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Preface

This thesis is an account of research carried out between October 2006 and

September 2010, developing precision interferometry techniques intended for

use in spaceborne gravitational wave detectors, and has been composed entirely

by the author.

As with many projects in modern physics research, the work described in

this thesis is part of a large international collaboration. In Glasgow, this

collaboration consists of H. Ward, D. I. Robertson, C. J. Killow, M. Perreur-

Lloyd, J. Hough, S. Rowan and the author. J. Bogenstahl was involved for

the work relating to LISA Pathfinder, and A. Taylor was involved in the more

recent LISA work.

Chapter 1 introduces the concept of gravitational radiation and discusses

various postulated sources of gravitational waves, as well as giving an overview

of gravitational wave detectors. This work is derived from published literature.

Chapter 2 introduces LISA, a planned space based gravitational wave de-

tector, and its precursor technology demonstrator mission LISA Pathfinder.

The operation of LISA Pathfinder is described in detail, with emphasis on the

design and required performance of the interferometer. This work is derived

from published literature.
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members. The calibration procedure was developed by D. I. Robertson and the

author. The investigations into the CQP calibration issues were carried out

by the author, with assistance from D. I. Robertson, H. Ward and J. Hough.

The diffraction sensor was developed and constructed by the author, and the

comparison between the diffraction sensor and the CQP led by the author with

assistance from D. I. Robertson.

Chapter 4 describes methods for precision placement of optics to form a rigid

ultra-stable interferometer. The precision actuator adjustment and template

bonding methods were originally developed during prior experiments carried

out at Glasgow. The template optimisation method was developed by the

author with assistance from D. I. Robertson. Methods of integrating the pre-

cision alignment method with the CQP, especially alignment of the CQP to a

nominal beam, were developed by the author with input from D. I. Robertson.

Chapter 5 describes the construction and testing of the flight model inter-

ferometer for LISA Pathfinder. The FIOS was developed by the entire LISA

team in Glasgow. The flight model FIOS were constructed by C. J. Killow.

The optical components were catalysis bonded to the OBI by C. J. Killow and

the author. CMM programs for alignment of the CQP, control over dummy

test mass mirrors and beam measurement were written and executed by the

author and D. I. Robertson. The as-built Optocad model was developed by

the author. Modelling and simulations for positioning of dummy test mass

mirrors and components to facilitate path length matching were carried out

by the author. The photodiodes were manufactured by the University of Birm-

ingham and integrated onto the OBI by G. Dixon, D. Smith, J. Bryant, D. I.
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Robertson and the author. Testing of the OBI was carried out by the author,

C. J. Killow, D. I. Robertson and H. Ward.

Chapter 6 describes the DWS calibration of the flight model OBI. The calibra-

tion procedure was developed and performed by the author and D. I. Robert-

son. The read-out electronics and phasemeter were designed by H. Ward.

Chapter 7 discusses LISA in more detail, and describes the measurement

principle with emphasis on the interferometer; this section is derived from

published literature. The derivation of top level requirements from the LISA

mission formulation study to the interface requirements on the optical bench

was carried out by D. Weise. The concept for the LISA redundant fibre injector

system was developed by the entire LISA team in Glasgow.

The analysis of the interface requirements in terms of OB alignment and man-

ufacturability was carried out by the author. The optical design and optical

model of the prototype LISA OB was developed by the author. The alignment

plan and consideration of alignment tolerances was derived by the author.

Chapter 8 presents an outlook for future research based on the work pre-

sented.
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Summary

Gravitational waves are an important prediction of Einstein’s General theory

of Relativity. Derived as a solution to the Einstein field equations, they are

predicted to be produced in systems where there is an asymmetric acceleration

of matter, and exist as a time varying quadrupolar distortion in spacetime.

Due to the rich variety of scientifically interesting astrophysical sources pre-

dicted to be producing gravitational radiation, there is significant international

effort directed towards their detection. A large network of ground based in-

terferometric detectors is in operation, with upgrades to increase sensitivity

already in progress. They operate on the principle of measuring the time vary-

ing displacement in the interferometer path length an incident gravitational

wave will induce. However, the predicted amplitude of gravitational waves re-

quires the measurement to be made over several kilometres with a displacement

sensitivity of less than 10−18 m/
√

Hz.

Ground based detectors operate in the ∼ 10 − 10000 Hz region, and are fun-

damentally limited at the low frequency end by the noisy gravitational envi-

ronment of the Earth. To enable detection of low frequency sources, LISA

- the Laser Interferometer Space Antenna - is a planned mission to place an

interferometric gravitational wave detector in space, sensitive to gravitational

waves in the 0.1− 1000 mHz region. Consisting of a triangular constellation of

xxi



three spacecraft, LISA will aim to detect gravitational waves by monitoring the

fluctuation in the separation between free-falling test masses over a baseline of

5 million kilometres with an accuracy of around 10 pm/
√

Hz.

To demonstrate that LISA technology, such as the ability to place test masses

into a suitably quiet gravitational free-fall, is viable, a precursor mission - LISA

Pathfinder - will launch in the next few years. LISA Pathfinder will monitor

the relative displacement between two free-falling inertial test masses using an

interferometer, with the goal of verifying that the required quality of free-fall

is achievable in LISA. This work presented in this thesis relates to the develop-

ment of interferometry for LISA Pathfinder and LISA, the construction of the

LISA Pathfinder flight model interferometer, and initial work on developing

the interferometer for LISA.

The interferometers required for LISA and LISA Pathfinder must be con-

structed to be durable enough to survive launch and stable enough to measure

displacements of a few picometres at frequencies down to a few mHz. Further,

to help minimise noise from sources such as residual jitter of the test masses,

the beams which probe the test masses must be aligned to within ± 25µm

of the nominal reflection point. Using ultra low expansion substrates like

Zerodurr, and attaching optical components with hydroxide catalysis bond-

ing offers one solution which can provide the durability and stability required.

To achieve the accuracy of beam positioning, a system which allows measure-

ment of absolute propagation direction of a laser beam was developed. Com-

bined with a coordinate measuring machine, this allows the absolute position

of a mm-scale laser beam to be measured with an accuracy of around ± 5µm

and ± 20µrad. This system can operate in two modes: first as a measurement

system allowing measurement of an existing beam; and secondly as a target,

where it can be positioned to a desired theoretical (such as the nominal re-

xxii



flection point of a test mass) and a beam can be aligned onto it. Combined

with a method of precision adjusting optical components at the sub-micron

and microradian level prior to hydroxide catalysis bonding, it enables absolute

alignment of ultra-stable interferometers to micron level.

Using these techniques, the flight model interferometer for LISA Pathfinder

was successfully constructed to meet the alignment and performance require-

ments. The control system that will maintain the test masses in near free-fall

requires a very accurate measure of the attitude of the test masses. This mea-

surement will be provided by the interferometer using differential wavefront

sensing (DWS). The flight model interferometer was calibrated to establish

the coupling factors between the DWS read-out and the attitude of the test

mass to ensure maximum performance of the control system.

Building upon the experience gained in developing and building the LISA

Pathfinder interferometer, a prototype of the LISA optical bench is in devel-

opment. The LISA interferometer is significantly more complicated than that

of LISA Pathfinder. Some of its features include: imaging systems to minimise

coupling of beam tilt to displacement noise; a precision beam expander to gen-

erate a beam appropriate for the telescope; a redundant fibre injector system,

creating two beams collinear to within a few microns and 10 − 20µrad; and

polarisation optics for beam steering. The development and current state of

the design for the prototype optical bench is presented, along with an overview

of its features.

xxiii



Chapter 1

Introduction

1.1 Predicting the existence of gravitational

waves

In 1915, Albert Einstein published his General theory of Relativity, a new the-

ory of gravitation which explained it as a result of the curvature of spacetime.

This relationship between gravity and curvature is derived mathematically

through the Einstein field equations [1]. If we consider a spacetime in which

there is a weak gravitational field, then the relationship between gravitation

and curvature means that this spacetime must be nearly flat (i.e. almost de-

scribed by the Minkowski metric of Special Relativity). If we represent this

deviation from a flat spacetime by the metric perturbation hµν , then working

from the Einstein field equations it is possible to derive a solution [2] which

will take the form

1
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(
∇2 − 1

c2
∂2

∂t2

)
hµν = 0 (1.1)

This is an important result. Equation 1.1 is a second order linear partial dif-

ferential equation and has the same mathematical form as a wave equation. It

shows that in General Relativity, solutions are possible which predict the exis-

tence of waves propagating through spacetime at the speed of light - these are

gravitational waves and they are an important prediction of General Relativity.

The form of hµν can tell us about the exact physical nature of gravitational

waves. The simplest solution to this wave equation that does not have zero

luminosity is quadrupolar in nature, this leads to the prediction that gravita-

tional waves will be quadrupolar plane waves with two polarisation states, h+

and h× which are 45◦ apart [2].

The real-world effect of a gravitational wave is to distort the local spacetime

as it passes. This is best illustrated by considering a circular ring of particles,

as illustrated in Figure 1.1. This shows how such a ring of particles will

be effected as a gravitational wave passes, being stretched and squashed in

orthogonal directions, for both polarisations.

The quadrupolar nature of gravitational waves also tells us something about

their production. General Relativity shows that any acceleration of mass will

produce a metric perturbation like hµν , which will then go on to propagate

as a gravitational wave. However, there is no quadrupolar contribution from

spherically (or cylindrically) symmetric mass distributions (such as the rota-

tion of a perfect sphere or disk), therefore we can say that only asymmetric

accelerations of matter will produce a gravitational wave.

The Einstein field equations can also tell us about the strength of gravitational
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Time

h+

hx

P0 P/2

Figure 1.1: Diagram showing the time varying effect of a gravitational wave,

of period P , incident on a ring of particles. The direction of propagation of

the wave is normal to the plane of the page.

radiation by considering the medium in which they propagate. One of the

important results of General Relativity was the realisation that the curvature

of spacetime and the mass-energy content of spacetime are linked [2]. This is

described mathematically in General Relativity by the equation

T =
c4

8πG
G, (1.2)

where T is the stress energy tensor, describing the mass-energy content of

spacetime and G is the Einstein curvature tensor which describes the curva-

ture of spacetime. What is interesting is that this equation can be regarded as

analogous to Hookes law: F = kx. In this case, the constant relating T and G

would be the ‘spring constant’ of spacetime. However, c4/8πG is ∼ 5× 1042,

which indicates that spacetime is a very stiff medium. This tells us two im-

portant things, firstly that vast amounts of energy are required to produce

gravitational radiation and secondly that the amplitude will be very small.

The consequence is that the only practical sources of gravitational waves are

astrophysical ones [3].
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1.2 Gravitational wave astronomy

In the time since the formulation of General Relativity a wealth of potential

sources of gravitational waves has been postulated, studied and modelled in

great detail. Due to the weak interaction of gravitational radiation with mat-

ter, many events that are otherwise obscured in the electromagnetic spectrum

(for example, due to interactions with charged particles) are potentially vis-

ible with gravitational waves, including the ability to see past the surface of

last scattering into the very early universe. A full discussion of sources of

gravitational waves is beyond the scope of this thesis and can be found in

[3, 4, 5, 6]. What follows in this section is a brief overview intended to provide

a context of the underlying physics, astrophysics and cosmology that drives

the development of gravitational wave detectors.

Broadly, there are four main classes of sources: binary systems, asymmetrical

spinning sources, bursts and stochastic backgrounds.

Binary systems are potentially the most numerous sources. Typically, any

binary system of compact objects (such as neutron stars, stellar mass black

holes and white dwarfs) will be a source of gravitational waves. These systems

are continuous sources of gravitational radiation, the production of which takes

energy away form the system, eventually leading to a merger event. Perhaps

of even more interest are gravitationally bound super massive black holes. A

binary pair of super massive black holes, for example in a galaxy merger event,

will produce large amplitude gravitational waves in the mHz region, potentially

providing a wealth of information about these extremely interesting sources.

EMRIs - extreme mass-ratio inspirals - are another interesting binary system

where a small star or compact object is gradually spiraling towards a super

massive black hole. These systems provide excellent test-beds for theories on
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strong gravitational curvature.

Any spinning system which is not perfectly symmetrical will emit gravitational

radiation. This raises the possibility that spinning neutron stars could be

interesting sources of gravitational waves. Indeed, current detectors are already

placing upper limits on the ellipticity of known pulsars such as the Crab [7].

Burst sources, like core collapse supernova, are possible sources for an initial

detection by ground based detectors. While an ideal supernova would be

perfectly spherically symmetrical and so not produce gravitational radiation,

‘real’ supernova are likely to be anything but symmetrical producing significant

amounts of gravitational radiation. Additionally, the radiation would emanate

directly from the core collapse region where electromagnetic techniques cannot

penetrate, providing a never before seen view of such an event.

A stochastic background of gravitational waves from the Big Bang is one excit-

ing possibility. The detection of such a background would potentially be one

of the most important observations in astronomy, as it would provide direct

experimental evidence of the Big Bang, and present unparalleled information

as to the nature of the early universe.

These sources are all ones that have been predicted and studied. There is,

however, a fifth classification which is potentially of even greater interest; the

unexpected sources. Our current understanding of the universe is mainly lim-

ited to measurements and observations in the electromagnetic spectrum. Given

that we know over 90 % of the universe - the ‘dark’ universe - is potentially un-

detectable with EM radiation, the possibilities of detecting yet to be imagined

structures in the dark universe with gravitational waves are intriguing.

Even then, it is very possible that there are as yet undiscovered sources of
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gravitational waves that are visible with electromagnetic instruments as well,

the discovery of which in the gravitational spectrum can inform on their in-

vestigation by other means.

1.3 Detection of gravitational waves

Due to the extremely stiff nature of spacetime predicted in equation 1.2, the

amplitudes from even the strongest sources of gravitational waves are ex-

tremely small. Since the effect of a gravitational wave is to deform spacetime,

as shown in Figure 1.1, the amplitude is best expressed in terms of a physi-

cal strain, h = δl/l [8]. In the figure, the effect of the passing gravitational

wave was greatly exaggerated, with an amplitude of ∼ h = 0.5. In reality, the

predicted amplitude of gravitational waves received on Earth from a typical

source (such as a binary neutron star system) is 10−21 [5]. Measuring a strain

of this magnitude presents an enormous technical challenge, and a direct de-

tection of a gravitational wave has yet to be made. The current generation

of ground-based detectors are very near to the sensitivity required, but the

event rate for many observable phenomena (such as a galactic supernova) is

of the order 1 per decade or less. Next generation detectors such as Advanced

LIGO will increase sensitivity even further, to the point where the event rate

for some sources is expected to be of the order of several per year [9].

Although no direct detection has been made, there is compelling indirect ev-

idence for the existence of gravitational waves. In 1974, Russell Hulse and

Joseph Taylor discovered a binary pulsar system (PSR B1913+16), the first

to be discovered [10]. Measurements of the orbital decay of the system (now

spanning over 30 years) match the predicted theoretical energy loss due to

emission of gravitational waves as predicted by General Relativity to within
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0.2% [11]. Hulse and Taylor were jointly awarded the 1993 Nobel Prize in

Physics for their discovery.

1.3.1 Detection principles

The first gravitational wave detectors to be built were resonant bar detectors,

designed by Joseph Weber over 50 years ago [12, 13]. Much of the early

work was in this field, and there are still bar detectors operating today. The

principle is to have a large, typically aluminium, cylindrical bar. The bar is

designed such that its longitudinal resonant frequency is close to the frequency

of a gravitational wave source of interest. When gravitational waves at the

resonant frequency pass through the bar, they will excite the resonant mode

and this can be detected with transducers attached to the bar.

In the 1970’s, prototype gravitational wave detectors based on Michelson in-

terferometers began to appear. If we imagine the two end mirrors of the

interferometer as two of the particles in the ring depicted in Figure 1.1, then

a passing gravitational wave will induce a time varying change in the relative

path lengths of the two arms; this is detectable as a signal in the interference

pattern. Interferometric detectors have an advantage over resonant bar detec-

tors in that such an instrument has the potential to be broadband, rather than

limited to narrow frequency ranges. Today, the vast majority of international

effort to develop ground based instruments is focused on Michelson-type de-

tectors. A review of the history of ground based detectors of all types and

future prospects can be found in [14].

The sensitivity required in these detectors is extremely high: for a typical

gravitational wave strain of 10−21, an interferometer with an arm length of

1 km would have to be sensitive to length changes of 10−19 m/
√

Hz. This sets
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the scale and complexity involved in such a detector.

1.3.2 Ground based interferometric detectors

Following the successful short baseline prototypes, the current generation of

long baseline detectors was constructed around the world. The network is well

established and some recent scientific results from the detectors can be found

in [3, 15, 16] and references therein.

The current detectors in operation around the world are:

LIGO, the Laser Interferometer Gravitational wave Observatory, consists of

three interferometers located in the USA. There is a 4 km baseline detector in

Livingston, Louisiana, and a 4 km and a 2 km detector (in a shared vacuum

system) in Hanford, Washington.

VIRGO is a French-Italian collaboration operating a 3 km baseline interfer-

ometer located near Pisa in Italy.

GEO600 is a British-German collaboration with a 600 m baseline detector

located near Hannover in Germany.

TAMA300 is a Japanese detector with 300 m baseline arms, located near

Tokyo.

LIGO, VIRGO and GEO are scheduled to begin upgrades to second genera-

tion detectors in the near future, further increasing sensitivity. Research has

also started on a potential third generation detector, the Einstein Telescope,

intended to be operating around 2025.
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1.3.3 Spaceborne detectors

The primary noise source in the ground based interferometric detectors at low

frequency is gravity gradient noise. Changes in the mass distribution in the

vicinity of the interferometer will couple through gravitational attraction to

the mirrors into the detector, and this is the limiting noise source for all the

detectors below ∼ 10 Hz.

This is unfortunate, because there are a great many interesting sources at low

frequencies. Super massive black hole inspirals and mergers are significant

sources of low frequency gravitational waves, as are the massive population

of galactic compact binaries which will present themselves as a potentially

unresolvable noise signal in the few mHz region. The low frequency region

also presents the best possibility of directly detecting stochastic gravitational

waves from the Big Bang. These sources are of great interest scientifically,

but are well outside the range of a detector on Earth. In order to be able to

detect such low frequency sources we need to move to an environment without

gravity gradient noise and this requires going to space.

This is the idea behind LISA - the Laser Interferometer Space Antenna. LISA

is a joint mission of the European Space Agency (ESA) and the National

Aeronautics and Space Administration (NASA), with the goal of placing an

interferometric gravitational wave detector in space, sensitive to gravitational

waves of frequency 0.1− 1000 mHz [17].
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Figure 1.2: Plot showing the sensitivities of ground and space based detectors,

along with potential sources of gravitational waves. For source curves, solid

lines represent upper limits, with dashed lines of the same colour representing

equivalent sources at greater distances (as indicated). The plot is by the author,

the source data are gathered from [18, 19, 20, 21, 22, 23]. An energy to GW

coupling efficiency of 10−3 has been assumed.



Chapter 2

Verifying the LISA

measurement principle - LISA

Pathfinder

2.1 LISA

LISA will consist of a constellation of three spacecraft, lying at the vertices

of an equilateral triangle of side 5 × 109 m. As discussed in Chapter 1, a

gravitational wave can be detected by looking for an induced oscillation in the

separation of two points in space. In LISA each spacecraft will house two test

masses, gold-platinum alloy cubes which will be maintained in near free-fall.

These are analogous to the end mirrors in a ground-based detector, and their

relative displacement will be measured between each of the spacecraft in the

constellation using heterodyne interferometry [17]. The specifics of LISA are

discussed in more detail in Chapter 7.

11
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The scientific goal of LISA calls for a peak strain sensitively of 10−20 /
√

Hz

at a few mHz. In order to meet this sensitivity, we must measure the rel-

ative displacement between two test masses, over the 5 × 109 m baseline to

around 10 pm/
√

Hz. Further, the quality of the free-fall of the test masses

must be such that the residual acceleration noise is <∼ 3× 10−15 m s−2/
√

Hz.

Demonstrating the free-fall requirement, especially, is extremely challenging on

ground due to the presence of Earth’s gravity. In order to prove that such sen-

sitivity is realistically possible, the European Space Agency has commissioned

a precursor mission, LISA Pathfinder [24, 25].

2.2 LISA Pathfinder

2.2.1 Mission concept

LISA Pathfinder is essentially a null experiment, demonstrating that two test

masses can be placed in simultaneous geodesic motion and measured with

the required precision and expected noise level. Compared with the noise

performance required for LISA there is some relaxation and the frequency

range has been relaxed to 1− 30 mHz for time and cost reasons [26]. Broadly,

there are four main mission goals for LISA Pathfinder:

• demonstrate that a test mass can be placed into gravitational free fall

with acceleration noise within one order of magnitude of that required

for LISA, approximately 3× 10−14 m s−2/
√

Hz at 1 mHz;

• demonstrate interferometric metrology of the test masses to the level

required for LISA, around 10 pm/
√

Hz at a few mHz;
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• characterise all noise sources to the levels required for LISA to gain

confidence in the overall system performance;

• demonstrate the space flight worthiness of many of the applicable tech-

nologies such as test mass caging mechanisms, micronewton thrusters,

optical assemblies etc.

The core experiment of LISA Pathfinder is the LISA Technology Package

(LTP), which will feature two LISA type test masses, positioned either side

of an optical bench that will measure their relative displacement interferomet-

rically. In this way, it is analogous to a single LISA arm, with the baseline

reduced from 5 × 106 km to 376 mm [24]. A CAD rendering of the LTP core

assembly is shown in Figure 2.1.

Figure 2.1: CAD rendering of the LTP core assembly. The two cubical test

masses are housed inside the inertial reference sensors at either end with the

optical bench in between, connected by side walls (graphic courtesy of ESA).

A schematic showing the principle of operation for LISA Pathfinder is shown

in Figure 2.2. Like LISA, LISA Pathfinder will use Mach-Zehnder heterodyne
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interferometry to read-out the test mass positions. For simplicity, it is a non-

polarising scheme the result of which is that the beams probing the test masses

must do so at a slight angle to allow separation of the incident and reflected

beams. Light from the master laser, an Nd:YAG non planar ring oscillator

operating at 1064 nm, is split and each beam is passed through an acousto-

optic modulator (AOM) which frequency shifts the light by the drive frequency

ν ' 80 MHz. The difference between these two drive frequencies, ν1 − ν2,

provides the heterodyne frequency. In LISA Pathfinder, this will be 1.6 kHz.

Each beam is then coupled into a single-mode polarisation maintaining fibre

and delivered to the optical bench.

ν1

ν2

Laser Fibres

AOMs

Phasemeter
and DMU

DFACS

µN Thrusters

Inertial Sensor
and Test Mass

Interferometers

Drag-free loop

Suspension
loop

Feedback

Frequency

Power
Path-length

Figure 2.2: Simplified schematic of the LISA Technology Package experiment

on LISA Pathfinder. Only one interferometer path is shown on the optical

bench for clarity.

From the optical bench, the positions of the test masses are measured inter-

ferometrically. The optical bench houses four individual interferometers:
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• the x1 interferometer is a mix of a beam reflected from one test mass

and a beam confined to the optical bench (the local oscillator), which

measures the displacement between test mass 1 and the optical bench;

• the x12 interferometer is a mix of a beam reflected from both test masses

and the local beam, which measures the relative separation of the two

test masses;

• the reference interferometer is a mix of both beams, confined to the

optical bench, and provides the phase reference for the measurements;

• the frequency noise interferometer, which has intentionally mismatched

arm lengths to measure the frequency noise of the laser (see Section 2.2.2).

The interferometers are depicted in Figure 2.5 for clarity.

By comparing the reference phase to the phase of the two measurement inter-

ferometers, the relative displacements of the test masses can be measured. Any

noise in the phase of the measurement signal which is not common mode with

the reference phase will then determine the smallest displacement that can be

measured, which for LISA Pathfinder must be in the 10 picometre region.

The interferometer outputs are connected to the phasemeter and data man-

agement unit (DMU). From the phasemeter/DMU, three stabilisation servos

control the optical system: frequency noise is controlled at the laser, inten-

sity noise is controlled through the drive signals to the AOMs and path-length

noise is controlled at the fibres. This path length noise source was an unex-

pected one, discovered during early investigations into optical metrology for

LISA Pathfinder at the University of Glasgow. Path-length noise had been ex-

pected to be induced inside the optical fibres and AOM’s (which are not part

of the stable optical bench), but it was predicted to be common mode between
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the measurement interferometers and the reference, and so cancel out. In re-

ality, there was some noise remaining after this cancellation, originating from

parasitic beat notes caused by fluctuating cross-talk between the two AOM

rf drive signals. The solution was to lock the reference phase signal to the

electronic driver signal, by controlling the relative path lengths through the

fibres [27, 28]. On board LISA Pathfinder, this control will be by means of a

piezo which can apply stress to the fibre influencing the optical path length.

The output signals from the Phasemeter/DMU are also passed to the DFACS

(Drag Free and Attitude Control System). DFACS is the control system re-

sponsible for placing - and maintaining - the test masses in geodesic motion.

Each test mass is housed inside an inertial sensor housing, within which there

are a series of electrodes which surround the test mass on all sides. These

electrodes can be used either as capacitive sensors, to sense the position and

attitude of the test mass (albeit with much reduced sensitivity compared to

the optical measurement); or as electrostatic actuators with which the posi-

tion of the test mass can be influenced in all six degrees of freedom. The

inertial sensor housing and control systems developed for LISA Pathfinder

are designed to be directly applicable to LISA, where control of the two test

masses simultaneously is potentially slightly easier. This is because in LISA,

the sensitive directions of the two test masses are 60◦ apart due to the equi-

lateral formation (i.e. so that the sensitive direction of each test mass points

towards the far spacecraft), where as in LISA Pathfinder the two test masses

are collinear. This forces DFACS to actuate the test masses in the sensitive

direction, potentially adding noise into the displacement measurement.

The DFACS operation principle is described in detail in [29, 30]. To survive

launch, the test masses are locked in place with hydraulic launch-locks called

the caging mechanism. Upon release of this system the exact position and
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orientation of the test masses inside the inertial sensor housing is unknown, so

DFACS must ‘acquire’ the test masses. In this initial mode, the electrostatic

actuators are used to scan the test masses in a spiral pattern. The photodiodes

of the interferometer are quadrant diodes, and so are position sensitive. As

the test masses are scanned, the lateral position of the measurement beam

on a photodiode is monitored and used as an error signal for the control to

achieve a course alignment of the test masses. The system then switches to

using the differential wavefront sensing (DWS) signal. DWS is a measure of

the tilt of two interfering wavefronts, by taking the difference between the

heterodyne phases on the different quadrants on a photodiode [31, 32]. It is an

extremely sensitive discriminator for interference alignment, with resolution

down to sub-µrad movements of one beam with respect to another. It is

therefore an extremely effective means to control the attitudes of the test

masses. DFACS will use the DWS read-out as an error signal to align and

control the attitude of the test masses to as close to nominal as possible using

the electrostatic actuators.

With the test masses aligned close to nominal, the so-called ‘drift mode’ can

be implemented, where DFACS will keep the test masses as close to free-fall as

possible. DFACS will monitor the position of one test mass using the capacitive

sensors and the interferometric read-out and force the spacecraft to follow this

test mass using the micronewton thrusters, this test mass is then considered

to be drag-free. The displacement of this test mass to the spacecraft will be

relatively noisy, dominated by the thruster noise. The second test mass is

then controlled by the ‘suspension’ loop. DFACS will force it to follow the

first test mass by applying a series of kicks using the electrostatic actuators.

In this way, the test mass will drift between the kicks in free-fall motion. The

displacement between the two test masses can then be measured, with the noise

in the spacecraft motion cancelling out. The kicks are applied at a frequency
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below the measurement band.

2.2.2 LISA Pathfinder interferometry

Since the main science read-out for LISA Pathfinder is an interferometric one,

the design and construction of the interferometer is crucial to the success of

the mission. Much work towards this end has already been completed, initially

with a prototype interferometer built at the University of Glasgow [27, 28]

and later with the engineering model (EM) of the LISA Pathfinder optical

bench (also known as the optical bench interferometer, or OBI) constructed

by the University of Glasgow and the Rutherford Appleton Laboratory [27, 33].

Figure 2.3 depicts both of these interferometers.

Figure 2.3: Photographs of the Glasgow prototype optical bench which is of

order 400 mm×400 mm square (left) and the LISA Pathfinder OBI engineering

model which is identical in size to the flight model at 200 mm× 212 mm (right,

courtesy of Rutherford Appleton Laboratory).

Since the OBI provides the fixed paths with respect to which the measure-

ments are made, its intrinsic stability is of vital importance. For this reason

ultra-low expansion ceramic substrates are required for such optical benches.



2.2 LISA Pathfinder 19

For the OBI, Zerodurr was chosen as the substrate since it has a coefficient

of thermal expansion as low as 2 × 10−8/K [34]. Coupled with the thermal

stability of the spacecraft environment (< 10−4 K/
√

Hz at 1 mHz [35]), this en-

sures good dimensional stability of the OBI. Due to its extremely good optical

properties at 1064 nm, the optical components are made from fused silica with

dielectric coatings for mirrors and beamsplitters. These are attached to the

Zerodurr substrate using the hydroxide catalysis bonding technique [36, 37].

This method results in a bond which is strong enough to survive launch and

provides high dimensional stability.

The optical layout for the flight model (FM) OBI for LISA Pathfinder is illus-

trated in Figure 2.4. It was initially developed by Gerhard Heinzel for the EM

and later advanced by Felipe Guzmán Cervantes [38]. Further minor modifica-

tions were later made by Johanna Bogenstahl and the author. The Zerodurr

baseplate has a surface area which measures 200 mm× 212 mm and there are

22 mirrors and beamsplitters forming the four Mach Zender heterodyne inter-

ferometers.

The interferometers are depicted individually for clarity in Figure 2.5. A CAD

rendering of the OBI can be seen in Figure 2.6. The holes which can be seen

in the side of the Zerodurr baseplate are for metal inserts, which allow the

OBI to be integrated into the spacecraft structure.
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Figure 2.4: OptoCad [39] model of the LISA technology package optical bench

interferometer. Dimensions are in metres.



2.2 LISA Pathfinder 21

Reference Frequency Noise

Measurement: X1 Measurement: X12

Figure 2.5: OptoCad [39] models of each of the four interferometers on the

OBI; reference (top left), frequency noise (top right), measurement of test mass

1 (bottom left) and measurement of both test masses (bottom right). The two

feed fibres to the FIOS are of different lengths, which results in the end-to-end

path lengths in the reference and measurement interferometers being approxi-

mately equal.
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Figure 2.6: CAD rendering of the FM OBI.

To reach the design sensitivity of 10 pm/
√

Hz, there are several sources of noise

which must be overcome, either by design or in the construction of the OBI;

these are discussed below.

Intensity noise

Intensity noise (i.e. fluctuation in the power of the beam) can couple as noise

into the interferometric measurement in two ways. Firstly, any intensity noise

which is at the heterodyne frequency will couple into the measured heterodyne

signal, producing random phase fluctuations. If we consider a relative fluctu-

ation in the intensity of the laser δP
P

, then we wish to limit the influence this

has on phase to less than 2π × 10−6/
√

Hz radians (or 1 pm/
√

Hz), i.e. [40]

δP

P
. 2π × 10−6/

√
Hz.
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Secondly, since the beam which is incident on the test masses will impart a

force due to radiation pressure, any variation in the intensity of the beam

in the measurement band will then couple as detectable force noise into the

test masses. For a test mass of mass m and light of frequency ω = 2πf , the

displacement δx induced by intensity noise of magnitude δP can be expressed

as:

δx =
2 δP

mcω2
.

Again, we wish δx to be less than 1 pm/
√

Hz. Expressed in terms of a relative

fluctuation in laser intensity this gives:

δP

P
6

mcω2 δx

2P
≈ 3× 10−5/

√
Hz

To mitigate against these effects there will be two additional photodiodes on

the OBI (PDA1 and PDA2 in Figure 2.4). These sample a pick off from each

beam directly out of the fibre injectors, and are part of a feedback loop which

servo controls the beam intensity by changing the rf drive power to the AOMs.

By measuring each beam on the OBI itself and controlling at the AOMs, each

beam is controlled individually such that any effects induced in the fibres or

the AOMs themselves are attenuated. Neither of the two intensity stability

requirements are considered to be challenging [40].

Frequency noise

Noise in the frequency of the laser can couple as noise in the displacement

measured by an interferometer, if the interferometer has unequal arm lengths.

For a laser with frequency noise δν the apparent length change δx which will
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be observed can be expressed as

δx = ∆x
δν

ν
(2.1)

where ν is the frequency of the laser and ∆x is the path length difference

between the arms of the interferometer. For a simple interferometer (like a

Michelson), rejection of frequency noise would require an identical round trip

path length for both arms. On LISA Pathfinder however, we are making a

comparison between the phase of two interferometers: a reference and a mea-

surement. In this case it is then the relative path length difference between the

reference and measurement interferometers which is important, i.e. that the

frequency noise signal at the reference interferometer is the same as that of a

measurement interferometer such that it can be subtracted out as a common

mode signal. The nominal OBI layout has perfectly matched paths, but con-

structing an interferometer without path mis-match is difficult. For a relative

path length mismatch of 1 mm (which is the upper limit for the FM OBI [35]),

keeping the induced displacement noise δx to below 1 pm/
√

Hz requires that

the laser frequency noise is less than 300 kHz/
√

Hz. This level is several orders

of magnitude below the noise level of the free-running LISA Pathfinder laser in

the measurement band, and so some means of countering the frequency noise

is required.

A standard technique is to lock the laser to a suitable reference, such as using

Pound Drever Hall locking with a stable reference cavity [41]. LISA Pathfinder

will use a slightly different technique to avoid the need to carry additional

payload mass. The OBI has a dedicated interferometer with an intentionally

large ∆x to maximise the coupling of laser frequency noise in its read-out

signal. Using this read-out the laser frequency noise can be directly controlled

by stabilising the phase of the frequency noise interferometer to the reference

interferometer in a servo which feeds back to actuate the laser frequency. The

data from the frequency noise interferometer can also be used to correct for
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laser frequency noise in post-processing of the data.

As an additional step, significant effort will be made in the construction of the

OBI to ensure that the path length difference of the measurement interferom-

eters is the same as that in the reference interferometer. The OBI has several

components which can be used to correct for built up path length error; this

is discussed in more detail in Chapter 5.

Test mass jitter

At some level, keeping the test masses in perfect geodesic motion is impossible:

there will always be residual motion of the test masses. One component of

this motion will be angular, expected to be of order 10−7 rad/
√

Hz. At the

reflecting surface of the test mass, this angular jitter could be converted into a

longitudinal signal, contributing directly to the measurement noise, increasing

with distance from the centre of the reflecting face. To keep the induced

longitudinal noise to an acceptable level, the beam must be centred on the

test mass to less than 50µm. Half of this error is assigned to the construction

of the OBI, requiring that the beam from the OBI towards each test mass be

within ± 25µm of the nominal reflection point [35].

Beam jitter

Jitter of the beam launched from the fibre injectors can result in a variety of

noise contributions, including path length changes between reflective compo-

nents and loss of phase information at quadrant photodiodes. For more severe

beam jitter, loss of interferometric contrast is also a potential problem. To mit-

igate against these effects, fibre injectors with minimal beam jitter and long
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term stability are required, they must also be sufficiently rugged to survive

launch forces. Additionally, to prevent any loss of information at the photo-

diodes, the diameter of the diode element will be in the region of 3 to 4 times

larger than the beam diameter.

Path length fluctuations

Fluctuations in the optical path length of the interferometers would clearly

couple as measurement noise directly. There are two ways in which path length

fluctuations can occur, the first is in the distance between reflective components

changing (i.e. the baseplate dimensions fluctuating), and the second is the

optical path of transmissive components fluctuating. The primary driver for

both of these potential noise sources is temperature.

LISA Pathfinder will have a temperature stability better than 10−4 K/
√

Hz,

and this coupled with the extremely low coefficient of expansion of Zerodurr

negates any effects induced from expansion of the baseplate.

Changes in the optical path of transmissive components can be induced from

simple thermal expansion of the substrate material, and by thermally driven

changes in the refractive index. The components are made of fused silica,

which has a thermal expansion coefficient of ∼ 0.5 × 10−6 /K and a dn
dT

of

∼ 9.7×10−6 /K [34]. Although these values are low, especially the coefficient of

thermal expansion, several successive transmissions through LISA Pathfinder

sized components can produce effects at the 10’s of pm level, far above the

design sensitivity. In reality the temperature variations across the OBI will be

extremely uniform. By ensuring that each beam path experiences a roughly

balanced transmissive path in silica then much of the thermally induced path

length variation will be common mode between the measurement and reference
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interferometers and so cancel out. The OBI has been specifically designed with

this approach in mind, and it has been experimentally verified in both the

Glasgow prototype bench and the engineering model for the LISA Pathfinder

OBI [27, 28, 33, 42].



Chapter 3

Measuring a beam in free space

3.1 The need for precision

Many of the requirements discussed in Chapter 2 necessitate extremely precise

measurements of the physical position of a laser beam, and the ability to

construct an equation to describe that beam and relate its position to some

external geometry. A good example of this is the requirement that the beam

incident on the test mass (for both LISA and LISA Pathfinder) must be centred

to within approximately ± 25µm of the centre of the test mass [35].

We can then define the following top-level requirements:

• the measurement system must have an absolute accuracy down to a few

µm, and a few 10’s of µrad and be repeatable to better than that;

• it needs to relate the optical measurement of the beam to some physical

coordinate system;

• the practicality of alignment with the hydroxide catalysis bonding tech-

28
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nique dictates that beam position read-out must be near instantaneous to

be of any use; this requires that the system is capable of a ‘live’ read-out.

Determining the centre of a ∼ 1 mm or larger diameter beam to a few µm even

at a single plane is not a trivial task. A real beam will not be gaussian or

perfectly circular and is highly likely to have fine fringe structure resulting in

multiple local intensity peaks at the centre. A typical beam as used for LISA

Pathfinder is shown in Figure 3.1.

Figure 3.1: Intensity profile of a typical beam from a fibre injector as used in

LISA Pathfinder. 2D profiles of the x and y axis are shown on the right.

Two possible approaches for defining the centre of a beam are the power centre

and the optical centre. The power centre is defined based on measurements

of the intensity of a beam, for example by balancing the powers in the four

quadrants of a quadrant photodiode. The optical centre is defined by measure-

ments based on optical properties, such as the centre of a diffraction pattern.

In a theoretical beam these are perfectly coincident but the same cannot be

expected in a real beam: they may be very well aligned but will almost cer-

tainly be different at the ∼ 10µm level. Which of these definitions is most

appropriate is not an easy question to answer and will depend on the intended
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application. What is clear is that, internal to a system, the same definition

should be maintained throughout to avoid systematic effects from a potentially

shifting beam centre.

For construction of the LISA Pathfinder OBI, the power centre was chosen as

the reference. It benefits from being significantly easier to measure and analyse

than the optical centre, and by using a Quadrant Photodiode (QPD) to make

the measurement, local imperfections in the beam are averaged out. It does

require an underlying assumption that a beam will be rotationally symmetric,

since the method of determining a beam centre with a QPD is to balance the

powers in all four quadrants. If a beam is not rotationally symmetric, then the

position determined from balancing the powers will not necessarily be the true

centroid of the beam. In practice, beams such as the one shown in Figure 3.1

are sufficiently circularly symmetric that this effect is negligible, contributing

less than 1µm of uncertainty.

If two measurements of the centre of the beam are made using a QPD, spa-

tially separated by a sufficient amount, this will give a line which will have

an equation representing the beam. Inherent in this approach is the ability

to relate the two measurements together in some reference frame, and to then

relate this measurement to some other arbitrary reference frame (that of a test

mass, for example). The tool best suited to this is a Coordinate Measuring

Machine (CMM). The machine used for all measurements described through-

out this thesis is a DEA Global Image [43]. It has a measurement volume

of 1.0 m × 0.7 m × 0.5 m, and a certified absolute measurement accuracy of

± 1.5µm at a single point plus 3µm per metre length error. A photograph of

the CMM, in situ in the ultra-clean laboratory can be seen in Figure 3.2.

Through its software interface (PC-DMIS [43]), features on an object can be

measured and coordinate systems built around these measurements. Other
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Figure 3.2: Photograph of the Coordinate Measuring Machine (CMM).

features can then be directly measured in this constructed frame. This allows

easy and convenient measurement of the relative position of two objects.

3.2 The Calibrated Quadrant photodiode Pair

Measuring a QPD directly when positioned at the centre of a beam is clearly

not feasible: a support structure is required to enable easy measuring with the

CMM. The simplest device to imagine is a block with a hole in the middle,

into which a single QPD is mounted. This block could be positioned such

that the beam is centred on the QPD and the position of the block can then

be measured with the CMM. Knowledge of the location of the photodiodes

position within the block would then allow a single point on the beam to

be measured in a particular coordinate frame. Two (or more) measurements

along the beam axis would then yield enough points to construct a line which

describes that beam.
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This simple device has two main drawbacks: firstly, unless the actual plane

of the diode is known to high accuracy small errors in the angular position of

the block relative to the beam direction can give rise to uncertainties through

projection effects; secondly it cannot ascertain the true position and direction

of a beam instantaneously, a minimum of two measurements are required to get

the beam direction. To be truly versatile, we need to make two measurements

simultaneously, this is the idea behind the Calibrated Quadrant photodiode

Pair (CQP).

3.2.1 CQP measurement concept

The basic idea of the CQP is to have a structure, incorporated into which is

a beam splitter and two QPDs at different distances from each output port of

the beam splitter. For this arrangement, there is only one vector for which a

beam incident on the splitting surface will be centred on the QPDs at both

output ports. This concept is illustrated in Figure 3.3.

If the equation describing this vector is known relative to the structure, then

aligning the structure to the beam (by centring on the QPDs) and measuring

with the CMM allows instant determination of the equation of the beam being

measured. Moreover, if the position of the structure can be controlled to a fine

degree, it can be pre-positioned to lie on a theoretical beam. In this way it can

act as a live target. Any beam that is actuated such that it is centred on both

QPD’s while the structure is in this position, must have the same equation as

the theoretical beam to which the structure is aligned.
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QPD2

Beamsplitter

Input Beams

Figure 3.3: Basic concept behind the CQP. The red beam is the only possible

input beam to the beamsplitter which will be centred on both QPDs. Other beams

that can be centred on one QPD are possible, but will always be off-centre of

the other (shown as black dashed lines).

3.2.2 Design choices

To turn this simple concept into a usable tool requires that a number of ad-

ditional things be considered. The primary design drivers are accuracy and

stability. Ideally, an accuracy of < 5µm and of order 20µrad or better is

required. The CMM measurement error of 1.5µm + 3µm/m results in an

improving angular measurement with increasing baseline, at the expense of

absolute positional knowledge. This is illustrated in Figure 3.4. Also of con-

sideration is that to be of any use, it must be small enough to fit inside the

CMM measurement envelope alongside the OBI or any other potential beam

source, and be mountable on a movable stage so that it can be positioned

accurately. The stages used here are 6-axis high precision Hexapods, model

M-824 from Physik Instrumente [44] (see Figure 3.5), and can be actuated at

the sub µm and 3µrad level. They are in the region of 250 mm in diameter.
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Figure 3.4: Graph showing the accuracy of the CMM, both absolute position

(in green) and angle (in blue) with increasing measurement baseline.

Given these factors, baselines of 200 − 300 mm are well suited for this pur-

pose, giving a good compromise between overall size, and accuracy of CMM

measurement.

As a result of the extremely tight accuracy requirement, the stability of the

CQP is extremely important and it must be very resistant to both thermal

expansion and mechanical vibration. The thermal expansion of aluminium

over 200 mm is of the order 4µm per ◦C for example, which could add signif-

icantly to the positional and angular error of the CQP. Invarr was therefore

chosen as a suitable material, which over the same range will have sub µm

thermal expansion. Invarr is also strong and easily machinable allowing for

rigid construction to help with mechanical stability.
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Figure 3.5: Picture of a Physik Instrumente M-824 Hexapod.

A further factor to consider is the effective distance between the photodiodes.

In the simple schematic shown in Figure 3.3, this would be the optical path

from the beamsplitter to QPD2, minus the distance to QPD1. This is the

optical baseline, and it determines how accurately the CQP can be aligned

to the beam. Since aligning a beam perfectly to the centre of a QPD is not

realistically possible (factors like air currents will always cause beam jitter at

some level, and actuators have resolution limits) some margin must be defined

under which the beam can be considered centred. If this margin is taken to

be ± 1µm (a feasible number), then this defines an angular error of the beam

centring over the optical baseline.1 It is desirable to keep this as small as

possible. Simply taking the optical baseline to be the same as the length scale

of the CQP gives an additional angular error of ∼ 10µrad. If the path is folded

however, the baseline can be increased to over double this, bringing the error

down to a level where it can be regarded as negligible (in comparison to other

1Clearly, there are other factors that can enter into this, such as a non perfect beam

evolving over distance such that its intensity centre drifts a few µm. These effects are

difficult to assign an error to, however, as they are unique to each situation.
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errors present in the measurements).

3.2.3 CQP Construction

The CQP, as built, is shown in Figure 3.6. The optical baseline is of the

order 44 cm which gives good angular resolution of the incoming beam. Due

to the extreme sensitivity to mechanical deformation (which would change the

calibration parameters), a single point mount is used; whereby a single bolt

affixes the CQP to a Hexapod through a large washer. This minimises the

chance of the mount deforming the CQP structure. To further increase the

mechanical rigidity and durability of the CQP, the various components are

secured with epoxy in addition to mechanical fasteners.

Beamsplitter

Mirror 1

Mirror 2

QPD2

QPD1

Beam

Figure 3.6: Photograph of the CQP, with the beam path indicated in red.

The mounts for the mirrors and the beamsplitter are designed to be isostatic

3-point mounts (similar to a commercial mirror mounts), and have ‘blobs’ of
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glue added to give extra rigidity to the mount. The QPDs are also glued in

place, located in counterbored holes, and are glued from the front and the back

to minimise the possibility of movement.

The QPDs are Si quadrant diodes manufactured by Centronic (model QD7-

5T) and have an active area of 7 mm2 and a dark current of ∼ 6 nA. They are

reverse biased with −15 V and read-out through an 8 channel transimpedance

amplifier into a simultaneously sampled 8 channel National Instruments 16 bit

analogue to digital convertor at a sample frequency of 92 kHz. A LabVIEW

front end calculates the position of the beams on each photodiode, in microns,

using equations

x = −β [(A+ C)− (B +D)] (3.1)

y = β [(A+B)− (C +D)] (3.2)

where x and y are the cartesian coordinates of the beam centre on the QPD, A,

B, C and D are the powers from each quadrant, as per the labelling convention

shown in Figure 3.7, and β is a calibration factor, determined by translating the

CQP a small amount and using the CMM to measure the relative displacement.

This can then be used to derive the value of β to give an output in µm.

In practice, the CQP is used with amplitude modulated (AM) light (typically

modulated at 230 Hz) and a single bin discrete Fourier transform method is

used to extract the signal amplitude at the modulation frequency. Using the

CQP in this AM mode has the advantage of isolating the measurements from

effects such as variable offsets caused by changing background lighting or DC

drifts in electronics.
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Figure 3.7: Diagram showing the labelling convention for the quadrants on a

QPD, looking at the active face.

3.3 Calibration of the CQP

In order to be of any use, the CQP must be calibrated to establish the relation-

ship between the physical structure (the Invarr) and the beam vector which

is centred on both photodiodes. When the CQP is measured with the CMM,

a fully defined reference frame is established which represents the position of

the CQP in the measurement envelope. The frame is constructed by measur-

ing a fixed set of points on the surfaces of the CQP baseplate with the CMM

probe. Ensuring that the same points are measured each time is important, as

this is the key to ensuring the repeatability of establishing the reference frame

and thus the consistency of the beam measurements. The frame is centred at

the front corner of the baseplate (next to the incoming beam), and has axes

orthogonal to the Invarr baseplate. The calibration parameters describe the

position and direction of the nominal beam within this reference frame.
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3.3.1 2D calibration example

The procedure to obtain the calibration constants is best illustrated in 2D for

clarity, and is shown in Figure 3.8. We wish to relate a beam centred on the

CQP to the reference frame set up when measuring it. This can be described

in terms of two offset parameters which we need to measure: distance d and

angle θ, where d is the distance from the origin to the point where the beam

crosses the y-axis of the frame, and θ is the angle between the x-axis of the

frame and the beam. In the 2D case these two numbers fully define the beam

vector in the CQP reference frame.
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Figure 3.8: Two dimensional example of the CQP calibration procedure.

The solid red line represents a beam, which is known to be stable at the ∼ 1µm

and few µrad level over the duration of the calibration procedure. This is

achieved by gluing a stable fibre injector (see Chapter 5) to a Zerodurr spacer

which is mounted to the CMM bed with a kinematic mount. The position and

orientation of the stable beam are arbitrary and unknown. In the first step,
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‘A’, the CQP is aligned to this beam (position 1 in the diagram), measured

and the resulting reference frame stored (shown as an origin with a red spot

and axes as blue arrows). The CQP is then moved along the beam, realigned

to it, and further measurements are taken (2 and 3 in the figure). This already

gives enough information to obtain the direction of the calibration beam, and

thus the θ calibration parameter but the offset distance is still unknown: more

information is required.

In step ‘B’ the CQP is rotated 180◦ around the beam axis and re-aligned to

the beam. A further set of measurements is then taken (positions 4, 5 and

6). This procedure gives us 6 separate reference frames all aligned to the same

unknown optical beam. Due to the symmetry of the rotation we know that the

calibration beam must follow the midline of the 6 origin points of the reference

frames. This allows us to calculate the equation of the calibration beam, shown

as a red dashed line in step ‘C’. We can then take the equation of the calibration

beam and for each of the measurements calculate the calibration factors d and

θ. These results can then be averaged to give the best estimate. Note that

provided the measurements are over constrained we can use the variation in

the individual d and θ values (i.e. the residuals) to estimate the accuracy of

the calibration.

3.3.2 3D calibration of the CQP

In practice, the CQP needs to work in a three dimensional envelope, and so the

calibration procedure must be extended to three dimensions. Here, we require

four parameters in order to fully define the beam with respect to the CQP

reference frame; two distance parameters dy and dz and two angle parameters

θx and θz. Having measured the CQP reference frame, these 4 numbers are
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sufficient to construct the equation of the incident beam; this is illustrated in

Figure 3.9.

xy

z

dy

dz

θx

θz

Invar Baseplate
Incident Beam

Figure 3.9: Diagram showing the 3D coordinate system of the CQP, and the

calibration factors required to define the beam relative to it.

In extending to three dimensions, the basic procedure described in Section 3.3.1

remains. An incident stable reference beam is set up and multiple measure-

ments are made along the length of the beam, recording the parameters that

define the CQP reference frame for each measurement. In the 2D example,

measurements of the CQP in two ‘orientations’ were required in order to fully

define the system and obtain both d and θ. In three dimensions a similar

approach was used only this time measurements in at least three orientations

are required. The resulting CQP origin points will all lie on the surface of a

cylinder with the axis of this cylinder having the same equation as the calibra-

tion beam. This is illustrated in Figure 3.10. The four parameters can then be

determined relative to the axis of the fitted cylinder for each of the measured

CQP reference frames and averaged as in the 2D example.

The minimum number of measurements required to construct the cylinder is
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Flat

+90o

-90o

Figure 3.10: Illustration showing the calibration of the CQP. The red centre

line represents the calibration beam, with the dashed cylinder the fit to the

measured CQP positions. A 2D cross section is inset. The CQP is not drawn

to scale for clarity.

5. In practice many more measurements are taken (typically 12 to 20), often

in four or five orientations. This over defines the system and allows analysis of

how good a particular calibration is through calculation of the residuals. The

measurements in the initial orientation (typically flat) are repeated at the end

of the calibration procedure to verify that the calibration beam has not moved

during the procedure. A plot of typical residuals for a CQP calibration can be

seen in Figure 3.11.

The figure shows that the CQP calibration is accurate to around ± 3µm and

± 20µrad. There are indications of small systematic errors between different

orientations, this is most noticeable between± 90◦ in ‘Z’. Due to the complexity

of the system and the measurement, the exact source of this error is unknown,

but there are strong indications that is may be due to a calibration issue in

the CMM. The probe head of the CMM (shown in Figure 3.2) is adjustable
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Figure 3.11: Plot of the residuals from a typical CQP calibration, with a total

of 15 measurements in three orthogonal orientations. One millidegree is equal

to 17.5µrad.

in angle, and a different angle is required to measure the CQP in each orien-

tation due to access restrictions. For each of these probe angles, there is an

individual calibration of the CMM probe head. Systematic deviations between

these CMM calibrations could couple into the CQP calibration, appearing as

systematics between the measurement sets. This translation in angle is the

leading candidate as the source of the systematics in the calibration, but the

exact nature is unknown.
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3.4 CQP accuracy

Given the critical nature of the alignment tasks for which the CQP is used (see

Chapter 5), it is important that its accuracy and repeatability can be verified,

preferably without resorting to a full recalibration which is time consuming

due to the number of measurements required. There are two useful ways to

verify that the CQP is performing as expected.

The simplest test that can be performed is to make two measurements of a

single, stable, beam at two different positions along its length. For each mea-

surement of the CQP, the CMM returns two points of the form P(x, y, z),

separated by 300 mm along the beam calculated using the calibration parame-

ters. These points are given in the measurement frame (the choice of which is

essentially arbitrary). Joining the points will form the line of the as-measured

beam. Taking two CQP measurements, with the CQP moved along the beam

will provide four such points, with the measured beam being the best fit line of

these points. Calculating the distance of these four measurement points from

the best fit line gives a partial check on the accuracy of the CQP calibration

parameters. For example if one of the CQP calibration parameters - say θz

- were wrong, then this would result in each measurement having an angular

offset from the real beam. The result would be two parallel lines, each sys-

tematically angled from the fit line. This is illustrated in Figure 3.12. The

signature of this is typically that the values of D2 and D3 are large compared

to D1 and D4. This is due to the baseline over which the measurements are

made (typically 200−300 mm), and the resulting spread of points as indicated

in the diagram.

This quick method is useful, but gives limited information about what param-

eter might be wrong, and only gives a rough estimate of the value of the error.
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Measurement 1

Measurement 2

Figure 3.12: Diagram illustrating how an incorrect calibration parameter can

be detected using a double measurement of a beam

Systematic effects of the CMM can also be masked. A more robust method,

is to make two, or more, measurements of a single, stable beam in several

orientations. This is illustrated in Figure 3.13. By rotating the CQP about

the beam (much like in the calibration process) any error inherent to the CQP

will rotate along with it. This method is akin to a part-calibration (and is

therefore quicker), it provides a useful handle on separating effects due to the

CQP, the CMM or even the measurement beam.

Beam
Flat Measurement

90  Measurement
o

Figure 3.13: Diagram illustrating checking the CQP accuracy by making mea-

surements rotated about a beam.

A plot showing the typical results from such a test of the CQP is shown in

Figure 3.14. This test has four measurements of a stable reference beam, two

with the CQP flat and two at + 90◦. The two measurements internal to each
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orientation are spatially separated by ∼ 20 cm, such that the distribution of

measurement points along the beam is similar to that depicted in Figure 3.12,

which is about 500 mm between the front most and rear most point. The

x axis of the figure (which points out of the page) is the fitted line of all 8

measurement points.
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Figure 3.14: Plot showing the results of a check of the CQP accuracy by making

multiple measurements of a stable beam in two orientations.

The arrows on the lines connecting the points for each measurement indicate

the direction from the front point to the rear point, so if the plot were three di-

mensional, this would indicate the direction of slope. Any correlation between

the direction of this slope, and the orientation of the CQP indicates a possible
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error in the calibration parameters. From the plot, there is no obvious correla-

tion of this type visible. Clearly at some level, there will be errors in the CQP

calibration numbers, but they are not obvious from this measurement; CMM

measurement error and movement of the beam are likely to be the dominant

sources of error in this measurement. From the graph, we can draw reasonable

estimates for the typical accuracy of the CQP of ± 4µm and ± 20µrad, which

is compatible with the requirements outlined in Section 3.1.

3.5 Improvements to the CQP

3.5.1 Problems of the current design

During early testing of the CQP, one major issue discovered was with calibra-

tion parameters drifting over time. Checks, of the type detailed in Section 3.4,

indicated large errors in the values of the calibration parameters. Subsequent

re-calibration of the CQP would lead to improved performance, but only for

a short period of time. In the course of investigating the source of the drift

many calibration procedures were carried out. Figure 3.15 shows the drift in

the measured calibration parameters as a function of time.

The most noticeable shift is a change in the value of θx between the 2nd and

3rd calibrations of over 8 millidegrees (130µrad). A large number of potential

sources of the drifts were investigated including mechanical deformation of the

CQP structure, drifts in the electronics, temperature sensitivity, systematics

in the CMM, movement of the diode elements, possible birefringence of the

beamsplitter and issues with the calibration procedure itself. Only negligible

effects were found from any of these potential sources. One clue was in the

fact that the drift in the distance parameters is noticeably less than the drift
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Figure 3.15: Plot showing the drift in CQP calibration parameters over a time

period of 2 months, values are residuals with respect to the mean calibration

parameters. One millidegree is equal to 17.5µrad.

in the angular parameters. Because the origin of the CQP is located beside the

beamsplitter (and consequently QPD1), the effect of any change in the beam

path to QPD2 couples significantly more to the angular calibration parameters

than to the distance parameters. The drifts in the parameters then indicates

that the source is probably somewhere in the path to QPD2, and not related

to QPD1 or the beamsplitter.

The problem was eventually determined to be in the mirrors, with the most

likely cause being expansion or contraction of the small spots of glue securing

the mirrors to the Invarr mounts. Due to the path being folded, a change

in angle of mirror 1 of 20µrad will move the beam at QPD2 by ∼ 7µm.

This corresponds to expansion or contraction of one of the glue spots by only

∼ 500 nm. Schedule implications for the construction of the LISA Pathfinder
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OBI (see Chapter 5) meant that little time was available to fully investigate

this phenomenon or to implement a revised design of CQP. Instead, the two

mirrors were removed from the CQP and QPD2 was moved to the location

of mirror 1. The unavoidable side effect of this was to decrease the optical

baseline from ∼ 44 cm to approximately 12 cm. This increased the angular

uncertainty involved in centring the beam on the CQP to 15−20µrad (± 2µm

over 120 mm). Despite the drawbacks, it successfully solved the issues with

drift in the calibration parameters and the reduced angular accuracy is still

within the required range. A photo of the modified CQP can be seen in

Figure 3.16.

QPD 1

QPD2

Beamsplitter

Figure 3.16: Photograph of the modified CQP, QPD2 has been moved to the

previous location of mirror 1.

A similar effect will also be present in the beamsplitter, which is mounted

in an identical way to the mirrors. However, since the path of the reflected

beam is only about 20 mm to QPD1 the effect on the calibration parameters
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is negligible, and the coupling of beamsplitter angle to lateral displacement of

the transmitted beam is very weak.

3.5.2 The mkII CQP

One obvious way to improve the CQP is to revise the design to not be reliant

on glue for securing components. This will allow a longer optical baseline

and improved accuracy over the modified CQP. A new version of the CQP is

currently being designed, and will be constructed from a Zerodurr baseplate

and use hydroxide catalysis bonding to secure the mirrors and beamsplitter.

The QPDs can be mounted in either Invarr and glued down or preferably

fused silica or Zerodurr mounts which are also bonded.

3.6 A measurement of the optical centre of a

beam

As was briefly discussed in Section 3.1, there are two obvious ways to define

the centre of a beam; the power (or intensity) centre and the optical centre.

The CQP uses the power centre as its definition, and this was adopted as the

definition of beam centre for LISA Pathfinder. For a ‘real’ beam, the power

centre and the optical centre are liable to be different. Information on the

degree of how difference between these two definitions could be important for

developing beam measurement systems for LISA.
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3.6.1 The diffraction sensor

A precise measurement of the optical centre is difficult. One way to do it is

to use the diffraction pattern of the beam made by a cross hair. Viewing the

diffraction pattern on a CCD camera and symmetrising the diffraction pattern

by moving the cross hair will place the cross hairs close to the optical centre

of the beam. Since symmetrising the diffraction pattern involves an intensity

measurement using the CCD, this is not technically a pure measurement of

the optical centre, but it does closely approximate the optical centre.

A simple stable cross hair was constructed by mounting orthogonal wires into

an aluminium block. These were glued in place, and a glass cover slip was

glued over the top to protect the wires and ensure they were not disturbed.

This diffraction sensor was then calibrated, in a manner very similar to the

CQP as described in Section 3.3. Since there was only one cross hair however,

there is no direction component and so only two distance offsets, describing

the location of the centre of the wires in relation to the aluminium block are

required. Measurement of the diffraction sensor with the CMM then allows

a point to be constructed, which will represent the centre of the beam being

measured. By making several spatially separated measurements of a beam, the

fit to the centre points will give a line representing the beam. The diffraction

sensor is shown in Figure 3.17. Using the 2D cross-section of the measured

diffraction pattern, changes are observable for movements of the cross hairs

(which are 210µm wide) down to ∼ 1µm for a beam with 1 mm diameter.

Measuring a beam with this tool requires that care is taken over projection

effects of the measurement. It would be possible, for example, to have the body

of the diffraction sensor at an angle to the beam (say 1◦) and still produce a

good diffraction pattern. When the sensor was measured, however, there is an
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Figure 3.17: Illustration of the diffraction sensor, shown measuring a beam

with the typical diffraction pattern from a 1mm beam inset.

unavoidable internal assumption that the cross hairs are square to the beam

so a rotation would lead to a point slightly offset from the true centre being

constructed. This is a cosine effect though, so it is a weak function of angle.

Requiring that this effect is < 1µm gives a constraint that the body of the

diffraction sensor is kept to within 0.5◦ of the beam axis. In practice, the sensor

is used with a rail system to slide it along the beam for multiple measurements.

Using the CMM it is possible to align this to < 0.1◦ to the beam with ease,

thus keeping the projection effects at an insignificant level.
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3.6.2 Comparing the diffraction sensor to the CQP

Using a stable reference beam, measurements of its position were made with

both the CQP and the diffraction sensor as a means to assess the collinear-

ity of the two measurement techniques. Two CQP measurements and four

diffraction sensor measurements were made over a range of ∼ 300 mm, giving

four measurement points per device. Internal to each device, the points all lay

< 1.5µm from the reconstructed beam line indicating a good fit to the beam

for each technique. To asses the collinearity, the distance from one measured

beam to the other was calculated at two spatially separated planes, 300 mm

apart. This process was then repeated a number of times. The results are

illustrated in Figure 3.18 in which the x-axis (pointing out of the page) is the

specific measured beam from the diffraction sensor for each measurement. The

relative position of the CQP measured beams are plotted at the two planes.

The plot shows that not only is there a spatial separation of the two beams,

but also an angular separation too since the distance from one measured beam

to the other changes along the length of the beam. From the figure, we can

conclude that the two systems agree on the position and direction of a beam

to . 20µm in position and < 30µrad in angle.

Some difference in beam position was expected when measuring a real beam

with two different methods since a real beam will always have abberations

that could give different values to the power and optical centres of that beam.

The value of 20µm is interesting, because it is similar in magnitude to some

of the centring requirements that exist for alignment of the various beams

for both LISA Pathfinder and LISA (see Chapter 2). This means that while a

beam could be in specification under one definition, it could potentially be non-

compliant under the other definition. The angular deviation is also interesting,
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the good beam fits internal to each measurement suggest that is a systematic

effect, possibly of the beam itself but more likely related to the CMM. The

value of 30µrad is below the combined CMM measurement accuracy for the

CQP and the diffraction sensor, so it is difficult to conclude much from this.

The CQP was developed to enable construction of the LISA Pathfinder OBI,

for which the power centre was chosen to define the beam centre. For LISA,

which potentially has increased requirements on beam centring, further inves-

tigation of the differences between the definitions of beam centre and their

relevance to LISA is required.
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Figure 3.18: Plot showing the relative coaxiality of multiple CQP measurements

against diffraction sensor measurements of a single beam. For each of the

three measurements shown, the stable beam was measured with both the CQP

and the diffraction sensor, and the x-axis represents the specific diffraction

sensor measured beam associated with each CQP measurement. Therefore, the

uncertainty in the position of each of the CQP measurements is the combined

error of the diffraction sensor and the CQP, around ± 10µm and ± 30µrad.



Chapter 4

Alignment and construction of

precision interferometers

The construction of fully bonded monolithic interferometers like those intro-

duced in Chapter 2 presents some challenging requirements. In addition to

the ability to measure a beam to the few µm and µrad level as discussed in

Chapter 3, we must also be able to manipulate the beam (or more accurately,

an optical component which will affect the beam) at this level of precision.

Many of the alignment requirements (such as test mass centring for example

[35]) require alignment in four degrees of freedom - two directional and two

angular. Such control is extremely difficult to achieve simultaneously. One

possible solution is to separate out the alignment into two stages with, in each

step, two degrees of freedom (one directional and one angular) being controlled.

This is illustrated in Figure 4.1. In this example a beam is incident on a mirror

along the x axis and reflected through 90◦ along the y axis. In this case we

restrict the beam to the x-y plane, eliminating the degrees of freedom θ and z.

Actuation of the mirror around φ and along the line y = x will then adjust the

56
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beam in x and φ. These are designated as the ‘in-plane’ degrees of freedom.

y

z

x

η

θ

φ
Mirror

Beam

Figure 4.1: Diagram showing the coordinate system and the degrees of freedom

for adjustment of an optical beam.

The z and θ degrees of freedom (the ‘out-of-plane’ degrees) can be controlled

through manufacturing tolerances. By having a sufficiently flat baseplate,

components which have their reflecting surfaces sufficiently perpendicular to

the bonding surface, and a uniform bond layer, a beam which is injected into

the interferometer with the appropriate alignment in z and θ will stay aligned

in these degrees of freedom at all points.

The requirements on how perpendicular a component will need to be, and how

flat a baseplate is required to be, depend on the layout of an interferometer

and the beam alignment tolerances required. Typically, large surfaces can

routinely be polished to have a global flatness of λ/41 over length scales of

100 mm and components can be created with perpendicular surfaces to sub-

arcsecond accuracy. The hydroxide catalysis bonding process gives a bond

layer which is typically ∼ 100 nm in thickness and sufficiently uniform that any

angular errors introduced through the bond layer being wedged are a second

1For specifications on optical flatness, the industry standard is to use a λ of 633 nm
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order effect, contributing small fractions of an arcsecond to perpendicularity

errors [36]. For most interferometers with beam path lengths of order 1 m,

these manufacturing tolerances typically give out-of-plane errors of the order

20µrad, which is broadly compatible with the typical alignment tolerances of

LISA Pathfinder and LISA discussed in Chapter 2.

4.1 Allocating alignment tolerances

One approach to the alignment of an interferometer would be to precision

manipulate every component, so that the final assembly was as close to the

nominal design as possible. This approach is unattractive however, since the

precision placement of components is time consuming. In many interferome-

ters the tolerances can be redistributed among the various components, leaving

a collection of components which can be placed with comparatively loose tol-

erances and another set which must be placed with increased accuracy. These

are classified as ‘non-critical’ and ‘critical’ components respectively. The dis-

tinction is best illustrated with an example.

Figure 4.2 schematically depicts a pair of simple Mach-Zehnder interferome-

ters. One, combined at BS4 and readout at PD2, is a reference interferometer

and the other, combined at BS2 and read out at PD1, is the measurement

interferometer which interrogates the Test Mass. If we require that the beam

is to be centred to within ± 25µm on the centre of the Test Mass, then clearly

component M1 must be precision placed in order to achieve this. Further, we

would wish for the two read-outs to have high interference contrast so the com-

bination beamsplitters BS2 and BS4 must also be placed with high precision.

The remaining components however are all non-critical. Errors in the place-

ment of BS1 can be taken up by altering the position of M1 and BS4 while BS3
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can be compensated by the location of BS2 and M2 similarly compensated by

BS4. By placing the tight alignment tolerances on three of the components,

we have halved the number of precision steps required to construct the in-

terferometer. It should be noted that this argument only applies to in-plane

alignment tolerances, the requirements on component perpendicularity and

baseplate flatness remain unchanged.

Beam 1

Beam 2

BS1

M1

BS2

BS4

BS3

M2

PD1

PD2

±25 µm

Test Mass

Figure 4.2: Schematic layout of a pair of Mach-Zehnder interferometers. Com-

ponent M1 steers the beam onto the Test Mass and components BS2 and BS4

combine the two input beams to give both a reference and a measurement read-

out signal.
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4.2 Template bonding

The tolerances on non-critical components is dependant on the alignment re-

quirements and specific layout of the interferometer. In general, it is usually

possible to use a metal template to define the location of such components.

This has the added advantage that several components can be bonded at once,

dramatically reducing the amount of time it takes to construct a bonded in-

terferometer. Figure 4.3 shows an annotated photograph of such a template,

used for part of the construction of the LISA Pathfinder OBI (see Chapter 5).

Adjustment ScrewsRising Screw

Kinematic Stops

Figure 4.3: Annotated photograph of a bonding template, used in the construc-

tion of the LISA Pathfinder OBI which can be seen underneath.

The underlying principle is that the components are located against three ball

bearings, which form a set of kinematic stops which define the location of the
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component (shaded green in the figure). The reflecting/splitting surface sits

against two ball bearings which are on the same side (the front locating ball

bearings). These define the optical position of the component and the third

ball bearing controls the component in the insensitive direction parallel to the

surface. The template sits slightly above the baseplate surface on three ball

bearings, and the entire assembly is inclined to an angle of ∼ 5◦ so that the

gravitational restoring force holds the component against the stops.

The x-y position of the template is set with another set of kinematic stops,

which hang underneath the template and locate against the sides of the bench.

Two are on the side which is raised to provide the inclination and they hold

the template in place and one on an adjacent side. It is possible to have these

as simple ball bearings, but in the case of the template shown in the figure,

they are attached to fine pitch threaded screws. This provides adjustment of

the entire template in the plane of the bench. Three additional screws can

also be seen in the figure. These are to raise the template up from the surface

of the bench once the bonds have cured to allow the template to be removed

safely without risking damage to the optical surfaces.

4.2.1 Template alignment and accuracy

The template shown in Figure 4.3 was manufactured using a 5-axis CNC (Com-

puter Numerical Control) vertical milling machine, manufactured by HAAS,

model VM-2SW [45]. Flat bottomed holes were machined into the brass tem-

plate body and tightly toleranced 4 mm stainless steel ball bearings were glued

into these holes. The use of the high accuracy CNC mill already ensures a

high degree of accuracy in the manufacture of the template, but further opti-

misation is possible.
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The holes have to be machined with respect to the brass template, therefore

tolerance errors in the size of the brass will couple systematically into the

location of the holes. Angular systematics are also possible, and the machine

itself has an associated error of 10− 20µm. Since the templates have adjuster

screws defining the position in x and y, we have the ability to compensate for

these errors.

By measuring the actual location of the ball bearings using the CMM, the

true positions can be compared to the nominal positions which come from the

master CAD model. This will give a set of projected angular and positional

deviations. The angular deviations come from the combined error of the two

front locating ball bearings. Coordinate rotations and translations can then

be applied to the measured values, minimising the deviations to obtain a best

fit of the manufactured template to the ideal model. For a specific template,

it is also possible to again apply a critical and non-critical subdivision to the

components, optimising the template position further to reduce errors on one

component at the expense of another.

Using the optimised positions of the ball bearings, we can calculate a set of

target coordinates in the reference frame of the optical bench. When the

template is in place on top of the optical bench, the ball bearing positions can

be measured in the bench frame and iteratively aligned to the correct position

using the the CMM and the three adjuster screws. This can typically be done

to an accuracy of a few µm.

Table 4.1 compares the projected positional and angular errors in the place-

ment of components before and after the optimisation process. The template

was used in the construction of the LISA Pathfinder OBI.

The baseline of the two front locating ball bearings in the LISA Pathfinder
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Table 4.1: Projected positional and angular errors of the components to be

bonded by a template, before and after the optimisation process. The component

names correspond to those given in Figure 2.4 on Page 20. In this specific case,

BS11 was given a large angular deviation to reduce the errors on the other three

components, since the beam reflected from BS11 propagates to a power monitor

photodiode. This is a single element device and as such has extremely loose

alignment tolerances.

Component Before optimisation After optimisation

Number Position (µm) Angle (◦) Position (µm) Angle (◦)

BS11 23.4 0.005 36.1 0.155

BS4 16.1 0.089 11.4 0.061

BS9 20.1 0.146 6.4 0.004

BS6 35.4 0.216 22.9 0.066

templates was 10 mm, which is why deviations of only ∼ 30µm can couple to

produce angular deviations at significant fractions of a degree. In the above

example, the beam reflected from the first component only had a short baseline.

This allowed it to have a larger angular error assigned to it to give the other

components smaller angular deviations. If we take as a worst case typical

deviation ∼ 0.1◦, this will result in a lateral beam deviation after a path

length of 0.5 m of ∼ 1.7 mm. Provided an optical layout has sufficient clear

space around critical components to allow for movement to compensate for the

accumulated deviations, this is an easily manageable error build-up.
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4.3 Precision bonding

The bonding of critical components requires extremely fine control over the

in-plane degrees of freedom, ideally adjusting the component down to the few

µrad level of precision. As with template bonding, using a system of three

kinematic stops is the preferred method to locate a component. For precision

control, we can actuate the two front locating stops. This provides a mecha-

nism for adjusting the component in place on the optical bench, provided it

is free to move on the surface without optical contacting. However hydroxide

catalysis bonding only allows adjustment of a component for 30− 60 seconds

after application of the bonding fluid. This is insufficient time to align the

component to the required accuracy. If a slowly evaporating buffer fluid (such

as octane) is placed between the component and the baseplate then an iterative

alignment is possible, applying the buffer fluid and adjusting, then reapplying

and readjusting iteratively until the component is in its desired position. Once

aligned, the bonding fluid can be applied and the component relocated against

the stops. To prevent contamination to the bonding surfaces, the buffer fluid

must have a very low evaporation residue. This technique was originally de-

veloped for construction of the prototype optical bench in Glasgow and for the

engineering model of the LISA Pathfinder OBI, and has since been advanced

at Glasgow for the building of the LISA Pathfinder flight model [27].

4.3.1 Control of the component

The adjustable kinematic stops used are ruby balls on carbon fibre shafts, these

are attached to piezoelectric linear actuators which have 10 nm step size over a

range of 30µm. These actuators are then attached to manual translators which

give course control at the 10µm level over 10’s of mm. The third stop (or side-
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stop) is stationary since this only positions the component in the insensitive

lateral degree of freedom. The actuators are shown in Figure 4.4.

Piezo Actuator

Component

Ruby Ball

Figure 4.4: Photograph showing the precision component actuators.

The two front locating stops allow full control over the in-plane degrees of

freedom of the component. See Figure 4.5. Common mode actuation of both

stops will give a lateral translation of the beam, with the magnitude being

2/
√

2 times the length of the stroke for a 45◦ reflection. Differential actuation

will give an angular translation in φ, i.e. about z. The magnitude of this

is dependant on the baseline between the stops. For LISA Pathfinder, the

components were between 15 and 20 mm wide, and the stops were typically

10−12 mm apart. This results in a 1µm differential movement of the actuators

rotating the component by 100µrad, which is a beam rotation of 200µrad.

Achieving alignment requirements at the few µm and ∼ 20µrad level therefore

requires sub-micron control over the actuators.
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Figure 4.5: Diagram illustrating control over the in-plane degrees of freedom

of a component using two precision adjustable actuators.

4.3.2 Alignment to a target

Broadly, there are two types of precision alignment: alignment of a beam to

an ideal beam, such as aligning to a Test Mass nominal reflection point; and

alignment of a combined beam.

For alignment to an ideal point or beam direction, the CQP is used. As dis-

cussed in Chapter 3, the CQP is calibrated with the result that the nominal

beam vector which will be centred on both photodiodes is known with re-

spect to the metal structure of the CQP. Figure 4.6 illustrates the alignment

of a component to an ideal beam. The theoretical beam, shown as a black

dashed line in the figure, is generated with respect to the baseplate geometry.

The CQP nominal vector (shown as a red dashed line) is then aligned to be

coincident with the theoretical beam through an iterative alignment process

using the CMM. The transfer function of the hexapod coordinate frame (on

which the CQP is attached) to the reference frame of the optical bench is then

established, such that the deviations of the CQP nominal vector from the the-
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oretical beam can be quickly derived into a set of translations and rotations

of the hexapod in order to achieve optimal relative alignment.

x

y

φ

CQP

Beam

Theoretical Beam

CQP Nominal

(x1,y1)(x2,y2)

Figure 4.6: Diagram showing the principle behind the precision alignment of a

beam to a nominal beam, such as one which is to be incident on a Test Mass.

The component - floating on the buffer fluid - can then be adjusted using

the actuators. This will adjust the beam pointing towards the CQP, and

consequently change the read-out position of the beam on the two photodiodes.

These positions are read out as cartesian spot positions at the photodiodes,

called (x1, y1) and (x2, y2) (see Section 3.2.3). Note that these x and y are

different from the x and y of the reference frame. With the CQP nominal

vector coincident with the theoretical beam, any beam which will read out as

being centred on the two photodiodes (i.e. x1 = y1 = x2 = y2 = 0) will then

have the same equation as the theoretical beam.

For alignment of a combination point, the interference contrast provides one

possible error signal for relative beam alignment. This simply requires that

a single element photodiode be placed on the beam in order to calculate the

contrast value. Contrast is, however, a relatively weak function of beam prop-

erties. Differential wavefront sensing (DWS) signals are considerably more
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sensitive, and are also very relevant for LISA Pathfinder (See Section 2.2.1 on

Page 12 and Chapter 6). DWS is read out using a quadrant photodiode, and

provides an error signal at a combination point that is sensitive to relative

beam movements at the ∼ µrad level, with the goal being to minimise the rel-

ative wavefront tilt. A single quadrant photodiode, centred on the recombined

beam to a few 10’s of µm is sufficient to provide a good DWS signal.

4.3.3 Achievable accuracy

The minimum increment of the piezoelectric actuators is of order 10 nm, which

is sufficient to actuate the component angle down to sub µrad level. Typically,

the repeatability of taking the component away and replacing it with more

buffer fluid or bonding fluid determines the ultimate accuracy of the precision

bonding technique. The repeatability is variable with specific set-up, but typ-

ically is better than 100 nm at a single stop, giving angular repeatability of

a reflected beam at < 20µrad for a component which is of order 2 cm wide.

A final ‘tweak’ of the component is possible once the bonding fluid has been

applied, but the short time frame in which this can be achieved, combined with

the possible risks, makes this an unattractive option in all but the worst-case

circumstances.

A plot showing the CQP read-out during the final alignment stages of a compo-

nent (specifically FIOS1 on the LISA Pathfinder flight model OBI, see Chap-

ter 5) is shown in Figure 4.7. The two time series in the figure are the in-plane

spot positions at the front and back photodiodes (x1 and x2). The CQP was

positioned ∼ 300 mm from the component, and the inter photodiode spacing

is 12 cm. The accuracy of alignment was at the few µm and 10µrad level,

which is below the typical alignment requirements for LISA Pathfinder and
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LISA optical alignment.
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Figure 4.7: CQP read out of the final alignment stages of a component with

precision bonding. The two traces represent the in-plane spot positions of the

beam on the front and back photodiodes of the CQP. During the adjustment

phase, the peak-to-peak movement of the two traces (± 1.5µm) demonstrates

the repeatability of placing the component back against the stops. The sepa-

ration between the two traces, over the baseline of the QPD’s (120 mm) then

yields the angular deviation of the beam from the theoretical beam, in this case

10µrad.



Chapter 5

Construction of the LISA

Pathfinder optical bench

interferometer

The optical bench interferometer for LISA Pathfinder, introduced in Chap-

ter 2, is one of the core components of the spacecraft. This chapter details the

construction process of the Optical Bench Interferometer (OBI) and the accu-

racy achieved in relation to the requirements outlined in Section 2.2.2. Two

OBIs were built, a flight model and a flight spare. The construction process

detailed is identical for both OBIs, with the exception that, at the time of

writing, the flight spare has not been fitted with flight photodiodes.

Throughout this chapter and also in Chapter 6, extensive references will be

made to the coordinate frame of the OBI, the OBF (optical bench reference

frame). The OBF is represented diagrammatically in Figure 5.1, but broadly is

established such that the origin lies in the centre of the OBI, with the surface

of the bench forming the x-y plane. The x-axis is in the direction of test

70
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mass 1, and positive z points up from the surface of the OBI [35]. The OBF

is defined by measuring a series of points on the surfaces of the OBI with

the CMM. Care is taken with the measuring routine to ensure that the same

frame is constructed each time as the repeatability of the frame is crucial to

the alignment strategy.

y

z

x

η

θ

φ

TM1

TM2

Figure 5.1: Diagram illustrating the coordinate frame of the OBI.

5.1 Alignment plan

Chapter 4 introduced the principles behind the construction of precision mono-

lithic interferometers like the OBI. The exact sequencing of the construction,

and the techniques used, is dependant on the specific layout. Extra care must
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be taken to ensure that beams which may be critical to the alignment of one

component are not inadvertently blocked by another previously bonded com-

ponent. For the OBI a carefully conceived alignment plan was developed which

separates the construction out into 17 individual stages. These are illustrated

graphically in Figure 5.2, and summarised as follows:

• two stages to precision bond the fibre injectors using the CQP as a target;

• six template bonding stages, comprising a total of 14 components;

• two stages to precision bond the optics directing the beams to the two

test masses, using the CQP as a target;

• three stages to precision bond components that together determine path

length matching;

• four stages to precision bond the beam combiners for each of the inter-

ferometers.

5.1.1 Fibre injectors

To meet the beam stability requirements for LISA Pathfinder, custom quasi-

monolithic fibre injectors were designed and constructed for the OBI, called

the FIOS (fibre injector optical subassembly). Specific details of the design

can be found in [46] and [47], but broadly it consists of a fused silica mounting

block into which a single mode polarisation maintaining fibre is glued using

an optical adhesive. Strain relief is applied and the front face of this block

is then polished flat with an 8◦ angle to mitigate against back reflections.

This block is then hydroxide catalysis bonded to a small fused silica baseplate,

20 mm× 33 mm× 5 mm. A collimating lens - itself glued into a silica U-groove



5.1 Alignment plan 73

M5 BS10

PDA1

PDA2 PDRA

PDRB

PD1B

PD1A

PD12A

PD12B

PDFB

PDFA

TM1

TM2

FIOS 1

FIOS 2

Zerodur 
Baseplate

2

3

4

5

6 7

8

910 11

121314 16

17

1

FIOS (CQP)
Non-critical (Template)
Test Mass steering (CQP)
Recombiners (DWS)
Path length matching (CQP)

BS16
BS1 BS2

M11M12

M14

M1

BS3

BS11 BS4

BS9 M6

BS6

M10

M15

M8

BS5

BS8

BS7

M4
15

Figure 5.2: Diagram showing the bonding order for the OBI components.

- is then precision bonded to the baseplate to produce a collimated beam.

Finally, a polariser is glued after the lens to clean up the output polarisation

state from the fibre. This creates a small, stable and rugged subassembly which

can then be bonded to the OBI. An annotated picture of a FIOS can be seen

in Figure 5.3.
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Figure 5.3: Annotated picture of a qualification model FIOS.

The alignment of the FIOS with respect to the optical bench is critical. In

line with the philosophy outlined in Chapter 4, control over the out-of-plane

degrees of freedom of the beam requires that the beams are launched onto the

optical bench parallel to the x-y plane to within ∼ 25µrad and within 20µm

of the nominal beam height. The rapidly diverging beam from the fibre creates

a situation where the beam angle is a very sensitive function of the lateral lens

alignment, the result is that creating a FIOS where the beam emerges parallel

to the baseplate through tolerancing alone is virtually impossible.

The solution is to bond the FIOS to an intermediate post via its side. In this

way, the height and out-of-plane angle of the beam can be controlled through

precision bonding. The intermediate post is a template bonded component and

is the first item to be bonded to the baseplate. Once cured, the entire OBI

can be oriented vertically which presents the side of the post as a horizontal

bonding surface. The CQP is positioned on the theoretical beam and the FIOS

aligned to it, ensuring the correct beam height and angle. This is illustrated
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in Figure 5.4.
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Figure 5.4: Annotated picture of the FIOS bonding procedure.

Figure 5.5: Photograph of a bonded FIOS pair on the flight model OBI.

With the first FIOS bonded in place and cured, the bench can be rotated

through 180◦ and the second FIOS can be bonded in place. A completed

FIOS pair is shown in Figure 5.5.
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The in-plane alignment of the beams from the FIOS is largely dictated by

the control over the lens during precision alignment and the orientation of the

central mounting post which is bonded using a template. This is a non critical

degree of freedom and is corrected by components further down the optical

chain (BS1 for example).

5.1.2 Template bonding

Over half of the components on the OBI were bonded using templates of the

type introduced in Chapter 4. While it would have been possible to bond all

the template components with a single template, the decision was made to

separate it out into 5 separate templates (originally 6, as indicated in Fig-

ure 5.2, but stages 7 and 11 were later amalgamated into a single template).

The reasoning behind the use of multiple templates was twofold. Firstly, by

use of the optimisation process described in Chapter 4, it allows extra control

over the template components to avoid a potential build up of errors through

the optical layout. Secondly, the more components bonded in a single step

the longer the time required, increasing the risk of particles contaminating the

cleaned bonding surface which could potentially lead to a failed bond.

5.1.3 Alignment to the test masses

The centring of the beams on the test masses is the most critical alignment

on the OBI. The z centring is governed by the FIOS alignment (which must

be parallel to the x-y plane throughout), and the y centring by the position of

BS1 and BS3 for test mass 1 and test mass 2 respectively.

Within the core assembly of LISA Pathfinder, there are multiple reference
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frames, most notably the OBF (the reference frame of the OBI) and the two

frames of the test masses IAF1 and IAF2. Importantly, the OBF frame defines

the master reference. That is, during integration of the spacecraft the test

masses will be positioned with respect to the interferometer as opposed to

vice-versa. This means that the two test masses have an exact theoretical

position with respect to the OBI (front face centred on the x-axis, at the beam

height and at ± 165 mm in x). The CQP can then be placed on this theoretical

beam to act as the target for the alignment.

In reality, there is a small change. The two ‘windows’ depicted in the optical

layouts are the optical windows which allow the beam to propagate into the

housings containing the test masses. These windows were not available dur-

ing the construction of the OBI and so their effects on the beam had to be

compensated. To maximise accuracy, the actual flight windows were profiled

by the manufacturer and the nominal optical model was adjusted to use the

properties of the real windows (as opposed to the nominal windows). With

no windows in place, the alignment can be (geometrically) compensated by

moving the test masses forward by ∼ 2.3 mm. This defines a slightly altered

position to which to align the CQP.

For alignment of the beam to test mass 1, everything preceding BS1 in the

optical chain was fixed requiring only the CQP to be positioned to the theo-

retical location. For alignment to test mass 2 however, the beam needs to be

reflected from a dummy test mass 1. This requires that the dummy test mass

1 be aligned normal to the OBI, since any angular deviation in this mirror will

couple as a positional error in the beam aligned to test mass 2. The nominal

optical distance between the two test masses is ∼ 364 mm, resulting in a 7µm

shift of the beam at test mass 2 for a misalignment of the dummy test mass 1

of just 10µrad. Compared to the test mass centring requirement of ± 25µm
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this places tight requirements on the alignment of dummy test mass 1.

In practice, the way this was achieved was by carefully measuring the positions

of the components and beams as the OBI was constructed. Using this data, an

‘as-built’ optical model was created which resembles the actual interferometer

as closely as possible. This model can predict where the beam reflected from

M1 should be for a well aligned test mass 1, providing a target location for

the CQP to be positioned to align the dummy test mass 1; this is shown

schematically in Figure 5.6. This same method was used to align the dummy

test mass mirror for the bonding of M1 itself; see Section 5.1.5.

Zerodur 
Baseplate

CQP aligned to TM2

Dummy TM1M1

BS3

CQP to align dummy TM1

Figure 5.6: Schematic showing the bonding of BS3, aligning the beam onto test

mass 2.
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5.1.4 Beam combiners

The alignments of the beam combiners for the four interferometers are also

precision bonding steps. To aid with phase measurement, we wish to maximise

interferometric contrast at the photodiodes. This, however, is a relatively weak

function of the overlap and tilt between the two combined beams. Of equal

interest is the differential wavefront sensing signal. As discussed in Chapter 2,

the DWS signal will be used for attitude control of the test masses by the

DFACS system, however underlying the DFACS algorithm is an assumption

that the DWS signal is linear with test mass angle. This is not generally

true, but for the FIOS beam size of ω0 = 650µm is a good approximation for

wavefront tilts of less than ∼ 400µrad (the linear range can be estimated by

calculating the angle subtended by λ/2 over the beam diameter). To allow

DFACS as much range as possible, the nominal DWS signal (i.e. for nominally

aligned test masses) should be as close to zero as possible, requiring that the

beam combiners be positioned to combine the two beams ideally to within

a few 10’s of µrad of each other. Although use of the DWS signals are only

required for the X1 and X12 interferometers, in practice all four interferometers

are aligned this way. The DWS readout at the reference and frequency noise

interferometers, while not essential for the science performance, is useful for

system verification and to ensure that the interferometer and phasemeter are

performing normally and that alignment has been maintained through launch.

For the bonding of BS10, the X12 combiner, both of the dummy test mass

mirrors were required. This was achieved in much the same way as described

for the alignment of the dummy test mass 1 for the alignment of BS3. For

test mass 2 the as-built optical model was used to generate the predicted beam

vectors for the nominally aligned test mass mirrors, and the CQP used to align

the mirrors to this. For test mass 1 however, an easier approach was possible.
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Since BS8, the X1 combiner was in place, it was possible to measure the DWS

bias value at the X1 interferometer for an aligned test mass mirror. With this

the test mass mirror could be aligned using a single quadrant photodiode at

one port of BS8, adjusting the mirror to get the expected DWS value.

5.1.5 Path length matching

There are three components on the OBI that are precision adjustable to facili-

tate path length matching between the reference, X1 and X12 interferometers;

these are M14, M1 and M8 respectively. As outlined in Chapter 2, matching

the relative path length differences between the reference and measurement

interferometers is desirable to minimise the coupling of laser frequency noise

to displacement noise, and a requirement was placed on the OBI that the path

length mismatches should be less than 1 mm [35].

The path length matching is achieved using the as-built optical model. With

the model, the desired position of a component can be optimised to provide

the required path length matching, taking into account the actual positions

and optical thicknesses of all the preceding components, including the optical

windows as described in Section 5.1.3 and the position of the test masses (the

test masses are aligned to the optical bench, therefore their exact location

with respect to the optical bench is known). Using this optimised position,

a theoretical reflected beam can be established to which the CQP can be

aligned, providing a target for bonding the component. In this way, path length

errors built in with the initial components can be compensated for in each

interferometer. Note that no such requirement is necessary for the frequency

noise interferometer. It has a deliberate path length mismatch (of order 0.3 m)

compared to the reference interferometer and the main requirement is that



5.2 Accuracy achieved 81

this mismatch is sufficiently large to provide a sensitive measure of frequency

noise. The precision of the mismatch is not important (although its value is

still known to high accuracy from the as-built model).

5.1.6 Photodiodes

In total there are eight quadrant photodiodes detecting the light from both

output ports of each of the four interferometers, and two single element photo-

diodes to provide error signals for the intensity noise servos. The photodiodes

were designed and constructed by the University of Birmingham, and inte-

grated onto the OBI by University of Birmingham staff on-site in Glasgow.

The photodiodes are made from Indium Gallium Arsenide (InGaAs) due to

its superior responsivity at near infrared wavelengths compared to comparable

Silicon devices. The active area is 5 mm in diameter with 50µm gaps between

the quadrants to minimise fluctuations in phase read-out due to beam jitter.

Figure 5.7 shows the OBI after the completion of all bonding steps but prior

to the integration of the photodiodes and Figure 5.8 shows the completed OBI

ready for transport.

5.2 Accuracy achieved

As discussed in Chapter 2 and specified in [35] and [48], there are a significant

number of key requirements that the OBI must fulfil in order to ensure the

performance of LISA Pathfinder.
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Figure 5.7: Photograph of the OBI after the completion of all 17 bonding steps,

ready for integration of the photodiodes.

5.2.1 Test mass alignment

One of the most crucial requirements is that the beams incident on the test

masses are centred to the nominal position to within ± 25µm. The out of plane

(z) centring was defined by the alignment of the FIOS and the manufacturing

tolerances of the components, and the in-plane (y) centring by the bonding of

BS1 and BS3 for TM1 and TM2 respectively.

The alignment values for the flight model and the flight spare are detailed in

Table 5.1, as deviations from the nominal reflection point. These values were

measured using the CQP, compensating for the optical window numerically as

described in Section 5.1.3. For test mass 1, the measurement is dominated by

the measurement errors associated with the CQP, of the order ± 4µm. For test

mass 2 there is an additional error in the angular positioning of the dummy

test mass 1 which couples to a displacement error in the alignment at test mass
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Figure 5.8: Photograph of the completed OBI, ready for integration into the

shipping container.

1; this will contribute an additional ∼ 5µm uncertainty.

Table 5.1: Alignment of the beams to the test masses for the flight model (OB

serial number 3) and flight spare (OB serial number 2) OBIs.

Flight Model (OB3) Flight Spare (OB2)

y (µm) z (µm) y (µm) z (µm)

TM1 -6 -15 -15 -6

TM2 -16 -7 0 -5

In practice, since the deviations from the nominal test mass reflection points

are known they can be compensated for during spacecraft integration. By

shifting the midline of the two test masses to the midpoint of the as-measured

reflection points the deviations from nominal can be further reduced.
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5.2.2 Interferometric performance

As described in Section 5.1.4, the four interferometer read-outs require to be

well aligned to ensure high contrast (> 80 %) and a small differential wave-

front signal (beam co-alignment less than a few 10’s of µrad). The accuracies

achieved on the flight model and flight spare are detailed in Table 5.2. The

‘overlap’ column gives the distance between the two beam centres at the pho-

todiodes, ‘DWS’ is the in-plane and out-of-plane differential wavefront signals

in degrees of phase difference (a full explanation of DWS, how it is calculated

and how these values were measured can be found in Chapter 6) and ‘Beam

Angle’ is the angle between the interfering beams as inferred from the DWS

values (and confirmed with measurements of the beams using the CQP). Note

that since the flight spare has not yet been fitted with photodiodes, the results

presented were measured with different photodiodes and at a different position

(off the bench due to access restrictions). Further, since this off-bench position

would not yield representative beam separations at the intended QPD loca-

tions, these were calculated from CQP measurements and using the as-built

model. While not adding a significant error, these values could change slightly

once flight photodiodes have been integrated.

5.2.3 Path length matching

To assess the accuracy of path length matching, two techniques were employed.

The first involved applying a frequency modulation to the laser. A sinusoidal

signal was applied to a piezo transducer in the laser, resulting in a modulation

of the laser frequency by ± 100 MHz at a rate of 20 Hz. By subtracting the

reference phase from the phase of the frequency noise, X1 and X12 interferom-

eters we can gain a measure of the relative frequency noise rejection between
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Table 5.2: Interferometric performance of the flight model (FM) and flight

spare (FS) OBIs. DWS is the differential wavefront sensing signal, in degrees

of phase difference and Beam Angle is the angle between the interfering beams.

‘In’ and ‘Out’ represent the in-plane and out-of-plane components of these

measurements.

Bench Interferometer Contrast Overlap
DWS Beam Angle

In Out In Out

Reference 95 % 8µm −2◦ −4◦ 8µrad 16µrad

FM Frequency 90 % 2µm −5◦ −5◦ 20µrad 20µrad

(OB3) X1 95 % 5µm 5◦ −2◦ 20µrad 8µrad

X12 92 % 5µm −18◦ 6◦ 70µrad 24µrad

Reference 95 % 7µm 2◦ 4◦ 8µrad 16µrad

FS Frequency 89 % 8µm 3◦ 5◦ 12µrad 20µrad

(OB2) X1 94 % 11µm 6◦ −5◦ 24µrad 20µrad

X12 91 % 15µm 8◦ −5◦ 32µrad 20µrad

the interferometers. Since the reference and frequency noise interferometers

have a deliberately large relative path length mismatch, the modulation will

couple strongly as an apparent large displacement peak at 20 Hz whereas the

frequency modulation should be largely rejected for well matched X1 and X12

interferometers. From Equation 2.1, frequency noise coupling is directly pro-

portional to path length difference, and thus the ratio of the amplitudes of the

displacement noise signals is the same as the ratio of path length differences.

Since the path length mismatch in the frequency noise interferometer is large

compared to the expected mismatch in the X1 and X12 interferometers, we

only require to know the frequency noise path difference to a few mm to infer

the other path differences to a potential accuracy of less than 100µm.
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Only the flight model was measured with this technique. The measurement

was performed in air, with dummy test mass mirrors aligned to within ± 2µm

of their nominal x position using the CMM and with the EM model optical

windows in place. The plot of the frequency noise rejection between the in-

terferometers is shown in Figure 5.9. From the plot, it can be seen that there

is just under 3 orders of magnitude of frequency noise suppression between

the frequency interferometer and X1 and X12. For the flight model, the path

length mismatch between the frequency noise and reference interferometers is

382.18 mm from the as-built model, giving a measured upper limit for the path

length mismatch between the X1 and X12 and the reference interferometers of

∼ 400µm, below the requirement of 1 mm.
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Figure 5.9: Plot showing the relative frequency noise suppression between the

frequency noise, X1 and X12 interferometers for the flight model OBI.
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It should be noted that this measurement is almost certainly noise limited,

probably due to a number of factors including the ambient environment and

the coupling of intensity noise into the measurement, which would not be

rejected in the same way as frequency noise.

The second method used to gauge the accuracy of path length matching was

the as-built Optocad model. Since the model is based around CMM measure-

ments of both the physical components and the beams (using the CQP) it is

a very accurate representation of the optical bench. Looking at the numeri-

cal outputs from the completed model, it suggests that the mismatch in path

length between the reference and both the X1 and X12 interferometers, for the

both flight model and the flight spare, is around 10µm. This is an extremely

small path length difference and one that is difficult to confirm by other means.

Assigning an error to the Optocad prediction is also difficult due to the com-

plicated build up of errors from successive CMM and CQP measurements. A

somewhat simplified error analysis of CMM tolerances suggests that the figure

should be correct to within approximately 40µm however.



Chapter 6

DWS Calibration of the OBI

The concept of differential wavefront sensing (DWS) and its importance in

LISA Pathfinder was briefly introduced in Chapter 2 and again in Chapter 5.

This chapter will describe the DWS technique in more detail and go on to

describe the DWS calibration process for the flight model OBI (OB3) and the

results obtained.

6.1 Differential wavefront sensing

Differential wavefront sensing is a method for determining the relative tilt of

two interfering wavefronts using only a quadrant photodiode. If the two beams

are centred on the diode, and there is a relative tilt between the two wavefronts,

then there will be a difference between the measured phases of the interference

signal across the diode. This is illustrated in Figure 6.1, which simplifies the

example to two dimensions using a two segment photodiode. On the top of

the diode, the red beam is leading the blue, tilted, beam. This produces a
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positive phase on that segment while on the bottom the red beam trails the

blue beam producing a phase of the same magnitude, but negative in sign.

+Φ/2

-Φ/2

Figure 6.1: Diagram illustrating the principle behind differential wavefront

sensing.

Since we can resolve Φ to small fractions of a wavelength, it is a very sensitive

read-out of the relative wavefront tilts, and therefore of the angular alignment

of the two beams. For LISA Pathfinder, the DWS signal is used to read-out

the angular positions of the test masses. These angular signals will be used

by the DFACS as the error signal for attitude control over the test masses in

the science mode (the drift mode discussed in Chapter 2). Key to this is the

assumption that the DWS signal is linear with changing beam angle (and thus

changing test mass angle), while not quite true it is a good approximation for

beam angles of less than 400µrad for beams of the size used on the OBI. To

ensure accurate control over the test masses, it is crucial for DFACS that this

system is calibrated end-to-end, and that the linear approximation is tested

over the measurement range. This requires that the calibration factors (called

k-coefficients) between test mass angle and DWS readout are known for both

test masses at all possible measurement photodiodes. These numbers are di-

mensionless, expressed in terms of degrees of DWS per degree of test mass

rotation.
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In total there are 12 k-coefficients to fully describe the system: two coefficients

to describe the φ and η angles of test mass 1 at the X1 interferometer, another

two to describe the orientation of test mass 1 at the X12 interferometer and

then a further two for test mass 2 at X12 to total six. However each interfer-

ometer is read out twice for redundancy (each has two photodiodes labelled

‘A’ and ‘B’) so we define these coefficients at both photodiodes for a total of

12 coefficients. These can be described by

kαx,y =
DWSαy
ζαx

(6.1)

where DWS is the differential wavefront signal at photodiode y, ζ is the angle of

test mass x and α is the orientation (i.e. φ or η). So, the coefficient describing

the in-plane coupling between test mass 1 and the ‘B’ photodiode of the X12

interferometer is kφ1,12B for example.

For a quadrant photodiode with quadrants labelled A-D as shown in Figure 6.2,

the two DWS signals can be computed from the individual complex amplitudes,

Φ, as follows

DWSφ = 〈
[

ΦA + ΦC

ΦB + ΦD

]
〉 (6.2)

DWSη = 〈
[

ΦA + ΦB

ΦC + ΦD

]
〉 (6.3)

6.2 Calibration procedure

In order to calibrate the DWS signal, we need to be able to measure indepen-

dently the angle of the dummy test mass mirrors with respect to the optical
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A

C

B

D

Figure 6.2: Diagram showing the labelling convention for the quadrants on a

QPD, looking at the active face.

bench. To simply determine the slope of the relation between test mass an-

gle and DWS, it is possible to do this with a well calibrated piezo controlled

mirror. However, this method would make determining the operating point

difficult and would also require good alignment of the pivot point to the OBI

to avoid piston effects. DFACS needs to know where the operating point is,

i.e. for what values of DWS signals are the test masses aligned normal to the

optical bench. Nominally this would of course be zero, but for a real system

there will be imperfections in the optical alignment resulting in a non-zero

DWS signal for orthogonally aligned test masses. By performing an absolute

calibration, and relating the angle of the dummy test mass mirror to the opti-

cal bench reference frame we can additionally define a set of DWS bias values,

to form the zero points for the DFACS control algorithm.

The chosen method was to use a very large mirror, mounted on top of a hexa-

pod and to measure its position and angle directly with the CMM. A relatively

large mirror is required to reduce the angular measurement uncertainty to ac-

ceptable levels. The mirror used was ∼ 120 mm in diameter which reduced

the CMM angular measurement error to less than 20µrad, with the hexapod

allowing actuation of the mirror at µrad level. Approximately, the angular



6.2 Calibration procedure 92

measurement accuracy of 20µrad over the ∼ 300µrad DWS range should be

sufficient to estimate the k-coefficients to within a few percent.

In operation LISA Pathfinder will have optical windows between the OBI and

the test masses. The presence of the optical windows (see Chapter 5), will

have an effect on the DWS bias values (i.e. the DWS values that will be used

by DFACS as the zero point for orienting the test masses) and k-coefficients.

The effect comes both from the extra optical path length introduced by the

windows and from the lack of parallelism of the windows. The windows are

manufactured from a special glass, OHARA S-PHM52 [49], chosen for its very

small dn
dT

. This glass is extremely difficult to polish, however, and the result

is that the windows are parallel to a few arc-seconds at best. This wedge

angle introduces a static change in angle to the beam on transmission that is

dependant on the magnitude of the wedge and on the rotation of the window.

The engineering model windows available are comparable to the flight windows

in thickness and refractive index, so can effectively replicate the path length

effect of the flight windows. However the rotational orientation of the flight

windows is unknown, therefore it is impossible to fully replicate the effect of

the wedge angle with the EM windows. The wedge angle will have greatest

effect on the DWS bias values (since it imparts a static, absolute, shift in beam

angle) whereas it will have minimal effect on the scaling which has a relatively

weak coupling to small shifts in beam angle. The path length effect will change

the beam parameters at the photodiode. This should have minimal effect on

the magnitude of a DWS value, but can effect the coupling of DWS to beam

angle. In light of this, the DWS bias values were determined without optical

windows (using the numerical correction for test mass x position), whereas the

k-coefficients were measured with the EM windows in place.

So far we have described the determination of the DWS operating points and k-
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coefficients. These are vital for science operation but are not the whole story.

In the initial acquisition phase the test mass angles may be far outside the

linear operation range of DWS, and possibly so far offset from their nominal

position that a DWS signal may not be detectable. In this situation the DC

beam position on the photodiodes will be used for an initial, coarse, alignment.

It is therefore sensible to test this alignment by characterising the DC beam

position read-out as a function of test mass angle over a large range. The full

calibration procedure then consists of four distinct parts:

1. Measurement of the DWS bias values for nominally aligned test masses

- without optical windows.

2. Measurement of the 12 k-coefficients, varying the dummy test masses by

small amounts out to around ± 100µrad (± 6 millidegrees) - with optical

windows.

3. Check the limit of DWS linearity by varying the dummy test masses by

larger increments out to around ± 700µrad (∼ ± 40 millidegrees) - with

optical windows.

4. Test of DC alignment, sweeping the dummy test mass mirrors until light

is no longer visible on the photodiodes - with optical windows.

The set-up used for the measurements is illustrated in Figure 6.3, with the

optical windows located in tip-tilt mounts to enable them to be aligned with a

2.5◦ inclination, as they will be in the spacecraft. The large mirror is mounted

on a hexapod, with the other test mass being replaced by one of the small

dummy test mass mirrors where necessary.
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Dummy TM1

Window 1
in Tip/Tilt

Mount

Window 2
in Tip/Tilt

Mount

Large Mirror
on Hexapod

Figure 6.3: Diagram showing the set-up for the DWS calibration of the OBI.

6.3 Results

The DWS calibration took place in-air, with the OBI located on the CMM

bed to allow measurement of the mirrors and windows (which were placed in

their nominal position) to take place.

6.3.1 DWS bias values

The DWS bias values, measured without windows in place, are shown in Ta-

ble 6.1. The dominant source of uncertainty for measuring the values in the X1

and X12 interferometers will be the angular measurement error of placing the

dummy test mass mirror normal to the OBI. Taking this to be ∼ ± 30µrad

and taking the DWS to angle coupling factor to be around 5000 (a reasonable

approximation, see Section 6.3.2) we can derive an uncertainty on the mea-

sured bias values of around ± 9◦ of phase difference. Note that, as discussed
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in Chapter 5, the DWS values for the reference and frequency noise interfer-

ometers are also given. Since both of these interferometers are static (i.e. they

have no moving components in either beam path) the DWS values should also

be static. This means they are a useful check of the integrity and function-

ality of the OBI, especially to ensure that beam pointing from the FIOS has

been maintained to a suitable level during launch and in the final operating

environment of LISA Pathfinder on orbit. The dominant uncertainty in these

values is likely to be beam deviation through air currents, which can effect a

beam at the few µrad level, or around 1− 2◦ of phase difference.

Table 6.1: DWS bias values for DFACS alignment of the test masses.

PD1A PD1B PD12A PD12B

φ η φ η φ η φ η

5◦ −2◦ 5◦ −1◦ −18◦ 6◦ 18◦ 6◦

PDRA PDRB PDFA PDFB

φ η φ η φ η φ η

−2◦ −4◦ 2◦ 4◦ −5◦ −5◦ 5◦ −6◦

The derived uncertainty of ± 9◦ is large compared to the majority of values

in the table. There is reason to believe, however, that the actual uncertainty

on these measurements is significantly better than the rough value calculated

above. This value is calculated based on the basic CMM measurement error of

± (1.5µm + 3µm/m). The mirror is measured by taking probe hits at various

points on its surface. In a worst case approach where the error is randomly dis-

tributed, the maximum angular error would then be the full magnitude of the

CMM error, with signs in opposite directions, over the 120 mm baseline. This

gives around 28µrad. However, under certain circumstances it is suspected

that much of this error is not randomly distributed, but has the same sign and



6.3 Results 96

magnitude. This component will then cancel as a common mode error when

calculating the angle. This is believed to be the case when making measure-

ments of very flat surfaces where the probe always approaches normal to the

surface, as was the case for measuring both the mirror and the OBI. Due to

the proprietary nature of the CMM and its software, verification of this is dif-

ficult. Some confidence can be gained, however, by remeasuring the DWS bias

values for the X1 and X12 interferometers. These results, shown in Table 6.2,

were measured in an identical manner to the original values. The results show

that the change in DWS values between the measurements was only a fraction

of the error calculated above, suggesting that a significant component of the

measurement error is not random.

Table 6.2: Original and remeasured DWS bias values for the four interferom-

eters of the Flight Model OBI.

PD1A PD1B PD12A PD12B

φ η φ η φ η φ η

Original 5◦ −2◦ 5◦ −1◦ −18◦ 6◦ 18◦ 6◦

Remeasured 6◦ −6◦ 6◦ −6◦ −18◦ 7◦ 18◦ 8◦

PDRA PDRB PDFA PDFB

φ η φ η φ η φ η

Original −2◦ −4◦ 2◦ 4◦ −5◦ −5◦ 5◦ −6◦

Remeasured −2◦ −6◦ 2◦ 6◦ −5◦ −4◦ 5◦ −5◦

6.3.2 Determination of the k-coefficients

To measure the k-coefficients, the large mirror was initially situated at the

location of test mass 1. The mirror was actuated, in steps of around 20µrad



6.3 Results 97

over ± 100µrad (∼ 6 m◦), verified by CMM measurement, first in-plane (φ)

and then out-of-plane (η). The smaller dummy test mass mirror was situated

at the location of test mass 2, using the DWS bias values from Table 6.1

to align it to the nominal location. The DWS signals from all X1 and X12

photodiodes were recorded as the mirror was actuated. The two mirrors were

then swapped, with test mass 1 in the nominal location and test mass 2 varied

in the same manner, recording the X12 interferometer DWS values.

All DWS signals were found to be highly linear over the full measurement

range. An example plot showing one data set, with a linear fit, is shown in

Figure 6.4. This is for the φ motion of test mass 1 at photodiode PD1B (kφ1,1B).

The fit was a least squares regression and the R2 statistic value was greater

than 0.99, as it was for all the fits.

The full results of the DWS calibration are detailed in Table 6.3. Additionally,

as part of the LISA Pathfinder project, simulations of the DWS performance

have been carried out by Gudrun Wanner from the Albert Einstein Institute

at the University of Hannover. The simulations are detailed in [50], and a

comparison of the simulated values and the actual values is given in Table 6.4.

Since the simulation was ideal and symmetric, only 3 k-coefficients are mod-

elled. The differences in sign are due to the use of a different handed coordinate

system in the simulation.

Agreement between the simulations and the measured values is within 10 %.

Given the ideal nature of the simulation (in terms of both geometric alignment

and beam properties) this is a good agreement.

Properly we expect an uncertainty, resulting from the CMM measurement

error associated in measuring the mirror. Strictly, this would be error bars

of ± 1.5 m◦ on the x−axis of the points in Figure 6.4. As discussed in the
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Figure 6.4: Plot showing the measurement data and least squares fit for one of

the k-coefficients.

preceding section, however, there are indications that much of the CMM mea-

surement error is common mode and cancels when measuring angles in this

manner. If the measurement error in the CMM was randomly distributed (i.e.

there was no common mode rejection), we would expect to see a large scat-

ter of the points in Figure 6.4 around the x−axis. Since we see a very linear

grouping of points - which is what we expect to see from simulation - we can

conclude that there is a high probability that the suspected common mode

error cancellation is taking place in the CMM for these situations.
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Table 6.3: Measured values of the k-coefficients for the OBI, in dimensionless

units of degrees/degree.

kφ1,1A kφ1,1B kφ1,12A kφ1,12B kφ2,12A kφ2,12B

4928 4977 4578 −4570 −5171 5211

kη1,1A kη1,1B kη1,12A kη1,12B kη2,12A kη2,12B

−4891 −4922 −4601 −4598 5220 5257

Table 6.4: Comparison of the measured k-coefficients with simulated values

from [50]

Coefficient Measured Simulated

kφ1,1B 4977 −4900

kφ1,12B −4570 4353

kφ2,12B 5211 −5619

6.3.3 DWS linearity tests

The DWS values are expected to be linear with test mass angle for test mass

angles of less than 150µrad (i.e. beam angles of less than 300µrad). Veri-

fication of this is important since applying the linear approximation outside

of the actual linear range could lead to unexpected behaviour of DFACS. An

identical procedure to that used to derive the k-coefficients was used, only this

time actuating the mirror in steps of 175µrad out to ± 700µrad (∼ 0.04◦).

An example plot, again for the φ measurement of test mass 1 at photodiode

PD1B is shown in Figure 6.5. The fit line in the figure is derived from the

k-coefficient. From the figure it can be seen that the system is linear in the

centre section out to at least 0.01◦ or 175µrad of test mass rotation, confirming
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that the DFACS approximation is valid. All 12 tests of the linearity produced

similar results.
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Figure 6.5: Plot showing a check of the DWS linearity with test mass angle for

test mass 1 at PDRB. The fit line is derived from the measured k-coefficient.

6.3.4 DC alignment tests

The check of DC beam position was conducted in an identical manner to the

previous two tests, this time varying the mirror by 0.05◦ increments out to

∼ ± 0.5◦. The normalised DC beam position was recorded as the mirror was

varied. This is a dimensionless number, normalised against the full power

of the beam, calculated such that a position of 0 corresponds to a perfectly

centred beam, with ± 1 being a beam entirely on one side of the diode. The

results, also for the φ motion of test mass 1 at PD1B, are shown in Figure 6.6.
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Figure 6.6: Plot showing a test of the DC beam read-out for large test mass

angles, the mode used for coarse alignment in LISA Pathfinder after initial

release of the test masses. Inset is a blow-up of the region between 0.4◦ and

0.5◦, highlighting sign change in the DC beam position. The dark level for the

measurement is less than 0.001.

The central region shows a clear linear relationship between beam angle and

test mass position, this is the region for which all (or virtually all) of the light

power is on the diode. Beyond this, some of the light power falls off the diode,

creating the non-linear change in DC beam position for test mass angle. In

the acquisition mode DFACS spiral scans the test mass, with the DC read-out

of the lateral position of the beam on a photodiode as the error signal for the

control system. One interesting point to arise from the test was that at very

large test mass angles the DC signal does not rise monotonically as would be

expected in a simple model but briefly decreases below zero before rising as
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expected. The scaling of Figure 6.6 is too coarse for this to be visible as it is a

small effect, but in the flat regions of the plot between 0.4◦−0.5◦, for example,

the signal is measurably below zero, corresponding to a test mass angle of

−0.5◦ rather than the true angle of +0.5◦. This is the region where the beam

is only just missing the diode, so it is incident on the structure immediately

surrounding the diode itself. This is a significant result, as the incorrect sign

of signal could potentially confuse a simple control system and so is something

which is of importance for DFACS during the acquisition phase. One likely

explanation is that the beam is scattering from the case surrounding the diode

and the diode bond wires onto the opposite side of the QPD, giving rise to the

incorrect sign of DC signal.



Chapter 7

LISA optical bench development

With the successful completion of the LISA Pathfinder flight model interfer-

ometer, work can now begin on developing the alignment, construction and

metrology techniques used to the level required for LISA. This chapter gives

an overview of LISA and describes the interferometry principle in detail before

looking at the specifics of progressing towards the LISA optical bench. Finally,

it concludes with the current state of development of a prototype of the LISA

OB being developed under contract from the European Space Agency.

7.1 The LISA mission

7.1.1 Mission description

LISA will have a solar orbit, at a distance of 1 AU from the sun and trailing

approximately 20◦ behind earth (70 million km). The plane of the constellation

will be inclined at 60◦ to the ecliptic, and will rotate through 360◦ in this plane

103
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over one solar orbit. This orbit provides high dimensional stability of the inter-

spacecraft distance in the measurement band without the need for additional

thruster burns [51] and allows determination of the direction of some constant

sources to within ∼ 10 arcmin over the course of the solar orbit, depending on

the signal to noise ratio [6].

The end points to which the inter-spacecraft distances are ultimately measured

are the test masses. Like LISA Pathfinder, they are gold-platinum alloy cubes

which are kept as close as possible to free-fall in the sensitive direction (i.e. they

follow geodesics). Each spacecraft has two test masses, such that there are

six in total, forming the ends of the three arms of the interferometer. The

projected sensitivity curve for LISA is shown in Figure 7.1. At frequencies

below ∼ 3 mHz, the residual acceleration of the test masses is the main limiting

noise source. Above 3 mHz the noise inherent to the metrology system is

limiting and at frequencies above 30 mHz this metrology noise is combined

with limitations from the arm length. This is because when the wavelength of

an incoming gravitational wave nears an integer multiple of the arm length,

sensitivity is reduced [52]. To reach the design strain sensitivity of 10−20 /
√

Hz

in the mid band, the end-to-end precision of measuring the test mass separation

must be around 10 pm/
√

Hz, and the residual acceleration noise of the test

masses must be of order 3 × 10−15 m s−2/
√

Hz [52, 53].

7.1.2 LISA interferometry

The LISA science read-out is a combination of various interferometric mea-

surements, which combine to measure the fluctuations in the separation of the

two test masses at the end of each arm. Like LISA Pathfinder, the interfer-

ometers are located on an optical bench (OB). The large distance between the
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Figure 7.1: Plot showing the LISA sensitivity curve, with the main limiting

noise source indicated for each frequency band [52, 21].

spacecraft necessitates a somewhat more complicated interferometric scheme

to that found in ground based detectors. For a single LISA arm, light from

the optical bench is sent through a ∼ 400 mm diameter telescope towards the

far spacecraft. Over the 5 × 109 m baseline, this beam will have expanded to

several km in diameter and only around 100 pW of light will enter the telescope

at the far spacecraft. The result of this is that the beam from the far space-

craft cannot easily be reflected back to the originating spacecraft like a tra-

ditional Michelson interferometer. Instead, the measurement is separated out

into thee components; the distance between the two optical benches (i.e. the

inter-spacecraft distance) and the distance between each optical bench and its

local test mass. This is known as a strap down scheme [52, 54, 55].

The interferometry uses multiple heterodyne interferometers. On each OB,
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there is light of three different frequencies: one from the local OB, one from

the other OB in that spacecraft, and one from the far spacecraft. The two

OBs on a single spacecraft are linked with a single mode optical fibre (called

the ‘backlink’ fibre), and light from the main laser associated with each optical

bench counter-propagates down this fibre providing each OB with the two local

beams at different frequencies. One possible operational mode, which negates

the need for absolute frequency references such as locking to iodine transition

lines [56], is to phase lock the lasers together in a chain. The two local lasers

on a space craft can be locked with a frequency offset of a few MHz. The two

lasers at the ends of an arm can also be phase locked together, again with a

frequency offset in the region of 10 MHz. Since this is repeated for all arms, all

the lasers in the entire constellation are then phase locked together, referenced

against an arbitrarily chosen master laser [52, 55].

The exact nature of the interferometry is best illustrated with a diagram,

shown in Figure 7.2. If the three spacecraft are designated A, B and C, then

a nomenclature xi,j can be defined where x is something we wish to describe

e.g. an OB, or light of a particular frequency or a test mass, i is the spacecraft to

which it is associated and j ∈ {1, 2}, since there are typically two of each item

on a single spacecraft, one for each arm. Using this nomenclature, everything

in the constellation can be uniquely identified. The isolation and control of the

test masses is identical to that of LISA Pathfinder, as described in Chapter 2.

On spacecraft A, OBA,1 is aligned with OBB,2 on the far spacecraft. The two

OBs at each end of an arm are subtly different. A polarisation multiplexing

scheme is used to separate out the transmit and return beams at each OB with

a polarising beam splitter (PBS), shown as a cube in the figure, providing the

separation. A single half-wave plate on one bench creates the polarisation

mismatch with the counter propagating beams between the spacecraft being
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Figure 7.2: Schematical representation of the interferometry in a single LISA

arm.

in orthogonal polarisation states. A polarisation steering system is also used for

the test mass read-out. The input vertically polarised light is first completely

reflected by a PBS towards the test mass, a quarter-wave plate between the

PBS and the test mass first creates circularly polarised light (which reflects

from the test mass at normal incidence) and then horizontally polarised light

as it passes back through the quarter-wave plate towards the PBS. This light

can then be transmitted through the PBS (separating it from the incident

beam), with a final half-wave place rectifying it to vertical polarisation before

the interference point.

On OBA,1, light from its primary laser at frequency νA,1 is transmitted to the

far spacecraft and interfered with a small portion of the return frequency νB,2

on OBB,2. Similarly, on OBA,1 the received light at frequency νB,2 is interfered

with a small portion of the transmit beam νA,1. The interference between νA,1

and νB,2 provides the signal SciA,1 on spacecraft A, and a similar interference

forms the signal SciB,2 on spacecraft B. These two signals combine to provide
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the read-out of the spacecraft separation (the Science Interferometer). The er-

ror signal for the offset phase locking of the two lasers is also derived from these

signals. The primary beam is also used to probe the test mass, and is interfered

with the swapped light from the other OB, νA,2 providing the read-out of the

test mass displacement relative to the optical bench at interferometer TMIA,1

(the Test Mass Interferometer). In addition there is a Reference Interferom-

eter, which is not shown in the figure for clarity. This is also an interference

between the two local beams, i.e. between νA,1 and νA,2 on OBA,1. It provides

two things, firstly an error signal with which to phase lock the two local lasers

and secondly the main phase reference for each optical bench which is required

for the displacement measurements. Movement of, e.g. TMA,1 will change the

phase of the heterodyne signal at TMIA,1. Just as in LISA Pathfinder, phase

measurements of the signal with respect to that of the stable reference signal

REFA,1 creates an output signal proportional to the test mass movement.

7.2 LISA design challenges

A prototype version of the LISA optical bench is currently being developed

with a contract funded from the ESA Core Technology program. This is a

collaborative project involving the University of Glasgow, the Albert Einstein

Institute at the University of Hannover, EADS Astrium GmbH and TNO in

the Netherlands. The bench is intended to be as representative of a potential

flight model optical bench as possible and is being designed and constructed

in Glasgow, with subsequent testing at the Albert Einstein Institute. EADS

Astrium GmbH are the prime contractor and TNO are producers of precision

actuators for integration onto the optical bench.

The effort to develop the prototype LISA optical bench is largely built upon
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the LISA mission formulation study, commissioned by ESA and completed by

EADS Astrium GmbH and EADS Astrium Ltd. The study produced a detailed

reference design for LISA, taking the science goal of a peak strain sensitivity

of 10−20 /
√

Hz in the mHz region, and deriving a complete set of requirements

which must be met to achieve this goal. To be truly representative, the pro-

totype optical bench must conform to the system level requirements derived

in the mission formulation study (i.e. telescope interfaces etc.), in addition to

fulfilling the basic measurement functions and performance required from the

measurement principle. A complete discussion of the system design is beyond

the scope of this thesis. The discussion which follows is limited to matters

specifically concerning the optical bench and is largely derived from [57]. An

overview of the complete reference design and top level requirements which

resulted from the formulation study can be found in [58].

For the purpose of the following discussion, we will concentrate on a single OB

and require a simplified nomenclature compared to that defined in Section 7.1.

In this simplified nomenclature the primary beam, that of the laser associated

with the OB and the beam transmitted to the far spacecraft is the Tx beam.

The second beam, the other local beam swapped down the backlink fibre with

the other OB of the spacecraft is the local oscillator and the third beam,

received from the far spacecraft is the Rx beam.

7.2.1 Requirements implicit from the measurement prin-

ciple

Based on the measurement principle outlined above, we can establish a fun-

damental set of requirements and functions which the prototype optical bench

must meet.
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• The optical bench needs to provide three distinct phase measurements; a

reference phase, a read-out of the test mass position and a measurement

of the inter-spacecraft displacement. These are the reference, test mass

and science interferometers discussed previously.

• There must be an on-bench optical path between the two fibre injectors,

to facilitate the swapping of a fraction of the Tx beam to serve as the

local oscillator of the other optical bench, and equivalently deliver the

local oscillator beam to this optical bench (the ‘backlink’ fibre).

• Polarisation optics should be used to allow separation of the beams prob-

ing the test mass, and the transmitted and received beams to and from

the telescope.

7.2.2 Requirements derived from the formulation study

We can further specify a set of requirements and functions based on the con-

clusions of the mission formulation study. At the system level the optical

bench must be able to interface with the other components of the spacecraft,

especially the telescope and the test mass, for which there are stringent optical

alignment criteria.

Interface to the spacecraft

The reference design for the LISA payload has the optical bench mounted par-

allel to the telescope primary mirror, with the inertial sensor housed on the

opposite size of the OB to the telescope. This requires that beams must be

directed out-of-plane from the OB surface, with the telescope entrance being

above the optical bench and the test mass underneath. The test mass reference
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location is directly in the centre of the OB, with the telescope entrance approx-

imately 50 mm from the centre. Mirrors, precision manufactured to provide a

45◦ angle and catalysis bonded to the OB, will be used to provide the out of

plane pointing. A CAD rendering showing the relative positioning of the three

parts can be seen in Figure 7.3.

Telescope Optical Bench Test Mass

Figure 7.3: CAD rendering showing the concept LISA architecture, with the

telescope, optical bench and inertial reference sensor (Courtesy D. Weise,

EADS Astrium GmbH).

In the orientation depicted in Figure 7.3, the diameter of the optical bench

is one of the key components driving the height of the spacecraft. Since an

increase in spacecraft height also implies an increase in mission cost, the opti-

cal bench must consume as small a footprint as possible. The reference design

from the formulation study was of the order 500 mm in diameter so any new

design should aim to keep to a similar size as far as is practical. For similar rea-

sons, the telescope cannot have an arbitrarily large magnification, the desired

output beam width of 400 mm coupled with the magnification of 80 results

in the telescope requiring an input beam diameter of around 5 mm. This is a

large diameter and performing all the functions on the optical bench with this
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beam size is impractical. Therefore, a beam expander is required to magnify

the beam to the telescope to the required size. The Rx beam will also be

similarly sized, so the portion of the Tx beam interfered with it at the science

interferometer should also be of the larger size to maximise the efficiency. All

other beams should be of a smaller size to minimise the size of the optical com-

ponents, and hence the overall size of the OB. A Gaussian beam of diameter

5 mm still has significant optical power at distances outwith this beam radius.

For the 1 W Tx beam, around 80 mW of optical power is outside this diameter.

However, the telescope itself has an internal aperture of 5.1 mm. This presents

a risk of scattering significant amounts of the Tx beam back onto the optical

bench with the incoming low power Rx beam. This has the potential to add

phase noise at the science interferometer that could swamp the science signal.

To minimise the possibility of straylight scattering back into the Rx path, a

clipping aperture will be located in the Tx path to the telescope. This will clip

the Tx beam at 5 mm ± 20µm, which is slightly smaller than the aperture of

the telescope. Enough space must be reserved for this clipping aperture and

its associated baffles to absorb the clipped beam power.

To aid in alignment and to monitor the length fluctuations between the primary

and secondary mirrors in the telescope, an ‘optical truss’ will be used. This

requires three local oscillator beams to be launched upwards from the OB

towards the far end of the telescope. Here they will be interfered with a small

sample of the transmitted beam (captured through pinholes at the peripheries

of the telescope exit). These optical truss beams must be launched from three

points, separated by 120◦ at a radius of 225 mm from the centre of the OB.
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Interface to the constellation

Although the LISA orbit has been carefully chosen for stability, there are

still periodic changes in the constellation over the course of an orbit. These

periodic changes require a variable angle between the Tx and Rx beam to

ensure that the Tx beam stays centred on the far spacecraft. To compensate

for these angle changes, the Tx beam requires to be actuated at the level of

around ± 6µrad. Since changes in the telescope would also impact on the Rx

beam, this actuation must be implemented on the optical bench level before

the two beams are multiplexed at a polarising beam splitter. On the optical

bench, the magnification of the telescope (× 80) increases the required angular

variation to ± 480µrad. The required mechanism must be highly stable both

in pointing and pathlength. Rising to the challenge, TNO have successfully

designed a mechanism which demonstrates the required performance, called

the point ahead angle mechanism (PAAM). A picture of a prototype PAAM

can be seen in Figure 7.4.

This mechanism, 74 mm× 40 mm in footprint, must be accommodated on the

optical bench at the location of the entrance pupil to the telescope (135 mm

from the telescope interface). With the presence of the PAAM on the Tx

beam in the critical path, it is desirable to have a direct optical readout of its

performance, so we require an additional interferometer, the PAAM Metrol-

ogy interferometer, which combines a sample of the Tx beam (after reflection

from the PAAM) with some of the local oscillator. This can directly read out

the attitude of the PAAM with DWS and provide direct pathlength stability

measurements. It further allows, if necessary, the means to provide a signal to

control the PAAM in a feedback loop, or a signal allowing unexpected angular

jitter to be corrected for in post-processing.
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Beam

Rotation Axis Piezo Actuators

Mirror

Figure 7.4: Picture of a prototype point ahead angle mechanism (Courtesy J.

Pijnenburg, TNO).

In the alignment phase of the constellation each spacecraft must align itself

in the correct plane and direct its transmit beams to the other spacecraft. To

aid in this process, a CCD camera is required. This camera will look into

the telescope and is envisaged as both a star tracker to aid with the initial

orientation and a wide field of view detector for the Rx beam to control the

fine alignment of the spacecraft. Candidate sensors are being studied by the

Albert Einstein Institute and have a footprint of around 50 mm× 50 mm.

Optical constraints

Unlike LISA Pathfinder where the heterodyne frequency is ∼ 1.6 kHz, LISA

will use multi-MHz heterodyne frequencies. To achieve high bandwidth, it

is necessary to use low capacity and hence small diameter photodiodes and

also locate suitable front end electronics as close to the diode as possible.

This means space must be reserved on the optical bench for representative
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electronics at the location of each photodiode. Currently, candidate designs

from both EADS Astrium GmbH and the Albert Einstein Institute are of order

50 mm square. The small diameter photodiodes also lead to tight requirements

on beam centring at the diodes. Performance simulations to determine the

exact tolerance are on-going but initial results suggest that beam centring

must be around a few microns. Since both the beam reflected from the test

mass and the Rx beam to the science interferometer will potentially be tilted,

imaging systems are required in front of the photodiodes at the test mass

interferometer and the science interferometer to ensure that the tilt is not

converted into a lateral beam displacement at the photodiode. The PAAM

metrology interferometer also requires an imaging system since the Tx beam

will be moving by very large amounts due to the actuation of the PAAM.

Straylight can introduce unacceptable noise if not controlled carefully. One

potential source of straylight are the optical components. All secondary sur-

faces will be anti reflection coated as a matter of course, but no anti reflection

coating is perfect and there will always be second order reflected beams from

a component. If the components are parallel sided then the higher order re-

flected beams will be parallel to the main beam, potentially allowing them to

re-enter the main beam by reflecting through another component at 45◦ and

provide a source of phase noise. This is especially dangerous if they scatter

back in from an unstable surface as the added phase noise can be larger than

the measurement signal. For LISA Pathfinder, the components were parallel

sided but were sufficiently thick such that the first and second order reflected

beams were separated by 6ω0. A detailed study of the propagation of higher

order reflected beams was undertaken to confirm that the chosen design was

satisfactory [38].

A better, although more complicated, approach would be to use components
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which have an angle between the front and back face in the in-plane direction.

This would result in the first and second order reflected beams being separated

by an angle, greatly reducing the risk of the stray light re-coupling back into

the main optical signal. Figure 7.5 shows the difference between the second

order reflected beams for parallel and wedged components.

WedgedParallel

Figure 7.5: OptoCad [39] model showing the second order reflected beam for a

parallel component, and one with a 3◦ wedge.

LISA will be extremely sensitive to straylight of all forms, especially in the

science interferometer where only 200 pW of Rx light is received. As a conse-

quence of this, wedged optics are preferred as they potentially make it easier

to minimise the coupling of higher order reflections. Initially, a layout based

on the usage of wedged optics for all the optical components was developed.

However, simulations based upon the layout brought to light an unexpected

consequence of using wedged optics on transmissive components. There are

several beams on the optical bench which will have an inherent jitter, such as

the beam reflected from the test mass (which is anticipated to have an angu-

lar jitter of around 150 nrad/
√

Hz). This jitter will cause the beam to scan

over the surface of a component by a small amount. If the component has

a wedge angle, then this movement will cause the beam to travel through a

variable length of glass, changing the optical path of the beam and coupling
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into the measurement as a direct source of pathlength noise. Figure 7.6 shows

the coupling of pathlength noise as a function of wedge angle. The model

used to calculate the result is based on geometrical optics, for the specific case

of the test mass interferometer. A beam is reflected from the test mass and

propagates 300 mm where it is incident on an wedged optical component at

angle θi = 45◦ + δθ (where δθ is the beam jitter of magnitude 150 nrad/
√

Hz).

The beam exits the component and propagates a further 150 mm to a detector.

The simulation computed the peak-to-peak change in optical pathlength from

the test mass to the detector caused by the beam jitter, as a function of the

wedge angle of the component. For the nominal 3◦ wedge angle, the added

displacement noise is around 7 nm/
√

Hz, several orders of magnitude above

the measurement signal. Indeed, the simulation shows that to suppress this

noise source to an acceptable level (i.e. << 1 pm/
√

Hz) requires that trans-

missive components are parallel to less than 10−4 degrees and ideally around

a few 10−5 degrees. This corresponds to components which are parallel to

within ∼ 1µrad, an extremely tight requirement, although not beyond the

capabilities of current manufacturing techniques.

As a consequence, the baseline position for LISA is to use parallel components

for all optics where there will be a transmitted beam, but to continue to use

wedge components for mirrors. The parallel optics must be sufficiently thick

to ensure that the main beam is separated from any second order reflections

by at least 6ω0, as was the case for the LISA Pathfinder optical components.

As a further measure, a full analysis of the propagation of second and third

order beams will be carried out ensure the design minimises the possibility of

these coupling into any measurement signal.

As with LISA Pathfinder, laser frequency noise is an important potential noise

source. LISA has far more stringent requirements on laser frequency noise due
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Figure 7.6: Pathlength noise induced inside a component as a function of wedge

angle, for an incident beam with a jitter of magnitude 150 nrad/
√

Hz.

to the huge mismatches in path length caused by the constellation arms being

of unequal length. One possible solution is to use a three stage frequency sta-

bilisation scheme to meet the science requirement. The first stage is a laser pre-

stabilisation system (such as locking to a cavity). The second stage is to further

lock the laser frequency to the arm length of the constellation. This could re-

sult in a frequency stability on the optical bench of around 280 Hz/
√

Hz. The

third stage, required to overcome the huge path length mismatch between the

two beams in the science interferometers, is a post-processing technique called

time delay interferometry. The technique involves synthesising an equal arm

length interferometer by combining the output of one interferometer with a

time delayed output of another, such that the frequency noise components are

common mode and cancel out [53]. For the optical bench, the frequency stabil-
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ity of 280 Hz/
√

Hz can be converted into a path length requirement. A relative

path length mismatch between the reference and measurement interferometers

of 1 m would couple as a displacement noise of 1 pm/
√

Hz. We would ideally

like the noise to be an order of magnitude below this, therefore path length

mismatches between the reference and the other interferometers should ideally

be at the 10 cm level or less.

Implications of redundancy

Due to the LISA mission lifetime of at least 5 years of science operations,

ensuring redundancy of all systems is considered to be vital. This includes

systems which have no redundancy on LISA Pathfinder such as the laser and

associated fibre feeds. On the optical bench level, this requires redundant pho-

todiodes on all interferometers, a redundant acquisition sensor and crucially,

redundant fibre feeds to deliver light to the optical bench. In order to achieve

redundancy, we must develop a fibre injector system which can switch between

two fibre feeds whilst simultaneously maintaining the alignment of the optical

bench at the few micron and 10− 20µrad level.

Two fibre injectors will be bonded to a small sub baseplate. The beams from

these fibre injectors will have orthogonal polarisation states such that they

can be combined into two collinear beams using a polarising beam splitter. A

half-wave plate, located inside a rotating mechanism (in development at TNO)

can then be used to correct the polarisation of the active beam back to desired

state. An output polariser will then be used to clean up the polarisation state

to around 1000 : 1. A CAD rendering of the concept design can be seen in

Figure 7.7. The two FIOS are conceptually very similar to those constructed for

LISA Pathfinder, shown in Figure 5.3 on Page 74. To provide added durability

against contamination of the small fibre end, a small wedged cover slip will be
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catalysis bonded to the front face of the silica block containing the fibre. This

will allow the beam to expand into silica for the first few millimetres and lower

the optical power density at the eventual output face.

Half wave plate
mechanism

Main/Redundant FIOS

PBS

Figure 7.7: CAD Rendering of the concept LISA redundant fibre injector sys-

tem.

The FIOS will be bonded to a mounting post using the same technique as de-

veloped for LISA Pathfinder, with the absolute alignment to the sub-baseplate

controlling the out-of-plane pointing of the beam for the OB (for a sufficiently

parallel sub-baseplate). The relative alignment between the two will control

the out-of-plane coaxiality of the main and redundant beams. The PBS can

then be precision bonded, controlling the in-plane coaxiality. This subassem-

bly, in combination with the waveplate mechanism and an output polariser,

forms a single LISA fibre injector system. The resulting design is relatively

large, with a footprint of approximately 130 mm× 60 mm. Two of these must
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be accommodated on the optical bench, one for the Tx beam and one for the

local oscillator beam.

7.3 Optical bench layout

Working to the requirements outlined above a detailed design for the prototype

LISA optical bench has been developed. Significant effort was put into the

design to ensure that it is manufacturable, i.e. that its design is compatible

with the alignment techniques developed for LISA Pathfinder. For example,

if a beam which needed to be measured with the CQP to allow the alignment

of a beam to the test mass were blocked by an already bonded component,

it would potentially render alignment to the test mass impossible. Thus the

design must ensure that such situations do not arise.

7.3.1 Constraints on layout

Fixed interface points

The first requirements that must be considered are those of the fixed optical

interfaces: the test mass, optical truss and telescope. There is some freedom

in the exact positioning of the telescope interface, in that it should be within

50 mm of the centre of the bench. What we are not free do to, however,

is arbitrarily define the orientation with which we launch the beam to the

telescope. The plane in which the point ahead angle is actuated must be

translated to the appropriate direction in the constellation. This requires that,

in a reference frame centred on the OB, with the surface forming the x-y

plane, the Tx beam must be launched towards the telescope interface mirror
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in a positive y direction. Since the centre of the OB is occupied by the mirror

reflecting the beam to the test mass, this leaves us only three locations in which

the telescope interface mirror can be placed: one to the positive x side of the

test mass interface; its mirror image on the negative x side; and a third to the

negative y side. This is shown on the left hand side of Figure 7.8. Further

restrictions come from consideration of the required beam geometry: firstly the

high power Tx beam should ideally experience an all-reflective path to minimise

the number of surfaces encountered, and thus the risk of straylight; secondly

the Tx and Rx beams must be multiplexed at a polarising beam splitter; and

thirdly, to extract a small amount of the Tx beam for the PAAM metrology,

and provide a small amount of light for the acquisition sensors, there must be a

further beamsplitter between the PBS and the telescope entrance. Taking into

account these considerations, plus the requirement to have the PAAM at the

entrance pupil to the telescope (135 mm from the interface position), we can

derive the arrangement shown on the right hand side of Figure 7.8. Due to the

short distance between the PAAM and the telescope entrance, symmetrical

versions of this layout through the x-axis are ruled out as they would lead

to the PAAM being inside the telescope entrance, or the telescope entrance

blocking beams. Therefore only this arrangement, and the symmetrical version

through the y axis, satisfy our requirements.

When this arrangement is tested in the three possible locations of the telescope

entrance, location 3 places the acquisition sensors off the edge of the baseplate

and so is not practical. Since symmetries in the x-axis result in blocked beams

or overlapping components, this leaves us with two choices: the exact arrange-

ment depicted in Figure 7.8 in position 1, or its mirror image about the y-axis

in position 2. The final constraint is the fixed location of the optical truss

interface points. For location 2 the positioning of the acquisition sensors be-

comes problematic, with the position of one optical truss point conflicting with
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Figure 7.8: Left hand side: The three possible locations for the telescope in-

terface that meet the requirements. Right hand side: Required beam geometry

from constraints on the Tx and Rx beam.

the required location of the acquisition sensors. This is shown in Figure 7.9.

Location 1 does not have this conflict and so is the only viable location for the

telescope interface location for these requirements.

With the geometry of the relevant portion of the OB fixed, the number of

suitable locations for many other components, especially the acquisition sen-

sors, PAAM metrology interferometer and the Science interferometer, become

limited.

Manufacturability

With these elements largely defined, the remaining components (the test mass

interferometer, reference interferometer, beam expander and the two fibre in-

jectors) will have their positions determined by:

• the beams already defined by the location of the telescope interface and

test mass interface;
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Figure 7.9: Diagram showing conflicts between the optical truss and telescope

interface location two.

• the desire to have path length matching to around 100 mm or better to

minimise the coupling of laser frequency noise;

• required alignment tolerances;

• consideration of manufacturability.

This last criterion is especially important and requires careful planning to

ensure that, for a given layout, there are no conflicts between alignment stages.

For the LISA OB this is significantly more difficult than for LISA Pathfinder,

in part due to the number of components and the complexity of the design,

but also due to having tightly toleranced beam alignments in the centre of

the OB (the test mass and telescope interfaces). In line with the alignment

philosophy described in Chapter 4, the 45◦ mirrors will only be used to control

two degrees of freedom, the other two critical degrees of freedom must be

controlled at the component immediately preceding the out-of-plane steering
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optics. This requires that for alignment of these interfaces we must be able

to measure the beams, i.e. there must be a clear path from the centre of the

OB to the outside to facilitate beam measuring with the CQP. Maintaining

such a clear path is not feasible in the overall layout due to space constraints

so these beams must be aligned early in the alignment plan, with later stages

‘filling in’ the area used to access the beams. As shown in Figure 7.8, these

two beams propagate in opposite directions: the test mass beam in a negative

y direction, and the telescope beam in a positive y direction.

Since both the beam to the test mass and the telescope originate from the

same fibre injector, that of the Tx beam, clearly this subsystem must be in

place first. Also, the Tx beam expander and the PAAM are required to direct

the Tx beam to the telescope. The local oscillator fibre injector, however, is

not required. Nor are any of the interferometers or the acquisition sensors.

This leaves them as the possible candidates for placing into the space required

for these alignment beams.

Alignment

The layout of the interferometer can also have an effect on the alignment

tolerances required of the various subsystems. The primary - or top level -

alignment requirements are on the various interfaces [57]:

• the Tx beam to the telescope must be aligned to the received Rx beam

to within 20µm to minimise noise from spacecraft jitter;

• the optical truss beams must be aligned to within 50µm of their nominal

position;

• the beam reflected from the test mass must be aligned to a precision of
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better than 35µm;

• the beams at the reference and test mass interferometers must be aligned

to within 50µm and 100µrad of each other to achieve good measurement

performance;

• the beams at the science interferometer must be aligned to within 25µm

and 50µrad of each other to achieve good measurement performance;

• all these requirements must be met for both the main and redundant

setting of the fibre injectors.

Based on these top level requirements, we can derive a set of secondary require-

ments. These are requirements placed upon the various subsystems - especially

the fibre injector system and the Tx beam expander - that they must meet

in order to satisfy the primary requirements. These secondary requirements,

however, are layout dependant. The layout dependence of these tolerances is

illustrated in Figure 7.10. If a beam from a FIOS is required to meet two

alignment tolerances of ± 10µm at two different distances, then the angular

(φ) and positional (h) tolerances on the FIOS for which it can meet the two

requirements is dependant on the distance to the points, and especially on the

distance between them, d. Since reducing d will increase the effective ‘field

of view’, it will also increase the allowable values of φ and h. For very small

d, or ideally two coincident points, the positional and angular tolerances can

be very large, so long as the beam still passes though the one point in space.

If they were separated by a metre however, then the beam would have to

be within 20µrad and a few µm of the nominal to be sure of meeting both

tolerances. From this, it becomes clear that the optical layout can then be

optimised to place all the tight interface alignments so as to minimise d, and

thus increase the derived tolerances on the subsystems reducing the complexity

of their alignment.
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Figure 7.10: Diagram illustrating the dependance of the layout on the positional

tolerances of a fibre injector.

7.3.2 Optical layout

Based on the requirements outlined in Section 7.2 and the design considerations

detailed above, a layout has been developed in Optocad [39]. The full layout is

shown in Figure 7.11, with the numbered annotations defined in Table 7.1. Due

to the complexity of the design, Figures showing the individual interferometers

and optical paths can be found in Appendix A for clarity.
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Figure 7.11: OptoCad [39] model of the prototype LISA optical bench. The

numbered annotations are defined in Table 7.1. The scale is in metres.
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Table 7.1: Legend for annotations in Figure 7.11.

No Description No Description

1 Fibre injector for the Tx

beam

11 PBS for beam steering to

the test mass

2 Tx Beam Expander 12 Test mass interface

3 Tx Beam Clipping 13 Test mass read-out interfer-

ometer

4 PAAM 14 Reference interferometer

5 PBS for Tx/Rx multiplex-

ing

15 PAAM metrology interfer-

ometer

6 Telescope interface (Tx

up/Rx down)

16 Optical truss 1

7 Rx Beam Clipping 17 Optical truss 2

8 Science interferometer 18 Optical truss 3

9 Acquisition sensors 19 Tx power monitor

10 Fibre injector for the local

oscillator beam

General features of the design

The layout utilises a footprint of diameter 560 mm, with the baseplate for the

prototype being 580 mm in diameter. This is slightly larger than the reference

design (which was ∼ 500 mm). This is due to a number of factors, chief

amongst which was the larger than anticipated size of subsystems such as

the photodiode imaging systems (designed by Alexander Sohmer from EADS

Astrium GmbH), photodiode electronics and redundant fibre injector system.

To help mitigate against second and third order reflections, all reflecting com-
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Interferometer
Relative mismatch to Predicted

reference interferometer displacement noise

Test Mass 125 mm 0.13 pm/
√

Hz

Science 78 mm 0.08 pm/
√

Hz

PAAM Metrology 4 mm negligible

Table 7.2: Path length matching between the the reference and measurement

interferometers for the prototype LISA OB layout. The displacement noise

given is based on the predicted laser frequency noise of 280 Hz/
√

Hz detailed

in Section 7.2.2

ponents are wedged at an angle of 3◦, and all transmissive components are

sufficiently thick such that the reflections are separated from the main beams

by at least 6ω0. These actions alone do not entirely guarantee that a back

reflected beam will not re-enter the main beam path, but it does reduce the

risk. As a further mitigation, the propagation of all second and third order

reflections will be modelled to ensure that no reflections couple into a mea-

surement.

The path length matching requirement was particularly challenging due to the

large propagation distance of the Tx beam to the test mass interferometer.

This beam path includes the 355 mm round trip of the beam below the OB

to the test mass and back. The result is a somewhat elaborate routing of the

Tx beam to the reference interferometer but it does result in good path length

matching. The values are detailed in Table 7.2.

These path length differences are broadly compliant with the goal of having

path length mismatches of around 100 mm or less. For the science interferome-

ter, the mismatch given is between the Tx beam to the reference interferometer

and the Tx beam to the science interferometer. The frequency noise of the Rx
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beam is cancelled using the time delay interferometry technique discussed in

Section 7.2.2.

Manufacturability

Ensuring that the resulting optical bench was manufacturable required the

development of an alignment plan as the layout was developed. This is sum-

marised below.

1. Bond the (pre-assembled) Tx beam fibre injector in place.

2. Bond (using a template) the optics between the Tx fibre injector and the

PBS directing the beam to the test mass.

3. Precision align and bond the PBS to ensure alignment to the test mass

in the in-plane degrees of freedom.

4. Precision align and bond the 45◦ mirror to direct the beam to the nominal

test mass reflection point.

5. Precision align and bond the (pre-assembled) Tx beam expander to align

its optical axis in the in-plane degrees of freedom.

6. Template bond the components between the Tx beam expander and the

Tx beam clipping.

7. Precision align and attach the Tx beam clipping aperture.

8. Precision align and mount the PAAM.

9. Bond the PBS to multiplex the Tx and Rx beams to/from the telescope.

10. Precision align and bond the beamsplitter to direct the beam to the

telescope interface.
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11. Precision align and bond the 45◦ mirror directing the Tx beam up to the

telescope.

12. Bond the (pre-assembled) local oscillator beam fibre injector.

13. Couple the Tx beam to the local oscillator fibre injector to establish the

backlink by precision bonding the output polariser.

14. Template bond the components directing the Tx and local oscillator

beam to the reference interferometer.

15. Precision align and bond the reference interferometer combiner.

16. Precision align and bond the beamsplitter directing the local oscillator

beam to optical truss interface 1 for the in-plane degrees of freedom, then

the 45◦ mirror to control the out-of-plane degrees of freedom.

17. Precision align and bond the PAAM metrology combiner.

18. Template bond the optics directing the local oscillator and Tx beams to

the test mass interferometer.

19. Precision align and bond the test mass interferometer combiner.

20. Precision align and bond the 45◦ mirror for optical truss interface 2.

21. Template bond the components directing the local oscillator beam to

optical truss interface 3.

22. Precision align and bond in-plane mirror and the 45◦ mirror for optical

truss interface 3.

23. Template bond the optics directing the Tx and Rx beams to the science

interferometer.

24. Precision align and bond the science interferometer combiner.
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25. Precision align and bond the (pre-assembled) imaging systems for the

test mass, PAAM metrology and science interferometers.

26. Align and attach the photodiodes and electronics for the eight interfer-

ometer read-outs.

27. Align and attach the acquisition sensors.

This alignment plan ensures that all required beams are visible and measurable

at all stages of construction.

Alignment tolerances

One important point of this alignment plan is that it allows simplification in

the alignment of the Tx beam to the telescope. As discussed in Section 7.3.1,

we require that the Tx and Rx beams are aligned to within 20µm of each

other to minimise the effects of spacecraft jitter. This is a tight tolerance and

would be hard to meet in an absolute sense. Here, by aligning the telescope

interface before we align the science interferometer (i.e. before we define the

DWS bias signal for the science interferometer) we can align the Tx beam with

considerably looser tolerances. Then, by measuring the aligned Tx beam to

the required precision we define where the Rx beam must be received to meet

the 20µm tolerance. With this beam defined, the science interferometer can be

aligned and bonded for this Rx beam, with the DWS bias signal then defining

the Rx beam vector for which the 20µm tolerance is fulfilled. On orbit, the

spacecraft can be oriented such that the science interferometer has this DWS

signal, thus ensuring that the required Tx to Rx alignment is correct.

This strategy also greatly simplifies the alignment of the Tx Beam Expander.

Since the alignment to the telescope is less critical, the driving requirement on
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how much the Tx beam expander can deviate a beam in pointing is determined

by the allowable deviation of the Tx beam at the science interferometer. From

Section 7.3.1, the two beams at the science interferometer must be aligned to

within 25µm and 50µrad of each other. However, we have now created the

situation where the position of the Rx beam is dependant on the position of

the Tx beam at the telescope. The result is that any height deviation of the Tx

beam results in the nominal Rx beam also being deviated in height by the same

amount to meet the 20µm telescope centring tolerance and consequently the

beams will end up being matched in height at the science interferometer. So the

system is (to first order) insensitive to height deviations of the Tx beam after

the Tx beam expander. Further, any angular deviations of the Tx beam can

be split out into an angular and a height component at the telescope interface.

The height component is compensated by the same mechanism if the path

length from the Tx beam expander to the telescope and science interferometers

is well matched. For the layout of Figure 7.11 there is a small delta of around

100 mm in this path length matching. The angle of the Tx beam is re-set at the

PAAM (to ensure the correct point ahead angle to the far spacecraft), and the

Rx beam will be defined to be as close to normal as possible. Therefore, the

angular deviation of the Tx beam through the Tx beam expander leads to a

tilt offset on the Tx beam at the science interferometer of the same magnitude

and a small height component equal to the angular offset propagating over

100 mm. This creates a relatively forgiving set of tolerances of around ± 30µm

and ± 50µrad for the beam deviation though the Tx beam expander. We can

also construct the Tx beam expander for the specific beam which is being

launched into it allowing us to define an even looser set of tolerances on the

required alignment of the Tx beam before the Tx beam expander.

For deriving the required absolute alignment of the beams from the fibre injec-

tors we are left with the alignment of the beam to the test mass, and the align-
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ment of the beams at the reference interferometer as the driving requirements.

Apportioning around 10 − 15µm of the alignment budget for the coaxiality

of the main and redundant beams, we end up with tolerances on the absolute

alignment of around ± 20− 25µm. These tolerances are similar in magnitude

to those with which the LISA Pathfinder OBI was constructed.

Potentially the most demanding requirement is the collinearity between the

main and redundant beams from the fibre injectors. One position where this is

potentially challenging is for the alignment of the telescope interface. Although

the alignment plan eases the requirements on the absolute positioning of the

Tx beam at the telescope, the Tx to Rx centring requirement applies to both

the main and redundant setting of the Tx fibre injector. Apportioning some

reasonable error to the position of the Rx beam (say 10µm) we end up with

the requirement that the main and redundant Tx beams are within 20−30µm

of each other at the telescope interface. The nominal Rx beam is then defined

to be the bisector of these two beams. The magnification of the Tx beam

expander further tightens this requirement by a factor of two. The second

limiting position for the collinearity of the main and redundant Tx beams is the

alignment to the nominal test mass reflection point. Here both beams must be

aligned to the nominal reflection point to within 35µm. Most of this we wish to

apportion to the absolute alignment, leaving us with 10−15µm for the relative

alignment on the main and redundant beams. The third limiting position is the

reference interferometer. From a similar argument we can apportion around

20µm of error at this point. From the layout, the test mass interface and

telescope interface have near identical path lengths from the Tx fibre injector.

The reference interferometer is around 150 mm further in path length. This

sets the requirement on collinearity for the two beams from the Tx fibre injector

to be around 25µrad and 10µm.
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Using this alignment plan, the tolerances derived are all similar in magnitude

to those which the LISA Pathfinder OBI was constructed to (see Figure 4.7

on Page 69). The successful completion of the LISA Pathfinder optical bench

demonstrates that the metrology and alignment techniques developed for LISA

Pathfinder, as well as the constructional approach, are directly applicable to

the construction of the LISA optical bench and gives confidence that this

approach can produce an optical bench of the required precision and durability

for LISA.



Chapter 8

Outlook

The direct detection of gravitational radiation, widely believed to be achiev-

able with second generation ground based detectors (if not before), offers the

opportunity to start a new field in astronomy. The gravitational wave spec-

trum is predicted to be rich in sources, many of which are not visible with

standard electromagnetic techniques. LISA will aim to detect sources in the

mHz region of the spectrum, a part not visible to ground based detectors.

LISA Pathfinder will test key technologies for LISA, paving the way for LISA

to potentially fly in the 2020 to 2025 time frame.

With the flight model interferometer for LISA Pathfinder completed, and other

components of the spacecraft nearing completion, integration can begin, allow-

ing LISA Pathfinder to fly around 2012 to 2013. Even before launch, significant

insight into some of the technology required to make LISA a reality has been

gained through the research and development for LISA Pathfinder. Efforts

to further the construction, measurement and interferometry techniques de-

veloped for LISA Pathfinder to a level suitable for LISA are under way with

significant progress already made. By the time LISA Pathfinder launches, a
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fully representative prototype of the LISA optical bench will have been built,

and its performance tested. In parallel, much of the other technology required

for LISA that LISA Pathfinder will not test, such as the telescope and MHz

phase measuring systems are under development.

With the launch of LISA Pathfinder, we should unambiguously be able to

demonstrate that the technology is suitable for LISA and investigate and char-

acterise the noise performance of the system to inform on design choices for

LISA.



Appendix A

LISA optical bench layout

diagrams

The layout for the prototype LISA optical bench presented in Chapter 7 is a

complicated design. The following Figures show the design broken down into

individual interferometers and optical paths for clarity.
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Figure A.1: OptoCad model of the prototype LISA optical bench showing the

path of the Tx beam to the telescope. The scale is in metres.
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Figure A.2: OptoCad model of the prototype LISA optical bench showing the

science interferometer. The scale is in metres.
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Figure A.3: OptoCad model of the prototype LISA optical bench showing the

test mass read-out interferometer. The scale is in metres.



143

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3
−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

Figure A.4: OptoCad model of the prototype LISA optical bench showing the

reference interferometer. The scale is in metres.
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Figure A.5: OptoCad model of the prototype LISA optical bench showing the

PAAM metrology interferometer. The scale is in metres.



145

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3
−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

Figure A.6: OptoCad model of the prototype LISA optical bench showing the

Tx beam path to the backlink fibre. The scale is in metres.
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Figure A.7: OptoCad model of the prototype LISA optical bench showing the

acquisition sensors. The scale is in metres.
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Figure A.8: OptoCad model of the prototype LISA optical bench showing the

path to the three optical truss points. The scale is in metres.
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Figure A.9: OptoCad model of the prototype LISA optical bench showing the

Tx beam power monitor. The scale is in metres.
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