuals between the optimised and the full

simulation.
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Number of stars Optimised simulation 〈tRMS〉 Full simulation 〈tRMS〉 Ratio

(10−10 s) (10−10 s)

1 × 105 1.009231 1.009182 1.000048

5 × 105 4.418820 4.419067 0.999944

1 × 106 16.058432 16.059773 0.999916

2 × 106 12.086644 12.086546 1.000008

Table 5.3: Comparison of 〈tRMS〉 values of the optimised simulation with the full

simulation, for a different number of total stars in the globular cluster.

5.3 Summary

In this chapter the timing residual for a pulsar in a globular cluster containing

106 stars is predicted using MC simulation. The actual positions of the pulsars in

47 Tucanae were used in order to determine the timing residual for each pulsar.

From the MC simulation the majority of the timing residuals are the order of 10−8

to 10−9 seconds. The variance for the timing residuals suggest that while for most

realisations the RMS timing residual is small (of the order of 10−9 s), there are

a few realisations where a star does get sufficiently close to the LOS, resulting in

a large RMS timing residual. This also showed that, while the probability of a

lensing event is low, it is non-zero.

Since the majority of the pulsars had timing residuals of similar magnitude

an investigation was done to determine whether the MC simulation could be

optimised in order to speed up the process of calculating these residuals. It

was shown that, for a stellar distribution that can be represented as a Gaussian

sphere, it was only necessary to simulate the nearest 5% of the stars along the

LOS of the pulsar in order to obtain timing residuals that are an accurate (95%)

representation of the timing residual obtained when modeling all the stars in the

globular cluster.
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Stellar distribution

Until this moment the assumption was made that the stellar mass distribution in

47 Tucanae could be modeled using a Gaussian distribution in all three Cartesian

(x, y, z) co-ordinates. The core of 47 Tucanae is undergoing dynamical evolution,

which results in a centre of gravity of the globular cluster being offset from the

luminosity centre (Calzetti et al. 1993). This results in a more concentrated core

inside a core. From Calzetti et al. (1993) this distribution is described as a double

King profile (King 1966) projected on the plane perpendicular to LOS (y, z in

our co-ordinate system) shown by,

ρ(ξ) = ρ0

[

1

1 + a2ξ2
+

1

1 + b2ξ2

]

, (6.1)

where a = 1
rcc

is the canonical core radius (25 arcseconds, Djorgovski and King

1984) and b = 1
rc

is the core radius in the region < 13 arcseconds (8 arcseconds,

Calzetti et al. 1993). Since this is a mass distribution that is projected onto

the plane, an inverse Abel transform is made in order to change this into a 3D

distribution. The inverse Abel transform is given by

f(r) = −1

π

∫ ∞

r

dF (ξ)

dξ

dξ
√

ξ2 − r2
, (6.2)

where ξ and r are the 2D and 3D radius, respectively, F (ξ) and f(r) are the 2D

and 3D mass distributions, respectively. Implementing Equation 6.1 the inverse
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Abel transform shows that the three dimensional mass distribution is

ρ(r) = −1

π

∫ ∞

r

dρ(ξ)

dξ

dξ
√

ξ2 − r2
(6.3)

=
2ρ0
π

[

∫ ∞

r

a2ξ

(1 + a2ξ2)2
dξ

√

ξ2 − r2
+

∫ ∞

r

b2ξ

(1 + b2ξ2)2
dξ

√

ξ2 − r2

]

(6.4)

=
ρ0π

2

[

1

a

1

(a2r2 + 1)3/2
+

1

b

1

(b2r2 + 1)3/2

]

, (6.5)

where the identity ,

∫ ∞

r

ξ

(1 + a2ξ2)2
dξ

√

ξ2 − r2
=

π

4a

1

(a2r2 + 1)3/2
, (6.6)

was used. From the three dimensional distribution it is possible to generate the

Cartesian (x, y, z) co-ordinates by having first generated the spherical polar co-

ordinates (r, θ, φ). It is assumed that the distribution of θ and φ is isotropic.

The distance r is generated from the cumulative distribution function of ρ(r),

and the values of θ and φ are generated as shown in Figure 6.1.
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Figure 6.2: Comparison with the three dimensional position distribution in the

simulation and the double king profile.

Figure 6.2 shows the comparison between the inverse Abel transformed double

King profile, and the generated r that is used in the simulations. The agreement

between the two is very good in the three dimensional case. In order to verify

whether the co-ordinates were properly generated, let us project the distribution

of the generated radii (to the plane perpendicular tot he LOS) with the radial

distribution of distance using the double King profile. Figure 6.3 shows that

the agreement between the analytical and numerical simulation is also very good

in the two dimensional case. This implies that the initial condition, generation

of stellar position, is correct for both 2D and 3D. The stellar distribution is

more concentrated in the centre of the globular cluster than the Gaussian sphere.

This suggests that pulsars close to the centre of globular clusters will be affected

the greatest – and will also have the largest magnitude – compared with those

pulsars further away. Therefore, this updated mass distribution is expected to

have a larger effect on the pulsars at the centre, and (almost) negligible effect on
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pulsars further away. In addition, since the distribution is more concentrated than

the triple-Gaussian distribution, the “cylinder approximation” may no longer be

valid, as the majority of stars may have to be included in order to determine

∆tSh.
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Figure 6.3: Comparison with the two dimensional position distribution in the

simulation and the double king profile.

6.1 Timing residuals

Figures 6.4 to 6.6 shows three realisations of the simulations to determine timing

residuals taking into account the new stellar distribution, obtained from the in-

verse Abel transform. Other than using the double King profile used to distribute

the stars in the globular cluster, the initial conditions for the simulations are the

same as Section 5.
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6.1.1 Simulation B1

In this realisation the timing residual with the largest magnitude is the O-pulsar.

This pulsar is also the closest to the centre of the globular cluster. The G-pulsar,

also very close to the centre, has the second largest timing residual value. As

there is a very dense region of stars at the centre of the globular cluster, there

is a greater probability of stars being adequately close to the LOS of the pulsars

which produce a large Shapiro noise. As a result the pulsars in the central regions

of the globular cluster – the two above and the J, N, and S-pulsars – have large

timing residuals.

The pulsar with the lowest timing residual is the U-pulsar. This pulsar is very

far from the centre of the globular cluster, in terms of both the plane perpendicu-

lar to LOS and radial distance. As a result, there may not have been many stars

present in the vicinity of its LOS in order to produce a large Shapiro noise, and

hence the Shapiro noise had little effect on the timing residual. The same can be

said about the M-pulsar, which has the second smallest timing residual value.
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Figure 6.4: Simulation B1: Timing residuals from a sample run of a globular cluster containing 106 stars using a double

King profile to generate the stars within the globular cluster.

S
a
to
ru

S
a
ka
i

169



6: STELLAR DISTRIBUTION

6.1.2 Simulation B2

This realisation is different from the first realisation as the pulsar with the smallest

timing residual seems to be the E-pulsar. This suggests thats, for this particular

realisation, there were very few stars close to its LOS.

The timing residual for the I-pulsar for this realisation shows an interesting

structure. The timing residual seems to be dominated not by the third order (as

is the case for the other pulsars) but by effects of a higher order, possibly fourth

or higher order. This may be an indication that towards the end of the simulation

a star was getting very close to this pulsar’s LOS in order to have a large effect.

Upon investigating the simulated data it turns out that this indication is incorrect

– there are no stars that were getting very close to the pulsars LOS. There was

however one star close to the pulsar that moved past the pulsar in the direction

parallel to the LOS. This resulted in a sudden change in the Shapiro noise.
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Figure 6.5: Simulation B2: Timing residuals from a sample run of a globular cluster containing 106 stars using a double

King profile to generate the stars within the globular cluster.
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6.1.3 Simulation B3

In this realisation the timing residuals for a lot of pulsars were dominated by

the fourth or fifth order. In particular, the timing residuals of the S, I, and O-

pulsars have a distinct peak, and the timing residual of the M-pulsar seems to

have similar properties to that of the I-pulsar in Simulation B2. The peaks in the

S, I, and O-pulsars may be attributed to a star approaching fairly closely to the

LOS. The star along the LOS of the S-pulsar was most likely the closest of the

three.

While it was initially thought that the timing residuals for all three pulsars

were affected by the same star – as the three pulsars are in close proximity to one

another and the peaks for the I- and O-pulsar happened almost at the same time

– it is most likely that three different stars affected the three pulsar timings. First

of all, the distances between the three pulsars are so large that a 1 M⊙ star could

not have had such a large effect on each pulsar. Secondly, such an effect would

also be present on the timing residuals of other nearby pulsars, such as the G-

pulsar. However, as the G-pulsar does not feature such a peak, therefore it is more

likely, for this particular realisation, that three different stars affected the timing

residuals of the three different pulsars. Upon investigating the simulated data

the timing residuals of the three pulsars were indeed affected by three different

stars. The star that caused the peak in the timing residual of the S-pular was

the closest of the three, at ∼ 8 × 10−4 pc traveling at the fastest velocity (in a

plane perpendicular to the LOS) of the three at ∼ 12 000 m s−1. The star that

caused the peak in the timing residual for the I-pulsar is the second closest, at ∼
4 × 10−3 pc traveling at ∼ 10 000 m s−1. The star that produced the peak for

the O-pulsar was the furthest away and the slowest, at ∼ 9 × 10−3 pc away and

∼ 9 000 m s−1, respectively.
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Figure 6.6: Simulation B3: Timing residuals from a sample run of a globular cluster containing 106 stars using a double

King profile to generate the stars within the globular cluster.
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6.2 Determining 〈tRMS〉 and summary

Table 6.1 shows the average RMS timing residual for every pulsar during the 100

realisations of the MC simulation. Comparison with Table 5.2 shows that chang-

ing the stellar distribution from a Gaussian sphere to a (inverse Abel transformed)

double King profile has a large effect on the timing residuals.

Pulsar 〈tRMS〉 (10−9s) σ (10−9s)

J0023-7204C 10.169289 53.908989

J0024-7204D 815.050708 2601.047265

J0024-7205E 0.877800 2.417444

J0024-7204F 853.238381 1469.989580

J0024-7204G 546.831905 1434.215547

J0024-7204H 156.868397 740.976187

J0024-7204I 1245.101079 2757.024012

J0023-7203J 12.373827 38.405547

J0023-7205M 0.809550 1.871215

J0024-7204N 604.299182 1568.128637

J0024-7204O 3993.142184 5416.650578

J0024-7204Q 9.781752 50.881473

J0024-7204S 2070.230086 4147.219307

J0024-7204T 66.756956 193.680121

J0024-7203U 1.784514 5.704576

Table 6.1: The average and variance of the RMS value for the timing residual

for each pulsar in a 106 star 47 Tucanae. The stellar distribution of this globular

cluster was modelled using a double King profile.

Table 6.1 shows the O-pulsar has the the largest timing residuals, followed

by the S- and I-pulsars. All three pulsars are very close to the central regions of

the globular cluster. This increases the chance of stars being close to the pulsars’

LOS, producing a large Shapiro noise, and hence a large timing residual. The

pulsars far away from the centre of the globular cluster, such as the E-, M- and

U-pulsars have very small timing residuals.

The variance (of the RMS timing residual) for each pulsar is larger than the

average RMS timing residual. This means that while there is the possibility for
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stars to be very close to the LOS, there are also some realisations where the stars

are further away from the LOS.

The simulation suggests that, for a 106 star globular cluster, the Shapiro delay

will have a significant effect, the order of microseconds, on the pulsars close to

the globular cluster centre. Increasing the stellar count (see following chapter)

will most likely increase the magnitude – by a factor of
√
N (see Section 3.4.3)

– of the timing residuals for each pulsar. This is, and will be, a very significant,

and observable, effect that has been ignored previously.
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7

Full globular cluster simulation

The full globular cluster simulation is carried out by increasing the number of

stars in the globular cluster, from 106 to 108 stars in the MC simulation. This is

a more accurate reflection of the total number of stars in 47 Tucanae.

MC Simulation Observation

Pulsar 〈tRMS〉 (10−6s) σ (10−6s) 〈tRMS〉 (10−6s)

J0023-7204C 0.375506 0.454231 10.73

J0024-7204D 5.900098 16.102202 6.25

J0024-7205E 0.107463 0.830789 4.53

J0024-7204F 17.368777 70.086333 9.04

J0024-7204G 18.267667 95.110043 7.73

J0024-7204H 1.137560 4.909109 19.62

J0024-7204I 22.099014 24.347777 13.66

J0023-7203J 2.906875 15.672934 3.10

J0023-7205M 1.434300 11.264297 16.68

J0024-7204N 15.054943 51.945913 11.62

J0024-7204O 33.330008 127.936930 8.20

J0024-7204Q 2.794278 13.934424 18.88

J0024-7204S 29.080082 58.762029 10.46

J0024-7204T 9.684987 37.070401 50.26

J0024-7203U 0.147104 0.170945 8.48

Table 7.1: Comparison between the observational and simulated RMS timing

residual values.

Table 7.1 shows that the timing residuals are now of the order of microseconds.
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7: FULL GLOBULAR CLUSTER SIMULATION

The magnitude of the largest timing residual is that of the O-pulsar at 33.33 ±
127.94 µs. This pulsar is the closest pulsar to the centre of the globular cluster.

The smallest magnitude is that of the E-pulsar, one of the furthest pulsars from

the globular cluster centre, at 0.11 ± 0.83 µs. As was shown in Chapter 6, the

variance of the timing residuals is much greater than the average values of the

RMS timing residuals. This strongly indicates that the timing residuals are very

sensitive to the stellar configuration of the globular cluster, and therefore, the

stellar distribution around the LOS of the pulsar. Actual RMS values for the

pulsars in 47 Tucanae are also shown in Table 7.1 obtained from Freire et al.

(2003).

When comparing the simulated and observed values of the timing residuals,

the observed timing residuals for pulsars far away from the globular cluster core

are much greater than the simulated timing residuals. However, pulsars in the

core - the F, G, I, N, O and S-pulsars - have a larger simulated (predicted) tim-

ing residual than what is observed. This may indicate that the current accepted

knowledge of the stellar mass distribution (the double King profile) and the dis-

persion velocity – σ = 13200 m s−1 (Webbink 1985, see Section 5.1) – used in the

simulation may not be an accurate representation of the actual stellar configura-

tion for 47 Tucanae. The Shapiro noise is only affected by both these parameters,

the stellar distribution (see Section 7.4), and the velocity dispersion.

The value of the dispersion velocity used in this thesis, σ = 13.2 km s−1

(Webbink 1985), was a higher value compared to the dispersion velocity values

determined through more recent observations. The observed values range from

10.9 ± 1.3 km s−1 (Meylan and Mayor 1986) to 11.8 ± 0.8 km s−1 (McLaughlin

et al. 2006). In addition, Meylan and Mayor (1986) and McLaughlin et al. (2006)

both show that the dispersion velocity is not the same throughout the entire

globular cluster – the dispersion velocity profile decreases as a function of R (the

distance between the star and the centre of the globular cluster) from ∼ 12 km

s−1 at ∼ 0.04 pc (McLaughlin et al. 2006, Figure 24) to ∼ 6 km s−1 at ∼ 3.5
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pc (Meylan and Mayor 1986, Figure 6b). This range of values of the dispersion

velocity could suggest that the simulations may have predicted a higher value of

the RMS timing residuals for the nearby pulsars (F, G, I, N, O and S-pulsars)

as the dispersion values used were larger by ∼ 1 km s−1. As the discrepancy is

small, it may not be the only reason why the predicted RMS timing residuals are

higher than what is observed for the nearby pulsars.

For pulsars further away from the core (pulsars with r > 1 pc), the simulations

shows that the Shapiro noise is not the dominant term in the timing residuals.

This suggest that some other effect is present in these timing residuals.

7.1 Simulated timing residual map

Figure 7.1 shows the timing residual maps for each pulsar from the full GC

simulation. While some pulsars (the E, M, and U-pulsars for example) still exhibit

a predominantly cubic function, the other pulsars have more complex functions.

For example, the O-pulsar contains lots of peaks and does not exhibit a cubic

structure as shown by the E-pulsar. From Section 4.4, each peak may represent

a star approaching close to the LOS of the O-pulsar. Similar structure can be

found on the D, F, S and T-pulsars. In the case of the T-pulsar, the function

suggests that there was one star close to the LOS after approximately 58 months,

and the timing residual has the form of a transit event. For the O and S-pulsars

there were many stars that approached and receded from the LOS.
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Figure 7.1: Timing residuals from a sample run of a globular cluster containing 108 stars.
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7.2: OBSERVED TIMING RESIDUALS

7.2 Observed timing residuals

Figures 7.2 to Figure 7.16 show the observed timing residuals for every pulsar

in 47 Tucanae. Images taken from the “The 23 millisecond radio pulsars in 47

Tucanae” webpage,

http://www.naic.edu/∼pfreire//47Tuc/

The observed timing residuals are of the order to 10−4 to 10−6 s. This is larger

than predictions from previous simulations, which were of the order of 10−9 sec-

onds. However, the 100 realisations were for 106 stars, not 108 stars, the actual

number of stars in the globular cluster. From the predictions described in Sec-

tion 3.4.3, the timing residuals are expected to be larger for greater stellar number

(i.e. scales as a function of
√
N – see Section 3.4.2). In addition, the Shapiro

noise for 108 stars is predicted to be of the order of 10−5 seconds, and one can

therefore assume the timing residuals will be smaller, perhaps of the order of 10−8

seconds.

For all the plots (Figure 7.2 to Figure 7.16), “the 430-MHz residuals are

coloured red, the 660-MHz residuals are coloured magenta, the low-resolution L-

band residuals (centered at 1374 MHz) are coloured yellow and the high-resolution

L-band residuals (centered at 1390 MHz) are coloured green” (citation taken from

website listed above).
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Figure 7.2: Timing residuals for the C-pulsar. From the simulations, the average

RMS timing residual, 〈tRMS〉 = 0.38 ± 0.45 µs.

Figure 7.3: Timing residuals for the D-pulsar. From the simulations, the average

RMS timing residual, 〈tRMS〉 = 5.90 ± 16.10 µs.
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7.2: OBSERVED TIMING RESIDUALS

Figure 7.4: Timing residuals for the E-pulsar. From the simulations, the average

RMS timing residual, 〈tRMS〉 = 0.11 ± 0.83 µs.

Figure 7.5: Timing residuals for the F-pulsar. From the simulations, the average

RMS timing residual, 〈tRMS〉 = 17.37 ± 70.09 µs.
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Figure 7.6: Timing residuals for the G-pulsar. From the simulations, the average

RMS timing residual, 〈tRMS〉 = 18.27 ± 95.11 µs.

Figure 7.7: Timing residuals for the H-pulsar. From the simulations, the average

RMS timing residual, 〈tRMS〉 = 1.14 ± 4.91 µs.
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Figure 7.8: Timing residuals for the I-pulsar. From the simulations, the average

RMS timing residual, 〈tRMS〉 = 22.10 ± 24.35 µs.

Figure 7.9: Timing residuals for the J-pulsar. From the simulations, the average

RMS timing residual, 〈tRMS〉 = 2.91 ± 15.67 µs.
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Figure 7.10: Timing residuals for the M-pulsar. From the simulations, the average

RMS timing residual, 〈tRMS〉 = 1.43 ± 11.26 µs.

Figure 7.11: Timing residuals for the N-pulsar. From the simulations, the average

RMS timing residual, 〈tRMS〉 = 15.05 ± 51.95 µs.
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7.2: OBSERVED TIMING RESIDUALS

Figure 7.12: Timing residuals for the O-pulsar. From the simulations, the average

RMS timing residual, 〈tRMS〉 = 33.33 ± 127.94 µs.

Figure 7.13: Timing residuals for the Q-pulsar. From the simulations, the average

RMS timing residual, 〈tRMS〉 = 2.76 ± 13.93 µs.

Satoru Sakai 187



7: FULL GLOBULAR CLUSTER SIMULATION

Figure 7.14: Timing residuals for the S-pulsar. From the simulations, the average

RMS timing residual, 〈tRMS〉 = 29.08 ± 58.76 µs.

Figure 7.15: Timing residuals for the T-pulsar. From the simulations, the average

RMS timing residual, 〈tRMS〉 = 9.68 ± 37.07 µs.
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Figure 7.16: Timing residuals for the U-pulsar. From the simulations, the average

RMS timing residual, 〈tRMS〉 = 0.15 ± 0.17 µs.
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7.3 Overplotting the simulated and observed tim-

ing residuals for the J-pulsar
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Figure 7.17: Comparison of observed and predicted timing residual for the J-

pulsar.

Table 7.1 shows there is good agreement between the predicted (by the MC

simulations) and the observed timing residuals. Let us now compare the timing

residual plot. Figure 7.17 exhibits the comparison of the two timing residuals (the

observed and simulated/predicted) for the J-pulsar in 47 Tucanae. The observed

timing residuals were obtained from Paulo Freire (private communication). The

average and variance of the simulated timing residuals were obtained from the

MC simulation that was used to determine the RMS timing residuals for the J-

pulsar (Table 7.1). From Table 5.1 it can be seen that the J-pulsar is one of the

pulsars situated away from the core of the globular cluster, and therefore has one

of the smaller RMS timing residual magnitudes.
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7.4: 〈TRMS〉 AND PULSAR POSITION

Figure 7.17 shows that the variance in the observed timing residual decreases

over observation time. This is due to the improvements in instrumentation. This

characteristic is not visible for the simulated timing residuals. The magnitude

of the predicted average timing residual and the variance is smaller than the

observed timing residuals. This indicates that, while the Shapiro noise is a small

factor in the timing residuals (it would be buried in the noise), it can be used to

reduce timing noise.

7.4 〈tRMS〉 and pulsar position

In the previous section it was predicted that the further a pulsar is from the centre

of a globular cluster, the smaller the magnitude of its Shapiro noise, resulting in

a smaller magnitude of the timing residual for that pulsar. This was due to fewer

stars being close to its LOS, and therefore a smaller portion of the stars in the

globular cluster will have a significant contribution to the Shapiro noise.

Let us now investigate how much the pulsar position affects the observed tRMS

and the simulated 〈tRMS〉 values. Figure 7.18 shows tRMS and 〈tRMS〉 as a function

of r, the (three-dimensional) distance between the pulsar and the centre of the

globular cluster. The error in r (shown as error bars in Figure 7.18) arises from

the error in the pulsar position along the LOS, as discussed in Section 5. The

error bars for the simulated RMS timing residuals, 〈tRMS〉, in both Figure 7.18

and Figure 7.19 have been reduced in size (by a factor of 10) so that the error bars

fit into the figures. The actual error bars from the simulated timing residuals for

all pulsars do intersect the observed timing residuals for that particular pulsar.

The observed error bars (red error bars in both figures) is the error in the position

of the pulsars, as shown in Freire et al. (2003). This error in position will result

in a different (although same magnitude) RMS timing residual, as described in

Section 2.7.1.

In Figure 7.18, there seems to be no correlation between r and the observed
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timing residual, tRMS. There is a correlation between r and the average simulated

timing residual, 〈tRMS〉, as the 〈tRMS〉 values get smaller as r increases. For pulsars

with r < 1 pc, the simulated 〈tRMS〉 values are greater than the observed tRMS

values. For pulsars in the range of 1 < r < 2 pc the observed values are larger

than the simulated value. For pulsars at r > 3 pc, the tRMS and 〈tRMS〉 values

become very similar – for pulsars such as the F- and G-pulsars, the two timing

residual values are almost identical.
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Figure 7.18: 〈tRMS〉 as a function of r, the distance from the centre of the globular

cluster. Error bars obtained from Freire et al. (2003) are shown in red. The blue

error bars, showing the error in simulated timing residual, has been reduced by

a factor of 10.

Figure 7.19 shows the relation between the timing residual and the perpendic-

ular distance of the pulsar from the LOS, from the centre of the globular cluster.

192 The Effect of Shapiro Delay on Pulsar Timing



7.4: 〈TRMS〉 AND PULSAR POSITION

0 0.5 1 1.5 2 2.5

0

5

10

15

20

25

30

35

40

45

50

55

C

C

DD

E

E

F

F

G

G

H

H
I

I

JJ
M

M
N

N

O

O

Q

Q

S

S T

T

U

U

ξ (pc)

R
M

S
 T

im
in

g 
R

es
id

ua
l (

m
ic

ro
se

co
nd

s)

 

 
Simulation
Observation

Figure 7.19: 〈tRMS〉 as a function of ξ, the perpendicular distance between the

pulsar and the globular cluster centre, along the LOS. Error bars obtained from

Freire et al. (2003) are shown in red. The blue error bars, showing the error in

simulated timing residual, has been reduced by a factor of 10.

It can be seen that the simulated timing residuals for pulsars with ξ < 1 pc,

where ξ here is the distance between the pulsar and the centre of the globular

cluster (in the plane perpendicular to the LOS from the globular cluster centre

to the observer), are much greater than the observed RMS timing residuals, with

the exception of the T-pulsar. The discrepancy gets larger the closer the pulsar

is to the core. The opposite is also true for pulsars further away from the core

where the discrepancy between the simulated and observed RMS timing residuals

gets smaller. Table 7.2 shows the ξ distances and the ratios of the simulated and

observed average timing residuals for each pulsar. From the table it can be seen

that there is a trend of decreasing ratio with increasing ξ.

While Figure 7.19 shows a clear and visible relationship of the predicted RMS

timing residual as a function of ξ, it is difficult to determine an analytical equation
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describing this relation. The reason is because (i) there is a large variance σ for

the timing residual, and (ii) it is not possible to (accurately) analytically predict

the components of the Shapiro noise that will be subtracted by polynomial fitting.

The large variance in the predicted RMS timing residuals means that the ‘best

fit’ curve to show such a relationship will not be accurately defined (and as a

result, may not mean much). While Chapter 3 (Section 3.3.1 to 3.3.3) showed

analytical predictions for the change in Shapiro delay, ∆tSh, and the probability

of having such a change, p(∆tSh), for a given simulation of the globular cluster.

The polynomial fit in Section 4.4 subtracted the first and second order terms of

the pulsar TOA, tTOA, from the Shapiro noise. Therefore, these two analytical

models use a completely different base unit. A large ∆tSh might infer a large

change in ∆tTOA, but such a relation has to be investigated in more detail. As

a result, it is difficult to integrate the two methods to produce one analyctical

solution that fully describes the relation shown in Figure 7.19.

Table 7.2 suggests that stellar density in the outer (ξ > 1 pc) regions of the

core modeled by the double King profile may be too low1. Table 7.2 also suggests

that the stellar density in the inner (ξ < 1 pc) regions of the core modeled by the

double King profile may be too high. This has resulted in the simulated timing

residuals being far greater than those observed. Since the Shapiro noise is the

only noise term in these simulated timing residuals, the simulated values should

be lower than the observed timing residuals (as these residuals contain more noise

terms in addition to the Shapiro noise). The simulated timing residual is very

sensitive to the stellar density, suggesting that there may be more stars in the

core than currently observed suggest.

Let us now investigate the stellar distribution in the globular cluster. The

double King profile that was used in the simulations seems to overestimate (com-

1This is not (strictly) true. The observed timing residuals contain other parameters (such as

intrinsic timing noise) as well as the Shapiro noise. These other parameters may be the more

dominant effect in these (ξ > 1 pc) regions, and not the Shapiro noise.
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pared to the actual density distribution of 47 Tucanae) the stellar density around

the core, up to a radius of ∼ 1 pc, and also seems to underestimate1 the stellar

density further away (> 1 pc) from the centre of the globular cluster. The dou-

ble King profile, as described in Chapter 6, concentrated the stellar distribution

more towards the centre compared to the Gaussian distribution used in Chap-

ter 5. While the Gaussian distribution used in Chapter 5 may have had a large

σ, a Gaussian distribution with a smaller σ, such as σ = 2 pc, could be used to

describe the stellar distribution in 47 Tucanae.

Figure 7.20 shows the different distribution functions over a range of ξ. The

double King profile (shown in blue) has the highest stellar density in the core com-

pared to the three Gaussian distributions. The double King profile decreases with

increasing radius a lot more quickly than the Gaussian distributions, and with

this profile there are hardly any stars with ξ > 2 pc. The Gaussian distributions

all decrease more gradually than the double King profile.
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Figure 7.20: Comparison of the stellar distributions functions.

To determine which distribution produces a timing residual that correlates
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the best with the observed timing residual, let us determine the ratio of the

simulated timing residual and the observed timing residual, TR
TRObs

. Four separate

simulations were done; one where the stellar distribution was described by the

double King profile, and three simulations that used the Gaussian sphere as

a model for the stellar distribution. Each Gaussian sphere simulation used a

different σ value (0.6 pc, 1 pc and 2 pc) to generate the position of the stars. These

three values of σ were chosen to determine whether it has a significant effect on the

timing residuals. The three Gaussian distributions and the double King profile,

as a function of ξ, are shown in Figure 7.20. None of teh Gaussian distributions

exhibit good correlation with the double King profile. From Figure 7.20 it can be

seen that the stellar distribution from the double King profile concentrates a great

proportion of the stars within ξ < 1 pc. The three Gaussian distributions have

a less concentrated centre, but are much wider, which may have an effect on the

pulsars with ξ > 1 pc – as the double King distribution seems to underestimate1

the timing residuals of pulsars in this region.

The timing residuals obtained for each Gaussian distribution is shown in Ta-

ble 7.2. The table shows that the Gaussian distribution produces ratios that are

less correlated than the double King profile, as the ratios seems to be independent

of the distance of the pulsar to the centre of the globular cluster (ξ). However,

for the H, U, Q, J, M and C-pulsars the obtained ratios are larger than those for

the double King profile. This suggests that, while there may be more stars in the

ξ > 1 pc region, it has minimal effect on the timing residuals. The larger number

of stars means that there is an increased likelihood that a star will be situated

close to the LOS (see J-pulsar for σ = 0.6 pc ), however the density around the

LOS is not large enough to have a significant effect on the timing residuals.

From the simple comparisons it can be shown that that a Gaussian sphere is

not a good approximation to the stellar distribution of 47 Tucanae. The timing

residuals produced by the Gaussian distribution are dependent on the generated

position of the stars more than the pulsar position. The best correlation between
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ξ and the timing residuals is produced by the double King profile. However, this

distribution overestimates the timing residuals for pulsars with ξ < 1pc compared

to the observed timing residuals for the pulsars, and underestimates1 the timing

residuals for pulsars with ξ > 1pc when compared with observed values. Being

able to accurately determine the most likely ratios of the timing residuals may

allow for an improvement in (i) determining the mass distribution of the globular

cluster, and (ii) determining the pulsar position along the LOS.
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Pulsar ξ (pc)
TRsim,DK

TRobs

Ratio σ =0.6 pc (10−6 s) σ =1 pc (10−6 s) σ =2 pc (10−6 s) σ =0.6 pc σ =1 pc σ =2 pc

J0024-7204O 0.120601 4.064635 1.132861 11.743929 9.819551 0.138154 1.432186 1.197506

J0024-7204S 0.320586 2.780122 18.663832 11.508706 9.154114 1.784304 1.100259 0.875154

J0024-7204F 0.320835 1.921324 0.175635 0.202008 7.524504 0.019429 0.022346 0.832356

J0024-7204I 0.413430 1.617790 33.381608 10.201391 0.829482 2.443748 0.746808 0.060723

J0024-7204G 0.414742 2.363216 11.098854 13.724752 0.965193 1.435815 1.775518 0.124863

J0024-7204T 0.473938 0.192697 11.532071 5.080871 1.034931 0.229448 0.101092 0.020591

J0024-7204N 0.714794 1.295606 19.205354 16.302036 6.397150 1.652784 1.402929 0.550529

J0024-7205E 0.926041 0.023722 12.011699 7.807675 5.847536 2.651583 1.723549 1.290847

J0024-7204D 0.966979 0.944015 3.044703 5.779910 1.643527 0.487152 0.924786 0.262964

J0024-7204H 1.145296 0.057979 44.135380 8.546390 4.862897 2.249509 0.435596 0.247854

J0024-7203U 1.400475 0.017347 23.152604 26.544730 8.983178 2.730260 3.130275 1.059337

J0024-7204Q 1.416953 0.148002 2.927281 5.867396 5.510195 0.155047 0.310773 0.291854

J0023-7203J 1.519679 0.937701 32.342307 8.873774 8.958854 10.433002 2.862508 2.889952

J0023-7205M 1.596002 0.085989 29.088778 9.397996 6.357220 1.743932 0.563429 0.381128

J0023-7204C 1.835028 0.034995 0.057311 3.443763 2.835975 0.005341 0.320947 0.264303

Table 7.2: Comparison of the stellar distribution ratio of a Gaussian distribution (with varying values of σ) and the double

King profile.
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7.5: SUMMARY

7.5 Summary

A polynomial fit was carried out on the Shapiro noise to determine the timing

residuals. This approach was adopted instead of the standard method, which

uses the least-squares fitting method to determine the most likely values of the

spin frequency f0 and the change in spin frequency ḟ0, from which a model of the

TOA is created. This model TOA is then subtracted from the observed TOA to

obtain a timing residual. Since the Shapiro noise is independent from f0 and ḟ0 it

was possible to use the polynomial fit method as an alternative to this standard

model. In the polynomial fit the first two orders (equivalent to subtracting f0

and ḟ0) of the Shapiro noise was subtracted (assuming the Shapiro noise is the

only noise component in the observed TOA) to obtain a timing residual.

The pulsar timing residuals for a 106 star globular cluster (Gaussian sphere)

were of the order of nanoseconds, a result that is larger than indicated by pre-

vious literature. Using 108 stars (total number of stars in 47 Tucanae) and a

double King profile, the timing residuals were of the order of microseconds. This

result would be an observable effect, with a magnitude that is much larger than

previously expected. In addition, it was shown that the pulsar position, relative

to the centre of the globular cluster (in a plane perpendicular to the LOS), has an

effect on the magnitude of the timing residual for a particular pulsar. The closer

the pulsar is to the centre of the globular cluster, the larger the timing residuals,

and vice versa.

It was also found that the timing residuals predicted for the pulsars in the

central region of the globular cluster are much greater than their observed values,

suggesting the possibility that the double King profile may not be an accurate

reflection of the actual stellar distribution in 47 Tucanae.
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Gravitational Acceleration

So far, we have only considered that stars move with constant velocity. However,

stars positioned very close (< 0.1 pc) to pulsars also interact with the pulsars

due to the gravitational attraction between the two objects, causing the star and

the pulsar to deviate from their respective linear trajectories.

In this section we investigate how pulsar motion is affected by the gravitational

force from nearby stars. The change in pulsar position along the LOS will change

the TOA of a pulse, as the pulse may have to travel further/shorter depending

on the pulsar position. This delay in the TOA will contain constant (linear)

velocity and acceleration (quadratic) terms, which will be include3d in the timing

residuals. As a result, the timing residuals will consist of higher order terms.

It is important to note that this effect is independent of the Shapiro noise.

The Shapiro noise is affected by stars close to the LOS whereas the gravitational

acceleration effects on the pulsar are from the stars in the immediate surroundings

of the pulsar.

Let us determine the minimum separation r necessary (between a pulsar and

a star, both at rest) for the two bodies to collide with each other over a time

period t, the time period over which the acceleration changes significantly. It

is necessary to determine whether this distance is comparable to the minimum

separation between the pulsar and a star in the simulations. From Newtonian
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gravitation, the acceleration of the pulsar a can be written as

F = ma = mr̈ = −GMm

r2
(8.1)

⇒ r̈ = −GM
r2

, (8.2)

where M is the mass of the star, m is the pulsar mass, and r is the distance

between the two objects. In this model we assume the star is fixed and only the

pulsar moves. The acceleration is simply,

r̈ =
dv

dt
=

dv

dr
· dr
dt

= v
dv

dr
, (8.3)

where v is the velocity of the pulsar. Substituting into the above equation, both

sides can be integrated, namely

−
∫ r

0

GM

r′2
dr′ =

∫ v

0

v′dv′

GM

r
=

1

2
v2

2GM

r
= v2.

Since the velocity v also represents a change in distance between the two bodies,

v = ṙ =

(

2GM

r

)1/2

dr

dt
= (2GM)1/2r−1/2

⇒
∫ 0

r0

r1/2dr = (2GM)1/2
∫ t

0

dt

2

3
r
3/2
0 = (2GM)1/2t

⇒ r0 =

(

3

2

)2/3

(2GM)1/3t2/3. (8.4)

This r0 is the separation distance between star and pulsar at time t during a

collision event when both bodies start at rest. For an observation period of 10

years,

r0 ∼ 10−4pc. (8.5)
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This distance will be different if the stars were allowed to move and not assumed

to be at rest (as was done here). Some stars in the MC simulation (double

King profile) will have separations of this magnitude, therefore it is necessary to

determine how much the gravitational acceleration affects the timing residuals.

8.1 Simulations: Initial Conditions

Two simulations were pursued – one where all bodies started at rest, and another

where the stars and pulsars were given random velocities. It should be stated

that the first simulation is a physically unrealistic model, and that it was only

made to determine the magnitudes of the effect (the results were used to compare

with the second simulation).

In both simulations a pulsar was placed in the middle of a cube of width

D. The cube is an approximation of the high density core region of a globular

cluster. A total of 106 stars were then generated and positioned inside this cube.

The value chosen for D will affect the separation r between the pulsar and the

stars, and so will affect the gravitational acceleration between the two bodies. As

described in Section 5.2.2 the assumption is that the effects by stars further away

from the pulsars cancel each other out, and therefore only the stars closest to the

pulsar will be included. The simulation ignores the stars furthest from the line

of sight – at the edges of the cube.

There were variations done for the two simulations mentioned above. In one

variant the parameter D was changed to determine how the timing residuals are

affected by the number density around the pulsar.

The simulation ran for a period of 3600 days, at timesteps (∆t) of 30 days. The

movement of the pulsars were dictated solely by the gravitational acceleration.

For all simulations, the stars were assumed to be fixed in position with no initial

velocity (unless otherwise stated).

The following section will show how the gravitational acceleration affects the

Satoru Sakai 203



8: GRAVITATIONAL ACCELERATION

velocity and position of the pulsars for simple systems.

8.2 Determining the change in pulsar time of

arrival

Timestep j Timestep j + 1

ajvj

vj+1

aj+1

Pulsar

Previous pulsar position

StarStar

rj

Pulsar

rj+1

Figure 8.1: The effect of gravitational acceleration between one pulsar and one

star. The acceleration a and velocity v are both along the distance r for both

timesteps.

Let us investigate the configuration of one pulsar and one star, both at rest

so the pulsar initial conditions are t = 0 and v0 = 0. In addition, we will assume

that the star does not move from its position throughout the simulation, i.e. the

star will not have any acceleration or velocity components.

At timestep j (Figure 8.1 left), the acceleration of a pulsar at a distance rj

from the star is given from Equation 8.1,

~aj = −GM
r2j

r̂j, (8.6)

where M is the mass of the star, equal to 1 M⊙. The pulsar will travel at

acceleration ~aj between timestep j and j+1, the following timestep. The velocity
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of the pulsar traveling in the next timestep is given by,

~vj = ~v0 + ~aj∆t, (8.7)

where ∆t is the time interval between the two timesteps. The pulsar then moves

from its position rj with velocity vj to its new position in the next timestep.

At the following timestep, j + 1 (Figure 8.1 right), the pulsar is now at a new

distance from the star, rj+1 which is given by,

~rj+1 = ~rj + ~vj∆t. (8.8)

In this timestep, the acceleration term becomes,

~aj+1 = −GM
r2j+1

r̂j+1, (8.9)

and the velocity term (during this timestep) is then given by,

~vj+1 = ~vj + ~aj+1∆t. (8.10)

In the following timestep, j + 2, the pulsar moves from rj+1 to its new position

traveling at velocity vj+1,

~rj+2 = ~rj+1 + ~vj+1∆t, (8.11)

from which the acceleration and velocity terms during this timestep, aj+1 and

vj+2, respectively, can be determined. This process is repeated until the final

timestep (full observation period t).

Multiple stars

The above equations describe the case for one star and one pulsar. For multiple

stars, let us re-write the acceleration term given in Equation 8.6 as,

~aj = GM
(~rpul,j − ~rstar,j)

|~rpul,j − ~rstar,j|3
, (8.12)
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where ~aj is the acceleration at timestep j and (~rpul,j - ~rstar,j) is the distance

between the pulsar and star at timestep j. For N stars this term can be written

as,

~aj = GM

N
∑

k=1

(~rpul,j − ~rk,j)

|~rpul,j − ~rk,j|3
. (8.13)

The velocity at this timestep (j) is given by Equation 8.7,

~vj = ~v0 + ~aj∆t, (8.14)

This net velocity results in a net change in the pulsar position

~rj = ~r0 + ~vj∆t. (8.15)

The change in the pulsar distance between the timesteps is then

∆~r = ~rj+1 − ~rj. (8.16)

Since this change in the pulsar distance, ∆~rN (where the subscript N denotes the

total number of stars), is a three dimensional vector, it can be decomposed into

Cartesian co-ordinates such that

∆x = (∆rN ) sin θ (8.17)

∆y = (∆rN ) cos θ sin φ (8.18)

∆z = (∆rN ) cos θ cos φ. (8.19)

The x-direction is along the LOS, and therefore ∆x is the variable that changes

the pulsar TOA. This change in pulsar arrival time can then be represented by

∆τ =
∆x

c
, (8.20)

where c is the speed of light.

The simulation determined ∆τ from the stars inside the globular cluster (with

a pulsar at the centre), and produced a timing residual using polynomial fitting

(see Section 4.4).
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8.3 Simulation 1: No initial velocity

This simulation was made to determine the magnitude of the effect of gravita-

tional acceleration before the inclusion of initial velocities, in order to have a

comparison with the more complicated situation that includes initial velocities.

In this simulation, there were no initial velocities assigned to the pulsars so

their motions would be determined purely by the gravitational acceleration of the

stars which were considered to remain static for the duration of the simulation.

As the gravitational acceleration is a function of r, which is the distance

between the pulsar and a star, the number density of the core of a globular

cluster may have an affect on the change in TOA. Stars are more likely to be

closer to a pulsar (having, therefore, a smaller r) for a dense globular cluster core

than for one that is diffuse. A smaller r separation between the pulsar and a star

will result in a larger acceleration term, which may lead to a greater change in

the TOA ∆τ .

The simulation was as follows. A globular cluster was constructed where the

core was modelled as a cube of width D pc containing 106 stars, with a pulsar

at the centre. The inferred gravitational acceleration on the pulsar from the

surrounding stars is then calculated, and the pulsar is moved by the velocity

generated from the accelerations to its new position. This process was modelled

for a 3600 days using 30 days timesteps of 30 days. Many (∼ 100) realisations

were done to determine 〈trms〉 for the pulsar for every box/cube width D.

Figure 8.2 shows how 〈trms〉 varies with D, the width of the box representing

the core of a globular cluster. The form is rather complex. For box sizes D ∼
0.15 pc there is a very sharp reduction in the timing residual to 10−5 s. There-

after it decreases slowly with increasing D and increasing scatter until at D ∼
2 pc. This is because at these larger cluster volumes the minimum separation be-

tween a pulsar and its nearest star is so large that the gravitational acceleration

does not produce significant velocities. Only in a very few realisations was the
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Figure 8.2: Variations in timing residual as a function of D, the core box width,

for a 106 star globular cluster.

configuration suitable for a timing residual to be generated. Due to the number

density decreasing with increasing box width D, the probability of generating a

star close to the pulsar becomes lower with increasing D.

How the average RMS timing residual varies with stellar density is shown in

Figure 8.3. The function is of similar complexity to that determined in Figure 8.2.

The red line shows the (logarithm of the) core stellar density of 47 Tucanae (Pryor

and Meylan 1993) of 1.5 × 105 M⊙ pc−3. At this particular density, the timing

residuals are, at most, of the order of 10−5 s. This is a significant conclusion

as these are the results from the physically unrealistic case where the stars and

pulsars have no initial velocity, and therefore warrants further study. It is most

likely that when adding initial velocities to the stars and pulsars (i.e. a more

realistic model – see Section 8.4) to the simulations it will greatly increase the

effect of gravitational acceleration on the timing residuals.
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Figure 8.3: Variations in timing residual as a function of stellar density in the

core ρ, for a 106 star globular cluster. The red line denotes the core stellar density

of 47 Tucanae as described in Pryor and Meylan (1993).

8.4 Simulation 2: With initial velocity

Let us now investigate how the above result is affected by the inclusion of veloci-

ties to stars and pulsars. The velocities for both stars and pulsars were generated

using a Gaussian distribution with σ shown in Table 3.1. The simulation method

used here is similar to Simulation 1 but with the inclusion of the velocity param-

eters.

Figure 8.4 shows how 〈trms〉 varies with D. As was the case in Simulation 1,

the average rms timing residual decreases with the box width D, although not as

rapidly. The magnitudes of the residuals are larger than the residuals produced

in Simulation 1, suggesting that the inclusion of the initial velocity parameters

does have an effect on the timing residuals. The densest distributions (D < 0.1

pc) have the largest variation (spread) in the timing residual values. This is most

likely due to the star closest to the pulsar – the location r of this star will affect
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the acceleration, and hence will have an effect on the timing residual.
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Figure 8.4: Variations in timing residual as a function of D, the core box width,

for a 106 star globular cluster.

Figure 8.5 (below) shows how the timing residuals vary with stellar density.

The timing residuals for the simulation with initial velocity are greater than

those found for the simulation without initial velocities and both are shown in

the figure. The structure of the two functions is also different – the initial velocity

(red line) does not contain the ‘plateau’ that the no initial velocity (blue line) has

at ρ ∼ 109 M⊙ pc−3. In the case of the simulation with initial velocity, the timing

residual one expects from a core stellar density similar to that of 47 Tucanae to

be of the order of 10−4 to 10−5 seconds.
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Figure 8.5: Variations in timing residual as a function of ρ, the stellar density,

for a 106 star globular cluster. The red line denotes the core stellar density of 47

Tucanae as described in Pryor and Meylan (1993).

8.5 Combining with Shapiro noise

Let us now combine two effects – the Shapiro noise and the gravitational accel-

eration (Simulation 2, see Section 8.4) – into the simulation and determine the

resulting timing residual. In this simulation, 106 stars were generated using the

double King profile and the actual pulsar positions and velocities. The remain-

ing initial conditions are the same as previous simulations. Table 8.1 shows how

the timing residuals are affected if gravitational acceleration is included in the

calculations.

From Table 8.1 it can be seen that for pulsars that are furthest away from the

core the gravitational acceleration has a negligible affect on the timing residual

when compared to that of the Shapiro noise. However, for stars in the core, such

as the O-pulsar in 47 Tucanae the gravitational acceleration does have a large

effect on the timing residuals. The exception to this is the F-pulsar, where the
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timing residual is significantly affected by the inclusion of gravitational accelera-

tion effects. This may be due to a star being generated (in one of the realisations)

sufficiently close to the pulsar that it infers a large change in the pulsar distance

along the LOS, resulting in a σ-bias.

Pulsar Shapiro noise Shapiro noise & gravitational acceleration

(10−9 s) σ (10−9 s) (10−9 s) σ (10−9 s)

J0023-7204C 0.17181 0.27602 0.17203 0.27567

J0024-7204D 77.33208 213.63506 77.33188 213.63519

J0024-7205E 0.02397 0.03442 0.06252 0.19311

J0024-7204F 68.77878 107.24345 292.56550 485.51931

J0024-7204G 327.36862 597.95265 332.65878 599.81249

J0024-7204H 0.53428 0.85025 0.51309 1.60628

J0024-7204I 586.80975 1784.49970 617.00326 1787.36029

J0023-7203J 21.35217 50.52859 21.37556 50.53270

J0023-7205M 0.16816 0.29948 0.21933 0.30473

J0024-7204N 14.90031 21.97074 14.90201 21.97107

J0024-7204O 1053.78123 2053.93642 2980.95575 3883.33519

J0024-7204Q 0.16935 0.27971 0.16256 0.50678

J0024-7204S 756.57148 2040.93763 898.15895 1871.13700

J0024-7204T 24.32024 35.26797 48.80774 69.95056

J0024-7203U 0.03988 0.08677 0.05520 0.15871

Table 8.1: Comparison of the timing residual with and without gravitational

acceleration for a 106 star globular cluster.

There are more stars present around pulsars which are situated in the core

of the globular cluster. Table 8.1 shows that for these pulsars the gravitational

acceleration (from the stars surrounding this pulsar) has a greater effect than the

Shapiro noise (stars surrounding the LOS to the pulsar). The timing residual

for the O-pulsar increases by a factor of ∼ 3 with the inclusion of gravitational

acceleration.

The gravitational acceleration becomes less dominant as one moves away from

the core. The timing residual for the G-pulsar (which is at a distance of r ∼ 0.5 pc

from the core) shows that it is dominated more by the Shapiro noise than by the

gravitational acceleration. Therefore, to an approxiomation, the gravitational
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acceleration will have an effect on the timing residuals of the pulsars that are

situated < 0.5 pc from the core of the globular cluster.

8.6 Summary

In this chapter a new concept, gravitational acceleration between the stars and the

pulsars, was investigated to determine how it will affect pulsar timing residuals.

The investigation was made by generating stars (at a certain volume) around

a pulsar, and allowing the stars and pulsars to interact gravitationally over a

3600-day period. The gravitational interaction between the stars themselves was

ignored in the simulations. The change in the pulsar position along the LOS due

to gravitational acceleration was made to this new delay term. A second order

polynomial fit (as described in Section 4.4) was done to this new delay term

to obtain the timing residuals. The timing residuals indicate that gravitational

acceleration does have an effect on the timing residuals, provided that there is a

sufficiently large stellar density surrounding the pulsar.

When combined with the Shapiro noise, the gravitational acceleration affects

only the pulsars close (< 0.5 pc) to the centre of the globular clusters – for all

other pulsars the effect from the Shapiro noise is much greater.
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Part V

Stellar Mass Density
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9

Stellar Mass Density

In the previous chapters, it was shown that stars in globular clusters have an effect

on the timing residual of a pulsar. This effect is in the region of microseconds to

milliseconds, depending on the pulsar position with respect to the centre of the

globular cluster. This new result is important, as for some pulsars, such as the O-

pulsar, the magnitude of timing residuals predicted solely from the Shapiro noise

is similar to the magnitudes that are obtained from pulsar timing observations.

For pulsars further away from the centre of the globular cluster the effect of the

Shapiro noise on the timing residuals is far smaller than that observed.

Chapter 8 also investigated how gravitational acceleration affects pulsar tim-

ings. For dense cores such as 47 Tucanae, it was (initially) thought that the

acceleration will influence the timing residual, however the extent of this effect

was not known. Chapter 8 showed that while the effect from acceleration is

present in the timing residuals, the effect from the Shapiro noise is far greater

for most GC pulsars. This result suggest that stars along the LOS will have a

greater effect on the timing residuals than stars around the pulsars – unless the

pulsar is situated close to, or at, the core of the globular cluster.

For the case of 47 Tucanae, the line of sight (LOS) is approximately 5 kpc.

This is a vast distance, one which may be filled with ISM. Since the Shapiro

delay is very sensitive around the LOS (see Figure 2.6) than (radially) along it
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(see Figure 2.7), any foreground star close to the LOS will have an impact on the

timing residuals. This poses an important question for pulsar timing: how much

do foreground stars affect timing residuals? If the influence is significant, then

the Shapiro delay will have an effect on timing residuals of pulsars not only in

globular clusters but also in the galactic plane.

Let us assume there is a single pulsar located as shown in Figure 9.1. The

LOS contains a lot of foreground stars. Any star close enough to the LOS, e.g.

in a ‘window’ region around the LOS, will produce a Shapiro delay, as shown in

Figure 9.2. The density of this ‘window’, along with the stellar velocities, will

affect the Shapiro delay and pulsar timing.

Galaxy

Earth

Pulsar

Line of sight

Figure 9.1: LOS to a pulsar in the spiral arms of a galaxy.

Earth

Pulsar

Line of sight

Pulsar

Stellar distribution ‘window’

Field of view

Stars and galaxies in the field of view

Thin stellar disk of density ρ

Figure 9.2: Left: The thin stellar disk along the LOS between pulsar and Earth.

Right: The ‘window’ of stellar distribution around the LOS to the pulsar.
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In order to determine the timing residuals, a simulation of one isolated pulsar

(no stars surround it) was created. Stars were then distributed into a window

(i.e. a thin disk), 1 pc2 in size, all at teh same distance along the LOS to the

pulsar. Stars were then given velocities and were allowed to move for 3600 days.

The timing residual for the pulsar was determined using polynomial fitting as

described in Chapter 4. This simulation was then repeated 50 times to determine

the average RMS timing residual. This whole process was realised for (i) different

thin disk (surface) density, and (ii) different distances along the LOS.
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Figure 9.3: The average RMS timing residual as a function of stellar surface

density in a thin disk at varying distances along the LOS.

Figure 9.3 shows how the average RMS timing residuals vary with respect to

the density of the thin disk and distance along the LOS. As described before,

the variation of the timing residual along the LOS does not change the result

significantly. The trend for all three separation distances is very similar. The

density of the disk does have an effect of the timing residuals. The greater the

stellar density, the larger the timing residual. This is expected, as a larger den-
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sity of stars means that the probability of one being close to the LOS increases,

and therefore more likely to produce a large Shapiro noise. The foreground stel-

lar surface density, Σmin, necessary to produce an observable (> 10−7 s) timing

residual is

Σmin ≈ 106 M⊙ pc−2 up to R ≤ 0.71pc, (9.1)

where R is the region (perpendicular distance) around the LOS. This is similar

to the initial conditions (and the results obtained) for the MC simulation of the

globular cluster modelled using a Gaussian sphere (Section 3.2), which in turn

means, that in order for the foreground stars to have an effect on the timing

residuals, there must be at least a large cluster of stars along the LOS to the

pulsar. This means that any diffuse (ρ < 103 M⊙ pc−2) matter between the

pulsar and the Earth can be ignored, as it is less likely that a star in such regions

will approach close enough to the LOS in order to produce an effect on the timing

residual.

Let us now return to stars positioned around pulsars. It was shown previously

in Chapter 3 (and Chapter 5) that an increase in the number of stars inside the

globular cluster did have an effect on the timing residuals. No previous literature

has determined the minimum stellar density required in order for the cluster to

have an effect on the timing residual.

Therefore, let us simulate a box of stars, with dimensions 1 pc3, with a pulsar

at the centre. Stars were generated in this box and were allowed to move for

3600 days (see above), and the timing residual was determined from the Shapiro

noise (see above). This was then repeated 50 times, and this whole simulation was

realised for different total numbers. Figure 9.4 shows how the average RMS timing

residual varies with the stellar (box) density. Similar to above, increasing the

stellar density increases the magnitude of the timing residuals. From Figure 9.4,

the minimum density ρmin required in order to have an observable effect (> 10−7

220 The Effect of Shapiro Delay on Pulsar Timing



s) on the timing residual is

ρmin ≈ 105 M⊙ pc−3 up to R ≤ 0.87pc, (9.2)

where R is the distance around the pulsar.
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Figure 9.4: The Average RMS timing residual as a function of stellar density

around the pulsar.

Let us now compare this value with the density of globular cluster that con-

tains pulsars. Table 9.1 shows the stellar core density of the globular cluster that

contains milli-second pulsars. It was possible to obtain the values (or a range of

value) for the core stellar density for all but three globular clusters (NGC 6517,

NGC 6656, NGC 6838).

Let us now plot the distribution of stellar core densities of the globular cluster.

The distribution is shown in Figure 9.5. For globular clusters that have a range

of density values, the middle of the range is taken to be the stellar core density

for the globular cluster. From Figure 9.5 it can be seen that many (15 out of 22)

of the globular clusters have core stellar densities larger than ρmin. This result

indicates that pulsars within these globular clusters will be affected by Shapiro

noise (and gravitational acceleration).
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Figure 9.5: The distribution of core stellar density for 22 globular clusters con-

taining MSPs. The red line is ρmin, the minimum core stellar density.
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Figure 9.6: The distribution of pulsars according to the core stellar density of the

globular cluster containing the pulsar. The red line is ρmin, the minimum core

stellar density.
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Figure 9.6 shows the distribution of pulsars as a function of the core stellar

density of the globular cluster. Again, there are a large number of pulsars situated

in globular clusters of core stellar density greater than ρmin. Figure 9.6 suggests

that the timing residuals of 82 (out of 139) pulsars1, or∼ 60 % of the total number

of MSPs observed to date, will be affected by Shapiro noise and gravitational

acceleration. This is a significant result.

This thesis has determined the RMS timing residuals for 15 of the 82 pulsars.

From these 15 pulsars it was shown that the pulsar position (relative to the

centre of the globular cluster) does have an affect on the timing residuals. This

is because the Shapiro noise and the gravitational acceleration are sensitive to

the perpendicular distance between a star and the LOS (Shapiro noise) and the

distance between a star and the pulsar (gravitational acceleration).

If the majority of the remaining pulsars are far from the globular cluster

centre, the RMS timing residuals for such pulsars will have smaller magnitudes.

In this situation, the Shapiro noise and gravitational acceleration will be too small

to be observed in the timing residuals, such as the case for the J-pulsar. As a

result, the Shapiro noise and gravitational acceleration will have minimal effect

on reducing the timing noise.

However, if the majority of the remaining pulsars are situated close to the

globular cluster centre, the RMS timing residuals will be higher in magnitude,

and almost comparable to the magnitude of the observed timing residuals. In

such case, the effects of Shapiro noise and gravitational acceleration will have a

significant effect on reducing the timing noise.

From Figure 7.18, in the case of 47 Tucanae there are fewer pulsars positioned

close to the globular cluster centre compared to the number of pulsars situated

further away. If one assumes a similar pulsar distribution pattern in other globular

clusters, the RMS timing residuals for most MSPs will of the order of ∼ 10−7

1There are in fact 146 pulsars, however 7 of them are contained in the three globular clusters

for which the core stellar density could not be found.
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seconds, suggesting that, while these effects affect ∼ 60% of MSPs in globular

clusters, they may not be large enough to be observed in the timing residuals.

Table 9.1: Comparison of the core stellar density of globular clusters containing

milli-second pulsars (MSPs).
Cluster Other names Number of MSPs log10 ρc (M⊙ pc−3) Reference

NGC 104 47 Tucanae 23 5.18 Pryor and Meylan (1993)

NGC 1851 1 ≥ 5.48 Bahcall et al. (1977)

NGC 5024 M53 1 3.34 Beccari et al. (2008)

NGC 5272 M3 4 3.51 Guhathakurta et al. (1994)

NGC 5904 M5 5 3.8 ∼ 4.6 Ivanova et al. (2008)

NGC 5986 1 3.40 Lynch and Ransom (2011)

NGC 6121 M4 5 4.63 Peterson et al. (1995)

NGC 6205 M13 5 3.40 Cohen et al. (1997)

NGC 6266 M62 6 5.32 Possenti et al. (2003)

NGC 6342 1 > 5.35 Ivanova et al. (2008)

NGC 6397 1 > 5.35 Ivanova et al. (2008)

Terzan 5 33 ∼ 6.00 Cohn et al. (2002)

NGC 6440 6 5.66 Williams and Bahcall (1979)

NGC 6441 4 ≥ 4.95 Ivanova et al. (2008)

NGC 6517 4 - no references found

NGC 6522 3 > 5.35 Ivanova et al. (2008)

NGC 6539 1 2.8 ∼ 3.8 Ivanova et al. (2008)

NGC 6544 2 > 5.75 Possenti et al. (2001)

NGC 6624 6 > 5.60 Ivanova et al. (2005)

NGC 6626 M28 12 4.6 ∼ 5.05 Ivanova et al. (2008)

NGC 6656 M22 2 - no references found

NGC 6749 2 2.8 ∼ 3.8 Ivanova et al. (2008)

NGC 6752 5 4.6 ∼ 5.05 Ivanova et al. (2008)

NGC 6760 2 3.8 ∼ 4.6 Ivanova et al. (2008)

NGC 6838 M71 1 - no references found

NGC 7078 M15 8 6.20 Guhathakurta et al. (1996)

NGC 7099 M30 2 5.90 Yanny et al. (1994)
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The motivation for this thesis was to determine how much the stars travelling

close to the LOS and around the pulsar contribute to pulsar timing residuals.

This contribution was introduced as an additional term in the pulsar TOA Equa-

tion 1.2, called the Shapiro noise, derived from the time delay. As described in

Chapter 1, this effect had been previously assumed to be small, and therefore an

unobservable effect in pulsar timing residuals.

There are two components to the time delay, the geometric and gravitational

time delay. As shown in Figure 2.3, the geometric time delay has a large effect

for stars positioned less than 10−5 pc from the LOS; for all other distances the

gravitational time delay is the more dominant effect. It was then estimated

that the probability of detecting a star less than 10−5 pc from the LOS was

sufficiently small that the geometric term associated with this situation may be

ignored and only the gravitational (Shapiro) time delay component was used in

the investigation. In order to determine this effect for the globular cluster 47

Tucanae, the full expression for the Shapiro delay for one star and a pulsar was

derived in Chapter 2 using gravitational lensing.

In Chapter 3 a simple globular cluster with the same dimensions as 47 Tucanae

containing 106 stars was simulated. Using a Monte-Carlo (MC) simulation the

stars were moved for a period of 3600 days (the current longest pulsar observation

time) to determine the effects of the Shapiro delay. The changes in stellar position

result in the change of the Shapiro delay called the Shapiro noise. The Shapiro

noise is an observable effect, whilst the Shapiro delay is not. The simulations

predicted the Shapiro noise to be of the order of 10−6 seconds for a 106 star

globular cluster, and from the
√
N described in Section 3.4.2 it was estimated

Satoru Sakai 227



that the Shapiro noise would be of the order of 10−5 seconds for a 108 star globular

cluster. This effect is large, and will be observable in pulsar timing. In order to

check that the simulations were producing correct results analytical expressions

were produced and compared with the numerical predictions. The results, shown

in Chapter 3, suggest that both approaches predict similar values for the Shapiro

noise. It was therefore determined that the MC simulation produced accurate

results.

Chapter 4 investigated the timing residuals that result from the Shapiro noise.

The standard model uses least-squares fitting process that produces a TOA model

with the most likely values for the spin frequency f and the change in spin ḟ .

Timing residuals are determined by subtraction of the TOAs predicted by the

model from actual observed TOAs. As the Shapiro noise is independent of f and

ḟ , it was postulated that a second order polynomial fitting procedure to produce

a model would give the same timing residual as the least-squares fitting, without

the need to obtain values of f and ḟ .

Also in Chapter 4 the actual pulsar positions and a more accurate stellar

distribution (a double King profile) was used in order to get timing residuals

that compared with observations. The simulations predict that not only is the

Shapiro noise a significant factor in the timing residuals but also that these timing

residuals correlate well with actual pulsar observations. However, the timing

residuals also suggest that the core regions of the globular cluster may not be as

dense as predicted by the double King profile.

In Chapter 8 the gravitational acceleration has been added to the pulsar time

of arrival to determine its effects on pulsar timing residuals. All the previous

simulations assumed that stars and pulsars move at a constant velocity. The

simulations suggest that the inclusion of gravitational acceleration does not have

a significant effect on the timing residuals when compared to the effect of the

Shapiro noise.

The effect generated by the combination of Shapiro noise and gravitational
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acceleration on timing residuals is so significant that it will be observable in pulsar

timing.

To see how many pulsars will be affected by these two effects, Chapter 9

determined the minimum stellar core density (both in two- and three dimensions)

necessary for a globular cluster in order for the stars inside the cluster to have an

affect on pulsar timing. The minimum density, ρmin, required in order to observe

an effect from both Shapiro noise and gravitational acceleration on the timing

residual is given as,

ρmin ≈ 105 M⊙ pc−3 up to R ≤ 0.87pc, (9.3)

where R is the distance around the pulsar. This core density can be found for 15 of

the 22 globular clusters that are currently known to contain milli-second pulsars

(MSPs). The result is that 82 of the 139 pulsars in these globular clusters will

be affected by Shapiro noise and gravitational acceleration. However, due to the

position of the pulsar within the globular cluster, for the majority of pulsars the

effect from either will most likely be unobservable in the pulsar timing residuals

with current observation techniques. However, for improved observation facilities

such as the SKA, these effects will have to be taken into consideration for reducing

timing noise.
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Appendix A

A.1 Change in Römer delay

The Römer delay across the Solar System for a pulsar at Ecliptic co-ordinates λ

(longitude) and β (latitude),

∆R⊙ ≃ 500 cosβ cos(θ(t) + λ) s (A.1)

where θ(t) is the orbital phase of the Earth with respect to the vernal equinox,

arises from the assumption that the Earth’s orbit is circular. An error in position,

∆λ and ∆β causes a differential Römer delay to be present in the timing residuals,

∆(∆R⊙) ≃ 500 [cos(β +∆β) cos(θ(t) + λ+∆λ)− cos β cos(θ(t) + λ)] . (A.2)

For small position errors, using the small angle approximation, ∆β∆λ ∼ 0 the

above equation reduces to (see Section A.2) ,

∆(∆R⊙) ≃ 500 [∆λ cos β sin(θ(t) + λ) + ∆β sin β cos(θ(t) + λ)] (A.3)

From the trigonometric identity,

A sin([θ(t) + λ] + φ) = A cosφ sin(θ(t) + λ) + A sin θ cos(θ(t) + λ) (A.4)

it is possible to simplify the above equation to

A cosφ = −500∆λ cos β (A.5)

A sinφ = −500∆β sin β, (A.6)
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resulting in

∆λ = − A cosφ

500 cos β
(A.7)

∆β = − A sinφ

500 sin β
, (A.8)

where A and φ are amplitude and phase error in the timing residuals. When a

pulsar is located close to the ecliptic (β ∼ 0) means that cos β → 1, maximising

the error (∆λ) in longitude determination, similarly at the ecliptic (sin β ∼ 0)

maximising the error (∆β) in latitude.

A timing fit and the amplitude of A (in units of light travel time) will deter-

mine A to a precision of ∆A that is approximately equal to the uncertainty in the

TOA. For very small timing uncertainty, e.g. 10 µseconds for a milli-second pulsar

(MSP) and N = 12 measurements (once a month) over the course of a year (or

N = 120 for a decade) the average phase errors is ∼ 10µs/
√
120 ∼ 9.129 × 10−7

seconds. For a MSP at ecliptic latitude 30 degrees ,

∆λ ∼ 9.129× 10−7

500 cos 30
= 2.108× 10−9rad (A.9)

∆β ∼ 9.129× 10−7

500 sin 30
= 3.652× 10−9rad (A.10)

which results in a change in Römer delay due to changes in Earth position to be

,

∆(∆R⊙) ∼ 1.967× 10−6s (A.11)

A.2 Small angle approximation

∆(∆R⊙) ≃ 500 [cos(β +∆β) cos(θ(t) + λ+∆λ)− cos(β) cos(θ(t) + λ)] (A.12)

Let us expand the terms inside the square brackets

cos(β +∆β) = cos(β) cos(∆β)− sin(β) sin(∆β) (A.13)

= cos(β)− sin(β)∆β (A.14)
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A.2: SMALL ANGLE APPROXIMATION

from small angle approximation, cos(∆β) → 1, sin(∆β) ≈ ∆β. The second term

in the square brackets can be simplified to,

cos(θ(t) + λ) cos(∆λ)− sin(θ(t) + λ) sin(∆λ) = cos(θ(t) + λ)−∆λ sin(θ(t) + λ),

(A.15)

since cos(∆λ) → 1, sin(∆λ) ≈ ∆λ. The product of these two is then given by

cos(β +∆β) cos(θ(t) + λ+∆λ) = [cos(β)− sin(β)∆β] [cos(θ(t) + λ)−∆λ sin(θ(t) + λ)]

= cos(β) cos(θ(t) + λ)−∆λ cos(β) sin(θ(t) + λ)

−∆β sin(β) cos(θ(t) + λ) + ∆β∆λ sin(β) sin(θ(t) + λ)

= − [∆λ cos(β) sin(θ(t) + λ) + ∆β sin(β) cos(θ(t) + λ)]

The first term is canceled by the last term in square brackets, and the last

term is removed by the small angle approximation, ∆β∆λ → 0. The resulting

equation is then:

∆(∆R⊙) ≃ 500 [∆λ cos(β) sin(θ(t) + λ) + ∆β sin(β) cos(θ(t) + λ)] (A.16)
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