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Summary 

Prostate cancer has high cancer incidence in males and is the second highest cause of 

male cancer related mortality.  Currently the main stay therapy for localised and 

metastatic disease is maximum androgen blockade (MAB). This aims to inhibit 

androgen production or action, thereby reducing stimulation of the androgen 

receptor (AR). This in turn prevents the activation of androgen-regulated genes, 

which normally result in on-going growth and survival. Inhibition of testicular 

androgen production may be achieved surgically (bilateral orchidectomy) or 

chemically, using gonadotropin-releasing hormone (GnRH) agonists. The latter 

induces castrate levels of testosterone by down-regulating pituitary GnRH receptors 

(and therefore gonadotropin hormone production) through constant stimulation. The 

action of androgen may be blocked at a peripheral level using anti androgens, which 

inhibit ligand binding to AR and subsequent activation. Although this approach has 

initial response rates of over 80% the majority of men relapse with castrate resistant 

prostate cancer (CRPC) and this is the cause of significant morbidity and mortality. 

To overcome this and to improve patients treatment options the mechanisms of 

castrate resistance need to be addressed. 

The PI3K/Akt cascade regulates several cellular processes such as proliferation and 

apoptosis. Akt activation results in phosphorylation of multiple substrates and has 

been implicated in prostate carcinogenesis and castration resistance. Research has 

suggested that Akt interacts with signallingcascades implemented in carcinogenesis, 

in particular the NFkB cascade and AR signalling. The current study investigated the 

hypothesis that the expression and activation of PI3K/Akt cascade influences the 
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progression to castrate resistant disease using clinical prostate cancer tumours.  

Fluorescent insitu hybridisation and Immunohistochemistry revealed that PTEN 

deletion was a common event in castrate resistant prostate cancer and low PTEN 

protein expression was significantly associated with a poor outcome. PTEN 

negatively regulates PI3K signalling. Consequently increased levels of PI3K and 

activated Akt (pAkt ser 
308

 and pAkt ser 
473

) were significantly associated with a 

shorter time to biochemical relapse and shorter disease specific survival.  Inhibition 

of PI3K resulted in a significant reduction in cellular proliferation and Akt 

phosphorylation. 

The downstream affects of Akt activation were also investigated. Akt has been 

reported to directly activate the NFkB signallingcascade both directly and indirectly 

but no correlations between Akt and NFkB were observed in the current study. 

Using an immunohistochemical approach NFkB, IкBα and MMP-9 expression were 

observed to be significantly associated with shorter time to death from relapse and 

disease specific death. MMP-9 and IкBα expression were also significantly 

associated with metastases at relapse. Using paired hormone naive and castrate 

resistant LNCaP cells lines allowed the functional consequences of NFkB inhibition 

to be investigated. Reduced NFkB activation significantly inhibited cellular 

proliferation and induced apoptosis in both cell lines.  

Having shown a significant link between expression and activation of the PI3K 

cascade and progression to castrate resistant disease, the interaction between Akt and 

the AR was investigated in both clinical prostate tumours and cell lines. The 

phosphorylation of AR at the Akt consensus site serine 213 (pARser
213

) was 
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significantly associated with disease progression.  Patients with high expression 

pARser
213 

had a significantly shorter time to death from relapse and disease specific 

survival. Additionally 42% of patients displayed an increase in pARser
213 

expression, these patients also had a significantly shorter time to death from relapse 

and disease specific survival. Inhibition of PI3K resulted in a reduction of pARser
213 

expression in both cell lines and using siRNA knockdown to target PI3K p85 

regulatory subunit reduced pARser
213 

expression. This research highlights the impact 

of both the PI3K/Akt and NFkB signallingcascades on prostate cancer progression 

and development of castrate resistant disease. In particular this study highlights the 

impact of Akt phosphorylation in castrate resistant prostate cancer patients. 

Therefore phosphorylation of AR at serine 213 may serve as a diagnostic tool to 

predict patient outcome in response to maximum androgen blockade and inhibition 

of AR 213 phosphorylation via the Akt cascade may be an effective therapeutic 

avenue to investigate for treatment of prostate cancer.  
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1.  Introduction  

1.1 Prostate cancer incidence and prevalence 

Cancer of the prostate is recognised as a significant problem facing the male 

population world wide.  It is the most common cancer in men in the UK accounting 

for nearly a quarter of all new male cancer diagnoses (1). In 2006, there were 35,515 

new cases of prostate cancer diagnosed in the UK, which amounts to an incidence of 

97 men each day or one man every 15 minutes being diagnosed with prostate cancer. 

For men in the UK the lifetime risk of being diagnosed with prostate cancer is 1 in 

10 (1).  

As men live longer an increase in both incidence and mortality of prostate cancer is 

observed. Prostate cancer incidence rates increase rapidly with age and the highest 

rates occur in the oldest age groups. The incidence of prostate cancer per 100,000  

men aged 55-59 is 144; ten years later, the rate more than triples to 500 and by 85+ 

the rate is more than five times higher at 789 (1). Results from post-mortem data, 

indicate that roughly half of all men in their fifties have histological evidence of 

cancer in the prostate, which rises to 80% by age 80, but only 1 in 26 men (3.8%) 

will die from this disease (2;3). Thus, men are more likely to die with prostate 

cancer than from it.  

At present little is known about what causes prostate cancer but there are some 

factors that are thought to increase a man's chance of developing the disease.   Apart 

from age, the primary risk factor is hereditary. Men who have close male relatives 

who have had prostate cancer are slightly more likely to develop the disease 
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themselves. It is belived that a man's risk of developing prostate cancer is 

significantly increased if their father or brother developed prostate cancer at or under 

the age of 60, or if more than one man on the same side of the family has had 

prostate cancer. Only a small number of prostate cancers (5–10% or less than one in 

ten cases) are thought to be due to an inherited altered gene running in the family.  

However, a major susceptibility locus for prostate cancer, the “Human Prostate 

Cancer Gene 1” has been identified on chromosome 1.  This gene locus has been 

implicated in around 30% of hereditary prostate cancers in one study (4).  A strong 

family history of breast cancer may also increase the risk of prostate cancer, 

particularly if a close relative has been diagnosed with breast cancer under the age of 

40.  The BRCA1 and BRCA2 genes associated with a higher risk of breast cancers, 

are also linked to a higher risk of prostate cancer.  Research has shown that carrying 

the BRCA2 gene, increases the  risk of getting prostate cancer before the age of 65 

by seven times, when compared with the average man under 65 (5).  Once over 65, 

the risk is reduced to 4.5 times, when compared to the average man.  

Other risk factors include diet, lifestyle and race. In the USA there are significant 

differences in prostate cancer incidence between racial groups. Prostate cancer 

incidence rates for black Americans are more than 50% higher than for white 

Americans while rates for Asian Americans are 40% lower than for white 

Americans. In 2001-2005 the age-standardised (to the 2000 US population) 

incidence rate was 249 per 100,000 for black men, 157 per 100,000 for white men 

and 93.8 per 100,000 for Asian men (6). Prostate cancer occurs less frequently in 
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Asia. However, when Asians leave their homelands to live in the west, the incidence 

rate multiplies by 5 times suggesting the role of diet plays a part. 

 
 

1.2 Prostate cancer pathology 

 

1.2.1 Normal Prostate pathology 

 

The prostate is a small gland about the size of a walnut that sits under the bladder 

and in front of the rectum (Figure 1). The function of the prostate is to store and 

secrete a slightly alkaline (pH 7.29) fluid, which usually constitutes 25-30% of the 

volume of the semen along with spermatozoa and seminal vesicle fluid. The prostate 

gland anatomy is divided into glandular tissue or non-glandular tissue. The glandular 

tissue is epithelial and comprises of ducts and glands that secrete fluid and non-

glandular tissue is fibromuscular stroma. The prostate glandular epithelium has three 

types of cells: basal, luminal secretory and neuroendocrine. Basal cells are fewer in 

number and their function is not wholly understood although they secrete 

components of the basement membrane. It is suggested that a subset of basal cells 

may be epithelial stem cells for the luminal epithelial cells (7). The luminal cells 

secrete components of the Prostatic fluid, express the Androgen receptor (AR) and 

also secrete prostate specific antigen (PSA) in an androgen dependent manner. The 

stroma is composed of fibroblasts, smooth muscles, endothelial cells, dentric cells, 

nerve cells, some inflammatory infiltrates such as mast cells and lymphocytes. Some 

stromal cells are androgen responsive and produce growth factors which act in a 
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paracrine fashion on the epithelial cells. Homeostasis is therefore modulated in part 

by the stromal-epithelial cross talk (8). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.1: Prostate location 

The position of the prostate gland and surrounding organs 

 

 

The prostate gland is classified according to the Prostatic capsule and three zones: 

the transitional, the central, and the peripheral zones (Figure 1.2). The clinical 

significance of the zonal anatomy of the prostate is in understanding which areas of 

the gland are susceptible to benign and malignant disease.   

 

• Prostatic capsule 

The Prostatic capsule is a fibromuscular layer which encases the prostate. This layer 

is most prominent along the base of the prostate gland.  
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• Transitional Zone of the Prostate Gland 

The transitional zone is the innermost part of the prostate gland and surrounds the 

urethra where it passes through the prostate. The transition zone, along with the 

central zone, begins to enlarge as men pass the age of 40. Due to the immediate 

proximity to the urethra, the enlargement of this part of the gland can cause 

bladder outflow obstruction. The transition zone makes up about 5% of the 

glandular volume and is the site of about 10% of prostate cancers. 

• The Central Zone of the Prostate Gland 

The central zone also begins to enlarge after men pass the age of 40. The central 

zone surrounds the transitional zone and constitutes about 25% of the non-

glandular volume. About 5% of prostate cancer cases originate in the central 

zone. 

• The Peripheral Zone of the Prostate Gland 

The peripheral zone of the prostate gland is located in the back of the prostate 

gland closest to the rectum. The peripheral zone constitutes about 80% of the 

prostatic volume and is the site of about 80% of prostate cancers. 
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Figure 1.2: Zones of the prostate gland 

The position of the prostate and the three zones 

1.2.2 Prostate Histology  

1.2.2.1 Benign Prostatic hyperplasia (BPH)  

In this condition the epithelium and the fibrous tissue of the prostate undergo 

proliferative growth, causing enlargement of the prostate gland. It is extremely 

common, being found to some degree in most men beyond middle age. Histological 

BPH is characterized by the benign overgrowth of the transitional zone of the 

prostate which results in the part of the urethra that is surrounded by the prostate 

becoming constricted. This can cause various urinary symptoms, known collectively 

as lower urinary tract symptoms (LUTS) and obstruction to the neck of the bladder 

usually results in; 

• difficulty in starting 

• slowing of the urinary stream 

• dribbling at the end of the stream 
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• bladder irritability 

Currently BPH is treated with medical management or surgery.  

1.2.2.2 Prostatic intraepithelial neoplasia (PIN) 

 
Premalignant change in the prostate gland was identified in 1986 (9); McNeal and 

Bostwick identified the existence of dysplastic prostatic lesions which they named 

intraductal dysplasi.  These lesions exhibited many features, including cytological 

atypia and nuclear polymorphism, which are associated with other premalignant 

conditions.  In 1989, intraductal dysplasia was renamed prostatic intraepithelial 

neoplasia or PIN which brought the nomenclature into line with other pre malignant 

conditions such as CIN (cervical intraepithelial neoplasia). The clinical implications 

of PIN are controversial.  PIN has been shown to occur approximately a decade 

before the onset of prostate cancer (2).  Areas of PIN have been shown to be closely 

associated with foci of prostate cancer and the distribution of clinically relevant 

prostate cancer and PIN is similar (10).  Although high grade PIN is not a cancerous 

condition it is a recognised risk factor of prostate cancer. There is a high percentage 

(40 to 50%) chance that a person with PIN will go on to develop prostate cancer at 

some stage of his life. Therefore people diagnosed with PIN are usually carefully 

monitored by techniques such as watchful waiting and repeated biopsy tests may be 

taken to monitor any development of the condition. 
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1.2.2.3 Atypical small acinar proliferation (ASAP) 

 

ASAP is another premalignant change that denotes a focus of atypical glands that 

are suspicious for cancer. The histological findings of ASAP are characterized by 

the presence of abnormal or atypical glands that have insufficient cytological or 

architectural atypia for a definitive diagnosis of cancer and follow-up of the patient 

is warranted. ASAP has been observed in 2% of biopsy specimens, whereas PIN is 

present in 4% to 16% of contemporary needle biopsy specimens, (11-13). These 

findings can occur together in specimens from the same set of biopsies without 

cancer being present.  

1.2.2.4 Cancer of the prostate (CaP) 

The majority of prostate cancers are adenocarcinoma in origin. Adenocarcinoma is 

the term used to describe a cancer that has originated in epithelial cells that line 

certain internal organs and have gland-like properties (Figure 1.3). Prostate cancer 

may also have the form of small cell carcinoma and squamous cell carcinoma. Small 

cell carcinoma is made up of small round cells, and typically forms at nerve cells. 

Small cell carcinoma is very aggressive in nature and as it does not lead to an 

increase in PSA, it can be difficult to detect in comparison to adenocarcinoma and 

generally has reached an advanced form upon detection. Squamous cell carcinoma is 

very aggressive in nature and like small cell carcinoma there is no increase in PSA 

when it progresses. There are other, more rare forms of prostate cancer, these 

include sarcomas and transitional cell carcinoma; the latter seldom develops in the 

prostate but derives from primary tumours present in the bladder or urethra. Prostate 
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cancer is divided into two subgroups: locally confined or latent prostate cancer and 

locally advanced and metastatic prostate cancer. 

      

 

   

 

                       

Figure 1.3: Prostate cancer histology  

Adenocarcinoma (a) and (b) Small cell carcinoma of the prostate gland  

 

• Locally confined cancer of the prostate 

The development of clinically progressive disease does not always occur within the 

lifetime of every patient with histological evidence of cancer.  As a result, while 

some patients have a high risk of dying of prostate cancer, the remainder lives with 

localised disease, eventually succumbing to death from other causes. Prostate cancer 

is unique among potentially fatal human cancers in that a wide difference exists 

between the incidence of histologically confirmed cancer and clinical disease. 

Scardino (14) attempted to estimate the extent of the discrepancy between the high 

prevalence of the disease at autopsy and the low incidence of clinical disease and 

estimated that only 1 in 95 men with cancer were diagnosed with the disease, and 

only 1 in 323 men with prostate cancer died of the disease.  This indicates that the 



26 

majority of small prostatic tumours which are detected at autopsy do not progress to 

clinical prostatic disease. It is thought that many of these small, well differentiated 

prostate cancers lack the ability to grow, differentiate and metastasize within a 

patient’s lifetime.  At diagnosis, localised or organ-confined disease may be treated 

and potentially cured with treatments such as radical surgery or radiotherapy.  

 However many patients present with extracapsular or advanced disease; this is 

termed locally or regionally advanced, or metastatic disease. It is this subset of 

prostate cancer patients who make up the majority of the 12,000 deaths per year in 

the UK alone, which contributes in making prostate cancer the second most common 

cause of cancer death in men in Europe (15) 

 

• Locally advanced and metastatic cancer of the prostate  

At diagnosis, approximately ¼ of men present with locally advanced or metastatic 

prostate cancer. This indicates that the cancer has spread beyond the capsule to local 

tissues or to distant lymph nodes and other sites, such as the bones. For patients 

presenting with advanced stage prostate cancer, the prognosis is significantly worse, 

with survival time limited. 

1.3 Predictive and prognostic markers of prostate cancer 

 

1.3.1 Prostate specific Antigen (PSA) 

 

Prostate specific antigen (PSA) is a 32-kilodalton (kD) glycoprotein protease.  It is 

synthesised by the ductal and acinar epithelium of the prostate gland and is secreted 

into the seminal fluid after ejaculation. The basement membrane of the prostatic 
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epithelium normally creates a barrier preventing the escape of PSA into the 

circulation.  Disruption of the basement membranes by disease allows PSA to enter 

the systemic circulation. Serum PSA is measured in nanograms per millilitre (ng/ml) 

quantities and is a sensitive marker for detecting prostate cancer. After radical 

surgery, serum measurements should nadir to undetectable levels. The recurrence of 

measurable PSA is the initial sign of therapeutic failure. However many disease 

processes within the prostate gland including BPH and Prostitis are associated with 

elevated circulating PSA concentrations. Thus PSA evaluation is not a diagnostic 

test for prostate cancer but is useful in helping to identify men in whom further 

investigations such as a prostate biopsy would be appropriate. The test has 

dramatically changed the way that men are evaluated and treated for prostate cancer 

(16). Prior to the PSA evaluation era nearly 70% of men diagnosed with prostate 

cancer had progressed to the locally advanced or metastatic stage. Since the test was 

introduced into clinical practice in 1986, the early diagnosis and management of 

prostate cancer has been revolutionized and much has been learned about the 

strengths and weaknesses of this assay. PSA testing not only helps in the early 

diagnosis but also assists in assessing the response to therapy, determining tumor 

progression, and, in its most controversial role, screening for prostate cancer. 

1.3.2 Prostate specific membrane Antigen (PSMA) 

 

Prostate specific membrane antigen (PSMA) is an antigenic marker to prostate 

epithelial cells which can be detected in the serum. PSMA is a 100-kd type II 

membrane protein that is expressed in normal Prostatic epithelial cells, BPH, PIN, 
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and cancer. PSMA represents an attractive antigen for antibody-based diagnostic and 

therapeutic intervention in prostate cancer, as it is highly restricted to the prostate 

and over expressed in all tumour stages. Immunohistochemical studies indicte that 

PSMA expression is increased in castrate resistant disease and also increased 

concentrations of PSMA are present in the serum of prostate carcinoma patients 

compared with healthy individuals (17).Additionally, PSMA primers used in a 

reverse transcriptase–polymerase chain reaction (RT-PCR) study  have been used to 

detect micro metastases in lymph nodes removed during radical prostatectomy (18). 

At present PSMA is being evaluated as a means for therapy. Vaccines including 

dendritic cell (DC)-based vaccines hold promise as a safe therapy for prostate 

cancer, here dendritic cells are primed with PSMA and infused into the patient. This 

is intended to produce a specific immune response to prostate cells. Using PSMA as 

a guide to identify and target prostate cells, radioactive isotopes and cytotoxic agents 

can be delivered to these cells. These findings have spurred development of PSMA-

targeted therapies for cancer, and first-generation products have entered clinical 

testing.  

 

1.3.3 Prostate tumour stage 

Tumour stage is a measure of the tumour size and the extent of disease spread. The 

TNM (Tumour Node Metastasis) classification breaks tumour stage into three 

components; the T component which reflects the extent of disease at the primary site, 

the N component which reflects the presence or absence of nodal metastases and the 

M component which indicates the presence or absence of distant tumour metastases.  
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The UICC (International union against cancer) 2002 TNM classification is used for 

staging cancer of the prostate (Table 1). 

1.3.4 Grading of prostate cancer  

The grade of a tumour depends on its histological appearance and reflects 

differentiation associated neoplasia.  The most commonly used system for grading 

cancer of the prostate is the Gleason grading system (19). This classification 

describes tumour growth according to the degree of cellular differentiation, which is 

graded 1-5.  Tumours can be graded as well differentiated, moderately differentiated 

or poorly differentiated based on their microscopic appearance. A Gleason score is 

calculated using combined scores of the two most prominent tumour areas which can 

range from 2-10. Gleason grade 2-4 (well differentiated), 5-7 (moderately 

differentiated) and 8-10 (poorly differentiated). This score has been shown to provide 

significant prognostic information and also to be readily reproducible (20).   
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T - Primary tumour 

 TX Primary tumour cannot be assessed 

 T0 No evidence of primary tumour 

 

T1 Clinically unapparent tumour not palpable or visible by imaging 

 T1a Tumour incidental histological finding in 5% or less of tissue resected 

 T1b Tumour incidental histological finding in more than 5% of tissue resected 

 
T1c 

Tumour identified by needle biopsy (e.g., because of elevated prostate-

specific antigen (PSA) level) 

   

T2 Tumour confined within the prostate
1
 

 T2a Tumour involves one half of one lobe or less 

 T2b Tumour involves more than half of one lobe, but not both lobes 

 T2c Tumour involves both lobes 

   

T3 Tumour extends through the prostatic capsule
2
 

 T3a Extracapsular extension (unilateral or bilateral) 

 T3b Tumour invades seminal vesicle(s) 

   

T4 Tumour is fixed or invades adjacent structures other than seminal vesicles: bladder 

neck, external sphincter, rectum, levator ani and/or  pelvic wall 

   

N - Regional lymph nodes
3
 

 NX Regional lymph nodes cannot be assessed 

 N0 No regional lymph node metastasis 

 N1 Regional lymph node metastasis 

   

M - Distant metastasis
4
 

 MX Distant metastasis cannot be assessed 

 M0 No distant metastasis 

 M1 Distant metastasis 

 M1a Non-regional lymph node(s) 

 M1b Bone(s) 

 M1c Other site(s) 

   

1 Tumour found in one or both lobes by needle biopsy, but not palpable or visible by 

imaging, is classified as T1c  

2 Invasion into the prostatic apex, or into (but not beyond) the prostate capsule, is 

not classified as T3, but as T2. 

3 The regional lymph nodes are the nodes of the true pelvis, which are essentially the 

pelvic nodes below the bifurication of the common iliac arteries. Laterality does not 

affect the N classification. 

4 When more than one site of metastasis is present, the most advanced category 

should be used 

Table 1.1 : TNM classification used for prostate cancer staging 
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1.4 Treatment of prostate cancer 

There are many different ways of treating prostate cancer. The optimal management 

of prostate cancer is determined primarily by tumour stage and grade, patient’s age 

and general health and individual patient preference.   

1.4.1 Watchful Waiting 

The watchful waiting approach a standard treatment option applied in the 

management of localised prostate cancer. This is based on the knowledge that a large 

proportion of patients with prostate cancer will not die from the disease. Patients 

who are placed on Watchful waiting have well or moderately differentiated tumours 

and a <10 year life expectancy. Watchful waiting allows clinicians to monitor a 

patient’s progress and intervene if the patient develops symptoms or evidence of 

disease progression.  Watchful waiting tends to be offered to elderly men, especially 

those who have other illnesses, such as coronary heart disease or diabetes.  

1.4.2 Radiotherapy 

 

• External beam  

Radiotherapy kills cancer cells in the treated area. This treatment uses a high dose of 

radiation just to the area of the prostate gland. Radiotherapy is a potentially curative 

treatment in patients with localised prostate cancer.  Radiotherapy is generally 

offered to patients whose prostate cancer is between stage T1 and T3 whereby the 

cancer may have spread through the prostate capsule but is still localised. If the 

cancer has spread any further, radiotherapy is not likely to be used as a curative 

option. It is known that both increasing T-stage and a high Gleason score 
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compromise the chance of achieving a cure with radiotherapy (21;22).  However 

radiotherapy is also given to locally advanced prostate cancer that has started to 

spread from the prostate into nearby tissues, with the aim of shrinking the tumour or, 

when the cancer has relapsed after treatment but has not spread to other parts of the 

body. This therapy is also used to treat bone pain due to metastatic disease. 

• Conformal Beam radiotherapy&  Intensity Modulated Radiotherapy 

(IMRT) 

In conformal radiotherapy a computer is used to shape the radiotherapy beams to a 

more exact shape of the patients prostate. This technique aims to cut down the 

amount of healthy body tissue that receives radiation and reduce side effects to the 

bladder and the bowel. However, this is still being investigated in clinical trials.  

Intensity Modulated Radiotherapy (IMRT) is a newer type of conformal 

radiotherapy where the radiotherapy beams are shaped with more precision to the 

cancer and vary the dose across the area of the tumour. 

• Brachytherapy 

 

Brachytherapy is another method of delivering radiation doses directly to the 

prostate whilst minimising exposure to the surrounding non-target tissues. The dose 

rate of brachytherapy refers to the intensity with which the radiation is delivered to 

the surrounding medium and is expressed in Grays per hour (Gy/h). Brachytherapy 

can be given as permanent Lowdose rate (LDR) by implanting radiation sources that 

emit radiation at a rate of up to 2 Gy.hr-1(23). This involves placing small 

radioactive pellets (about the size of a grain of rice) in the prostate tumour area and 
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leaving them there permanently to gradually decay. Over a period of weeks or 

months, the level of radiation emitted by the sources will decline to almost zero. The 

inactive seeds then remain in the treatment site with no lasting effect (22). 

Temporary high dose rate (HDR) brachytherapy is a newer approach to treating 

prostate cancer and is currently less common than seed implantation. It is used to 

boost therapy, as an extra dose in addition to external beam radiotherapy. This 

method offers an alternative way to deliver a high dose of radiation therapy that 

conforms to the shape of the tumour within the prostate, while sparing radiation 

exposure to surrounding tissues (24-28).  HDR brachytherapy as a boost for prostate 

cancer allows the external beam radiotherapy course to be shorter than when using 

alone (24;25;28;29). 

1.4.3 Radical prostatectomy 

The purpose of surgery is to remove disease and classify the extent of disease 

staging. A radical prostatectomy is a surgical procedure in which the prostate, 

seminal vesicles and a sample of some nearby lymph nodes are removed.  Radical 

prostatectomy offers the advantage of a single potentially curative intervention in 

patients with localised prostate cancer. This surgery is offered to patients who have 

localised but clinically significant disease in whom life expectancy is estimated to be 

at least 10 years.  In these patients the expected benefits of surgery out-weigh the 

risk of morbidity.  
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1.4.4 Chemotherapy 

Chemotherapy is used in castrate resistant prostate cancer patients to provide 

effective palliation of symptoms. Several chemotherapeutic agents are available to 

treat prostate cancer. The most common ones are docetaxel (Taxotere) and 

mitoxantrone (Novantrone). Chemotherapy is often given alongside other treatments 

such as palliative radiotherapy, bisphosphonates or pain-relieving drugs. Steroids 

such as prednisolone may also be given along side chemotherapy to make the 

treatment more effective. Research has shown that using a combination of docetaxel 

(Taxotere) and prednisolone can help to reduce symptoms such as pain, improve 

quality of life and increase survival (30). The molecular basis for taxol-based 

chemotherapy is well characterised. Taxanes, like other chemotherapeutic agents 

such as estramustine, inhibit microtubule disassembly by binding to tubulin and 

arresting cells at the G2/M phase.  

1.4.5 Bisphosphonates 

Bisphosphonates are drugs which are used to slow down or prevent bone damage. 

These drugs target areas of increased bone turnover. The osteoclast cells which 

breakdown old bones absorb the bisphosphonate, which subsequently slows down 

their activity and reduces bone destruction. Cancer cells that have spread to the bone 

release cytokines and growth factors that stimulate the osteoclasts making them 

overactive and bone is destroyed faster than it is rebuilt. Subsequently, the bones can 

become thinner and weaker, causing bone pain, hypercalcaemia and increased risk 

of fractures. Several types of bisphosphonates are used in cancer treatment, 

Zoledronic acid is used in treating castrate resistant prostate cancer with bone 
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metastases. Bisphosphonates may benefit men with castrate resistant disease with 

evidence of bone metastases (31;32). They do not actually alter the prognosis but 

they bind to areas of bone metastases where there is a lot of damage and can help to 

relieve bone pain. They may also help to prevent and slow down the bone 

breakdown (33).  

1.4.6 Cryotherapy 

 

Cryotherapy is a new method of killing cancer cells by freezing them. However it is 

still undergoing clinical trials due to uncertainties surrounding it. It can be used to 

treat men with localised prostate cancer that has not spread beyond their prostate 

gland. Tiny probes (cryoneedles) are inserted into the prostate gland through the 

wall of the rectum. This freezes the prostate gland killing the cancer cells, but some 

normal cells also die. The aim is to kill cancer cells while causing as little damage as 

possible to healthy cells. The main side effects of cryotherapy include impotence, 

urinary symptoms and rectal problems. 

1.4.7 Hormonal therapy/androgen depravation therapy 

Hormone therapy controls prostate cancer by stopping production of the male 

hormone testosterone. The key treatment for patients with advanced disease is based 

on androgen-deprivation therapy, and this approach has remained unchanged ever 

since Huggins and Hodges first demonstrated the hormonal dependence of prostate 

cancer in 1941 (34).  Their work showed the growth suppressive effect of reducing 

endogenous androgen levels, by surgical castration in patients with prostate cancer. 

Androgen deprivation therapy aims to inhibit androgen production or action, thereby 
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reducing stimulation of the Androgen receptor (AR). This in turn prevents the 

activation of androgen-regulated genes, which normally result in on-going growth, 

survival and inhibition of apoptosis.  

Front line therapy for locally advanced prostate cancer includes therapies that reduce 

the levels of androgen. The European Association of Urology Guidelines currently 

recommends androgen depravation therapy (ADT) as first-line management in these 

patients. Response rates are initially high (70-80%) (35) but after 18-24 months (36), 

almost all patients relapse and develop castrate resistant prostate cancer (CRPC).  

• Luteinizing hormone releasing hormone agonists (LHRH) 

Production of testicular androgen may be inhibited surgically by Orchidectomy, 

which is the removal of both testicles. Most men (more than 80%) respond 

positively to this treatment, with the progression of their cancer slowing markedly 

for around 18 months or more. Testosterone production may also be inhibited 

chemically, using Gonadotrophin realising hormone super agonists (GnRH) which 

are generally referred to as Luteinizing hormone releasing hormone agonists. LHRH 

agonists induce castrate levels of testosterone by down-regulating pituitary 

gonadotropin-releasing hormone GnRH receptors (and therefore gonadotropin 

hormone production) through constant stimulation. Goserelin (Zoladex) is a GnRH 

receptor agonists used in the treatment of prostate cancer.  This drug mimics GnRH, 

a hormone produced by the hypothalamus.  This hormone stimulates the release of 

Follicle-stimulating hormone (FSH) and luteinizing hormone (LH) from the anterior 

pituitary gland. LH in turn stimulates the production of androgens in the testes.  
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Administration of GnRH agonists initially causes a surge in circulating 

concentrations of testosterone and dihydrotestosterone which can lead to tumour 

flare.  Eventually these agonists downregulate the hypothalamic-pituitary axis and 

consequently inhibit the production of LH and therefore androgen production (37).  

Hormonal therapy is also used in patients who present with metastatic disease. It 

also reduces bone pain, improves obstructive urinary symptoms, reduces prostatic 

bleeding, and decreases circulating PSA concentrations.  

• Anti androgens  

The action of androgen may be blocked at a peripheral level using anti androgens, 

which prevent testosterone and DHT from binding to the AR. An antiandrogen is 

often used in combination with LHRH therapy to prevent tumour flare seen at the 

beginning of therapy. Antiandrogens can be used along with Orchidectomy and may 

be used 2 months before radiation or from 4 months to 2 years after radiation for 

men with intermediate-risk prostate cancer. Bicalutamide (Casodex) was launched in 

1995 as a combination treatment (with surgical or medical castration) for advanced 

prostate cancer and subsequently launched as monotherapy for the treatment of 

earlier stages of the disease. Other anti-androgens include flutamide (Drogenil or 

Chimax) and cyproterone acetate (Cyprostat). Oestrogens that reduce production of 

testosterone include diethylstilboestrol. 

• Combination treatment 

Different methods of deceasing androgens are often used in the same patient: using 

LHRH agonists with anti-androgens can achieve what is known as a maximum 
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androgen blockade (MAB). Hormone therapy can also be used in conjunction with 

other treatments, especially in the case of advanced stage prostate cancer being 

treated with radiation therapy. In that case, hormonal therapy is often given before 

the radiation and this is known as neoadjuvant hormonal therapy and also before 

surgery. 

After a while, all prostate cancers will become resistant to hormonal therapy. For 

some this often takes many years and hormonal therapy can buy a lot of time in 

patients with extensive disease or patients who choose not to undergo surgery or 

radiation. However CRPC is a lethal and heterogeneous disease. Despite secondary 

treatment, median survival of CRPC patients ranges from only 9 - 27 months 

(38;39). The development of castrate resistance remains a significant clinical 

problem, as it leads to disease progression and metastasis. 

 

1.5 Androgens and the Androgen receptor (AR) 

1.5.1 Androgen 

Androgens control the development, differentiation, and function of male 

reproductive and accessory sex tissues, such as the seminal vesicle, epididymis, and 

prostate. Other organs and tissues, such as skin, skeletal muscle, bone marrow, hair 

follicles, and brain, are also under the influence of androgens. The principal action 

of androgens is to regulate gene expression through the androgen receptor (AR). 

Androgens are the major regulators of prostate growth (40). Their known effects are 

mediated by a cytoplasmic AR that is translocated into the nucleus upon hormone 

binding to positively or negatively modulate the expression of specific genes (41).  
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Testosterone is the main circulating androgen produced primarily by the Testes. 

However, a smaller source is also produced from the adrenal cortex, by 

adrenocorticotropoic hormone (ACTH), which releases androstene and 

androsteriedione (42).  Testosterone circulates in the blood bound to albumin and 

sex hormone binding globulin (SHBG).  When free testosterone enters prostate cells  

it is converted, by the enzyme 5α reductase, to the more active metabolite 

dihydrotestosterone (DHT) in the cell cytoplasm. Testosterone and DHT wield their 

biological effects through binding the AR and inducing transcriptional activity.  

1.5.2. The Androgen Receptor (AR) 

The gene for the androgen receptor is located on the X chromosome at Xq11-12 and 

encodes a protein with a molecular mass of approximately 110 kDa.  AR is a 

member of the nuclear receptor super-family. Nuclear receptors are ligand-inducible 

transcription factors that mediate the signals of a broad variety of fat-soluble 

hormones, including steroid and vitamin D3 hormones, thyroid hormones and 

retinoids (41;43;44). AR can alter gene expression directly by interacting with 

specific elements in the regulatory regions of target genes (45) or indirectly by 

activating various growth factor signallingpathways (46).  

1.5.3 AR Structure   

The androgen receptor gene was cloned in 1988 by Chang and co-workers (47) and 

Lubahn et al. (48;49) followed by several others Tilley et al (50) Trapman et al (51), 

Brinkmann et al (52). AR has four major functional regions (Figure. 1.4): the N-

terminal transactivation domain (TAD), a central DNA-binding domain (DBD), a C-
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terminal ligand-binding domain (LBD), and a hinge region connecting the DBD and 

LBD (53). Two autonomous transactivation functions, a constitutively active 

activation function (AF-1) originating in the N-terminal and a ligand-dependent 

activation function (AF-2) arising in the LBD, are responsible for the transcriptional 

activity of nuclear receptors (54).  

 

 
Figure 1.4 Functional domains of Androgen receptor 

The Androgen receptor comprises of four functional domains, the diagram shows the 

function of each domain. 

 

• N-terminal transactivation domain  (N-terminal) 

The N-terminal domain harbors the major transcription activation functions and 

several structural subdomains. Within its 538 amino acids, two independent 

activation domains have been identified, these are activation function 1 (AF-1) and 

activation function 5 (AF-5) (Figure 1.4). AF-1 is located between residues 101 and 

370 and is essential for transactivity of full length AR. AF-5 is located between 

residues 360-485 and is required for transactivity of a constitutively active androgen 

receptor, which lacks its LBD (55). In addition, the N-terminal contains a variable 
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polyglutamine tract usually located at positions 57-78, which affects AR stability 

and transcriptional activity (56)  

• DNA binding domain 

The DNA-binding domain (DBD) is an independently folded protein domain which 

contains at least one motif that recognizes double- or single-stranded DNA. The 

DBD of AR exhibits a high degree of amino acid sequence identity to other 

members of the glucocorticoid receptor (GR) subfamily, the progesterone receptor 

(PR), and mineralocorticoid receptor (MR). Consequently, the four receptors 

recognize very similar, if not identical, hormone response elements (HREs). Steroid 

receptors have long been known to bind DNA elements that are organized as 

inverted repeats of hexameric binding sites separated by three nucleotide spacers. 

For AR, GR, PR and MR, the consensus reads 5'-TGTTCT-3' (57;58). The DNA-

binding domain has a compact, globular structure with two zinc finger motifs with 

four conserved cysteines. The first zinc finger contains a P-box (sequence critical for 

DNA-DNA recognition and specificity) and is responsible for binding to HRE of 

target genes (59-61). The second zinc finger contains a five amino acid-residue long 

D-box and controls dimerisation of the receptor on the HREs.  

• Hinge Domain 

The hinge region connects the DBD with the LBD. It is defined by residues 628-669 

and is a multifunctional domain involved in DNA binding (62-65) and nuclear 

translocation (66). The AR hinge contains a serine at position 650 that can be 



42 

phosphorylated by MEKK-kinases and which seems to be involved in the regulation 

of receptor translocation (67;68). A mutation of Serine 650 to Alanine reduced the 

nuclear export of the AR (67). The hormone-dependent nuclear translocation of AR 

is mainly mediated through a bipartite nuclear localization signal (NLS) consisting 

of two clusters of basic residues that are located in the DBD and the hinge region 

(66). The AR can also be acetylated in its hinge region at residues K630, K632, and 

K633 (69). Acetylation of these residues has been reported to regulate transcriptional 

activity (69), subcellular distribution and folding of the AR (70), and coactivator and 

corepressor binding (69-71).  

• Ligand binding domain 

The ligand binding domain (LBD) contains the ligand dependent transactivation 

function 2 (AF-2). This is a highly conserved hydrophobic cleft flanked by opposing 

charge residues (72). This area contains a fold comprised of up to 12 α helices (H12) 

forming a ligand binding pocket (LBP). Ligand binding changes the conformation 

and the H12 serves as a ‘lid’ to close the ligand-binding pocket (LBP), whereas in 

the antagonist-bound conformation, H12 is positioned in a different orientation, thus 

opening the entrance to the LBP.  

 

1.5.4 Androgen Receptor Isoforms 

Two isoforms of the androgen receptor (A and B) have been identified (73). 

Androgen receptor A (AR-A) is approximately 87 kDa. The N-terminus is truncated 
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and lacks the first 187 amino acids. Androgen receptor B (AR-B) is the full length 

AR and is approximately 110kDa. 

• Splice variants 

Novel splice variants have been identified in prostate cancer cell lines designated 

AR-v3, ARv-4, ARv-5 and AR-v7; these variants lack the LBD (74). AR-v3 has 

been shown to be expressed in human prostate cancer tissues and to be constitutively 

active and its transcriptional activity does not appear to be regulated by androgen or 

anti androgens. AR-v3 was also significantly up-regulated during prostate cancer 

progression and expression levels correlate with the risk of tumour recurrence after 

radical prostatectomy (74).  Hu et al also reported that levels of AR-v7 are elevated 

by approximately 20 fold in castrate resistant prostate cancer cell lines derived from 

metastatic prostate cancer specimens failing hormone ablation therapy. In hormone 

naïve prostate cancers which had not undergone hormone therapy a low ARv-7 

expression was observed. Interestingly higher ARv-7 expression was observed in 

these patients flowing therapy and this was also predictive of PSA recurrence (75). 

 

1.5.5 Androgen Receptor Cofactors 

The AR interacts with nuclear proteins, which modify its effects on transcription. 

AR co-activators participate in DNA modification of target genes, either directly 

through modification of histones or indirectly by the recruitment of chromatin-

modifying complexes, as well as functioning in the recruitment of the basal 

transcriptional machinery (76). 
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• Co activators 

To facilitate transcription, nuclear receptor proteins recruit coactivator proteins, 

which increase the rate of transcription by promoting histone acetylation and 

interactions with the basal transcriptional machinery (77). The best-characterised 

coactivators include Steroid Coactivator 1 (SRC1) and Creb-Binding Protein (CBP). 

The p160/SRC family consists of three members: SRC-1 (p160-1, N-CoA1), SRC-2 

(TIF-2, GRIP1, NCoA2), and SRC-3 (RAC3, TRAM1, ACTR, ABI1, P/CIP). Most 

nuclear receptors recruit SRCs to their LBD using a leucine-rich motif (LXXLL). 

However, the LBD of the AR preferentially recruits its own AF-1 domain via an N-

terminal FXXLF motif, which interacts strongly with the hydrophobic cleft of the 

LBD created by ligand binding (78-81). The subsequent recruitment of coactivators, 

in particular the SRC family, is then mediated primarily by the AF-1 domain rather 

than by the LBD (77;81-84).  

• Co-Repressors 

Co repressors interact with nuclear receptors in the absence of ligand or the presence 

of antagonists, and repress transcription. Nuclear receptor co-repressor 1 (N-CoR) 

and silencing mediator for retinoid and thyroid hormone receptors (SMRT) are key 

co-repressors. Both prevent AR mediated transcription by recruiting proteins that 

have histone deacetylases (HDAC) to the promoter region of the genes, which 

maintains chromatin in a condensed state thus inhibiting access of the transcription 

machinery. Prohibitin and Hey 1 have recently been identified as AR corepressors 

(85-87). 
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1.5.6 Ligand dependent activation of androgen receptor 

Ligand free AR is maintained in a multiprotein inhibitory complex with heat shock 

proteins (HSPs 70 & 90). A vital component of this complex is the co-chaperone 

p23. HSPs bind to regions of the receptor required for homodimerisation, nuclear 

localisation and DNA binding. Androgen binding induces a conformational change 

in the AR that leads to dissociation from the HSPs, homodimerisation, receptor 

phosphorylation and nuclear translocation (Figure 1.5). Nuclear AR binds directly to 

HRE sequences in the promoter region of androgen regulated genes. This leads to 

the recruitment of co-activators, co repressors and transcription machinery to the 

promoter (88). Androgen/AR interaction functions in promoting the survival of the 

secretory epithelia (89), controlling expression of genes that drive cell growth by 

promoting G1-S phase progression and inhibition of  apoptosis. (90).  
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Figure 1.5 Activation of the AR by androgens  

Testosterone enters prostatic epithelial cell and is converted to dihydrotestosterone 

(DHT) by 5α-reductase. DHT binds to AR, resulting in dissociation of inhibitory 

heat-shock proteins (HSPs) and transactivation of the AR involving AR 

phosphorylation and dimerisation. The AR homo-dimer transolcates to the nucleus 

and binds to androgen response elements in the promoter regions of target genes, 

resulting in biological responses such as growth, survival and PSA expression. 

 

1.5.7 Androgen receptor phosphorylation 

Phosphorylation of AR is stimulated in a ligand dependent manner via androgen 

binding and also in a ligand independent manner through signal transduction 

cascades. Phosphorylation of Serine and Tyrosine residues on the AR has been 

identified. Phosphorylation of Serine residues stabilizes the AR and protects it from 

proteolytic degradation (91). Phosphorylated amino acids within the AR include 
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serines (Ser) 16, 81, 94, 256, 308, 424,578 and 650 (Figure 1.6) (92-94) . All of 

these sites show increased phosphorylation in the presence of androgen, with the 

exception of Ser-94, which is constitutively phosphorylated. In response to 

androgen-binding, Ser-81 is the most frequently phosphorylated site on the AR, 

giving the highest stoichiometric phosphorylation yield in LNCaP cells treated with 

androgens (94).  Phosphorylation of Ser-81 is associated with AR stability and 

transcriptional activity (95). It is also associated with prostate cancer cell growth in 

cell line studies, suggesting some significance of AR Ser-81 phosphorylation in AR 

function (96). AR transcriptional activity can be induced by EGF, this is dependent 

on AR phosphorylation at serines 515 (MAPK consensus site) and 578 (PKC 

consensus site), which regulates nuclear cytoplasmic shuffling of the AR, through 

interactions with the Ku-70/80 regulatory subunits of DNA-dependent protein 

kinase (97). The AR can be phosphorylated in response to a variety of signals, which 

facilitates the recruitment of coactivators or components of the transcription 

machinery and therefore acts in conjunction with the ligand to enhance transcription 

activation. Phosphorylation of the AR at serine residues 213 and 791 is mediated by 

Akt which results in increased AR transactivation (98). Tyrosine kinases, Ack1 

(activated cdc42-associated kinase) and Src, phosphorylate and enhance AR activity 

and promote prostate xenograft tumour growth in castrated animals. Ack1 mediates 

heregulin and Gas6-induced AR Tyrosine 267 phosphorylation, and Src mediates 

Tyrosine 534 phosphorylation induced by EGF, IL-6 and bombesin. Dasatinib, a Src 

inhibitor, inhibits EGF-induced Tyrosine 534 phosphorylation and also inhibits 

heregulin induced Ack1 phosphorylation of the AR at Tyrosine 267 (99). 



48 

 

Figure 1.6 AR serine phosphorylation sites 

Diagram of the AR displaying the serine residues that are known to undergo 

phosphorylation and the kinases reported to mediate this. 

 

1.5.8 Mechanisms of castrate resistance  

Depriving prostate cancers of androgen inhibits cell proliferation and induces 

apoptosis resulting in tumour regression however disease regression is temporary for 

most and the castrate resistant phenotype proceeds. The mechanisms underlying 

both the development of hormone naïve and castrate resistant disease are poorly 

understood however several possible mechanisms are currently being investigated.  

 

1.5.8.1 Genetic modification of the AR 

• AR gene amplification 

AR expression is observed in hormone naïve and castrate resistant prostate cancers 

despite low levels of circulating androgens during treatment. Increased AR 

abundance is one mechanism that can aid tumour cell proliferation despite the low 

androgen levels. AR gene amplification has been associated with castrate resistance 
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(100). Approximately 30% of tumours that progress to castrate resistance have AR 

gene amplification, resulting in increased AR protein expression. However studies 

have reported that AR gene amplification was not present in the  hormone naïve 

tumours before the commencement  of hormone therapy (100;101). This suggests 

that AR amplification was possibly due to clonal selection of cells that could 

proliferate in the reduced androgen environment. AR amplification rates have also 

been shown to significantly increase in the transition from hormone naïve to castrate 

resistant disease (102;103). Interestingly, 80% of these patients displayed a 

corresponding increase in AR protein expression, indicating that AR gene 

amplification does not always lead to increased AR protein expression. This study 

also observed that 22% of patients exhibited an increase in AR protein expression in 

the absence of AR amplification but it was the patients who acquired AR gene 

amplification that had a significantly shorter survival time, suggesting that in a sub 

set of prostate cancer patients AR gene amplification is involved in the progression 

to castrate resistant disease. However, this observation does not account for the 70% 

of patients who do not acquire AR gene amplification but progress to a castrate 

resistant disease thus suggesting another method to disease progression. 

 

Animal models of prostate cancer have suggested that increased AR levels can 

initiate prostate cancer development (104) and castrate resistant xenografts have 

shown that the AR exhibits an increased sensitivity to reduced androgen levels 

(105). Kim et al observed that castrate resistant tumour cells were hypersensitive to 

the growth promoting effects of DHT. These androgen independent cells were 
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stimulated by DHT concentration four times lower than that required for androgen 

dependent LNCaP cells. These results therefore, have shown that in some models of 

prostate cancer the AR is transcriptionally active at the low levels of androgens 

found to be circulating in castrated patients. 

 

• AR Mutations 

In untreated prostate cancer the incidence of AR mutations is found to increase with 

cancer stage. AR mutations are found in 0-4% of latent and stage B prostate tumours 

(106-108). However, they are more commonly observed in distant metastasis, AR 

mutations were found in 21-44% of  metastatic tumours sampled before therapy 

(107;109). Therefore the acquisition of mutations within the AR is likely to be a 

mechanism for castrate resistance in some prostate cancer patients. The majority of 

AR mutations identified are point mutations resulting from a single amino acid 

substitution. The replacement of threonine 877 with alanine in the AR LBD is a 

frequent mutation in prostate cancer patients and corresponds to the mutation found 

in LNCaP cells (110-113). In cells with AR mutations, androgen signalling is 

maintained by the broader number of ligands that can bind to and activate the 

receptor. The T877A substitution allows the AR to be activated by binding to 

cortisol and progesterone and other ligands that the wild type receptor cannot 

accommodate. This mutation allows antiandrogens such as flutamide to bind, 

changing its function from an antagonist to agonist, thereby promoting prostate 

cancer cell growth (114;115). Additionally several point mutations in and around the 

hinge region have been identified (116-118). Some of these mutations have been 
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shown to increase the transcriptional response which indicates an inhibitory function 

of the hinge domain. Various other AR mutations have been identified which are 

catalogued in the Androgen Receptor Gene Mutation Database (119). At present it is 

uncertain how many of these other mutations use the same promiscuous receptor 

mechanism that allow prostate cancer cells to become castrate resistant.  

• CoRegulator alterations 

Modulation of coregulatory proteins and their function is most likely to contribute to 

the progression to castrate resistant disease.  This may be by increasing the AR 

transcriptional activity at low androgen concentrations or by altering the ligand 

specificity. In prostate cancer several coactivators have been shown to alter the 

ligand specificity of the AR, including CBP, β catenin, AR-associated protein 55 

(ARA55) and ARA70 (120-122). In addition, the expression of three members of the 

SRC family, SRC-1, TIF-2 and SRC-3 have been shown to be high in prostate 

cancer (76;88). SRC-1 has been shown to be overexpressed in 50% of hormone 

naïve prostate cancers compared to normal and BPH samples. In castrate resistant 

tumours 63% displayed both SRC-1 and TIF-2 overexpression (123). Moreover an 

increase in SRC-3 expression has been shown to significantly correlate with 

increased tumour stage and Gleason grade and decreased disease specific survival 

(124). Another study also highlighted that higher expression of RAC-3 resulted in 

higher PSA levels in the presence and absence of androgen. Here it was observed 

that RAC-3 facilitates RNA polymerase II recruitment to a distant enhancer element 

of the PSA gene, resulting in a increase in PSA expression (125).  The AR 

coactivator cdc25B (cdk-activating phosphatase) has also been associated with 
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prostate cancer progression. High expression of cdc25B was observed in late stage 

prostate tumours with a high Gleason grade (126). In the CWR22 prostate xenograft 

and LNCaP cell line the expression and nuclear localisation of AR coactivator Tat 

interactive protein 60 kDa (Tip 60) was shown to increase upon androgen 

withdrawal (127). AR co-activator overexpression appears to play a role in prostate 

cancer progression, which coactivators most significantly contribute to prostate 

cancer progression remains to be determined. 

 

Several mechanisms have been implicated with the development of castrate resistant 

disease. AR mutations have been identified in a small number of prostate cancers 

and mutated AR may cause anti-androgens to activate the AR rather than inhibiting 

it. AR gene amplifications are present in 20-30% of castrate resistant prostate 

cancers.  Amplification of the AR gene may result in increase protein which is 

hypothesised to enable low levels of circulating androgens to bind and activate the 

AR even in the presence of anti-androgens. However, there remain a large number 

of cases that cannot be explained by AR mutations or amplifications. Cell line 

studies suggest that castrate resistance may be a result of AR activation by 

phosphorylation or may be due to a mechanism completely independent of the AR. 

 

1.5.8.2 Post-translational modifications of the AR  

Upon AR expression, post-translational modification takes place. These 

modifications, which are generated by signal transduction pathways, include 

acetylation, ubiquitination, sumoylation and phosphorylation (128). The progression 



53 

of prostate cancer has been associated with alteration of growth factor or growth 

factor receptor expression by the tumour (129;130). Growth factors and cytokines 

regulate cellular responses through binding to membrane receptors. This binding 

initiates a phosphorylation cascade that ultimately results in phosphorylation of 

transcription factors or transcription factor interacting proteins.  

 

1.6 Cross talk between AR and growth factor receptor pathways 

In prostate cancer a number of signal transduction cascades are known to influence 

AR transcriptional activity by direct phosphorylation of the AR or by 

phosphorylation of AR coregulators. In vivo, this may allow the AR to be activated 

in the absence of androgens, by other steroids or be sensitised to the low levels of 

circulating adrenal androgens that remain present during androgen-deprivation 

therapy. Several growth factors such as Insulin like growth factor -1 (IGF-1) and 

EGF can activate the AR and induce AR regulated genes in the absence of androgen 

(131). These growth factors are ligands for receptor tyrosine kinases and initiate 

intracellular signallingcascades. A full description of the signallingcascades 

implicated in castrate resistant disease progression is beyond the scope of this thesis 

however current advances in signal transduction association will briefly be 

discussed. 

The Human Epidermal Growth Factor Receptor (HER) family has been implicated 

in prostate cancer. Increased expressions of the EGFR, HER2, HER3, HER4, and 

EGFRvIII have all been associated in prostate cancer progression (132-136).  AR 

activation has been reported through HER2 induced Mitogen activated protein 
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kinase  (MAPK) and Phosphatidylinositol 3 Kinase (PI3K) signalling(137). In 

LNCaP cells HER2 mediated AR transactivation is reduced by transfection of a 

dominant negative mutant of Akt suggesting Akt phosphorylation of AR can 

enhance AR transcription at a low level of androgen (98).  

The IL-6/JAK/STAT cascade is thought to play a key role in the progression of 

castrate resistant disease. IL-6 cytokine was originally described as a regulator of the 

immune and inflammatory responses, but is now known to influence tumour cell 

growth in an autocrine/paracrine manner (138).  As prostate cancer progresses from 

hormone naïve to castrate resistant disease, the circulating concentrations of IL-6 in 

the serum of patients increase (139). Functional cell line studies demonstrate that the 

AR/STAT-3 complex can promote androgen-regulated gene transcription even in the 

absence of androgens (140). This mechanism is supported by data that demonstrates 

IL-6 can activate the AR in a ligand-independent manner (141;142). Evidence in 

clinical tissue to support these in vitro observations are sparse, although it is reported 

that IL-6 receptor (IL-6 R) expression is eightfold higher in prostate cancer tissue 

compared to normal tissue (143). Additionally, IL-6R and pSTAT3
Tyr705

 expression 

are associated with reduced time to biochemical relapse and survival in matched 

hormone naïve and castrate resistant tumour samples (144)  

Work carried out in our lab previously using CGH gene array identified that several 

members of key signallingcascades were upregulated in clinical castrate resistant 

prostate cancer samples (145). This study observed that key members of the PI3K 

and MAPK cascade were more commonly amplified in castrate resistant tumours. 

Both of these signallingcascades can be activated by growth factors via tyrosine 
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kinase receptors.  The Ras/Raf/MAP Kinase pathway may increase prostate cancer 

cell growth both via and independently of the AR, further implicating it in the 

development of castrate resistant disease. Multiple members of this pathway have 

been implicated in prostate cancer progression. In studies using human prostate 

tumours, phosphorylated MAPK expression increases with tumour stage and grade 

and is over-expressed in castrate resistant disease (146). H, K and N RAS genes are 

amplified in approximately 50% of hormone naïve and castrate resistant prostate 

tumours (145) and N-Ras expression is associated with the development of castrate 

resistant disease and correlates with MAPK activation (147). Additionally both an 

increase in Raf-1 and MAPKexpression are significantly associated with prostate 

cancer survival (148).  Recent evidence suggests that MAPK activation induces 

phosphorylation of AR at Serine 81 to stimulate prostate cancer cell growth and 

induce PSA expression (96). MAPK has been shown to increase transcription of 

androgen dependent genes independently of androgens via phosphorylation of the 

AR itself at serine 515 or via phosphorylation of AR co factors such as SRC-1 

(141;149).  

 

1.7 The PI3K/Akt cascade 

The PI3K cascade has been shown to regulate multiple cellular events in prostate 

cancer. Activation of the PI3K cascade is initiated by receptor tyrosine kinases 

(RTKs) and non RTKs. PI3K activation results in the catalytic conversion a 

phosphate from ATP to the D-3 position of the inositol ring of phospatidylinositol 

(4, 5) bisphosphate (PIP2) to phospatidylinositol (3,4,5) triphosphate (PIP3) (150). 
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These lipids act as secondary messengers and recruit pleckstrin homology (PH) 

domain containing proteins such as Akt to the inner surface of the plasma 

membrane, driving their conformational change resulting in their activation. 

Activated Akt translocates to the cytoplasm and nucleus and activates down stream 

targets such as mammalian target of Rapamycin complex 1 (mTOR 1). The PI3K 

cascade is negatively regulated by the tumour suppressor PTEN (phosphatase and 

tensin homologue deleted on chromosome 10).Activation of this pathway is 

believed to be a key mechanism driving castrate resistant disease progression 

(Figure 1.7) 

 

 

Figure 1.7 PI3K cascade 

Schematic representation of the PI3K cascade 
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1.7.1  PI3K 

 

The oncogenic form of PI3K, v-p3k, was first discovered in an avian sarcoma virus 

(151), here the expression of v-p3k was shown to induce tumours when the 

transformed cells were injected into chicken.  The PI3K family is composed of three 

Classes; I, II, and III. Class I PI3K is further divided into two groups: PI3K-IA and 

PI3K-IB and activation is dependent upon the specific regulatory and catalytic 

isoforms that associate into the heterodimers. Class IA PI3K heterodimers contain 

specific isoforms of the 85 kDa adaptor subunit (p85α, p55α, p50α, p85β, or p55γ) 

that facilitates interaction with receptor tyrosine kinases (RTK) and either an alpha, 

beta or delta p110 catalytic subunit (p110α, p110β, or p110γ). The preferred 

substrates of class I, PI3K are phosphoinositides (4, 5) bisphosphate (PIP2), 

Phosphorylation of PIP2 by PI3K generates PtdIns (3, 4, 5) PIP3. The class IA 

PI3Kp110α is mutated in many  cancers causing the kinase to be more active 

(152;153). Functional analyses of PIK3CA mutations revealed that they increase its 

enzymatic activity, stimulate Akt signalling, and allow growth factor independent 

growth as well as increasing cell invasion and metastasis (153).  

 

1.7.2  Akt  

Three Akt family members Akt 1, 2 and 3 have become known as critical mediators 

of signal transduction cascades downstream of activated tyrosine kinases and PI3K. 

An ever increasing list of Akt substrates has specifically defined the multiple 

functions of this kinase family in normal physiology and disease states. Cellular 

processes regulated by Akt include cell proliferation and survival, cell size and 
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response to nutrient availability, intermediary metabolism, angiogenesis, and tissue 

invasion.  Akt proteins contain a central kinase domain with specificity for serine or 

threonine residues in substrate proteins. They also contain a pleckstrin homology 

(PH) domain, which mediates lipid-protein and/or protein-protein interactions. Akt1 

has been implicated as a major factor in many types of cancer. Akt2 has shown to be 

an important signallingmolecule in the Insulin signallingpathway and is required to 

induce glucose transport.These separate roles for Akt1 and Akt2 were demonstrated 

in study using mice which had either Akt1 or Akt2 gene deletion.  In Akt 1 null mice 

with normal Akt2, glucose homeostasis is undisrupted however the animals were 

smaller, consistent with a role for Akt1 in growth. In contrast, Akt2 null mice with 

normal Akt1, have mild growth deficiency and display a diabetic phenotype again 

consistent with the idea that Akt2 is more specific for the insulin receptor 

signallingpathway (154). The role of Akt3 is less clear, though it appears to be 

predominantly expressed in brain tissue (155). In unstimulated cells Akt is 

constituatively phosphorylated at serine 124 and threonine 450. Once correctly 

positioned in the cell membrane via binding of PIP3 Akt can then be phosphorylated 

by its activating kinases at two regulatory residues.  Phosphoinositide dependent 

kinase 1 (PDK-1) phosphorylates Akt at threonine 308, this is essential for Akt 

activation as it causes a charge induced conformational change that allows substrate 

binding and an increased rate of catalysis. Without this threonine phosphorylation  

the hydrophobic motif of Akt is more susceptible to the action of phospatases. 

Mammalian target of rapamycin complex 2 (mTORC2) phosphorylates Akt at serine 

473 (156;157). Phosphorylation of Akt at serine 473 increases Akt activity 10-fold 
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(156;158). Once activated Akt translocates from the inner surface of the cell 

membrane to the cytoplasm and nucleus where it phosphorylates proteins in several 

pathways regulating aspects of metabolism, proliferation and apoptosis. Akt also 

plays significant roles in protein translation, particularly by regulating those proteins 

involved in growth and survival. Akt regulates the apoptotic response to a variety of 

stimuli via its ability to interact with a number of key players in the apoptotic 

process.  BAD is a pro-apoptotic protein of the Bcl-2 family. Akt phosphorylates 

BAD on Serine 136  which makes BAD dissociate from the Bcl-2/Bcl-X complex 

and lose the pro-apoptotic function (159). Akt has also been shown to regulate cell 

cycle progression via a pathway that ultimately down regulates the cell cycle 

inhibitor p27 (160). 

 

1.7.3 mTOR 

Mammalian target of rapamycin (mTOR) is a large protein kinase that exists in two 

distinc complexes within cells, one that contains mTOR, GβL, and raptor (mTOR 

C1) and another containing mTOR, GβL and rictor (mTOR C2). Akt can directly 

phosphorylate and activate mTOR, as well as cause indirect activation of mTOR by 

phosphorylating and inactivating TSC2 (tuberous sclerosis complex 2), which 

normally inhibits mTOR through the GTP-binding protein Rheb (Ras homolog 

enriched in brain). When TSC2 is inactivated by phosphorylation, the GTPase Rheb 

is maintained in its GTP-bound state, allowing for increased activation of mTOR. In 

the mTORC1 complex, mTOR signals to its downstream effectors S6 

kinase/ribosomal protein S6 and Eukaryotic translation initiation factor 4E (4EBP-
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1/eIF-4E) to control protein translation. Although mTOR is generally considered a 

downstream substrate of Akt, mTOR can also phosphorylate Akt when bound to 

Rictor in TORC2 complexes, this is thought to provide a level of positive feedback 

on the pathway (156). The downstream mTOR effector S6 kinase-1 (S6K1) can also 

regulate the pathway by catalyzing an inhibitory phosphorylation on insulin receptor 

substrate (IRS) proteins. This prevents IRS proteins from activating PI3K, thereby 

inhibiting activation of Akt. Due to its  central position in the PI3K cascade i.e 

downstream of Akt and upstream of S6K  the activation of mTOR is part of a 

fundemental step in controlling tumour cell growth. 

1.7.4 PTEN 

PI3K dependent Akt activation can be regulated through the tumor suppressor PTEN 

which works essentially as the opposite of PI3K. The PTEN tumour suppressor gene 

is located on chromosome 10q23, an area known to undergo loss of heterozygosity 

(LOH) in many human cancers. PTEN Mutations and somatic deletions have been 

identified in an array of tumours placing PTEN as one of the most commonly 

mutated tumour suppressor genes in human cancer (161). PTEN mutants that retain 

protein tyrosine phosphatase activity but loose the ability to dephosphorylate PIP3 

are found in many tumours, indicating that the lipid phosphatase activity is needed 

for tumour suppression (162). PTEN acts as a phosphatase to dephosphorylate PIP3 

back to PIP2. This removes the membrane-localization factor from the Akt 

signallingpathway. Without this localization, the rate of Akt activation decreases 

significantly, as do the all the downstream pathways that depend on Akt for 
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activation. The ability of PTEN to inhibit PI3K/Akt signallingallows it to block 

nuclear entry of Mdm2. Phosphorylation of Mdm2 at serines 166 and 188 by Akt 

induces the translocation of Mdm2 to the nucleus. In the nucleus Mdm2 ligates 

ubiquiton to the p53 tumour suppressor thus targeting it for degradation. PTEN also 

negatively regulates cell migration and invasion by dephosphorylation of focal 

adhesion kinase (FAK) and also negatively regulates growth factor receptor 

signallingthrough inhibition of the adaptor protein Shc, (163;164). 

 

 

1.7.5 The PI3K/Akt cascade and prostate cancer 

Several key components of the PI3K/Akt cascade have been implemented in prostate 

carcinogenesis and castration resistance. PI3K inhibition has been studied in vitro 

for some time and evidence of it key role in carcinogenesis continue to emerge. 

Genetic analysis of high Gleason grade prostate cancers revealed 3% of patients had 

PIK3CA mutation and 13% had PIK3CA amplification (165). Up regulation of PI3K 

signallingmay also be due to overexpression of RTKs which have been previously 

reported to be overexpressed in prostate tumours and cell lines (133;134;137). PI3K 

has shown to be an important signallingmolecule and key survival factor involved in 

prostate cancer proliferation and invasion. Previous studies have reported that 

treatment LNCaP, PC-3 and DU145 with PI3K pharmacological inhibitor, 

LY294002, potentially suppressed the invasive properties in each of these cell lines 

and restoration of the PTEN gene to highly invasive prostate cancer PC-3 cells or 

expression of a dominant negative version of Akt also significantly inhibited 

invasion and down regulated protein expression of urokinase-type plasminogen 
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activator (uPA) and matrix metalloproteinase (MMP)-9, markers for cell invasion, 

indicating a central role of the PI3K/Akt cascade in this process. Increased levels of 

PI3K (p110 / ) and regulatory (p85) and Akt were also observed in these cell lines 

(166). 

A somatic mutation in AKT1 (E17K) has been detected in breast, colorectal, lung, 

ovarian and prostate cancers (167;168). In AKT1, the E17K substitution leads to a 

PI3K-independent activation of AKT1. In prostate cancer, AKT1 mutation was 

reported to have a prevalence of just 1.4% and the mutation seemed to be associated 

with favourable clinical outcome and was not associated with a specific tumour 

growth pattern (168). Overexpression of Akt in prostate cancer is hypothesised to be 

due to defective PTEN gene as discussed below. Prostate tumours are reported to 

have significantly higher Akt expression than BPH (169), and only 10% of well-

differentiated prostate tumours strongly express pAkt compared to 92% of poorly 

differentiated tumours (161;170-172). Additionally, in hormone-naive tumours Akt1 

and Akt2 expression has been associated with shorter time to biochemical relapse; 

however, no association was reported with the activated forms or with survival 

(173). 

 Loss of PTEN has been associated with advanced prostate cancer (174) and loss of 

PTEN expression is associated with increased risk of recurrence in human tumours 

(175-178). Prostate cancer cell lines that have been cultured from metastatic sites 

such as the lymph nodes (LNCaP) or brain metastasis (PC3) have highly active 

PI3K/Akt signallingand PTEN deletion (179;180) The magnitude of loss of function 

of PTEN is best described in both localised and metastatic prostate cancers and 
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includes homozygous deletions, loss of heterozygosity (LOH) and inactivating 

mutations (181). The reported frequency and mode of inactivation at different stages 

of prostate cancer vary. Homozygous deletions of PTEN have been detected in up to 

15% of locally confined prostate cancers and up to 30% in metastatic cases (182-

186). Heterozygous loss has been reported in 13% of locally confined prostate 

cancers and up to 39% in metastatic cases (183-185;187;188). PTEN mutation has 

been associated with 5-27% of localised and 30-60% of metastatic prostate tumours 

(182;189;190) In addition, loss of PTEN expression is associated with disease 

progression and increased risk of recurrence (175;176;178) although substantial 

heterogeneity has been observed between different metastatic sites within the same 

patients (182).  

Many oncoproteins and tumor suppressors intersect in the PI3K cascade, regulating 

cellular functions at the interface of signal transduction and classical metabolic 

regulation. This careful balance is altered in human cancer by a variety of activating 

and inactivating mechanisms that target both Akt and interrelated proteins. 

Numerous studies have suggested that PI3K signallingenhances its oncogenic signal 

through interaction with other signallingnetworks such as the transcription factor 

Nuclear factor Kappa B (NFқB) (191;192). Bai et al have recently reported that 

suppression of NFкB activity by IκB superepressor induces a strong and selective 

resistance to PI3K or Akt induced oncogenic transformation which suggests an 

essential role for NFкB in the transforming mechanisms induced by this 

signallingcascade (193).  NFқB signallinghas been reported to regulate various 

genes involved in the invasion, angiogenesis and metastasis of cancer cell (194). 
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1.8 NFқB cascade 

Aberrant NFқB nuclear activation has been implicated in the pathogenesis of several 

human malignancies including prostate cancer. NFқB has been shown to play 

important roles in the control of growth, differentiation, and apoptosis (195;196). 

NFκB has been shown to be related to the initiation and progression of many types 

of cancer through its target genes. These target genes include c-myc, cyclin D and 

IL-6 which promote cell growth, Bcl-2 which inhibits apoptosis, IL-8 and VEGF 

which promote angiogenesis, and MMP9 which promotes invasion and metastases 

(197;198). Many different stimuli have been reported to cause nuclear localisation 

and transcriptional activation of NFκB via activation of the IKK complex (IKK α, 

IKK β and IKKγ/NEMO), resulting in phosphorylation of IκBα at serine 32 and 

serine 36.   NFκB normally exists in a dormant state bound to IκBα, when IκBα is 

phosphorylated NFκB is released from the complex and IκBα is marked for 

degradation.  Following release NFκB translocates from the cytoplasm to the 

nucleus where it binds to the promoter region of multiple genes (198). 

 

1.8.1 NFқB 

Transcription factor NFκB was first identified by Sen and Baltimore over twenty 

years ago as a B cell- specific nuclear factor that bound to an enhancer element in 

the immunoglobulin kappa (κ) light chain gene. NFκB proteins are found in 

essentially all cell types and are involved in the activation of a remarkably large 

number of genes in response to infections, inflammation, and other stressful 

conditions which call for prompt reprogramming of gene expression. NFκB exists in 
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the cytoplasm in the majority of cell types as a variety of homo or heterodimeric 

isoforms. Five family members; c-Rel, Rel A (p65), Rel B, NF- κB1 (p50/p105), and 

NF- κB2 (p52/p100) have been identified. These proteins share a high sequence 

homology within a conserved Rel homology domain (RHD) near the N-terminal. 

This area comprises of DNA binding domains, a dimerisation domain, and interacts 

with the inhibitory IκB proteins. Additionally the RHD contains a nuclear 

localisation signal (NLS). In the majority of cell types the Rel A (p65)/ p50 

heterodimer is most commonly expressed. The c-Rel, Rel A and Rel B proteins have 

c-terminal transactivation domains responsible for their function as a transcriptional 

activator. Alternately NF- κB1 and NF- κB2 are created as precursor forms p105 

and p100 respectively where a series of ankaryin repeats are present in the c-

terminal domain in place of a transactivation domain. These proteins undergo 

proteolytic processing removing the c-terminal sequences generating the products 

p50 NF- κB1 and p52 NF- κB2 respectively. Due to the lack of the transactivation 

domain, p50 and p52 homodimers are thought to function as transcriptional 

repressors while heterodimers of p50 or p52 with transactivation domain- containing 

Rel proteins lead to activation of target genes (194).  

 

1.8.2 NFκB activation 

Activation of NFκB is stimulated through several mechanisms including signal 

transduction pathways involving tyrosine kinases, NFкB inducing kinase (NIK), 

IKK and PI3K. At present it appears that all NFκB complexes are regulated in the 

same manner which is through interaction with IκBs. Seven IκB proteins have been 
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identified IκBα, IκBB, IκBε, p105, p100, BCL-3 and IκBζ. Based on their domain 

organization, selectivity toward specific NFκB dimmers and subcellular location in 

resting cells this family of proteins has three groupings; canonical, NFκB precursor 

and nuclear IκB. IκBs contain five to seven ankaryin repeats of 30-33 amino acids. 

These stacked helical domains bind to the NLS of NFκB proteins, blocking nuclear 

localisation. Only Iκβα,  Iκββ, and Iκβ ε  contain N-terminal regulatory regions 

which are necessary for stimulus induced degradation, the crucial step in NFκB 

activation. IκBα plays a central role in termination of NFκB activation. Newly 

synthesized IκBα enters the nucleus and binds to NFκB, thus enhancing the 

dissociation from the DNA and causing its re-exportation to the cytoplasm by means 

of a nuclear export sequence (NES) present on IκBα . Following cellular 

stimulation, IκBs become phosphorylated by the multisubunit IκB kinase (IKK) 

complex at serine residues 32 and 36. The phosphorylated IκB is then 

ubiquitinylated leading to their proteolysis by the 26s proteosome in an ATP- 

dependent manner (199). A key step in NFκB activation is phosphorylation of the 

p65 and p50 subunits. A number of positions of phosphorylation in the p65 subunit 

have been acknowledged and are associated with the action of multiple stimulus 

coupled kinases that act in both the cytoplasm and the nucleus. A key 

phosphorylation event involves serine 536 of the p65 subunit. The phosphorylation 

of this site is catalysed by multiple kinases that are activated by diverse stimuli (200-

202). The involvement of PI3K and Akt in phosphorylation of p65 is controversial. 

Some studies suggest that PI3K/Akt directly phosphyorylates p65 at serine 536 in 

response to IL-1 whereas, other suggest it serves as an intermediate kinase that 
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activates IKKα by phosphorylation at threonine 23  which in turn phosphorylates 

serine 536 (193;203). Other p65 phosphorylation sites have been identified. Casein 

kinase II and protein kinase A have been shown to phosphorylate p65 at serine 529 

and 276 (204;205). GSK-3 β phosphorylates p65 at ser 468; this reduces the basal 

activity of NFκB to basal activity in resting cells (206).  

 

1.8.3 NFκB and prostate cancer 

NFκB has been shown to be constitutively activated in prostate cancer cells, and 

elevated NFκB activity is also sustained in androgen-responsive human prostate 

cancer cells by androgen treatment (207). Huang et al have demonstrated that 

suppression of NFκB activity in human prostate cancer cells by IκBα mutation 

transfection inhibits their tumorigenic and metastatic properties in nude mice by 

suppressing angiogenesis and invasion. IκBαM transfection-blocked NFκB activity 

was associated with down regulation of VEGF, IL-8 and MMP-9 promoter activities 

and decreased expression of these genes in cultured cells and in cells implanted into 

the prostate gland of nude mice. The decreased expression of VEGF, IL-8 and 

MMP-9 in vivo directly correlated with decreased neovascularization and production 

of lymph node metastasis. This provides direct involvement of NFκB in the 

regulation of angiogenesis and metastasis of prostate cancer cells.  Numerous reports 

have demonstrated that in prostate cancer as well as other tumour types that the 

metastatic potential of tumour cells directly correlates with the expression level of 

several angiogenic genes, including vascular endothelial growth factor (VEGF), 

basic fibroblast growth factor (Bfgf), interleukin 8 (IL-8) and matrix 
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metalloproteases MMP-2 and MMP-9 (198;208). Expression of MMPs is associated 

with poor prognosis in a variety of cancers including prostate. MMPs are enzymes 

that are capable of degrading the extracellular matrix and basement membrane. An 

increase in MMP-2 and MMP-9 is associated with tumour progression but how the 

constitutive expression of these genes is regulated in prostate cancer is at present 

unclear. In addition NFκB has been associated with the development of castrate 

resistant prostate cancer.  The association between steroid hormone receptor 

expression and NFκB activation has been of substantial interest in both prostate and 

breast cancers. Primary investigations of breast cancer cell lines and also of solid 

tumours suggest an inverse correlation between NFκB activation and oestrogen 

receptor (ER) expression. However this correlation has not been found in all studies. 

Prominent constitutive NFκB has been observed in the prostate cancer cell lines PC-

3 and DU-145 which lack AR expression however, only very low levels of NFκB 

were seen in the AR positive cell line LNCaP (197). This data suggests that either 

the presence of AR actually inhibits NFκB activity in prostate cancer or alternatively 

that constitutive activation of NFκB may correlate with AR loss, which in turn may 

contribute to compensatory cellular changes, allowing cell survival and growth in 

the absence of AR activation. Chen et al, have observed markedly higher NFκB 

activity in an androgen independent prostate cancer xenograft model than in its 

androgen dependent counterpart (209). Here NFκB activated expression of AR 

regulated gene PSA. This suggests that NFκB is contributing to androgen 

independent prostate cancer cell growth in the absence of the AR signallingpathway. 

It was suggested that the absence of PTEN might contribute to constitutive 
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activation of NFκB induced by PI3K/Akt pathway. However no direct correlation 

has been observed in prostate cancer cell lines.  NFκB has been implicated with 

prostate cancer progression via two mechanisms, promotion of metastases via MMP-

9 expression or promotion of androgen independence via an as yet unknown 

mechanism.   

The signallingcascades described in brief highlight some of the many possibilities of 

the complex intermolecular signallingmechanisms that are believed to contribute to 

the progression of the castrate resistant disease.  As previously mentioned ligand 

independent phosphorylation of the AR has been reported to enhance AR 

transcription in cell lines and there is now unquestionable evidence that AR 

signallingcontinues to play a critical role in many patients with castrate resistant 

disease. The PI3K and NFκB cascades have both been implicated in castrate 

resistant disease and PI3K activity has been reported to influence NFκB signalling. 

However the precise role of the interaction of signallingcascades and the AR in the 

development of clinical castrate resistant disease is still poorly understood.  

 

1.9 Statement of research aims 

The research presented in this thesis investigated the role of the PI3K/Akt and NFκB 

cascades in the development and progression of castrate resistant prostate cancer. 

Using prostate tumours consisting of matched histological tissue specimens obtained 

before commencement of androgen deprivation therapy and after the development of 

castrate resistant disease, the members of the PI3K signallingcascade were 

investigated at a genetic and protein expression level. This tested the hypothesis that 
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genetic alterations lead to functional consequences in the terms of protein 

expression. It was speculated that increased protein expression of the components of 

this pathway are  linked to clinical parameters such as time to relapse, time to death 

from relapse and overall survival. As Akt is believed to be a key mediator in the 

development of castrate resistance, via its interaction with multiple 

signallingcascades, the association between the PI3K/Akt and NFқB 

signallingcascades were investigated. The expression and activation levels of NFқB 

were determined in the clinical samples and in vitro studies investigated the effects 

of NFқB inhibition on cell proliferation and apoptosis.  

The protein expression of AR and phosphorylated AR at the Akt consensus site was 

also investigated in the clinical samples and correlated with clinical parameters. In 

vitro studies investigated the effect of PI3K inhibition and siRNA silencing on Akt 

and ARexpression in castrate resistant LNCaP cell lines. 

Ultimately the goal of this research was to further our understanding of the 

mechanisms that drive the development of resistance to anti androgen therapy in 

prostate cancer patients.  

 

Research Aims 

• To determine if members of the PI3K cascade have gene amplifications or 

deletions in prostate cancer patients  

• To determine the protein expression levels of members of the PI3K cascade 

in prostate cancer patients and to investigate if protein expression is related 

to patient outcome. 
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• To determine the protein expression levels of components of NFқB cascade 

in prostate cancer patients and investigate if protein expression is associated 

with patient outcome. 

• To investigate the effect of NFқB inhibition on prostate cancer proliferation, 

apoptosis using matched hormone naïve and castrate resistant LNCaP cell 

lines. 

• To determine the expression levels of AR and AR phosphorylated at the Akt 

consensus site in prostate cancer patients and investigate if protein 

expression is associated with patient outcome. 

• To determine the levels of activated Akt and AR in matched hormone naïve 

and castrate resistant LNCaP cell lines and determine if these mirror the 

tissue observations. 

• To investigate the effect of PI3K siRNA silencing and inhibition on Akt and 

AR expression in matched hormone naïve and castrate resistant LNCaP cell 

lines. 
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2.   Materials and Methods 

2.1. In- vitro studies 

2.1.1 Culturing of Prostate cancer cell lines 

 

Matched hormone sensitive LNCaP (lymph node metastasis) and castrate resistant 

LNCaP-CR prostate cancer cell lines were a kind gift from Professor C Robson 

(Northern Institute for Cancer Research, Newcastle). LNCaP cells were routinely 

maintained in RPMI 1640 (Invitrogen, UK) containing phenol red and supplemented 

with 10% foetal calf serum (Invitrogen, UK), 2mM L-glutamine (Invitrogen, UK), 

and penicillin/streptomycin (50 units/ml, 50µg/ml (Invitrogen, UK)). These cell 

lines were selected because they are androgen responsive and is an androgen 

receptor expressing prostate cancer cell line. LNCaP-CR cells have been developed 

using parental LNCaP cells as a model of hormone resistant prostate cancer by 

gradual withdrawal of androgens from the medium. Castrate resistant cells are 

defined by their ability to survive testosterone depravation by castration and to 

sustain androgen receptor activation through ligand dependent and ligand 

independent mechanisms. These cells were routinely cultured in RPMI 1640 

supplemented with 10% charcoal-stripped foetal calf serum (Invitrogen, UK) known 

to contain negligible amount of androgens, 2mM L-glutamine (Invitrogen, UK), and 

penicillin/streptomycin (50 units/ml, 50µg/ml (Invitrogen, UK).   

Cells were grown in T-75 flasks (Gibco) and maintained in 5% CO2 at 37°C, with 

the medium changed twice weekly, as it is rapidly acidified.  
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2.1.2 Trypsinisation of cells 

 

Sub-confluent cultures (70-80%) were routinely passaged 1:6 using trypsin 

(Invitrogen, UK) to prevent the cells becoming confluent and forming clumps. Used 

medium was removed from the flasks and the cells washed twice with warmed 

Phospho-Buffered Saline (PBS) (Invitrogen) to eliminate traces of serum, which 

includes trypsin inhibitors. Cells were then incubated in 3 mls of trypsin for 5 

minutes in 5% CO2, 37°C, in order to detach the cells from the flask. Once cells 

were no longer adherent, 3mls of RPMI was added to inactivate the trypsin. The 

cells were disaggregated from their clusters by gentle pipetting and seeded into new 

T -75 flasks containing 10mls of fresh RPMI. LNCaP cells grow slowly in clusters 

and were left for up to 48 hours to reattach.   

2.1.3 Freezing Cells 

 

Once cells are trypsinised, aliquots of the cells can be stored for future use. The cell 

suspension was transferred from the flask to a 15ml centrifuge tube and cell pellets 

were collected by centrifugation at 1200rpm for 5 minutes. The medium was 

removed and the pellet resuspended in 1ml of RPMI (supplemented 10% foetal calf 

serum (Invitrogen, UK), 2mM L-glutamine (Invitrogen, UK), and 

penicillin/streptomycin (50 units/ml, 50µg/ml (Invitrogen, UK)) and 10%DMSO 

which serves as a cyroprotectant. The cells were immediately transferred in an 

alcohol bath (Mr Frosty, Sigma) to -80°C for 24 hours before being transferred to 

liquid nitrogen (-180°C) for long-term storage.  
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When cell aliquots were required, they were removed from liquid nitrogen and 

warmed for 1 minute in a 37°C water bath before being promptly transferred to a 

flask containing 10mls of pre-warmed RPMI. It was essential not to leave the cells 

defrosting longer than necessary, as DMSO is toxic.  

. 

2.1.4 Drug Treatments 

 

Extracellular stimulus was used to measure the phosphorylation status of several 

proteins investigated throughout this study in both hormone naive and castrate 

resistant LNCaP cell lines. All drugs were prepared in large enough volumes to 

provide enough for all time points and to ensure experimental equality. Details of all 

the drugs used are listed in Table 2.1 

 

• Heregulin α (α (α (α (Sigma) 

Heregulin α (HRG) is the ligand for HER3/4. Ligand binding to HER3 results in 

phosphorylation and dimerisation with HER2 and activation of the growth factor 

receptor cascades. Cell lines were treated with 10nM HRG. A stock solution of 

1.42µM was made and stored at –20°C. Treatment time with HRG ranged from five 

minutes to three hours. 

 

• Epidermal Growth Factor (Sigma) 

Binding of Epidermal Growth Factor (EGF) to its receptor (EGFR) results in 

phosphorylation and, either homo- or hetero-dimerisation, leading to the activation 

of growth factor receptor signallingcascades. Cell lines were treated with 10nM 
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EGF. A stock solution of 10µg/ml was prepared in PBS. Treatment time with EGF 

ranged from five to thirty minutes. 

 

• Insulin like Growth factor 1 (Calbiochem) 

Binding of Insulin like growth factor-1 (IGF-1) to its receptor (IGFR-1), activates 

growth factor receptor signallingcascades. Both cell lines were treated with 10ng/ml. 

A stock solution of 10µg/ml was prepared in PBS, 1%BSA. Treatment time with 

IGF-1 ranged from five minutes to three hours. 

 

• LY 294002 

LY294002 is a cell permeable compound that acts as a potent and selective inhibitor 

of PI3K. It blocks the catalytic activity of PI3K without affecting other kinases 

including PKC, PKA, MAPK, EGFR and Src. A stock solution of 3.25mM 

LY294002 was prepared in ethanol and treatment concentrations ranged from 10 to 

1000uM for 48 hours. 

 

• Tumour necrosis factor Alpha (TNFα)  (Sigma)  

In response to inflammatory stimulation, macrophages or monocytes secrete TNFα 

that can induce apoptotic or necrotic cell death of certain tumour cell lines. TNFα is 

also capable of inducing cell proliferation and differentiation in many types of cells 

under certain circumstances. Functional characteristics of TNFα are executed 

through specific members of the TNF receptor (TNFR) superfamily. These receptors 

trigger several intracellular signallingpathways, most importantly, the IKK and 
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MAPK cascades, which govern gene expression through NFkB and AP-1 

transcription factors, respectively. A stock solution of 90ng/ml was prepared in 

distilled water and cell lines were treated with 30ng/ml.  

 

• NFқB inhibitor (2607 and 2070) 

Two NFкB inhibitors were used in this study: 2070 and 2607, and were supplied by 

Caledonian Biotech.  These inhibitors were designed to directly block 

phosphorylation hence activation of NFқB. A stock solution of 2mg/ml of each was 

prepared in ethanol and treatment concentrations ranged from 0.10 to 100uM.  

 

• Dihydrotestosterone (DHT) 

DHT binding to the AR results in AR phosphorylation, translocation to the nucleus 

and transcription of AR genes.  Cell lines were treated with 10nM DHT. A stock 

solution of 10µg/ml was prepared in DMSO. Treatment time with DHT ranged from 

five minutes to three hours. 
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Drug 

Molecular 

Weight 

(Daltons) 

Drug 

prepared 

in 

Stock 

Concentration 

Final 

Concentration 

Pre-

treatment 

Heregulin 

(HRG) 
7000 PBS 1.42µM 10nM NO 

Epidermal 

Growth 

Factor 

(EGF) 

6200 PBS 1.61mM 10nM NO 

Insulin 

growth 

factor 

(IGF) 

7500 PBS 50µM 10ng/ml NO 

LY 

294002 

 

307.4 Ethanol 3.25mM 20µM YES 

2607 
 

500 

 

Ethanol 2mg/ml 

 

100µM 

NO 

 

2070 400 Ethanol 
2mg/ml 

100µM NO 

TNFα 25,600 Water 90ng/ml 30ng/ml NO 

DHT 290.44 DMSO 10nm 10nm NO 

 

Table 2.1: Drug informations 

Details of all the drugs used throughout the course of this study; pre-treatment 

involved exposure to drugs for 30 minutes prior to other treatments. 

 

2.1.5 Time course treatments of LNCaP and LNCaP-CR 

 

Cell lines were grown in T-75 flasks until 80% confluent, the medium was removed 

and the cells washed in warmed PBS. Then, cells were incubated in serum free 

RPMI overnight. The following day, medium was removed and the cells washed in 

warmed PBS in preparation for the appropriate drug treatment. The first time course 

treatment carried out was with 10nM HRG at five different times, 5, 15, 30, 60 and 

180 minutes; all treatments were performed identically and in duplicate. 
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Additionally an untreated control (cells treated with serum free RPMI and PBS) was 

included as was a completely untreated control, LNCaP cells, that received nothing 

but serum free RPMI (without vehicle). Each flask was treated with 3mls of drug or 

control, ensuring that all cells were completely covered, and incubated at 37°C in 

5% CO2 for the required time. The drug was removed from the flask and cells 

carefully rinsed twice, with ice-cold PBS. It was important to remove as much of the 

PBS, using a pipette, as possible, as it can dilute the lysis buffer. Cells were then 

lysed in 500µl Phosphosafe buffer (Calbiochem) and 1:100 Protease inhibitor 

cocktail set 1 (Calbiochem) for 5 minutes on ice, and collected using a cell scraper 

(Gibco). The cell lysates were then transferred to an appropriately labelled 1.5ml 

eppindorff tube (Gibco) and stored on ice until all treatments were completed. All 

samples were centrifuged at 14 000 rpm at 4°c for 15 minutes, the supernatant 

removed and subsequently stored at -70°C. This experiment was performed twice; 

therefore, in total there were four protein samples for each treatment condition 

available for analysis. Time course treatments using EGF, IGF-1 and DHT were 

performed identical to that described above. TNFα time course treatments were 

carried out as above excluding the 180 minute time point. 

 2.1.6 Inhibition of PI3K using LY294002 

 
Cell lines were grown in T-75 flasks until 80% confluent, the medium was removed 

and the cells washed in warmed PBS. Subsequently, cells were incubated in serum 

free RPMI overnight. The following day, medium was removed and the cells washed 

in warmed PBS. This was followed by incubation in the presence or absence of 20 

uM LY294002 for 30 minutes, followed by stimulating with IGF-1 for 1 hour. 
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Additionally cells were treated in the presence or absence of IGF-1 for an hour 

without any inhibitor. Protein was extracted as previously described in section 2.1.5. 

 2.1.7 Inhibition of NFKB using 2607 and 2070 

 

Cell lines were grown in T-75 flasks until 80% confluent, the medium was removed 

and the cells washed in warmed PBS. Subsequently, cells were incubated in serum 

free RPMI overnight. The following day, medium was removed and the cells washed 

in warmed PBS. This was followed by incubation in the presence or absence of 2607 

or 2070 diluted in culture media at concentrations ranging from 0.1 uM to 100uM 

for 24 hours. Protein was extracted as previously described in section 2.1.5. 

2.1.8 Determination of protein samples 

 

The method used to determine protein concentration of the cell lysates was Bio-

Rad's protein assay, which was based on the Bradford dye-binding procedure 

(Bradford 1976), and involves a colorimetric assay for measuring total protein 

concentration. Protein standards were prepared using Bovine Serum Albumin (BSA) 

(Sigma). The BSA was supplied at a concentration of 2mg/ml, but for the purpose of 

this study it was diluted to 1mg/ml with dH2O. One reference and seven protein 

standards were prepared in disposable cuvettes (Gibco) in triplicate as shown in 

Table 2.2.   

 

 

 

 



80 

Volume of 1mg/ml BSA required (µµµµl) Volume of dH2O required (µµµµl) 

0 (REFERENCE) 800 

1 799 

5 795 

10 790 

15 785 

20 780 

25 775 

50 750 

 

Table 2.2: Protein standards 

Samples were prepared in triplicate for a low-concentration assay in disposable 

cuvettes (Gibco). 200µl of Bio-Rad Protein Assay Reagent (Bio-Rad) was added to 

the cuvette, followed by 795µl of dH2O. Then 5µl of protein sample was included to 

the mix. The solution was thoroughly mixed with a pipette to ensure even 

distribution of the protein for an accurate concentration reading. Once prepared the 

reference and standards were used to calibrate the spectrophotometer (Bio-Rad) 

Protein 595 assay programme.  

The optical density at 595nm (O.D. 595nm) was measured for the reference and the 

seven protein standards. The O.D 595 was then read for all the samples and the 

concentration of protein present generated from the standards concentration. The 

spectrophotometer calculated the amount of protein (µg/ml) present, but the theory 

behind it involves plotting a graph of absorbance at 595nm against protein 

concentration of standards. This standard curve is then used to determine the 

concentration of the protein present in the samples from its O.D. 595 value. The 

concentration (µg/ml) was calculated from a diluted protein sample (1:200). From 

this the final concentration in mg/ml was determined as follows: 

Protein reading (µµµµg/ml) x 0.2 = Final protein concentration (mg/ml) 
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Proteins were aliquotted into (100µl) samples and stored at -80°c until required. For 

western blotting 50µg of protein was used and the volume of sample required was 

calculated from the final concentration.  

 

2.2 Western blotting of protein samples 

Western blotting (immunoblotting) was used to verify the specificity of all 

antibodies and also to measure the levels of protein in samples obtained from the 

time course and inhibitor treatments. 

 

• Preparation of SDS-PAGE (Sodium Dodecyl Sulphate – PolyAcrylamide 

Gel Electrophoresis) gels 

Western blots were carried out using the Bio-Rad Mini-PROTEAN 3 

Electrophoresis System. For all the proteins analysed it was suitable to use 10% 

resolving gels, which were prepared as follows: 

 

Gels are formed from the polymerisation of the acrylamide and N-N-methylene-bis-

acrylamide (bis). Bis acts as the cross linking agent for the gel, and the TEMED and 

APS are the catalysts for gel polymerisation. The separation of proteins within the 

Reagents 10% Gel 

40% Acrylamide/Bis-Acrylamide 

(Sigma) 

12.49ml 

0.5M EDTA 330µl 

2M Tris, pH 8.9 8.35ml 

10% SDS 500µl 

dH2O 28.33ml 

10% APS 300 µl 

TEMED 30µl 
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gel is directed by the size of the pores within the gel, this is determined by the 

amount of acrylamide-bis present. As the amount of acrylamide present increases, 

the pore size decreases. In general a higher percentage of resolving gels are used for 

smaller proteins, and lower percentage gels are more effective for separating larger 

proteins.  

A gels thickness of 1.5mm was used throughout the various studies; these were 

produced using 1.5mm spacer plate. Once the gel solution was prepared, excluding 

the TEMED and APS, the gel plates and gel casting apparatus were assembled. 

Having correctly assembled the plates, the TEMED and APS were added to the 

resolving gel solution, using a plastic pastette the gel mix was poured in between the 

two glass plates, to a level that allowed for the stacking gel and comb to be added. A 

layer of isopropanol was applied to the top of the gel to remove any air bubbles and 

to flatten it out at the top. The resolving gel was then left to polymerise for 

approximately one hour.  

Once set, the isopropanol was removed from the top of the resolving gel. At this 

stage the gel (wrapped in damp tissue and saran wrap) could be stored at 4°C until 

required. 

When required 4.5% stacking gel was prepared as follows: 

Reagents 4.5 % Gel 

40% Acrylamide/Bis-Acrylamide 5.63ml 

0.5M EDTA 400µl 

1M Tris, pH 6.8 6.25ml 

10% SDS 500µl 

dH2O 37.22ml 

10% APS 30µl 

TEMED 10µl 
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Again, the TEMED and APS were the last two reagents to be added to the gel 

solution. The stacking gel was then poured onto the resolving gel to fill the plate, the 

gel comb (15 well combs) was then inserted and the gel left to polymerise for 

approximately 30 minutes.  

 

• Protein denaturation 

To enable the primary antibody to recognise and bind to its epitope, it was necessary 

to denature the proteins. Denaturing the protein the gives the antibody easier access 

to the epitope and enables them to run more efficiently through the gels. Having 

previously obtained the concentration of protein within each sample, the 50µg 

removed from each sample and transferred to a new Eppendorf tube. This was stored 

on ice, and 2X Laemmli's sample reducing buffer was added to each sample. This 

buffer consisted of: 

1.0ml 0.5M Tris-HCl  

0.8ml Glycerol 

1.6ml 10% sodium dodecyl sulphate (SDS) 

0.4ml 2-Mercaptoethanol 

0.2ml Bromophenol Blue (0.05% w/v) 

4.0ml dH2O 

 

The samples were thoroughly mixed and then boiled at 100°C for four minutes. The 

molecular weight marker (Biotinylated Protein Ladder –Cell SignallingTechnology) 

that was used to determine the size of the detected protein was also boiled at 100°C 

for four minutes.  
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The SDS within the sample buffer is a detergent, with a highly negative charge. It 

has a hydrophobic tail that binds to the proteins, causing them to become negatively 

charged. SDS also disrupts the tertiary structure of the protein, resulting in their 

unfolding. The 2-Mercaptoethanol prevents the reformation of disulphide bonds and 

helps maintain the protein in its denatured state. Boiling the samples also contributed 

to the denaturing of the proteins by unfolding them completely. Once boiled samples 

were immediately stored back on ice.  

• Gel Electrophoresis 

The principle behind electrophoresis is that an electrical charge moves the proteins 

down the polyacrylamide gel. The proteins are negatively charged, due to the SDS 

and they are attracted towards the positive anode. The pores produced by the 

acrylamide result in smaller protein molecules travelling through the gel at a faster 

rate than the larger molecules; thus, they progress further down the gel. Therefore, 

proteins are separated by gel electrophoresis according to their molecular weight. 

Gels were placed into the electrode assembly in the mini buffer tank and combs were 

removed from gels. The wells were then rinsed and the tank filled with 1X running 

buffer (details in table 2.2). Denatured protein samples (50µg) and ladder (10µl) 

were then carefully loaded into the wells using a fine tipped pipette. It was important 

to prevent overspill between the wells. Once all samples were loaded the gel was run 

at 100V for approximately one hour.  

 

 

 



85 

• Protein Transfer 

To allow protein detection by a primary antibody, the protein had to be transferred 

from the polyacrylamide gel to PVDF (polyvinylidene difluoride) membrane. Once 

the proteins had run sufficiently through the gel, proteins were transferred to the 

PVDF membrane (Biorad).  For optimal transfer, PVDF membrane was pre-treated 

in 100% methanol for five minutes before being soaked in 1X Transfer Buffer 

(Details of which can be found in table 2.2.). Fibre pads and 3M Whatman paper 

were also soaked in transfer buffer. The gels were then carefully removed from the 

glass plates and the stacking gel was discarded, the remaining resolving gel 

equilibrated, for approximately five minutes in transfer buffer. This step prevented 

the gel from shrinking during the transfer process.  

The transfer sandwich was then assembled. This comprised of a fibre pad, 3 squares 

of 3M Whatmann paper, gel, and PVDF membrane, 3 squares of 3M Whatmann 

paper and finally a fibre pad. This is shown below in Figure 2.1. 
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Figure 2.1: Schematic Representation of Western Blot Transfer Sandwich 

Schematic representation of the assembly of the transfer sandwich on the cassettes, 

the sandwich was comprised of fiber pads, 3M Whatmann paper, gel and PVDF 

membrane, all of which had been equilibrated in transfer buffer. 

 

While building the sandwich, it was important to make sure that there were no air 

bubbles present; this would prevent efficient transfer. After each new layer was 

applied, air bubbles were removed by gently rolling a glass rod over the top surface. 

The assembled sandwich was then slotted into the electrode assembly and placed in 

the mini-tank, which was filled with transfer buffer. To reduce the temperature of 

the buffer during the transfer process, the Bio-Ice cooling unit was used. A magnetic 

stirrer was also added to maintain even buffer temperature and ion distribution. 

Proteins were transferred from the gel (negative/cathode) to the membrane 

(positive/anode) at 100 volts for one hour.  

Black side of cassette 

(Negative) 

Fiber Pad 

3 sheets of 3M Whatmann Paper 

Gel 

PVDF Membrane 

3 sheets of 3M Whatmann Paper 

Fiber Pad 

Clear side of cassette 

(Positive) 
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• Blocking of Membrane 

To prevent the primary antibodies from binding non-specifically to the membrane 

and also to reduce background staining, it was necessary to block the membrane. 

This was achieved by incubating the membrane in 5% Non-Fat Dry Milk (Marvel) 

blocking solution, prepared in TBS-Tween (TTBS) for one hour at room 

temperature. This step and all future steps were performed on an orbital shaker. 

Buffer Reagents 

10X Running Buffer 200mM Tris, 2M Glycine, 1% SDS 

(For 1X dilute in dH2O) 

10X Transfer Buffer 248mM Tris, 1.3M Glycine, 20% 

Methanol 

(For 1X dilute in dH2O) 

10X TBS 0.1M Tris/HCl, 1.5M NaCl, pH = 7.4 

(For 1X dilute in dH2O) 

0.001% TTBS 1000µl of Tween 20 per litre of 1X TBS 

Table 2.3: Buffers used in western blotting 

Details of the buffers and solutions used in western blotting 

 

• Incubation of membrane with primary antibody 

Having blocked the membrane, the following step was incubation in primary 

antibody. All antibodies were prepared in 10mls of 5% Non-Fat Dry Milk/TTBS 

solution, to further reduce non-specific binding. Membranes were incubated with 

primary antibody overnight (approximately 18 hours) at 4°C.  

• Incubation of membrane with secondary antibody 

Following incubation with primary antibody, the membrane was washed in TBST 

three times for 20 minutes, to remove any excess antibody. Detection of the protein 

of interest required a secondary antibody bound to either biotin or an enzyme 

conjugate, such as horseradish peroxidase (HRP), which was species-specific to the 
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primary antibody. The secondary antibodies used were HRP-linked anti-mouse IgG 

(Cell SignallingTechnology) anti-rabbit IgG (Cell SignallingTechnology) and anti-

goat IgG (Dako). The anti-mouse and anti-goat antibodies were used at dilution of 

1:10,000 and the anti-rabbit was used at a dilution of 1:2000. In addition a secondary 

antibody for the detection of the biotinylated ladder was required. For this the anti-

biotin HRP linked antibody (Cell SignallingTechnology) was used at a dilution of 

1:1000. The anti-biotin and anti-mouse/rabbit /goat secondaries were prepared 

together in 10mls of 5% Non-Fat Dry Milk/TTBS solution and were incubated with 

the membranes for one hour at 37°C.  

 

• Protein visualisation 

The final steps in the western blotting protocol involved detection of the protein of 

interest using a chemiluminescent method. Luminescence is the emission of light 

due to the dissipation of energy from a substance in an excited state. Horse-radish 

peroxidase catalyzes oxidation of luminol, a chemiluminescent substrate, in alkaline 

conditions. Oxidation results in the luminol being in an excited state which then 

decays to ground state via a light emitting pathway. For this method ECL plus 

(Amersham) was used. The principle behind this is that horse-radish peroxidise, 

conjugated to the secondary antibody, oxidises the ECL Plus chemiluminescent 

substrate Lumigen PS-3 Acridan, which produces thousands of acridinium ester 

intermediates per minute. These intermediates then react with the peroxide to 

produce a sustained, high intensity chemiluminescence with a maximum emission at 

430nm. This light is then detected on autoradiography film. Following incubation 

with the secondary antibody, membranes were washed three times in TTBS for 20 
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minutes. While the membranes were washing, the ECL plus reagents were decanted 

into a universal and warmed to room temperature. Once the reagents had warmed, 

solution A and solution B were mixed in a ratio of 40:1; 3mls of solution was an 

adequate amount per membrane. When using the ECL reagents all steps were 

performed in semi-darkness. Membranes were placed protein side up on a sheet of 

saran wrap. The ECL solution was pipetted onto the membrane ensuring complete 

coverage. The membrane was incubated with the reagents for five minutes, and 

excess solution was then removed and the membrane transferred to a fresh piece of 

saran wrap, which it was then enveloped in. Lastly the membrane was transferred to 

a film cassette where it was exposed to autoradiography film for various times. 

Generally the incubation times were 30 seconds and 1, 5, 15 minutes. The film was 

then developed using a Kodack X-OMAT x-ray processor and both the marker and 

protein bands visualised. 

• Stripping Membranes 

To confirm equal sample loading, primary antibody was removed from probed 

membranes using 10X Stripping buffer (Chemicon). The membrane was washed in 

TBST 3 times for 10 minutes, to remove any excess antibody. Membranes were 

incubated in 20mls of stripping buffer (diluted 1:10 in dH2o) at 37°C for 20 minutes, 

subsequently, membranes were blocked in 5% Non-Fat Dry Milk/TTBS and then 

probed with anti-αTubulin HRP linked antibody (1:1 000 AbCam) to confirm equal 

protein loading. 
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2. 3 ELISA  

 

2.3.1 pAKT ser 473 ELISA 
 

The phosphoELISA™ kit (Biosource, UK) was used to assess Akt activity in both 

cell lines. This assay is a solid phase Sandwich Enzyme linked-Immuno-Sorbent 

Assay (ELISA) and begins with a monoclonal antibody specific for Akt (regardless 

of phosphorylation state) coated onto the wells of microtitre strips. Samples, 

including a standard containing Akt, control specimens, and unknowns, are added to 

these wells. During the first incubation, the protein antigen binds to the immobilized 

(capture) antibody. After washing, a rabbit antibody specific for total protein or 

protein phosphorylated at a specific residue is added to the wells. During the second 

incubation, this antibody serves as a detection antibody by binding to the 

immobilized protein captured during the first incubation. After removal of excess 

detection antibody, a horseradish peroxidase–labelled anti–rabbit IgG antibody (anti-

rabbit IgG-HRP) is added. This binds to the detection antibody to complete the four-

member sandwich. After a third incubation and washing to remove all the excess 

anti-rabbit IgG-HRP, a substrate solution is added, which is acted upon by the bound 

enzyme to produce colour. The intensity of this coloured product is directly 

proportional to the concentration of total or phosphorylated protein present in the 

original specimen.  

 

ELISA was performed according to the manufacturer’s instructions. In brief; the 

Protein standards were prepared by reconstituting the standard 1 with Standard 
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diluent buffer and left at room temperature for ten minutes, this was to ensure 

complete reconstitution. The standards were then set up as follows. 

Standard: Add Into 

100 Units/ ml  Prepare as described 

50 Units/ ml 250 µl of 100 Units/ml std 250 µl of Diluent buffer 

25 Units/ ml  250 µl of 50 Units/ml std 250 µl of Diluent buffer 

12.5 Units/ ml  250 µl of 25 Units/ml std 250 µl of Diluent buffer 

6.25 Units/ ml  250 µl of 12.5 Units/ml std 250 µl of Diluent buffer 

3.12 Units/ ml  250 µl of 6.25 Units/ml std 250 µl of Diluent buffer 

1.6 Units/ ml  250 µl of 3.12 Units/ml std 250 µl of Diluent buffer 

0 250 µl of Diluent buffer Empty tube 

 

Firstly, 100 µl of the standard diluent buffer was added to the blank wells to zero the 

wells. EGF treated LNCaP cell lysates as described in section 2.1.5 were then 

diluted 1:10 in standard diluent buffer.100 µl of standards and the prepared samples 

were placed in the appropriate wells, this was then incubated for two hours at room 

temperature. The solution was then carefully removed from the wells and washed 

four times with washing buffer. 100 µl of anti-Akt (detection antibody) solution was 

added into each well (excluding the chromagen blanks). The plate was then tapped 

gently on the side to carefully mix the sample and antibody and incubated for one 

hour at room temperature. The solution was carefully removed and wells washed 

four times with washing buffer. Following this, 100 µl anti-rabbit IgG-HRP working 

solution was added to each well (except the chromagen blanks) and incubated for 

thirty minutes at room temperature. The antibody was then removed and wells 

washed four times with washing buffer. Subsequently 100 µl of Stabilised 

Chromagen was added to each well and the plate incubated for thirty minutes in the 

dark, at room temperature. Then 100 µl of Stop Solution was added to each well and 
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the side of the plate tapped gently to ensure thorough mixing and even distribution 

of the protein for an accurate concentration reading. This solution changes the colour 

from blue to yellow. The absorbance was measured using a 96 well microplate 

reader at 450 nm having blanked the reader against a chromagen blank composed of 

Stabilised Chromagen and Stop Solution.  Using Excel the absorbance of the 

standard against the standard concentration was plotted. The values obtained for the 

samples were multiplied by the dilution factor (10) to correct for the dilution. 

2.3.2 Histone/DNA ELISA for detection of apoptosis 

The Cell Death Detection ELISA Kit (Roche, USA) was used to detect apoptosis in 

both prostate cancer cell lines treated with increasing concentrations of 2607 and 

2070, diluted in culture media for 24 and 72 hours. This is a one step sandwich 

ELISA for relative quantification of histone-complexed DNA fragments (mono- and 

oligonucleosomes) from the cytoplasm of cells after the induction of apoptosis. 

LNCaP and LNCaP CR cells were seeded 5x10
3
 cells (100 µl) per well and cultured 

for 24 hours followed by incubation  for either 24 or 72 hours with 1, 10 and 50 µM 

of 2607 or 2070, diluted in culture media. After the incubation, the cells were 

pelleted by centrifugation at 200xg for 10 minutes at room temperature and the 

supernatant was discarded. The cells were then resuspended with 100 µl of lysis 

buffer and incubated for thirty minutes at room temperature. After lysis, the cells 

were collected by centrifugation at 200x g and 20 µl of the supernatant was 

transferred to a streptavadin coated microtiter plate.  100 µl of Immunoreagent (two 

monoclonal antibodies, antihistone (biotin-labeled) and anti-DNA (peroxidase-

conjugated) was added to the wells and incubated at room temperature for two 
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hours. The immunoreagent was carefully removed and wells washed three times 

with washing buffer to remove cell components that were not immunoreactive. 

Following this samples were incubated with peroxidase substrate for fifteen minutes 

at room temperature and absorbance of the samples was measured using a 96 well 

microplate reader at 405 nm.  

 

2.4 Cell proliferation assay 

 

 Proliferation was assessed using the WST-1 (Water Soluble Tetrazolium Salts) 

assay (Millipore, UK). Proliferation is based on the cleavage of the tetrazolium salt 

WST-1 (water soluble tetrazolium salt, in the presence of 1-methoxy PMS) to 

formazan by cellular mitochondrial dehydrogenases. Expansion of viable cell 

numbers results in an increase in activity of the mitochondrial dehydrogenases in the 

sample, corresponding to an increase in formazan dye metabolism. The formazan 

dye produced by the viable cells is measured at an absorbance of 440 nm using a 

standard multiwell spectrophotometer. 

Cells were seeded in 96 well plates at a density 5x103 cells (100 µL) per well in 

standard culture media. The assay was performed at 48, 72 and 96 hours by adding 

10 µL of WST-1 reagent prior diluted in Electro Coupling Solution (ECS) to each 

well. The optical absorbance level was measured after 2 hours incubation at 370C, 

(this time point was determined in previous studies performed within our group) 

using a 96 well microplate reader at 450 nm with reference wavelength 600 nm. 

Each experiment was repeated three times and each condition was done in triplicate.  
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2.4.1 The effect of PI3K/Akt on proliferation 

To elucidate the role of PI3K/Akt cascade in regulating   proliferation, LNCaP cells 

were seeded in 96-well plates at 5x10
3
 cells (100 µL) per well and cultured for 24 

hours followed by incubation with 30 uM, 100 uM, 300 uM and 1000 uM of LY 

294002, diluted in culture media for 72 hours. WST assay was performed at 48 and 

72 hours as described in section 2.1.8. 

2.4.2 The effect of NFKB on proliferation 

 

To elucidate the role of NFKB in regulating proliferation, LNCaP cells were seeded 

in a 96 well plate, at 5x10
3
 cells (100 µL) per well and cultured for 24 hours 

followed by incubation with 1 uM , 10 uM  and 50 uM of 2607 and 2070, diluted in 

culture media for 48 hours. WST assay was performed at 48 hours as described in 

section 2.1.8. 

 

 2.4.3 Statistical analysis for cell line studies 

All statistical analysis was performed using the SPSS version 15 for Windows. To 

assess if the novel NFкB inhibitors were sufficient to inhibit proliferation (WST) 

and stimulate apoptosis (cell death ELISA) the Dunnets and LSD tests were 

performed. This compares values of untreated and treated samples. A value of p < 

0.05 was considered statistically significant. 

 

2.5 siRNA Knock down of PI3K 

LNCaP CR cells were transfected with the Cell Line Nucleofector® Kit R, Program 

T-009 as described by manufacturer (Lonza, Cologne, AG). Briefly, 8-well chamber 
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slides were filled with 0.5mls of RPMI supplemented with heat-inactivated foetal 

calf serum (10%) and 2mM L-glutamine, (penicillin/streptomycin was omitted to 

allow the cell membrane to recover after transfection). Chamber slides were then 

placed in a humidified 37°C/5% CO2 incubator to equilibrate. 70% confluent cells 

were harvested by trypsinization (section 2.1.2) and cells were counted using a 

haemocytometer. 1x10
6
 cells per sample were centrifuged at 1000xg for 10 minutes 

at room temperature and supernatant completely removed. The cell pellets were then 

resuspended in 100 µl room-temperature Nucleofector® Solution and combined 

with 300 nM PI3K siRNA SMARTpool or nonspecific siRNA pool (Dharmacon, 

Lafayette, CO, USA). Samples were then transferred to cuvettes and transfected 

using Nucleofector® Program T-009 (Lonza). 400 µl of warmed culture medium 

was added to each cuvette and 50 µl of cells were gently transferred into the 

prepared 8-well chamber slide to give a final cell number of 5 x10
4
 cells per well .  

The cells were allowed to settle for 24 hours before the medium was replaced with 

RPMI supplemented with heat-inactivated foetal calf serum (10%), 2mM L-

glutamine and penicillin/streptomycin (50 units/ml, 50µg/ml) for another 48 hours. 

The cells were analysed 72 hours post siRNA transfection by Immunofluorescence 

(IF).  

 

2.6 Immunofluoresence (IF) 

Immunofluorescence (IF) is a method that allows the detection of a specific protein 

or antigen in cells or tissue sections by fluorescent visualisation. There are two types 

of IF direct and indirect. Direct IF requires using a primary antibody labelled with 
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fluorescent dye, whereas the indirect approach involves the use of a secondary 

antibody labelled with a fluorescent marker capable of binding to the primary 

antibody which is bound to the antigen. The protein of interest is then visualised 

using a fluorescent microscope. The indirect method was used to investigate the 

expression of proteins in prostate cancer cells following PI3K siRNA knockdown as 

described in section 2.5. Following knockdown cells were washed twice with ice-

cold PBS, before being fixed to the culture slides by incubation in ice-cold methanol 

(500µl of methanol per well) for three minutes. Excess methanol was removed by 

washing the cells three times in dH20 for five minutes. To reduce non-specific 

binding of the antibody, cells were incubated in 500µl of 1.5% normal horse serum 

(Vector Laboratories) in antibody diluent (DAKO) for twenty minutes. As of this 

point all steps were performed on an orbital shaker and at room temperature. Cells 

were incubated with the appropriate primary antibody for 1 hour (100µl of antibody 

per well) before being washed three times with TBS for ten minutes. Following this, 

cells were incubated with either 100µl biotinylated mouse or rabbit secondary 

antibody (3µg/ml in antibody diluent) (Vector Laboratories) for thirty minutes. Cells 

were again washed three times with TBS for ten minutes, before being treated with 

100µl of Fluorescein Avidin D (diluted 1:100 in TBS) (Vector Laboratories) for 

thirty minutes. Once the cells were treated with the fluorescent protein, slides were 

covered in foil and all future steps performed in semi-darkness, to prevent the 

fluorescence from fading. Finally cells were washed with TBS three times for ten 

minutes. At this stage culture slides were mounted onto coverslips, using 

Vectashield mounting media with 4'-6-Diamidino-2-phenylindole (DAPI) (635µl 
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mountant media : 65µl mountant media with DAPI )(Vector Laboratories). DAPI 

stains nuclei specifically, with little or no cytoplasmic labelling. The protein of 

interest was then visualised using a fluorescent microscope with either a DAPI or 

FITC filter.  

 

2.7 Patients 

 

Sixty-eight patients with matched hormone-naive and castrate resistant tumour pairs 

were retrospectively selected for analysis. All tumours had patient identification 

removed, including block number and hospital number and were coded to make the 

database anonymous. Ethical approval was obtained from the Multicentre Research 

Ethics Committee for Scotland (MREC/01/0/36) and Local Research and Ethical 

Committees. Patients were only selected for analysis if they initially responded to 

hormone treatment (in the form of subcapsular bilateral orchidectomy or maximum 

androgen blockade), but subsequently relapsed (two consecutive rises in PSA greater 

than 10%) and had a pre- and post castrate resistant tissue sample available for 

analysis. The database used for the study consisted of matched pairs of tissue 

obtained sequentially from patients before androgen deprivation therapy and 

following the development of castrate resistant prostate cancer. These sections 

originated from either a transurethral resection of the prostate (TURP) or from 

diagnostic transrectal ultrasound (TRUS) biopsies. Following the development of 

biochemical relapse, castrate resistant tissue was obtained from palliative TURP, 

carried out to relieve clinical outflow symptoms.  
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2.8 Fluorescence in situ hybridisation (FISH) 

 

Fluorescence In Situ Hybridisation is a method that uses fluorescently labelled DNA 

probes to visualise chromosomal or genetic abnormalities. FISH probes are single 

stranded DNA that are able to bind to the complimentary DNA strand on the 

chromosome/gene of interest and consequently allow the fluorescence detection of 

the chromosome/gene. 

Probes were provided by Dako A/S to investigate genetic changes (gene 

amplifications and deletions) of PIK3CA (p110 catalytic subunit of PI3K), PTEN, 

Akt 1-3 and mTOR.  FISH was performed on 5 µm, archival formalin fixed; paraffin 

embedded prostate tumour tissue arrays (TMA’s; 4 cores from each patient for 

prostate carcinomas). The probe mix consisted of a mixture of Texas Red-labelled 

DNA cosmid clones covering the sequence of PIK3CA (p110 catalytic subunit of 

PI3K), PTEN, AKT1, AKT2, AKT3 or mTOR genes and a fluorescein isothiocyanate 

(FITC)-labelled chromosome specific reference for determining numerical gene 

aberration.  Specificity of both genetic and reference probes was tested by restriction 

analysis. Localization of the probe mix was validated by hybridisation to metaphase 

spreads of normal cells which showed hybridisation to all associated chromosomes 

(all performed by Dako A/S before sending the probes).  FISH was performed using 

a Histology FISH accessory kit (Dako Denmark A/S, Glostrup, Denmark) according 

to the manufacturer’s instructions but with minor modifications. In brief slides were 

incubated for 1 hour at 56
o
C, dewaxed and re-hydrated through graded alcohols.  

Slides were rinsed twice in wash buffer and then incubated for 10 min in pre-

treatment buffer at 96
o
C, followed by 3 min incubation at room temperature in wash 
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buffer.  Slides were then incubated in Pepsin for 26 mins at 25
o
C, followed by 3 min 

incubation at room temperature in wash buffer and then incubated for 10 minutes in 

10% formalin.  The slides were then washed, dehydrated and air dried. Ten µl probe 

mix was applied, the slide mounted and sealed with rubber cement. The probe and 

target DNA were denatured at 82°C for 22 minutes and the tissue incubated 

overnight at 45°C in a humidified hybridizer (Dako Denmark A/S, Glostrup, 

Denmark). After washing in stringent wash buffer for 10 minutes at 65°C, the tissue 

was dehydrated, air-dried and the slide mounted using vectasheild mounting media 

with 0.5 µg/ml 4.6-diamindino-2 phenylindole (DAPI) (135µl Vectasheild with 

DAPI:565µl Vectasheild) (Vector Laboratories). Signals corresponding to both gene 

and chromosome were visualized using a fluorescent microscope. 

 2.8.1 FISH Scoring  

Gene amplification status was determined in 20 nuclei for each TMA core as the 

ratio of total number of red signals for the gene of interest probes over the total 

number of green signals for the chromosome reference probes (chromosome 3 

(PI3KCA), 10 (PTEN), 14 (AKT1), 19 (AKT2), 1 (AKT3) and 1 (mTOR)). A total of 4 

cores from each patient was analysed and the gene/chromosome ratio was calculated 

separately for each core. A tumour was considered amplified if the 

gene/chromosome ratio in at least one core was equal to or more than 1.5 and 

deleted if the gene/chromosome ratio in at least one core was below 0.8(210). 
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Borderline cases (cases with gene/chromosome ratio between 0.70 and 0.90 and 

between 1.8 and 2.2) and 10% of all cases were scored independently by two 

observers. Gene and chromosome copy number was addressed for each tumour. A 

tumour was defined as disomic when the mean chromosome copy number (MCCN) 

(mean number of chromosome signals per counted cancer cell) was between 1.35 – 

1.85 (211). When the MCCN was below 1.35 or above 1.85 the tumour was 

regarded as aneusomic as previously defined (211). I am indebted to Dr Tove 

Kirkegaard who carried out the PI3KCa and Akt 1-3 FISH. 

  

2.9 Immunohistochemistry IHC)  

 

Immunohistochemistry is a method that allows for the detection of a cellular protein 

or other antigen within cells and tissues using an antibody specific for the desired 

antigen. The simplest immunohistochemical methods attach the marker directly to 

the primary antibody.  In general, this direct immunohistochemical method does not 

have very high sensitivity.  An alternative more sensitive method is indirect 

immunohistochemistry. This involves using a second or “secondary” antibody, 

labelled with either a visible marker (fluorochrome) or an enzyme that binds to the 

primary antibody bound to the antigen. This indirect approach generates an 

amplified signal. The method for this study was the Envision system (DAKO) that 

involves dextran polymer technology. Dako Envision detection reagent consists of a 

dextran backbone to which a large number of peroxidase (HRP) molecules and 

secondary antibody molecules have been coupled.  A unique chemistry is used for 

the coupling reaction, which permits the binding of up to 100 HRP molecules and up 



101 

to 20 antibody molecules per backbone. The secondary antibody coupled to the 

dextran backbone has been raised in goats.  It reacts equally well with rabbit and 

mouse immunoglobulins.  Following incubation with the Envision, the tissue is 

incubated with a substrate solution that consists of diaminobenzidine (DAB) 

chromagen and hydrogen peroxide.  The HRP molecules on the Envision interact 

with the substrate solution to produce a crisp brown end product at the site of the 

target antigen/protein, which can be viewed using a light microscope. 

Immunohistochemistry involves the following steps 

 

• Tissue preparation  

All IHC was performed on 5µm, archival formalin-fixed, paraffin-embedded 

prostate tumour sections. Sections were dewaxed in xylene (2x4 minutes) and 

rehydrated through graded alcohol (100 %( 2x2minutes), 90 %( 1x2minutes), 70 %( 

1x2minutes)) washes.  

 

• Antigen Retrieval  

After formalin fixation and paraffin embedding of tissues, many antibodies react 

only weakly or not at all with their antigen.  This is due to the fact that solvents, heat 

and fixatives can mask the antigen site. Formation of methylene bridges during 

fixation, which cross link proteins, mask antigenic sites therefore, it was necessary 

to include an antigen retrieval step, to break the protein cross-links and expose the 

antigenic binding site, in order to optimise immunohistochemical staining. Two 

different heat mediated methods of antigen retrieval were used for the antigens 

studied. The first involved incubating the tissue sections under pressure in 1L of TE 
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buffer (1mM EDTA (Sigma), 5mM Tris (VWR), pH 8.0) or 1L Antigen Unmasking 

Solution (pH 6, 1:100 (Vector)) for five minutes. The alternative method incubated 

tissue sections for twenty minutes at 96°C in a water bath in 100ml Antigen 

Unmasking Solution (pH 6, 1:100 (Vector)), or Tris EDTA buffer (10mM EDTA 

(Sigma), 0.25mM Tris (VWR)) pH 9. All antigen retrieval steps were followed by a 

twenty minute cool down period. 

 

• Reduction of background staining: - Blocking steps 

Peroxidase reacts with diaminobenzidine, therefore the presence of endogenous 

peroxidase activity in tissues is a common problem in IHC as it is a cause of 

background staining. Endogenous peroxidase activity was blocked by incubating the 

slides in 3% hydrogen peroxide (H2O2) (VWR) for ten minutes, followed by a wash 

in water. A further cause of background staining is the formation of hydrophobic 

bonds between immunoglobulins and tissue proteins that results in the primary and 

secondary antibodies binding non-specifically to the tissue section rather than just 

the target antigen. To reduce this non-specific binding, tissue sections were 

incubated in 5% normal horse serum (Vector Laboratories) in TBS buffer (0.1M 

Tris/HCl, 1.5M NaCl, pH 7.4) for twenty minutes. 

 

• Incubation with Primary Antibody 

Antibody dilutions, incubation times and temperature were established for each 

protein investigated. All antibodies were diluted to the desired concentration in 

antibody diluent (DAKO). For each, a dilution series was performed, investigating 
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various antibody titrations, incubation times and temperatures, to establish the 

optimal conditions in which to achieve the highest quality of staining, i.e. strongest 

specific antigen staining with the lowest non-specific background. It was crucial to 

have both a positive and negative control each time IHC was performed. The 

positive control confirmed that the chosen IHC method was working while the 

negative control checked the specificity of the antibody involved. Tonsil tissue, 

placenta tissue or prostate tissues previously shown to have strong expression of the 

desired antigen were incubated with the appropriate antibody and used as positive 

controls. The same tissues were used for negative controls by treating them with a 

negative isotype matched control reagent (DAKO).  

 

• Incubation with Secondary Antibody 

Following incubation with antibody or negative control, the slides were thoroughly 

washed in TBS buffer twice for five minutes. The Envision detection method was 

used for all antigens. The slides were incubated with Envision for thirty minutes then 

washed twice for five minutes in TBS 

 

• Detection & Visualisation 

The chromagen used for staining the tissue sections was 3,3’-diaminobenzidine 

(DAB) –(5ml distilled water (dH2O), 2 drops of buffer solution, 4 drops of DAB 

stock solution, and 2 drops of Hydrogen Peroxidase solution -Vector Laboratories). 

Slides were incubated with DAB for five to ten minutes to allow brown staining to 

develop and were then washed in running water for ten minutes.  
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• Counterstaining 

Tissue sections were counterstained with haematoxylin and Scots Tap Water 

Substitute (S.T.W.S). Slides were immersed in the haematoxylin for approximately 

thirty seconds, until a red colour was produced in the tissue section. Following this 

slides were then submerged in S.T.W.S for another thirty seconds, to produce a blue 

colour, in contrast to the brown positive staining of the antigen.  The last steps 

involved dehydrating the tissues through a series of alcohol washes: (70% (1x1min), 

90% (1x1min), 100 %( 2x1min)) and xylene (2x1min), and then mounting the slides 

onto coverslips using DPX mountant (VWR) (Dibutyl Phtalate containing Xylene).   

 

2.9.1 Histoscore 

Staining was scored blind by two independent observers (Myself and Dr Joanne 

Edwards) using a semi-quantitative weighted histoscore method (212) also known as 

the Hscore system (213). Histoscores were calculated using the following formula: 0 

x % negative tumour cells + 1 x the % of cells staining weakly positive + 2x the % 

of cells staining moderately positive + 3 x the % of cells staining strongly positive. 

The histoscore ranged from a minimum of zero to a maximum of 300. Results were 

considered discordant if the histoscores differed by more than 50. These cases were 

re evaluated by both observers. Also, both intra-(variation in individual scoring) and 

inter-( variation between two observers) class correlation coefficients were 

calculated  Agreement was considered excellent if  the ICCC value was > 0.7, an 

ICCC of 1 indicates identical score (212). The mean of the two observer’s 

histoscores was used for analysis. Changes in protein expression staining between 
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hormone naive and castrate resistant cases were defined as an increase or decrease 

out with the 95% confidence interval for the difference in inter-observer variation 

(i.e. the mean difference between the histoscore that each observer assigns for 

protein expression plus or minus 2 standard deviations) (102). 

2.9.2 Statistical Analysis for Immunohistochemistry Studies 

All statistical analysis was performed using the SPSS version 15 for Windows. Basic 

descriptive statistics were performed to calculate the frequencies, mean, median and 

inter-quartile ranges for the histoscore for each protein investigated. These values 

were then used to establish appropriate cut-off points to define tumours as either low 

or high expressers of the desired protein. 

 Wilcoxon signed Rank tests were used to compare protein expression between 

hormone naive prostate cancer and castrate resistant prostate cancer tumours. 

Correlations between protein expression levels in various sub cellular compartments 

and associations between the expressions of different proteins were calculated using 

the Spearman’s Rank Correlation Test.  

Kaplan-Meier life table analysis and Cox’s multiple regression (multivariate survival 

analysis) were performed to estimate differences in prostate cancer related survival, 

in terms of time to biochemical relapse, time to death from relapse, disease specific 

death and overall survival. Multivariate analysis combined the biological marker of 

interest with tumour grade at diagnosis, tumour grade at relapse (Gleason score), 

PSA at diagnosis, PSA at relapse, presence of metastasis at diagnosis, presence of 

metastasis at relapse and age  to establish if it was independent of these known 

prognostic markers in influencing patient outcome.  
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For survival analysis patients were split into groups, those whose tumours expressed 

high levels of protein (above the median) and those who expressed low levels of 

protein (below the median). To establish the relative risk of a patient relapsing or 

dying as a result of either high or low levels of a particular protein in their tumour 

hazard ratios (HR) were calculated using Cox regression analysis. A value of p < 

0.05 was considered statistically significant. 
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3.   The role of the PI3K/Akt cascade in the progression to 

CRPC 
 

3.1 Introduction 

Activation of the PI3K/Akt cascade is reported to play a role in the development and 

progression of prostate cancer. In order to investigate the clinical significance of this 

cascade in the progression to castrate resistant disease paired hormone naïve and 

castrate resistant tumours and cell lines were utilized. As deregulation of this 

cascade can occur through an array of processes, members of this cascade were 

investigated at the genetic level using FISH and protein expression levels were 

determined using IHC. 

  

3.2 Expression and activation of Akt in LNCaP cell lines 

 

To establish the phosphorylation hence activation levels of Akt in the matched 

hormone sensitive and castrate resistant prostate cancer cell lines ELISA and 

western blotting were carried out.  Both cell lines were incubated with or without 

EGF for 15 minutes (Figures 3.1 and Figure 3.2). It is evident that Phosphorylation 

of Akt at serine 473 in LNCaP-CR is notably higher in untreated cells as compared 

to LNCaP cells and is also significantly higher when stimulated with EGF for fifteen 

minutes. Phosphorylation of Akt in LNCaP cells increases to a similar level to the 

basal levels in LNCaP-CR after fifteen minutes of EGF stimulation (Figure 3.1). 

LNCaP cells that are hormone sensitive still depend on androgens for growth and 

survival, these results are indicative that in the presence of androgen the activity of 
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the PI3K/Akt is lower than that of castrate resistant LNCaP suggesting androgens 

become less important factors in tumour cell growth in late stage prostate cancer.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Akt expression LNCaP cell lines.  

Western blot analysis of LNCaP and LNCaP-CR cells both untreated and treated 

with10nM EGF for fifteen minutes. Tubulin confirms equal loading of samples. 
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Figure 3.2 EGF induced Akt expression in LNCaP cell lines 

ELISA demonstrating Akt phosphorylated at serine 473 is up regulated in castrate 

resistant LNCaP prostate cells compared to the hormone naïve LNCaP prostate 

cells when untreated or treated with 10nm EGF. 

 

3.2.1 Stimulation of Akt phosphorylation 

Current models suggest that phosphatydilinositol-3, 4, 5 triphopshates produced 

upon growth factor stimulation recruit Akt to the plasma membrane by binding to its 

N-terminal pleckstrin homology (PH) domain. To reflect the vigorous recruitment 

and activation of PI3K by growth factor pathways Hrg and IGF-1 time course 

treatments were carried out. Treatment with 10nM Hrg appears to induce Akt 

phosphorylation in a time dependent manner (Figure 3.3).  In the hormone naïve 

LNCaP the basal levels of Phosphorylated Akt are notably higher in the untreated 

sample (grown in serum free medium) and expression of phosphorylated Akt serine 

473 appears to be expressed at a lower level up until the three hour time point. This 
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data suggests that stimulation with Hrg alone for a shorter time period is not 

sufficient in enhancing PI3K activity in comparison to overnight serum withdrawal 

in hormone sensitive prostate cancer cells.  In the castrate resistant cells however the 

expression of phosphorylated Akt is reduced for a brief period between the five and 

thirty minute time points which further increases as the time progresses to the three 

hour time point.  

 

 

 

 

 

Figure 3.3 Hrg stimulation of Akt phosphorylation 

Western blot was performed on 50ug of extracts from LNCaP and LNCaP-CR cells 

treated or untreated with 10nM HRG and probed for pAkt (ser 473) (60kd) 

expression. Lane 1 LNCaP unstimulated, 2 LNCaP-CRunstimulated.Lanes3-12 

loaded LNCaP, LNCaP-CRfor5,15,30 minutes,1, and 3 hours 

respectively.Tubulin(50kd) was used as a loading control. 

 

IGF-1 stimulation of LNCaP cells appears to have an inhibitory effect on the 

phosphorylation of Akt at serine 473 (Figure 3.4.)  The basal levels of 

phosphorylated Akt in the serum starved extracts are notably higher and the 

stimulation with IGF-1 appears to reduce the expression of phosphorylated Akt at 

serine 473 with time. The reasons for these inhibitory effects of growth factors on 

the phosphorylation of Akt are unclear at present. Elevated phosphorylation of Akt 

in LNCaP cells was
 
inhibited by treating cells with the PI3K inhibitor LY294002

 
for 

thirty minutes (Figure 3.5), indicating that constitutive phosphorylation of Akt
 
 at 

60kd 

50kd 
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serine 473 is dependent on constitutive
 
production of 3'-phosphoinositides Also, 

inhibition of PI3K activity was sufficient to inhibit phosphorylation of Akt 
 
in 

LNCaP cells stimulated with IGF-I (Figure 3.5). 

 

 

 

 

 

Figure 3.4 IGF stimulation of Akt phosphorylation 

Western blot was performed on 50ug of extracts from LNCaP cells treated or 

untreated (serum free medium) with 10ng IGF-1 and probed for pAkt (ser 473) 

(60kd) expression. Lane 1 LNCaP unstimulated, 2 LNCaP unstimulated (vehicles, 

acetic acid and ethanol).Lanes3-7 LNCaP cell extracts stimulated for 5, 15, 30 

minutes, 1 and 3 hours. Lane 8 extracts treated with LY294002 20uM for 30 

minutes, lane 9 extracts treated with LY294002 20uM 30 minutes then stimulated for 

one hour with 10ng IGF-1.Tubulin confirms equal loading of samples 

 

 

 

 

 

 

 

 

 

Figure 3.5 Phosphorylation of Akt was regulated by PI3K in LNCaP cells. 

Lane 1 LNCaP unstimulated 2, LNCaP cell extracts treated with 20uM LY294002,3 

LNCaP cell extracts stimulated for1 hour with10ng IGF-1,4 extracts treated with 

LY294002 20uM 30 minutes then stimulated for one hour with 10ng, 5 LNCaP 

unstimulated(vehicles, acetic acid and ethanol  . Tubulin confirms equal protein 

volumes. 

 

  

 

60kd 

50kd 
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3.2. Prostate cancer cell proliferation.  

 To determine the proliferation rate of both cell lines, proliferation was assessed 

using the WST assay (Figure 3.6). The data shown indicates that both cell lines 

proliferate at an almost equal rate and have a doubling time of approximately forty 

hours.  
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Figure 3.6 LNCaP and LNCaP CR cell proliferation 

 Proliferation rates in hours of both cell lines studied 
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Proliferation assay for AS cells at 48 hours (PI3K inhibitor)
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3.2.2 PI3K regulates prostate cancer cell proliferation 

Reports suggest that PI3K signallingmay play a critical role, allowing prostate 

cancers cells to maintain continued proliferation in low androgen environments. To 

clarify the role of PI3K/Akt cascade in regulating proliferation, LNCaP cells were 

incubated with increasing concentrations of LY 294002 for 48 hours. This time was 

deemed to be the optimum from the previous proliferation experiment. Treatment of 

LNCaP cells with LY 294002 resulted in a dose-dependent reduction in 

proliferation, the IC50 was calculated as 15uM (Figure 3.7). This data further 

supports the reports that PI3K plays a role in the proliferation of prostate cancer cells 

in the absence of PTEN.  

 

 

 

 

 

 

 

 

Figure 3.7 LY294002 inhibits prostate cancer cell proliferation. 

LNCaP cells were treated with different doses of LY294002 over a 48 hour period 

and the IC50 calculated was 15uM. 
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Using pAkt ser 
473 

as a marker for PI3K activation has provided additional evidence 

that the PI3K signallingcascade is upregulated in the transition to castrate resistant 

disease as expression of pAkt ser 
473 

is markedly higher in castrate resistant LNCap 

cells in comparison to hormone naïve LNCaP cells. The expression of pAkt ser 
473 

  

can be reduced by treatment with LY204002 as can cellular proliferation. Therefore 

having observed that the PI3K cascade is upregulated in prostate cancer cell lines it 

was deemed appropriate to investigate this cascade in the clinical samples. 
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3.3 Patients 

A total of 68 prostate cancer patients were included in this study, all were available 

for IHC analysis (136 tumours in total) and approximately 25 matched pairs were 

available for FISH analysis (31 hormone naive and 25 castrate resistant).  Patients in 

this cohort were diagnosed with locally advanced (50) or metastatic prostate cancer 

(18) and subsequently received surgery and androgen deprivation therapy (26 sub 

capsular bilateral orchidectomy, 44 GnRH analogue, 2 had both).  Forty-five of the 

68 patients also received anti androgen therapy and this included all those who 

received GnRH analogues.  At initial diagnosis the median age was 70 years (66-74) 

and 26% of patients had metastatic disease.  The median time to biochemical relapse 

was 2.32 (1.48-4.00) years and the percentage of patients with metastatic disease had 

increased to 57%.  Sixty-one patients (89.7%) died during follow-up and median 

survival for these patients was 4.34(2.94-6.63).  Seven patients were alive at last 

follow-up; the median time of follow-up for all 68 patients was 4.34(2.86-6.74) 

years.    

When serum PSA level, age, metastasis and Gleason grade at diagnosis were 

analysed by univariate analysis for this patient cohort, PSA at diagnosis (p=0.036) 

and Gleason score at diagnosis (p=0.010) were associated with shorter time to 

biochemical relapse. Death from time of biochemical relapse was associated with 

PSA level at relapse (p=0.016). Overall survival was associated with presence of 

metastases at relapse (p=0.0019) and Gleason score at diagnosis (p=0.049).  
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3.3.1 Genetic changes for members of the PI3K cascade. 

FISH was performed for PIK3CA (p110 catalytic subunit of PI3K), PTEN, AKT1-3 

and mTOR. 

PI3KCA//chromosome 3 ratio was successfully evaluated in 57 cases (22 hormone 

naive and 35 castrate resistant tumours). The remaining cases were excluded from 

the study because of insufficient tumour material in the cores. Gene amplification 

was observed in only 1 (5%) hormone naive tumour, and 1 (3%) in castrate resistant 

tumour, therefore no significant alteration was observed in the transition form 

hormone naive to castrate resistant disease.  No PI3KCA gene deletions were 

observed in this cohort.   Due to the low level of genetic changes observed 

correlations with clinical parameters were not performed. 

PTEN/chromosome 10 was successfully evaluated in 31 cases (17 hormone naive 

and 14 castrate resistant tumours), PTEN FISH is shown in Figure 3.8. The 

remaining cases were excluded from the study because of insufficient tumour 

material in the cores. Gene deletion was observed in 23% of hormone naive 

tumours, this increased significantly to 52% in castrate resistant tumours (p=0.044).  

Loss of one copy of PTEN was commonly observed, and this was heterogeneous in 

nature, being frequently observed in only one area of tumour.   Loss of PTEN was 

correlated with prostate cancer progression; however, no correlation was observed 

between loss of PTEN and Gleason score at diagnosis, loss of PTEN and presence of 

metastasis at diagnosis or loss of PTEN and PSA at diagnosis. When loss of PTEN 

was correlated with survival, a trend between loss of PTEN and poorer disease 
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specific survival was noted (p=0.086), this was not independently significant by Cox 

regression analysis.   

AKT1 FISH was successfully evaluated in 38 prostate carcinomas (20 hormone 

naive and 18 castrate resistant tumours). One castrate resistant tumour was identified 

with AKT1 whereas no AKT1 deletions were found. Due to the low level of genetic 

changes observed correlations with clinical parameters were not performed. 

AKT2/chromosome 19 ratio was successfully evaluated in 35/38 cases (92.1%). The 

remaining cases were excluded because of insufficient tumour material in the cores. 

Neither AKT2 gene amplifications nor deletions were identified in any of the 

evaluated tumours.  Due to the low level of genetic changes observed correlations 

with clinical parameters were not performed. 

AKT3/chromosome 1 ratio was successfully evaluated in 34/38 (89.5%) cases. The 

remaining cases were excluded from the study because of lack of tumour material in 

the cores.  AKT3 was neither amplified nor deleted in any of the analysed 

carcinomas. Due to the low level of genetic changes observed correlations with 

clinical parameters were not performed. 

mTOR /chromosome 1 ratio was successfully evaluated in 50 cases (25 hormone 

naive and 25 castrate resistant tumours). The remaining cases were excluded from 

the study because of insufficient tumour material in the cores. Gene amplification or 

deletion as identified, therefore correlations with clinical parameters were not 

performed.  
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Figure 3.8 PTEN FISH 

Fluorescent in situ hybridisation for chromosome 10 (red signal) and PTEN (green 

signal). 

 
 

3.3.2 Protein expression of the PI3K/Akt signallingcascade 

Expression of all proteins was monitored using an immunohistochemical approach. 

All IHC was performed as descrided in materials and methods (Chapter 2.9). Before 

IHC commenced antibody specificity was confirmed by western blotting (Figure 

3.9). Information on all antibodies employed are displayed in Table 3.1 and 

examples of immunohistochemical staining for each are displayed in Figure 3.10. I 

am grateful to Dr Lisa Gemmel for carrying out both the mTOR and phosphorylated 

mTOR IHC. 
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A. Phosphorylated Akt at serine 

308.Western blot analysis of extracts 

from Jurkat cells treated (lane1)or 

untreated (lane2)with calyculin A(Cell 

signallingtechnologies)    

B. Phosphorylated Akt at serine 473. 
Western blot analysis of extracts from 

Jurkat cells treated or untreated with 

calyculin A (lanes 1&2),LNCaP(3&4) and 

LNCaP-CR(5&6)cell extracts treated with 

charcol stripped and full medium.  

 

 

 

 

 

 

 

 

 

 

 

C. PI3K.  Western blot analysis of 

extracts from Jurkat cells untreated or 

treated with calyculin A (lanes 1&2.) 

LNCaP (3) and LNCaP-CR (4) cell 

extracts grown in standard culture 

media. 

D.PTEN. LNCaP cells do not express 

PTEN protein, where as DU145 cells do 

express PTEN protein. LNCaP&LNCaP-

CRcell lysates (lanes1& 2) lane 3 DU145 

cell lysates. 

 

 

 

 

 

 

E.mTOR. Western blot analysis of 

extracts from MCF7 cells untreated 

and treated with 10nm EGF(lanes 

1&2)BT474 (lanes 3&4) ,MDAMB 

231(lanes 5&6),MDAMB 361(lanes 

7&8). 

F. Phosphorylated mTOR at serine 2448. 

Western blot analysis of extracts from 

MCF7 cells untreated and treated with 

10nm EGF(lanes 1&2)BT474 (lanes 3&4) 

,MDAMB 231(lanes 5&6),MDAMB 

361(lanes 7&8). 

Figure 3.9: Specificity of Antibodies 

Western blotting was performed to confirm the specificity of all antibodies used in 

this study. 
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Protein Antibody Antigen 

Retrieval 

Antibody 

concentration 

Incubation 

temperature 

and time 

PTEN 

PTEN 

Mouse 

Monoclonal 

Cell Signalling 

Citrate 

Buffer 

1µg/ml 
Overnight at 4ºC 

PI3K 

PI3K( p110 

catalytic subunit) 

Rabbit Polyclonal 

Cell Signalling 

Citrate 

Buffer 

1µg/ml 
Overnight at 4ºC 

pAkt (ser473) 

pAkt serine 473 

Rabbit Polyclonal 

Biosource 
TE Buffer 

4µg/ml 
Overnight at 4ºC 

pAkt (ser308) 

pAkt (ser308) 

Rabbit polyclonal 

Cell Signalling 

Citrate 

Buffer 

5µg/ml 
Overnight at 4ºC 

*mTOR 

mTOR 

Goat Polyclonal 

Santa Cruz 

Biotechnology 

Citrate 

Buffer 

5µg/ml 
Overnight at 4ºC 

pmTOR(ser2448) 
pmTOR(ser2448) 

Rabbit polyclonal 

Cell Signalling 

Citrate 

Buffer 

2µg/ml 
Overnight at 4ºC 

Akt 1 

Akt 1 

Mouse 

monoclonal 

Santa Cruz 

Biotechnology 

TE Buffer 1µg/ml 
Overnight at 4ºC 

Akt 2 

Akt 1 

Mouse 

monoclonal 

Santa Cruz 

Biotechnology 

 

TE Buffer 2µg/ml 
Overnight at 4ºC 

Akt 3 

Akt 1 

Mouse 

monoclonal 

Santa Cruz 

Biotechnology 

TE Buffer 2µg/ml 
Overnight at 4ºC 

Table 3.1: Antibody Information 

Details of the antibodies used to detect members of the PI3K/Akt 

cascade.Information regarding the source, antigen retrieval method, concentation 

and incubation are all recorded. *For the mTOR antibody only, incubation with 
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 PI3K   PTEN   mTOR  

pmTOR ser 2448  Akt 1   Akt2  

Akt 3    pAkt ser 308  pAkt ser 473  

rabbit anti-goat antibody (Dako A/S) (1 : 4000) for 1 h at room temperature was 

also required.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10: PI3K /Akt cascade Immunohistochemistry 

Prostate tumours displaying immunohistochemical staining magnification x400 

 

Akt1, pAkt
473, 

PTEN and pmTOR
2448

 protein expression was observed in the cell 

membrane, cytoplasm or nucleus. mTOR expression was observed at the membrane 

and cytoplasm, and PI3K, Akt2 and Akt3 expression was observed only in the 

cytoplasm.  All IHC statistical analysis was carried out as previously described in 

(Chapter 2.9.1&2.9.2).  
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Expression of all proteins investigated was non parametric, median values and inter 

quartile ranges for each protein at each location are provided in Table 3.2 for both 

hormone naive and castrate resistant tumours.   

Protein HSPC 

(IQR) 

CRPC 

(IQR) 

P value ICCC Histoscore 

units 

Fallers Risers 

PI3Kc 100(58-140) 100(79-134) 0.875 0.85 60 23 23 

Akt1m 

Akt1c 

Akt1n 

0(0-11) 

75(20-100) 

0(0-18) 

0(0-90) 

70(0-90) 

0(0-0) 

0.798 

0.488 

0.110 

0.88 

0.82 

0.95 

30 

55 

21 

14 

20 

19 

13 

13 

9 

Akt2 125(100-185) 120(98-165) 0.551 0.81 61 22 13 

Akt3 50(0-100) 60(0-95) 0.619 0.84 48 20 30 

pAkt
473

m 

pAkt
473

c 

pAkt
473

n 

40(0-90)  

88(54-110)  

0(0-25) 

33(0-90) 

80(40-105) 

0(0-35) 

0.988 

0.671 

0.465 

0.90 

0.89 

0.93 

58 

49 

40 

22 

25 

15 

23 

23 

18 

mTORm 

mTORc 

0(0-20)  

43(15-87) 

0(0-10) 

40(10-62) 

0.134 

0.123 

0.92 

0.83 

47 

31 

10 

35 

3 

23 

pmTOR
2448

m 

pmTOR
2448

c 

pmTOR
2448

n 

0(0-22)  

 

61(20-100)  

 

0(0-10) 

0(0-15) 

 

40(8-70) 

 

0(0-0) 

0.330 

 

0.044 

 

0.575 

0.95 

 

0.91 

 

0.90 

33 

 

45 

 

19 

14 

 

33 

 

3 

8 

 

23 

 

6 

PTEN m 

PTEN c 

PTEN n 

0(0-65) 

100(80-150) 

0(0-50) 

0(0-40) 

100(80-105) 

50(0-80) 

0.086 

0.104 

0.588 

0.84 

0.90 

0.82 

27 

37 

30 

33 

33 

28 

15 

23 

25 

Table 3.2: Protein expression patterns  

For each protein, descriptive statistics were performed on the generated histoscores. 

Median histoscore and interquartile range (IQR) for hormone naive tumours 

(HSPC) and castrate resistant tumours (CRPC) and the p value of these values 

compared using a Wilcoxon sign rank test.  ICCC= interclass correlation 

coefficient.  The mean difference in observer scores plus 2 standard deviations is 

also shown as the number of histoscore units that is defined as a change in protein 

expression (change).  The percentage of tumours that were defined as having a fall 

or rise in protein expression (calculated using the number of histoscore units that is 

defined as a change in expression) are also shown. m, c and n relates to protein 
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cellular location, m = membrane, c= cytoplasm and n = nucleus. P before a protein 

indicates that the antibody detects phosphorylated protein and the number following 

the protein represents the site of phosphorylation. 

 The Wilcoxon signed-rank test was used to compare expression levels in the 

hormone naive tumours compared to castrate resistant tumours. None of the proteins 

studied were shown to have a significant increase with the development of castrate 

resistant disease. 

3.3.3 Factors associated with time to biochemical relapse. 

When presence of metastases at diagnosis, age at diagnosis, Gleason score at 

diagnosis and PSA at diagnosis were analysed for this patient cohort only PSA at 

diagnosis (p=0.036) and Gleason score at diagnosis (p=0.038) were associated with 

shorter time to biochemical relapse.  

3.3.4 Protein expression in the hormone naïve cohort  

To determine if protein expression was linked to time to biochemical relapse, 

Kaplan-Meier graphs were plotted for the hormone naive tumours expressing low 

levels of protein (< median) versus high levels of protein (> median) and compared 

using the log rank test.  Only PTEN was shown to have significant results. The 

patients whose tumours expressed low levels of PTEN in the cytoplasm were shown 

to have relapsed significantly earlier than those patients whose tumours expressed 

high levels of PTEN in the cytoplasm (Figure 3.11(a), p=0.027).  Cox regression 

analysis indicates that cytoplasmic PTEN expression is independent of known 

clinical prognostic factors (p=0.028, hazard ratio 0.51 (95%CI 0.27-0.93).  It was 

noted, however, that the Kaplan Meier curves did not separate until approximately 
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2.5 years after diagnosis.  Therefore PTEN loss appeared to be influencing relapse in 

those patients who took more than 30 months to relapse.  If patients that relapsed 

within 30 months were excluded from analysis the median time to relapse for those 

with low PTEN expression was 3.9 (IQR 2.98-4.92) years compared to 5.6 (4.36-

6.84) years for those with high PTEN expression (p=0.0035)(Figure 3.11(b)).   

In addition, those patients with high levels of cytoplasmic PTEN expression in their 

hormone naive tumours were observed to have longer median overall survival (6.1 

years (IQR 2.8-9.4)) compared to those with low PTEN expression (4.4 years (IQR 

3.3-5.4)), although this did not reach significance (p=0.072)(Figure 3.12).   Again 

the curves first separate approximately 30 months after diagnosis. Levels of pAkt
473

 

expression in tumours that expressed low levels of PTEN were higher compared to 

tumours that expressed high levels of PTEN (p=0.047). 

 

 

 

 

Figure 3.11(a & b) : PTEN cytoplasmic expression 

Kaplan Meier Plot for high (above the median, solid line) and low (below the 

median, dotted line).  The figure on the left (a) shows the time to biochemical 

relapse with with low cytoplamic PTENexpression(p=0.027),  figure 3.11(b) shows 

the time to biochemical relapse of patients with  low cytoplamic PTENexpression 

that took more than 30 months to relapse (p=0.0035) 
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The median for both PTEN membrane and nuclear expression in the hormone naive 

tumours was 0; therefore patients were divided into those patients whose tumours 

did not express PTEN at these locations and those that did. Patients with PTEN 

membrane expression in their hormone naive tumour had significantly longer overall 

survival than those patients without (Figure 3.13, p=0.002).  The median time to 

relapse for patients whose tumours did not express PTEN in the membrane was 3.8 

years (IQR 2.7-4.85) compared to 6.5 (IQR 5.8-7.2) years for patients with 

membrane expression.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12: PTEN cytoplasmic expression and disease specific survival  

Kaplan Meier Plot for high (above the median, solid line) and low (below the median, 

dotted line) PTEN cytoplasmic expression and disease specific survival (labeled overall 

survival) (p=0.072). 
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Figure 3.13: PTEN membrane expression 

Kaplan Meier Plot for patients with membrane expression, (solid line) and no 

membrane expression (dotted line) and disease specific survival (labeled overall 

survival) (p=0.002). 

 

 

PTEN nuclear expression was associated with overall survival, those patients whose 

tumours had no nuclear PTEN expression had a significantly shorter overall survival 

compared to those patients with PTEN nuclear expression (Figure 3.14, p=0.003). 

Median overall survival was 3.4 years (IQR2.6-4.2) compared to 6.5 years (IQR 5.1-

7.8), which confers a survival advantage of 3 years for those patients whose tumours 

express nuclear PTEN.  Nuclear PTEN expression was demonstrated to be an 

independent prognostic marker by Cox regression analysis when compared with 

known clinical prognostic parameters (p=0.031, hazard ratio 0.52 (95%CI 0.29-

0.95).   
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Figure 3.14: Nuclear PTEN expression 

Kaplan Meier plot for patients that have nuclear PTEN express (solid line) and 

those who do not (dotted line) and disease specific survival. (p=0.003) 

 

As observed with membrane expression, pAkt
473

 expression was lower in the 

nucleus of tumours with high levels of nuclear PTEN than those with low levels but 

this did not reach significance (p=0.132).  In contrast, PTEN membrane expression 

correlated strongly with nuclear PTEN expression (p<0.001, Rs 0.66) 

3.3.5 Protein expression in the castrate resistant cohort 

When expression levels of each protein investigated in the castrate resistant tumours 

were divided into to high or low expression (levels above or below the median) none 

of the proteins investigated were associated with time to death from relapse or 

disease specific survival.  
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When presence of age at diagnosis, Gleason score at diagnosis, metastases at relapse 

and PSA at relapse were analysed for this patient cohort only PSA at relapse 

(p=0.016) was associated with disease specific death from time of biochemical 

relapse. 

3.3.6 Changes in protein expression 

Due to the nature of the cohort it is possible to investigate if those patients whose 

tumours exhibit an increase or decrease in expression of members of the PI3K 

cascade in the transition from hormone naive to castrate resistant disease were more 

likely to relapse or die quicker. The cutoff histoscore selected to separate subgroups 

of patients is displayed in Table 3.2. Using this method, an increase in PI3K (Figure 

3.15; P=0.014, HR=2.11 (95% CI: 1.14–3.91)) and pAkt
308

 (Figure 3.16, p=0.038, 

HR 2.4 (1.01-5.67)) were associated with quicker time to relapse.  The median time 

to relapse for those patients whose tumours have a decrease or no change in PI3K 

expression was 2.57 (1.74-3.40) years compared to 1.36 (1.20-2.72) years for those 

patients whose tumours had an increase in PI3K expression.  The median time to 

relapse for those patients whose tumours had no change or decrease in pAkt
308

 was 

2.36 (1.61-3.11) years compare to 1.14 (0.17-2.63) years for those patients whose 

tumours had an increase in pAkt
308

 expression.   

Additionally, an increase in pAkt
473

 (Figure 3.17, p=0.0019, HR 2.89(95% C.I., 

1.43-5.8)) was associated with shorter disease specific survival. The median survival 

from diagnosis for those patients whose tumours had no change or decrease in 

pAkt
473

 was 6.68 (IQR, 6.22-7.14) years compared to 4.15 (IQR, 2.65-6.5) years for 

those patients whose tumours had an increase in pAkt
473

expression. 
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Figure 3.15: Increased PI3K expression 

Kaplan Meier plot for patients that have increased PI3K expression (dotted line) and 

those who do not (solid line) and time to relapse (p=0.014) 

 

 

 

 

 

 

 

Figure 3.16 Increased pAkt (ser 308) 

Kaplan Meier plot for patients that have increased pAkt (ser 308) expression (dotted line) 

and those who do not (solid line) and time to relapse (p=0.038). 
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Figure 3.17: Increased pAkt (ser 473) expression 

Kaplan Meier plot demonstrates that those patients whose tumours exhibit an increase in 

pAkt
473

 cytoplasmic expression (broken line) have shorter time to disease specific death 

than those patients whose tumours exhibit no change or a decrease in pAkt
473

 expression 

(solid line).  

 

When all significant factors associated with disease specific survival were combined in 

multivariate analysis, presence of metastases at relapse, PTEN nuclear expression in 

hormone naive tumours and an increase in pAkt
473

 expression were independently 

significant (Table 3.4). 
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Factor P value (uni) P value (multi) Hazard ratio 95% C.I. 

Metastases at relapse 0.0019 0.043 3.54 1.03-12.07 

PTEN nuclear expression 0.011 0.0054 0.27 0.11-0.68 

Change pAkt
473

 expression 0.0019 0.0314 2.74 (1.09-6.88) 

Table 3.4: Multivariate analysis for factors effecting disease specific survival 

Factors significantly associated with disease specific survival using Kaplan Meier 

analysis and those independently associated with disease specific survival using Cox 

Regression analysis. PTEN nuclear expression represents those patients whose hormone 

naive tumours expressed PTEN in the nucleus compared to those patients whose hormone 

naive tumours did not express PTEN in the nucleus.  Change in pAkt
473

expression 

represents those patients whose tumours exhibited an increase in expression in the 

transition from hormone naive disease to castrate resistant disease compared to those 

patients whose tumours had no change or a decrease in expression 

 

3.4 Discussion 

 

Evidence from several groups indicates that the PI3K cascade may influence the 

progression to castrate resistant prostate cancer despite only castrate levels of circulating 

androgens. Indicating that this pathway could serve as a novel target for therapeutic 

intervention in the treatment of prostate cancer.  Due to the significance of PI3K 

signallingin prosate cancer cell lines this study further examined if the protein expression 

levels of several key components of this signallingcascade played a role in prostate 

cancer relapse to castrate resistant  disease aiming to identify which proteins would make 

the optimum targets for treatment and most effectively, identify patients suitable for 

therapy.   

Functional loss of PTEN has been associated with increased Akt phosphorylation, higher 

gleason grade, advanced stage and poor prognosis, predicting disease recurrence after 

primary treatment (214). The generation of transgenic mouse models that recaptilate 
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features of the disease has enhanced understanding of the pathway (215) and studies of 

knockout mice with targeted deletion of prostate specific PTEN (PTEN-/-) have revealed 

prostate intraepithelial neoplasia formation, invasive adenocarcinoma progressing to 

metastatic disease, an initial response to androgen ablation therapy, and eventual tumour 

growth despite castration (216). This study presents data in keeping with PI3K 

signallinginducing continued prostate cancer growth. 

Akt activity has been shown to increase during androgen ablation to stimulate cell growth 

and survival when androgen reliance is weaker, and therefore promote development of 

CRPC (150;172). LNCaP cells are PTEN deficient, therefore PI3K pathway signallingis 

evident by high levels of phosphorylated Akt..In this study it was established that both 

hormone naïve and castrate resistant LNCaP express phosphorylated Akt during serum 

starvation which indicates PI3K signallingis active at both stages of the disease regardless 

of the growth conditions. Phosphorylated Akt expression was markedly higher in the 

castrate resistant cells than hormone naïve cells (Figure 3.1&3.2) and treatment with EGF 

induces the phosphorylation of Akt in hormone naïve cells to a similar level of that 

observed in the untreated castrate resistant cells. Heregulin was shown to induce Akt 

phosphorylation in both cell lines but at a quicker rate in the castrate resistant cells 

(Figure 3.3). IGF-1 stimulation did not appear to enhance the phosphorylation of Akt to a 

higher than basal level in the hormone naïve LNCaP cells (Figure 3.4). This observation 

that Akt phosphorylation increases with prostate cancer progression is supported by 

several reports in the literature. Androgen ablation in LNCaP cells stimulated the 

activation of Akt, which eventually resulted in androgen-independence of the cell line in 

culture (180). The PI3K inhibitor LY294002 was sufficient in blocking Akt 
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phosphorylation in LNCaP cells with and without IGF-1 stimulation (Figure 3.5). 

LY294002 was also observed to inhibit the proliferation of LNCaP cells. In keeping with 

previous reports this study established that the PI3K cascade is upregulated both hormone 

naïve and castrate resistant prostate cancer cell lines (217). It was therefore fitting to 

investigate the members of the PI3K cascade at the genetic level in matched hormone 

naive and castrate resistant clinical samples. 

One mechanism by which protein expression is altered is by gene amplification or 

deletion, however this study failed to show any link between gene amplification and 

increased protein expression.  Loss of PTEN was noted in 23% hormone sensitive 

tumours compared to 52% castrate resistant tumours, these rates of loss are similar to 

those previously reported by FISH analysis (185) suggesting that PTEN loss is associated 

with tumour progression. Although this was not significantly associated with clinical 

outcome measures a trend was observed that demonstrated that those patients with PTEN 

loss had shorter overall survival.  If the FISH studies were expanded to a larger dataset 

these results may have reached significance.    FISH depending on the region that the 

probe binds to does not always detect small deletions and in the case of this study the 

probe covers the whole of the PTEN gene, hence loss of the whole gene is being 

measured.  It was observed that very few tumours had homogeneous PTEN deletion and 

complete loss of PTEN expression (2%), but almost all have heterogeneous loss of 

expression, this is consistent with previous reports (185). In the current study, PTEN loss 

does not correlate with PTEN gene deletion, although all tumours with PTEN deletion 

have low PTEN expression.  An explanation for low PTEN expression in tumours that 

appear not to have PTEN deletion is hypermethylation of the PTEN promoter region. 
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Evidence for promoter hypermethylation has been reported in prostate cancer xenografts 

(190) and the promoter region of PTEN in the LNCaP cell lines used in this study were 

observed to be methylated (data not shown) additionally western blot analysis confirmed 

that these LNCaP cell lines did not express PTEN (Figure  3.1). Although the mechanism 

of PTEN inactivation is currently controversial and possibly due to different mechanisms 

in different tumours, it is widely accepted that PTEN loss is one of the most common 

events associated with prostate cancer (218). 

Work using human prostate tissue confirms that pAkt
473

 is expressed in PIN and invasive 

prostate cancer, and staining intensity positively correlated with PSA levels and Gleason 

grades (172;217).  Additionally, a large study of 640 radical prostatectomy specimens 

demonstrated that high levels of pAkt were predictive of biochemical recurrence (171). 

However, to date this had not been investigated in castrate resistant tumour samples. The 

current study demonstrates for the first time that the PI3K/Akt pathway is up regulated in 

clinical castrate resistant disease and that it is independently associated with reduced 

disease specific patient survival. An increase in PI3K expression and low PTEN 

cytoplasmic expression were both associated with shorter time to biochemical relapse.  

The consequence of low PTEN expression displays an increase in Akt activation, in a sub 

cohort of the patients. It is observed that those patients with an increase in pAkt
308 

(partially activated) and
 
pAkt

473
 expression (fully activated Akt) have shorter time to 

relapse and disease specific survival respectively (Figures 3.16 & 3.17).  As expected the 

relationship between disease specific survival and fully activated Akt (pAkt
473

) appears to 

be stronger than that with partially activated Akt (pAkt
308

).  The increase in pAkt
473

 

expression predicts disease specific survival independent of Gleason score and presence 
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of metastasis. By investigating PTEN protein expression as predicted, loss or low 

cytoplasmic PTEN expression was independently associated with time to relapse and 

linked with increased Akt activation. However this was observed to be a late event with 

curves separating 30 months following diagnosis, suggesting that other factors such as 

PI3K expression may also contribute to Akt activation and disease progression.  In 

addition to cytoplasmic PTEN expression, nuclear PTEN expression was also observed.   

Unlike cytoplasmic PTEN expression, loss of nuclear PTEN expression was weakly 

associated with time to relapse and this did not reach significance.  Nuclear PTEN 

expression was independently associated with overall survival where the curves on the 

Kaplan Meier plot begun to separate approximately after diagnosis.  These results in 

combination with the lack of correlation with Akt activation suggest that the role of 

PTEN in the nucleus is independent of cytoplasmic PTEN.   

It is possible that nuclear PTEN is simply a surrogate marker of PTEN activation, as in 

vitro studies demonstrate that following phosphorylation, PTEN is released from the 

membrane bound scaffolding proteins and enters the nucleus.  In support of this a 

correlation between membrane and nuclear PTEN expression was observed (p<0.001, Rs 

0.66) and PTEN membrane expression is also linked to survival.  However, in contrast to 

cytoplasmic PTEN expression, no correlations were observed between nuclear PTEN 

expression and Akt activation, therefore the evidence to support nuclear PTEN as a 

surrogate marker of PTEN cytoplasmic activation is not convincing in the current study. 

In addition, both cytoplasmic and nuclear PTEN are independently associated with good 

outcome measures in hormone sensitive prostate cancer, yet appear to have independent 
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roles.  Results gained for this study suggest that the increase in Akt activity we observe 

may be due to PTEN loss and/or an increase in PI3K activity. 

The protein mTOR is also downstream of Akt and was also investigated in this study as it 

has previously been linked to CRPC (219). In the current cohort, pAkt
473

 expression 

correlates with pmTOR
2448

 expression, however, expression levels or changes in 

expression levels of pmTOR
2448

 do not correlate with any clinical parameters in the 

cohort suggesting that mTOR may not be involved in the development of CRPC. This is 

surprising as stimulation of mTOR ultimately results in increase protein synthesis and 

enhances translation of proteins involved in growth control via turning off 4EBP and 

activating S6Kinase. Although Akt has been demonstrated to phosphorylate mTOR 

directly, the role of these phosphorylation sites remains unclear. A more appropriate 

marker of mTOR activation could be S6Kinase (220). Apart from activating its substrate 

S6 it is also involved in a negative feedback loop to inactivate Akt (221). Interestingly 

Munders et al have recently demonstrated that VEGF-C increased the survival of prostate 

cancer cells during hydrogen peroxide stress by the activation of Akt. This activation was 

mediated by mTORC2 and was not observed in the absence of oxidative stress. It is 

therefore possible that during stress cells prefer to shut off  protein synthesis which is 

energetically expensive and growth and enhance cellular processes that mediate survival. 

Thus the absence of mTOR activity facilitates prolonged activation of  Akt during severe 

stress providing suvival advantage. Agents including radiotherapy, chemotherapeutic 

drugs such as pacitaxel and histone deacetalase inhibitors increase oxidative stress 

(222;223). Thus a reccurrence of the tumour after therapy likely results from a subset of 

cells that have developed the ability to overcome oxidative damage (223).  
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It has long been hypothesised that interaction with growth factor receptors and the 

Androgen receptor drive the development of CRPC. This study presents clinical evidence 

that expression and activation of the components of the PI3K cascade is associated with 

poor clinical outcome. Loss of PTEN expression as prostate cancer progresses results in 

constitutive activation of Akt. These prelimanary results demonstrate an increase in 

phosphorylated Akt (serine 473) expression in the transition from hormone naïve to 

castrate resistant disease, suggesting that the PI3K cascade is up regulated in a sub group 

of patients, this was also associated with a reduced survival period from relaspe. Cell line 

arm of this study also indicated tha PI3K cascade was upregulated at castrate levels of 

androgen and that this pathway is involved in prostate cancer cell proliferation. As PI3K 

signallingat castrate levels of circulating androgen appears to play a role in prostate 

cancer progression it was deemed appropriate to investigate the downstream effects of 

Akt activity. As mentioned earlier Akt interacts with NFқB a transcription factor 

involved in a vast many cellular processes and also with the Androgen receptor 

phosphorylating it at serine residue 213 and 791.   Accordingly the next two chapters 

shall investigate the effects of Akt on NFқB signallingand interaction with the androgen 

receptor.  
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4.   The role of NFқB signalling in clinical prostate cancer 

progression. 
 

4.1. Introduction 

 

In the previous chapter the significance of the PI3K/Akt cascade in the transition for 

hormone naive to castrate resistant disease was highlighted using in vivo and in vitro 

models. Based on these results it was decided to further investigate the activity and 

expression levels of proteins down stream of Akt. Akt has been shown to stimulate 

signallingcascades that regulate the activity of the transcription factor NFκB which has 

been proven to be directly involved in a number of human disorders including a variety of 

cancers. 

 

4.2 Patients 

 

A total of 61 prostate cancer patients were included in this study, all were available for 

IHC analysis (132 tumours in total). Clinical data, recorded for each patient included age 

(median 70, inter quartile range 67-74), PSA at diagnosis (median 31 ng/ml, inter quartile 

range 7.8-109), PSA at relapse (median 10 ng/ml, inter quartile range 4-11) and Gleason 

grade at diagnosis (median 8, range 6-9).  All patients under went biochemical relapse 

(median time to relapse 2.48 years, inter quartile range 1.76-4.43 years).  At last follow-

up, 40 patients had died of their disease and 15 patients had died of other causes and 6 

were still living.  The median follow up for those patients still alive was 6.4 years and 

inter quartile range was 3.7-9.2 years.  Following diagnosis 10 % patients received 

surgical orchidectomy and 90% patients received LHRH analogue in combination with 



139 

anti androgen therapy.  Following biochemical relapse 64% patients received 

radiotherapy, no patients received taxane therapy.  Clinical parameters associated with 

time to biochemical relapse, time to death from biochemical relapse and disease specific 

survival are shown in table 4.1. 

 

 Time to relapse Time to death 

from relapse 

Disease specific 

survival 

Age 

(<70/>70/unknown) 

 

0.809 

29/29/3 

 

0.137 

28/29/4 

0.434 

30/29/2 

Gleason 

(<7/=7/>7/unknown) 

0.473 

14/12/28/7 
0.026 

14/12/27/8 
0.013 

14/12/29 

Metastasis at 

diagnosis 

(No/Yes/Unknown) 

0.182 

40/14/7 
0.013 

40/14/7 
0.002 

40/16/unknown 

PSA at diagnosis 

(<4/4-10/>10) 

unknown 

0.063 

9/7/38/7 

0.568 

9/7/37/7 

0.664 

9/7/37/8 

Metastasis at 

relapse 

(No/Yes/Unknown) 

 

 0.001 

10/33/unknown 
0.012 

10/35/unknown 

PSA at relapse  0.933 

39/18/unknown 
0.045 

39/18/unknown 

Table 4.1: Patient characteristics 

An overview of the cohort’s characteristics where each clinical parameter, were 

appropriate has been correlated with time to relapse, time to death from relapse and 

disease specific survival (p-values).  

 

 

4.3 Immunohistochemisrty  

 

Before IHC commenced antibody specificity was confirmed by western blotting (Figure 

4.1). Information on all antibodies employed are displayed in table 3.2 and examples of 

immunohistochemical staining for each are displayed in figure 3.2. This study was 

carried out to investigate the significance of NFқB activation in clinical prostate cancer 

specimens using an immunohistochemical approach therefore by investigating the 
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expression of pIқBα serine 
32/36

 gives an indication of NFқB activation as 

phosphorylation of IқBα at this serine residue leads to the activation of NFқB. 

 

 

 

 

 

 

 

 

A. pIқBα serine 
32/36

 Western blot of 

Hela cells extracts treated 

(lane1)or untreated (lane2)with 

TNFα (Cell 

signallingtechnologies) 

 

B. NFқB p65 Western blot of LNCaP, 

LNCaP-CR, PC3 and DU145 cell extracts 

grown in full medium.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C. pNFқB p65 serine 
536

 Western blot of 

LNCaP, LNCaP-CR, PC3 and DU145 cell 

extracts grown in full medium.  

D. NFқB p65 serine
276

Western blot of 

LNCaP, LNCaP-CR, and PC3 cell extracts 

grown in full medium.  

 

 

 

 

 

E.MMP-9 Western blot of PC3, LNCaP, 

LNCaP-CR, and DU145 cell extracts 

grown in full medium.  

 

 

Figure 4.1: Antibody specificity Western blotting was performed to confirm the 

specificity of all antibodies used in this study. 
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Protein Antibody Antigen 

Retrieval 

Antibody 

concentration 

Incubation 

temperature 

and time 

NFκB 

NFκBp65 

Mouse Monoclonal 

IgG1 Ab F 

Santa Cruz 

Citrate 

Buffer 

8ug/ml Two hours at 

25ºC 

NFκB 

NFκB p serine 536 

Rabbit Polyclonal 

Abcam 

Citrate 

Buffer 

2ug/ml Overnight at 

4ºC 

NFκB 

NFκB p serine 276 

Rabbit Polyclonal 

Cell Signalling 

Citrate 

Buffer 

2ug/ml Overnight at 

4ºC 

IκBα 
IκBα  p serine 32/36 

Mouse Monoclonal 

Cell Signalling 

Citrate 

Buffer 

2ug/ml Overnight at 

4ºC 

MMP-9 

MMP-9 

Rabbit Polyclonal 

Millipore 

 

N/A 0.5ug/ml 

Thirty Minutes 

at 25ºC 

Table 4.2: Antibody Information. Details of the antibodies used to detect members of 

the NFκB cascade.Information regarding the source; antigen retrieval method, 

concentation and incubation are all recorded.  
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Figure 4.2: Immunohistochemistry 

Prostate tumours displaying immunohistochemical staining, magnification x400 

 

4.3.1Protein expression patterns 

 

NFқB p65, pNFқB p65 serine 
276

, pNFқB p65 serine 
536, 

MMP-9 and pIқBα serine 
32/36

  

protein expression was observed in the cell cytoplasm, pNFқB p65 serine 
276

, pNFқB p65 

serine 
536 

and pIқBα serine 
32/36

  expression was also observed in the nucleus. All IHC 

statistical analysis was carried out as previously described in (Chapter 2.9.1&2.9.2). 

Expression of all proteins investigated was non parametric, median values and inter 

quartile ranges for each protein at each location are provided in Table 3.2 for both 

hormone naive and castrate resistant tumours.   

 IκBα p ser 
32/36

      NFκBp65   NFκB p ser 
536

 

 

                NFκB p ser
 276

            MMP-9 
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HSPC 

(IQR) 

CRPC 

(IQR) 
P value ICCC 

Histoscore 

units 

NFқB p65, c 100 (140-180) 100 (150-180) P=0.755 0.86 40 

NFқB p65
276

,c 

NFқB p65
276

,n 

0 (0-41) 

7(50-80) 

0(0-30) 

50(70-92) 

P=0.010

P=0.544 

 

0.77 

 

64 

NFқB p65
536

,c 

NFқB p65
536

,n 

70(100-120) 

0(20-73) 

42(90-123) 

0(40-80) 

 

P=0.276 

P=0.159 

0.83 

0.85 

80 

55 

pIқBα
32/36

 , c 

pIқBα
32/36

 , n 

110 (116-196) 

 
133(160-186) 

P=0.392 

P=0.963 

0.80 

0.93 

80 

55 

MMP-9 80(120-170) 90(120-160) P=0.922 0.83 80 

Table 4.3: Protein expression pattern 

The median histoscore and interquartile range (IQR) for hormone naive tumours 

(HNPC) and castrate resistant tumours (CRPC) and the p value of these values 

compared using a Wilcoxon sign rank test.  ICCC= interclass correlation coefficient.  

The mean difference in observer scores plus 2 standard deviations is also shown as the 

number of histoscore units that is defined as a change in protein expression (change). c 

and n relates to protein cellular location, c= cytoplasm and n = nucleus. P before a 

protein indicates that the antibody detects phosphorylated protein and the number 

following the protein represents the site of phosphorylation. 

 

4.3.2 Protein expression in the Hormone Naïve cohort 

To determine if protein expression was linked to time to biochemical relapse, Kaplan-

Meier graphs were plotted for the hormone naïve tumours expressing low levels of 

protein (< median) versus high levels of protein (> median) and compared using the log 

rank test.  Only cytoplasmic p65 ser 
536

 was shown to have significant results. The 

patients whose tumours expressed low levels of p65 ser 
536

in the cytoplasm were shown 

to have relapsed significantly earlier than those patients whose tumours expressed high 
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levels of p65 ser 
536 

in the cytoplasm p= 0.024 (Figure 4.3), the median time to relapse for 

those with low expression was 2.3 (2.1-2.6) years compared to 3.5 years (1.6-5.4 years) 

for those with high p65 ser 
536  

expression indicating that cytoplasmic p65 ser 
536 

has a 

protective role in hormone naïve prostate cancer.. 

 

Figure 4.3 High cytoplasmic p65 ser 
536

 expression 

Kaplan Meier plot demonstrates that those patients whose tumours express high p65 ser 
536 

in the cytoplasm (black line) relapse later than those patients whose tumours exhibit 

low p65 ser 
536 

expression (broken line).  

When protein expression patterns were correlated with clinical parameters cytoplasmic 

NFқB p65 expression was significantly associated with PSA at relapse (p=0.02) (Figure 

4.4). The median p65 histoscore value for patients with PSA below 4(ng/ml) was 135 

(80-160) vs. 170(120-200) for patients with a PSA greater than 4 (ng/ml). In addition, 

MMP9 expression was significantly associated with the presence of metastasis at relapse 

(p=0.026), the median histoscore value for patients with no metastasis was 85 (72.5-115) 

vs. 125 (100-200) for those patients with metastasis at relapse (Figure 4.5). 
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Figure 4.4: p65 expression & PSA at relapse  
p65 expression is significantly associated with higher PSA at relapse (p=0.02). 

 

 

 

 

 

 

 

 

 

Figure 4.5: MMP-9 expression & metastases at relapse MMP-9 expression is 

significantly higher in patients with metastases at relapse (p=0.026) 
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To determine whether NFқB ser 
536

 phosphorylation was influenced by the Akt a 

correlation between phosphorylated Akt ser 
473

 and phosphorylated NFқB ser 
536 

was 

carried out. A negative correlation was observed between cytoplasmic Akt ser 473 and 

cytoplasmic p65 ser 536, r2=0.433 p=0.008 (Figure 4.6) 

Figure 4.6: Scatter Graph  

Scatter Graph comparing p65 ser536 cytoplasmic expression and cytoplasmic pAkt ser 

473 expression, P=0.008 

4.3.3 Protein expression in the Castrate resistant cohort 

  

To establish if protein expression was linked to time to death from biochemical relapse, 

Kaplan-Meier graphs were plotted for the castrate resistant tumours expressing low levels 
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of protein (< median) versus high levels of protein (> median) and compared using the 

log rank test.  

The patients whose tumours expressed low levels of nuclear p65ser 
536

 were shown  to 

have a significantly shorter time to death from relapse compared to those patients whose 

tumours expressed high levels of nuclear p65 ser 
536 

p= 0.028 (Figure 4.7). These patients 

had a shorter time to death from relapse, 1.1 years (0.2-2.1 years) compared to 3years 

(1.2-4.8). Patients expressing a high level of nuclear p IκBα ser 
32/36 

had a significantly 

shorter time to death from relapse p=0.029 (Figure 4.8). Here it was observed that the 

patients who expressed a higher level of nuclear p IκBα ser 
32/36 had

 a median time to 

death from relapse of
 
1.9 years (0.9-2.8)

  
compared to those patients who expressed 

 
levels 

below the median, 4.1 years (0.5-7.9). 

 Additionally high MMP-9 expression resulted in a significantly shorter time to death 

from relapse p=0.015, (Figure 4.9), these patients survived for 1.3 years (0.5-2.2) 

compared to 3.6 years (0.6-6.6).  
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Figure 4.7: Nuclear p65ser 
536

 expression  

Kaplan Meier plot demonstrates that those patients whose tumours express high p65 ser 
536 

in the nucleus (black line) have a longer time to death from relapse than those patients 

whose tumours exhibit low p65 ser 
536 

expression (broken line).  

 

 

 

 

 

 

 

 

Figure 4.8: Nuclear IκκκκBα α α α ser 
32/36 

expression  

Kaplan Meier plot demonstrates that those patients whose tumours express high p 

IкBαser 
32/36 

 in the nucleus (broken line) have a longer time to death from relapse than 

those patients whose tumours exhibit low p65 ser 
536 

expression (black line).  
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Figure 4.9: MMP-9 expression  

Kaplan Meier plot demonstrates that those patients whose tumours express high MMP-9 

(broken line) have a longer time to death from relapse than those patients whose tumours 

exhibit low MMP-9 expression (black line).  

 

Correlations between clinical parameters and protein expression revealed Gleason grade 

at relapse was significantly associated with nuclear p65 ser 
536

 and cytoplasmic p65 ser
276

 

expression p=0.001 and p=0.020 respectively and metastasis at relapse was significantly 

associated with nuclear p IκBα ser 
32/36 

 p=0.003 (Figure 4.10). The median histoscore 

value for patients with no metastasis was 130 (40-161) vs. 195 (171-213) for those 

patients with metastasis at relapse. 
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Figure 4.10: IқBαser 32/36 expression and metastases at relapse  

IқBαOser 
32/36

 expression is significantly higher in patients with metastases at relapse 

(p=0.003) 

 

4.3.4 Changes in protein expression 

 

As mentioned in the previous chapter the strength of this patient cohorts is the ability  to 

investigate if those patients whose tumours exhibit an increase or decrease in protein 

expression, in the transition from hormone naïve  to castrate resistant disease are  more 

likely to relapse or die quicker. Table 4.3 provides the cutoff histoscore selected to 

separate subgroups of patients and the associations observed between time to biochemical 

relapse and disease specific survival for each protein investigated are shown in table 4.5. 
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Protein Time to death from 

relapse 

Overall survival 

NFқ-B p65 P=0.044 P=0.081 

pNFқ-B p65ser 
276

, c P=0.983 P=0.901 

pNFқ-B p65
276,

n P=0.428 P=0.839 

pNFқ-B p65
536,

c P=0.259 P=0.009 

pNFқ-B p65
536

,n P=0.137 P=0.200 

pIқBα
32/36

 , c P=0.399 P=0.172 

pIқBα
32/36

 , n P=0.114 P=0.260 

MMP-9 P=0.129 P=0.022 

Table 4.4: Changes in protein expression and survival 

Kaplan meier survival analysis was performed to investigate if changes in protein 

expression were linked to time to death from biochemical relapse, and overall survival. 

 

Nuclear p65 ser 
536

 and nuclear p65 ser 
276 

significantly increased with the progression to 

castrate resistant disease P=0.021 and P=0.001 respectively. To determine if an increase 

in protein expression was linked to time to death from biochemical relapse, and overall 

survival Kaplan-Meier graphs were plotted for the castrate resistant tumours expressing 

increased levels of protein versus decreased/no change of protein and compared using the 

log rank test, (Table 4.). An increase in cytoplasmic p65 expression was significantly 

associated with time to death from relapse p=0.004 (Figure 4.11). Those patients who had 

an increase in p65 expression had a significantly shorter time to death from relapse, 1.9 

years (0.1-3.8) compared to those who displayed a decrease or no change 3.4 years (2.4-

4.3). 
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Figure 4.11 Increased p65 expression Kaplan Meier plot demonstrates that those 

patients whose tumours express an increase in P65 expression (black line) have shorter 

time to death from relapse  than those patients whose tumours exhibit decrease/no 

change in  expression (broken line). 

 

 

 

4.4 Cell line 

4.4.1 Activation of p65 

To establish the activation levels of p65 in the matched hormone naive and castrate 

resistant prostate cancer cell lines a TNF α time course treatment was carried out (Figure 

4.12). Phosphorylation of p65 at serine 536 was used as a measure of p65 activation and 

is seen to be rapidly achieved in the presence of TNF α. A higher phosphorylation level is 

evident the untreated LNCaP-CR suggesting p65 phosphorylation is a more common 

event in castrate resistant prostate cancer. By stimulating with TNF α both cell lines have 

undergone phosphorylation of the p65 subunit at serine 536 after 15 minutes, and both 

are observed to be markedly higher than in the untreated samples.  Consequently it was 
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fitting to examine the effect of p65 inhibitors on NFқB activation, downstream protein 

expression, cell proliferation and apoptosis.  

 

Figure 4.12 TNF stimulation of p65  

Western blot was performed on 50ug of extracts from LNCaP& LNCaP-CR cells treated 

or untreated(serum free medium) with 30ng TNFα and probed for p65 (ser 536) 

expression.Lane 1LNCaP, 2 LNCaP-CR (unstimulated), 3&4 LNCaP& LNCaP-CR 

unstimulated(vehicle,dh2o).Lanes5-12LNCaP& LNCaP-CR cell extracts stimulated for 

5,15,30 minutes, and 1 hour. Double bands in lanes 8 and 10 are due to the volume of 

protein required to amount to 50ug. The loading wells in the gels only hold 30ul and for 

these samples extra had to be added as the proteins began to run through the stacking 

gel. Tubulin confirms loading of samples. 

 

4.4.2 NFқB Inhibition 

It was observed that treatment of LNCaP cells with NFқB inhibitors 2607 and 2070 

resulted in a dose dependent decrease in constitutive expression of p65 ser 
536

 (Figure 

4.13a & 4.13 b) while total p65 levels remained unchanged.  To assess the downstream 

effect of p65 inhibition MMP-9 expression was examined. A reduction in MMP-9 

expression is also shown (Figures 4.13 a & 4.13 b), here it is observed that 2607 and to a 



154 

lesser extent 2070 both inhibit the down stream activity of p65. The above results 

indicate that both inhibitors attenuate constitutive phosphorylation of p65 at ser 
536

 which 

in turn inhibit its down stream actions. 

 

 

 

Figure 4.13(a) Effect of 2607 on p65 Inhibition  

Western blot was performed on 50ug of extracts from LNCaP cells and probed for p65, 

p65 (ser 536) and MMP-9 expression. Lane 1&2 LNCaP unstimulated & unstimulated 

(vehicle, ethanol).Lanes 3-8 LNCaP cell extracts incubated for 24 hours in 

0.1,1,3,10,30,100 uM of drug 2607respectively. Tubulin (50kd) was used as a loading 

control. 

 

p65 

Pp65 

MMP-9 

Tubulin 
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Figure 4.13 (b) Effect of 2070 on p65 Inhibition  

Western blot was performed on 50ug of extracts from LNCaP cells and probed for p65, 

p65 (ser 536) and MMP-9 expression. Lane 1&2 LNCaP unstimulated & unstimulated 

(vehicle, ethanol).Lanes 3-8 LNCaP cell extracts incubated for 24 hours in 

0.1,1,3,10,30,100 uM of drug 2070 respectively. Tubulin (50kd) was used as a loading 

control. 

 

To further examine the affect of NFқB inhibition both cell lines were incubated with 

1uM, 10 uM and 50 uM of inhibitors 2607 and 2070 and the proliferation measured at 24 

and 72 hours by WST assay. Both cell lines showed a dose dependent inhibition in 

proliferation after 72 hours, (Figures 4.14(a), 4.14(b) and 4.15). Additonally the effect of 

these inhibitors on apoptosis was also examined. It was observed that 2070 stimulated 

apoptosis during 24 hours in response to all concentrations tested and 2607 stimulated 

apoptosis during 24 hours in response to 50uM only (Figure 4.16 & 4.17).  

P65 

Pp65 

MMP-9 

Tubulin 
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Figure 4.14(a): Drug 2607 inhibits cellular proliferation 

 LNCaP cells were treated with 1, 10 &50 uM of drug 2607 and proliferation was 

significantly reduced at 72 hours 
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Figure 4.14(b): Drug 2070 inhibits cellular proliferation 

 LNCaP cells were treated with 1, 10 &50 uM of drug 2070 and proliferation was 

significantly reduced at 72 hours. 
 

 

 

 

 

 

 

 

Figure 4.15: Drug 2070 inhibits proliferation in LNCaP-CR cells  

LNCaP cells were treated with 1, 10 &50 uM of drug 2070 and proliferation was 

significantly reduced at 72 hours. 
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Figure 4.16: Drug 2070 stimulates apoptosis in LNCaP-CR cells  

LNCaP-CR cells were treated with 1, 10 &50 uM of drug 2070 and apoptosis was 

significantly induced at 24 hours. 

 

 

 

 

 

 

 

 

Figure 4.17: Drug 2607 stimulates apoptosis in LNCaP cells 

 LNCaP cells were treated with 1, 10 &50 uM of drug 2607 and apoptosis was 

significantly induced at 24 hours 
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4.5 Discussion 
 

The NFқB system is viewed as a hopeful anticancer target due to its role in oncogenesis 

and chemotherapy resistance in many tumour types. As the biological significance of 

constitutive NFқB activation in prostate cancer is unclear at present, this study was 

undertaken to provide further evidence on the expression and role of NFқB in prostate 

cancer progression and aimed to characterise the expression and subcellular location of 

p65 protein and explore the value of p65 in predicting patient outcome. Phosphorylated 

and total NFқB p65 protein expression and localisation were determined in prostate 

cancer tissue and cell lines.  

In this study it was observed that phosphorylation of p65 at serine residues 276 and 536 

was a common event in prostate cancer with all samples showing some degree of 

expression of both phosphorylation sites in the nucleus.  Both activation sites were found 

to significantly increase with the progression to castrate resistant disease however neither 

were associated with survival. In the hormone naïve tumours a high expression level 

(above the median) of cytoplasmic p65p
536 

resulted in a longer time to biochemical 

relapse than those patients who expressed low levels, (Figure 4.3). This result is not 

unforeseen as it is frequently stated in the literature that p65 subunit of NFқB is further 

activated in the nucleus where it then binds to and activates a wide number of genes. 

Surprisingly a high level of nuclear p65 
536

 in castrate resistant tumours was also shown 

to have protective role. Patients whose tumours expressed low levels of nuclear p65 
536

 

were observed to have a significantly shorter time to death from relapse (Figure 4.7). 

However when a change in p65 
536

 expression from hormone naïve to castrate resistant 

disease was examined it was observed that increased levels of cytoplasmic p65 ser
536
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resulted in a shorter overall survival (Table 4.4) however this result was only observed in 

four patients and data was therefore not shown, if the cohort were expanded this may 

have been evident in a larger population of the cohort. Thus these results indicate that the 

activation of p65 ser 
536

 is not playing a direct role in the development of castrate 

resistant prostate cancer however, in a sub group of patients increased levels p65 ser
536  

is 

seen to have a negative effect on patient survival. We hypothesis that another 

phosphorylation site of p65 is driving this observation or it could simply be that nuclear 

localisation is a more appropriate marker of NFkB and would serve as a more robust 

biomarker/prognostic marker.  The phosphorylation sites chosen in the current study had 

been extensively reported in the literature as being associated with p65 transactivation in 

many cancer types (224-226). 

A review of the literature, demonstrated that Akt can activate NFқB via serval stimuli 

and this in turn functions to prevent apoptosis. In particular, two studies have indicated 

that Akt, via TNFα signallingor in response to growth factor stimulation, stimulated 

NFқB nuclear translocation via the IKK complex (192;203). Another study indicated that 

Akt alone could not induce nuclear translocation of NFқB but synergized with PMA to 

induce this response (191). It has been shown that Akt signallinginvolves the stimulation 

of the transcription function of NFқB and that the ability of oncogenic Ras to activate 

NFқB transcriptional activity is dependent on Akt activity (227;228). Madrid et al have 

also observed that the ability of Akt to stimulate the transactivation potential of the p65 

subunit of NFқB actually requires IKK and p38 (229). In this study a negative correlation 

between activated Akt and p65 ser
536 

was observed which corroborates with others 

suggesting that Akt does not directly phosphorylate p65 at ser 
536

.  
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Studies showing that NFқB is active (i.e. nuclear) in a number of tumours are consistent 

with a role for NFқB in cancer, although some tumour cell lines exhibit NFқB activity 

without significant nuclear accumulation hence suggesting a cytoplasmic role  for p65 

other than a nuclear transcription factor. In this study it was observed that an increase in 

cytoplasmic p65 expression in the transition from hormone naïve to castrate resistant 

disease was significantly associated with a shorter time to death from relapse (Figure 

4.11) and cytoplasmic p65 expression also correlated with PSA at relapse (Figure 4.5). 

The PSA gene promoter has қB site (230). PSA is involved in prostate epithelial growth 

therefore suggesting that p65 is involved in prostate cancer progression.  When 

expression levels of   p65 inhibitor pIқBα
32/36

 were examined it was noted that high 

nuclear levels were significantly associated with a shorter time to death from relapse this 

result indicates that p65 is active in the cell. Moreover metastasis at relapse was 

significantly associated with nuclear p IκBα ser 
32/36 (

Figure 4.10), further suggesting a 

role for p65 in prostate cancer progression. As previously mentioned IκBα is 

phosphorylated at serines 32/36 in by IKKα/β in response to multiple stimuli and marked 

for degradation by the UPS, this is known to occur in the cytoplasm and leads to NFκB 

activation and nuclear translocation. Newly synthesized IκBα shuttles in and out the 

nucleus controlling NFκB activity however evidence now indicates that proteasomes 

occur in the
 
cytoplasm and the cell nucleus (231-233) (234;235). Additionally, IKKα has 

recently been reported to have a nuclear role (236). In prostate cancers infiltrating 

immune cells which express RANKL (Receptor activator of NFκB) have been shown to 

bind to its receptor, RANK which induces activation and nuclear translocation of IKKα. 
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IKKα then interacts with the Maspin gene promoter silencing its expression, in turn 

promoting prostate cancer metastases (237).  

NFκB has been shown to be constitutively activated in prostate cancer cells, and elevated 

NFκB activity is also sustained in androgen-responsive human prostate cancer cells by 

androgen treatment. Huang et al have demonstrated that suppression of NFκB activity in 

human prostate cancer cells by IκBα mutation transfection inhibits their metastatic 

properties in nude mice by suppressing angiogenesis and invasion providing direct 

involvement of NFκB in the regulation of angiogenesis and metastasis of prostate cancer 

cells (198).   

Numerous reports have demonstrated that in prostate cancer as well as other tumour types 

that the metastatic potential of tumour cells directly correlates with the expression level 

of several angiogenic genes, including vascular endothelial growth factor (VEGF), basic 

fibroblast growth factor (Bfgf), interleukin 8 (IL-8) and matrix metalloproteases MMP-2 

and MMP-9 (16). Expression of MMPs is associated with poor prognosis in a variety of 

cancers including prostate. An increase in MMP-2 and MMP-9 is associated with tumour 

progression but how the constitutive expression of these genes is regulated in prostate 

cancer is at present unclear. It is known however that NFκB binds the MMP-9 promoter 

(13). In this study MMP-9 expression was significantly associated with the presence of 

metastasis at relapse and was also significantly associated with shorter time to death from 

relapse (Figure 4.5 & Figure 4.9).  An increase in MMP-9 expression was also 

significantly associated with a shorter overall survival (Table 4.5), again this was only 

observed in a few patients and the data is not shown. This study provides evidence that 
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NFκB signallingis an important event in the progression of castrate resistant prostate 

cancer and metastasis in a subset of patients.  

In prostate cancer cells androgen depravation induces cell cycle arrest and apoptotic cell 

death. NFκB mediates cell cycle progression through direct binding of the Cyclin D1 

promoter at multiple sites and regulates progression through G1-S cell cycle check point 

(238). The expression of Cyclin D1 was investigated in another study done in our 

Laboratory using the current patient cohort. Therefore the association between NFκB 

pathway members and Cyclin D1 expression was calculated using the Spearman’s Rank 

Correlation Test. In the hormone naïve tumours a positive correlation between nuclear 

p65 ser 
276

 and nuclear Cyclin D1 was observed p=0.040 r
2
 =4.32. Moreover a positive 

correlation between nuclear pIқBα
32/36

 and Cyclin D1 expression p=0.020 r
2
 =.516 was 

observed in the castrate resistant cohort. NFκB has also been shown to inhibit apoptosis 

by directly binding the promoter and inducing genes encoding BCL-2 homologue BCL-

XL and survivin (239). Therefore inhibition of p65 is an important strategy to inhibit 

prostate cancer tumourgenesis. Due to the diverge ranges of upstream activators of 

NFκB, the effect of inhibiting NFκB activity directly was investigated.  In the current 

study it was demonstrated using two novel NFκB inhibitors that these drugs can 

significantly inhibit proliferation and stimulate apoptosis in both LNCaP and LNCaP CR 

cells.  These observations support the hypothesis that NFκB could offer a therapeutic 

target for treatment of castrate resistant prostate cancer. Additionally, the suggested 

biomarker for prediction of patient response for these novel therapies would be nuclear 

localization of p65 and not phosphorylation of the sites investigated in the current study.  
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In summary, it was hypothesised that NFκB expression could be increased via activation 

of the Akt cascade however no positive correlation was observed between activated Akt 

and activated NFκB. However these findings suggest that activation of the NFκB 

pathway is sufficient to maintain androgen independent growth of prostate cancer. 

Inhibition of NFκB activity leads to a decrease in cellular proliferation and induced 

apoptosis. Thus the NFκB pathway may be a potential target for therapy in a subset of 

patients with castrate resistant disease.  
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5. The relationship between Akt and the Androgen receptor 
 

5.1 Introduction 

The mechanisms driving the development of castrate resistance are not fully understood 

and there are several hypotheses. As discussed in chapter 1, the AR can be activated in a 

ligand dependent manner, via androgen or in a ligand independent manner via signal 

transduction cascades. During the progression of prostate cancer from hormone naïve to 

castrate resistant disease prostate cancer cells retain AR expression which suggests that 

AR plays a critical role in the development and progression of prostate cancer. Research 

suggest that activation of the PI3K/Akt cascade contributes to the development of castrate 

resistant disease through phosphorylating and activating the AR. Results from chapter 3 

suggested that low levels of PTEN, increased levels of PI3K, and activated Akt are 

associated with reduced time to relapse and patient survival. Inhibition of PI3K also 

resulted in decreased Akt activation and decreased cellular proliferation. As mentioned in 

chapter 1, Akt specifically binds to AR and phosphorylates serines 213 and 791, thereby 

activating AR. Blocking the Akt cascade by a dominant – negative Akt or an inhibitor of 

Akt inhibits HER2 induced AR signalling. Thus, these results suggest that Akt is an 

activator of AR signalling. The interaction between Akt and the AR is well documented 

however the consequence of AR phosphorylation by Akt on patient survival has not been 

investigated in clinical samples. 

This study investigates whether phosphorylation of AR by Akt influences clinical 

outcome and the progression to castrate resistant disease. Matched patients samples 

(hormone naïve and castrate resistant) were analysed for AR, AR phosphorylated at 

serine 213 (Akt consensus site) and AR phosphorylated at serine 81 expression (which 
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has previously been shown to be phosphorylated in response to androgens). In vitro 

models were employed to investigate the effect of PI3K inhibition on AR 

phosphorylation and PI3K expression was knocked down using small interfering RNA 

specific to the p85 regulatory subunit of PI3K, and the consequences of this on AR 

phosphorylation were investigated by Immunofluoresence. 

 

5.2 Patients 

 

Sixty two patients with matched hormone naïve and castrate resistant tumour pairs were 

retrospectively selected for analysis (124 tumours in total) Clinical data, recorded for 

each patient included age (median 70, inter quartile range 66-74), PSA at diagnosis 

(median 31 ng/ml, inter quartile range 7.8-109), PSA at relapse (median 13.4 ng/ml, 

inter quartile range 4.5-31) and Gleason grade at diagnosis (median 8, range 6-9).  All 

patients under went biochemical relapse (median time to relapse 2.49 years, inter 

quartile range 1.63-4.27 years) and median follow-up was 6.7 (2.8-8.4) years.  Patients 

in this cohort were diagnosed with locally advanced (39) or metastatic prostate cancer 

(23) and subsequently received surgery and androgen deprivation therapy (26 sub 

capsular bilateral orchidectomy, 43 GnRH analogue, 3 had both).  Forty four of the 62 

patients also received anti androgen therapy and this included all those who received 

GnRH analogues. Forty patients (64%) had metastases at relapse.  Fifty nine patients 

(95%) died during follow-up and median survival for these patients was 4.73 (3.75-

6.74).  Clinical parameters associated with time to biochemical relapse, time to death 

from biochemical relapse and disease specific survival are shown in table 5.1. 
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 Time to relapse Time to death 

from relapse 

Disease specific 

survival 

Age 

 

0.210 0.247 0.246 

Gleason 

 

0.031 0.002 0.001 

Metastasis at 

diagnosis 

 

0.007 0.016 <0.001 

PSA at diagnosis 

 

0.025 0.471 0.141 

Metastasis at 

relapse 

 

NA 0.001 0.006 

PSA at relapse NA 0.146 <0.001 

 

Table 5.1: Patient Characteristics 

An overview of the cohort’s characteristics where each clinical parameter, were 

appropriate has been correlated with time to relapse, time to death from relapse and 

disease specific survival (p-values).  

 

5.3 Immunohistochemistry 

Before IHC commenced antibody specificity was confirmed by western blotting (Figure 

5.1). Information on all antibodies employed are displayed in table 5.2 and examples of 

immunohistochemical staining for each are displayed in figure 5.2 . I am grateful to Dr 

Yin Rue Lim for carrying out the AR IHC. 
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A.Androgen receptor 

(110kDa). Western blot of 

LNCaP, LNCaP-CR and 

casodex resistant LNCaP cell 

extracts grown in full medium. 

 

B. Androgen receptor p serine 
81

(110kDa).  Western blot of LNCaP cell 

extracts grown in full medium untreated 

and  treated with 10nm DHT.  

 

 

 

 

 

 
 

 

 

C. Androgen receptor p serine 
213 (

110kDa). Western blot of LNCaP, LNCaP-

CR, and casodex resistant LNCaP cell extracts grown in full medium. 

 

Figure 5.1: Antibody specificity 

Western blotting was performed to confirm the specificity of all antibodies used in this 

study 
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Protein Antibody Antigen 

Retrieval 

Antibody 

concentration 

Incubation 

temperature 

and time 

AR 

AR 

Mouse Monoclonal 

IgG1 Ab 

Dako (A/S) 

TE Buffer 
1ug/ml Overnight at 

4ºC 

AR 

AR p serine 81 

Rabbit Polyclonal 

IgG1 Ab 

Upstate 

TE Buffer 
10ug/ml Overnight at 

4ºC 

AR 

AR  p serine 213 

Rabbit Polyclonal 

IgG1 Ab 

Imgenex 

TE Buffer 
50ug/ml One hour at 

25ºC 

 

Table 5.2: Antibody Information 

Details of the antibodies used to detect AR, pAR serine 81 and  pAR serine 

213.Information regarding the source; antigen retrieval method, concentation and 

incubation are all recorded.  
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Figure 5.2: Immunohistochemistry 

Prostate tumours displaying immunohistochemical staining magnification x400 

 

5.3.1 Protein expression patterns 

 

Protein expression of AR, pAR serine 
213 

and pAR serine 
81

 was observed in the cell 

cytoplasm and nucleus. Expression of all proteins investigated was non parametric, 

median values and inter quartile ranges for each protein at each cellular location are 

provided in table 5.3 for both hormone naïve and castrate resistant tumours. All IHC 

Androgen Receptor    Phosphorylated AR serine 81 

Phosphorylated AR serine 213 
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statistical analysis was carried out as previously described in Materials and methods 

(Chapter 2.9.1&2.9.2).  

Both cytoplasmic and nuclear AR expression increased significantly with the 

development of castrate resistant disease. Nuclear pAR ser 
213

 increased significantly with 

the development of castrate resistant disease and cytoplasmic pAR ser 
81

 significantly 

decreased with the development of castrate resistant disease (Table 5.3).  

 

 HNPC 

(IQR) 

CRPC 

(IQR) 

P value ICCC Histoscore 

units 

AR, c 

AR, n 

0 

65.0  

( 36.7-90.7) 

5 (0-30)  

120.0  

(78.8-147.5) 

P=<0.0001 

P=<0.0001 

 

0.89 

0.81 

50 

48 

AR p ser 
81 

c 

AR p ser 
81

n 

90(50-115) 

100(50-135) 

60(30-95) 

90(50-120) 

P=0.001 

P=0.816 

0.75 

0.77 

73 

108 

AR p ser 
213

n 35(0-85) 103(50-169) P=<0.0001 0.93 52 

Table 5.3. Protein expression patterns 

The median histoscore and interquartile range (IQR) for hormone naive tumours 

(HNPC) and castrate resistant tumours (CRPC) and the p value of these values 

compared using a Wilcoxon sign rank test.  ICCC= interclass correlation coefficient.  

The mean difference in observer scores plus 2 standard deviations is also shown as the 

number of histoscore units that is defined as a change in protein expression. c and n 

relates to protein cellular location, c= cytoplasm and n = nucleus. P before a protein 

indicates that the antibody detects phosphorylated protein and the number following the 

protein represents the site of phosphorylation. 
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5.3.2 Protein expression in the Hormone Naïve cohort 

 

As done in the previous chapters, protein expression levels were analysed for association 

with clinical outcome by dividing into high (above median values) and low expression 

(below median values) and Kaplan-Meier graphs were plotted to determine if protein 

expression was linked to patient outcome. None of the protein investigated were 

associated time to biochemical relapse or patient survival. 

5.3.3 Protein expression in Castrate resistant tumours 

 

When expression levels of each protein investigated in the castrate resistant tumours were 

divided into to high or low expression, nuclear AR expression was associated with a 

quicker time to death from relapse (Figure 5.3). Patients with high AR expression had a 

median survival from time from relapse of 1.34 yrs (0.80-1.88) compared to 3.0 years 

(1.68-4.32) for those with low AR expression (p=0.038 HR 1.98 (1.03-3.82)) however, 

this was not significant on Cox Regression multivariate analysis. High expression of pAR 

ser 
213

 was associated with quicker time to death from relapse (figure 5.4(a), p=0.003 HR 

2.85 (1.38-5.87)) and shorter disease specific survival (figure5.4 (b), p=0.0136, HR 2.33 

(1.16-4.66).  Median survival from time from relapse for those patients with tumours that 

expressed low levels of pAR ser 
213

 was 3.42 (2.82-4.02) years compared to 1.40 (0.85-

1.95) for those who had tumours that expressed high levels of pAR ser 
213

 . The median 

disease specific survival for those patients with tumours that expressed low levels of pAR 

ser 
213

 was 8.57 (5.41-11.73) years compared to 5.82 (3.18-8.46) for those who had 

tumours that expressed high levels of pAR ser 
213

.  This represents a survival difference of 

almost 3 years for patients expressing high levels of pAR ser 
213

 in their castrate resistant 

tumour. Additionally, correlations between clinical parameters and protein expression 
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revealed high expression of AR and pAR ser 
213

 was associated with presence of 

metastases at relapse figure 5.5 (p=0.018 and p=0.046, respectively). The phosphorylation  

of AR ser 
81

 was not associated with patient survival. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: Nuclear AR expression 

Kaplan Meier plot demonstrates that those patients whose castrate resistant tumour has 

high AR nuclear expression (bottom line) have shorter time to disease specific death from 

time of biochemical relapse than those patients whose castrate resistant tumour have low 

AR nuclear expression (top line)(p=0.038). 
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Figure 5.4(a): Nuclear pAR ser 
213 

expression 

Kaplan Meier plot demonstrates that those patients whose castrate resistant tumour has 

high pAR nuclear ser 
213 

 expression (broken line) have shorter time to disease specific 

death from time of biochemical relapse than those patients whose castrate resistant 

tumour have low pAR nuclear ser 
213 

 expression (solid line)(p=0.003). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4(b): Nuclear pAR ser 
213 

expression and disease specific survival 

Kaplan Meier plot demonstrates that those patients whose castrate resistant tumour has 

high pAR nuclear ser 
213 

 expression (broken line) have shorter time to disease specific 
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death than those patients whose castrate resistant tumour have low pAR nuclear ser 
213 

 

expression (solid line)(p=0.0136). 

 

 

 

 

 
 

 

 

Figure 5.5: AR & pAR ser 
213 

expression and metastasis at relapse 

Box plot demonstrating difference in expression of total AR expression (left), and pAR ser 

213 expression (right) between metastatic and non metastatic patients at relapse. 

 

5.3.4 Changes in Protein Expression  

 

As with the previous two chapters changes in protein expression levels in the transition 

from hormone naive to castrate resistant disease were used to investigate a link with 

clinical outcome.  In the current cohort, castrate resistant tumours express significantly 

higher levels of pAR ser 
213

 compared to hormone naïve tumours, approximately 42% of 

patients have an increase in pAR ser 
213

 expression, (Figure 5.6). An increase in pAR ser 

213
 expression (figure 5.7(a), p<0.0001, HR 4.18 (1.99-8.74)) was significantly associated 
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with quicker time to death from relapse, the median survival from biochemical relapse for 

those patients whose tumours had a decrease or no change in pAR ser 
213

 expression was 

3.46 (1.39-5.53) years compared to 1.25 (0.83-1.67) years for those patients whose 

tumours had an increase in pAR ser 
213

 expression.  Additionally an increase in pAR ser 

213
 (figure 5.7 (b) p=0.0015, HR 2.86 (1.45-5.67)) was associated with a shorter disease 

specific survival. The median survival from diagnosis for those patients whose tumours 

had a decrease or no change in pAR ser 
213 

expression was 6.95 (4.07-9.83) years 

compared to 4.36 (1.67-7.10) years for those patients whose tumours had an increase in 

pAR ser 
213 

expression. 

Figure 5.6: Change in pAR ser 213 expression 

Displays the number of patients who had an increase in pAR ser 
213

 protein expression. 

IHC staining of a patient who had an actual increase of 150 histoscore units in the 
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transition tcastrate resistant disease. Brown nuclear staining denotes pAR ser 

213
expression.  Magnification x400. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7(a): Increased pAR ser 213 and time to death from relapse 

Kaplan Meier plot demonstrates that those patients whose tumours exhibit a increase in 

pAR
213

 expression (broken line) have shorter time to disease specific death from time of 

biochemical relapse than those patients whose tumours exhibit no change or a fall in 

pAR
213

 expression (solid line). 
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Figure 5.7(b): Increased pAR ser 213 and disease specific death 

Kaplan Meier plot demonstrates that those patients whose tumours exhibit a increase in 

pAR
213

 expression (broken line) have shorter time to disease specific death than those 

patients whose tumours exhibit no change or a fall in pAR
213

 expression (solid line). 

 

 

 

5.3.5 Correlations between active members of the PI3K/Akt cascade 

 

Protein expression was also correlated with members of the PI3K cascade. In hormone 

naïve tumours expression levels of the phosphorylated proteins did not correlate, however 

in the castrate resistant tumours pAkt ser 
473

 correlated with pAR ser 
213

 (rs=0.711, 

p<0.001) and pmTOR2
448

 (rs.=0.489, p=0.003). 

5.3.6 Association between AR gene amplification and protein expression 

Data for AR gene amplification from the same cohort of patients was available for 

analysis to determine if AR amplification was associated with an increase in expression 

of AR. Those patients who exhibited AR amplification, (Figure 5.8) (AR: X ratio >1.5) in 
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castrate resistant tumours had a significantly shorter time to death from relapse compared 

to patients who had no AR amplification (p=0.0002) (102). 

 

Figure 5.8: AR gene amplification 

 Hormone sensitive tumour with normal AR:X chromosome ratio (left) and castrate 

resistant tumour with AR amplification; ratio of orange to green signal of > 1.5 

 

AR amplification was correlated with AR expression level, and a significant correlation 

was observed (p=0.033, correlation coefficient=0.25).  By dividing AR expression into 

tumours with or without AR amplification, tumours with amplification had significantly 

higher AR expression compared to those without amplification (p=0.005) (Figure 5.9(a)). 

Median AR expression for castrate resistant tumours without amplification is 125 (IQR 

73-156) histoscore units compared to 181 (IQR, 126-219) histoscore units for tumours 

with amplification. In addition, AR amplification significantly correlated with pAR ser 

213
 expression (p=0.007, CC=0.315). Castrate resistant tumours with gene amplification 

have significantly higher pAR ser
213

 expression levels (p=0.004). Median pAR
213

 

expression for castrate resistant tumours without amplification is 90 (IQR, 23-130) 
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histoscore units compared to 165 (IQR, 83-193) histoscore units, for tumours that do 

have amplification (Figure 5.9(b). Expression of pAR ser 
81

 did not correlate significantly 

with AR amplification p=0.705.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9(a): AR amplification and AR protein expression 

 Box plot demonstrating difference in expression of total AR expression between AR 

amplified and Non-amplified tumours. 
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Figure 5.9 (b): AR amplification and pAR ser 
213

 protein expression 

 Boxplot demonstrating differences in expression of pAR ser 
213

 between AR amplified 

and non-AR amplified tumours. 

 

 

 

5.4 Cell line 

5.4.1 The phosphorylation of AR  

Work carried out previously in our laboratory confirmed the LNCaP cell lines used in this 

study to be a good in-vitro model of hormone naïve and castrate resistant prostate cancers 

(2505). Hormone naïve LNCaP cells response to DHT was measured by phosphorylation 

of the AR at serine 
81

 (Figure 5.10). Here it was observed that DHT stimulates AR ser 
81

 

phosphorylation within five minutes while levels of AR remain constant.  
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Figure 5.10: DHT stimulation of LNCaP cells 

Western blot was performed on 50ug of extracts from LNCaP cells and probed for AR & 

pAR ser 81 (110kDa). Lane 1 unstimulated LNCaP. Lanes 2-6 treated with 10nM DHT 

for 5,15,30,60,180 minutes (respectively) Tubulin (50kd) was used as a loading control. 

 

5.4.2 Effect of PI3K inhibition on AR phosphorylation. 

 

As shown in chapter 3 the PI3K inhibitor LY294002 inhibits pAkt ser 
473 

in LNCaP
 
cells, 

(Figure 3.5). It was therefore deemed appropriate to determine whether this inhibition of 

Akt also results in down regulation of pAR at the Akt consensus site serine 213. The 

tissue results above indicate that phosphorylation of the AR at serine 213 is associated 

with the progression of castrate resistant disease it was therefore necessary to investigate 

the consequences of PI3K inhibition in LNCaP CR to mirror the tissue expression study. 

Therefore to determine whether PI3K/Akt cascade plays a role in the phosphorylation of 

AR serine 213 LNCaP CR cells were treated with LY294002 and with or without the 

stimulation with IGF-1 (chapter 2.1.6). Expression of pAR ser
213 

was determined by 

western blotting. Here it is observed that the expression of pAR ser
213 

is markedly 

reduced in the castrate resistant cell lines (Figure 5.11). This indicates that a kinase 
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activated by the PI3K cascade, likely Akt is involved in phosphorylation of AR at serine 

213. 

 

 

Figure 5.11: LY294002 inhibition of pAR ser 
213

 

 Western blot was performed on 50ug of extracts from LNCaP &LNCaP CR cells and 

probed for pAR ser
213

 (110kDa). Lane 1&2 unstimulated LNCaP &LNCaP CR , Lane 

3&4 LNCaP &LNCaP CR treated with LY294002 20uM for 30 minutes Lanes 5&6 

LNCaP &LNCaP CR with 10ng IGF-1 for 1 hour, lanes 7&8 LNCaP &LNCaP CR 

treated with LY294002 20uM for 30 minutes then with 10ng IGF-1 for 1 hour.  Bands at 

110kD respresent full length AR, 80kD represent AR V-7 and 60kD represent AR V-

3.Extra bands in lane 1 are shadow from the protein ladder. 

 

 

 

 

5.4.3 Effect of siRNA knockdown of PI3K on AR phosphorylation 

 

PI3K was silenced in LNCaP CR cells and to visualize the effects of this silencing on 

down stream targets of PI3K an Immunofluorescent (IF) study was designed.  As shown 

in Figure 5.12 successful knockdown of PI3K was achieved. PI3K expression is observed 

in the non silenced control cells and barely expressed in the PI3K siRNA cells. The 

expression of downstream targets of PI3K was also observed to be markedly lower. 

Phosphorylation of both Akt ser 
473 

and AR ser 
213

 are also reduced in the PI3K siRNA 
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cells compared with the controls. Additionally as expected, silencing PI3K has no 

apparent effect on AR or phosphorylated AR at ser 
81 

expression.  
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Figure 5.12: PI3Kp85 silencing in LNCaP cells 
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5.5 Discussion 

 

It has been well documented that in addition to protecting and stabilizing AR, 

phosphorylation of specific serine residues can influence a ligand-independent induction 

of transcription by the AR (92;240).
 
The AR exists as a phosphorylated protein in cells 

even in the absence of ligand-binding (94;241). Ligand-free AR is unstable and 

undergoes degradation. Upon binding of androgens, the AR undergoes additional 

phosphorylation predominantly at serine residues (94;242). Translating the in vitro 

evidence into the clinical scenario, this study established that phosphorylation at specific 

serine residues on the AR are involved in the development of castrate resistant disease. 

The current study investigated phosphorylation of the AR at serine residues 81 and 213 

with the aim of identifying if phosphorylation of AR is of clinical importance and to 

establish if phosphorylation at a specific site played a key role in castrate resistant 

disease.  The phosphorylation at serine 81 is located in the N-terminus between the 

polyglutamine stretch and AF-1(243). In response to androgen binding, Serine 81 is the 

most frequently phosphorylated site on the AR, giving the highest stoichometric 

phosphorylation yield in LNCaP cells treated with androgens (94).Phosphorylation of 

Serine 81 is associated with AR stability and transcriptional activity (95) and prostate 

cancer cell growth in cell line studies (96).Cell lines studies investigating mutagenesis at 

serine 81 signify that phosphorylation at this site alone does not drive AR transcriptional 

activity or stabilization, which suggests multiple sites may be involved.  

In the current study expression of pAR ser 
81 

significantly decreased with the progression 

to castrate resistant disease (Table 5.3).  These results indicate that AR phosphorylation 

at serine 81 decreases with the development of castrate resistant disease. This is in 
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agreement with reports in the literature stating that serine 81 occurs in response to 

androgen binding. As androgen levels are higher in hormone naïve prostate cancers, a 

decrease in pAR ser 
81 

expression would be expected in castrate resistant prostate cancer 

due to hormone depravation therapy which all patients in the cohort received. In LNCaP 

cells pAR ser 
81

 expression was induced by DHT stimulation (Figure 5.9) and was barely 

detectable without the addition of ligand. Interestingly, the expression of pAR ser 
81 

returns to barely detectable levels between 15 and 30 minutes whereas the expression of 

total AR remains unchanged. This result is similar to that published by Chen et al, 

however there are slight experimental difference with the conditions of Cell culturing and 

DHT exposure (244). Therefore the data gained from this study is in agreement with 

previous reports suggesting that multiple site of AR phosphorylation are involved in the 

transcriptional activity of the AR and thus the progression to castrate resistant disease. 

AR expression (above the median) was associated with a quicker time to death from 

relapse (Figure 5.3) and was also observed to be significantly higher in patients who 

acquired metastatic disease at relapse (Figure 5.5), this result suggests AR involvement in 

the progression of castrate resistant disease and metastases despite patients undergoing 

hormone depravation therapy which has been well documented in the literature. 

Interestingly phosphorylation of the AR at serine 213 was shown to be significantly 

associated with castrate resistant disease. A high protein expression (above the median) 

of pAR ser 
213

 in castrate resistant tumours was observed to be significantly associated 

with a shorter time to disease specific death from biochemical relapse and a shorter 

overall survival, (Figures 5.4 a&b), in addition expression of pAR ser 
213

 was also 

observed to be significantly higher in patients who acquired metastatic disease at relapse 
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(Figure 5.5). Furthermore, castrate resistant tumours express significantly higher levels of 

pAR ser 
213

 compared to hormone naïve tumours, (Table 5.3).   It was observed that 

approximately 42% of patients have an increase in pAR ser 
213

 expression and these 

patients have a significantly shorter survival period from time of relapse and a shorter 

disease specific death than those with no increase in expression (Figures 5.7 a & b).The 

expression levels of pAR ser 
213

 were correlated with members of the PI3K cascade and it 

was established that  pAR ser 
213

 and pAkt ser 
473

 expression levels correlated 

significantly in the castrate resistant tumours only, suggesting that it is only when 

androgen levels are low that this signallingcascade is activated. 

 Moreover, these results confirmed previous findings in the literature that AR 

amplification and protein over-expression may be involved in castrate resistant disease
. 

Using the AR gene amplification data from this cohort it was possible to determine 

whether AR amplification resulted in increased protein expression and it was observed 

that both AR and pAR ser 
213

 expression was significantly higher in castrate resistant 

patients with AR gene amplification, (Figure 5.9 a& b). These results confirmed previous 

findings in the literature that AR amplification and protein over-expression may be 

involved in CRPC development (101-103). However, AR amplification and/or increase in 

AR expression are too low to wholly explain castrate resistant disease development. 

This study was also investigated the hypothesis that targeted depletion of PI3K will 

inhibit AR activation in prostate cancer cells. The AR remains the most important nuclear 

receptor in prostate cancer therefore this study used two prostate cancer cell lines which 

represent prostate cancers cells in vivo which express the AR. The PI3K inhibitor 

LY294002 targets the p110 catalytic site of PI3K. The use of this inhibitor in LNCaP cell 



189 

lines has indicated a role for PI3K in the phosphorylation of AR at serine 213.Both 

LNCaP and LNCaP CR cells were observed to have a markedly reduced expression of 

pAR ser 
213

 when treated with LY294002 (Figure 5.11). Interestingly the castrate resistant 

LNCaP cells appear to be more sensitive. This may be due to the fact that in hormone 

naïve cells phosphorylation of serine 213 occurs in the presence of androgens suggesting 

that ligand binding induces a conformational change in the N-terminus that reveals the 

serine 213 site to cellular kinases (245) whereas in castrate resistant cell lines AR 

phosphorylation at serine 213 is ligand independent.   However as the PI3K catalytic 

subunit is highly conserved amoung the PI3K family members LY294002 does not 

discriminate amoung the various isoforms of PI3K and therefore affects many cellular 

processes (246). Therefore an alternative and more selective approach is to block the 

phosphotyrosine binding of the p85 SH2 domains thus averting the recruitment and 

activation of class 1a PI3K by growth factor tyrosine kinases (247). As shown in Figure 

5.12 siRNA silencing of PI3K results in reduced expression of PI3K, pAkt ser 
473 

and also 

pAR ser 
213

  without altering AR or pAR ser 
81

 expression levels. The results show that it 

is possible to inhibit the phosphorylation of AR through targeted silencing of the p85 

subunit of PI3K in prostate cancer cells and may therefore be therapeutic approach to the 

treatment of prostate cancer patients who display higher levels of p AR at serine 213.  The 

functional consequences of siRNA silencing of PI3K remains to be investigated however 

it is expected that depletion of PI3K should result in a significant decrease in cell 

proliferation and induction of apoptosis as this cascade serves to inhibit many tumour 

suppressor like proteins that negatively regulate cell survival, proliferation and growth. 

Thus blocking this pathway could therefore inhibit the proliferation of tumour cells, (as 
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discussed in chapter 3.2.1) and sensitize them to apoptosis.  A similar study in breast 

cancer cell lines, reported that targeted depletion of PI3K resulted in a significant 

decrease in cell viability and induction of apoptosis irrespective of their ER or HER 2 

status and resulted in a significant G1 phase cell cycle arrest in ER positive breast cancer 

cell lines (247). 

These results provide additional evidence that the PI3K/Akt cascade is up-regulated 

during development of castrate resistant disease, resulting in phosphorylation of the AR 

and sensitisation to circulating adrenal androgens.  Cell line studies demonstrate that this 

occurs in vitro, however the current data demonstrates for the first time that this may be 

one possible mechanism allowing development of castrate resistant disease in the clinical 

setting and targeting PI3K cascade is a possible means of therapeutic intervention. 

 



191 

6. General Discussion 

 
One of the many challenges in the effective management of prostate cancer is the 

identification of molecular markers capable of predicting disease progression. Castrate 

resistant disease represents the lethal phenotype of prostate cancer. The main aim of this 

study was to investigate the role of the PI3K/Akt cascade in the development and 

progression of prostate cancer and to determine if it influenced patient outcome.  Key 

functions of the PI3K/Akt cascade are mediating cell survival, as well as cell cycle 

progression and neoplastic transformation (159). The outcome of this study suggested 

that the PI3K/Akt cascade is in part accountable for mediating patient outcome.  

Aberrant signallingof the PI3K/Akt cascade can occur through a variety of processes 

including gain of function oncogenic mutations of PI3KCA, which has been reported in 

Breast, Ovarian and Colorectal cancer (187), amplification or mutation of Akt isoforms 

and loss of function PTEN, (248;249). Loss of function of PTEN can occur through gene 

deletion, mutation, microRNA expression or epigenetic silencing (182;183;249;250). 

Patients in the current study were analysed for modifications of PIK3CA, PTEN, AKT1-3 

and mTOR at the genetic level using FISH. As outlined in chapter 3, very few gene 

amplifications were detected for PI3K and AKT1 to warrant analysis and no gene 

amplifications were detected for mTOR, AKT2 and AKT 3. However, PTEN deletions 

were detected in 23% of hormone naive tumours, which increased significantly to 52% in 

castrate resistant tumours (p=0.044).  Loss of one copy of PTEN was commonly 

observed, and this was heterogeneous in nature, being frequently observed in only one 

area of tumour. Immunohistochemistry indicated that low levels of both cytoplasmic and 
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nuclear PTEN protein expression in hormone naïve tumours have a significantly quicker 

time to relapse and this also translates into shorter overall survival. Negative regulation of 

the PI3K pathway is primarily accomplished through the action of PTEN. This 

mechanism may therefore provide prostate cancer with the ability to evade apoptosis 

induced by hormone depravation therapy and hence the progression to castrate resistant 

disease. Loss of PTEN function in prostate cancer is quite common and results in an 

abundance of lipid second messengers (PtdIns (3, 4, 5) P3), which can cause constitutive 

activation of PH domain containing proteins including Akt. This is a likely reason why 

Akt is found to be highly activated in advanced prostate cancers. In the current study low 

levels of PTEN were associated with high levels of activated Akt. However, additional 

factors such as PI3K overexpression may also contribute to Akt activation and disease 

progression.  

Consequently, it would stand to reason that loss of PTEN would initiate heightened 

activation of this cascade, which could then enable the cell to adopt a number of cancer 

like properties. A recent study by Zhu et al reported that gene expression analysis of 

clinical specimens showed that both PI3Kp85α and PI3Kp110β were highly expressed in 

malignant prostate tissues compared to the nonmalignant compartments, and their 

expression levels correlated significantly with disease progression (251). However, in this 

study expression of PI3Kp110 α was investigated and it was observed that in a sub cohort 

of patients increased levels of PI3Kp110α, pAkt thr 
308 

and
 
pAkt ser 

473
 expression were 

observed to be significantly associated with shorter time to biochemical relapse and 

shorter disease specific survival moreover, the increase in pAkt ser 
473

 expression predicts 

disease specific survival independent of Gleason grade and presence of metastases. Taken 
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together these results suggest that the PI3K cascade is functionally active in castrate 

resistant disease.  

The most widely used in vitro model of prostate cancer is the
 
LNCaP cell line (252) 

LNCaP contains a frameshift mutation
 
in the PTEN gene (253). Consistent with LNCaP 

having defective PTEN,
 
this study observed that Akt is constitutively phosphorylated

 
in 

LNCaP cells after 24 hours of culture in serum-free media and treatment of LNCaP with 

PI3K inhibitor LY294002 diminishes the phosphorylation
 
of Akt and also results in 

inhibition of proliferation. Abrogation of PI3K/Akt activity by PI3K inhibitors has also 

been shown to stimulate apoptosis in LNCaP cells (254;255). These findings are in 

agreement with the concept that it is the constitutive
 
activation of the PI3K/Akt pathway 

that renders these
 
cells capable of surviving without exogenous growth and survival

 

factors.  

Akt is able to target a number of proteins known to affect cell survival including caspase-

9, BAD, and glycogen-synthase kinase-3β (GSK-3β) (256-258). Phosphorylation of these 

proteins by Akt may result in either their activation or inactivation but the end result is to 

promote survival of the cell. Once activated, Akt is able to translocate to the nucleus 

where it affects the activity of a number of transcriptional regulators (259). Cyclic-AMP 

response element binding protein (CREB), E2F, NFκB, Forkhead transcription factors 

(FOXO) and the AR are all either direct or indirect substrates of Akt and each can 

promote either cellular proliferation or survival (98;191;260-262). Aberrant Akt 

activation is able to elicit the pro-survival properties observed in prostate cancer cells 



194 

through a number of mechanisms, hence inhibiting Akt or restoring PTEN activities are 

potential therapeutic targets in prostate cancer.  

This study is unique as it examines multiple components of the PI3K/Akt cascade, and 

also because it investigates PI3K/Akt interaction with down stream signallingcascades 

and links these with progression to castrate resistant prostate cancer. Given that NFκB 

signalling has been reported to play an important role in castrate resistant disease this 

study investigated if Akt signalling in prostate cancer involves the NFκB cascade. There 

is accumulating evidence associating NFκB in prostate cancer progression and metastasis 

(263). The NFκB pathway has been implicated as a downstream target of PI3K 

signalling(227). Akt is believed not to directly phosphorylate NFκB, but to activate it 

indirectly through IKKα phosphorylation. Although this study did not observe any 

correlations between Akt and NFκB it provided further evidence that   NFκB 

signallingplays a role in progression of castrate resistant disease and metastases. As 

discussed in chapter 4, increased levels of NFκBp65, pIкβα ser 
32/36  

and MMP-9 were 

significantly associated with disease progression and patient survival. MMP-9 and pIкβα 

ser 
32/36 

expression were also significantly associated with metastases. NFκB is an 

important regulator of cell proliferation through its direct role in cell cycle progression 

(238)  Studies have shown prognostic significance of Cyclin D1 in prostate cancer and in 

the development of castrate resistant disease (264;265). Interestingly this study has 

shown a positive correlation between Cyclin D1 and NFκBp65 expression in hormone 

naïve prostate cancer and also a positive correlation between cyclin D1 and pIкβα ser 
32/36  

in castrate resistant disease suggesting NFκB signallingto be involved in cell cycle 

progression in prostate cancer. A significant reduction in cellular proliferation and 
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stimulation of apoptosis was observed in both hormone naïve and castrate resistant 

LNCaP cells using two novel NFκB inhibitors. Interestingly, reports in the literature 

suggest that NFκB can directly interact with the AR. Like Akt and AR the relationship 

between NFκB and AR remains controversial. However it is reported that there are NFκB 

binding sites on the AR promoter (2309). Elevated expression of NFκBp65 has been 

shown to repress AR mediated transactivation in a dose dependent manner (266). Yet, it 

has been reported by Lee et al that IL-4 induced NFκB is required for AR transactivation 

(267). The transcriptional activation of genes associated with cell proliferation, 

angiogenesis, metastasis and suppression of apoptosis appears to lie at the heart of the 

ability of NFκB to promote prostate cancer and castrate resistant disease progression. 

Supporting these findings this study, performed in vivo and in vitro investigations, which 

implicate NFκB inhibition as an important approach for the treatment of castrate resistant 

prostate cancer. A study using the anticarcinogen 3,3′-Diindolylmethane (DIM) which 

induces
 
cell cycle arrest and apoptosis, through unknown mechanisms has reported that 

B-DIM (a formulated derivative with greater bioavailibility) significantly inhibited Akt 

activation, NFκB DNA binding activity, AR phosphorylation and the expression of both 

AR and PSA suggesting cross talk between Akt, AR and NFκB. Induction of apoptosis 

was also observed in both hormone naïve and castrate resistant prostate cancer cells 

(268).  Interestingly, five cancer treatment trials of DIM have been registered in the USA. 

Four of these trials have been completed or are not currently recruiting and formal results 

are awaited. The fifth trial in prostate cancer is ongoing and recruiting subjects. This trial 

is stated “To measure the level of diindolylmethane in prostate tissue after treatment with 
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diindolylmethane (DIM) in patients with stage I or II adenocarcinoma of the prostate 

undergoing radical prostatectomy” (269).  

Evidence strongly suggests that interactions of PI3K/Akt and AR signallingpathways 

provide prostatic epithelium with the necessary signallingevents to escape the apoptotic 

response associated with androgen withdrawal. Lin et al have previously shown that in 

low passage number LNCaP cells the PI3K/Akt signallingcascade suppresses AR activity 

and induces AR ubiquitylation and degradation by the 26S proteasome when PTEN is 

active (270).  Additionally they observed that PTEN also suppresses AR activity in low 

passage LNCaP cells independently of PI3K/Akt signalling. PTEN was observed to 

directly interact with AR and induce caspase-3 activation. It is hypothesized that the 

interaction between PTEN and AR may lead to AR to expose the active site for caspase-3 

recognition, resulting in AR degradation (271). However, in high passage number LNCaP 

cells PI3K/Akt signallingwas reported to enhance AR activity via an unknown 

mechanism and PTEN was shown to suppress AR activity via PI3K/Akt signalling. The 

relationship between PI3K/Akt cascade and AR has been well documented as discussed 

in chapter 5. In the current study increased levels of AR and phosphorylated AR at the 

Akt consensus site serine 213 was significantly higher in castrate resistant disease, with 

42% of patients showing an increase in AR ser 
213

 expression. This also leads to a shorter 

time to relapse and a shorter disease specific survival time in castrate resistant prostate 

cancer tumours.  In addition, AR ser 
213

 expression was further increased in patients who 

acquired AR amplification in the transition to castrate resistant disease.  Also patients 

who presented with metastases at relapse had significantly higher AR and AR ser 
213

 

expression. This data is in keeping with PI3K signallinginducing continued AR gain of 
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function despite reduced androgen levels (272). In vitro studies were also carried out to 

investigate the effect of PI3K inhibition and knockdown on AR phosphorylation. There 

were several key findings from these studies. The first confirmed that AR 

phosphorylation by Akt could be reduced in LNCaP CR cells  by treating cells with the 

PI3K inhibitor LY294002
 
and that inhibition of PI3K activity was sufficient to reduce 

phosphorylation of AR in LNCaP CR cells stimulated with IGF-I. PI3Kp85 knockdown 

resulted in reduced levels of p85, pAkt ser 
473 

and pAR ser 
213

 expression while levels of 

AR and pAR ser 
81

 remained unchanged in LNCaP CR cells,
 
supporting the evaluation of 

PI3K inhibitors in prostate cancer treatment. Reports suggest an important role for 

PI3Kp110β in prostate cancer. Both PI3Kp85α and PI3Kp110β appear to be essential for 

androgen induced AR transactivation because they are required for cell proliferation and 

tumour growth (2569). It has been demonstrated that PI3K inhibitors are unable to block 

AR nuclear translocation but can suppress AR-mediated gene expression indicating that a 

PI3K dependent mechanism is involved in AR–DNA binding, or the assembly of AR-

mediated transcription complex (273). Zhu et al reported that that PI3K inhibitor 

abolished androgen-induced AR–DNA binding and knocking down p110β expression 

also resulted in loss of AR–DNA binding (251). Conditional knock out mice studies have 

evaluated the impact of deletion of p110β in the presence of PTEN loss in Prostatic 

epithelium. Here it was reported that the epithelium had normal appearance in the 

absence of p110β only. However, in the absence of PTEN alone high grade PIN was 

detected in the anterior lobe by 12 weeks therefore it seems ablation of p110β prevented 

tumourigenesis caused by PTEN loss (2571). PTEN loss led to increased Akt 

phosphorylation in the prostate and ablation of p110β diminished Akt phosphorylation. 
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These changes were shown to be p110β specific as p110α knockout did not abrogate 

tumour formation of Akt phosphorylation (274).  

The PI3K/Akt and NFκB signallingcascades has been considered promising targets for 

anticancer therapies. The research presented here further highlights the importance of 

these proteins as possible therapeutic targets. Potent and isoform selective PI3K 

inhibitors are now entering clinical trials (157). PI 103 inhibits the PI3K cascade at 

multiple sites including all class 1A isoforms as well as mTOR C1 and mTOR C2. This 

dual PI3K/mTOR inhibitor has been shown to have significant anti tumour activity in 

xenografts tumour models (275). Phase 1 studies of the oral PI3K pathway inhibitors 

XL147 (Exelixis), BEZ235 (Novartis) and GDC-0941 (Genetech) are currently in 

progress (276;277). Formal published results of the clinical trial are awaited. Furthermore 

there are several classes of Akt inhibitors currently in development. These include 

isoform selective Akt catalytic-domain inhibitors and inhibitors of the PH domain. 

Alkylphospholipid, perifosine an inhibitor of the PH domain has undergone phase II 

clinical trials in patients with castrate resistant disease however it has shown no evidence 

of significant activity (181). Targeting both Akt-1 and Akt-2 has been reported to be 

superior to the inhibition of a single isozyme for induction of caspase- 3 activity in 

tumour cells. This suggests that pan-Akt inhibitors such as the ATP-competitive inhibitor 

GSK690639 (GlaxoSmithKline) are likely to be more effective although toxicity may be 

a potential issue (278). A number of other small molecule Akt inhibitors are in early 

clinical trials including MK2206 (Merck, Inc) (279) and formal published results are 

awaited. Additionally mTOR inhibitors have also been developed. mTOR is the target of 

the antibiotic Rapamycin, an immunosuppressive macrolide which  inhibits metastatic 
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prostate tumor growth and angiogenesis in in vivo mouse models (280). At present there 

are several  rampamycin analogues in development including: Temsirolimus (CCI-779), 

Everolimus ( RAD001) and Deforolimus (AP23573) however prelimary results for 

studies using these analogues as single agents in the treatment of  castrate resistant 

disease have been disappointing (281).  A phase II trial using CC1-779 has recently 

finished however no results are available at present (282). 

It is evident that multiple signal transduction cascades are critical to prostate cancer 

progression and resistance to therapy. The data accumulated in this study provides the 

clinical evidence to support the hypothesis that the PI3K/Akt and NFқB cascades are 

functional in castrate resistant disease. Both play a role in promoting disease 

development and progression as their expression significantly impacts on time to 

biochemical relapse and overall survival in a sub cohort of patients where in vitro studies 

showed that targeting both cascades can result in reduction of cellular proliferation and 

induction of apoptosis. Increasing our understanding of the biology of this disease has 

lead to the hope that novel inhibitors of these cascades will result in therapeutic benefit. 
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